Beyond Accuracy: Behavioral Testing of NLP models with **CheckList**

Marco Tulio Ribeiro @marcotcr Microsoft Research

Tongshuang (Sherry) Wu @tongshuangwu Carlos Guestrin @guestrin University of Washington

Sameer Singh @sameer University of California, Irvine

Motivation

1

OSCAR: Pre-training of Neural Networks Directly on Human Brains

Gnome Chompsky Arcadia Research chompsky@arcadia.com Waltolomew Strickler Arcadia Oaks High stricklander@aoh.edu

Abstract

We train neural networks on human brains and achieve SOTA in everything.

Introduction

3 Model and Architecture

Our basic human brain training approach is similar in spirit to the process described in [XYZ] et al, with the relative straightforward difference that we train directly on brains rather than on text.

Should I replace my doctor with OSCAR?

OSCAR: Pre-training of Neural Networks Directly on Human Brains

Gnome Chompsky Arcadia Research chompsky@arcadia.com Waltolomew Strickler Arcadia Oaks High stricklander@aoh.edu

Abstract

We train neural networks on human brains and achieve SOTA in everything.

Introduction

3 Model and Architecture

Our basic human brain training approach is similar in spirit to the process described in [XYZ] et al, with the relative straightforward difference that we train directly on brains rather than on text.

Should I replace my doctor with OSCAR?

Should we use OSCAR in our products?

OSCAR: Pre-training of Neural Networks Directly on Human Brains

Gnome Chompsky Arcadia Research chompsky@arcadia.com

Waltolomew Strickler Arcadia Oaks High stricklander@aoh.edu

Abstract

We train neural networks on human brains and achieve SOTA in everything.

Introduction

3 Model and Architecture

Our basic human brain training approach is similar in spirit to the process described in [XYZ] et al, with the relative straightforward difference that we train directly on brains rather than on text.

Accuracy seems a good solution?

GLUE: "performance on the benchmark has recently come close to the level of non-expert humans, suggesting limited headroom for further research."

1.2 1.11.0 0.9 0.8 BAM (Large) GР STILT Adapter DpenAl BERT BERT 0.7 0 ERT STM GLUE Score 0.6 Iuman Performance Cola 0.5 SST-2 ш

> Wang, A., Pruksachatkun, Y., Nangia, N., Singh, A., Michael, J., Hill, F., ... & Bowman, S. (2019). Superglue: A stickier benchmark for general-purpose language understanding systems. In Advances in Neural Information Processing Systems (pp. 3266-3280).

Accuracy seems a good solution?

GLUE: "performance on the benchmark has recently come close to the level of non-expert humans, suggesting limited headroom for further research."

1.2 1.11.0 0.9 0.8 BAM (Large) GР Adapter STILT OpenAl BERT BERT 0.7 0 ш + BERT BILSTM 0.6 GLUE Score Human Performance Cola 0.5 SST-2 ш

> Wang, A., Pruksachatkun, Y., Nangia, N., Singh, A., Michael, J., Hill, F., ... & Bowman, S. (2019). Superglue: A stickier benchmark for general-purpose language understanding systems. In Advances in Neural Information Processing Systems (pp. 3266-3280).

Accuracy seems a good solution?

GLUE: "performance on the benchmark has recently come close to the level of non-expert humans, suggesting limited headroom for further research."

1.2 1.11.0 0.9 0.8 BAN (Large) GР Adapter STILT DpenAl BERT BERT 0.7 ERT 0.6 GLUE Score luman Performance CoLA 0.5 SST-2 BE

Wang, A., Pruksachatkun, Y., Nangia, N., Singh, A., Michael, J., Hill, F., ... & Bowman, S. (2019). Superglue: A stickier benchmark for general-purpose language understanding systems. In Advances in Neural Information Processing Systems (pp. 3266-3280).

What could go wrong?

Agrawal, A., Batra, D., & Parikh, D. (2016). Analyzing the behavior of visual question answering models. arXiv preprint arXiv:1606.07356.

Agrawal, A., Batra, D., & Parikh, D. (2016). Analyzing the behavior of visual question answering models. arXiv preprint arXiv:1606.07356.

What is the moustache made of?

Agrawal, A., Batra, D., & Parikh, D. (2016). Analyzing the behavior of visual question answering models. arXiv preprint arXiv:1606.07356.

What is the moustache made of?

Agrawal, A., Batra, D., & Parikh, D. (2016). Analyzing the behavior of visual question answering models. arXiv preprint arXiv:1606.07356.

What is the moustache made of?

Banana

What are the eyes made of?

Agrawal, A., Batra, D., & Parikh, D. (2016). Analyzing the behavior of visual question answering models. arXiv preprint arXiv:1606.07356.

What is the moustache made of?

Banana

Banana

What are the eyes made of?

Agrawal, A., Batra, D., & Parikh, D. (2016). Analyzing the behavior of visual question answering models. arXiv preprint arXiv:1606.07356.

Banana

Semantically equivalent adversaries (ACL 2018)

Ribeiro, M. T., Singh, S., & Guestrin, C. (2018, July). Semantically equivalent adversarial rules for debugging nlp models. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers) (pp. 856-865).

How many jets?

Semantically equivalent adversaries (ACL 2018)

Ribeiro, M. T., Singh, S., & Guestrin, C. (2018, July). Semantically equivalent adversarial rules for debugging nlp models. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers) (pp. 856-865).

How many jets?

How many jets??

Lack of consistency (ACL 2019)

Are there 6 jets?

Ribeiro, M. T., Guestrin, C., & Singh, S. (2019, July). Are red roses red? evaluating consistency of question-answering models. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics (pp. 6174-6184).

I know: I will write more papers!

