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ABSTRACT

Many modern recommender systems train their models based on a
large amount of implicit user feedback data. Due to the inherent bias
in this data (e.g., position bias), learning from it directly can lead to
suboptimal models. Recently, unbiased learning was proposed to
address such problems by leveraging counterfactual techniques like
inverse propensity weighting (IPW). In these methods, propensity
scores estimation is usually limited to item’s display position in a
single user interface (UI).

In this paper, we generalize the traditional position bias model
to an attribute-based propensity framework. Our methods estimate
propensity scores based on offline data and allow propensity es-
timation across a broad range of implicit feedback scenarios, e.g.,
feedback beyond recommender system UIl. We demonstrate this
by applying this framework to three real-world large-scale recom-
mender systems in Google Drive that serve millions of users. For
each system, we conduct both offline and online evaluation. Our
results show that the proposed framework is able to significantly
improve upon strong production baselines across a diverse range
of recommendation item types (documents, people-document pairs,
and queries), UI layouts (horizontal, vertical, and grid layouts), and
underlying learning algorithms (gradient boosted decision trees
and neural networks), all without the need to intervene and degrade
the user experience. The proposed models have been deployed in
the production systems with ease since no serving infrastructure
change is needed.

CCS CONCEPTS

« Information systems — Information retrieval; Recommender

systems;

KEYWORDS

recommender system, implicit feedback, unbiased learning

ACM Reference Format:

Zhen Qin, Suming J. Chen, Donald Metzler, Yongwoo Noh, Jingzheng Qin,
Xuanhui Wang. 2020. Attribute-based Propensity for Unbiased Learning
in Recommender Systems: Algorithm and Case Studies. In Proceedings of
the 26th ACM SIGKDD Conference on Knowledge Discovery and Data Mining
(KDD °20), August 23-27, 2020, Virtual Event, CA, USA. ACM, New York, NY,
USA, 9 pages. https://doi.org/10.1145/3394486.3403285

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

KDD °20, August 23-27, 2020, Virtual Event, CA, USA

© 2020 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-7998-4/20/08.

https://doi.org/10.1145/3394486.3403285

1 INTRODUCTION

While traditional recommender system research heavily depends
on explicit feedback (such as user ratings of movies [8, 37]), many
modern recommender systems [20, 27, 38, 40, 44, 45] use implicit
feedback, such as clicks, purchases, and dwell time, for training
machine-learned recommendation models. There are several clear
advantages to using implicit feedback, including: 1) it is abundant
and inexpensive to collect, which is especially important nowadays
since modern deep learning-based approaches [39] are generally
data-hungry; and 2) users may be reluctant to explicitly rate items,
or in some cases the UI itself may not even provide a means to
collect explicit feedback from users.

However, implicit feedback is usually biased. Position bias is
a well-known and often-studied type of bias [15, 19]. This bias
focuses on the fact that users tend to react more favorably to the
items at more visible positions [43]. Another type of bias is the so-
called “previous-model” bias [27], where the model that is currently
deployed dramatically impacts the training examples produced for
future models. Directly using such biased feedback to train models
can lead to suboptimal results.

Recently, unbiased learning was proposed to train unbiased mod-
els using counterfactual inference. A commonly used approach,
that is based on importance sampling theory, is inverse propen-
sity weighting (IPW) [30, 33]. During model training, examples
are assigned different weights to account for the bias during feed-
back collection. Intuitively, items that have a lower propensity to
receive feedback (e.g., those shown at a less visible position in the
UI) should be assigned higher weights.

How to estimate the propensity weights is a critical task for
unbiased learning. Based on the position bias model [29], online
randomization experiments were proposed [24, 33, 34]. Such an
approach unavoidably degrades the user experience [34], even when
more mild interventions such as swapping adjacent pairs of items is
done [24]. In practice, collecting data from online interventions is
also typically more complex and requires more human effort than
collecting implicit feedback signals.

