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Figure 1. We propose VideoPoet, a versatile video generator that conditions on multiple types of inputs and performs a variety of video
generation tasks. To see video and audio output from the model, please visit http://sites.research.google/videopoet/.

Abstract
We present VideoPoet, a language model capable of syn-

thesizing high-quality video, with matching audio, from a
large variety of conditioning signals. VideoPoet employs a
decoder-only transformer architecture that processes mul-
timodal inputs – including images, videos, text, and au-
dio. The training protocol follows that of Large Language
Models (LLMs), consisting of two stages: pretraining and
task-specific adaptation. During pretraining, VideoPoet in-
corporates a mixture of multimodal generative objectives
within an autoregressive Transformer framework. The pre-
trained LLM serves as a foundation that can be adapted
for a range of video generation tasks. We present empirical
results demonstrating the model’s state-of-the-art capabili-
ties in zero-shot video generation, specifically highlighting
VideoPoet’s ability to generate high-fidelity motions.

∗ Equal technical contribution.
† Google DeepMind

1. Introduction

Recently, there has been a surge of generative video models
capable of a variety of video creation tasks. These include
text-to-video [56, 65, 81], image-to-video [78], video-to-
video stylization [11, 15, 66], and video editing [10, 26, 68]
among other video applications. Most existing models em-
ploy diffusion-based methods [50] that are often considered
the current top performers in video generation. These video
models typically start with a pretrained image model, such
as Stable Diffusion [45, 50], that produces high-fidelity im-
ages for individual frames, and then fine-tune the model to
improve temporal consistency across video frames.

While Large Language Models (LLMs) are commonly
used as foundational models across various modalities
including language [3, 8], code [38, 43], audio [51],
speech [1], and robotics [20, 86], the diffusion model re-
mains the predominant approach for video generation. Al-
though early research has demonstrated the effectiveness
of LLMs in text-to-image generation (e.g., DALL-E [48],
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Prompt: A photorealistic teddy bear is holding hands with
another teddy bear, walking down 5th avenue when it is

raining

Prompt: A lion with a mane made out of yellow dandelion
petals roars

Prompt: A dog listening to music with headphones, highly
detailed, 8k

Prompt: A chicken lifting weights

Prompt: A large blob of exploding splashing rainbow paint, with an apple emerging, 8k

Figure 2. Examples from VideoPoet’s text-to-video generation results. Some prompts are edited for clarity.

Parti [74] and [19]) and text-to-video (e.g., [36]), language
models have not reached a level of quality on par with video
diffusion models in tasks like text-to-video generation as
shown in previous studies [42, 65]. In contrast to training
exclusively for text-to-video tasks, the generative model of
LLMs in the language domain emphasizes a large pretrain-
ing stage to learn a foundation [6, 60] by examining pre-
training tasks that extend beyond text-to-video generation.

A notable advantage of employing LLMs in video gen-
eration lies in the ease of integrating existing LLM frame-
works. This integration allows for reusing LLM infrastruc-
ture and leverages the optimizations our community has de-
veloped over many years for LLMs, including optimizations
in learning recipes for model scaling [8, 17], training and
inference infrastructure [18, 21], hardware, among other in-
novations. This couples with their flexibility in encoding

many diverse tasks in the same model [8, 17, 35, 42, 46],
which stands in contrast to most diffusion models where
architectural changes and adapter modules are the dom-
inant approach used to adapt the model to more diverse
tasks [15, 23, 39, 82].

In this paper, we investigate the application of language
models in video generation, following the canonical train-
ing protocols of LLMs in the language domain. We in-
troduce VideoPoet, a language model for video genera-
tion. VideoPoet employs a decoder-only LLM architec-
ture [3, 43, 61] that admits image, video, and audio modal-
ities as discrete tokens, each produced by their respective
tokenizer.

The training of VideoPoet consists of two stages: (1)
pretraining and (2) task-adaptation. During pretraining,
VideoPoet incorporates a mixture of multimodal pretraining
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objectives within an autoregressive transformer framework.
After pretraining, the model functions as a versatile multi-
task video generation model such as text-to-video, image-
to-video, video editing and video-to-video stylization, as
shown in Figure 1. Unlike [59], these capabilities are inher-
ently integrated into a single LLM, rather than relying on a
separate diffusion model controlled by text prompts. Dur-
ing subsequent task-adaptation, the pretrained model can be
further fine-tuned either to enhance its generation quality on
the training tasks or to perform new tasks.

Our experimental results demonstrate the VideoPoet’s
state-of-the-art capabilities in generating videos with large
and high-fidelity motions. In particular, we observe that
through the powerful capabilities of the transformer archi-
tecture, the VideoPoet can be straightforwardly trained on
a multi-task, multimodal generative objective, allowing for
generating consistent and realistic motion driven by text,
as shown in Figure 2, or other prompts. Additionally,
VideoPoet can synthesize coherent long videos of up to 10
seconds by autoregressively extending the content, condi-
tioned on the last second of the generated video.

We found that VideoPoet, a LLM, is capable of zero-shot
video generation. We use the term “zero-shot video gener-
ation” because VideoPoet exhibits generalization capability
in processing new text, image, or video inputs that diverge
from the training data distribution. Furthermore, VideoPoet
begins to show an ability to handle new tasks that were not
included in its training. For example, VideoPoet demon-
strates the ability to perform new editing tasks by sequen-
tially chaining training tasks together. See Section 7.

We provide the following contributions in this work:
• A simple method for training a Large Language Model

(LLM) specifically for video generation tasks, utilizing
tokenized video and audio data that seamlessly incorpo-
rates both text-paired and unpaired video data.

• An approach to super-resolution that increases video res-
olution within the latent token space using a bidirectional
transformer with efficient windowed local attention.

• Evaluations and demonstrations that showcase the LLM’s
competitive performance, especially in producing realis-
tic and interesting motion.

2. Related Work
Video diffusion models. Most video generation works
use diffusion-based methods for text-to-video [4, 5, 25,
30, 33, 56, 67, 69, 70, 80, 81, 81, 85] and video-to-video
editing [15, 23, 24, 39]. Because video diffusion models
are most often derived from text-to-image diffusion mod-
els [47, 52], additional tasks and modalities are added via
inference tricks [41], architectural changes [23, 39] and
adapter layers [28, 82]. Although these models are com-
posable after training, they are not trained end-to-end in a
unified model. Our multitask pretraining strategy in a sin-

gle model improves the performance and provides zero-shot
video generation capabilities.