OSCAR: Pre-training of Neural Networks Directly on Human Brains

Gnome Chompsky Arcadia Research chompsky@arcadia.com

Waltolomew Strickler Arcadia Oaks High stricklander@aoh.edu

Abstract

We train neural networks on human brains and achieve SOTA in everything.

Introduction

3 Model and Architecture

Our basic human brain training approach is similar in spirit to the process described in [XYZ] et al, with the relative straightforward difference that we train directly on brains rather than on text.

I know: I will write more papers!

⊗ A lot of work

OSCAR: Pre-training of Neural Networks Directly on Human Brains

Gnome Chompsky Arcadia Research chompsky@arcadia.com Waltolomew Strickler Arcadia Oaks High stricklander@aoh.edu

Abstract

We train neural networks on human brains and achieve SOTA in everything.

Introduction

3 Model and Architecture

Our basic human brain training approach is similar in spirit to the process described in [XYZ] et al, with the relative straightforward difference that we train directly on brains rather than on text.

I know: I will write more papers!

⊗ A lot of work

No shared insights between models

1

OSCAR: Pre-training of Neural Networks Directly on Human Brains

Gnome Chompsky Arcadia Research chompsky@arcadia.com

Waltolomew Strickler Arcadia Oaks High stricklander@aoh.edu

Abstract

We train neural networks on human brains and achieve SOTA in everything.

Introduction

3 Model and Architecture

Our basic human brain training approach is similar in spirit to the process described in [XYZ] et al, with the relative straightforward difference that we train directly on brains rather than on text.

I know: I will write more papers!

⊗ A lot of work

No shared insights between models

1

This paper: test NLP models, like we test software

OSCAR: Pre-training of Neural Networks Directly on Human Brains

Gnome Chompsky Arcadia Research chompsky@arcadia.com

Waltolomew Strickler Arcadia Oaks High stricklander@aoh.edu

Abstract

We train neural networks on human brains and achieve SOTA in everything.

Introduction

3 Model and Architecture

Our basic human brain training approach is similar in spirit to the process described in [XYZ] et al, with the relative straightforward difference that we train directly on brains rather than on text.

CheckList – Framework + Tooling

Applying the principles for Software Engineering testing to NLP

Principle: test small units

Principle: test small units

What to test: capabilities

Capabilities	Description
Vocab/POS	important words or word types f
Named entities	appropriately understanding nar
Nagation	understand the negation words.
Taxonomy	synonyms, antonyms, etc.
Robustness	to typos, irrelevant changes, etc.
Coreference	resolve ambiguous pronouns, et
Fairness	not biasing towards certain gene
Semantic Role Labeling	understanding roles such as age
Logic	handle symmetry, consistency, a
Temporal	understand order of events.

ns

for the task.

amed entities.

Principle: test small units

What to test: capabilities

etc.

nder/race groups.

ent, object, etc.

and conjunctions.

Models' required capabilities are task-independent.

Models' required capabilities are task-independent. Models' expected behaviors w.r.t capabilities are task-dependent.

Models' required capabilities are task-independent. Models' expected behaviors w.r.t capabilities are task-dependent. This is not an exhaustive list!

Capabilities

Vocab/POS

Named entities

Nagation

• • •

Behavioral testing: decouple tests from implementation

Capabilities

Vocab/POS

Named entities

Nagation

• • •

Behavioral testing: decouple tests from implementation

Decouple tests from training

Capabilities

Vocab/POS

Named entities

Nagation

• • •

Behavioral testing: decouple tests from implementation

Decouple tests from training

Meets users' needs

Capabilities

Vocab/POS

Named entities

Nagation

• • •

Behavioral testing: decouple tests from implementation

Decouple tests from training

Meets users' needs Works with black box models

Capabilities	
Vocab/POS	
Named entities	
Nagation	
• • •	

Decouple tests from training

How to test:

Test behaviors with different test types!

Capabilities	
Vocab/POS	
Named entities	
Nagation	
• • •	

Illustrating task: **sentiment analysis** with Google Cloud's Natural Language

Behavioral testing: decouple tests from implementation

Decouple tests from training

How to test:

Test behaviors with different test types!

Capabilities	MFT	
Vocab/POS		
Named entities		
Nagation		
• • •		

Unit tests: known in-/out-puts

Minimum Functionality Test

Capabilities	MFT	
Vocab/POS		
Named entities		
Nagation		
• • •		

Unit tests: known in-/out-puts

Minimum Functionality Test

Capabilities	MFT	
Vocab/POS		
Named entities		
Nagation		
• • •		

Expectation: Exact labels

This was a great flight. (positive) I hated this seat. (negative)

Unit tests: known in-/out-puts

Minimum Functionality Test

Capabilities	MFT	
Vocab/POS		
Named entities		
Nagation		
• • •		

Expectation: Exact labels

This was a great flight. (positive) I hated this seat. (negative)

Capabilities	MFT	
Vocab/POS	Pos/Neg: 15%	< 1 test, v
Named entities		
Nagation		
• • •		

Expectation: Exact labels

This was a great flight. (positive) I hated this seat. (negative)

Capabilities	MFT	
Vocab/POS	Pos/Neg: 15%	
Named entities		
Nagation		
• • •		

Expectation: Exact labels This was a great flight. (positive) I hated this seat. (negative)

Expectation: Exact labels

This is a commercial flight. (neutral) I flew to Indiana yesterday. (neutral)

Capabilities	MFT	
Vocab/POS	Pos/Neg: 15% Neutral: 7.6%	<- multipl
Named entities		
Nagation		
• • •		

Expectation: Exact labels This was a great flight. (positive) I hated this seat. (negative)