Intervention harvesting [6, 16] was proposed recently for search
ranking problems to exploit clicks from different ranking models.
Such methods require multiple ranking models being deployed
and can only be applied to feedback data collected directly from
a single UL Some work [7, 21] estimate the propensity weights
and models jointly from click logs without any intervention, but
did not consider bias attributes beyond result positions in a sin-
gle UL All these work focus on search, where a vertically listed
documents is shown given a query, so modeling bias in a single
UI might be sufficient. Real-world recommender systems, on the
other hand, typically have more diverse Ul designs (e.g., vertical
vs grid), potentially on different platforms (e.g., mobile vs web).
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More importantly, implicit feedback that comes from sources other
than the recommendation UI itself is quite common and valuable.
For example, e-commerce websites such as Amazon allows users
to provide feedback on items outside the recommendation UI by
searching and browsing on various product pages. An example of
Google Drive’s recommendation module, called “Quick Access” is
shown in Fig. 1. Besides the recommendation UI, users have the
flexibility to navigate through the website by simply browsing their
organized documents or using the search functionality. This type of
indirect or auxiliary feedback can be quite useful (e.g., it may help
mitigate “previous-model” bias by leveraging a users’ spontaneous
exploration of the item space).
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Figure 1: An illustration of Google Drive’s Quick Access
web (left) and mobile (right) versions from [1, 2], which rec-
ommend relevant documents to users based on the current
context. Besides the recommendation module shown in red
rectangle, users have various ways of accessing their doc-
uments and providing implicit feedback, including brows-
ing their documents below the recommendation Ul, using
search, or using the navigation bar (left part of the web UI).

In this work, we focus on recommender systems and introduce
an attribute-based propensity model for unbiased learning in this
setting. We note that treating different factors, including positions,
platforms (e.g. mobile vs web), and feedback sources (recommen-
dation UI vs non-recommendation-Ul) as “attributes” allows us to
perform unified offline propensity weight estimation. Given the
learned propensity weights, many learning algorithms can easily
take advantage of them using existing model training APIs (e.g. Ten-
sorflow [5] natively supports example weights), so the approach
does not require any changes to how the resulting models are served
online, which makes the approach highly practical. In addition, our
estimated propensity weights allows for the design of unbiased
offline evaluation metrics that we show that are better correlated
with online metrics.

In summary, our contributions are as follows:

e We propose a general attribute-based propensity framework
for unbiased learning in recommender systems that can be es-
timated offline. In addition to generalizing existing position
bias models, the framework also generalizes across different
Ul layouts and can naturally incorporate a wide range of im-
plicit feedback beyond that gathered in the recommendation
UI itself.

e We conduct case studies on three large-scale real-world rec-
ommendation systems with different item types, layouts, and
underlying modeling algorithms. We demonstrate significant
benefits of our proposed framework. The proposed models
have been deployed in production for an extended amount
of time.

e We verify that unbiased offline metrics using these learned
propensity weights are a better proxy than traditional met-
rics for online performance across all our use cases.

The rest of this paper is organized as follows. We review related
work in Section 2 and then give a brief review of unbiased learning
in Section 3. Our attribute-based propensity model and use cases
are presented in Section 4 and Section 5. In Section 6, we present
both offline and online evaluations of our proposed models. Finally,
we conclude the paper in Section 7.

2 RELATED WORK

Recommender system research has primarily focused on explicit
feedback, such as movie ratings [8, 25]. On the other hand, implicit
feedback is getting more and more attention [20] in real-world large
scale recommender systems, such as using clicks for image recom-
mendation [27, 41], installations for mobile apps recommendation
[13], clicks and watch time for video recommendation [11, 45],
clicks and purchases for product recommendation in e-commerce
websites [38, 44], and click and dwell time for news recommen-
dation [26, 40]. Implicit feedback is abundant and easy to collect,
which is especially important for data-hungry methods such as
the recently popular deep learning approaches that can generalize
traditional matrix factorization methods [18]. A thorough survey
can be found at [42].

However, implicit feedback is known to be biased. For example,
users tend to react differently to items placed at different positions
[43]. This problem has drawn more attention in the information
retrieval (IR) community recently [24, 33]. In IR applications, such
as web search, results are often displayed to the user as a vertical
list of items. Eye-tracking research shows that users tend to look
and click at higher-ranked items, regardless of actual relevance
[23]. Many click models in IR are based on document position
[10]. Recently, Inverse Propensity Weighting has been explored for
training unbiased relevance models in the search setting [21, 33].

Implicit feedback bias, as it pertains to recommender systems
has not been deeply explored, although implicit feedback is heavily
used in practice, often in an online fashion [31, 44]. There are some
empirical case studies on position bias in recommender systems
[15]. Several works focus on unbiased offline evaluation [19, 39]
without studying how to learn unbiased models. Our work fills this
gap for recommender systems and demonstrates how the train-
ing methodology can be changed. We also empirically show that
weighted offline metrics (taking bias into account) align better with
online metrics than traditional metrics in three real-world user-
facing recommender systems.

