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Abstract

We derive a general evolution equation for a shallow layer of a generalised Newtonian
fluid undergoing two-dimensional gravity-driven flow on an inclined plane. The flux term
appearing in this equation is expressed in terms of an integral involving the prescribed con-
stitutive relation and, crucially, does not require explicit knowledge of the velocity profile
of the flow; this allows the equation to be formulated for any generalised Newtonian fluid.
In particular, we develop general solutions for travelling waves on a mild slope and for
kinematic waves on a moderately steep slope; these results provide simple and accessible
models of, for example, the propagation of non-Newtonian mud and debris flows.
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1 Introduction

The dynamics of ‘shallow’ or ‘slender’ flows with a small aspect ratio have been a topic of
scientific and mathematical investigation since the work of Reynolds [1]. A key feature of
such flows is that the mathematical models that describe them can be asymptotically reduced
to a simpler form, which captures the essential physics of the flow without requiring intensive
computations. Such reduced models have been successfully employed in many contexts [2, 3].
Further simplifications are possible because in shallow flows the reduced Reynolds number,
the product of the aspect ratio and the standard Reynolds number, is typically small and so
inertia may be neglected — the so-called ‘lubrication approximation’.

A substantial body of work in shallow-flow theory was motivated by applications to large-
scale free-surface flows such as debris flows and lahars (see, e.g., [4]). In the simplest de-
scriptions of these phenomena, a fixed volume of fluid is instantaneously released, and the
aim of the model is to predict how far and how fast the resulting viscous gravity current can
travel. Huppert [5, 6] considered two paradigm problems. In one problem [5], the fluid is
released on a horizontal substrate, and after a period of initial adjustment the current spreads
according to a self-similar solution. In the other problem [6], the fluid is released on a mod-
erately steep slope, and propagates downslope as a kinematic wave [7, chapter 2]. Like other
such waves [8], at large times the kinematic-wave solutions approach the ‘centred-wave’ so-
lution that corresponds to an instantaneous point release of fluid. Huppert’s analysis of the
behaviour of such kinematic waves was later extended to account for the modification of the
kinematic-wave solution near the front of the current by surface tension [9] or hydrostatic
pressure gradients [10].
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Although the theory of shallow flows was first developed for Newtonian fluids, many flu-
ids of practical interest, ranging from lavas to colloidal suspensions such as muds, possess
non-Newtonian rheological properties such as shear thinning and a yield stress [11]. There is
therefore a substantial body of work in which lubrication theory has been extended to non-
Newtonian fluids. For the problem of spreading on a horizontal substrate, notable contri-
butions include those of Gorodtsov [12] and Pascal [13], who independently extended the
self-similar solutions of [5] to power-law fluids; this work was later extended by Gratton et
al. [14], who found a wider range of self-similar solutions. Another important contribution
was made by Balmforth & Craster [15], who demonstrated how lubrication theory could be
formulated consistently for viscoplastic fluids; this work was built on to model the spreading
of viscoplastic lava domes on a horizontal substrate [16] and viscoplastic coating flows [17].

Models of non-Newtonian flow on a slope have been independently developed by several re-
searchers. One of the earliest contexts was glacier flow, since if basal slip and thermal effects
are neglected, a glacier modelled using Glen’s constitutive law obeys a power-law rheology
with exponent n = 1/3. Shallow-flow models, including kinematic-wave solutions, were con-
structed by Nye [18] and further developed by many researchers [e.g. 19, 20]; such models
remain a topic of research [21]. Kinematic-wave models for a power-law fluid were presented
inter alia by Berezhin et al. [22] and by Perazzo & Gratton [23], while the explicit centred-wave
solution has recently been presented and discussed by Ganguly et al. [24]. Huang & Garcia
[25] presented both the kinematic-wave solution and the front corrections for a viscoplastic
Herschel–Bulkley fluid; the kinematic-wave solution has since been compared with experi-
mental data by Ancey et al. [26]. More recently still, Kheyfets & Kieweg [27] have presented a
numerical study of unsteady shallow flows of an Ellis fluid on a slope.

Another class of solutions for flow on a slope is that in which the slope is mild. In this case, the
governing lubrication equations admit travelling-wave solutions, which propagate downslope
at a constant speed and can be regarded as representing the behaviour of an existing flow when
the rate of supply of fluid is abruptly changed. Liu & Mei [28] first developed such solutions
for a Bingham fluid, while Perazzo & Gratton [23, 29] presented a thorough analysis of the
problem and the possible types of solution for a power-law fluid. More recently, Chambon et
al. [30] have presented Herschel–Bulkley solutions and compared them with experiments that
employed a kaolin slurry flowing on an inclined conveyor belt.

Extensions of the lubrication equations to inertial, but still laminar, flows have been presented
for power-law, Bingham and Herschel–Bulkley fluids [31, 32, 33]. More recent developments
in the study of non-Newtonian flows on slopes have largely focused on viscoplastic fluids,
with a particular interest in the final deposit shape generated by slumping from various initial
conditions [34, 35] and what can be deduced from it about the fluid rheology (the ‘Bostwick
consistometer’ experiment [36]). A still more recent extension has been to gravity currents of
thixotropic fluid on a slope [37].