Expectation: Exact labels

This is a commercial flight. (neutral) I flew to Indiana yesterday. (neutral)

Capabilities	MFT	
Vocab/POS	Pos/Neg: 15% Neutral: 7.6%	
Named entities		
Nagation		
• • •		

Unit tests: known in-/out-puts

Minimum Functionality Test

Capabilities	MFT	
Vocab/POS	Pos/Neg: 15% Neutral: 7.6%	
Named entities		
Nagation		
• • •		

Expectation: Exact labels

The cabin crew was not great. (negative) I can't say I enjoyed the food. (negative)

Capabilities	MFT	
Vocab/POS	Pos/Neg: 15% Neutral: 7.6%	
Named entities		
Nagation	Easy: 49.2%	
• • •		

Expectation: Exact labels

The cabin crew was not great. (negative) I can't say I enjoyed the food. (negative)

Capabilities	MFT	
Vocab/POS	Pos/Neg: 15% Neutral: 7.6%	
Named entities		
Nagation	Easy: 49.2%	
• • •		

Metamorphic (perturbations) & property-based testing

Capabilities	MFT	
Vocab/POS	Pos/Neg: 15% Neutral: 7.6%	
Named entities		
Nagation	Easy: 49.2%	
• • •		

Start from scratch → Perturb existing ones

Metamorphic (perturbations) & property-based testing

Capabilities	MFT	
Vocab/POS	Pos/Neg: 15% Neutral: 7.6%	
Named entities		
Nagation	Easy: 49.2%	
• • •		

Start from scratch → Perturb existing ones Expect exact label

Expect predictions to (not) change

Metamorphic (perturbations) & property-based testing

Capabilities	MFT	INV
Vocab/POS	Pos/Neg: 15% Neutral: 7.6%	
Named entities		
Nagation	Easy: 49.2%	
• • •		

Capabilities	MFT	INV
Vocab/POS	Pos/Neg: 15% Neutral: 7.6%	
Named entities		
Nagation	Easy: 49.2%	
• • •		

INVariance Tests

Capabilities	MFT	INV
Vocab/POS	Pos/Neg: 15% Neutral: 7.6%	
Named entities		
Nagation	Easy: 49.2%	
• • •		

Expectation: Same prediction after the change.

Metamorphic (perturbations) & property-based testing

INVariance Tests

No need to specify the exact prediction!

@AmericanAir thank you we got on a different flight to Chicago Dallas.

@VirginAmerica I can't lose my luggage, moving to Brazil Turkey soon.

Capabilities	MFT	INV
Vocab/POS	Pos/Neg: 15% Neutral: 7.6%	
Named entities		LOC: 21%
Nagation	Easy: 49.2%	
• • •		

Expectation: Same prediction after the change.

Metamorphic (perturbations) & property-based testing

INVariance Tests

No need to specify the exact prediction!

@AmericanAir thank you we got on a different flight to Chicago Dallas.

@VirginAmerica I can't lose my luggage, moving to Brazil Turkey soon.

Capabilities	MFT	INV
Vocab/POS	Pos/Neg: 15% Neutral: 7.6%	
Named entities		LOC: 21%
Nagation	Easy: 49.2%	
• • •		

DIR

Metamorphic (perturbations) & property-based testing

INVariance Tests

DIRectional Expectation Tests

Capabilities	MFT	INV
Vocab/POS	Pos/Neg: 15% Neutral: 7.6%	
Named entities		LOC: 21%
Nagation	Easy: 49.2%	
• • •		

Expectation: Sentiment monotonic decreasing (\downarrow) @AmericanAir service wasn't great. You are lame. @JetBlue why won't YOU help them?! Ugh. I dread you.

Capabilities	MFT	INV
Vocab/POS	Pos/Neg: 15% Neutral: 7.6%	
Named entities		LOC: 21%
Nagation	Easy: 49.2%	
• • •		

Expectation: Sentiment monotonic decreasing (\downarrow) @AmericanAir service wasn't great. You are lame. @JetBlue why won't YOU help them?! Ugh. I dread you.

expectation on probability!

Capabilities	MFT	INV
Vocab/POS	Pos/Neg: 15% Neutral: 7.6%	
Named entities		LOC: 21%
Nagation	Easy: 49.2%	
• • •		

Expectation: Sentiment monotonic decreasing (\downarrow) @AmericanAir service wasn't great. You are lame. @JetBlue why won't YOU help them?! Ugh. I dread you.

Metamorphic (perturbations) & property-based testing

INVariance Tests

DIRectional Expectation Tests

expectation on probability!

NLP testing in a nutshell: fill in the matrix

how?

	Capabilities	MFT	INV	DIR
	Vocab/POS	\checkmark	×	×
nat?	Named entities	\checkmark	\checkmark	X
	Nagation	×	\checkmark	×
	•••			

- Find a cell of (cap, test type) Define (maybe \geq 1) tests
- test = test case + expectation
- Run the model, get passes/fails
- Form a test suite reuse for other models!