Language models for video and image generation. In
contrast, video language models are derived from the gen-
eral family of transformer-based language models [46,
64] that easily combine multiple tasks in pretraining and
demonstrate powerful zero-shot capabilities. Image gen-
eration language models can generate images autoregres-
sively [74] or via masked prediction [12, 13]. Both fam-
ilies have been extended to text-to-video [36, 37, 65, 73]
using paired data. Other text-to-video work with trans-
formers only leverages video-text pairs for training, but we
also leverage unpaired videos (without text) and the same
video for different tasks. Because video language mod-
els can flexibly incorporate many tasks [42, 75], including
video-to-video, we extend this family of work to text- and
multimodal-conditioned tasks in this work with a synergis-
tic pretraining strategy across many tasks.

Pretraining task design in LLMs. Because language
models can easily incorporate multiple training tasks, task
selection is an important area of research. GPT-3 [8] and
PaLM [17] show that training LLMs on diverse tasks leads
to positive scaling effects on zero- and few-shot tasks. Other
works show that masking approaches are a valuable learn-
ing target [35, 75, 77]. And as model sizes grow, training
data must grow as well [35]. Our pretraining strategy en-
ables using the same video for multiple training tasks even
without paired text. This design facilitates training on a sub-
stantial quantity of video-only examples, thereby decreas-
ing the demand for video-text pairs.

3. Model Overview
We are interested in researching an effective method for
leveraging large language models for video generation. Our
model consists of three main components: (1) modality-
specific tokenizers, (2) a language model backbone (Fig-
ure 3), and (3) a super-resolution module (Figure 4).

The tokenizers map input data – i.e. image pixels, video
frames, and audio waveforms – into discrete tokens in a
unified vocabulary. The visual and audio tokens are flat-
tened into a sequence of integers using raster scan ordering.
The LLM accepts image, video and audio tokens as input
along with text embeddings, and is responsible for genera-
tive multi-task and multimodal modeling. As illustrated in
Figure 3, VideoPoet conditions on text embeddings, visual
tokens, and audio tokens, and autoregressively predicts vi-
sual and audio tokens. Subsequently, the super-resolution
module increases the resolution of the video outputs while
refining visual details for higher quality. In the following,
we discuss design specifics which allow our LLM to gener-
ate across video and audio modalities.
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Figure 3. Sequence layout for VideoPoet. We encode all modalities into the discrete token space, so that we can directly use large language
model architectures for video generation. We denote specital tokens in <>. The modality agnostic tokens are in darker red; the text related
components are in blue; the vision related components are in yellow; the audio related components are in green. The left portion of the
layout on light yellow represents the bidirectional prefix inputs. The right portion on darker red represents the autoregressively generated
outputs with causal attention.

3.1. Tokenization

We employ the MAGVIT-v2 [77] tokenizer for joint image
and video tokenization, and the SoundStream [79] tokenizer
for audio. These visual and audio tokens are represented in
a unified vocabulary. The unified vocabulary is constructed
as follow: the initial 256 codes are reserved for special
tokens and task prompts. Subsequently, the next 262,144
codes are allocated for image and video tokenization. This
is followed by 4,096 audio codes. The text modality is rep-
resented by text embeddings for its better performance com-
pared with training with text tokens from scratch.

Image and video tokenizer. Visual tokenizer is key to
generating high-quality video content [77]. After explor-
ing various existing tokenizers [22, 65, 75, 76], we observe
superior performance with the MAGVIT-v2 [77] tokenizer.
In particular, it represents both images and videos as a se-
quence of discrete tokens in a unified large vocabulary.

Specifically, a video clip is encoded and quantized into a
sequence of integers, with a decoder mapping them back to
the pixel space. As the bridge between the token and pixel
spaces, the performance of this visual tokenizer sets the
upper bound of the video generation quality. Meanwhile,
the compression ratio determines the sequence length of the
LLM for effective and efficient task setups.

MAGVIT-v2 tokenizes 17-frame 2.125-second
128×128 resolution videos sampled at 8 fps to pro-
duce a latent shape of (5, 16, 16), which is then flattened
into 1280 tokens, with a vocabulary size of 218. To facilitate
the generation of short-form content for mobile, we also
tokenize videos into a portrait aspect ratio at 128×224
resolution, producing a latent shape of (5, 28, 16), or 2240
tokens. When the evaluation protocol is on 16 frames, we
discard the generated last frame to make a 16-frame video.

The MAGVIT-v2 tokenizer enforces causal temporal de-
pendency, where the frames are encoded without any infor-

mation from future frames. This causal property simplifies
the setup for frame prediction tasks and supports tokeniza-
tion and generation of arbitrarily long videos. To jointly
represent images and videos, we encode the first frame into
(1,16,16) tokens, which can be used to represent a static im-
age as well. And then, every 4-frame chunks are encoded
into (1,16,16) tokens. These tokens are concatenated on the
first (temporal) dimension. For masked objectives, we adopt
the COMMIT [75] encoding as input to the tokenizer to op-
timally setup other tasks such as inpainting and outpainting.
In simple terms, COMMIT encoding processes the input
condition video and the target video differently to avoid in-
formation leakage during tokenization. The former involves
tokenization of the conditional video with pixel masks ap-
plied, while the latter uses tokenization on the entire un-
masked video.

Since the first frame is tokenized separately, MAGVIT-
v2 allows images to be represented in the same vocabu-
lary as video. In addition to being more compact, images
provide many learnable characteristics that are not typi-
cally represented in videos, such as strong visual styles
(e.g., art paintings), objects which are infrequently seen
in video, rich captions, and significantly more text-image
paired training data. When training on images, we resize
the images to 128×128 which are then tokenized to a latent
shape of (1, 16, 16), or 256 tokens.

We scale the MAGVIT-v2 model’s size and train it on
the datasets discussed in Section 5.1. The training follows
two steps: image training, inflation [77] and video training.

Audio tokenizer. We tokenize audio clips with the pre-
trained SoundStream [79] tokenizer. We embed 2.125 sec-
onds of audio to produce 106 latent frames at a residual
vector quantizer (RVQ) of four levels. To improve audio
generation performance, we transpose the clip before flat-
tening so that the model predicts the full audio clip at each
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RVQ granularity level before moving on to the finer grained
levels. Finally, each RVQ level has a disjoint vocabulary
with each level containing 1,024 codes. This results in a
combined audio vocabulary size of 4,096 codes.

Text tokenizer and embedding as input. We find that a
strong text encoding is important for accurate and high qual-
ity text-to-video generation. Pretrained text representations
in general outperformed training our model with text tokens
from scratch. Due to computational constraints, we found it
more efficient to leverage off-the-shelf pretrained language
embeddings at our model scale so the model can allocate
more capacity to generating and understanding vision and
audio modalities.