So far, most shallow-flow models have been developed for relatively simple rheologies, for
which velocity profiles in free-surface flow may be determined explicitly. However, such sim-
ple rheologies are not necessarily good descriptions of the behaviour of complex fluids such as
mud. For more complicated and realistic rheological models, it is generally not possible to ob-
tain velocity profiles explicitly: this has hindered the development of shallow-flow theory for
complex fluids and may have encouraged a focus on mathematically tractable but unrealistic
rheologies. In particular, the shear-thinning versions of the popular power-law and Herschel–
Bulkley models both predict an infinite effective viscosity in the limit of low shear rate: this
behaviour is physically incorrect (see, e.g., [38, chapter 1]) as well as being mathematically
pathological, and may lead to physically misleading results; Myers [39] has argued that this
issue, while well known, is often not properly acknowledged.
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In the present contribution, we address the need for a more general non-Newtonian shallow-
flow theory. We demonstrate in section 2 that because the stress distribution in shallow flows
is known in advance, the governing equations for the unsteady shallow two-dimensional flow
of any generalised Newtonian fluid can be written in terms of an integral of a function that is
obtained directly from the constitutive law. Although the mathematical ‘trick’ that we employ
is far from new — indeed, it was introduced by Weissenberg in his work on the capillary
rheometer in 1928 (see, e.g., [40, §2.1]) — its full potential in this context does not seem to have
been exploited. In the following sections, we specialise this general equation successively
to two regimes in which the evolution equation simplifies substantially and particular forms
of solution become available. Each regime has previously been investigated for Newtonian
and power-law fluids but not for more general rheologies. First, in section 3, we consider
the mild-slope regime in which the gradients of the inclined plane and of the free surface
are comparable and travelling-wave solutions are available; then, in section 4, we consider
the moderately-steep-slope regime in which the gradient of the inclined plane is dominant
and a kinematic-wave description of the flow becomes appropriate. Having formulated these
general problems, we illustrate them by presenting solutions in each case for the propagation
of waves downslope, using the particular choice of a Carreau rheology to explore the effects
of shear-thinning behaviour, and of Bingham and Casson rheologies where appropriate to
explore the effects of yield-stress behaviour.

2 Model description

2.1 Generalised Newtonian fluids

The mass-conservation and momentum-balance equations for an incompressible fluid of den-
sity ρ are

∇ · u = 0 (1)

and

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p+ ρg +∇ · σ, (2)

where u, p and σ are the velocity, pressure and extra-stress tensor of the fluid, g denotes
acceleration due to gravity, and t denotes time.

The constitutive equation for a generalised Newtonian fluid [41, §8.4] is of the form

σ = 2µ(q)e, (3)

where e is the rate-of-strain tensor, given by

e =
1

2

(
∇u+ (∇u)T

)
, (4)

q is the local shear rate, given by q =
(
2 tr(e2)

)1/2, and µ = µ(q) is a prescribed shear-rate-

dependent viscosity function. A measure of local extra stress is given by τ =
(
1
2tr(σ

2)
)1/2

=
µ(q)q.

2.2 Unsteady shallow flow down an inclined plane

We consider the unsteady two-dimensional gravity-driven flow of a shallow layer of a gener-
alised Newtonian fluid on a planar substrate inclined at an angle α ≥ 0 to the horizontal, as

3



α

z

x h(x, t)

Figure 1: Schematic of a shallow two-dimensional flow on an inclined plane.

illustrated in figure 1. In terms of Cartesian coordinates Oxyz with the x axis down the line of
greatest slope, the y axis horizontal and the z axis normal to the substrate z = 0, we denote the
free surface of the fluid by z = h(x, t). With a velocity of the form

u = u(x, z, t)i+ w(x, z, t)k (5)

we have q = |∂u/∂z| to the usual accuracy of shallow-layer theory (see, e.g., [3]), and equations
(1) and (2) reduce in the lubrication approximation to

∂u

∂x
+

∂w

∂z
= 0, 0 = −∂p

∂x
+ ρg sinα+

∂

∂z

(
µ
∂u

∂z

)
, 0 = −∂p

∂y
, 0 = −∂p

∂z
− ρg cosα, (6)

where g = |g| and µ = µ(q). The equations (6) are to be integrated subject to the no-slip and
no-penetration boundary conditions at the substrate,

u = w = 0 on z = 0, (7)

the kinematic condition at the free surface,

∂h

∂t
+ u

∂h

∂x
= w on z = h, (8)

and the tangential and normal stress conditions at the free surface,

∂u

∂z
= 0 and p = pa − γ

∂2h

∂x2
on z = h, (9)

where γ denotes the (constant) coefficient of surface tension and pa denotes atmospheric pres-
sure.

Integrating the continuity equation (1) over the depth of the fluid, subject to the boundary
conditions (7) and (8), yields

∂h

∂t
+

∂Q

∂x
= 0, (10)

where Q denotes the downslope volume flux of fluid in the x-direction (per unit width in the
y direction), given by

Q =

∫ h

0
udz =

[
(z − h)u

]h
0
−
∫ h

0
(z − h)

∂u

∂z
dz =

∫ h

0
(h− z)

∂u

∂z
dz. (11)

Integrating equation (6c) in z subject to the boundary condition (9b) yields

p = pa + ρg cosα(h− z)− γ
∂2h

∂x2
, (12)
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and then from (6b) we have
∂

∂z

(
µ(q)

∂u

∂z

)
= −G, (13)

where G = G(x, t) is given by

G = − ∂

∂x

(
ρg cosαh− γ

∂2h

∂x2

)
+ ρg sinα. (14)

The importance of surface tension may be gauged in the usual way by defining a Bond number
(Eötvös number) B = ρg cosαL2/γ, where L is the horizontal lengthscale of the flow. Surface
tension is then negligible provided that B ≫ 1 and B(L/H) tanα ≫ 1, where H is the typical
depth of the flow. These conditions are readily satisfied for fluids with comparable properties
to water if the flow is of the order of centimetres deep and the shallow-flow condition is sat-
isfied. Consequently, from this point onward unless otherwise stated we will take γ = 0 and
thus neglect any effects of surface tension. We also confine the discussion to slopes for which
0 ≤ α < π/2, so the substrate is not overhanging.

