
UTRECHT UNIVERSITY

Artificial Intelligence Master Thesis

Predicting the outcomes of
Automated Negotiations

First supervisor:

Tim Baarslag

Second supervisor:

Shihan Wang

Author:

Mick Camiel Tijdeman

Student number: 9486232

In cooperation with:

Centrum Wiskunde & Informatica

A thesis submitted in fulfillment of the requirements

for the degree of Master of Science

in the

Department of Information and Computing Science

June 14, 2024

Abstract

Knowing the outcome of an automated negotiation before it is terminated offers

many advantages. It allows one to change their strategy to obtain a better result, it

gives (multi-issue) negotiators insight into which negotiations are worth the effort

and resources and which are better to terminate, and it can aid in the develop-

ment of negotiating assistants. Despite these advantages, no research has yet been

done on predicting negotiation outcomes. This thesis tackles the challenge of pre-

dicting the outcome of automated negotiations. We limit the scope of these pre-

dictions to bilateral alternating-offer negotiations between two time-dependent

agents.

Our method divides the prediction into two parts. First, the bids made by the ne-

gotiating agents are converted into utility time series. The future trajectory is then

forecast by six time series forecasting methods. Second, these forecasts are used

to find a distribution of the most likely intersection points and, with that, a distri-

bution of the most likely negotiation outcomes. In addition, the network gives the

probability of ending the negotiation with an agreement.

In general, neural networks performed best in both time series forecasting and

outcome prediction, achieving an F1-score of 0.876. We found that negotiation

time series are difficult to predict for classic statistical models, as the series have

a low level of predictability. The predictability of time series can be improved by

applying a behavior-based strategy, which we model by introducing a learning

rate.

Our work shows that neural networks are a promising direction for automated

negotiation outcome prediction. We believe these results are only the beginning

of their capabilities and can further be improved by experimenting with more

network architectures and negotiation settings. Therefore, we encourage other

researchers to take the next steps to improve our results.

Contents

1 Introduction 4

1.1 Predicting the outcome . 5

1.2 Existing Approaches . 10

1.3 Research Question . 12

1.4 Thesis Outline . 13

2 Literature Review 14

2.1 Predicting Classical Negotiations 14

2.2 Predicting Automated Negotiations 16

2.3 Time Series Forecasting . 20

2.4 Deep Learning . 24

2.5 Monte Carlo Methods . 29

3 Predicting the Negotiation Outcome 31

3.1 Negotiation Outcomes . 32

3.2 TSF Solution: Neural Networks 35

3.3 Intersection Solution: Monte Carlo Methods 42

3.4 CRPS . 46

4 Experiments 48

4.1 Experiment Overview . 48

4.2 Experiment Setup . 48

4.3 Preliminary Experiments . 55

5 Results 62

5.1 Time Series Forecasting . 62

5.2 Outcome Prediction . 69

6 Discussion and Limitations 79

6.1 Discussion . 79

6.2 Limitations . 84

2

CONTENTS CONTENTS

7 Conclusion and Future Work 91

7.1 Conclusion . 91

7.2 Future Work . 93

A Additional Information 95

A.1 Other TSF methods . 95

A.2 Statistical Intersection Methods 98

A.3 Genius . 102

B Additional Results 104

B.1 Results Experiment 1 . 104

B.2 Results Experiment 2 . 105

B.3 Parameter Effect . 111

Bibliography 124

3

1. Introduction

Throughout history, negotiating has always been a staple of human decision

making. Of all our modes of conflict management, it has proven to be one

of the most flexible and effective tools for managing social and economic

expectations [1]. As society evolved and human social circles grew bigger,

the need to detect and protect oneself from potential threats and deceptions

grew. At the same time, the need to be equally strategic in one’s own deal-

ings grew with it [2]. In fact, not all negotiations are quite as obvious as

they seem at first glance. Even so, they still play an essential role in our

daily lives [3]. Some applications are obvious, such as salary negotiations

or marketplace haggling, and some are less obvious, such as deciding on a

vacation destination with peers. The widespread prevalence of negotiating

is not exclusive to humans either. Over the last decade, the field of Auto-

mated Negotiating has become an active area of research within computer

science [4], [5]. Automated agents can alleviate much of the cognitive load

associated with human negotiations, making them valuable assistants for

human negotiators [6]. An added benefit of automated negotiations is that

they are not influenced by psychological factors, as is the case with regu-

lar ’human’ negotiations. Two of the same negotiating agents arguing over

the same matters should come to the same outcome consistently (disregard-

ing some programmed in randomness and agents purposely made to be er-

ratic). In addition, computer systems often must negotiate with each other

when dividing resources or coming to a mutual decision. Take, for example,

energy contract negotiations [7], logistics and transportation [8], or even the

communication of Mars rovers [9].

4

1.1 Predicting the outcome

1.1 Predicting the outcome

While much effort has been put into implementing and designing negoti-

ating agents and environments [10], as well as strategies [11]–[13] it is still

largely unclear what tactics in an automated negotiation lead to which out-

come and how an ongoing negotiation can still be influenced to steer to-

wards different outcomes.

Gaining a stronger understanding of how to reach a certain negotiating

result may prove paramount in both automated and normal negotiations.

That is, being able to influence these outcomes gives an obvious tactical ad-

vantage to the party using it, steering the negotiation in a direction they

deem preferable. Similarly, the negotiation could be directed towards a

Pareto-efficient outcome, providing a mutual benefit for all involved par-

ties. In addition, finding the optimal tactics or negotiation parameters may

just be the required step to ensure that the negotiation does not terminate

without an agreement at all.

Outcome prediction can also aid negotiators in one-to-many negotiations.

Knowing where one of these negotiations is headed can inform decisions

made in the other negotiations. Say, for example, a party is negotiating to

buy resources in bulk from two different suppliers. If they already know

that one negotiation is heading towards a good outcome, they may attempt

to reach an even better outcome in the other negotiation and try their luck

with a riskier strategy. Conversely, if they already know that one negotia-

tion is heading south, they can attempt to ensure that the other negotiation

at least ends in an agreement. An agent having insight on a negotiation’s

direction can also prove to be a good assistant for human negotiators, ad-

vising them on what offers result in which outcomes. These tactics may be

applicable in any field that requires some form of negotiating such as poli-

tics, business, autonomous systems, and much more.

The mechanics underlying automated agents, algorithmic computations,

are deterministic in nature. Given the same input, these should consistently

give the same output. This is one way in which automated agents differ-

5

Introduction

entiate themselves from human negotiators. Statisticians and computer sci-

entists have already developed a wide range of tools for the prediction of

various types of similar data, to great success [14]. These methods, when

applied to automated negotiation, could prove worthwhile in improving

the understanding of automated negotiations and add to the body of in-

struments available to improve agent behavior.

1.1.1 Key Concepts

An automated negotiation is any negotiation involving automated agents.

These agents negotiate with each other in a setting that defines the context

of the negotiation, a so-called domain. This domain defines a set of issues

over which agents can reach a mutual decision, each issue having a set of

values. Say, for example, two agents are negotiating over the details of a

wedding. This would make the wedding the domain in which the agents

negotiate. The issues in this domain may be the wedding location, the deco-

rations, or the music. For the wedding location issue, some values could be

a church, a forest, or a castle. All possible combinations of values over these

issues together define the outcome space of the negotiation. When an agent

proposes one of these combinations from the outcome space as a resolution

to the negotiation, this is called a bid.

Each agent has a set of preferences over the possible outcomes. For every

option within an issue, the agent has an associated numerical value indi-

cating how much they prefer this option. This is the utility function of an

agent, which defines the total utility the agent gets from a negotiation out-

come.

Like real negotiations, automated negotiations can also take place in various

contexts. The first important distinction is the number of agents that have to

decide on the issues. In this thesis, we will focus on bilateral negotiations,

which are negotiations between two agents. Another important distinction

is the protocol used to guide the negotiation, which decides the rules about

making and accepting offers. This research will focus on the stacked alter-

nating offers protocol. This protocol has its agents alternate in sending bids

6

1.1 Predicting the outcome

back and forth until one agent uses its turn to accept the bid of the other.

1.1.2 Time

Negotiations cannot continue indefinitely. Every negotiation has a dead-

line associated with it, either defined temporally (usually in seconds) or by

means of a round limit. If time runs out before the end of the negotiation,

both agents receive their reservation value. The reservation value is the

minimum utility score obtained in every negotiation, which can be zero.

Additionally, some negotiations apply a discount factor that penalizes ne-

gotiations that end late.

Under the threat of these penalties, time greatly influences the strategies

of negotiating agents. Early in the negotiation, agents enjoy the space to

try and influence their opponent, as well as gauge their strategy. Usually,

this stage has agents reluctant to concede, while nearer to the end of the

negotiation, an agent may be more inclined to settle for less. In addition, the

choice of time unit can also affect the strategy employed by agents. Where

a set round limit gives the agent a clear view of how much space for bids is

remaining, a time limit leaves more uncertainty as every round may vary in

duration.

1.1.3 Technical challenge

An agent in an automated negotiation strives to get the outcome that re-

wards it with the highest possible utility. However, since all agents must

agree on the outcome, agents (usually) cannot simply get the result they

most desire. Rather, they attempt to find an outcome that can satisfy all

participants. Throughout the negotiation, agents (ideally) concede some of

their utility in hopes of appealing to the utility of the other agent. A bid

that cannot be further improved in utility for either agent without the other

agent losing utility is called Pareto efficient. Multiple bids in the outcome

space can be Pareto efficient, and together define the Pareto frontier. From

an outside view of the negotiation with full knowledge of all utility func-

tions, these concessions may look as in figure 1.1.

7

Introduction

Figure 1.1: Outcome space as shown in the genius environment after a negoti-
ation. Both axes show the utility of 1 agent. The blue and green lines show the
bids made by the agents. In purple, the Pareto frontier.

As can be seen here, both agents may start at their best option (maximum

utility) and then slowly explore other options while conceding small parts

of their utility until an agreement is reached. However, an agent does not

have this complete view, as they are only given their own utility function.

Based on the opponent’s bids, they may estimate their opponent’s utility

function using an opponent model. An opponent model is an approxima-

tion of the opponent’s utility function. However, this opponent model is

not guaranteed to provide an accurate estimation of the opponent’s utility

function. When taking into account the utilities belonging to a single agent

within the negotiation, the negotiation can be modeled from the perspective

of that agent only. This is done by modeling the utility received from their

own concessions and the utility received from their opponents’ bids over

time. An example can be seen in figure 1.2.

In this example, the agent has a clear downward concession curve, while the

opponent is seemingly trying a wider palette of offers, increasing both the

minimum and maximum received utility for the offers and in turn widening

the scope of the function. In essence, the task of predicting the negotiation

outcome is about finding the point where the utility received from the oppo-

nent and the agent’s own concession strategy intersect. In many cases, the

agent tries to adjust their concessions based on their opponent by means of

8

1.1 Predicting the outcome

Figure 1.2: Utility curves of a single agent during a negotiation. In orange, the
agent’s own bids, in blue the opponent’s bids.

an opponent model. If done effectively, this would cause the received utility

from the opponent to trend upwards, such as in figure 1.3.

When the different factors of an automated negotiation are unpacked like

this, what is left are utility graphs of the agents’ bids over time. These are

time series. As such, these series may be possible to predict by applying

time series forecasting (TSF). A great deal of statistical research has already

been dedicated to the forecasting of various types of time series [15]. We

will build upon this knowledge and apply these techniques to the field of

automated negotiations. If we can find the intersection of these forecasts,

this will serve as a prediction of the final outcome of the negotiation. Taking

into account the perspective of a single agent, this comes down to:

1. Using the utility concession of our own agent as a single time series,

forecast the future trajectory of this series.

2. Using the utility received from the bids made by the opponent as the

other time series, forecast the future trajectory of this series as well.

3. Predict the outcome by finding the intersection between both time se-

ries with an intersection method. This outcome consists of a utility

prediction and an agreement probability prediction.

9

Introduction

Figure 1.3: Utility curves of a single agent during a negotiation. In orange,
the agent’s own bids, in blue the opponent’s bids. The opponent’s bids trend
upward, indicating a working opponent model from the other agent.

1.2 Existing Approaches

Predicting future bids in an automated negotiation has been attempted be-

fore. Thus far, similar research has primarily focused on predicting the op-

ponent’s next bid, usually with the aim of increasing performance for the

agent. Williams et al. do this using Gaussian processes [11]. Chen et al. com-

bined Gaussian processes with transfer learning to predict bids [12]. Yesevi

et al. employ an LSTM and transformer network to predict future bids from

the opponent [16]. Another direction is taken by researchers who attempt to

predict the opponent’s strategy. Hou uses nonlinear regression analysis to

predict the behavior of negotiation agents based on the Boulware-Conceder

model[17] as introduced by Faratin et al. [4]. Similarly, Sengupta et al. use

strategy templates with learnable parameters to estimate opponent tactics

[18]. On top of this, they also use deep reinforcement learning to estimate

the opponent’s threshold utility. Li et al. opt for using a deep learning-

based approach to predict the opponent’s strategy by feeding time series

data into an RNN [19]. Although not predicting the outcome itself, Ilany

and Gal predict the performance of negotiation algorithms for different do-

10

1.2 Existing Approaches

mains so that the best strategy can be chosen [20]. Evidently, there have

already been many different types of research regarding the prediction of

(opponent) agent behavior. However, this research has not yet focused on

predicting the outcome of the negotiation itself, most of it rather opting for

short-term predictions. Therefore, tackling this issue is a novel endeavor

within the field of automated negotiations and is a worthwhile addition to

the body of research. These approaches will be discussed in more detail in

chapter 2.

11

Introduction

1.3 Research Question

The research question at the core of this thesis is:

Research Question

How can we best predict the outcome of an automated negotiation?

We address this problem by developing a framework for the prediction of

automated negotiations. This framework consists of two smaller steps that

together form a solution to our problem. The first step here is to forecast the

agent’s utility graphs. Each agent has their own utility graph that contains

the utility of their bids thus far. This information can be used to forecast

the future bids both agents will make by using time series forecasting tech-

niques. Generating these forecasts is the first component of our framework.

As such, the first sub-question is the following:

Research Question 1.1

How can we best predict the utility time series of the agents partici-

pating in a negotiation?

When these individual utility graphs can be confidently predicted, the next

step in our framework is to use the forecasts to estimate where the graphs

will intersect. Presumably, the intersection of the graphs gives us the fi-

nal outcome of the negotiation, since both agents agree that this utility is

deemed an acceptable outcome. When given a probability distribution with

the prediction of the utility graphs, multiple plausible outcomes of the ne-

gotiation can be predicted. In this case, the negotiation outcome predictions

can also be given a confidence measure to indicate how likely this outcome

is, as well as an agreement probability score. This makes the second sub-

question:

Research Question 1.2

How can we best predict the outcome of an automated negotiation

based on time series forecasts of utility graphs?

12

1.4 Thesis Outline

This thesis will investigate to what extent such a framework can be used

for the prediction of automated negotiation outcomes. This will be done

by applying multiple state-of-the-art forecasting methods to the framework

and evaluating their performance in outcome prediction.