Capabilities	MFT
Vocab/POS	Pos/Neg: 15% Neutral: 7.6%
Named entities	
Nagation	Easy: 49.2%
•••	

Capabilities	MFT
Vocab/POS	Pos/Neg: 15% Neutral: 7.6%
Named entities	
Nagation	Easy: 49.2%
• • •	

Affected by the test cases selected

Capabilities	MFT
Vocab/POS	Pos/Neg: 15% Neutral: 7.6%
Named entities	
Nagation	Easy: 49.2%
• • •	

- Affected by the test cases selected
- Abs. value is not as interesting as "high enough"

Capabilities	MFT	
Vocab/POS	Pos/Neg: 15% Neutral: 7.6%	Affe
Named entities		Abs.
Nagation	Easy: 49.2%	
•••	The failu	.re ís ~5

- cted by the test cases selected
- value is not as interesting as "high enough"

Capabilities	MFT	
Vocab/POS	Pos/Neg: 15% Neutral: 7.6%	Affe
Named entities		Abs.
Nagation	Easy: 9.2%	
•••	The failu	voic~5

- cted by the test cases selected
- value is not as interesting as "high enough"

Capabilities	MFT	
Vocab/POS	Pos/Neg: 15% Neutral: 7.6%	Affe
Named entities		Abs.
Nagation	Easy9.2%	Can
•••	The failu	veic~5

- cted by the test cases selected
- value is not as interesting as "high enough"
- be subjective & case-to-case

	"passed" i	f failure.
Capabilities	MFT	
Vocab/POS	Pos/Neg: 15% Neutral: 7.6%	Affe
Named entities		Abs.
Nagation	Easy 9.2%	Can
•••	The failu	reíc~5

s are on rare tokens

cted by the test cases selected

value is not as interesting as "high enough"

be subjective & case-to-case

Affected by the test cases selected

Abs. value is not as interesting as "high enough"

Can be subjective & case-to-case

Discussion: Cautious on what to claim!

Failing a test **≠** failing what the test name indicates. Linguistic capabilities are more intertwined. Should try to further isolate compounds through INV tests. And should fix the pattern anyways!

Discussion: Cautious on what to claim!

Failing a test **≠** failing what the test name indicates. Linguistic capabilities are more intertwined. Should try to further isolate compounds through INV tests. And should fix the pattern anyways!

Passing a test ≠ model working. Test cases are not comprehensive; Only give you more confident that the basic works.

CheckList – Framework + Tooling

Abstractions that ease the pain of the test generation, increase coverage.

CheckList as a tool

Templates

- RoBERTa suggestions
- Lexicons
- Perturbation library
- Expectation functions
- Test inspecting/sharing
- Visualization

One test case

case This is a good book

CheckList as a tool

Templates

- **RoBERTa suggestions**
- Lexicons
- Perturbation library
- Expectation functions
- Test inspecting/sharing
- Visualization

One t

Make it

a template	This	is	a	{POS}	{THING]
est case	This	is	a	good	book

CheckList as a tool

Templates

- **RoBERTa suggestions**
- Lexicons
- Perturbation library
- Expectation functions
- Test inspecting/sharing
- Visualization

One t

Make it

	good, great, terrífic					
a template Th	is is	a {P	OS} {THING	;]		
est case Th	is is	a goo	od book			

Templates

- RoBERTa suggestions
- Lexicons
- Perturbation library
- Expectation functions
- Test inspecting/sharing
- Visualization

One t

Make it

est case	This	is	a	good	book
a template	This	is	a	{POS}	{THING}
		goo	oa, ç	great, terri bool	fic k, film, mov

Templates

- RoBERTa suggestions
- Lexicons
- Perturbation library
- Expectation functions
- Test inspecting/sharing
- Visualization

One t

Make it a

Gener

est case	This	is	a	good	book
a template	This	is	a	{POS}	{THING}
		900	od, g	great, terrí- boo	fic k, film, mov

ate more	This	is	а	good	book
	This	is	a	great	movie
	This	is	a	good	film

 $\bullet \bullet \bullet$

Templates

RoBERTa suggestions

Lexicons

Perturbation library

Expectation functions

Test inspecting/sharing

Visualization

One t

Make it

Masked, to get more creativity from language models!

a template	This	is	a	[MASK]	book
est case	This	is	а	good	book

Templates

RoBERTa suggestions

Lexicons

Perturbation library

Expectation functions

Test inspecting/sharing

Visualization

Masked, to get more creativity from language models!

This is a good book One test case This is a [MASK] book Make it a template

good great beautiful big nice bad

Templates

RoBERTa suggestions

Lexicons

Perturbation library

Expectation functions

Test inspecting/sharing

Visualization

Masked, to get more creativity from language models!

Verify the fill-ins

This is a good book One test case This is a [MASK] book Make it a template

good great v beautiful × big nice × bad

Templates

RoBERTa suggestions

Lexicons

Perturbation library

Expectation functions

Test inspecting/sharing

Visualization

One

Make it

Not always necessary — If it does not affect model prediction!

a template	This	is	a	[MASK]	book
est case	This	is	a	good	book

Verify the fill-ins

good great v beautiful × big nice bad

Templates

RoBERTa suggestions

Lexicons

Perturbation library

Expectation functions

Test inspecting/sharing

N 70 Visualization One

Make it

Not always necessary — If it does not affect model prediction!

a template	This	is	a	good	[MASK]
est case	This	is	a	good	book

Verify the fill-ins

idea question sign plan movie

• • •

Templates

RoBERTa suggestions Lexicons

Perturbation library

Expectation functions

Test inspecting/sharing

Visualization

• • •

Pre-defined common fill-ins

- First, last names: by race, sex
- Countries, nationalities: by income, continent
- US cities: by population
- Religions: both nouns (Christianity) and adjs (Christian)
- Sexuality adjs: gay, straight, bisexual, etc

Templates

RoBERTa suggestions

Lexicons

Perturbation library

Expectation functions

Test inspecting/sharing

Visualization

Example: RoBERTa+WordNet word substitution

Templates

RoBERTa suggestions

Lexicons

Perturbation library

Expectation functions

Test inspecting/sharing

Visualization

Example: RoBERTa+WordNet word substitution

SLICE This is a **bad** book POS example

Templates

RoBERTa suggestions

Lexicons

Perturbation library

Expectation functions

Test inspecting/sharing

Visualization

Example: RoBERTa+WordNet word substitution

Templates

RoBERTa suggestions

Lexicons

Perturbation library

Expectation functions

Test inspecting/sharing

Visualization

Example: RoBERTa+WordNet word substitution

Templates

RoBERTa suggestions

Lexicons

Perturbation library

Expectation functions

Test inspecting/sharing

Visualization

also: typos, add/remove negations, etc.