Integrating (13) once and using (9) we have

µ(q)
∂u

∂z
= G(h− z). (15)

We now restrict our attention to free-surface flows in which ∂u/∂z ≥ 0 everywhere, so that
q = ∂u/∂z. Then from (15)

µ(q)q = G(h− z), (16)

so it follows that G dz = −{d
[
µ(q)q

]
/dq}dq. From (11), the flux Q may therefore be written in

the form

Q =
F (q0)

G2
, (17)

where F (q0) is a function that depends only on the rheology of the fluid, and is defined by

F (q0) =

∫ q0

0
µ(q)q2

d
[
µ(q)q

]
dq

dq, (18)

and where q0 = q0(x, t) = q
∣∣
z=0

is the shear rate at the substrate, satisfying

µ(q0)q0 = Gh. (19)

We note that the change of variables from z to q is possible only for rheological models in
which the shear stress is a monotonic function of the shear rate. This is the case for all com-
monly employed generalised Newtonian rheologies, but not for some more exotic rheologies
obtained, for example, as the generalised-Newtonian limit of a thixotropic model [37]. We also
note that equation (17), multiplied by G, can be interpreted as an energetic balance between
the rate of work done by pressure forces acting on a vertical section and the rate of dissipation
of energy by the basal shear stress.

Substituting (17) into the kinematic condition (10) we obtain the partial differential equation
governing the evolution of the free surface height h(x, t):

∂h

∂t
+

∂

∂x

(
F (q0)

G2

)
= 0, (20)

in which q0 is determined implicitly in terms of Gh by the algebraic equation (19), and G is
given by (14). The advantage of this over the original formulation which integrates (16) in z is
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that only one implicit equation and one integration must be carried out at every point (x, t); by
contrast, the original formulation requires equation (16) to be inverted at enough z-points to
obtain Q via the last integral of (11). For rheologies in which (16) cannot be inverted explicitly,
this is a significant saving in computational effort.

If the constitutive equation of the fluid is prescribed in the form q = ϕ(τ) (rather than in the
form µ = µ(q) or the equivalent form τ = τ(q) = µ(q)q) then (18), (19) and (20) may be written
more simply as

F̂ (τ0) =

∫ τ0

0
ϕ(τ)τ dτ, τ0 = Gh,

∂h

∂t
+

∂

∂x

(
F̂ (Gh)

G2

)
= 0, (21)

respectively. We will see in section 4.2.2 that this formulation is particularly useful when de-
scribing the flow of a fluid with a yield stress.

The evolution equations (20) and (21) constitute the most general results presented in this
study. To demonstrate the capabilities of this approach, in the following sections we specialise
to particular regimes of the slope of the incline, first a mild slope and then a moderately steep
slope, and seek solutions for specific rheologies in each regime. Before doing so, we note
briefly that we can recover the standard results for a power-law fluid from equation (20). If
we set µ(q) = µnq

n−1, where µn and n are positive material parameters, equation (19) gives
q0 = (Gh/µn)

1/n, and then (20) leads to

∂h

∂t
+

n

(2n+ 1)µ
1/n
n

∂

∂x

(
G1/nh(2n+1)/n

)
= 0 (22)

(cf. [14]). When n = 1 this reduces in turn to the well-known result for a Newtonian fluid (see,
e.g., [5]).

3 Flow on a mild slope: travelling waves

We first consider the regime in which the slope is mild, 0 < α ≪ 1. In this regime we may
consistently seek solutions of the lubrication equations for which |∂h/∂x| = O(tanα) and so
the hydrostatic pressure and alongslope gravitational contributions to G are comparable in
magnitude. Then from (14) and (19) we have

G = ρg sinα− ρg cosα
∂h

∂x
and µ(q0)q0 = Gh. (23)

(Note that in this regime sinα ∼ α and cosα ∼ 1; as both factors will be removed by scaling
we do not need to employ this approximation.)

In this regime, the problem that has received most attention [23, 28, 29, 30] is that of travelling
waves, which may be expected to represent the response of a uniform downslope flow to an
abrupt increase in the supply of fluid from upstream. Generalising the results obtained for
power-law fluids by Perazzo & Gratton [29], we will seek travelling-wave solutions of the
form h(x, t) = H(η), where η = x − ct for some constant wave velocity c. Equation (20) then
becomes

−c
dH

dη
+

d

dη

(
F (q0)

G2

)
= 0, (24)

where G = G(H ′) and q0 = q0(H,H ′) are given by

G = ρg sinα− ρg cosαH ′ and µ(q0)q0 =
(
ρg sinα− ρg cosαH ′)H, (25)
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and where F (q0) is defined by (18).

Equation (24) can be integrated immediately to give

L(H,H ′) ≡ −cH +
F (q0(H,H ′))

[G(H ′)]2
= L0 (26)

for some constant L0 which measures the downslope flux of fluid seen in the frame of the
travelling wave. The constants c and L0 between them define a particular travelling wave
solution, which can be thought of as a trajectory defined by (26) in the (H,H ′) phase plane.
Once such a solution has been defined, equation (26) can in principle be inverted to provide
H ′(H) along this trajectory, and the solution can then be written in implicit form as

η =

∫
dη =

∫
dH

H ′(H)
. (27)

3.1 Travelling-wave solutions for a Carreau fluid

To illustrate the approach, we will present solutions for the Carreau constitutive model [38,
§1.5], which has not previously been considered in this context. The constitutive equation for
a Carreau fluid is (3) with µ(q) given by

µ = µ∞ +
µ0 − µ∞

(1 + λ2q2)(1−n)/2
, (28)

where λ, n, µ0 and µ∞ are (positive) material parameters, λ having the dimensions of time, µ0

and µ∞ being the viscosities at low and high shear rates, respectively, and n satisfying n < 1.
Commonly µ0 is taken to be larger (sometimes much larger) than µ∞, corresponding to a shear-
thinning fluid. (The case µ0 < µ∞ corresponds to a shear-thickening fluid; since such fluids
are rare in practice we do not consider them here.) The reciprocal of the parameter λ is the
characteristic shear rate associated with the transition from low- to high-shear-rate behaviour.
The parameter n controls how rapidly this transition occurs; its effect on the travelling-wave
profiles is negligible and so for brevity we will not explore it here.