1.4 Thesis Outline

Chapter 2 gives an overview of the relevant literature and places the cur-

rent research in the context of the wider field of (automated) negotiation. It

also introduces and explains key concepts used within the Thesis. Chapter 3

goes into detail about our proposed solution and gives a technical overview

of the solutions. Chapter 4 discusses the main experiments carried out in the

thesis, as well as some preliminary experiments. Chapter 5 discusses the re-

sults of these experiments in depth. Chapter 6 places the results in a larger

scope and discusses the limitations of the research. Chapter 7 gives our

final thoughts on the research, as well as suggestions for future research di-

rections that may prove worthwhile for automated negotiation prediction.

13

2. Literature Review

This chapter introduces the literature from which this project draws inspira-

tion. It also gives an overview of research on related topics. The relevant lit-

erature for the project includes other research into making negotiation pre-

dictions. This includes predictions of various aspects of negotiations, but

especially research on bid prediction for automated negotiations is relevant.

This is because it faces similar challenges and uses similar solutions. The

technical literature important for our methodology will also be introduced.

2.1 Predicting Classical Negotiations

Attempting to predict the outcome of a negotiation before it is terminated is

not a novel endeavor in itself. Negotiations are a game of strategy where in-

formation is key, so naturally any additional source of information is highly

valued. Knowing the potential outcome of a negotiation gives a tactical

advantage to the party using it, and thus has been thoroughly studied for

the classical "human" case. Van Poucke et al. point out several ’reference

points’, factors that influence the final outcome of a negotiation [21]. The

research makes a distinction between two types of reference points. Refer-

ence points that are outside the control of the negotiators, such as market

value, are called external reference points. Internal reference points, on the

other hand, are those set by the negotiators themselves. They include the

reservation & aspiration prices and the opening offer. The reservation price

is the lowest offer that a negotiator is willing to accept. Here, the negotiator

is indifferent about the offer, as it neither improves nor decreases its utility.

The aspiration price is the highest outcome for which a negotiator aims that

has a non-negligible probability of being accepted by the other negotiator.

Thus, it is the best outcome that can reasonably be expected. Van Poucke

finds that, in human negotiations, opening offers account for 57% of the

14

2.1 Predicting Classical Negotiations

variance in the outcome of negotiations. Since this research deals with au-

tomated negotiations in a simulated environment, external reference points

are ignored since everything takes place within the confines of a simulation

program. Therefore, the negotiating agents have full control over the out-

come. However, simulations do contain parallels for the internal reference

points. Many negotiating agents set a reservation value themselves in the

form of a utility that they will not go under. The opening offer is prede-

fined by the domain used in automated negotiations, as agents often start

with whichever bid gives them the highest utility. Despite these parallels, it

is questionable at best whether the same theory about negotiation outcome

prediction can be applied to automated negotiations. Classical negotiations

rely heavily on human psychological processes for their outcome [22], [23],

while fully automated negotiations strip the human aspects of a negotiation.

An automated agent will not be as influenced by the psychological effects

of anchoring or perspective taking as humans often are [24], [25].

Moosmayer et al. tried their hand at using a neural network to predict

classical negotiation outcomes and study the relationship between reference

points and outcomes of business-to-business price negotiations [26]. They

found that neural networks provide a better tool for these predictions than

linear regression models, as neural networks were able to capture the non-

linear relations between reference points and the outcome of a negotiation.

This shows that there is potential for machine learning-based methods in

negotiation prediction, largely because of their ability to find patterns and

nonlinear relations in large data sets. Although again hard to compare to

our case, it is plausible a similar approach can extract reference points or

other values from an automated negotiation to predict the outcome.

Connecting the realms of automated and classical negotiations, there is a

growing body of research on automated agents that negotiate with humans

in natural language. For example, to study the effects of COVID-19-related

stress in negotiations [27]. In an attempt to improve such natural language

bots, Chawla et al. analyzed the language used in bilateral buyer-seller ne-

gotiations and used this data to train a prediction model (BERT), which at-

tempts to predict the outcome of these classical negotiations [28]. Future

15

Literature Review

negotiation systems may be able to combine the research of Chawla et al.

and this thesis to make accurate predictions for agent-assisted classical ne-

gotiations.

In general, classical and automated negotiations are difficult to compare,

and thus the methods that work for the prediction of classical negotiations

cannot be applied to automated negotiations as such. However, they can

inspire prediction methods for automated negotiations.

2.2 Predicting Automated Negotiations

As is the case for classical negotiations, automated agents also benefit from

a surplus of information. Because data can be extracted from automated

negotiations relatively easily, there are various studies which use this infor-

mation to make predictions about automated negotiations. A smaller step in

predicting a complete negotiation is predicting the opponent’s offers. Since

being able to predict the coming offers of an opponent can prove a worth-

while tactical advantage in a negotiation, multiple methods have been de-

veloped for offer prediction. The methods used here may be useful in our

research as well, as a successful offer prediction can be a stepping stone to

predicting the negotiation outcome.

One of the older attempts at predicting bids was done by Carbonneau et

al., who used pairwise issue modeling to predict the counteroffers made

by opponents. This was done by training a network to use negotiations

similar to the current to predict the next negotiation offer [29]. Williams et

al. used a Gaussian process to estimate the concession rate of an opponent

[11]. This was done by recording the best utility, according to the agent’s

own utility function, offered by the opposing agent within a set window

of time (e.g., the best offer between t=0 to t=5, t=5 to t=10 etc.). These best

offers should ideally continue to get better with the opponent’s concession.

Williams argued that only the best offers have to be recorded instead of

every offer, as the best offer indicates the highest utility the opponent is

willing to settle for, and thus is guaranteed to be achievable. This data is

then used to model future concessions with a Gaussian process, which gives

16

2.2 Predicting Automated Negotiations

both a prediction and a measure of confidence in this prediction. Williams

does this for a discounted negotiation setting, as the concession rate is of

higher importance here than in a regular negotiation. An agent integrating

this method into their opponent model managed to achieve a good score

in a tournament against other agents. Although not exactly applicable to

predicting a negotiation outcome, Williams’ intuition to only consider the

best offers made by the opponent and to integrate a confidence interval in

their analysis proved useful for their case. Chen et al. also apply Gaussian

processes, but use them in combination with transfer learning to improve

agent learning behavior [12].

Another method for predicting opponent bids is explored by Yesevi et al.,

who employ two deep learning-based approaches [16]. Namely, a long

short-term memory (LSTM) network and a Transformer network. They

use a sequence of utilities to feed into these networks using a sliding win-

dow approach, where the size of the window determines the number of

past bids included in the input. For each method, a secondary network is

trained which considers an opponent model in its input as well. This is

done to investigate whether its utility predictions improve when auxiliary

information is taken into account. Another network, with inputs similar to

the latter, is trained for the purpose of predicting what utility the opponent

gets from their own bids. The networks are trained separately for different-

sized domains (small, medium, and large), plus one network trained on all

sizes with 600 different negotiations. An evaluation was done on the cor-

responding domain sizes for 60 negotiations. Notably, the general network

performed better than the domain-specific networks, achieving an RMSE

of 0.08. Moreover, using additional inputs slightly improved performance,

indicating that an opponent model can be beneficial for such predictive net-

works. There was no significant difference between the performance of the

transformer and the LSTM network. These methods give a good indication

of the possibilities in feeding machine learning algorithms the traces of bids

made to predict future bids. An important distinction, however, is that these

methods only aim to predict one bid ahead, whereas this research aims to

predict the complete negotiation.

17

Literature Review

It is not just bids that can be predicted. Many researchers attempt to predict

the opponents’ strategy and adapt accordingly. One of the first attempts

to recognize strategies in automated negotiations was made by Hou [17].

Hou applied a nonlinear regression analysis to discriminate between three

families of negotiation tactics (also see 2.2.1), and predict the tactic used

by the agent. For the time-based tactic, for example, the model differenti-

ates between conceder, boulware, and linear models. This work is similar

to that of Brzostowski et al., who also use a nonlinear regression analysis

to predict the behavior of opposing agents [30]. They, however, use four

models from which to choose when predicting the opponent’s strategy. As

early examples of such behavior prediction, these articles already show an

improvement in performance for agents using a regression analysis.

In a more recent paper, Li et al. use a recurrent neural network trained

on negotiation time series [19] to predict strategies, quite similar to the ap-

proach of Yesevi et al. They compiled a large data set of negotiation time

series by having their own agent play with a Tit-for-Tat strategy against op-

ponent agents who may play any strategy. The time series belonging to

the opponent is saved together with the strategy applied by the opponent.

These time series-strategy combinations are then used to train a recurrent

neural network with an LSTM cell of 64 extracted features. The network

can be used to recognize the strategy that belongs to a time series from a

total of ten distinct strategies. The choice for a recurrent neural network is

made as they are well suited for handling sequential data. The trained net-

work achieves promising results overall, although still scores low accuracy

for certain strategies. Even more important than the opponent’s strategy

perhaps is the strategy choice of your own agent. To improve strategy selec-

tion, Ilany and Gal devised a meta-agent that predicts the performance of

different negotiation strategies while the negotiation is running [20]. Their

agent uses the multi-armed bandit algorithm to test different negotiation

strategies at runtime and choose the best strategy for different opponents.

The meta-agent was able to pick the best strategy against many of the final-

ists in the ANAC negotiation competition.

In general, a clear trend can be seen for the prediction techniques that make

18

2.2 Predicting Automated Negotiations

Challenge Research
Predicting Classical Negotiation Outcomes Van Poucke et al, Moosmayer

et al,
Predicting Hybrid Negotiation Outcomes Mell et al, Chawla et al.
Predicting Automated Negotiation Offers Carbonneau et al, Williams et

al, Yesevi et al.
Predicting Automated Negotiation Strategies Hou et al, Brzostowski et al,

Li et al.
Predicting Automated Negotiation Outcomes This Research

up the related work. Most of them analyze the time series consisting of the

bids made by the negotiating agent, and use these to train a prediction al-

gorithm. The more recent research often chooses to use a sequential deep

network such as an RNN or LSTM, as these types of networks have booked

recent successes in many domains, especially those dependent on time se-

ries data. Therefore, sequential deep neural networks will also be chosen as

our primary method for predicting negotiation outcomes.

2.2.1 Negotiating Strategies

Faratin et al. defined 2 general tactics in automated negotiations [4]. Time-

based strategies and behavior-based strategies. In a time-based strategy, the

agent will base its next bid on the amount of time remaining for the ne-

gotiation, often opting to explore more options when time runs out. In a

behavior-based strategy, the agent will base its bid on the opponent’s bids.

A well-known example of this is Tit-for-Tat, where the agent will behave

cooperatively against a cooperative opponent and vice versa. Keskin et al.

propose a third class of strategies, namely one that combines both time-

based and behavior-based strategies [31]. Although these three categories

are the highest-level classification of strategy types, more strategy types can

theoretically be defined depending on the criteria used. Some strategy types

are easier to predict than others; thus it is important to consider which types

to include in this research.

19

Literature Review

2.3 Time Series Forecasting

A good candidate for predicting negotiation outcomes is time series fore-

casting. This is because the bids made by the agents can be modeled as a

series of data points ordered in time, as in [11], [16]. These data points can

then be used to train an algorithm to forecast the agents’ future utility graph.

Various methods exist with which to perform TSF. Generally, most methods

can be categorized as either classical statistical models or machine/deep

learning models. In this research, both types of methods will be tested.

2.3.1 Characteristics of Time Series

To properly analyze a time series, its characteristics must be carefully con-

sidered, as these strongly influence the optimal forecasting method. There

are several common traits for a time series that are often considered in quan-

titatively describing a time series. Some of these terms can be somewhat

counterintuitive, so it is good to get comfortable with these terms.

First, trend. Arguably the most straightforward property, trend describes

the directionality of the time series. Usually, a trend in the data can be no-

ticed with simple visual inspection but is also detectable by analyzing the

long-term behavior of the data. If the mean shows a clear change over a long

period, this implies a trend in the data that may be upward or downward.

Trend can be linear, but it does not have to.

Second, seasonality. A time series is seasonal if it shows a regular change

in behavior with a set frequency. For example, something happens every

year, week, or 10 minutes that affects the value of the time series. Important

here is that this frequency is constant. If not, the time series may instead be

cyclic. A cyclic time series is one that shows regular changes in an oscillat-

ing pattern that is not related to any frequency.

Third, stationarity. A stationary time series is one whose statistical prop-

erties, usually its mean and variance, do not depend on the time at which

the series is observed [32] and thus do not have any trend or seasonality.

Note that a cyclic time series can in fact be stationary, as the cycles appear

20

2.3 Time Series Forecasting

at (seemingly) random moments, and thus before we observe the cycles we

cannot be sure when they will appear. For a number of applications in time

series analysis, a time series must be made stationary to be analyzed. This

can be done by differencing the time series. A time series can be differenced

by computing the differences between consecutive observations. These dif-

ferences form the new time series. It is possible that this newly created time

series is still not stationary. In this case, the time series is differenced until it

is no longer stationary. To test whether a time series is stationary and how

often it must be differenced to be made stationary, a Unit Root Test can be

used, as well as analyzing an Autocorrelation (ACF) plot [32], [33].

2.3.1.1 Predictability of Time Series

To be able to apply any time series forecasting method to a time series, the

time series must be predictable. Whether a time series can be predicted de-

pends on some key characteristics and is not always clear from a simple

visual inspection, nor is it a binary condition. Rather, the predictability of

a time series exists on a continuous spectrum. Due to the diversity in both

types of time series and methods to predict them, the latter still increas-

ing with the development of neural models, most attempts to quantify pre-

dictability have been highly specific to certain fields. Take, for example, the

macroeconomic approach of Diebold et al. [34] or the ecological approach

of Pennekamp et al. [35]. Xu et al. recognize the difficulty in accurately

gauging the predictability of (highly random) time series and pose an open

challenge for future studies to tackle this question [36]. While the question

of time series predictability (for automated negotiations or otherwise) will

not be solved within the pages of this thesis, it is good to have some indica-

tion of what does or does not constitute a ’predictable’ time series.

A basic yet robust test of the predictability of a time series is whether it can

be described with a ’random walk’ model [37]. Most famously used as an

argument against trying to predict the stock market [38], a random walk

model describes a time series that can move in multiple directions (in our

case up and down) with some probability p. This probability is often mod-

eled as a series of white noise w(t). Unlike a simple series of random num-

21

Literature Review

Figure 2.1: Autocorrelation plot of a random walk time series with 1000 steps.
Image adapted from [39]

bers, a random walk depends on its previous value y(t− 1)to determine the

next. Thus, a random walk can be described by: y(t) = y(t − 1) ∗ w(t).

This randomness makes such a time series difficult to predict as the next

value the series will take cannot be inferred from any of the available data.