Therefore, instead of inputting text tokens into the model
directly, we first input the tokens into a frozen pretrained T5
XL [46] encoder to produce a sequence of text embeddings.
For tasks with text guidance, such as text-to-video, T5 XL
embeddings are projected into the transformer’s embedding
space with a linear layer. We use up to a maximum of 64
text tokens for all of our experiments.

3.2. Language Model Backbone

Now that we have tokenized all modalities into discrete to-
kens, we can directly leverage a language model to gener-
ate videos and audios in the token space. We use a prefix
language model with a decoder-only architecture [60] as the
backbone. By constructing different patterns of input tokens
to output tokens during training, we can control the types of
tasks the model is able to perform as explained in Section 4.
As discussed in Section 3.1, we use a shared multimodal
vocabulary to represent the generation of all modalities as a
language modeling problem. This produces a total vocabu-
lary size of approximately 300,000.

3.3. Super-Resolution

Generating high-resolution (HR) videos with an autoregres-
sive transformer incurs heavy computational cost due to the
increase in sequence length. To illustrate this with an ex-
ample, the video tokenizer of Section 3.1 operating on a
17 × 896 × 512 video produces a sequence of 35, 840 to-
kens, making autoregressive sampling highly impractical.

Aiming at efficient and high-quality generative video
upsampling, we develop a custom spatial super-resolution
(SR) non-autoregressive video transformer [75] to operate
in token space on top of the language model output. To mit-
igate the computational requirements of the very long se-
quences involved, and in particular the quadratic memory
of the self-attention layers, our design incorporates win-
dowed local attention [29]. More precisely, our SR trans-
former is composed of blocks of three transformer layers,
each of which performs self-attention in a local window
aligned with one of three axis [62]: spatial vertical, spa-

xNmulti-axis transformer block

self-attn

cross-attn

low-res

spatial
vertical

spatial
horizontal

temporal

high-res

token factorization (k=2)

low-res 
tokens

high-res  
masked tokens

embeddingT5X 
embeddings

multi-head 
classification and 

merging(k=2)

high-res
 output tokens

Figure 4. Architecture for video super-resolution. We adopt
multi-axis attention [29, 62] and masked video modeling [75, 77],
conditioned on low-resolution tokens and text embeddings.

tial horizontal and temporal. The cross-attention layers at-
tend to the low-resolution (LR) token sequence and are also
divided into local windows, isomorphic to those of the self-
attention layers. All blocks also include cross-attention to
text embeddings from a frozen T5 XL encoder. See Figure 4
for a schematic representation of the custom transformer ar-
chitecture.

We train the SR transformer with the MAGVIT [75] ob-
jective, and use token factorization [77] to account for the
large vocabulary size. For training, the LR token sequences
are obtained by tokenizing bicubic-downsampled versions
of the ground truth videos and applying noise augmenta-
tion [33] in the discrete latent space. Specifically, we ran-
domly resample the value of a random subset of the LR
tokens and independently drop the LR condition and text
embeddings for 10% of the training samples. During in-
ference, we use non-autoregressive sampling [12, 75] with
classifier-free guidance [7] independently on both the LR
condition and the text embeddings. We use a cascade of
two 2× stages to generate videos of 896 × 512 resolution
from the 224 × 128 samples of VideoPoet. We refer to the
appendix for further details on the implementation.

4. LLM Pretraining for Generation
VideoPoet demonstrates general-purpose generative video
modeling by training with a large mixture of multimodal
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objectives. The objectives work together so that individ-
ual tasks can be chained (see Section 7.1), demonstrating a
zero-shot capability that goes beyond any individual task.

4.1. Task Prompt Design

We design a mixture of tasks used in pretraining to produce
a foundation model capable of general purpose video gen-
eration. For each task we define a prefix input and output
such that the model conditions on the prefix, and we only
apply the loss on the output.

We define the tasks as follows:
1. Unconditioned video generation: generate video

frames without conditioning on an input.
2. Text-to-video: generate video frames from a text

prompt.
3. Video future prediction: given an input video of vari-

able length, predict future frames.
4. Image-to-video: given the first frame of a video as an

input image, predict the future video frames.
5. Video inpainting/outpainting: given a masked video,

predict the video with the masked contents filled in.
6. Video stylization: given a text prompt, optical flow,

depth, and optionally the first frame from a video, pre-
dict the video frames (see Section 4.1).

7. Audio-to-video: given an input audio waveform, predict
the corresponding video.

8. Video-to-audio: given an input video, predict the corre-
sponding audio waveform.
Below we discuss design decisions within the task

prompt design.

Representing an image as a video. Producing a high
quality initial frame is crucial for the model to generate
good video examples, as motion is anchored on the appear-
ance of the first frame. The causal dependencies of frames
in the MAGVIT V2 tokenizer allow us to represent any im-
age as if it were the first frame of a video using the same vo-
cabulary. This design enables us to leverage text-image and
text-video paired data in joint training, where the image-text
data is orders of magnitude larger.

In the input sequence, we leave out the end-of-sequence
token (<eos>) in the text-to-image pretraining task so the
model keeps generating more video tokens at inference
time. This setting causes the model not to distinguish be-
tween video or image data, further facilitating information
sharing between the two modalities. This results in higher
quality initial frames being predicted, which reduces the er-
rors and artifacts in future frames.

Video token format. For all examples, we apply several
variants. We have two resolutions: 128×128 and 128×224.
We also generate on two video lengths: 17 frames (2.125
seconds) and 41 frames (5.125 seconds), both at 8 frames

per second. We combine the two resolutions and two video
lengths, which leads to a total of 4 combinations. Images
are a special case of a 1-frame video, which we tokenize at
128×128 resolution. To be able to switch between different
resolutions and duration, we use special conditioning tokens
that indicate what format of video should be generated.

Video stylization. To perform video stylization, we fol-
low an approach inspired by [15, 23, 82] to predict videos
from the combination of text, optical flow, and depth sig-
nals. On a subset of steps, we also condition on the first
video frame. As described in [23], the text will generally
define the “content” or appearance of the output and the op-
tical flow and depth control the “structure.” In contrast to the
diffusion-based approaches that usually use external cross-
attention networks [82] or latent blending [41] for styliza-
tion, our approach is more closely related to machine trans-
lation using large language models in that we only need
to provide the structure and text as a prefix to a language
model.