We assume that it is possible to identify a characteristic depth H0 associated with the solution
(typically the limiting depth of the fluid far up- or downstream), and we define dimensionless
quantities, denoted by an asterisk, via

H(η) = H0H
∗(η∗), η =

H0

tanα
η∗, q =

ρg sinαH0

µ0
q∗, c =

ρg sinαH2
0

µ0
c∗. (29)

The dimensionless viscosity µ∗(q∗) corresponding to (28) is given by

µ(q∗) = µ∗
∞ +

1− µ∗
∞

[1 + (λ∗q∗)2](1−n)/2
, where µ∗

∞ =
µ∞
µ0

, λ∗ =
ρg sinαH0λ

µ0
. (30)

The parameter µ∗
∞ determines whether the fluid is shear-thinning (µ∗

∞ < 1) or shear-thickening
(µ∗

∞ > 1), while the parameter λ∗ determines whether a layer of fluid of constant depth H0,
flowing downslope under its own weight, is in a high-shear-rate regime (λ∗ ≪ 1) or a low-
shear-rate regime (λ∗ ≫ 1).

The dimensionless forms of equations (25) are

G∗ = 1− dH∗

dη∗
and µ∗(q∗0)q

∗
0 = G∗H∗, (31)
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and the dimensionless form of equation (18) is

F ∗(q∗0) =

∫ q∗0

0
µ∗(q∗)q∗2

d

dq∗
[µ∗(q∗)q∗] dq∗. (32)

Finally, the integrated governing equation (26) becomes

L∗(H∗,H∗′) ≡ −c∗H∗ +
F ∗(q∗0(H

∗,H∗′))

[G∗(H∗′)]2
= L∗

0. (33)

A variety of travelling wave solutions are available [29]. We will pay particular attention to
the case where the fluid asymptotically approaches a uniform depth of h−∞ upstream and
a uniform depth of h∞ < h−∞ downstream. This provides, for example, a simple model
of a surge in a slow mud flow [28]. Taking H0 = h−∞ in (29), we obtain the dimensionless
boundary conditions

H∗ → 1 as η∗ → −∞ and H∗ → H∗
∞ as η∗ → ∞, (34)

where H∗
∞ = h∞/h−∞ is the dimensionless downstream depth. Without loss of generality we

will set η∗ = 0 where H∗ = (1 + H∗
∞)/2 to allow a simple comparison between profiles for

different parameter values.

We may determine the values of c∗ and L∗
0 immediately by solving the coupled equations

−c∗ +
F ∗(q∗0(1, 0))

[G∗(0)]2
= L∗

0 and − c∗H∗
∞ +

F ∗(q∗0(H
∗
∞, 0))

[G∗(0)]2
= L∗

0; (35)

noting that G∗(0) = 1, we obtain

c∗ =
F ∗(q∗0(1, 0))− F ∗(q∗0(H

∗
∞, 0))

1−H∗
∞

(36)

and

L∗
0 =

F ∗(q∗0(H
∗
∞, 0))− F ∗(q∗0(1, 0))H

∗
∞

1−H∗
∞

. (37)

For a given value of H∗ between H∗
∞ and 1, the corresponding value of H∗′ may be obtained

by solving (33) numerically; η∗ may then be obtained by quadrature from equation (27) and
plotted against H∗. (The apparently more natural process of parameterising both H∗ and η∗

by q∗0 is complicated by the non-monotonic variation of H∗ with q∗0 which we will remark upon
below, and so we do not pursue this alternative representation of the solution here.)

Figure 2 illustrates some typical solutions, spanning three decades of variation in λ∗. All the
profiles have the same general shape (figures 2(a) and (b)): a blunt ‘nose’, smoothly connected
by a small ‘lip’ to the fluid of depth H∗

∞ ahead of the wave. The shape of the ‘nose’ is rem-
iniscent of the shape of the front of a viscous gravity current over a dry bed [5], but differs
from it by joining smoothly to the downstream region rather than having a singular gradient
at the front. For smaller values of H∗

∞, the nose is more strongly pronounced and the lip less
obvious. Both the basal shear rate q∗0 and the basal shear stress τ∗ = µ∗(q∗0)q

∗
0 peak within

the steeply-sloping nose (figures 2(c) and (d)), where the hydrostatic pressure gradient term
H∗′(η∗) is large. This peak is again most strongly pronounced when H∗

∞ is small, as in figure
2; in the limit as H∗

∞ → 0, the shear rate and bed shear stress in fact become infinite at the
front.
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Figure 2: Travelling-wave solutions for a Carreau fluid with µ∗
∞ = 0.1, n = 0.5 and H∗

∞ = 0.1,
for λ∗ = 0.1, 1, 10, 25 and 100; (a, b) profile of the current H∗(η∗); (c, d) basal shear stress
τ∗ = µ∗(q∗0)q

∗
0 . Parts (b) and (d) are enlarged plots of the region of the ‘nose’. The solutions for

λ∗ = 0.1 are visually indistinguishable from those for a Newtonian fluid.
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Figure 3: (a) A Carreau fluid with n = 0.5: the wave speed c∗ for H∗
∞ = 0.5 as a function of the

reference shear rate λ∗ and the high-shear-rate viscosity µ∗
∞. Contours are at c∗ = 2j/2 from

j = −1 to j = 4. (b) A Carreau fluid with n = 0.5 and µ∗
∞ = 0.1: the wave speed c∗ as a

function of the reference shear rate λ∗ and the downstream fluid depth H∗
∞. Contours are at

c∗ = 2j/2 from j = −2 to j = 5. In the Newtonian limit, c∗ = (1 +H∗
∞ +H∗2

∞ )/3.