As such, it is important to verify that our series are not random walks. Al-

though easy to describe, determining whether a time series is a random

walk can be quite challenging. Several tests can be run to determine whether

a time series can be classified as such. The primary test is that of autocorre-

lation. An autocorrelation plot describes the correlation between an obser-

vation at a time step and the previous observations at earlier time steps. It

describes how well an observation can be inferred on the basis of other ob-

servations. Since the value of an observation in a random walk is dependent

on its previous value, an autocorrelation plot will show a high autocorrela-

tion with time step t − 1 and show a linear fall from that point on. A typical

autocorrelation plot for a random walk may look like figure 2.1.

Additionally, all random walk processes are non-stationary. This is, once

again, because the current observation is a random step from the previous

observation. A non-stationary time series does not have a consistent mean

over time, which also serves as an indication of a random time series.

22

2.3 Time Series Forecasting

Figure 2.2: Example of a white noise autocorrelation plot. Notice how all auto-
correlation are underneath the significance line at +- 0.2.

However, that is not the only thing an autocorrelation plot can detect. An-

other important property to look out for when assessing the predictability

of a time series is whether it shows characteristics of white noise. A white

noise time series draws every step from a random distribution. It has no

correlation between time steps at all, and thus the autocorrelation plot will

show no strong correlation for any range. As such, an autocorrelation plot

for this type of time series will show that most autocorrelations are close to

zero [32]. See image 2.2 for an example of a white noise autocorrelation plot.

A time series showing random walk or white noise characteristics is not un-

predictable per definition. However, it is difficult to do this with classical

autoregressive methods, as these methods only consider other observations

within the same plot. However, there may be other indicators outside of the

plot itself that can assist in predicting future values of the series. A common

method to test this is Granger causality. A signal "Granger-causes" a differ-

ent signal if past values of one can inform future values of the other [40].

Granger causality is, however, still highly dependent on the time dimen-

sion (only observations earlier can predict observations later), and lacks in

its ability to find nonlinear relations. Makridakis et al. showed in their M-

competition paper that deep learning models scored best for noisy, nonlin-

ear, and trended data [41]. So, for data that seems to have low predictability,

23

Literature Review

deep learning may provide a solution.

2.4 Deep Learning

Deep learning is a subsection of machine learning techniques that has gained

much popularity in many different fields over the last decades. From the re-

cent boom in generative AI [42], [43], to image and speech recognition [44]

or even genomics [45], deep learning appears to be embedded in most tech-

nology in some way or another. There are many types of deep learning

models and architectures, but they all share the same basic building blocks.

The most basic deep neural network is the (feedforward) multi-layer per-

ceptron (MLP) [46]. An MLP consists of many small units called neurons. A

neuron receives input, makes some calculation (usually a summation) with

the input, and passes the result of this calculation through some activation

function to generate an output.

Figure 2.3: Schematic view of a Neuron. Image adapted from [47].

In a DNN, these neurons are connected in layers to perform complex calcu-

lations. The structure of a typical MLP has a series of input neurons through

which the data is fed first. These input neurons connect to neurons in sev-

eral (usually fully connected) hidden layers after which they reach the out-

put layer. This output layer makes the final prediction based on the data that

is fed into the network and computed by the individual neurons. A large

neural network may have up to millions of neurons in the network. The

connections between neurons all have an associated weight. This weight is

a multiplication factor that decides how strongly one neuron that is fed into

another influences this neuron. Next to the weights are the biases, an addi-

24

2.4 Deep Learning

tive factor that is added to the neuron’s calculation. The weights and biases

are the part of the network that is updated when the network is "learning".

It is learning the optimal values for the weights and biases to generate a

correct output.

Figure 2.4: Schematic view of a Multi Layer Perceptron. Image adapted from
[48]

The activation function was already briefly mentioned. It is a mathematical

function that transforms the output of a neuron. There are many different

ways to do this, the most important feature is that it introduces a nonlin-

earity in the network, as the simple summation function with weights and

biases is still only a linear function. Due to this, the network can generate

nonlinear outputs, which are required for most classification tasks.

A supervised DNN trains by comparing the output to the true label by

means of a loss function. This loss function represents the error between

the generated and true outputs. It is this error value which must be mini-

mized by the learning process. There are many loss functions, and the one

used is mostly dependent on the type of output generated by the network.

The error value is minimized, and, in turn, the weights and biases are up-

dated by a process called backpropagation. This process will be explained

further in section 3.2.4.

2.4.1 Deep Learning for TSF

Time series forecasting is no exception to deep learning’s newfound glory.

The most recent M-competition, a competition set up by Makridakis et al.

25

Literature Review

that demonstrates the latest advances in TSF, saw that on average deep

learning models outperform statistical models [41]. These results still are

highly dependent on the content of the data. However, in general, the ad-

vancement of deep learning models is undeniable. Although classical statis-

tical methods are driven by domain expertise, modern deep learning meth-

ods can find patterns in time series and predict them based on a purely

data-driven method [49]. Because of this, deep learning methods are less

dependent on the precise structure of data, being able to adapt to various

data structures and characterize this data. This, combined with the abun-

dant availability of libraries and software packages for deep learning and

the steadily increasing amount of data available in nearly all domains [50],

[51] makes deep learning a viable contender for many data prediction en-

deavors. This also applies to our research. A desirable quality of deep learn-

ing is its ability to learn from previous prediction results and apply this to

future predictions, whereas statistical methods can only take into account

the time series they are currently predicting. Classical TSF methods rely

on the careful tuning of a model, taking into account statistical parameters

like trend and seasonality to design the perfect model for the time series at

hand. This is not only labor-intensive, but must be done for each individ-

ual time series. When there is one long time series that must be predicted,

such as the sales of a certain product over many years, this is not a problem.

However, one may imagine many cases in which it is desirable to predict

many related time series, rather than one big one. This is also the case for

this project, where a large amount of relatively small but related time series

must be predicted. These time series can behave quite erratic, seemingly

lacking a clear pattern or trend within the data at first grasp. This is why

learning is an important feature, as it is only with the experience of many

negotiations that the behavior of the agents and the shape of utility graphs

can be understood better. Ideally, a deep learning predictor should start

to understand these patterns throughout different negotiations and apply

its gained knowledge to predict novel ones. However, these data-driven

methods are also not without drawbacks. The complexity of deep learning

networks makes them more involved in setup and training, and flaws in the

26

2.4 Deep Learning

network are considerably harder to detect and solve.

2.4.2 Long Short-Term Memory

In domains dealing with temporal data, recurrent neural networks (RNNs)

have become the de facto deep learning tool for prediction problems [52].

RNNs set themselves apart from regular deep learning networks by their

cyclic architecture. Where a classical neural network feeds information for-

ward through its layers, an RNN introduces lateral and backward connec-

tions between neurons. Because of these connections, the flow of informa-

tion within an RNN is multidirectional. This makes a trained RNN espe-

cially well-suited for sequential data, such as time series. The field of natu-

ral language processing has also seen improvements after the adaptation of

RNNs, particularly the improved-upon version of an RNN, the long short-

term memory or LSTM network [53], [54].

LSTMs are an improvement on RNNs, as they solve the vanishing gradients

problem. When training a neural network using backpropagation, the gra-

dients that are used to calculate the derivative and update the weights of the

networks can become vanishingly small. Therefore, the network cannot be

trained anymore. LSTMs solve this by introducing memory gates in their

architecture. For brevity’s sake, we will not go over their functionality in

detail. Importantly, the last decade has proved fruitful for LSTM research,

achieving results in various domains [55]. Their gated architecture makes

them able to capture far more nuanced properties of the data on which it is

trained. However, they are not wholly without problems. Like most deep

learning methods, LSTMs take up a lot more memory than simple statisti-

cal methods. This is especially true here, as LSTMs have a more involved

architecture, with more parameters to train. This in turn causes the training

process to also use more computational power and makes the model more

difficult to interpret than a simpler RNN. On top of this, the large number of

parameters also makes the network prone to overfitting, making it perform

very well on the training set but poorly on any data outside the training

set. Moreover, LSTMs, while solving the vanishing gradient problem, can

27

Literature Review

still suffer from the complementary ’exploding gradient’ problem, where

the values for the gradients get too large. This results in the model being

unable to improve its parameters and learn.

2.4.3 GluonTS

GluonTS is an open source library for deep learning-based time series mod-

eling developed by Amazon Web Services [56]. GluonTS itself is not a deep

learning model, but rather a tool for using other deep learning models and

developing your own. It comes with a large library of pre-made models

based on architectures from various deep-learning papers, including RNN,

LSTM and Multi-Layer Perceptron (MLP) models. These models can be

trained on custom data sets to adjust the associated weights. Because the

tool is made specifically for TSF, it greatly simplifies the creation and test-

ing of models. Its models are specifically made for probabilistic forecasting,

meaning that they will give a distribution as output for its prediction, rather

than just a single point in time. The different distributions available include

common parametric distributions, such as Student’s T, Gaussian, gamma,

and negative binomial. To learn a distribution, the model needs to learn the

associated parameters of the distribution. For example, if a Gaussian dis-

tribution is generated, the mean and variance of this distribution must be

learned. To achieve this, every distribution comes with a special class that

maps the output of the model to the parameters of the distribution, compa-

rable to introducing an extra layer on top of the network. The distribution

parameters are then optimized along with the rest of the model, and thus it

learns the distribution parameters for each time step in the series.

2.4.4 DeepAR

Of the many models with which GluonTS comes, DeepAR is the best candi-

date for the problem at hand [57]. DeepAR is a recurrent neural network

with some LSTM functionalities that builds on previous work in proba-

bilistic forecasting, and was found to be the best performing deep learning

model in the M-competition [41]. It is most applicable for large data sets of

28

2.5 Monte Carlo Methods

related time series. For such cases, it learns by training on these related time

series jointly and as such generalizes to be able to predict similar time series

accurately. Salinas et al. describe four advantages that separate DeepAR

from other (deep learning) forecasting methods:

1. The model learns dependencies and seasonal behavior for data with

multiple variables, such that no manual interference is necessary to

capture group behavior.

2. The forecasts are made in the form of large sets of Monte Carlo sam-

ples. These samples are in turn used to compute quantiles and proba-

bilities.

3. As DeepAR is trained on big data sets of time series, it can make

proper forecasts for time series that have little own data available,

whereas single-item forecasts would fail at such a task.

4. The model can incorporate a wide array of likelihood functions, al-

lowing the user to choose whichever is most fitting for the data.

As this project does not deal with multivariate data, the first advantage does

not apply here. The second point is advantageous for the project since the

Monte Carlo samples can be used to determine potential intersection points

of the graph, also see section 2.5. The third point is what sets this method

apart from classical forecasting methods, as early in a negotiation there is

little data to base a prediction on. A method that is still capable of making

accurate predictions despite this limitation is desirable. Lastly, the fourth

point allows us to experiment with the optimal likelihood function to best fit

the negotiation data. On top of these four advantages, DeepAR also shows

that it performs better than other deep learning forecasting methods, has an

open source repository available for inspection, and enjoys regular updates

from its developers.

2.5 Monte Carlo Methods

Monte Carlo methods (MCM) are a broad class of computational algorithms

that use repeated random sampling to obtain numerical results, often used

29

Literature Review

when there is no clear analytical method available. MCM are commonly

used in collision prediction, where trajectories of particles or vehicles are

simulated to find the probability of collision with their environment [58],

[59]. In the problem at hand, this would entail sampling from the forecast

distributions a large number of times, and finding the intersection points

between the samples belonging to the two agents. MCM are a good option

for simulating the negotiation when statistical methods cannot suffice. They

have already seen great success, especially now that computational power

is increasing across the board [60]. MCM does, however, have the obvious

disadvantage of being potentially computationally heavy, as running many

simulations takes a lot of computing power. Thus, MCM can only be as

effective as computational resources and efficient programming allow.

30

3. Predicting the Negotiation Outcome

In this section, the challenge of predicting automated negotiations and our

solution will be further expanded upon. In particular, the workings of the

full prediction algorithm are highlighted, showing the entire process from

predicting time series to generating a utility prediction.

From input to output, generating a time series prediction consists of several

steps. First, the negotiation bids are converted to time series. Then, the fu-

ture trajectory of these time series will be predicted using a TSF method. For

both time series, it generates a utility prediction for all remaining time steps

in the form of a probability distribution. Monte Carlo methods are then

used to generate samples from these distributions. An intersection method

is applied over the resulting Monte Carlo samples, which finds both a prob-

ability distribution for the final negotiation outcome and a binary proba-

bility describing the chance that the negotiation ends in an agreement or a

breakoff. See figure 3.1 for an overview of this process.

Figure 3.1: Schematic overview of how the outcome of a negotiation is pre-
dicted via our framework.

31

Predicting the Negotiation Outcome

3.1 Negotiation Outcomes

We will now take a closer look at how automated negotiations are formally

described and in which way they are used in this research. Recall that an

outcome in an automated negotiation is a complete assignment of values

to all issues within a domain. The set of all possible outcomes within a

domain is called the outcome space, from hereon denoted with Ω, where

o ∈ Ω is an outcome of the negotiation. Say we are organizing a wedding,

for which the issues are the location, music and food. A possible outcome

of this negotiation, which assigns a value to each issue, could be a church,

band and cake, such that o = (church, band, cake). Although describing the

outcome in this form is insightful for the material result of the negotiation, it

does not tell us how much the agents prefer this selection of values. To gain

this insight, the outcome must be converted to a utility score via the agents’

utility functions, which makes a valuation for all values selected in a bid. In

our case, this is an additive utility function, which makes the calculation as

such:

U(o) =
n

∑
i=1

wi · Vi(oi)

With wi the weight of the selected issue and Vi(oi) the valuation of the offer

selected for the issue. In this research, utility scores are always between 0

and 1. Say, we plug in the wedding example (o = (church, band, cake)) once

more for two utility functions U1 and U2. As these utility functions have

different valuations and weights to model their distinct preferences, they

will compute different utility values for the same offer. In this case, U1 is

moderately enthusiastic about o, while U2 is happy with o. This can lead to

U1(o) = 0.4 and U2(o) = 0.7, where the outcomes represent how content

both agents are with this outcome. In essence, the utility functions provide

the perspective of the different participating agents in the negotiation.

This numerical perspective is essential when predicting negotiation out-

comes, as it provides a clear, quantitative measure from which future values

32

3.1 Negotiation Outcomes

can be induced. We can look at a complete negotiation as a vector of bids,

made by two agents in an alternating offers protocol, as such:

o = (o1
1, o2

1, o1
2, o2

2 . . . o1
r , o2

r)

Where oa
r is a bid, r is the round in which the bid is made, and a is the agent

who made the bid. This vector can be split into two vectors based on which

agent made the bid, so that:

o1 = (o1
1, o1

2, o1
3 . . . o1

r) and o2 = (o2
1, o2

2, o2
3 . . . o2

r)

These two outcome vectors can then be converted to four utility vectors by

using both agents’ utility functions as such:

u1
1 = (U1(o1

1), U1(o1
2), U1(o1

3) . . . U1(o1
r))

u2
1 = (U1(o2

1), U1(o2
2), U1(o2

3) . . . U1(o2
r))

u1
2 = (U2(o1

1), U2(o1
2), U2(o1

3) . . . U2(o1
r))

u2
2 = (U2(o2

1), U2(o2
2), U2(o2

3) . . . U2(o2
r))

This gives us four vectors of utilities in the form ua
f , where f refers to the

agent whose utility function is used, while a indicates which agents’ vector

of bids is used as input.