Example: RoBERTa+WordNet word substitution

- Templates
- RoBERTa suggestions
- Lexicons
- Perturbation library

Expectation functions

(in-)variance on predictions, exact labels, monotonicity on probabilities

Test inspecting/sharing

Visualization

- Templates
- RoBERTa suggestions
- Lexicons
- Perturbation library
- Expectation functions

Test inspecting/sharing Visualization

More in our repo! https://github.com/marcotcr/checklist

		Capabilities	Minimum Functionality Test failure rate % (over N tests)
	+	Vocabulary	100.0% (5)
	+	Robustness	
	+	NER	
	+	Fairness	
	+	Temporal	18.8% (1)
	+	Negation	99.8% (9)
	+	SRL	100.0% (5)
M			
P1			
M			
M			
M			
1 1			
M			
N			
1			

INVariance Test failure rate % (over N tests)	DIR ectional Expectation Test failure rate % (over N tests)
10.2% (1)	0.8% (4)
11.4% (5)	
7.6% (3)	
96.4% (4)	
	100.0% (1)

		Capabilities	Minimum Functionality Test failure rate % (over N tests)
	+	Vocabulary	100.0% (5)
	+	Robustness	
	+	NER	
	+	Fairness	
	+	Temporal	18.8% (1)
	+	Negation	99.8% (9)
	+	SRL	100.0% (5)
M			
P1			
M			
M			
M			
1 1			
M			
N			
1			

INVariance Test failure rate % (over N tests)	DIR ectional Expectation Test failure rate % (over N tests)
10.2% (1)	0.8% (4)
11.4% (5)	
7.6% (3)	
96.4% (4)	
	100.0% (1)

Testing models with CheckList

Testing models with CheckList

Let's test some SOTA models (that some people consider solved)! sentiment analysis, QQP, QA

Task Twitter sentiment analysis

@AmericanAir thank you for a delightful flight to Chicago! (positive)

Claimed to be a use case by all connercíal models!

Models

Commercial models

Microsoft's Text Analytics Google Cloud's Natural Language Amazon's Comprehend

Research models BERT (trained on SST-2) RoBERTa (trained on SST-2)

.https://azure.microsoft.com/en-us/services/cognitive-services/text-analytics/ https://cloud.google.com/natural-language https://aws.amazon.com/cn/comprehend/ Socher, R., Perelygin, A., Wu, J., Chuang, J., Manning, C. D., Ng, A. Y., & Potts, C. (2013, October). Recursive deep models for semantic compositionality over a sentiment treebank. In Proceedings of the 2013 conference on empirical methods in natural language processing (pp. 1631-1642).

Capabilities	MFT	INV	DIR
Vocab/POS			
Taxonomy			
Robustness			
NER			
Fairness			
Temporal			
Nagation			
Coreference			
SRL			
Logic			
• • •			

Capabilities	MFT	INV	DIR
Vocab/POS			
Taxonomy			
Robustness			
NER			
Fairness			
Temporal			
Nagation			
Coreference			
SRL			
Logic			
• • •			

Replace neutral words with BERT

Capabilities	MFT	INV	DIR
Vocab/POS			
Taxonomy			
Robustness			
NER			
Fairness			
Temporal			
Nagation			
Coreference			
SRL			
Logic			
• • •			

Inputs (n= the our ni @Virgin s

Replace neutral words with BERT

Inputs (n=500) & expectations

- the our nightmare continues (INV)
- @Virgin should I be concerned that when I'm about to fly... (INV)

Capabilities	MFT	INV	DIR
Vocab/POS		×	
Taxonomy			
Robustness			
NER			
Fairness			
Temporal			
Nagation			
Coreference			
SRL			
Logic			
• • •			

Inputs (n= the our ni @Virgin s

Replace neutral words with BERT

Inputs (n=500) & expectations

- the our nightmare continues (INV)
- @Virgin should I be concerned that when I'm about to fly... (INV)

	G	a		RoBERTa
9.4	16.2	12.4	10.2	10.2

Capabilities	MFT	INV	DIR
Vocab/POS		×	
Taxonomy			
Robustness			
NER			
Fairness			
Temporal			
Nagation			
Coreference			
SRL			
Logic			
• • •			

Capabilities	MFT	INV	DIR
Vocab/POS		×	
Taxonomy			
Robustness			
NER			
Fairness			
Temporal			
Nagation			
Coreference			
SRL			
Logic			
• • •			

Add negative phrases

Capabilities	MFT	INV	DIR
Vocab/POS		×	
Taxonomy			
Robustness			
NER			
Fairness			
Temporal			
Nagation			
Coreference			
SRL			
Logic			
• • •			

Add negative phrases

Inputs (n=500) & expectations

@SouthwestAir ok, gotcha! I abhor you (↓)

Capabilities	MFT	INV	DIR
Vocab/POS		×	×
Taxonomy			
Robustness			
NER			
Fairness			
Temporal			
Nagation			
Coreference			
SRL			
Logic			
• • •			

Add negative phrases

Inputs (n=500) & expectations

@SouthwestAir ok, gotcha! I abhor you (↓)

	G	a		RoBERTa
0.8	34.6	5.0	0.0	13.2

Capabilities	MFT	INV	DIR
Vocab/POS		×	×
Taxonomy			
Robustness			
NER			
Fairness			
Temporal			
Nagation			
Coreference			
SRL			
Logic			
• • •			