Though less explored, addressing biased feedback in recom-
mender system is arguably a more complicated problem than that
in IR. First, real-world recommender systems typically have more
diverse Ul layouts than ad hoc search applications. As such, pre-
vious research in IR that assumes sequential browsing behavior



is typically not applicable to use cases that utilize other types of
Ul layouts [10]. Also, unlike IR applications where users only get
access to a ranked list, in real-world applications with recommenda-
tion modules (e.g. e-commerce or video websites), users can provide
implicit feedback to items beyond the recommendation Ul itself, for
example by simply viewing or otherwise interacting with the items
outside of the recommendation UL To the best of our knowledge,
our work is the first to unify propensity estimation across different
Ul layouts and beyond recommendation Ul-only feedback.

We also note that the Missing Not At Random (MNAR) prob-
lem has been studied for traditional recommendation problems
(e.g., [30, 36]). Counterfactual inference techniques such as Inverse
Propensity Weighting were also used. The key difference between
MNAR and our work lies in how propensity is modelled. In our
work, propensity is modelled based on attributes of the feedback
source, ranging from the position of the item in the UI, to the user’s
platform (web vs. mobile), to whether the feedback was from the
recommendation Ul or elsewhere. In contrast, propensity in MNAR
is simply modelled as predicting whether the rating is missing based
on generic features using algorithms like Naive Bayes [30].

3 UNBIASED RELEVANCE MODEL LEARNING

We provide a brief review of unbiased model learning using Inverse
Propensity Weighting (IPW). For more details, please refer to [24,
34]. In the following, we use a Bernoulli random variable O to
denote whether the relevance of an item is observed. Without loss
of generality, for item i, we use a vague notation P(O; = 1) to
denote the propensity and o; € {0, 1} to denote a specific value. We
use r; € {0, 1} to denote whether an item is relevant/attractive to a
user and [n] to denote the ranks of n items.

Following [24, 34], unbiased learning starts with a performance
metric such as Discounted Cumulative Gain (DCG) and then derives
an unbiased version of it. In this paper, we use the following variant
of DCG as an example performance metric.

DCG = i
i€[n]

where r; is binary as explained above, i is the position, and 1/i is the
position-based discount function. With biased implicit feedback, r;
is not fully observed, so we use the IPW weights to correct the bias:

rifi Z 1/i
o= —— )
i€[n]:0;=1 P(Ol - 1) i€[n]:0;=1r;=1 P(Ol - 1)

The DCG metric is proven unbiased, i.e., E{DCG} = DCG [24], and
the resulting item-level IPW is

DCG =

_ 1
T P0;=1)

wi

Intuitively, this “weight” w; can be assigned to an item to account
for the observation bias during feedback collection. Optimizing the
weighted metric on biased data results in an unbiased estimation of
the metric. Previous research has shown that such a weighted metric
can readily be optimized (e.g., by the LambdaLoss framework [35]).

In the unbiased learning-to-rank framework, the critical part is to
estimate the propensity P(O; = 1). We next describe our framework
to estimate propensity scores using offline data.

4 ATTRIBUTE-BASED PROPENSITY
ESTIMATION

In this section, we show how to estimate the propensity from the
implicit feedback data using an attribute-based bias model. We first
set up the model and then present efficient offline methods for
parameter estimation.

4.1 The bias model

We assume the observed implicit feedback Bernoulli variable C
(where C = 1 represents a click) depends on two hidden Bernoulli
variables E and R. E = 1 represents the event that a user examines
an item, and R = 1 represents that the item is relevant (e.g. of
interest) to a user:

P(C =1li,u, [a]) = P(E = 1|[a])P(R = 1]i, u), (2)

where i and u are the item and user (or their feature representation),
and [a] is a set of attributes that affects user examination. For
example, [a] could represent the position of the item in the UL
In that case, this model simplifies to the position bias click model
that is widely used in information retrieval [10, 29]. We will give
additional context and provide concrete instantiations of these
attributes [a] in our use cases in Sec. 5.

Our model assumes that the examination probability only de-
pends on the bias attributes (e.g. position) and the relevance prob-
ability only depends on the user and item. This is a common as-
sumption [14] that we have found to work well for a number of
different real-world applications. In the remainder of the paper, we
utilize the following shorthand for the propensity and relevance
models, respectively:

O1a) = P(E = 1|[a]), yiu = P(R = 1]i,u)

4.2 Parameter estimation

We now show how to estimate the propensity model given logged
implicit feedback data. The log likelihood of regular implicit feed-
back data L = (c,i,u, [a]) is

log P(L) = Z clog 011 Viu + (1 - ¢)log(1 = O[q)¥iu). (3)
ciu,[aleL
The goal is to find the best parameters 0, and y;, to maximize
the log likelihood. We can use EM to estimate the parameters. The
EM algorithm starts from some random guess of these parameters
and iteratively performs an Expectation step and an Maximization
step until convergence.
Expectation step. At iteration t + 1 we have

P(E=1,R=1|C=1iua]) =1

0f (1-y!)
P(E=1,R=0|C=0,iu[a]) = 42

I—GEa]yiu
(1-6! )yt 4
P(E=0,R=1|C=0,i,u, [dPM @
1-0f vt
[a)iu
(1-6f )(1-yi)
p(E:o,R:0|C:0,i,u,[a])=%'

;
[a]Yiu

Note that other combinations are of probability 0 (e.g., P(E = 0,R =
0|C = 1) = 0), so we omit them here. Each quantity can be easily



calculated by using results from the Maximization step, which are
randomly generated for the first iteration, as typically done for an
EM algorithm.