To perform the task, we estimate optical flow from
RAFT [58] and produce monocular depth maps from MI-
DAS [49], and then normalize and concatenate on the
channel dimension. This conveniently produces the same
number of channels as the RGB ground truth and so can
be tokenized in the same fashion as RGB videos with
the MAGVIT-v2 tokenizer without retraining the tokenizer.
The task of stylization is to reconstruct the ground truth
video from the given optical flow, depth, and text informa-
tion. During inference, we apply optical flow and depth
estimation on an input video but then vary the text prompt
to generate a new style, e.g. “cartoon”.

Task layout. In Figure 3 we illustrate a typical input-
output sequence layout. For each task, the input sequence
may include three types of input tokens:
• text tokens (embeddings): the pre-extracted T5 embed-

dings for any text.
• visual tokens: the MAGVIT-v2 tokens representing the

images, video subsection, or COMMIT encoded video-
to-video task.

• audio tokens: the SoundStream tokens representing au-
dio.
Likewise, the model outputs two types of tokens: visual

tokens and audio tokens. In addition to video and audio to-
kens along with text embeddings, we incorporate additional
special tokens enumerated as shown in Table 1.

When a modality is not included in a task, such as text
and audio for unconditioned video generation, then the cor-
responding input or output tokens together with the begin-
ning and end special tokens are omitted from the sequence
to reduce the sequence length. To indicate the type of task,
we condition on the <task>, which has a unique token for
each unique output. For the <res> token, the resolution is
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Special Token Usage

<bos> Beginning of sequence
<task> Task to perform for this sequence
<bot i> Beginning of the text input.
<eot i> End of the text input.
<bov i> Beginning of the visual input.
<eov i> End of the video input.
<boa i> Beginning of the audio input.
<eoa i> End of the audio input.
<res> Output resolution for the video.
<bov o> Beginning of the video output.
<eov o> End of the video output.
<boa o> Beginning of the audio output.
<eoa o> End of the audio output.
<eos> End of the entire sequence.

Table 1. List of representative special tokens used in training
and inference.

only specified for 128 × 224 output, 128 × 128 resolution
is assumed otherwise. We note that changes in the input
types do not always require a new <task>, as the model
can learn how to incorporate a mixture of context signals for
the same output type. For example, text-to-video, image-to-
video, and unconditioned video generation all use the same
<task>.

The video-to-video tasks use the COMMIT encod-
ing [75] to obtain the tokens for the tasks such as inpainting
and outpainting. Text is encoded as T5 XL embeddings [46]
and are inserted into reserved sequence positions right after
the <bot i> token as shown in Figure 3.

4.2. Training Strategy

We train on image-text pairs and video with or without text
or audio. Both text and sound are noisy and may not match
the visual content. The model is trained on approximately 2
trillion tokens across all modalities.

For multi-task training, we employ accelerated Alternat-
ing Gradient Descent (AGD) as formulated in [2] to ef-
ficiently train on variable sequence lengths. While pack-
ing [46] is an alternative, AGD results in a near 0% padding
ratio, providing optimal per-token loss efficiency [2]. We
accomplish this by grouping each task by sequence length,
and alternately sample one group at each iteration. Because
sequence lengths are fixed per task, we can optimally train
without any padding. Due to images requiring fewer to-
kens, we can include roughly 5× more images per batch
than videos, i.e. 256 image tokens vs. 1280 video tokens.

We find that sampling from image and video datasets
uniformly across time can lead to suboptimal results, as
training on images can enhance the model’s understand-
ing of objects, but does not capture any motions that are

represented in video data. As a result, we devise a two-
stage pretraining strategy, where we augment our sampling
weights to sample from the image data 90% of the time and
10% video for the first 25% iterations of training. We then
switch to training on video 90% and image 10% for the rest
of training iterations.

After pretraining, we can fine-tune the pretrained model
to either improve its performance on specific tasks or to en-
able it to undertake new tasks, i.e., task adaption. For exam-
ple, we finetune the model on both text-to-video and image-
to-video tasks using a high-quality data subset. We ob-
serve improved generation quality which aligns with find-
ings from [84]. Furthermore, we note that the fine-tuned
model mitigates the issue of decoding collapse, character-
ized by the degradation of predictions into repetitive tokens.
This improvement not only enhances the model’s output di-
versity but also enables increasing the Classifier-Free Guid-
ance [32] scale, leading to an overall enhancement in qual-
ity. In addition, we also finetune the pretrained model to
perform video-to-audio generation.

5. Experiments

5.1. Experimental Setup

Training tasks. As discussed in Section 4, we train the
model on a mixture of text-to-image, text-to-video, image-
to-video, and video-to-video tasks—including outpainting,
inpainting, stylization, and future frame prediction—as well
as video-to-audio, audio-to-video, unconditioned image,
and unconditioned video generation. We finetune a model
on two tasks—text-to-image and text-to-video—for text-to-
video evaluations, and video-to-audio for producing some
video examples with matching audio. Unless explicitly
stated, we do not finetune on specific tasks in the evalua-
tion.

Datasets. We train on a total of 1B image-text pairs and
∼270M videos (over 100M of which include paired text)
from the public internet and other sources. The data has
been filtered to remove egregious content and sampled to
improve contextual and demographic diversity.

Evaluation protocol. This paper employs a zero-shot
generation evaluation protocol, as the model has not been
trained on the training data distributions of target bench-
marks. Specifically, the evaluation benchmark includes two
text-to-video generation tasks on MSR-VTT [72] and UCF-
101 [57], as well as the frame prediction task on Kinet-
ics 600 (K600) [9], in which the first 5 frames are pro-
vided as condition to predict the next 11 frames. It also in-
cludes inpainting and outpainting tasks [75] on Something-
Something V2 (SSv2) [27]. Additionally, we assess styl-
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Method

Pretraining Tasks Zero-shot Evaluation Benchmark

T2I T2V Uncond FP Painting AVCont
T2V FP Inpainting Outpainting

MSR-VTT UCF101 K600 SSv2 SSv2
CLIPSIM ↑ FVD ↓ FVD ↓ FVD ↓ FVD ↓

T2V X 0.244 822 759 2,333 2,310
T2V+I X X 0.247 1,025 794 2,118 1,916
SSL X X X X 0.226 1,742 700 1,093 1,500
NO T2I X X X X X 0.235 1,008 755 95 389
ALL X X X X X X 0.240 1,085 729 127 636

Ours (8B) X X X X X X 0.305 355 687 4.7 13.76

Table 2. Pretraining task analysis on 300M models. The top rows list models with 300M parameters, trained on a subset of the data, and
are comparable to each other. The last row shows an 8B model trained on the entire dataset. T2I represents text-to-image, T2V stands for
text-to-video, FP is used for frame prediction, and Painting encompasses both inpainting and outpainting. Uncond refers to unconditional
generation, while AVCont denotes audio-video continuation. SSL is short for self-supervised learning.

ization tasks using a subset of the DAVIS dataset1 [44], as
further detailed below.