A negotiation can end in two different outcomes, an agreement or a breakoff.

Looking at a complete negotiation o, an agreement has been reached when

both agents make the same offer consecutively. This can happen within

the same round or the next. More formally, an agreement is reached when

o1
r1
= o2

r2
and |r1 − r2| < 2. If this is not the case, the negotiation either ended

33

Predicting the Negotiation Outcome

in a breakoff or has not finished yet. If the number of bids is equal to twice

the round limit, this indicates that the negotiation has ended in a breakoff.

This is because that means that both agents have made all their available

bids. In general, we will only look at completed negotiations in this thesis,

so ongoing negotiations will not be evaluated. Of course, the final algorithm

will be able to predict ongoing negotiations. However, to develop and test

the application, we will need negotiations for which the outcomes can be

compared to our predictions.

In addition, we make predictions from the perspective of one agent. This

aligns with how an agent in a negotiation perceives the negotiation and

composes strategies for it. Moreover, the singular perspective makes the

final application ideal for integrating into real negotiations done by auto-

mated agents, providing the most realistic perspective. Because of this, only

one utility function will be used in the training, prediction, and analysis of

negotiations. We will call this perspective, and the associated utilities "our"

agent, since we assume this agent as our own perspective, while the other

perspective and utility vector is referred to by the "opponent". This leaves

us with two utility vectors from our own perspective, u1
1 and u2

1.

The first facet of our solution to negotiation outcome prediction is based on

techniques from the domain of time series forecasting, which is concerned

with the forecasting of time series. As such, TSF methods require time series

as their input, which they then attempt to extend as accurately as possible.

This raises the question of how these utility vectors are converted to time

series. In our case, the chosen negotiation settings make this quite trivial,

since the negotiation has a set number of rounds until the deadline. For this

reason, every utility, corresponding to one round, can be interpreted as one

value per "time unit". Additionally, the remaining rounds correspond to the

amount of time units left. Therefore, the utility vector can be used in TSF

unchanged, as time is an implicit part of its structure. Of course, there are

scenarios imaginable for which this does not hold, and one round does not

always perfectly correspond to the same amount of time. In these scenarios,

additional steps must be taken to adapt the utility vector to a time series. In

this thesis however, we will not consider such time series.

34

3.2 TSF Solution: Neural Networks

Figure 3.2: The process of extracting utility time series from bids.

3.2 TSF Solution: Neural Networks

3.2.1 Problem Formalization

Now that we have formalized the time series, we can make our first problem

more exact. Since only one agent’s utility function is used, we will now use

ua
r to refer to Ua(oa

r). The time series over a specific interval is indicated with

ua
s:r, where s is the start of the interval and r the end.

The problem can then be framed as follows:

Given a time series observed at time t with a maximum length of r, find a

function f to estimate a distributional forecast θ̂ for every time step in the

interval [t : r]. Since this is done for both agents’ time series, we will use an

identifier a to indicate which time series is forecast. This gives:

f (ua
1:t) = (θ̂a

t+1, . . . , θ̂a
r) = θ̂a

35

Predicting the Negotiation Outcome

For which f : S∗ −→ S∗∗

Where S* is a set of values for which each value s ∈ I, where I is the unit

interval [0, 1]. S** is a secondary set where each value is a distribution θ.

Every distribution θ consists of n values where for each value p ∈ I. n is a

hyperparameter of the neural network that decides how many simulations

are run to calculate the distribution θ̂.

Recall the first Research Question:

Research Question 1.1

How can we best predict the utility time series of the agents partici-

pating in a negotiation?

We propose to tackle this problem by using a neural network optimized for

TSF. Automated negotiation time series are difficult to predict with classical

statistical methods that only consider the time series they are currently pre-

dicting. This is because automated negotiation time series have a relatively

low order of predictability (also see 4.3.2). Therefore, linear autoregressive

models (such as ARIMA) will have a difficult time making accurate fore-

casts. While computationally heavier and vastly more work to set up, we

believe using a neural network will pay off by its ability to detect nonlinear

relations across time series.

We will show that this is best done by using a recurrent neural network to

extend the two vectors of bids belonging to the agents participating in the

negotiation. The RNN generates probability distributions that are evaluated

using the negative log likelihood.

3.2.2 The network

Again, we want to find a method that generates a series of distributions

based on past inputs. Recall the general form equation: f (u1:t) = θ̂

Our solution must have the ability to learn from previously seen negotia-

tions and use the inherent temporal structure of time series to find patterns

in its input, which it can then use to generate the output. In section 2.4 we

36

3.2 TSF Solution: Neural Networks

already discussed the advantages of RNNs over regular neural networks.

RNNs have been designed for the analysis of temporal data, and as such

they were found to be the most effective network for predicting time series.

To illustrate how an RNN is formed, we will build one up from a basic TSF

prediction algorithm.

Let us start with a simple TSF predictor. Lim et al. define time series fore-

casting in its simplest (one-step ahead) case as follows [49]:

ŷt+1 = f (yt−n:t)

Where ŷt+1 is the forecast generated for the next time step, yt−n:t the previ-

ous n observations of the value to be predicted (in our case, bids). Since we

are using utilities as input for the model, from now on u is used instead of

the common y notation. Moreover, our model predicts up to the round limit

r, rather than predicting one step into the future, and takes into account the

full bid history, rather than any n number of past bids. So, the appropriate

definition becomes:

ût+1:r = f (u1:t)

This function provides a high level of mathematical abstraction and as such

defines what we need from the network we are constructing. To make the

step towards an actual neural network, we must zoom in on the contents

of the function f . Recall from section 2.4 that a neural network consists of

many units called neurons. A neuron is a mathematical function that makes

a computation over all its input neurons using its weights, biases, and the

activation function, as such:

37

Predicting the Negotiation Outcome

a

(
b +

n

∑
j=1

xjwj

)

Where a is the activation function, x the input from its n input neurons, and

w and b the weight and biases associated with this specific neuron. The ac-

tivation function introduces a nonlinearity over its input, which is essential

for any neural network to function as this enables it to find nonlinear rela-

tions in the data. The weights scale the input by some factor, whereas the

biases add a value directly to the output. The values for both the weights

and biases are optimized during the training phase. One such neuron makes

a simple calculation, but a collection of many neurons together quickly in-

creases the complexity and aggregates into a neural network. The content

of our function f is such a collection.

The primary way in which RNNs are tailored for temporal data is that their

network structure has lateral connections between neurons, rather than only

feedforward connections. See figure 3.3 for an illustration of the data flow in

an RNN. These lateral connections ensure data is ’saved’ within the network

and thus act as an internal memory state. We will refer to this memory state

at time step t as zt, which can be defined as:

zt = v(zt−1, ut)

Where v is the function to update the internal memory state, zt−1 the pre-

vious memory state and ut the bid made at time step t. zt here represents

the content of all neurons in the network that together decide how the RNN

reacts to input, and is the result of the interpretation of its previous inputs.

This is what distinguishes RNNs from regular neural networks, as it does

not only use its weights and biases to compute output. As such, previous

input, which determines the memory state, also influences the output. The

38

3.2 TSF Solution: Neural Networks

same input can thus result in different outputs, depending on what the net-

work has seen earlier.

Figure 3.3: Schematic overview of the dataflow inside an RNN. While a regu-
lar NN only has bottom-up connections, an RNN also has top-down and lat-
eral connections between its neurons. Image adapted from [61].

Since all parameters in this computation influence the memory state, we

must also consider additional parameters in our definition. We add the ear-

lier defined weights (W), biases (b) and activation function. In our case, the

activation function used is softplus, which is commonly indicated by γ. The

new equation becomes:

zt = γz(Wzzt−1 + Wuut + bz)

Here, Wz are the weights for the hidden units, Wu the weights for the input

and bz the biases belonging to the hidden units.

Lastly, the network does not give a point prediction, but rather a condi-

tional distribution for each step in range [t:r]. This is done by predicting

all parameters that correspond to the distribution θ. In our case, this is a

Student’s t-distribution. As such, it estimates the degrees of freedom v, lo-

cation µ and scale τ parameters. A Student’s t-distribution was chosen for

its relatively heavy tail, which resembles the heavy spread in the bids made

39

Predicting the Negotiation Outcome

by automated agents, as also found in 4.3.2. Therefore, the output will be

indicated by the earlier defined θ̂ = θ̂t+1 . . . θ̂r.

Combining this output with the internal memory update gives:

θ̂ = γz(Wzzt−1 + Wuut + bz)

As the final RNN function.

The architecture of our DeepAR network will consist of 1 input layer, fol-

lowed by 4 fully connected hidden layers that all contain 50 nodes, and

ends with an output layer.

3.2.3 Loss function

To ensure that the network generates a prediction of the probability distri-

bution similar to the actual bids, the weights and biases will be adjusted

in the training phase. This is done by minimizing the loss function. For

DeepAR, the loss function is the negative log-likelihood (NLL). The NLL is

defined as [62]:

−log(L(θ̂, u))

The NLL is a common loss function in deep learning that takes the negative

logarithm of the likelihood function, L. The input of the likelihood function

consists of two vectors. One vector contains the predicted distributions of

the remaining time steps θ̂. The other contains the true utility values of the

remaining time steps, indicated with u. For every time step, the likelihood

function gives us the probability of observing the true value u when the data

is extracted from the probability distribution θ̂.

Since the input for the logarithm is the likelihood of generating a correct

probability, this input is to be maximized. However, since it is common

40

3.2 TSF Solution: Neural Networks

Figure 3.4: Model of backpropagation via gradient descent. Every location on
the plane represents a different combination of optimized parameters for the
neural network. The height of the location shows the loss associated with this
combination of parameter settings. In gradient descent, the location on the
plane that has the lowest loss is sought after. Image adapted from [63].

practice in deep learning to minimize a loss function, the negative log-likelihood

is taken instead, so that a minimized value is desired. The likelihood func-

tion can theoretically output any real-valued positive number. After apply-

ing the two remaining operations, the theoretical output can be any real-

valued number, both positive and negative.

3.2.4 Training

To optimize the weights and biases so that the network can predict time se-

ries, the network must be trained. For this, we make use of supervised train-

ing on a data set of completed negotiations. After a first round of predictions

made with randomly initialized weights and biases, the network updates

these weights with a process called backpropagation. In short, backpropa-

gation calculates the gradient between the loss function and the weights and

biases. Then, the weights and biases are updated so that the value of the loss

function is minimized, e.g. descending down the calculated gradient. See

figure 3.4 for an illustration of the backpropagation process.

This process is repeated many times, each iteration further optimizing the

network’s parameters and minimizing the loss function, until it is no longer

(or only very marginally) improving. This is also why a loss function is

essential in deep learning, as it defines the way in which the weights and

biases are updated, which in turn dictates the network’s behavior.

41

Predicting the Negotiation Outcome

3.3 Intersection Solution: Monte Carlo Methods

The next step in the process is to connect the two generated distribution

forecasts and use them to compute a prediction of the utility outcome of the

negotiation and an estimate of the agreement probability.

3.3.1 Problem Formalization

Earlier in this chapter we defined that a negotiation ends in an agreement

when both agents make the same offer, since this implies an agreement.

However, this definition cannot be used for negotiation prediction with time

series. This is because using the utility function to convert a regular nego-

tiation outcome to a utility score makes it a numerical score. Since the fore-

casting method extends these numerical scores without regard for actual

possible outcomes, the outcomes generated by forecasting are continuous.

This is in contrast to the true possible negotiation outcomes, which are all

in the discrete outcome space. Because of this, the equality of two outcomes

can no longer be properly assessed.

For this reason, we use a different definition of an agreement for this part

of the research, one that can be used when assessing continuous forecasts

made by TSF methods. We will henceforth define an agreement as the mo-

ment the two forecast lines intersect each other. This is because the inter-

section of these forecasts indicates that both agents have conceded toward

each other enough to come to a mutual agreement around this utility score.

More formally, we say that the forecast method found an agreement when

(u1
t <= u2

t | u1
t−1 > u2

t−1), where ua
t ∈ ua

r . We use many of such agree-

ment predictions to estimate the total agreement probability p and the util-

ity probability distribution β̂.

The problem can then be framed as follows: Given two distribution vec-

tors of the remaining rounds θ̂1 and θ̂2, estimate a probability distribution

over the utility range [0 : 1], as well as predict the agreement probability

p. For this instance, the distribution estimation will be indicated with the β̂

42

3.3 Intersection Solution: Monte Carlo Methods

symbol. The goal is to find an estimator function f such that:

f (θ̂1, θ̂2) = (β̂, p)

For which f : S∗∗ × S∗∗ −→ (β, I). Here, S** refers to the earlier defined

set of distributions, β to a continuous distribution, and I to the unit interval

[0,1].

Recall the second Research Question:

Research Question 1.2

How can we best predict the outcome of an automated negotiation

based on time series forecasts of utility graphs?

We propose employing Monte Carlo sampling as the method of choice to

infer a distribution of utility outcomes from the RNN output. In Monte

Carlo sampling, random samples are taken from a distribution in an at-

tempt to reconstruct this distribution. This method is an easy choice as our

neural network already generates its distribution in a Monte Carlo fashion,

namely via many individual predictions that together make up one distri-

bution. These individual predictions make it so that samples can be easily

drawn from the forecasts. Monte Carlo also provides a method that is very

countable. In other words, every individual sample is a discrete unit that all

together make up our total prediction. This is advantageous for calculating

the agreement probability, as will be shown later in this section.

3.3.2 Generating Samples

The first step of the function f is to generate a multitude of samples from

the distributions θ̂1 and θ̂2. Let us define a function g that, given a distri-

bution, returns a vector of utilities of the same length, sampled from the

distribution, such that û ∼ θ̂. Since these utilities are an estimation, and

to avoid confusion with true negotiation bid histories, they will be denoted

with û. This gives: g(θ̂, n) = û, where n is the desired number of samples.

43

Predicting the Negotiation Outcome

Figure 3.5: Trapzium formed to find the intersection of two utility forecasts. û
is the intersection point that we aim to find.

These utilities describe a continuation of the utility time series path already

observed by the RNN.

The next step is to use the utility vectors generated from both distributions

to find the intersection of these paths. Function h takes two utility paths

and finds this intersection, a scalar utility value, such that h(û1, û2) = û. It

does this using the earlier defined agreement definition (u1
t <= u2

t | u1
t−1 >

u2
t−1). As an estimate of the final utility, this method takes the intersection

of the lines going from u1
t−1 to u1

t and u2
t−1 to u2

t , which form a trapezium.

As such, the utility is the y-coordinate of the intersection of the diagonals of

this trapezium, which can be found using high school math. Also see figure

3.5.