Now we can compute marginals P(E = 1|c,i,u, [a]) and P(R =
1lc, i, u, [a]) using statistics in Eq. 4 and use these marginals in the
Maximization step.

Maximization Step. At iteration t + 1 we have

Zc,i’u’[a]/ H[a]':[a] -(c+ (1 =¢c)P(E =1|c,i,u, [a]))

9t+1 —

la] Zeiwlal Hal'=la) )
y“’l ~ Zc,i’,u',[a] ]Ii/:i,u/:u -(c+(1=¢c)P(R=1|c,i,u,la]))

u —

Zc,i',u',[a] I[i':i,u'=u

After we run the EM process until it converges or after a fixed
number of steps, the final 0[] are the propensity scores we will
use for inverse propensity weighting for unbiased learning.

4.3 Regressingy;,

Looking at Eq. 5, we note that 9{;’]1

only need to calculate one number for each attribute configuration

is easy to calculate, since we

independently and everything on the right hand side is available.

For example, we only need one scalar 6 for each position if we are
doing position-only bias estimation (See Sec. 5.1).

However, yi[’;';l requires the exact identifiers for specific item
(i) and user (u) pairs. This is challenging to estimate in practice
because 1) data for each specific item-user pair is too sparse to work
in the EM procedure, since the iterative EM process depends on
stable estimation, and 2) the exact identifiers may not be available
in the logs due to privacy (e.g. we might have the feature vector for
a user-item pair in the activity log, but not their actual ids).

A natural way to address the problem is using a learning-based
regression model for y. We assume that there is a feature vector
Xiu for each observed item i and user u pairs. We can use the same
feature vector (e.g. latent factors from matrix factorization) that is
used to train the actual relevance model for the application. Given
P(R = 1|c,i,u, [a]) from the E-step, we can sample a binary label
from it and use this as the label for x; ;. This allows us to convert y
to a binary classification problem, and to use a model f; for y to
generate calibrated probabilities that can be used in the E-step. For
all of our applications, we use a depth-3 Gradient Boosted Decision
Tree (GBDT) with logistic loss to implement our regression model
due to its effectiveness and simplicity. Similar to [34], for iteration
t + 1, the tree model from the last iteration is used as initialization
for next iteration as the warm-start.

Remark. The goal of fi is to estimate calibrated probabilities that

can be plugged into the EM procedure for propensity estimation.

Though f can be treated as a relevance model, the actual unbiased
relevance model in our applications are learned in a second stage
to optimize the ranking metric in Eq. 1 instead of log likelihood in
Eq. 3. Such an approach was shown to be more effective [34]. Also,
we can use more complicated model formats (e.g. Neural Network)
in the second stage that can leverage larger data sets and allow
careful tuning.

5 USE CASES

In this section, we describe some use cases of the proposed propen-
sity estimation model, highlighting its practical applicability to
various real-world scenarios.

5.1 Position bias estimation

Position bias is one of the most common bias factors. Our framework
includes position bias estimation as a special case by setting [a]
to k, where k is the position of the item in the recommendation
system UL In thise case, Eq. 2 becomes

P(C =1|i,u, k) = P(E = 1|k)P(R = 1|i,u), (6)
which is the position bias click model commonly used for search use
cases [14]. From this, the E-step can be derived in a straightforward
manner:p(p — 1 R=1|C=1,i,u,k) =1
0 (1=v;,)

P(E=1,R=0|C=0,i,uk) = Y

kyi,u
(1-6)yi 7
p(E:o,R:1|C:0,i,u,k)=# 7
I—Qkyi’u
(1-0)(1-yi)
P(E=0,R=0|C=0,i,u,k) = #
1—9kyi,u

We omit the Maximization step since Eq. 5 can be derived similarly.
5.2 Platform-aware estimation

In real-world systems, the same recommender algorithm is often
applied across different platforms, e.g. web browsers and mobile
apps. The Uls and user interaction patterns often vary across plat-
forms, often due to the various constraints imposed by the platform
itself (e.g., limited screen real estate on mobile devices).