Add random url or @

Inputs (n=500) & expectations

@JetBlue that selfie was extreme. @pi9QDK (INV)

	G	a		RoBERTa
9.6	13.4	24.8	11.4	7.4

Capabilities	MFT	INV	DIR
Vocab/POS		×	×
Taxonomy			
Robustness		×	
NER			
Fairness			
Temporal			
Nagation			
Coreference			
SRL			
Logic			
• • •			

Inpu I us

Temporal change

Inputs (n=500) & expectations

I used to hate this airline, although now I like it (Pos)

	G	a		RoBERTa
41.0	36.6	42.2	18.8	11.0

Capabilities	MFT	INV	DIR
Vocab/POS		×	×
Taxonomy			
Robustness		×	
NER			
Fairness			
Temporal	×		
Nagation			
Coreference			
SRL			
Logic			
• • •			

Inpu It v

Negated negation

Inputs (n=500) & expectations

It wasn't a lousy customer service (Pos or Neutral)

	G	a		RoBERTa
18.8	54.2	29.4	13.2	10.2

Capabilities	MFT	INV	DIR
Vocab/POS		×	×
Taxonomy			
Robustness		×	
NER			
Fairness			
Temporal	×		
Nagation	×		
Coreference			
SRL			
Logic			
• • •			

Inp

Inputs (n=500) & expectations

Do I think this company is bad? No (Pos or Neutral)

	G	a		RoBERTa
96.8	90.8	81.6	55.4	54.8

Capabilities	MFT	INV	DIR
Vocab/POS		×	×
Taxonomy			
Robustness		×	
NER			
Fairness			
Temporal	×		
Nagation	×		
Coreference			
SRL	×		
Logic			
•••			

Inp Do

Inputs (n=500) & expectations

Do I think this company is bad? No (Pos or Neutral)

	G	a		RoBERTa
96.8	90.8	81.6	55.4	54.8

Quora question pair

Detect duplicate questions Task

How do you start a bakery? How can I start a bakery business? (duplicate)

Models BERT (trained on QQP) RoBERTa (trained on QQP)

https://www.kaggle.com/c/quora-question-pairs

Detect duplicate questions Task

How do you start a bakery? How can I start a bakery business?

Models BERT (trained on QQP) RoBERTa (trained on QQP)

https://www.kaggle.com/c/quora-question-pairs

Capabilities	MFT	INV	DIR
Vocab/POS			
Taxonomy			
Robustness			
NER			
Fairness			
Temporal			
Nagation			
Coreference			
SRL			
Logic			
• • •			

Modifier

Inputs (n=1000) & expectations

Is Patrick Thomas a teacher? Is Patrick Thomas an accredited teacher? (non-duplicate)

Capabilities	MFT	INV	DIR
Vocab/POS	×		
Taxonomy			
Robustness			
NER			
Fairness			
Temporal			
Nagation			
Coreference			
SRL			
Logic			
•••			

וחו כו ופ **ו**

Change name in one question

Inputs (n=1000) & expectations

- Is Donald Trump the antichrist?
- Is **Donald Trump** John Green an antichrist?
- (non-duplicate)

	RoBERTa
35.1	30.1

Rely too much on text overlap!

Capabilities	MFT	INV	DIR
Vocab/POS	×		
Taxonomy			
Robustness			
NER			×
Fairness			
Temporal			
Nagation			
Coreference			
SRL			
Logic			
• • •			

What was MIT?

Keep entities, fill in with BERT

Inputs (n=1000) & expectations

Will it be difficult to get a US Visa if Donald Trump gets elected? Will the US accept Donald Trump?

(non-duplicate)

What are the requirements for selection into MIT?

- (non-duplicate)

		RoBERTa	
-	30.0	32.8	_
nchor to	o much oi	n named ei	ntity overlap!

Capabilities	MFT	INV	DIR
Vocab/POS	×		
Taxonomy			
Robustness			
NER			XX
Fairness			
Temporal			
Nagation			
Coreference			
SRL			
Logic			
•••			

before ≠ after

Inputs (n=1000) & expectations

Is it unhealthy to eat before 10pm? Is it unhealthy to eat after 10pm? (non-duplicate)

	RoBERTa
98.0	34.4

Capabilities	MFT	INV	DIR
Vocab/POS	×		
Taxonomy			
Robustness			
NER			XX
Fairness			
Temporal	×		
Nagation			
Coreference			
SRL			
Logic			
• • •			

Active/passive swap, same semantics

Inputs (n=1000) & expectations

Does Anna love Benjamin? Is Benjamin loved by Anna? (duplicate)

	RoBERTa
65.8	98.6

Capabilities	MFT	INV	DIR
Vocab/POS	×		
Taxonomy			
Robustness			
NER			XX
Fairness			
Temporal	×		
Nagation			
Coreference			
SRL	×		
Logic			
• • •			

Active/passive swap, different semantics

Inputs (n=1000) & expectations

Does Anna love Benjamin? Is Anna loved by Benjamin? (non-duplicate)

Detect duplicate questions Task

Question: Who created the 2005 theme for Doctor Who?

Context: ... John Debney created a new arrangement of Ron Grainer's original theme for Doctor Who in 1996. For the return of the series in 2005, Murray Gold provided a new arrangement... featured sampled from the 1963 original.

Answer: Murray Gold

Rajpurkar, P., Zhang, J., Lopyrev, K., & Liang, P. (2016). Squad: 100,000+ questions for machine comprehension of text. arXiv preprint arXiv:1606.05250.