If the condition for an intersection is never reached (the lines do not cross),

no utility is calculated. Instead, the negotiation is said to have ended with-

out an agreement. This process is repeated n times, where all generated

utilities are added together to yet another vector, v. This vector contains the

different point estimations of the utility outcomes found using the intersec-

tion method h, so that v = [û1, û2 . . . ûn]. This leaves us with a collection of

utility predictions for the outcome of the negotiation.

In addition to utility prediction, we are also interested in the probability

that the negotiation will end in an agreement, the agreement probability p.

44

3.3 Intersection Solution: Monte Carlo Methods

When the desired number of Monte Carlo simulations has been run, the

ratio of simulations that ended in an agreement is returned, and is used as

the network’s prediction of the likelihood of the true negotiation ending in

an agreement.

3.3.3 Forming a distribution

Now that we have a vector of utilities, we must convert them into a proba-

bility distribution. A common method to convert a large number of points

into a distribution is via a Kernel Density Estimator (KDE). A KDE applies

a smoothing function over the utilities to convert the finite data samples to

a continuous probability function. The density f of this probability function

at a given point x, is found by:

f (x) =
1

nh

n

∑
i=1

K(
x − xi

h
)

Here, K is the kernel function and h is a smoothing parameter, called the

bandwidth. The kernel function can be one of many different functions that

influence the shape of the final distribution (e.g. a certain kernel may always

generate one which approximates a guassian distribution).

Figure 3.6: Monte Carlo method of generating a probability distribution out-
come from utility graph distributions.

45

Predicting the Negotiation Outcome

3.4 CRPS

During the experiment, different TSF techniques will be used as bench-

marks for the deep learning method. The predictions of these different fore-

casting methods must be compared to be able to draw a conclusion about

their relative performances. For this purpose, a metric must be used that

measures the similarity between the forecasts generated by the TSF methods

and the actual results of the negotiation. Since predictions are made from

completed negotiations, the true values with which the forecast can be com-

pared are known. Given this, the accuracy score used must compare a point

(the actual value) to a distribution (the forecast). Hyndman introduces mul-

tiple of such distributional forecast accuracy metrics [32]. Although some

of these metrics require a specific quantile of the prediction distribution to

be selected for comparison, we are interested in the whole forecast distribu-

tion, rather than particular quantiles or prediction intervals. For this pur-

pose, the continuous ranked probability score (CRPS) is a good metric. First

introduced by Matheson and Winkler [64], CRPS quantifies the difference

between the perfect distribution of data and the predicted distribution [65].

It does this by comparing the cumulative distribution functions (CDF). The

formula for CRPS is:

CRPS =
∫ ∞

−∞
(F(x)− 1 {y ≤ x})2dx

Where F(x) is the CDF of the predicted distribution and y the realized value.

The CDF can be found by integrating the generated probability density

function. 1 {y ≤ x} is a function that returns 1 when inequality y ≤ x is

true and zero otherwise [66]. As such, CRPS values will always be between

0 and 1 and approximately indicate the distance of the distribution mass to

the true value. For example, imagine that the generated distribution lays

around 0.6, while the true value is 0.7. CRPS will return an error score of

approximately 0.1. Additionally, CRPS has the advantage of being able to

compare both pointwise and distributive predictions to the ground-truth

46

3.4 CRPS

(pointwise) value. This is ideal, as the majority of benchmark methods gen-

erate a pointwise prediction as well. When computing a pointwise compar-

ison, CRPS simplifies to the mean average error (MAE), a score that simply

gives the distance between the true value and the prediction. For the eval-

uation of TSF performance, this metric can be used for each generated time

step, after which the average CRPS over the time steps can be computed

for a final evaluation of the prediction. Furthermore, when evaluating the

negotiation outcome prediction, the method can simply be used to compare

the prediction to the actual outcome. Note that earlier in this chapter, we

described the use of the negative log-likelihood as also comparing distribu-

tions with pointwise outcomes, only there for calculating the loss function.

CRPS is used here because it is easy to interpret and easy to compare to

pointwise prediction evaluations via MAE. NLL on the other hand is better

suited as a loss function since it does not have a lower bound, which is a

desirable quality for a loss function.

Figure 3.7: Visualization of CRPS. In red: The CDF beloning to the generated
distribution. In blue: The CDF beloning to the ground truth. The CRPS is the
area between these two CDF’s. Image adapted from [67].

47

4. Experiments

4.1 Experiment Overview

We describe two main experiments to answer our research questions. This

chapter will go into detail about these experiments, explaining their setup.

In addition, some preliminary experiments have been run to arrive at the

exact parameter settings used in the main experiment. These will also be

explained after the main experiments.

The first experiment evaluates the performance of DeepAR in its ability to

forecast time series. This is done by having DeepAR and five benchmark

methods forecast the utility graphs of 1100 negotiation time series. These

1100 time series consist of 100 series for 11 different learning rates. Every

time series will be predicted from four different starting points, to evaluate

the influence the amount of input data has.

The setup for the second experiment is very similar to that of the first. Once

again, DeepAR and five benchmark methods are used, this time to predict

the outcome of negotiations. The data set used for experiment 1 will also be

reused for this experiment. For experiment 2, we expect a similar relative

ordering of performance between the six tested methods as in experiment

1. This is because we expect the ability to predict time series to be indicative

of these methods’ ability to predict the negotiation outcomes.

4.2 Experiment Setup

Before running these experiments, we must first carefully consider which

negotiations to use in evaluating the methods’ performances. There are vari-

ous types of negotiating agents that all use their own distinct strategy. These

strategies in turn also react to different strategies in diverse ways. On top of

48

4.2 Experiment Setup

this, the setting in which the agents negotiate and the rules that they must

adhere to influence the negotiation as well.

Together, these factors result in negotiations being affected by many inter-

acting parameters. For this research, it is beneficial that these interacting

factors are kept to the essential ones only. This is because if there are many

factors influencing a negotiation, it will be harder to assess which of these

factors determine both our predictions and final experimental results. If we

have a small number of parameters that we can adjust ourselves, this means

that we can test the effects of these parameters deliberately in a controlled

environment. This in turn increases the robustness and applicability of this

research.

In short, the experiment will be set up as follows:

A data set of negotiations is made by running 100 negotiations for 11 learn-

ing rates, 0 to 1.0 in steps of 0.1. These negotiations are run between time-

dependant agents whose e-value is randomized between 0.1 and 1.3, and

whose m-value is randomized between 0.5 and 0.9. All negotiations are run

between profiles belonging to the party domain. Six different methods are

used to forecast the associated time series: DeepAR and five benchmark

methods. Every method makes a forecast from four different points within

every negotiation, from 20%, 40%, 60%, and 80% (Experiment 1). The fore-

casts are then used to predict the final outcome of the negotiation via Monte

Carlo sampling, as well as predict the likelihood of ending in a breakoff (Ex-

periment 2). The results of both experiments are evaluated using the CRPS

metric to compare the different benchmarks.

4.2.1 Time-Dependent Agents

We want the agents used in the experiments of this research to be influ-

enced by a limited number of factors. Those factors that it is influenced by

must be within our control, as touched upon in the above section. However,

this restriction must not decrease the possible variety of shapes the util-

ity graph can take too extensively, as we want our final prediction method

to be rigorous in its ability to predict many types of negotiations. Recall

49

Experiments

the three broad categories of automated negotiation strategies (see section

2.2.1): time-based, behavior-based and mixed. The latter two change their

bids based on their opponents’ actions. To mitigate the complexity such

strategies would add, we will use an agent using a time-based strategy.

Specifically, we opt to use the time-dependant agent (TDA).

The TDA makes concessions by following a precise concession curve, de-

fined by the formula:

u(t) = 1 − (t1/e · (1 − m))

Where t is the fraction of the total negotiation time that has passed. e is the

concession rate and m the target utility. The values of e and m are set before

the negotiation, while t goes from 0 to 1 throughout it. The TDA finds the

bid in the outcome space Ω that is closest to this value u.

Since the TDA always follows this curve, it is a deterministic strategy and

therefore uninfluenced by other factors. On top of this, via parameters e, m

and the learning rate, the TDA can be made to mimic the shapes of various

other negotiation strategies. Therefore, despite being only a single strategy

in theory, it still ensures that our prediction method is capable of recogniz-

ing the bidding patterns of many diverse strategies.

4.2.1.1 Parameters

Numerous parameters dictate the exact behavior of the TDA, all of which

have to be carefully set before the research is run. We will go over all pa-

rameter settings and briefly explain their use as well as their settings.

Recall the TDA formula defined earlier. The first crucial setting is the con-

cession value, e. The TDA slowly concedes over time by making bids of an

increasingly lower utility, based on the remaining time. e determines the

speed of this concession. A TDA with a concession speed of 0 will not con-

cede at all and instead play hardline. The higher the concession speed, the

50

4.2 Experiment Setup

faster the agent concedes its utility. A TDA with a concession speed of 1

will concede linearly. When the agent has a concession speed below 1, it

will start the negotiation playing hardline for some time, after which it will

start to concede. See figure 4.1 to see what effect different e-values have on

the utility graph of the TDA. For the experiment, e will be set between 0.1

and 1.3. See section 4.3.1 for an explanation of the chosen values.

The next parameter influencing the TDA’s concession curve is m. We call

this parameter the ’target utility’, as it determines the final utility TDA con-

cedes towards. This can be shown by entering t = 1 (the end of the negotia-

tion) in the formula, which gives: u(1) = 1− (1−m) = m. A higher m value

will make the agent aim for a higher final utility and, as such, will give it less

space to concede. This can be compared to a reservation value. The target

utility m is highly influential in the negotiation utility graph, particularly in

whether the negotiation ends in an agreement or a breakoff. See figure 4.2

to see what effect different e-values have on the utility graph of the TDA.

Also see Appenidix B.3 for a more elaborate overview of the effects these

parameters have on the concession curve.

Figure 4.1: Effect concession rates 0.1 -
2.0 have on the concession curve.

Figure 4.2: Effect target utilities 0 -
0.9 have on the concession curve.

4.2.1.2 Learning

To be able to test an even wider array of negotiation shapes, we devised a

method to simulate learning behavior in TDAs. We suspect that an agent

that learns will produce a bidding curve that is easier to predict by our fore-

casting methods, as it will increase the trend and lower the noise.

51

Experiments

To model the effects that a behavior-based strategy has on the predictions,

we introduce a "learning rate" (l) parameter to the agents. The learning rate

is intended to model an agent using an opponent model. Such an agent will

have some knowledge of their opponent’s utility function and can use this

in making bids. Recall the utility calculation made by the TDA:

u = 1 − (t1/e · (1 − m))

A regular TDA will choose the bid within the outcome space Ω that is clos-

est to u. The learning rate limits this outcome space so that it no longer

includes all possible outcomes. This is done by removing all outcomes for

which the opponent has a utility below P(t) · l, where P(t) is the utility value

corresponding to the Pareto frontier of the current time step and l the learn-

ing rate. The learning rate can be set between 0 and 1. For l = 0, the TDA

behaves as normal without a learning function, while l = 1 makes the TDA

follow the Pareto frontier exactly, implying maximal learning. Also see fig-

ure 4.3.

Figure 4.3: Outcome space of a negotiation. In green, the remaining outcome
space for a learning rate of 0.5. The pink line is the Pareto frontier, which the
green area is based on.

52

4.2 Experiment Setup

Parameter Description Valid Range

Concession Rate (e) Determines the speed at which
the TDA concedes its utility. [0 - inf]

Target Utility (m) Determines the closing utility
value the TDA concedes towards. [0 - 1]

Learning Rate (l) Determines the relative
minimum utility value. [0 - 1]

Table 4.1: Table showing the different parameters relevant to the TDA.

Learning as we implemented it in the TDA will install a lower bound in the

bids the agent makes from the perspective of its opponent’s utility function.

As such, the opponent will always receive some minimal amount of utility,

scaled from the Pareto frontier.

Going by the step model conceived by Hindriks et al. [68], a regular TDA

can only make concessions and unfortunate moves, since it decreases its

own utility while moving along the outcome space. In the context of TDA,

our learning method makes as many moves as possible concessions, rather

than unfortunate moves. Such concessions are appealing to the opponent,

providing high utility for (ideally) both parties.

4.2.2 Negotiation Parameters

The negotiations used for training and forecasting follow a stacked alternat-

ing offer protocol, with a 100-turn round limit. This means that the agents

will go back and forth making bids until one of them accepts the bid of the

other agent. If both agents have made 100 bids without coming to a resolu-

tion, the negotiation is ended without an agreement.

A negotiation prediction can take place at any point during the negotiation.

To study the effect of making a prediction starting at different moments, the

experiment is run for four different starting points. The starting points are

from 20%, 40%, 60% and 80%, of the negotiation. This is done for all meth-

ods and will provide insight into how strongly extra observations improve

predictions.

The profiles used for the negotiations are those in the party domain, one of

the domains available in Genius. This domain is chosen for its diversity in

53

Experiments

profiles, as it provides 8 unique ones. On top of this, the outcome spaces

belonging to the different combinations of profiles capture a wide portion

of the utility outcome plane, with a high density of outcomes. The party

domain has 23 options divided over 6 issues, making a total of 3072 possible

outcomes.

4.2.3 Benchmarks

The main focus of this research is on deep learning methods for predicting

negotiations. However, since this is a novel endeavor in the field, there

has been no comparable research done. To place the research in the field

of automated negotiations, a number of different methods will be used to

predict negotiations as well. This collection is composed of state-of-the-art

statistical methods and simple benchmark methods. The following methods

will be used for comparison:

• ARIMA: Stands for Autoregressive Integrated Moving Average, a clas-

sic statistical model that fits a model for the data based on three pa-

rameters, p, d and q.

• Exponential Smoothing: Uses a weighted average of past observations

to predict future values, where older observations’ weights decrease

exponentially.

• Linear Regression: Uses a regression algorithm to fit a linear function

over past observations.

• Linear Extrapolation: Fits a linear function based on the first and latest

bid in the past observations.

• Naive: Repeats the latest bid indefinitely.

Of these methods, only ARIMA is capable of generating distributive predic-

tions as well. The other methods will generate a point prediction for each

future round. For a more thorough explanation of these benchmarks, see

Appendix A.1.

54

4.3 Preliminary Experiments

4.2.4 Metrics

The predictions made by the evaluated methods must be assessed. Recall

that every method makes two predictions. One time series forecast over the

utility graph and one prediction of the negotiation outcome. Assessment

of the utility graph forecasts will be done using the CRPS metric, as it is

well suited for comparing distributions to points, while also being usable

for simple point predictions, in which case it simplifies to the MAE score.

In experiment 1, the average CRPS/MAE will be taken over all rounds for

which a prediction was made.

CRPS will also be used to compare the predicted utility (distribution) with

the true negotiation outcome in experiment 2. The metric used to assess

the performance in predicting agreement probabilities is the average agree-

ment probability. For distributive methods, this is the average of true prob-

abilities, while for pointwise methods, it is the average of boolean (0 or 1)

predictions. This average is computed for the two types of negotiations,

agreement and breakoff, separately. A good performing method will have

this average close to 1 for the former, and close to 0 for the latter.