For small values of λ∗, shear-thinning effects are felt only if q∗0 ≫ 1, and so the travelling-wave
solutions are very similar to those for a Newtonian fluid [29], for which

c∗ =
1

3
(1 +H∗

∞ +H∗2
∞ ), L∗

0 = −1

3
H∗

∞(1 +H∗
∞),

η∗ =

∫
H∗3dH∗

(H∗ −H∗
∞)(H∗ − 1)(H∗ +H∗

∞ + 1)
.

(38)

As λ∗ increases, so the degree of shear thinning increases, its effects are felt most strongly in
the region of maximum shear rate, in the middle of the ‘nose’ of the wave. The result of this
is to reduce the peak shear stress (figure 2(d)). It also has a weak effect on the profile, tending
to steepen it where the fluid is deep and make it less steep where the fluid is less deep (figures
2(a) and (b)). This accords with the behaviour of travelling-wave fronts in shear-thinning
power-law fluids as the power-law index n is varied (see, e.g., figure 6 of [29]).

Figure 3 illustrates how the wave speed c∗ varies with the rheological parameters λ∗ and µ∗
∞

and the depth H∗
∞ of the fluid downstream. Figure 3(a) clearly shows that deviation from the

Newtonian result (c∗ = 7/12 ≈ 0.5833 in this case) occurs only when λ∗ is large and µ∗
∞ is

small: as these shear-thinning effects become stronger, the wave speed increases. The same
tendency of the wave speed to increase with increasing shear-thinning (larger λ∗) is apparent
in figure 3(b), which also illustrates how the wave speed increases as H∗

∞ increases and the
fluid layer downstream becomes more mobile.

4 Flow on a moderately steep slope: kinematic waves

We now consider the regime in which the slope is moderately steep, so that |∂h/∂x| ≪ tanα
nearly everywhere. (We will see that this condition may be violated locally.) The hydrostatic
pressure contribution to G is therefore negligible; thus from (14) and (19) we have

G = ρg sinα = constant, µ(q0)q0 = Gh = ρg sinαh. (39)

Equation (20) can thus be written as

∂h

∂t
+

µ(q0)q
2
0

G2
[µ(q0)q0]

′∂q0
∂x

= 0. (40)
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Using (39b) we have

[µ(q0)q0]
′∂q0
∂x

= G
∂h

∂x
and

µ(q0)q
2
0

G2
=

hq0
G

, (41)

and so equation (40) becomes the kinematic-wave equation

∂h

∂t
+ c(h)

∂h

∂x
= 0, µ(q0)q0 = ρg sinαh, c(h) = q0h =

µ(q0)q
2
0

ρg sinα
. (42)

The implicit solution of (42) satisfying h(x, 0) = h0(x) for some initial free surface shape h0(x)
is

h = h0
(
x− c(h)t

)
, (43)

in which c(h) is given implicitly by eliminating q0 from (42).

Note that the existing results for the particular case of a power-law fluid [23] may easily be
recovered. From equations (39)–(43) we have

q0 =

(
ρg sinα

µn

)1/n

h1/n, c(h) =

(
ρg sinα

µn

)1/n

h(n+1)/n, (44)

and thus

∂h

∂t
+

(
ρg sinα

µn

)1/n

h(n+1)/n∂h

∂x
= 0, h = h0

(
x−

(
ρg sinα

µn

)1/n

h(n+1)/nt

)
. (45)

If the function z = h0(x) has inverse x = h−1
0 (z) on some suitable domain then the solution

(42) and (43) may be written

x = c(h)t+ h−1
0 (h) , µ(q0)q0 = ρg sinαh, (46)

which with c(h) = q0h = µ(q0)q
2
0/ρg sinα leads to a parametric representation for h at time t

in terms of the parameter q0, namely

x =
µ(q0)q

2
0

ρg sinα
t+ h−1

0

(
µ(q0)q0
ρg sinα

)
, h =

µ(q0)q0
ρg sinα

. (47)

As is common with kinematic waves, this general solution is too general to be directly infor-
mative, and so we will specialise further to a particularly relevant class of solutions.

4.1 A finite release of fluid: general solution at finite t

Consider the release at time t = 0 of a fixed quantity of fluid, with finite length in the x
direction and with volume A (per unit width in the y direction). The mass of fluid is constant,
and so ∫ xF(t)

0
h(x, t) dx = A (48)

at all time, where x = xF(t) denotes the position of the front of the fluid at time t. Equation
(48) is an algebraic equation which determines xF; the solution for h is then given by (43) for
0 ≤ x ≤ xF.
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4.2 A finite release of fluid: centred-wave solution at large t

In the asymptotic limit of large time, t → ∞, the current ‘forgets’ its initial state [8], and the
solution (43) for h takes the form of a centred wave, for which

c(h) ∼ x

t
. (49)

This shows that, no matter what form the function µ(q) may take, eventually h depends on x
and t only in the combination x/t. Moreover, at large t equations (42) and (49) give h paramet-
rically in terms of q0:

h =
µ(q0)q0
ρg sinα

,
x

t
∼ µ(q0)q

2
0

ρg sinα
. (50)

Since also c = q0h, equation (49) or (50) shows that q0 ∼ x/(ht) at large t, and so the parametric
solution (50) may alternatively be written in the implicit form

µ
( x

ht

)( x

ht

)2
∼ ρg sinα

x

t
. (51)

For the centred-wave solution (50) the mass-conservation condition (48) leads to

(ρg sinα)2A = t

∫ q0F

0
µ(q0)q0

d
[
µ(q0)q

2
0

]
dq0

dq0 = t[µ(q0F(t))]
2q30F(t)− tF (q0F(t)), (52)

where q0F(t) = q0(xF(t), t) is the shear rate at the substrate at the front x = xF(t). (Note that
the first term on the right-hand side of (52) may be written as (ρg sinα)2xFhF, illustrating how
the rheology of the fluid, represented by F (q0), ‘corrects’ the shape of the current.) Equation
(52) is an algebraic equation which determines q0F(t); the front position and the depth at the
front hF(t) ≡ h(xF(t), t) are then given by

hF(t) =
µ(q0F)q0F
ρg sinα

, xF(t) =
µ(q0F)q

2
0F

ρg sinα
t (53)

at large t. Note that this solution has a height discontinuity at the front, where the condition
| cosαhx| ≪ sinα breaks down. In a solution of the full evolution equation (20), a steep but
continuous ‘nose’ may be expected to replace this discontinuity, and a matched asymptotic
expansion may be constructed to describe it (e.g. [10, 25]); however, the advance of the current
and its profile away from the nose are still described to leading order by (53).