BERT-large (trained on SQuAD, F1=93.1) Models

Capabilities	MFT	INV	DIR
Vocab/POS			
Taxonomy			
Robustness			
NER			
Fairness			
Temporal			
Nagation			
Coreference			
SRL			
Logic			
• • •			

Inputs (n=50

C: There is a la **Q:** What size i C: Eric is a Jap **Q:** What is Eric

Extract the correct property

0)	Exp		%
arge pink bed s the bed?	large	pink	82.4
panese architect c's Job?	architect	Japanese architect	49.4

Capabilities	MFT	INV	DIR
Vocab/POS			
Taxonomy			
Robustness			
NER			
Fairness			
Temporal			
Nagation			
Coreference			
SRL			
Logic			
•••			

Inputs (n=50

- C: There is a la
- **Q:** What size i
- C: Eric is a Jap
- **Q:** What is Eric
- C: Jacob is she
- **Q:** Who is talle
- C: John is moi
- **Q:** Who is mor

Extract the correct property

Ехр		%
large	pink	82.
architect	Japanese architect	49.
Kimberly	Jacob	67.
Mark	John	10(
	Exp large architect Kimberly Mark	Exp

Capabilities	MFT	INV	DIR
Vocab/POS			
Taxonomy	×		
Robustness			
NER			
Fairness			
Temporal			
Nagation			
Coreference			
SRL			
Logic			
• • •			

Inputs (n=500

C: Logan beca **Q**: Who becan

Before/after, last/first

0)	Exp		
ame a farmer before Danielle did. ne a farmer last?	Danielle	Logan	8

Capabilities	MFT	INV	DIR
Vocab/POS			
Taxonomy	×		
Robustness			
NER			
Fairness			
Temporal	×		
Nagation			
Coreference			
SRL			
Logic			
• • •			

Inputs (n=50

C: Aaron is an C: Who is not C: Aaron is no C: Who is a wi

Negation in Q and C

0)	Exp		C
editor. Mark is an actor. an actor?	Aaron	Mark	1
ot a writer, Rebecca is. riter?	Rebecca	Aaron	6

Capabilities	MFT	INV	DIR
Vocab/POS			
Taxonomy	×		
Robustness			
NER			
Fairness			
Temporal	×		
Nagation	×		
Coreference			
SRL			
Logic			
• • •			

Inputs (n=50

C: {MAN} is no **Q:** Who is a do

Selective mistake?

0)	Exp		
ot a doctor, {WOMAN} is. octor?	WOMAN	MAN	ç

Capabilities	MFT	INV	DIR
Vocab/POS			
Taxonomy	×		
Robustness			
NER			
Fairness			
Temporal	×		
Nagation	×		
Coreference			
SRL			
Logic			
•••			

Inputs (n=50

- C: {MAN} is no
- **Q:** Who is a do
- C: {WOMAN} is
- Q: Who is a do

Selective mistake?

0)	Exp		9
ot a doctor, {WOMAN} is. octor?	WOMAN	MAN	93
s not a doctor, {MAN} is. octor?	MAN	WOMAN	1

Capabilities	MFT	INV	DIR
Vocab/POS			
Taxonomy	×		
Robustness			
NER			
Fairness			
Temporal	×		
Nagation	×		
Coreference			
SRL			
Logic			
• • •			

Inputs (n=50

- C: {MAN} is no
- Q: Who is a do
- C: {WOMAN} is
- Q: Who is a do
- C: {WOMAN} is
- **Q:** Who is a se
- C: {MAN} is no
- Q: Who is a se

Selective mistake?

Exp		
WOMAN	MAN	9
MAN	WOMAN	
WOMAN	MAN	
MAN	WOMAN	6
	Exp WOMAN MAN WOMAN	ExpどWOMANMANMANWOMANWOMANMANMANWOMAN

Capabilities	MFT	INV	DIR
Vocab/POS			
Taxonomy	×		
Robustness			
NER			
Fairness	×		
Temporal	×		
Nagation	×		
Coreference			
SRL			
Logic			
• • •			

Inputs (n=50

C: Melissa and journalist, she **Q:** Who is a jo

C: Kimberly ar former is a tea **Q:** Who is a te

Simple coreference

0)	Exp		
d Antonio are friends. He is a is an adviser. ournalist?	Antonio	Melissa	
nd Jennifer are friends. The acher. eacher?	Kimberly	Jennifer	

Capabilities	MFT	INV	DIR
Vocab/POS			
Taxonomy	×		
Robustness			
NER			
Fairness	×		
Temporal	×		
Nagation	×		
Coreference	×		
SRL			
Logic			
• • •			

Inputs (n=50

C: Melissa and journalist, she **Q:** Who is a jo

C: Kimberly ar former is a tea **Q:** Who is a te

Simple coreference

0)	Exp		
d Antonio are friends. He is a is an adviser. ournalist?	Antonio	Melissa	
nd Jennifer are friends. The acher. eacher?	Kimberly	Jennifer	

Same process & matrix, detected bugs in different tasks & models.

Same process & matrix, detected bugs in different tasks & models. SOTA models still display many bugs.

SOTA models still display many bugs. Many of these bugs were unknown (we think).

- Same process & matrix, detected bugs in different tasks & models.

SOTA models still display many bugs. Many of these bugs were unknown (we think). Test results are useful for model comparison.

- Same process & matrix, detected bugs in different tasks & models.

lt's true ...

have very short paragraphs.

Some of the failures are by design and are not surprising. e.g. MFT tests are usually out of distribution; SQuAD dataset do not

lt's true ...

have very short paragraphs.

But!

It is annotation artifact.

Some of the failures are by design and are not surprising. e.g. MFT tests are usually out of distribution; SQuAD dataset do not

Dataset collection does not reflect the real world what we care about.

lt's true ...

have very short paragraphs.