4.3 Preliminary Experiments

To be able to effectively run the two main experiments, a lot of preparatory

experimentation had to be done relating to the setting in which the experi-

ments were ran. Those that influenced the main experiment in a meaningful

way will be described here.

4.3.1 Parameter settings

The parameters selected for the main experiments were chosen based on

tests designed to create an optimal environment to evaluate the different

prediction methods. Let us go over the choice for parameters e and m. Recall

that e dictates the concession rate and m the end value of the TDA. These

values strongly influence both the length of the negotiation and the breakoff

rate by changing the shape of the utility graph. For the main experiment,

55

Experiments

there are two requirements that the final data set must meet.

1. Negotiation Length In the experiments, negotiations are predicted

from a minimum cutoff length of 20. Therefore, negotiations that ter-

minate before this point have no use in being evaluated. So, the pa-

rameters must be chosen so that there is a minimal number of early

terminations in the data set.

2. Agreement Rate One of the two outputs generated by the prediction

method is the agreement probability. To properly test the methods

performance in this category, there must be enough negotiations end-

ing in both agreements and breakoffs. However, we still want the vast

majority of negotiations to end in an agreement, since that is required

to have a sizeable data set with which to calculate the CRPS for the

utility outcome predictions. Therefore, we aim for approximately 20%

negotiations in the data set to end in a break-off.

Within the bounds of these requirements, we will try to find a wide range

of values for both parameters. All agents used to create the data set for

the main experiment will be initialized with their parameters set within this

range. To determine what values are best suited to meet these requirements,

a large data set is built consisting of 100 negotiations for every combination

of e and m. The range of e is 0.1 to 2.0, in steps of one (e ∈ {0.1, 0.2, ..., 2.0}),

and the range of m is 0 to 0.9 in steps of 0.1 (m ∈ {0, 0.1, ..., 0.9}). For each of

these negotiations, the agent has a random learning rate l. Its opponent is

initialized randomly for all parameters e, m and l. We can plot the lengths

of these negotiations, the results of which can be found in figure 4.4.

56

4.3 Preliminary Experiments

Figure 4.4: Heatmap showing the average negotiation lengths for negotiations
of different parameter combinations. In blue outline the range of parameter
combinations to be considered.

As we want all negotiations in the true data set to end after the 20th round,

we will only consider parameter combinations that yielded an average length

of 25 and up. Therefore, our first bound is that we will only consider agents

with an e value of 1.5 and lower, and a m value of 4.0 and higher, as indi-

cated with the blue border in figure 4.4.

Within this range, we investigate the breakoff ratio for different combina-

tions of parameters. The breakoff ratio addresses the entire collection of

negotiations within a data set, rather than individual negotiations. There-

fore, we will not consider just the combination of two parameters. Rather,

multiple data sets will be created in which every agent is randomly initial-

ized within the values of a range. The outermost points of this range will

be m = 0.9 and e = 0.1, which is the highest leftmost cel in the heatmap.

The parameter settings on the other end of this range are the values that

57

Experiments

we will experiment with. For m, this will be {0.4,0.5,0.6} and for e this will

be {1.0,...,1.5}. These values were chosen to ensure that the final ranges still

occupy a large part of the initial heatmap, as we would like the data set for

our main experiment to be as diverse as possible within our requirements.

Looking at figure 4.5, we can see that the combination of 0.5 and 1.3 as the

(other) edges of the range provides a breakoff percentage of 20%. Therefore,

these values will be used in the main experiment.

Figure 4.5: Heatmap showing the percentage of negotiations which ended in
a breakoff, calculated over 100 agents per cell. The agents were intialized with
a random value for t and e within a preset range. One end of the range is m =
0.9 and e = 0.1, and the other end the values on the heatmap axes.

4.3.2 Predictability

The decision to have a deep learning method as our main focus of this thesis

came after careful analysis of the time series data derived from automated

negotiations. In this section, we will present our findings related to the pre-

dictability of automated negotiation time series data, which led us to choose

deep learning over statistical models as the basis for this research.

To determine the predictability of the time series at hand, we will use several

measures that can serve as indicators of the predictability of the time series.

Recall that predictability by itself cannot be plainly assessed like speed or

volume, but by using some analysis we can get an idea of the general pre-

dictability of the time series.

58

4.3 Preliminary Experiments

1. Trend To start, the trend. The range of this value is between -1 and

1, where any extreme of this scale indicates a strong trend downward

or upward, respectively. A trend of 0 indicates that there is no trend

at all, which means that the graph moves downward as much as it

moves upward. The value indicates the ratio with which it moved in

some direction more than the other. It is calculated as such:

(u − d)/(u + d)

Where u is the number of past observations smaller than the current

observation (indicating an upward trend) and d the number of past

observations bigger than the current (indicating a downward trend).

Figure 4.6 shows that time series with a low learning rate are as good

as trendless, but as the learning rate increases, so does the amount of

trend in the data.

2. White noise Testing for white noise requires analyzing the ACF plots

of the time series. These results can not be averaged together, which

means each individual time series must be analyzed individually. A

time series shows signs of white noise if less than 5% of ACF correla-

tions lie outside ±2/
√

T, where T is the length of the time series (100 in

our case). Figure 4.7 shows what percentage of time series adheres to

this definition across learning rates. We can see that for learning rates

0.0 - 0.4, the percentage of white noise series stays somewhat consis-

tent around 0.7. After this point, the percentage quickly goes down,

until it reaches 0% at learning rate 0.8. These results suggest that, for

low learning rates, the majority of time series resembles white noise.

A type of time series which is very difficult to predict with classical

prediction methods.

3. Random Walk In section 2.3.1.1 we discussed the characteristics of a

random walk. A time series might be a random walk if it has two

properties:

59

Experiments

Figure 4.6: Average trend for TDA time series of different learning rates. Each
average computed with 100 different time series.

(a) It is non-stationary

(b) Its autocorrelation plot shows a high dependence on the previous

observation, after which it steeply drops.

As with white noise, we cannot definitively prove that a time series is

a random walk, but if we can observe these two properties, this gives

a strong indication in that direction. Once again, every time series in

the data set was analyzed for indicative behavior. The results can be

found in figure 4.8. Here we can see that the higher the learning rate,

the more graphs resemble a random walk (with upward drift). This is

likely due to the graphs getting more directionality at higher learning

rates, which translates into a high autocorrelation with the previous

time steps. Moreover, the random walk graph appears to approximate

the inverse of the white noise graph. This may suggest that those time

series that are not white noise are random walks.

Taking all these observations together indicates that TDAs without learning

produce time series that are difficult to predict for classical statistical meth-

ods, as the series frequently resemble white noise series and do not have

any trend. It also shows that the learning rate has an evident effect on the

TDA time series, improving the trend and removing the white noise.

60

4.3 Preliminary Experiments

Figure 4.7: Ratio of TDA time series that show ’white noise’ behavior for dif-
ferent learning rates.

Figure 4.8: Ratio of TDA time series that show ’random walk’ behavior for
different learning rates.

61

5. Results

This chapter will describe the results achieved by the six prediction meth-

ods and evaluate their results for both time series forecasting and negotia-

tion outcome prediction. The latter will be divided into outcome utility and

outcome agreement prediction.

5.1 Time Series Forecasting

In general, DeepAR outperforms the other five methods in TSF accuracy. It

achieves the lowest overall CRPS scores for the different cutoff points and

learning rates. Figure 5.1 shows the spread of all CRPS scores realized by

the TSF methods. This is for predictions made across all cutoff points and

learning rates, and thus encompasses many different types of negotiations.

Figure 5.1: Box and Whiskers plot showing the average performance of all TSF
methods and their spread.

62

5.1 Time Series Forecasting

Method DeepAR ES ARIMA LE LR Naive
Average 0.081 0.152 0.113 0.161 0.137 0.126

Table 5.1: Table showing the average CRPS score achieved by all 6 methods in
time series forecasting

Figures 5.2 - 5.5 give us a closer look at how the six methods performed for

the different parameter settings.

Figure 5.2: CRPS score achieved by
six different forecasting methods,
across eleven learning rates, for
cutoff point 20.

Figure 5.3: CRPS score achieved by
six different forecasting methods,
across eleven learning rates, for cut-
off point 40.

Figure 5.4: CRPS score achieved by
six different forecasting methods,
across eleven learning rates, for cut-
off point 60.

Figure 5.5: CRPS score achieved by
six different forecasting methods,
across eleven learning rates, for cut-
off point 80.

We can see here that DeepAR is only marginally surpassed for learning rate

1.0 when the cutoff point is at 60 or 80. However, all methods achieved high

63

Results

scores for these parameter settings. The average CRPS score DeepAR real-

ized for TSF is 0.081. This is twice as good as the worst benchmark, Linear

Extrapolation, which got an average CRPS score of 0.16. Figure 5.1 gives

a good insight into the stark difference between DeepAR and the other 5

methods, which shows that the bulk of DeepAR’s predictions lie well below

the biggest mass of all benchmark methods.

5.1.1 DeepAR

Although this makes it clear that DeepAR made the best forecasts compared

to these benchmarks, it does not give us insight into whether this constitutes

a strong result by itself. Therefore, we will now consider the performance

of DeepAR in more depth. See figure 5.6 and table 5.2 for the TSF results

achieved by DeepAR.

5.1.1.1 Cutoff points

Figure 5.6: CRPS score that DeepAR achieved for the forecasting of negotia-
tion time series for eleven learning rates, across four cutoff points.

Taking a closer look at figure 5.6, several observations can be made. First,

the results hardly change between learning rates 0 - 0.2. This is because this

increase in learning rate has a negligible real effect on the shape of the utility

64

5.1 Time Series Forecasting

graph. From 0.3 on, all curves show a downward slope. The different cutoff

points only start diverging in error for a learning rate of 0.7 and higher.

Before this point, all networks achieve approximately the same error score.

The endpoints, for a learning rate of 1, are ordered from lowest to highest

cutoff point in CRPS score. This makes intuitive sense, as it should be easier

to predict a graph from which more information is known. Finally, what is

likely the biggest anomaly in the results, the CRPS score for cutoff point 20

increases again from learning rate 0.7 onward. While the other cutoff points

also show a stagnation from this point on, it is not as steep as cutoff point

20, which trends back towards its starting CRPS error value.

To explain this behavior, we ran some additional tests. These show that

if DeepAR has too little information to make an informed forecast, it will

make a safe bet and return the most average time series it has trained on. In

our data set, these are negotiations with a learning rate of 0.7. So, a forecast

made from cutoff point 20 will often result in a distribution that has a high

resemblance to such a negotiation. Therefore, cutoff point 20 performs best

at learning rate 0.7, after which it decreases in performance again. Also see

figure 5.7. This problem disappears for later cutoff points as the network

has more data on which to base its forecasts. We can also conclude from this

that a later cutoff point increases the predictability of the time series.

Figure 5.7: TSF of a negotiation with a high learning rate on the left, and an in-
termediate learning rate on the right. The forecast is made from an early cutoff
point. Here, we can see that when the network does not have enough data to
make an informed forecast, it makes an average prediction that corresponds to
a learning rate of 0.7 best.

65

Results

5.1.1.2 Learning Rates

Recall that the learning rate models behavior-based strategies, strategies in

which the agent attempts to estimate the preference profile of their oppo-

nent and consider this in its bids. As such, a high learning rate causes the

agent to make bids that are favorable to the opponent. In our results, it is

clearly visible that the learning rate has a strong influence on forecast ac-

curacy. CRPS error decreased for every cutoff point until a learning rate of

0.7, at which point cutoff points 20 and 40 increased again. The remaining

cutoff points had their lowest error for a maximum learning rate. The rea-

son for this is that the learning rate increases the predictability of the graph.

Where we have shown a regular TDA to exhibit white noise characteristics,

a higher learning rate introduces a strong trend to the trajectory. The algo-

rithm learns to recognize such a trend and include this in its predictions.

Negotiations with a high learning rate also have a decreased variance, re-

sulting in a tighter spread around their mean value. This works in the ad-

vantage of the model, allowing it to make a more precise prediction with a

tighter distribution. Such distributions are able to reach a low error score.

Low learning rates on the other hand cause graphs to have a high amount

of variance. The network responds to this by also making a more spread

out distribution forecast, as this is the most realistic prediction it can make.

Therefore, the lowest possible error rate is higher for lower learning rates.

This increased performance for high learning rates pulls into question whether

it is still wise to use such strategies if it gives the opponent more opportu-

nity to gauge your next moves, and turn this into their tactical advantage.

Unpredictability may be a valuable weapon in negotiations; however, it can

also result in a net loss for both parties. Using a strategy that helps both par-

ties achieve a better result is ultimately the best outcome, and a predictable

strategy may help achieve this goal.

66

5.1 Time Series Forecasting

5.1.1.3 Numerical Results

Cutoff Point
LR 20 40 60 80
0.0 0.106 0.116 0.118 0.115
0.1 0.107 0.114 0.118 0.113
0.2 0.106 0.112 0.118 0.111
0.3 0.097 0.099 0.099 0.099
0.4 0.079 0.081 0.084 0.083
0.5 0.067 0.070 0.074 0.072
0.6 0.064 0.062 0.061 0.057
0.7 0.059 0.054 0.051 0.048
0.8 0.077 0.061 0.055 0.045
0.9 0.106 0.062 0.048 0.038
1.0 0.113 0.064 0.045 0.026

Table 5.2: Table showing the different CRPS scores achieved by DeepAR
across Learning Rates 0.0 - 1.0, and Cutoff Points 20 - 80. Performance for the
forecasts of time series.

Since DeepAR made predictions for many negotiations in varying settings,

the results are multi-faceted. It reached CRPS scores between 0.118 and

0.026, see table 5.2 for the exact scores. Recall the intuition behind CRPS.

A CRPS score can be imagined as a distributive version of the Mean Aver-

age Error. Basically, it describes the distance between the distribution mass

and the true outcome. So, a CRPS score of 0.1 points to the distribution

being removed 0.1 "utility" away from the true outcome.

On average, the DeepAR forecasts were 0.081 utility removed from the true

values of the bids made by the opponent. Is this an acceptable margin of

error for the forecasts to be useful? It depends on the application. Let us

consider the domain on which this network was trained, the party domain.

Figure 5.8 shows how many real outcomes are within this range of 0.081

utility for different utility scores, for the first party domain profile.

At its peak at 0.41, this range can encompass up to 1185 unique outcomes.

A negotiation that ends around the Nash equilibrium, usually somewhere

between 0.7 and 0.9, can expect between 433 and 134 outcomes within this

range. This may seem like much, but does not consider that there is a sec-

ond agent also influencing the negotiation. This agent reduces the number

67

Results

Figure 5.8: Graph showing how many outcomes are at most 0.081 utility re-
moved from a certain utility score, for party domain 1. Blue is the regular
number of outcomes, red the number of outcomes for which the opponent
(PartyDomain2) also gets over 0.5 utility.

of possible outcomes as it will (usually) not accept outcomes that give it low

utility. The exact effect of this differs per agent, depending on their con-

cession rate. If we, however, assume the opponent agent will only accept

outcomes that give it 0.5 or more utility (still a low utility value) this graph

already decreases substantially, as indicated with the red line. Now, the

peak has 499 possible outcomes, and the Nash equilibrium range between

310 and 96 outcomes. Since the entire party domain consists of 3072 out-

comes, this is between 10% and 3% of the outcome space. Note that these

values can still differ hugely between profile combinations, but serve to give

the reader some better idea of possible outcomes. We see that even for the

best TSF method, its error compromises a significant part of the outcome

space. This is most detrimental in cases where the exact outcome of the ne-

gotiation is desired. Our network is not optimized for these situations, as

exact outcomes are not integrated into its architecture. If the user, however,

just wants an estimation of its opponent’s future utility graph, these results

can certainly help. Most importantly, this first experiment is not the end

point of this research. Its main function is to use these forecasts in outcome

prediction, the results of which will be evaluated next.