Data from various platforms is often combined and used for
training a single global model. The reason for this is to reduce the
complexity of having to train multiple models across platforms.
However, it is possible that different platforms exhibit different
bias factors. Thus it is beneficial to estimate the bias factors in a
platform-aware manner.

One option is to only use randomized data in a single platform
to estimate the propensity and then train the relevance model with
IPW weights. Besides dropping valuable feedback data from other
platforms, this may not lead to an optimal relevance model. For
example, during model training, a “platform” feature might be used
to account for relevance variance across different platforms [9].
Training a relevance model with data from a single platform will
not be able to account for this factor. The second option is to run
separate online randomization experiments on different platforms.
However, this adds complexity and hurts the user experience even
more. The third option is to run existing offline propensity esti-
mation methods separately for each platform, which may lead to
unstable estimation due to data sparseness per platform. Consistent
propensity estimation across platforms allows all data to be used
together with platform-specific features when estimating y; ;.

It is easy to incorporate platform-aware estimation into our
framework by setting the attributes [a] to be a tuple [k, p], where
k is the position as above, and p is the platform. Eq. 2 now becomes

P(C =1li,u, [k, p]) = P(E = 1|[k, p])P(R = 1]i, u). (8)



We omit derivations of the EM steps due to space constraints. This
formulation is quite flexible. Different platforms can have a different
number of available positions or even a completely different layout,
but their propensities can be estimated in a unified way.

5.3 Propensity extrapolation

Traditional bias estimation only focuses on feedback from the rec-
ommendation Ul itself. One reason might be that bias estimation
is more extensively studied for search scenarios, where it is query-
centered and there is no clear relation between the “external feed-
back” and queries. However, in real-world recommender systems,
there are no explicit queries and user actions beyond the recom-
mendation Ul may provide valuable feedback. For example, users
of e-commerce shopping websites can provide implicit feedback
by clicking and purchasing items through search or by simply
browsing the website. Similarly in cloud storage systems, users
can navigate independently of any document recommendations
and click documents in their own folders. How can we use such
feedback to train a better recommender model? Since the feedback
is beyond the recommendation UI, we call this problem propensity
extrapolation. This external feedback can be especially helpful since
production recommender systems may get stuck at local optima by
only using recommendation UI data.

A simple way to address this problem using our framework is to
add a special pseudo value to the position attribute values, say ke,
for external feedback. If the item is not shown in the UL its position
attribute will have the value k.. For example, in the M-step, we will
calculate propensity estimates for this special position as

Zc,i,u,k’ Lok, - (c+ (1 =c¢)P(E =1c,i,u, ke))

Zeiuk W=k,

©

t+1 _
er =

The rest of our EM algorithm is the same after adding this new
attribute value. This demonstrates the flexiblity of our attribute-
based propensity model.

Implementation. We now provide guidelines on how to utilize
this external feedback in practice. The key part is proper logging of
both the model features and feedback. For simplicity, let us assume
that we have a single UI and this UI has k positions.

A common recommendation process is to first generate N > k
candidates, score them using the relevance model, and display
the top k results in the UI [31]. The candidate generation process
varies across applications. For example, in an e-commerce website
category (e.g. home decorations) page, the candidates could be all
the items with available inventory in the category, or the most
popular items in the last few days. A complete treatment on the
candidate generation process is beyond the scope of the paper.

There are two key steps: 1) log the features for all or a uniform
sample of the N candidates; 2) log the user’s behavior post recom-
mendation. If positive feedback is provided for an item in the N
candidates in the same session (e.g. within 5 minutes), the posi-
tive label should be joined with the item. Note that this applies to
feedback both inside and outside the recommendation UL

Since we only log features for the N items, not all of the external
feedback from outside of the recommendation UI can be joined back.
A metric called “coverage” can be introduced and monitored as the
fraction between the number of sessions with positive feedback on

the N candidates over the total number of sessions with positive
feedback. The higher the coverage, the more accurate the propensity
estimation will be due to the additional feedback. However, there
is usually a trade-off between coverage and resource costs. For
example, if the candidate set contains all items available in an
application, coverage will always be 1, but the inference and logging
cost could be high. Finding the right trade-off is an independent
research problem that can be explored as future work.

5.4 Discussion

We showed three simple but practical use cases using our propensity
estimation framework. We note that different attributes could be
easily combined. For example, in Sec. 5.2 we showed platform and
position could be combined into a tuple. In one of our applications
shown later, we combine position, platform, and feedback extrapo-
lation. More attributes can also be incorporated, such as feedback
source (with values "from search", "from browsing", etc.), as long as
they might contribute to presentation bias and there is reasonable
amount of data (which is one advantage of using implicit feedback).
Thus, our framework allows to study more complex attributes and
we leave it as future work.