We can again easily recover the existing results for a power-law fluid, which have recently
been presented by Ganguly et al. [24]. When c(h) is given by (44), equation (50) gives

h =
µnq

n
0

ρg sinα
,

x

t
∼ µnq

n+1
0

ρg sinα
, (54)

leading to

h ∼
(

µn

ρg sinα

)1/(n+1) (x
t

)n/(n+1)
as t → ∞, (55)

while equation (52) gives

(ρg sinα)2A = (n+ 1)µ2
nt

∫ q0F

0
q2n0 dq0 =

(
n+ 1

2n+ 1

)
µ2
nq

2n+1
0F t, (56)

and so

q0F =

(
(2n+ 1)(ρg sinα)2A

(n+ 1)µ2
nt

)1/(2n+1)

. (57)
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Hence from (53) we recover the solution

hF(t) =

[(
2n+ 1

n+ 1

)n µnA
n

ρg sinαtn

]1/(2n+1)

, xF(t) =

[(
2n+ 1

n+ 1

)n+1 ρg sinαAn+1tn

µn

]1/(2n+1)

(58)
as t → ∞. Like many self-similar solutions, the form of (58), although not the dimensionless
prefactors, may be deduced from purely dimensional considerations. (Equation (58) shows,
incidentally, that hFxF = ((2n + 1)/(n + 1))A = constant. This reflects the fact that these
solutions are self-similar; we shall show below that it is not necessarily the case for other
rheologies.)

It is straightforward to generalise the above solutions to the case when fluid is supplied or
removed in a prescribed fashion, so that the area A is time-dependent; for brevity we omit this
generalisation here.

4.2.1 Centred-wave solution for a Carreau fluid

To demonstrate the applicability of our approach to more complicated rheologies, we now
construct centred-wave solutions for the case of a Carreau fluid with constitutive equation
(28). Before presenting the results, it is convenient to non-dimensionalise the variables appro-
priately. We define dimensionless quantities, denoted by an asterisk, via

q0 =
q∗

λ
, t =

(
ρg sinα

µ0

)2

Aλ3t∗, x =
ρg sinαAλ

µ0
x∗, h =

µ0h
∗

ρg sinαλ
, µ(q) = µ0µ

∗(q∗). (59)

We can then write the dimensionless viscosity function as

µ∗(q∗) = µ∗
∞ +

1− µ∗
∞

(1 + q∗2)(1−n)/2
, where µ∗

∞ =
µ∞
µ0

, (60)

and the centred kinematic-wave solution parameterised by q∗ becomes

h∗ = µ∗(q∗)q∗,
x∗

t∗
∼ µ∗(q∗)q∗2, 1 = t∗

∫ q∗0F

0
µ∗(q∗)q∗

d
[
µ∗(q∗)q∗2

]
dq∗

dq∗. (61)

As in section 3.1, the parameter µ∗
∞ determines whether the fluid is shear-thinning (µ∗

∞ < 1)
or shear-thickening (µ∗

∞ > 1). Note that the characteristic shear rate 1/λ in the viscosity func-
tion sets the time- and lengthscales for the evolution of the flow. Where the shear rate is low,
q∗ ≪ 1, the viscosity tends to its low-shear-rate value and the fluid behaves like a Newto-
nian fluid with constant dimensionless viscosity 1. Where the shear rate is high, q∗ ≫ 1, the
viscosity tends to its high-shear-rate value and the fluid behaves like a Newtonian fluid with
constant dimensionless viscosity µ∗

∞. The parameter n determines how rapidly the viscosity
changes between its low- and high-shear values; in contrast to the travelling waves considered
in section 3.1, the kinematic-wave solutions are somewhat sensitive to the value of n.

Figures 4 and 5 illustrate the behaviour of the solutions for a shear-thinning Carreau fluid
(µ∗

∞ = 0.2) for three values of n; results for shear-thickening fluids are analogous and are
omitted here for brevity. As the current spreads and thins, both the depth at the front, h∗F(t

∗),
and the front velocity, dx∗F/dt

∗, decrease (figures 4(b) and (c)); the net effect is that the shear
rate at the front, q∗0F, decreases (figure 4(a)). At sufficiently early times, the shear rate at the
front is high, q∗0F ≫ 1, and so the fluid behaves like a Newtonian fluid with dimensionless
viscosity µ∗ = 0.2. In this regime, we have

q∗0F ∼
(
3

2

)1/3

µ∗−2/3
∞ t∗−1/3, x∗F ∼

(
3

2

)2/3

µ∗−1/3
∞ t∗1/3 and h∗F ∼

(
3

2

)1/3

µ∗1/3
∞ t∗−1/3,

(62)
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Figure 4: Centred-wave solution: quantities at the front of the current for a Carreau fluid with
µ∗
∞ = 0.2 and n = 0.5 (solid), n = 0.25 (heavy dashed), n = 0.75 (light dashed) : (a) front shear

rate q∗0F(t
∗); (b) front position x∗F(t

∗); (c) depth at the front h∗F(t
∗). Dotted lines in each plot

show the results for Newtonian fluids with µ∗ = 1 and with µ∗ = 0.2. Note the logarithmic
scales in each case.
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Figure 5: Profiles of the centred-wave solution for a Carreau fluid with µ∗
∞ = 0.2 and n =