We employ commonly used metrics such as FVD [63],
CLIP similarity score [71], and Inception Score (IS) [53]
for evaluation. It is important to note that the specific met-
rics and evaluation methods vary across different datasets.
Detailed information on these variations can be found in
Appendix A.1.

5.2. Pretraining Task Analysis

We investigate the learning capabilities of different combi-
nations of pretraining tasks using a model with 300 million
parameters. All task combinations are trained using a learn-
ing rate of 10−3 for the same number of steps (300k) with a
batch size of 1024.

For the pretraining tasks, we consider text-to-video
(T2V), text-to-image (T2I), and four self-supervised learn-
ing (SSL) tasks: frame prediction (FP), central inpainting
and central outpainting (Painting) [75] and audio-video con-
tinuation (AVCont) where the model is provided with the
first frame and its corresponding audio to predict the subse-
quent 16 frames and their matching audio. We use uniform
sampling among the selected tasks, so when fewer tasks are
selected, they are trained more extensively. For each video
task, we randomly select 20% from a training subset of 50
million videos. Regarding the text-to-image task, we ran-
domly sample 50 million text-image pairs from our training
dataset. For tasks involving audios, our sampling is exclu-
sive to videos that contain an audio track.

The comparison results are presented in Table 2. We
evaluate a model across the four tasks within the zero-
shot evaluation benchmark: the text-to-video (T2V) task on
MSR-VTT [72] and UCF 101 [57], frame prediction (FP)
on Kinetics 600 (K600) [9], as well as central inpainting
and outpainting on Something-Something V2 (SSv2) [27].

1https://davischallenge.org/

In this experiment, we employ a single model, without task-
adaption or finetuning, to perform all the tasks. The evalu-
ation on K600 and SSv2 are is detailed in Appendix A.2.
And the evaluation on the text-to-video task will be dis-
cussed in Section 5.4.1. The model is not trained on the
data distributions of these evaluation datasets, and thus it is
zero-shot evaluation.

The top rows of Table 2 depict each pretraining task con-
figuration of the 300 million parameter model, which are
comparable in their setup. Note that these evaluation bench-
marks come from distinct visual domains and all 300M
models are trained on a smaller training subset. This makes
identifying consistent patterns in the results difficult. Nev-
ertheless, we observe that incorporating all pretraining tasks
results in the best overall performance, on average, across
all evaluated tasks. Additionally, the significant disparity
observed in the “SSL” row suggests the limitations of self-
supervised training and underscores the necessity for text-
paired data during training.

The last row, “Ours (8B)”, represents a model with 8
billion parameters, trained on the pretraining tasks as dis-
cussed in Section 3 and utilizing significantly more compute
resources.

5.3. Model Scaling

To study model scaling, this experiment uses a subset of
the training set without text-paired data and slightly dif-
ferent task prompt design. We evaluate the video genera-
tion quality using Fréchet Video Distance (FVD) [63] and
audio generation quality using the Fréchet Audio Distance
(FAD), which employs the VGGish model as the embed-
ding function [31]. Both FVD and FAD metrics in these
model scaling experiments are computed on a subset of our
videos with audio, which were held out from training.

Figure 5 shows that as the model size grows and the
amount of training data increases, performance improves

8

https://davischallenge.org/


(a) Video generation quality in FVD (↓).

(b) Audio generation quality in FAD (↓).

Figure 5. Impact of model and data scale on video and au-
dio generation quality. The performance improves significantly
when we scale up the model and training data. Language models
with 300 million, 1 billion, and 8 billion parameters are trained on
datasets comprising 10, 37, and 58 billion visual and audio tokens,
respectively.

across visual and audiovisual tasks.
After obtaining the above results, we retrain our 1B

and 8B models using the task design and text-paired train-
ing data discussed in Section 3. We include a qualitative
comparison of our 1B and 8B pretrained models in Ap-
pendix A.4. Increasing the model size improved tempo-
ral consistency, prompt fidelity, and motion dynamics while
adding capabilities for limited text rendering, spatial under-
standing, and counting.

5.4. Comparison to State-of-the-Art

5.4.1 Text-to-Video

In Table 3, we conduct zero-shot text-to-video evaluation on
the common MSR-VTT [72] and UCF-101 [57] datasets.
We measure CLIP similarity scores [71] following an im-
plementation given by Villegas et al. [65], FVD [63] fol-
lowing [75] for UCF101 and following [81] for MSR-VTT,
and Inception Score (IS) [53]. Our model shows highly
competitive CLIP similarity score and FVD performance
on MSR-VTT and UCF-101. According to Table 3, our

pretrained foundation model already achieves competitive
performance on all metrics. After finetuned on high-quality
subset of text-video pairs, VideoPoet achieves even better
CLIPSIM on MSR-VTT. For more details on the evaluation
settings, see Appendix A.1.

Model MSR-VTT UCF-101
CLIPSIM FVD FVD IS

CogVideo (EN) [36] 0.2631 1294 702 25.27
MagicVideo [85] - 998 655 -
Video LDM [5] 0.2929 - 551 33.45
ModelScopeT2V [67] 0.2930 550 - -
InternVid [70] 0.2951 - 617 21.04
VideoFactory [69] 0.3005 - 410 -
Make-A-Video [56] 0.3049 - 367 33.00
Show-1 [81] 0.3072 538 394 35.42
VideoPoet (Pretrain) 0.3049 213 355 38.44
VideoPoet (Task adapt) 0.3123 - - -

Table 3. Comparison on zero-shot text-to-video benchmarks.
VideoPoet achieves state of the art performance on MSR-VTT and
UCF-101. Different papers use different evaluation protocols, so
not all numbers are strictly comparable. See Appendix A.1 for
details.

5.4.2 Human Evaluations with Text-to-Video

We analyze VideoPoet using human raters on two tasks:
text-to-video and video stylization. For text-to-video we
compare VideoPoet with other recently published mod-
els, specifically: Show-1 [81], VideoCrafter [14] and
Phenaki [65]. Show-1 and VideoCrafter are state-of-the-
art publicly available video diffusion models while Phenaki
is a token-based approach using the masked token model-
ing [12].