68

5.2 Outcome Prediction

5.2 Outcome Prediction

The second experiment used the forecasts created by our TSF methods to

make outcome predictions and calculate the agreement probabilities. It does

this by finding the intersection between two forecasts using Monte Carlo

Methods, as described in 3.3.

5.2.1 Utility Prediction

Figure 5.9: Box and Whiskers plot showing the average CRPS scores achieved
in outcome prediction by the five methods

Method DeepAR ES ARIMA LE LR
Average 0.040 0.056 0.085 0.047 0.052

Table 5.3: Table showing the average CRPS score achieved by 5 outcome pre-
diction methods.

Figure 5.9 and table 5.3 show how the five methods performed on average in

outcome prediction. Once again, DeepAR performs best overall, but with

a smaller margin than for experiment 1. The worst benchmark this time

69

Results

is ARIMA, which got an average CRPS of 0.085, barely improving its ex-

periment 1 score. Linear extrapolation, on the other hand, shows much im-

provement, enjoying a larger spread of outcomes and, at its best, surpassing

DeepAR for some parameter settings. However, we cannot compare these

methods as easily as we did in the previous experiment. It is important to

note that there is a difference in how this error is calculated between dis-

tributive methods (DeepAR, ARIMA) and pointwise methods (exponential

smoothing, linear regression, linear extrapolation). This is because point-

wise methods give either a single outcome prediction or no prediction at

all, if they predict a breakoff. This means that if a pointwise method were to

predict a breakoff, this prediction can not be considered in calculating the

average CRPS error, as there is nothing to compare against. This difference

is only relevant for negotiations that ended in an agreement but for which

a breakoff was predicted, or a "false negative"1. Distributive methods, on

the other hand, will still predict some utility outcome, even if the method

gives a breakoff a much higher probability. In these cases, even if only 2% of

Monte Carlo samples find an intersection, this 2% is still taken into account

when calculating the average CRPS score. Also see table 5.4. Because of

this, the error scores for the pointwise methods in figure 5.9 can make their

performance seem better than it was. However, this also largely depends on

how well they did at agreement prediction, which we will get to later.

TP FN FP TN
Distributive Method Usually Considered
Pointwise Method

Table 5.4: Table showing whether predictions are taken into account when
calculating CRPS score for outcome prediction. Green = taken into account,
red = not taken into account. TP = true positive, FN = false negative, FP = false
positive, TN = true negative.

1Note that the terminology such as "false negative" does not strictly apply to distribu-
tive methods, since they produce an agreement probability rather than a binary answer.
Here, the terminology refers to what the method primarily predicts.

70

5.2 Outcome Prediction

Figure 5.10: CRPS score achieved by
five different forecasting methods in
outcome prediction, across eleven
learning rates, for cutoff point 20.

Figure 5.11: CRPS score achieved by
five different forecasting methods in
outcome prediction, across eleven
learning rates, for cutoff point 40.

Figure 5.12: CRPS score achieved by
five different forecasting methods in
outcome prediction, across eleven
learning rates, for cutoff point 60.

Figure 5.13: CRPS score achieved by
five different forecasting methods in
outcome prediction, across eleven
learning rates, for cutoff point 80.

Figures 5.10 - 5.13 show how all five2 prediction methods performed for

different parameter settings. Here we see that DeepAR still performs best

overall, but is outperformed for some specific parameter settings. Espe-

cially for high cutoff points (80) linear extrapolation achieves a better CRPS

score. For lower cut-off points, however, DeepAR makes the most accu-

rate predictions. We can see that all methods improved their CRPS scores

for the second experiment, compared to the first. Not only that, the shapes

of the graphs look quite different compared to the first experiment. Take

2Note that the Naive method is not included in these figures as it only predicts con-
stant lines that can never cross, and thus never predicts an agreement.

71

Results

DeepAR’s graphs, for instance, seen in figure 5.14. It previously had a "u-

shape" for cutoff point 20, as well as milder bends for cutoff points 40 and

60. In experiment 2, these graphs show a downward trajectory, decreasing

their CRPS error until learning rate 0.8, after which the scores stabilize.

Figure 5.14: CRPS score for the prediction of negotiation outcomes by DeepAR
for varying cutoff points and learning rates.

If the results of the first experiment simply translated to the results of the

second experiment, we would expect these graphs to show a higher de-

gree of similarity. Instead, the results are improving overall. A comparable

change can be seen for the benchmark methods, which show an even larger

relative decrease in error score. Why is this? We believe that this decrease

can be explained by two factors:

Firstly, the distributions obtained from forecasting the agent’s own conces-

sions. Recall that experiment 1 tests only the forecasting of the opponent’s

bids, whereas the predictions made in experiment 2 result from combining

the forecasts of the agent’s own and its opponent’s concessions. The own

concession has a higher degree of predictability, as it has a strong trend and

does not resemble white noise nor a random walk. As a result of this, the

forecasts made for an agents own concession curve have a lower error score,

and thus increase the overall performance. See figures 5.15 and 5.16 for ex-

amples of such forecasts.

72

5.2 Outcome Prediction

Figure 5.15: Time series forecast of
own concession curve by DeepAR.

Figure 5.16: Time series forecast of
own concession curve by LE.

The second reason is that outcome utility prediction for pointwise meth-

ods has a bias toward including accurate forecasts in its evaluation. This

is because these methods only consider correctly predicted agreement ne-

gotiations when calculating the CRPS score. So, those inaccurate forecasts

that decreased the overall error score in experiment 1 are not included in the

CRPS calculation in experiment 2.

5.2.1.1 DeepAR

Cutoff Point
LR 20 40 60 80
0.0 0.060 0.064 0.059 0.039
0.1 0.046 0.056 0.050 0.034
0.2 0.050 0.063 0.059 0.043
0.3 0.057 0.061 0.052 0.030
0.4 0.048 0.050 0.051 0.030
0.5 0.040 0.047 0.043 0.028
0.6 0.045 0.041 0.035 0.022
0.7 0.045 0.039 0.030 0.019
0.8 0.039 0.032 0.024 0.018
0.9 0.041 0.032 0.024 0.016
1.0 0.040 0.034 0.025 0.013

Table 5.5: Table showing the different CRPS scores achieved by DeepAR
across Learning Rates 0.0 - 1.0, and Cutoff Points 20 - 80. Performance for the
prediction of utility outcomes of negotiations.

73

Results

Table 5.5 shows the exact CRPS scores DeepAR achieved for different pa-

rameter settings. These values range from 0.064 to 0.013, with a total av-

erage score of 0.040. If we run the same analysis as in section 5.1.1.3, we

can see that this makes for a steady decrease in outcomes within the utility

range. Now, the peak is at 611 outcomes without opponent interference and

264 with. Utilities around the Nash equilibrium now have between and 223

and 77 outcomes without interference, and between 154 and 52 with inter-

ference, or between 5.0% and 1.7% of the outcome space. Also see figure

5.17. Another advantageous result is the worst-case prediction of DeepAR,

which is still an amendable 0.064 utility removed from the true outcome.

There is still room for improvement, and there are many opportunities to

do so, but this first result is promising for neural network applications in

outcome prediction.

Figure 5.17: Graph showing how many outcomes are at most 0.04 utility re-
moved from a certain utility score, for party domain 1. Blue is the regular
number of outcomes, red the number of outcomes for which the opponent
(PartyDomain2) also gets over 0.5 utility. The transparent lines show the re-
sults for 0.081 utility, as seen in the previous experiment.

74

5.2 Outcome Prediction

5.2.2 Agreement Prediction

However, utilities form only half of the outcome. The other important as-

pect is the agreement probability prediction. This category is split up into

two sections: predictions made for negotiations that ended in an agreement

(agreement negotiations), and predictions made for negotiations that ended

in a breakoff (breakoff negotiations). Figures 5.18 and 5.19 show how all the

methods performed on average for predicting both agreement and breakoff

negotiations. Important to note here is the difference in how results are cal-

culated between distributive and pointwise methods. For distributive meth-

ods, these averages simply represent the average agreement probability that

was predicted by the method. Pointwise methods, on the other hand, do not

produce an agreement probability but rather make a binary prediction be-

tween an agreement or a breakoff. As such, for the pointwise methods, these

averages represent the ratio of negotiations for which the method predicted

an agreement.

Figure 5.18: Box and Whisker plot
showing the average agreement
probability predicted by several
methods for agreement negotiations.
If a method did well, it is closer to
the top (full agreement predicted) of
the plot.

Figure 5.19: Box and Whisker plot
showing the average agreement
probability predicted by several
methods for breakoff negotiations. If
a method did well, it is closer to the
bottom (full breakoff predicted) of
the plot.

For figure 5.18 a 1.0 represents true positives, while a 0.0 represents false

negatives. For figure 5.19, a 1.0 represents false positives, while 0.0 repre-

sents true negatives. These plots show that the benchmark methods have

a bias towards predicting breakoffs, while DeepAR stays closer to the cen-

75

Results

ter. As such, DeepAR performed far better in predicting agreement nego-

tiations, whereas it did the worst in predicting breakoff negotiations. Note

that in the entire data set, agreement negotiations constitute 77% of nego-

tiations, which means that a method that performs better for this type also

increases performance in the whole data set. Despite its subpar ability to

predict breakoffs, DeepAR still performs best overall in discriminating be-

tween the two types of negotiations.

5.2.2.1 DeepAR

Figure 5.20: Proportion of agree-
ments predicted by DeepAR for
agreement negotiations, for four cut-
off points and eleven learning rates.

Figure 5.21: Proportion of agree-
ments predicted by DeepAR for
breakoff negotiations, for four cut-
off points and eleven learning rates.

Figures 5.20 and 5.21 show how DeepAR performed for different parameter

settings. It performs decently in agreement prediction, but there is still room

for improvement. Looking at these graphs, some things catch the atten-

tion. First, the network generally attributes a higher agreement probability

to agreement negotiations than to breakoff negotiations. This is desirable

as it demonstrates that the network is capable of making a distinction be-

tween the two negotiation types. Something else to note is that both graphs

show an increase in agreement probability for higher learning rates. We

believe this is because the method mirrors the data set in its output, as is

logical for a deep learning network. If we look at the ratio of agreement and

breakoff negotiations for high learning rates, this does indeed include very

few breakoffs; see figure 5.23. So, for those negotiations, it may be "logical"

76

5.2 Outcome Prediction

to be biased towards predicting agreements. A similar observation can be

made for cutoff point 80. Here, we see DeepAR showing a bias towards

predicting breakoffs for both graphs. Once again, this can be explained by

looking at figure 5.22. Here, we see that cutoff point 80 had a relatively

low number of negotiations that ended in an agreement, and the network

adapts to this by predicting a lower agreement probability. The reason why

this cutoff point saw fewer agreements is because many agreement negoti-

ations already reached an agreement before this cutoff point, and thus were

not included for analysis.

Figure 5.22: Proportion of negotia-
tion which ended in an agreement
for the four different cutoff points

Figure 5.23: Proportion of negotia-
tions which ended in a breakoff for
the eleven different learning rates.

It is also possible to look at DeepAR’s results via a simpler metric. This is

done by considering every negotiation for which it predicts an agreement

with over 50% confidence as predicting a full agreement, and less than 50 %

as a breakoff prediction. In this way, we treat DeepAR like a binary classifier.

This is somewhat reductive, but may give an easier frame of analysis and

allow us to make calculations with precision and recall. Table 5.6 shows how

DeepAR performed on the entire data set, when applying this definition.

Interestingly, this data show that DeepAR managed a prediction accuracy

for both agreement and breakoff negotiations of 82%.

True Positives 2794 True Negatives 826
False Negatives 604 False Positives 176

Table 5.6: Table showing how DeepAR classified the different negotiations.

77

Results

precision =
TP

TP + FP
recall =

TP
TP + FN

F1 = 2 · precision · recall
precision + recall

In machine learning, it is common to evaluate classifiers (especially those

dealing with imbalanced data sets) using precision and recall. These can

then be used to calculate the F1-score. Precision can be seen as the fraction of

agreement predictions which the program correctly classified, while recall

indicates what fraction of agreement negotiations were correctly predicted

as such. DeepAR achieved a precision of 0.94 and a recall of 0.82. Its F1-score

is 0.876, which is generally considered a good score. The highest possible

F1-score which can be achieved is 1, if the network gets perfect precision

and recall.

When we look at the classifier from this lens, the results look very favorable.

Part of the reason for this apparent "difference" is that the plain accuracy re-

ported earlier did not account for the number of negotiations each category

represented. Take, for example, a breakoff negotiation with a high learning

rate. Such a negotiation is difficult for the network to predict correctly, but

also represents a very small part of the data set.

78

6. Discussion and Limitations

This chapter will explore some topics that have not been adequately dis-

cussed in previous chapters. In addition, we will discuss the limitations of

this thesis. This will serve as a starting point for future research suggestions

in the field of automated negotiation prediction.

6.1 Discussion

6.1.1 Metrics

In the previous chapter, the difficulty of comparing distributive and point-

wise prediction methods was highlighted. Here, the comparison of utility

predictions by themselves is not an issue, as CRPS is able to handle both

types of data in a way that allows them to be compared quite well. The issue

in comparing their outputs lies in the different way they handle agreement

predictions. As already touched upon, distributive methods give every ne-

gotiation a probability that the negotiation ends in an agreement, whereas

pointwise method simply either predicts the negotiation ends in an agree-

ment or does not. From this difference in prediction type comes a difference

in how the data is analyzed as well, as was discussed in 5.2.1

We already saw that reporting only the accuracy scores of the included

methods made for a difficult comparison because of their different calcu-

lations. Moreover, such an analysis does not account for the proportion of

negotiation types included in the data set. For this reason, we opted to eval-

uate DeepAR using precision, recall, and F1-score as well. These metrics are

common in data science because they provide a complementary look at the

evaluated network and account for imbalanced data. In many situations,

an increase in precision can mean a loss in recall and vice versa. Because

of its widespread usage, using this metric also provides us with an easy

79

Discussion and Limitations

communication tool towards others in the field.