0.25: (a) and (b) show profiles h∗ at various times plotted as functions of the space variable
x∗, while (c) and (d) show scaled profiles h∗/h∗F at the same times, plotted as functions of
the scaled space variable x∗/x∗F; the dashed line in these figures is the Newtonian solution
h∗/h∗F = (x∗/x∗F)

1/2. Figures (a) and (c) show profiles at early times, from t∗ = 0.0001 to
t∗ = 0.1, for six exponentially spaced values of t∗. Figures (b) and (d) show profiles at later
times, from t∗ = 0.1 to t∗ = 100, for six exponentially spaced values of t∗.

from equations (58) with n = 1. As the current evolves and q∗0F decreases, the non-Newtonian
effects become apparent, and at around t∗ ∼ 1 there is a gradual transition to a low-shear-rate
regime in which q∗0F ≪ 1 and so µ∗ ∼ 1. In this low-shear-rate regime, the Newtonian scalings
are again recovered, but with different coefficients of proportionality:

q∗0F ∼
(
3

2

)1/3

t∗−1/3, x∗F ∼
(
3

2

)2/3

t∗1/3 and h∗F ∼
(
3

2

)1/3

t∗−1/3. (63)

Although the same transition is seen for each value of n, it occurs significantly earlier for
higher values of n, for which the denominator (1 + q∗2)(1−n)/2 is smaller and so the viscosity
is closer to µ∗

∞ for a given value of q∗.

The transition from high- to low-shear-rate behaviour can also be seen in the changing profile
h∗(x∗, t∗) of the current, which goes through two phases of adjustment (figure 5). At early
times, t∗ ≪ 1, the shear rate is high everywhere and the profile is reasonably close to the
Newtonian one (figure 5(c)), deviating most from it near the tail of the current where the
shear rate is always low (since, from (50), q0 = 0 when x/t = 0). As t∗ increases and the
flow decelerates, the low-shear-rate region expands forward, and so in figure 5(c) we see an
adjustment in the profile propagating forward from the tail, eventually catching up with the
flow front at around t∗ ≈ 0.1. Thereafter, the profile gradually adjusts back to its Newtonian
form (figure 5(d)).

15



It is worth remarking that although the solution depends on x∗ and t∗ only through the com-
bination x∗/t∗, the front position x∗F(t

∗) does not correspond to a fixed value of x∗/t∗ and so
the solutions are not perfectly self-similar. Consequently the normalised profiles in figures 5(c)
and (d) do not collapse onto a single curve. This contrasts with the solutions for power-law
fluids (including the Newtonian case), in which h∗ is proportional to a simple power of x∗;
regardless of the variation of x∗F(t

∗), the normalised profiles h∗/h∗F for such solutions must
always collapse onto a single curve when plotted as functions of x∗/x∗F. It is straightforward
to show from (50) that this property can hold only when µ(q0) is a simple power of q0.

4.2.2 Centred-wave solutions for yield-stress fluids

The approach outlined above, in which solutions are written in terms of the shear rate q, relies
on making the change of variables from z to q. Consequently, it is not applicable to fluids with
a yield stress τy, for which q = 0 throughout the pseudo-plug region near the free surface
where 0 ≤ τ < τy [15]. However, from equation (15) the shear stress τ = µ(q)q varies mono-
tonically with z; consequently, the formulation (21) in terms of τ is applicable to yield-stress
fluids. An advantage of this formulation is that it is no longer necessary to keep track explic-
itly of the yield surface. We will illustrate the approach (21) here by obtaining solutions for
kinematic waves first in general terms and then for the Bingham and Casson rheologies [38,
§1.5]; the former solutions are specialisations of those due to Huang & Garcia [25], while the
latter appear to be new.

On a moderately steep slope, we again have

τ0 = Gh, where G = ρg sinα, (64)

and the evolution equation (21) becomes

∂h

∂t
+ c(h)

∂h

∂x
= 0, where c(h) = hϕ(Gh). (65)

For suitable initial conditions, equation (49) again provides the implicit solution at large times.
Suitable initial conditions are required in this case because a yield-stress fluid on a slope is
mobile only when h exceeds the ‘yield depth’ hy = τy/G below which ϕ(Gh) = 0; where
h < hy, the fluid cannot flow downslope under its own weight. Thus there is a maximum
run-out distance x∞ = A/hy, and (49) provides a good approximation at large times only if
the initial distribution of fluid occupied a length much less than x∞.

The volume conservation condition can be written in terms of an integral either over h or over
τ0:

A =

∫ xF(t)

0
h(x, t)dx = t

∫ hF

hy

h
dc

dh
dh =

t

G2

∫ τ0F

τy

τ0
d

dτ0
[τ0ϕ(τ0)] dτ0. (66)

This condition implicitly defines hF and τ0F, respectively the depth and the basal shear stress
at the flow front, and hence the position of the front via c(hF) = xF/t.