We first developed a unified evaluation prompt bank con-
sisting of >200 selected prompts covering a variety of cate-
gories and styles. A large subset of our prompts are sourced
from published prompt sets (including, e.g., Show-1, Video
LDM [5]) and the remaining have been manually created
for this project. We selected the prompts prior to generat-
ing videos and fixed these choices after initial selection. We
also selected preferentially for prompts that contain an ex-
plicit mention of motion so that the evaluation would not be
biased for models that generate high quality videos that are
almost still (e.g., “person jumping off of a chair” over “per-
son standing on a chair”). The finetuned model discussed in
Section 4.2 was used for the user study.

We then compare each model against VideoPoet in
a side-by-side fashion, for each prompt, showing raters
videos generated by two models at a time (in randomized
order so as to not bias raters). Not all methods generate
videos at the same size or aspect ratio, so we resize each
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Other model preferredVideoPoet preferred

Phenaki

VideoCrafter

Show-1

No preference

Text Fidelity

33% 59% 8%

35% 54% 11%

24% 66% 10%

Other model preferredVideoPoet preferred

Phenaki

VideoCrafter

Show-1

No preference

Video Quality

30% 67% 4%

19% 72% 9%

22% 70% 8%

Other model preferredVideoPoet preferred

Phenaki

VideoCrafter

Show-1

No preference

Motion Interestingness

41% 48% 11%

54% 25% 21%

54% 28% 18%

Other model preferredVideoPoet preferred

Phenaki

VideoCrafter

Show-1

No preference

Motion Realism

44% 51% 5%

35% 56% 8%

21% 69% 10%

Other model preferredVideoPoet preferred

Phenaki

VideoCrafter

Show-1

No preference

Temporal Consistency

17% 66% 17%

18% 61% 22%

10% 60% 30%

Figure 6. Human side-by-side evaluations comparing
VideoPoet with recent leading text-to-video generative mod-
els. Green, gray, and pink bars represent the proportion of trials
where VideoPoet was preferred over an alternative, similar to, or
less preferred to an alternative, respectively. The comparison mod-
els are Phenaki [65], VideoCrafter [14], and Show-1 [81], respec-
tively. We note that the ‘temporal consistency’ metric should be
interpreted alongside other motion metrics, as it tends to be biased
towards static scenes, which inherently display perfect temporal
consistency.

video to a fixed area while maintaining its original aspect
ratio. Raters are then asked to compare the videos along 5
dimensions and report whether the two videos are similar
or one is better than the other. Specifically, we ask raters
to consider (1) text fidelity (which video follows the text
prompt most faithfully), (2) video quality, (3) motion “in-
terestingness”, (4) motion realism and (5) temporal consis-
tency. Raters are required to undergo a training consisting
of going over a collection of “training examples” for each
of these five dimensions.

Our findings are summarized in Figure 6, where green,
gray, and pink bars represent the proportion of trials where
VideoPoet was preferred over an alternative, similar to, or
less preferred to an alternative, respectively. Experiments
where the green segment is larger than the pink segment
mean that VideoPoet is preferred over the alternative on av-
erage. Our results show that VideoPoet in general outper-
forms all baseline models along almost all of the dimen-
sions (text fidelity, quality, motion interestingness and real-
ism) and achieves its most significant wins along the motion
categories.

On temporal consistency, VideoPoet shows performance
on-par with Phenaki and VideoCrafter but slightly under-
performs the Show-1 model. We believe this is due to an
inherent trade-off with motion interestingness, i.e., a static
scene is more temporally consistent but is less interesting.
More interesting larger motions necessitate more possibili-
ties of producing noticable artifacts vs. safer small motions.

5.4.3 Video Stylization

Model CLIPSIM

Control-A-Video [15][depth] 0.3246
VideoPoet (Ours) 0.3417

Table 4. Comparison on video stylization. VideoPoet outper-
forms Control-A-Video by a large margin.

To evaluate stylization capabilities, we choose 20 videos
from the public DAVIS 20162 [44] dataset and provide 2
style prompts for each video. For more details, please refer
to Appendix A.5. Following [23], we evaluated the CLIP-
embedding consistency between each frame and the text
prompt to determine if the stylization results matches the
text. As shown in Table 4, VideoPoet outperforms Control-
A-Video conditioned on depth by a large margin. We also
conduct human evaluations as discussed above comparing
with Control-A-Video [15]. Human raters consistently pre-
fer our text fidelity and video quality as shown in Figure 7.

2DAVIS license: https : / / creativecommons . org /
licenses/by-nc/4.0/deed.en
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Control-a-video preferredVideoPoet preferred

Text Fidelity

Video Quality

No preference

Stylization

30% 60% 10%

35% 65% 0%

Figure 7. Human side-by-side evaluations comparing
VideoPoet with the video stylization model Control-a-
video [15]. Raters prefer VideoPoet on both text fidelity and video
quality Green, gray, and pink bars represent the proportion of trials
where VideoPoet was preferred over an alternative, similar to, or
preferred less than an alternative, respectively.

6. Responsible AI and Fairness Analysis
We evaluate whether the generated outputs of our model are
fair regarding protected attributes such as (1) Perceived Age
(2) Perceived Gender Expression (3) Perceived Skin Tone.
We construct 306 prompts with template — “a {profession
or people descriptor} looking {adverb} at the camera” with
“profession” being crawled from the US Bureau of Labor
and Statistics and “people descriptors” including emotion
state, socioeconomic class, etc. The “adverb” is used to
generate semantically unchanged prompt templates such as
“straightly” or “directly”. We generate 8 videos for each
prompt and for each generated video we infer an approxi-
mation of the expressed attribute regarding the 3 protected
attributes. Across 10 prompts that have the same seman-
tic meaning but different “adverbs”, we observe our out-
puts generally introduced a stronger distribution shift to-
ward “Young Adults” (age 18-35), “Male” and “Light Skin
Tone”. However, we observe changing the “adverb” in the
prompt template can significantly alter the output distribu-
tions. Therefore, our model can be prompted to produce
outputs with non-uniform distributions across these groups,
but also possess the ability of being prompted to enhance
uniformity, though prompts are semantically unchanged.
While research has been conducted in the image genera-
tion and recognition domain [16, 54, 55, 83], this finding
highlights the importance of continued research to develop
strategies to mitigate issues and improve fairness for video
generation.

7. LLM’s Capabilities in Video Generation
In this section we highlight several notable capabilities we
discover from the pretrained VideoPoet, shedding light on
the Large Language Models (LLMs)’s promising potential
in video generation.