6 CASE STUDIES

We demonstrate how our framework helps to improve three real-
world recommendation systems, each involving millions of users.

6.1 Overview

We aim to validate the generality and effectiveness of our frame-
work. The three applications presented here have different UI lay-
outs, item types, and underlying relevance model learning algo-
rithms. An overview can be found in Tbl. 1.

Table 1: Overview of the three case studies.

Name Item Type Layout Model

Zero State Search query vertical GBDT

Shared With Me | people&document grid GBDT
Quick Access document horizontal | neural network

For each application, we first estimate and examine propensity
scores using our method on logged data. Then we train an ex-
perimental model with IPW, where the only difference from the
production baseline is the usage of propensity scores. Besides using
data from the same date ranges, we also use the same hyperparam-
eters (such as the number of layers in the neural network) as the
baseline model. These hyperparameters have been well-tuned for
the baseline model, which was deployed in production and had
undergone multiple quality iterations, so we may get even better
results if we do more careful tuning with the experimental mod-
els. Since our focus is to improve the model without changing the
features or model architecture, we omit some details of feature
engineering due to space constraints.

After offline evaluation, we conduct standard online A/B experi-
ments for each application. Each experiment involves millions of
users and runs for approximately 2 weeks. The models have been
deployed in production systems for an extended amount of time
due to the positive metrics and ease of deployment, since our frame-
work estimates propensity offline and IPW trained models do not
require any additional serving infrastructure support.



6.2 Evaluation Metrics

6.2.1 Offline metrics. We use both (traditional) unweighted Mean
Reciprocal Rank (MRR) and Weighted MRR (WMRR) as our offline
evaluation metrics, which are specifically defined as

1 N 1 1 N 1
MRR = — — ,WMRR = i .
N ; rank; Zf\zfl w; ; Wi rank;

where rank; is the minimum rank of the clicked items for the i-th
list and N is the total number of lists in the evaluation data set. The
WMRR metric is an unbiased version of MRR and is extensively
used in related work [33]. w; is the learned IPW weight for each
positive item. WMRR gives a higher reward (assuming w > 1) to
models that improve the rank of hard-to-find positive items during
the data collection phrase.

6.2.2  Online metrics. In the following, we report a slightly different
set of metrics for each application since different products track
different online metrics due to having different intended use cases.
One common online metric is Click-Through Rate (CTR). This
metric can be tracked for online experiments, but is not applicable
for offline evaluation. In fact, WMRR on biased data or MRR on
unbiased data is a proxy for online metrics like CTR to measure the
utility of a ranked list offline. We will show that offline WMRR is
correlated with online metrics better than MRR.

6.3 Zero State Search

6.3.1 Introduction. The Google Drive Zero State Search feature is
intended to save Drive search users effort by recommending queries
and other refinements that are considered relevant to them, even
before any query is issued by the user. See Fig. 2 for an illustration
and [4] for more information. In this work we only focus on the
query recommendation section, which has a vertical layout and
shows up to 3 suggested queries when a user clicks the search box.
The query candidates are generated synthetically from n-grams
found in each user’s documents.

To train the ranking model, we use GBDT with around 20 fea-
tures. At the time of testing our model, the production model had
gone through several quality iterations, including feature additions
and hyper-parameter tuning. The GBDT model is of depth 3 and
runs for 1000 steps. The features include simple features such as
the length of the n-gram, and more complicated features such as
the number of times a user interacted with documents containing
that n-gram in the last 7 days. Both the production model and our
experiment model use 3 weeks of offline data in the same date range,
consisting of millions of clicked sessions.

6.3.2 Learned propensity. We use the first week of training data
for propensity estimation. For this use case we use the position bias
estimation described in Sec. 5.1. Since we have a vertical layout, it
is straightforward to just use 3 values for the positions. The learned
inverse propensity weights are shown in Fig. 3. The weights are
intuitive, as higher weights will be assigned to items that are further
away from the search box.

6.3.3 Offline evaluation. We use both MRR and WMRR for offline
evaluation. The comparative results on 1 week of test data are
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Figure 2: An illustration of Google Drive’s Zero State Search
from [4], which recommends queries, collaborators, and oth-
ers. In this work we only focus on the query section.
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Figure 3: Learned propensity weights for Zero State Search.

shown in Tbl. 2. We can see the IPW model is neutral in MRR but
positive in WMRR when compared with the production baseline.