For the simple case of a Bingham fluid with high-shear-rate viscosity µB and yield stress τy, in
simple shearing flow we have

q = ϕ(τ) =


1

µB
(τ − τy) if τ > τy,

0 otherwise.
(67)

The kinematic wave speed c(h) may then be written as

c(h) =


G

µB
h(h− hy) if h > hy,

0 otherwise.
(68)
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The volume condition (66) becomes

A

t
=

∫ hF

hy

h
dc

dh
dh =

G

µB

(
2

3
h3F − 1

2
hyh

2
F − 1

6
h3y

)
. (69)

For the slightly less simple case of a Casson fluid with high-shear-rate viscosity µC and yield
stress τy, in simple shear we have

q = ϕ(τ) =


1

µC

(
τ1/2 − τ

1/2
y

)2
if τ > τy,

0 otherwise.
(70)

This yields the kinematic wave speed

c(h) =


G

µC
h
(
h1/2 − h

1/2
y

)2
if h > hy,

0 otherwise
(71)

and the global volume condition

A

t
=

G

µC

∫ hF

hy

h
(
2h− 3

√
hhy + hy

)
dh =

G

µC

(
2

3
h3F − 6

5

√
hyh

5/2
F +

1

2
hyh

2
F +

1

30
h3y

)
. (72)

We will compare the results for Bingham and Casson fluids with µB = µC = µ and identical
values of τy. We define dimensionless variables, denoted by an asterisk, via

h = hyh
∗, x = x∞x∗ =

A

hy
x∗ and t =

Aµ

Gh3y
t∗. (73)

The centred-wave solution for a Bingham fluid, defined by (49), (68) and (69), becomes

x∗

t∗
= h∗(h∗ − 1) for 1 ≤ h∗ ≤ h∗F, where

2

3
h∗3F − 1

2
h∗2F − 1

6
=

1

t∗
. (74)

while the centred-wave solution for a Casson fluid, defined by (49), (71) and (72), becomes

x∗

t∗
= h∗

(
h∗1/2 − 1

)2
for 1 ≤ h∗ ≤ h∗F, where

2

3
h∗3F − 6

5
h
∗5/2
F +

1

2
h∗2F +

1

30
=

1

t∗
. (75)

Figures 6 and 7 illustrate the solutions (74) and (75): figure 6 shows how the length and the
depth at the front of the current evolve, while figure 7 illustrates the evolving profile of the
current.

For a given shear rate q > 0, the Casson model predicts a higher shear stress τ than does
the Bingham model with the same yield stress and high-shear-rate viscosity; informally, the
Casson fluid is more viscous at finite shear rates than the Bingham fluid. A consequence of
this is that the Casson fluid advances more slowly towards its ultimate run-out length x∗F = 1
than the Bingham fluid (figure 6(a)), and the depth at the front decreases more slowly (figure
6(b)).

These trends are the most visible feature when the current profiles are plotted for successive
times (figure 7). It is also apparent in these plots that as t∗ → ∞ the current evolves towards
a static deposit with a constant depth h∗ = 1, corresponding to h = hy. Although the run-
out distance is finite, it is not attained in a finite time: this is perhaps most clearly seen by
noting that as hF → 1, the left-hand sides of equations (74b) and (75b) tend to zero. (Note that
the yield surface, not plotted here, lies a constant dimensionless distance of 1 below the free
surface when h∗ ≥ 1.) At earlier times, the profile of the Casson fluid (figure 7(c)) varies more
strongly from this rectangular limiting case than does that of the Bingham fluid (figure 7(d)),
but the difference is rather subtle and would not easily be identified experimentally.
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Figure 7: Profiles of the centred-wave solution for (a), (c) a Casson fluid and (b), (d) a Bingham
fluid: (a) and (b) show profiles h∗ at various times plotted as functions of the space variable
x∗, while (c) and (d) show scaled profiles h∗/h∗F at the same times, plotted as functions of the
scaled space variable x∗/x∗F. All profiles are plotted at eleven exponentially spaced values of
t∗ from t∗ = 0.1 to t∗ = 100.

5 Summary and conclusions

We have derived a general evolution equation for a shallow layer of generalised Newtonian
fluid undergoing unsteady two-dimensional gravity-driven flow on a horizontal or an inclined
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plane. The variables in this equation are the depth h(x, t) of the layer and an additional vari-
able q0(x, t) or τ0(x, t) which represents the basal shear rate or shear stress and which is related
to h and its derivatives by an implicit equation. In certain regimes of the slope, this evolution
equation reduces further, and we have presented two classes of solutions, illustrating the re-
sults for particular choices of rheology.

For flows on mild slopes, we have presented novel travelling-wave solutions for Carreau flu-
ids, investigating the effect of shear thinning on the solutions. The overall character of the
solutions is rather insensitive to the rheology, but shear thinning reduces the peak of shear
stress at the wave front, and also tends to increase the wave speed. For flows on moderately
steep slopes, we have presented novel centred kinematic-wave solutions for Carreau and Cas-
son fluids, comparing the latter with previously derived results for Bingham fluids [25]. The
principal feature of the solutions for Carreau fluids is a transition from high-shear-rate be-
haviour at early times to low-shear-rate behaviour at later times; it is also noteworthy that,
unlike the solutions for power-law fluids, solutions for other rheologies are not, in general,
self-similar. An interesting feature of the solutions for yield-stress fluids is that although a
Bingham fluid and a Casson fluid with the same yield stress and high-shear-rate viscosity run
out to the same distance, the run-out of the Bingham fluid is considerably faster because it is
less viscous at intermediate shear rates.

Although we have presented solutions for specific rheological models, we stress that the same
procedure can be applied for any generalised Newtonian fluid; crucially, it does not require
one to obtain the velocity profile in the flow explicitly. In particular, the version of the pro-
cedure which employs integration over the shear stress offers a means of obtaining shallow-
flow solutions for yield-stress fluids without explicitly tracking the yield surface within the
fluid. The approach presented here therefore offers a useful way to develop test-bed solu-
tions with which to validate numerical methods for free-surface non-Newtonian flows. This
approach also offers a means by which theoretical predictions may be obtained to compare
with experimental results for which simple constitutive laws are known to be inappropriate,
for example allowing recent work for the Herschel–Bulkley model [35] to be extended to other
rheologies. Another promising direction for the further development of this approach is to
flows for which variation in both the downslope and transverse directions is important, such
as non-Newtonian rivulets [42, 43, 44].
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