7.1. Zero-Shot Video Editing and Task Chaining

A simple example of zero-shot editing is inpainting with
text control as in Figure 8, but our model can do even more
by chaining multiple capabilities. Because of our multi-

Original Video

Masked Video

Inpainted Video from Text Prompt
Prompt: A blue dragon walking along a ridge

Figure 8. Example of a task the model was not explicitly
trained for – video editing via text conditioned inpainting.

Animated from Still Image

Stylized Video
Prompt: An oil painting of a snowman with a red hat

opening their mouth to yawn

Figure 9. Example of zero-shot video editing via task chaining
(text conditioned image-to-video and stylization) – the original
painting is first animated via a text prompt and then stylized via
another text prompt.

task pretraining strategy, our model exhibits task general-
ization that can be chained together to perform novel tasks.
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Original Video

Outpainted Video

Stylized Video
Prompt: A gingerbread and candy train on a track

Figure 10. Example of zero-shot video editing via task chain-
ing (outpainting and stylization) – the original video is first out-
painted and then stylized via a text prompt.

We show an example in Figure 9 that we can apply image-
to-video to animate images, and then stylize those images
with video-to-video effects. We also show applying video-
to-video outpainting followed by video-to-video stylization
in Figure 10. On our project website3, we also show text-to-
audiovisual-output by generating video from text followed
by video-to-audio tasks. At each stage, the quality of the
output seems to be sufficient to remain in-distribution (i.e.
teacher forcing) for the next stage without noticeable arti-
facts.

We hypothesize that these capabilities are attributable
to our multimodal task design within a LLM transformer
framework that allows for modeling multimodal content us-
ing a single transformer architecture over a unified vocabu-
lary. Our approach contrasts with others, such as diffusion
models, which typically solve these tasks by adopting mul-
tiple individually tuned adapter models to control the diffu-
sion process [23, 28, 39].

3http://sites.research.google/videopoet/

Animated from Photograph

Animated from Historical Photo

Animated from Painting

Figure 11. Examples of videos animated from a variety of still
images plus text prompts tailored to each initial image.

7.2. Coherent Long Video Generation and Image-
to-Video

A benefit of an decoder-based language model is that it pairs
well with autoregressively extending generation in time. We
present two different variants of this capability: generating
longer videos, and converting images to videos.

Because the MAGVIT-v2 tokenizer that we use encodes
the first frame independently of the subsequent frames, we
can encode an image without any padding as the first frame
of a video. We can then predict the remaining tokens for
subsequent frames to produce a video from any image as
shown in Figure 11.4

We observe temporally coherent generations of objects
in a video scene with dynamic, and meaningful motion (see
Figure 12). To predict the future frames, despite the model
only being able to view up to a short temporal context, such
as the first frame or the first second of video, the model is

4For image-to-video examples we source images from Wikimedia
Commons: https://commons.wikimedia.org/wiki/Main Page
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able to keep the motion, style, and identity of objects con-
sistent across more than a total of 8 seconds of video output.

Figure 12. Example of coherent long video generation.

7.3. 3D Structure, Camera Motion, Visual Styles

Camera Motion: Arc shot

Camera Motion: FPV drone shot

Figure 13. Examples of directed camera movement from the
same initial frame.

Because our training spans videos, images, and text, we
can prompt our model to demonstrate many aspects of un-
derstanding about the world including 3D structures, cam-
era motions, and visual styles learned from these different
sources. Even though we do not specifically add training
data or losses to encourage 3D consistency, our model can
rotate around objects and predict reasonable visualizations
of the backside of objects. Additionally, with only a small
proportion of input videos with text describing camera mo-
tion, our model can use short text prompts to apply a range
of camera motions to image-to-video and text-to-video gen-
erations (see Figure 13), which has been noted to be difficult
for many state-of-the-art video generation models [40].

In addition, these controls can be added on top of a wide

range of styles, such as watercolor or oil paintings. These
stylization training sources are primarily observed in the
text-image training data. The ability to generalize across
and combine these different types of styles to produce large
motions following text prompts underscores the strength of
our model’s understanding of objects in a temporal context.

8. Conclusion
VideoPoet highlights the potential of a large language
model that is trained on discrete visual and audio tokens, in
generating of videos of compelling, state-of-the-art quality.
A particular strength of our model lies in its ability to gen-
erate high-fidelity, large, and complex motions. Our large
language model formulation benefits from training across a
variety of multimodal tasks with a unified architecture and
vocabulary. Consequently, the pretrained model is adept at
multi-task video creation, and serves as a foundation for a
diverse variety of video related capabilities, including mul-
tiple forms of editing.
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A. Appendix
A.1. Zero-Shot Text-to-Video Evaluation Settings

We report the details of our zero-shot text-to-video settings
here. We note that some details are missing in previous
papers and different papers use different settings. Hence,
we provide all the details and hope this evaluation setting
can serve as a standard text-to-video generation benchmark.
Our results are reported on the 8B model and we adopt
classifier-free guidance [32].

Resolution All metrics are evaluated on generated videos
containing 16 frames with a resolution of 256 x 256. We
first generate videos of 128 x 128 resolution and then resize
to 256 x 256 via bicubic upsampling.

Zero-shot MSR-VTT For CLIP score, we used all
59,794 captions from the MSR-VTT test set. We use CLIP
ViT-B/16 model following Phenaki [65]. We note that some
papers use other CLIP models, e.g., VideoLDM [5] uses
ViT-B/32. Our CLIP score evaluated on the ViT-B/32 back-
bone for MSR-VTT is 30.01. For the FVD metric, to eval-
uate on a wide range of captions as well as to be compara-
ble with previous papers that evaluate on 2,048 videos, we
evaluate on the first 40,960 captions in the MSR-VTT test
set. More specifically, we report the FVD metrics on 2048
videos with 20 repeats. The FVD real features are extracted
from 2,048 videos sampled from the MSR-VTT test set. We
sample the central 16 frames of each real video, without any
temporal downsampling, i.e., we use the original fps in the
MSR-VTT dataset (30 fps as reported in [72]). The FVD is
evaluated with an I3D model trained on Kinetics-400.

Zero-shot UCF-101 Following VDM [34], we sample
10,000 videos from the UCF-101 test set and use their cat-
egories as the text prompts to generate 10,000 videos. We
use the class text prompts provided in PYoCo [25] to rep-
resent the 101 categories. To compute the FVD real fea-
tures, we sample 10K videos from the training set, follow-
ing TGAN2 [53]. We sample the central 16 frames for each
real video , without any temporal downsampling, i.e., we
use the original fps in the UCF-101 dataset (25 fps as re-
ported in [57]). The FVD metric is evaluated with an I3D
model trained on Kinetics-400 and the IS metric is evalu-
ated with a C3D model trained on UCF-101.