Table 2: Offline relative performance compared with the (un-
weighted) production baseline. ¥ denotes a statistically sig-
nificant difference at the p < 0.05 level using a two-tailed
t-test.

Model MRR | WMRR
IPW model || +0.05% | +0.68%

6.3.4 Online evaluation. Real-world online experimental results
are shown in Tbl. 3. We report several key metrics including CTR
and Search User Engagement (percentage of Drive users who click
on a Zero State Search suggestion). We can see that the IPW model
can achieve significantly better metrics than the baseline. The im-
provements are quite meaningful in our production setting. We
note that online metrics align better with WMRR than MRR here.
We will return to discuss this more discussion in Sec. 6.6.

Table 3: Online relative performance compared with the pro-
duction baseline for Zero State Search. T denotes a statisti-
cally significant difference.

Model CTR
IPW model || +2.83%"

Engagement
+1.17%




6.4 Shared With Me

6.4.1 Introduction. The “Shared with Me” section recommendation
module in Google Drive recommends relevant (shared) document-
people pairs to a user, so that the user can click on a document to
quickly open it. Instead of a list, the Ul has a grid layout and shows
up to 8 document-people pairs. See Fig. 4 for an illustration and [3]
for more information.

Google Drive Q  search
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Figure 4: An illustration of Google Drive’s Shared With Me
from [3], which recommends document-people pairs. Note
that although “Quick Access” is shown on-top, it is a differ-
ent product than the Quick Access covered in Sec. 6.5.

To train the ranking model, we use GBDT with around 20 fea-
tures for each document-people pair. The GBDT model is of depth
5 and runs for 800 steps. The features focus on document sharing
behaviors such as when the document was shared and how many
people it was shared with. It also uses person and document im-
portance scores that are generated by other internal systems. Both
the production model and our experiment model are trained over
3 weeks of data in the same data range, consisting of millions of
clicked sessions.

6.4.2 Learned propensity. We use the first week of training data
for propensity estimation. For this use case we use the position bias
estimation described in Sec. 5.1. To tackle the grid layout, we simply
use 8 categorical position values. The learned inverse propensity
weights are shown in Fig. 5. We can see a symmetric layout along
the diagonal axis.

Position 1 Position 2 Position 3 Position 4

Document 1 1 1.61 2.45
Document 2 1.62 2.51 3.75

Figure 5: The learned propensity weights for Shared With
Me with heatmap.

6.4.3 Offline evaluation. We also use MRR and WMRR as the of-
fline evaluation metrics on 1 week of test data. The comparative
results are shown in Tbl. 4. We note that the IPW model is worse
than the baseline on unweighted metric MRR, but better on the
weighted metric.

Table 4: Offline relative performance compare with the (un-
weighted) production baseline. ¥ denotes a statistically sig-
nificant difference.

Model MRR
IPW model || -1.24%"

WMRR
+1.19%

6.4.4  Online evaluation. We report real-world online experimental
results in Tbl. 5. We can see that the experimental model can achieve
significantly better CTR than the baseline. The improvements are
quite significant in the production setting. We note that online
metrics once again align better with WMRR than MRR. This further
shows the importance of using unbiased IPW-based metrics for
offline evaluations.

Table 5: Online relative performance compared with the pro-
duction baseline for Shared With Me. ¥ denotes a statisti-
cally significant difference.

Model CTR
IPW model || +1.92%"

6.5 Quick Access

6.5.1 Introduction. Quick Access [1, 2, 12, 32] is a feature available
in both the mobile and web versions of Google Drive that provides
users a shortcut to their most relevant files. Improving Quick Access
recommendations is important because of the large amount of traffic
it receives on a daily basis and how much time it saves users. As
[32] has demonstrated, using Quick Access gets users to their files
around 50% faster than if they had not. See Fig. 1 for an illustration
of the web and mobile views of Quick Access.

There are several hundred features for the Quick Access model.
Example features include users’ past behavior, such as when and
how many times a user interacted (create/edit/comment) with a
document. Other features include collaborative ones (e.g., how
frequently other users interacted with a shared document) and
contextual ones (e.g., platform, time of day, etc.). We use a deep
neural network implemented in Tensorflow [5] for the relevance
model. At the time of our experiment, the model had been well-
tuned with several recent techniques deployed, including latent
cross [9, 28], residual block [17], and batch normalization [22]. An
illustration of the model architecture is shown in Fig. 6.

Also note that the production model already uses external feed-
back gathered beyond the UL, but with a unit weight. This was
shown to be highly beneficial, resulting in a 2% CTR increase. The
gain was not due to more data since data was sampled for a fair com-
parison. The current work demonstrates how assigning a learned
propensity weight to the external feedback can further improve
performance.