But!

It is annotation artifact. The training data will never be comprehensive.

Some of the failures are by design and are not surprising. e.g. MFT tests are usually out of distribution; SQuAD dataset do not

Dataset collection does not reflect the real world what we care about. Language is high dimension and selection bias is unavoidable.

lt's true ...

have very short paragraphs.

But!

It is annotation artifact. The training data will never be comprehensive. The training data will keep getting more biased.

- Some of the failures are by design and are not surprising. e.g. MFT tests are usually out of distribution; SQuAD dataset do not

- Dataset collection does not reflect the real world what we care about. Language is high dimension and selection bias is unavoidable.
- Concept drift caused by the deployed model interacting with the world.

lt's true ...

The testing does not necessarily point to the source of bug / a fix. NER-INV failure is due to contextual embedding, not my model/data.

lt's true ...

But!

The testing does not necessarily point to the source of bug / a fix. NER-INV failure is due to contextual embedding, not my model/data.

further exploration of what caused them.

We should first find the bug, and then try to isolate the source. Detecting bugs is paramount for evaluation, and a prerequisite for

lt's true ...

But!

The testing does not necessarily point to the source of bug / a fix. NER-INV failure is due to contextual embedding, not my model/data.

We should first find the bug, and then try to isolate the source. Detecting bugs is paramount for evaluation, and a prerequisite for further exploration of what caused them.

lt's true ...

Testing sophisticated capabilities can be hard. Test cases for sarcasm require more effort than simple negation.

lt's true ...

But!

The testing does not necessarily point to the source of bug / a fix. NER-INV failure is due to contextual embedding, not my model/data.

We should first find the bug, and then try to isolate the source. Detecting bugs is paramount for evaluation, and a prerequisite for further exploration of what caused them.

It's true ... Test cases for sarcasm require more effort than simple negation.

But!We can start with the simple ones as demo-ed!Test models with the basics, & write tests close to models' capability.Make sure your model pass level 1 MFTs before you reach level 3!

Case Study & User Study How hard is it to find these bugs?

Case study: Microsoft Sentiment Analysis

Case study: Microsoft Sentiment Analysis

Public benchmarks

Model already stress tested, continue to improve

- In-house benchmarks (e.g. negation)
- User complaint benchmarks

Case study: Microsoft Sentiment Analysis

Public benchmarks

Model already stress tested, continue to improve

- In-house benchmarks (e.g. negation)
- User complaint benchmarks

CheckList: 5 hour session

- Find many new bugs
- Test new capabilities
- Test old capabilities better

18 participants, 10 from industry + 8 from academia

Unaided What to test +Tooling

CheckList!

18 participants, 10 from industry + 8 from academia

	Unaided	What to test	+Tooling	
#Test	5.8	10.2	13.5	
#Cases / test	7.3	5.0	198.0	 Significant scaling

18 participants, 10 from industry + 8 from academia

	Unaided	What to test	+Tooling	
#Test	5.8	10.2	13.5	
#Cases / test	7.3	5.0	198.0	
#Capability tested	3.2	7.5	7.8	More capabilitie

18 participants, 10 from industry + 8 from academia

	Unaided	What to test	+Tooling	
#Test	5.8	10.2	13.5	
#Cases / test	7.3	5.0	198.0	
#Capability tested	3.2	7.5	7.8	
#Bug found	2.2	5.5	6.2	< More bug:

CheckList: More test, more coverage, more bugs

Users found same bugs we did, and new ones

Model developers, Experts on model evaluation & task Common and intuitive tests that are crucial for deployment

Model developers, Experts on model evaluation & task Common and intuitive tests that are crucial for deployment

Researchers, Experts on model evaluation Investigate into sophisticated tests (that may worth a paper)

Model developers, Experts on model evaluation & task Common and intuitive tests that are crucial for deployment

Researchers, Experts on model evaluation Investigate into sophisticated tests (that may worth a paper)

Customers, Experts on the specific data/application Tests specific to the dataset (e.g., NER tests on medical terms)

Model developers, Experts on model evaluation & task Common and intuitive tests that are crucial for deployment

Researchers, Experts on model evaluation Investigate into sophisticated tests (that may worth a paper)

Customers, Experts on the specific data/application Tests specific to the dataset (e.g., NER tests on medical terms)

Ultimate goal: Have a shared test suite for each NLP task

Model developers, Experts on model evaluation & task Common and intuitive tests that are crucial for deployment

Researchers, Experts on model evaluation Investigate into sophisticated tests (that may worth a paper)

Customers, Experts on the specific data/application Tests specific to the dataset (e.g., NER tests on medical terms)

Ultimate goal: Have a shared test suite for each NLP task

User study: people test the same model/capability with different test cases!

Conclusion

What are some takeaways?

What to test Capabilities, shared across tasks

What to test Capabilities, shared across tasks + How to task Simple examples (MFTs), perturbations (INVs, DIRs)

What to test Capabilities, shared across tasks + How to task + Tooling

Simple examples (MFTs), perturbations (INVs, DIRs)

BERT fill-ins, visualizations, lexicons, multilingual...

As individuals, we should test NLP models. More confidence & understandings in our own model.

As individuals, we should test NLP models. More confidence & understandings in our own model.

As a community, we should compile test suite for tasks. Another unified evaluation in addition to accuracy, finer-grained model comparison.

As individuals, we should test NLP models. More confidence & understandings in our own model.

As a community, we should compile test suite for tasks. Another unified evaluation in addition to accuracy, finer-grained model comparison.

How to fix bugs found in CheckList? Perturbations as feedback to model training, dataset augmentation, etc.

Thank you! Opensource: <u>https://github.com/marcotcr/checklist</u>

83