A.2. Self-Supervised Tasks Evaluation Settings

Self-supervised learning tasks include frame prediction on
K600 with 5 frames as condition, as well as inpainting and
outpainting on SSv2. FVD [63] is used as the primary
metric, calculated with 16 frames at 128×128 resolution.
We follow MAGVIT [75] in evaluating these tasks against
the respective real distribution, using 50000×4 samples for
K600 and 50000 samples for SSv2.

A.3. Super-resolution implementation details

We use a 1B model for the first 2× spatial super-resolution
stage and a 500M model for the second 2× stage. The first
super-resolution stage models videos of 17 × 448 × 256
pixels with a token sequence of shape (5, 56, 32). The
second stage models videos of 17 × 896 × 512 pixels
with a token sequence of shape (5, 112, 64). The token
sequences are obtained with the same MAGVIT-v2 [77]
tokenizer used for the base language model. The cus-
tom super-resolution transformer has local self-attention
windows for vertical, horizontal and temporal layers of
shape (1, 56, 4), (1, 8, 32), (5, 8, 8) in the first stage and
(1, 112, 2), (1, 4, 64), (5, 8, 8) in the second stage, respec-
tively (Figure 4). The cross-attention layers attend to local
windows in the low-resolution sequence isomorphic to self-
attention windows but with half the spatial size.

We train the super-resolution stages on a dataset of 64M
high-quality text-video pairs using the masked modeling
objective of MAGVIT [75], with token factorization into
k = 2 groups [77]. During inference, we use the sam-
pling algorithm of MAGVIT-v2 [77] with 24 sampling steps
for each stage and classifier-free guidance scale [7, 32]
of 4.0/8.0 for the text condition and 1.0/2.0 for the low-
resolution condition, in the first/second stage.

A.4. Comparison of 1B and 8B models

In Figure 14, we show outputs of 1B and 8B parameter mod-
els on the same prompts. Four frames from the best video
output of each model in a batch of four text-to-video sam-
ples were selected to represent the model. In the first row,
the 1B model is unstable with large changes to the subject
over time and misses elements from the complex prompt.
This prompt was originally used for scaling comparisons
in [74], and compared to a dedicated image-only model, our
model does not preserve text as well given the training data
used. In the second row, we use a simpler text task and show
that the 8B model can represent a single letter clearly, but
the 1B model still produces artifacts. In the third row, we
show that the 8B model learns spatial positioning such that
the river is in front of the astronaut and horse. In the fourth
row, we show that the 8B parameter model learned a stop
motion style to have items disappear “one by one” and can
follow a complicated layout from a long prompt. In con-
trast, the 1B model includes all of the nouns, but is unstable
over time and does not follow the layout indicated in the
prompt. In the bottom row, we show that the 8B model un-
derstands counts of objects in that it displays a full bouquet
(though 12 roses are not explicitly in frame) and smooth
consistent motion as opposed to the 1B model 5 roses and
distorting objects produced by the 1B model. Overall, scal-
ing the model improved temporal consistency, prompt fi-
delity, and motion dynamics while adding capabilities for
limited text rendering, spatial understanding, and counting.
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A.5. Stylization Evaluation on DAVIS

To evaluate the CLIP similarity score and human preference
on video stylization, we use the following set of videos and
prompts. We select 20 videos from DAVIS 2016 [44], and
for each video we take 16 frames starting from the initial
frame specified below and evaluate stylization on the two
text prompts specified below. To be easily reproducible,
we use a central square crop at the height of the video and
evaluate the output videos at 256x256 resolution. We use
CLIP-B/16 for the similarity score. Several prompts below
are used in or inspired by previous work [15, 23, 39].
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prompt: A portrait photo of a kangaroo wearing an orange hoodie and blue sunglasses standing on the grass in front of the
Sydney Opera House holding a sign on the chest that says Welcome Friends!

prompt: A kangaroo holding a sign with the letter A on it

prompt: A photo of an astronaut riding a horse in the forest. There is a river in front of them with water lilies

prompt: A zoomed out map of the United States made out of sushi. It is on a table next to a glass of red wine. Pieces of
sushi disappear one by one

prompt: Rotating around a vase holding a dozen roses

Figure 14. A comparison of a 1B (left) and 8B (right) parameter models on the same prompt and settings.
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video name starting frame first text prompt

elephant 10 oil painting of an elephant walking away
elephant 10 cartoon animation of an elephant walking through dirt surrounded by boulders
car-turn 40 car on a snowcovered road in the countryside
car-turn 40 8-bit pixelated car driving down the road
dog-agility 0 a dog in the style of a comic book
dog-agility 0 a dog running through a field of poles in the style of cyberpunk
bmx-bumps 10 riding a bicycle on a rainbow track in space with stars and planets in the background
bmx-bumps 10 riding a bicycle on a dirt track in the style of a graphic novel
train 0 a gingerbread steam train made of candy
train 0 a train in lava
bus 0 a black and white drawing of a bus
bus 0 a bus in cyberpunk style
lucia 0 an astronaut walking on mars
lucia 0 a claymation animation of a woman walking
tennis 15 a robot throwing a laser ball
tennis 15 astronaut playing tennis on the surface of the moon
bear 60 a polar bear exploring on an iceberg
bear 60 a space bear walking beneath the stars
flamingo 0 2D vector animation of a group of flamingos standing near some rocks and water
flamingo 0 oil painting of pink flamingos wading
hike 0 a green alien explorer hiking in the mountains
hike 0 paper cut-out mountains with a paper cut-out hiker
goat 59 a tiger prowling along the ridge above a jungle
goat 59 a dragon prowling over a crater on the moon
parkour 60 a man jumping over rocks in a red sandstone canyon
parkour 60 a robot dodging through an obstacle course
cows 10 a pig standing in the mud
cows 10 a robotic cow walking along a muddy road
camel 10 a camel robot on a snowy day
camel 10 toy camel standing on dirt near a fence
blackswan 0 a watercolor painting of a white swan
blackswan 0 a crochet black swan swims in a pond with rocks and vegetation
dog 20 a cat walking
dog 20 a dalmatian dog walking
kite-surf 10 a sand surfer kicking up sand in the desert
kite-surf 10 kite surfer in the ocean at sunset
libby 0 chinese ink painting of a dog running
libby 0 3D animation of a small dog running through grass
horsejump-high 0 a cartoon of a magical flying horse jumping over an obstacle
horsejump-high 0 person rides on a horse while jumping over an obstacle with an aurora borealis in the background

Table 5. DAVIS stylization evaluation settings.
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