6.5.2 Learned propensity. We use the first week of training data for
propensity estimation. For this use case we combine position bias,
platform-aware, and propensity extrapolation attributes introduced
in Sec. 5.1, Sec. 5.2, and Sec. 5.3, respectively. We use both web and
mobile data because it was previously found that using “platform”
as a feature as a latent cross feature could significantly improve
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merged by latent cross [9]. The basic building blocks are
residual units [17].

performance. Using data from one platform will make that feature
useless. Fortunately, platform-aware propensity estimation in our

framework allows for unified propensity estimation across all data.

For propensity extrapolation, we set the size of candidates as N =
100 in the online serving system.

At the time of testing, Quick Access showed up to 5 documents in
each platform’s UI. We assign 6 position attribute values (5 position
values plus the special out-of-UI value k) for each platform. The
learned inverse propensity weights are shown in Fig. 7. We can see
that the learned weights are intuitive, e.g., mobile users need more

effort to find non-UI documents possibly due to the smaller screen.
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Figure 7: The learned propensity weights for Quick Access
on both web and mobile data.

6.5.3  Offline evaluation. We show the comparative offline metrics
on heldout data during model training in Fig. 8. It is clear that,
similar to previous applications, the production baseline model
performs better on traditional unweighted metrics, but is inferior
on weighted metrics.

6.5.4  Online evaluation. We report real-world online experimental
results in Tbl. 6 for both web and mobile traffic. We can see that
the experimental model can get significantly better CTR than the
baseline on both platforms. The improvements are quite significant

IPW Baseline

MRR WMRR

Figure 8: Comparative offline MRR and WMRR metrics on
heldout data during model training of IPW and baseline
models for Quick Access. The WMRR curves are more shaky
than MRR curves since validation is performed on randomly
selected data batches that could possess different weights.

in the production setting and we also note that online metrics align
better with WMRR than MRR.

Since Quick Access is powered by a deep neural network, we
also ran experiments using the approach proposed by [45], where
the selection bias is reduced by adding a shallow tower to the main
model that estimates the propensity score. The position is fed in
during the training process (with a 10% feature drop-out rate to
prevent the model from over-dependence on the position feature).
This proposed method also can estimate propensity scores in an
offline manner and served as a fair comparison to our approach.
We experimented with a variety of different drop-out rates ranging
from 0% drop-out to 50% drop-out. We found that all experiments
with this method resulted in no statistical significant positive gain.

Table 6: Online relative performance compared with the pro-
duction baseline for Quick Access. 7 denotes a statistically
significant difference.

Model Web CTR | Mobile CTR
IPW model || +0.94%7 | +1.42%"

6.6 Remark on offline evaluation metrics

We remark on the importance of unbiased offline evaluation metrics,
which was also covered by other recent research [19, 39]. Using
accurate offline metrics that align with online metrics is important
for both model tuning and deciding which candidate models should
make it to the online experimentation phase. From all 3 applica-
tions, we observe that weighted metrics using the estimated inverse
propensity weights align better with real-world online metrics. It
is also clear that traditional unweighted metrics can be mislead-
ing sometimes. Note that due to our particular way of optimizing
weighted metrics using IPW, we tend to get inferior unweighted
metrics offline. This does not mean unweighted metrics are always
misleading. For example, it is possible to improve both unweighted
and weighted offline metrics by adding a new powerful feature.
We have shown empirically that our framework provides a nat-
ural way of optimizing weighted metrics with weighted training,
since we focus on learning propensity weights that can be used
for both objectives. However, we acknowledge that there could be
other unbiased metrics and different ways to optimize them offline,



and believe that unbiased model training and unbiased evaluation
can be treated as separate research topics.

7 CONCLUSION

In this work, we proposed a novel attribute-based propensity esti-
mation framework for unbiased learning in recommender systems.
Besides generalizing traditional position bias models, our frame-
work allows for unifying propensity estimation across different
platforms, going beyond simple Ul-only feedback, and using an
offline process that does not hurt the user experience nor requires
significant serving system changes. On three real-world recom-
mender systems, we show that IPW training with attribute-based
propensity estimation can significantly outperform well-tuned pro-
duction baselines using large-scale real-world A/B experiments that
involve millions of users. We also note the importance of optimizing
unbiased metrics when training the relevance models.

Our work opens up a few potential directions for future work,
including: (1) how to identify informative attributes for different
applications is an interesting research question; (2) in recommender
systems, non-UI feedback is important and how to derive finer
attributes is worth exploring more; and (3) it is also interesting to
see how to apply our methods to estimate propensity for traditional
recommendation problems with explicit feedback that is in general
not missing at random.
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