That is not to say that these metrics are without problems. For DeepAR, us-

ing a metric designed for binary classification ignores its distributive nature,

which is an important feature of our designed solution. Binary classification

regards a confidence level of 51% equally to one of 99%. Moreover, an in-

tegral assumption of precision and recall is that one class is the "relevant"

one. As such, the calculations made rely on this assumption of having one

important and one unimportant class. In our case, however, an agreement is

not more or less desirable than a breakoff, but rather both are plausible ne-

gotiation outcomes. We can also calculate the F1-score with breakoffs as our

relevant class, which gives 0.68. Still a decent score, but lacking compared

to our ability to classify agreements.

6.1.1.1 Different Metric

The reason the metrics were chosen as such is that they offer a way to com-

pare the results for two different types of methods, while also being rela-

tively easy to understand. Nevertheless, the experiments may have benefit-

ted from a more extensive metric that takes into account all these factors at

once, so that the different methods can be compared one on one.

A suggestion for such a metric could be one that, for the distributive meth-

ods, adds a weight factor to the utility score outcome when calculating the

average. This weight factor would be scaled so that highly confident predic-

tions contribute more to the total average and vice versa. One can argue that

pointwise predictions already implement a version of this, as their included

predictions are all 100% confident. Therefore, the distributive methods and

pointwise methods should be easier to compare with this metric. On the

other hand, the distributive metrics would suffer in their interpretability,

making it harder to gauge what the total experimental results mean.

An additional approach that can improve how well all methods’ agreement

probabilities can be compared is to design one metric encompassing both

agreement and breakoff negotiations, which takes the average difference be-

tween the ground truth (either 100% agreement or 0% agreement) and the

80

6.1 Discussion

predicted probability. For a pointwise method, this predicted probability

would always be either 100% agreement or 0% agreement as well. Like the

previous suggested metric, this may improve how well the different meth-

ods can be compared, but also decreases interpretability on an individual

basis. As this research is first about DeepAR and second about the bench-

mark methods, we opted to use metrics that are easier to interpret.

6.1.2 Wrong Predictions

As with most classification tasks, negotiation outcome prediction also suf-

fers from incorrect classifications. Taking a closer look at the results, it

seems that most incorrect predictions were made for negotiations that did

not behave similar to negotiations with the same parameters. Take, for

example, negotiations with a high learning rate. This category consists

mainly of agreement negotiations. As such, DeepAR tends to predict a high

agreement probability for these negotiations. However, there are still cases

where such negotiations end in a breakoff. These cases often get predicted

wrongly. The same behavior can be observed across the entire data set for

different parameters. On the one hand, this does show that our network

learns to distinguish different types of negotiations based on the shape of

the time series and make predictions based on it.

There are also cases in which DeepAR gives a very low agreement probabil-

ity to negotiations that do end in an agreement. To some extent, this is also

due to the unpredictable nature of negotiations. The difficulty of correctly

predicting an agreement for negotiations on an individual basis is exempli-

fied by figure 6.1, which shows how the erratic behavior of these time series

can cause negotiations to still end in an agreement, even if the trend so far

indicated otherwise. Negotiations of this type can put a limit on the optimal

performance of any method that attempts to predict them. However, across

the board, methods should be able to extract general trends from data and

use this to make informed predictions. It just so happens that sometimes

the true outcome is not what appears to be the most likely one. The ad-

vantage of DeepAR in these situations is that it still gives the agent a utility

81

Discussion and Limitations

prediction, which the agent can use in whichever way it seems fit.

Figure 6.1: Example of a negotiation that unexpectedly ended in an agreement

From this, one may conclude that the most effective way to manage an op-

ponent that uses an outcome predictor is to radically change the strategy

used in the final stage of the negotiation. If there is no correlation between

the bids made, it will be impossible to accurately make a TSF. In these sit-

uations, the network may benefit from an incorporated opponent model to

gauge the plausible outcomes.

6.1.3 Advantages and Disadvantages of DeepAR

Bringing us to another discussion point: is DeepAR still the preferable solu-

tion if we take the setup costs into account? The benchmark methods used

in this research are all "plug and play", meaning that they can be applied

to any negotiation from any moment, and require no training1. Deep learn-

ing, on the other hand, gains in performance at the cost of flexibility, which

it lacks compared to all benchmark methods. During training, DeepAR re-

quires a data set representative of the negotiations it will be predicting, and

1Note that for ARIMA, the parameters must still be set. Although this requires no
training, they do still differ per time series and can also take much time.

82

6.1 Discussion

is also limited to a preset input and output length. On top of this, training

can take multiple hours depending on the size of the data set, convergence

rate, and processing capacity. If someone wanted a method to just quickly

predict a negotiation, deep learning is, at the current state of research, not

their best bet.

Nevertheless, we believe that it is by far the most worthwhile method in

automated negotiating research, for a number of reasons:

1. Performance The most straightforward reason, the performance of

deep learning. This research has shown that DeepAR outperforms ev-

ery benchmark, and we believe these results will only improve with

more research. Deep learning networks exist in many possible per-

mutations far outside just RNN and LSTM networks, with even more

possibilities regarding hyperparameters and training settings. As this

research’s primary focus was not to design the optimal deep learn-

ing network, but rather investigate whether such a network could be

feasible at all, we believe research dedicated to this endeavor could

result in a network outperforming the one described in this thesis.

The benchmark methods, on the other hand, are quite simple in their

workings and will likely gain little from additional research. We also

believe additional research may remove some of the earlier described

barriers by making a network that can work for many different out-

puts, or is trained on a broad selection of negotiation, and thus can be

used for many negotiation contexts.

2. Insight DeepAR returns two outputs to the agent, a distribution of

outcomes and an agreement probability. Additionally, DeepAR can

provide the forecast distributions that it used in generating the out-

come prediction. This collection of outputs gives the agent insight

into the negotiation, which it can then use to decide its next move(s).

Compare that with pointwise methods that give only the predicted

outcome. Although valuable, they provide no indication of the confi-

dence in this prediction nor of how likely other predictions are. Once

more, further research may be able to improve this category by adding

83

Discussion and Limitations

additional outputs to the network, for instance, having the network

also produce material outcomes of the negotiation.

3. Customizability Another advantage of deep learning that has been

useful in many areas is its customizability. The networks can be tailor-

made for the specific use case at hand. If you know in what setting

and against what type of opponents you will negotiate beforehand,

this gives deep learning a large advantage over other methods. More-

over, the network can be made lighter for small usecases, or apply

a new likelihood function for different data distributions. This cus-

tomizability argument can be made for ARIMA as well to some de-

gree, since it uses three parameters to fit various types of data. How-

ever, ARIMA has performed far worse than DeepAR in this research,

and deep learning is far more customizable.

Overall, choice of method still depends heavily on the context. Generally,

the more time one is willing to invest in a solution, the more worthwhile

deep learning becomes. For a quick prediction, a different method might

be better for now, at least until a more flexible deep learning solution is

developed for automated negotiations.

6.2 Limitations

This section will dive into the limitations of this study and provide insight

into the constraints encountered during the research. We hope these lessons

are informative and inspire future researchers in this field, helping them

achieve ambitious results.

6.2.1 Agents

After some consideration, we decided to limit the scope of this research to

involve only time-dependent agents. The TDA uses a purely time-based

strategy and is therefore deterministic, with a methodology that is depen-

dent on only a few parameters. These parameters allowed much control

over the shape of the agents’ utility graph, which meant the effects of dif-

84

6.2 Limitations

ferent shapes could be investigated well, and the boundaries of the research

well defined.

Nevertheless, this decision was not without drawbacks. One of the major

obstacles we encountered regarding TDA is its shape for low learning rates.

Although technically a deterministic strategy, in practice, the opponent’s

utility is chosen at random for every new time step. On the one hand, this

formed an obstacle in terms of the predictability of the TDA, where the net-

work had a hard time making sense of the time series. This led us to intro-

duce new variables (learning rate, target utility) that allowed more control

over the TDA in hopes of reducing this problem. On the other hand, this did

allow us to show the effect an opponent model (in the form of learning) can

have in reducing randomness from the made bids and thus the predictabil-

ity of the negotiation. One may wonder what effect a different choice of

agent would have had in this matter. If this hypothetical agent had adhered

to a strategy that is easier to predict, the results could have been greatly

affected.

This brings us to another point, the narrow scope of the agents in this re-

search. While making the research more focused, the decision to include

only one agent also made it so this research’s applicability to the broader

world of (automated) negotiation is still uncertain. There is a plethora of

additional possible strategies and negotiation settings that may be quite dif-

ferent from a bilateral negotiation between TDAs in the party domain. This

research confirmed that there is potential for predicting automated negoti-

ations, but the case for a broader selection of agents (and other parameters)

remains to be made.

6.2.2 Learning

The learning in this research means to simulate an agent that uses a behavior-

based strategy. That is, a strategy in which the agent uses some opponent

model to estimate the preference profile of its opponent. This can then be

used in an attempt to make bids that are profitable for both negotiating par-

ties. However, it is questionable whether the learning model we developed

85

Discussion and Limitations

fully captured this behavior. A regular agent using an opponent model may

start off having no idea about its opponents’ preferences, and slowly gain

this knowledge throughout the negotiation. As such, you could say that

its learning rate is increasing with time. Our model, on the other hand,

assumes some amount of knowledge from the beginning, which stays con-

sistent throughout the negotiation. So, in this sense, the model does not

fully model learning, but rather insight into the opponent. This design was

chosen because we opted for the learning rate to be simple and understand-

able, rather than highly realistic. In this way, it is clear how the opponent’s

learning influences their predictability, rather than a method that is more

realistic but for which it is hard to assess what facet causes a certain effect.

A model is, by definition, an abstraction and can never be the same as that

which it models. We believe that this model strikes a good balance between

realism and transparency. However, it would be interesting to see how a

true learning agent would influence the research.

6.2.3 DL network

As already touched on, the current deep learning network is quite rigid in

its settings. It can only give predictions for rounds 20, 40, 60 and 80 and will

always predict until exactly round 100. If one wanted to apply the network

in a different context, this would require the training of a new network with

the desired specifications. This limits the broad applicability of the network.

Fortunately, such rigid settings are not a hard requirement for deep learning

networks in general, meaning that this could be mitigated in the future.

Additionally, the amount of resources it takes to train and test a network

means that the current network settings (hyperparameters) were not fully

tested against other settings. Rather, due to constraints in time and re-

sources, when a network was developed that performed good enough, this

network was kept. However, it is plausible that some difference in hyperpa-

rameters, be it in the network structure, loss function, or training settings,

could have improved the performance even more. The goal of this research

was not to create an optimal network, but rather to test whether such an

86

6.2 Limitations

approach can prove fruitful at all.

6.2.4 Own utility graph prediction

In the first experiment, we opted to only test the performance of the algo-

rithms in forecasting their opponent’s utility graph, for this was seen as the

main challenge in TSF. Forecasting the own utility graph was seen as an

arbitrary task, based on earlier experiments. This still holds for the most

part, as predicting the opponent’s utility graph is the harder challenge of

the two (also see section 2.3.1.1). However, it may still have been insightful

to test whether the forecast error for the own utility graph is sufficiently low,

as well as whether there is a large difference in forecast accuracy between

the benchmarks. The clearest advantage is that this would give additional

insight in the process of going from time series forecasts to outcome pre-

dictions. Currently, the results show some discrepancy between experiment

1 and experiment 2. Where the first shows DeepAR as the clear preferred

method in TSF, the second is more ambiguous. Part of this puzzle may lie

in the ability of these methods to predict their own utility graph.

However, one can argue that predicting the own utility graph is, in this case,

irrelevant. A TDA knows from the start what trajectory it will follow and

thus should not have the need to still predict it. Instead, it could just use its

own future utility graph to find the intersection with the opponent’s predic-

tion. Although this line of reasoning holds for TDA, the same cannot be said

for all types of agents. Many agents may themselves be unsure about their

future utility graph, and be dependent on the opponent’s moves, as well

as some inherent randomness. Still, one can argue that these agents will

know better what direction they will take themselves. This is true for many

agents, but removing the own prediction would also decrease the wide ap-

plicability of the research even further, as the user would have to insert their

(possible) future utility graph themselves, as opposed to it being included

in the framework.

Nevertheless, a small additional test was run to gain some insight into the

above question. Here, the second experiment was repeated for a minor sub-

87

Discussion and Limitations

set of negotiations, but with the true utility graph of the own agent used

to find the intersection, instead of the forecast. We found that doing this

improved the performance for all methods, but still maintains the same rel-

ative distribution of the performances between the methods. So, no single

method improved disproportionately much. This suggests that the in- or

exclusion of a prediction of your own utility graph is not responsible for the

relative ordering in prediction method performance.

6.2.5 Intersection Method

To be able to make a TSF, the true outcomes are converted to utility time se-

ries. The forecasts made based on these time series do not take into account

what can or cannot be an actual negotiation outcome. Rather, it returns

utilities that it believes are logical continuations of past observations. For

this reason, it is possible for the forecasting method to make a forecast that

does not have any real negotiation outcomes surrounding it. This results

in the intersection method finding outcomes that equally do not have any

associated real outcome. This was not a problem in this research because

the party domain is densely spread out over the outcome plane. Therefore,

there was always an outcome close to the predicted utility. However, for

sparse outcome spaces, this may present an issue. For such outcome spaces,

the chance to return a utility that does not have an associated outcome in-

creases. In these situations, it may be wise to adjust the model or intersec-

tion method so that it takes into account the outcome space when making

predictions.

Another issue in the current intersection method is that the intersection is

always made from the perspective of our own agent. When the forecasts

cross each other, that is what we count as having reached an agreement. The

analysis was chosen like this as it is the only way to determine that an agree-

ment is reached from time series forecasts. In reality, however, this is only

true when our own agent ends the negotiation with an agreement, since it

is viewed from their perspective. As such, the method does not consider

that the opposing agent may not view the utilities as having crossed yet at

88

6.2 Limitations

all. Fortunately, this only presents an issue in situations where the opposing

agent would have terminated the negotiation earlier. This is because if they

wanted to end it later, our agent already beat them to the punch, meaning

that our agent "determines" the outcome. Moreover, for these negotiations

terminated by the opponent, our own agent receives a higher utility since

the negotiation is ended earlier in its concession curve.

6.2.6 Applicability

Many algorithms and techniques in the field of automated negotiation (so

far) have primarily seen usage in simulated environments, such as Genius,

and in the annual ANAC negotiation competitions. In this context, the pri-

mary ’goal’ is improving the outcomes achieved by the agent in various

negotiation formats. The idea is that if these agents are made to be good

in simulated environments, this will translate to real negotiation environ-

ments. This idea is also implicitly present in this research. For this purpose,

the predicting method is valid. One can imagine putting different conces-

sion trajectories for their own agent in the program and evaluating the dif-

ferent outcome predictions. These can help the agent decide whether they

want to change their trajectory for the possibility of gaining utility. Ad-

ditionally, they can evaluate the associated risk of doing so by analyzing

the distribution’s spread and agreement probability. Agents involved in

multiple simultaneous negotiations can decide which negotiations are most

worthwhile to spend computational resources on. However, for both sce-

narios, to be able to fully reap the benefits of this research, more work is

needed. See 7.2.2 for a discussion of this.

Then on to non-simulated negotiations. Utilities should give us an indica-

tive idea of how content a party is with a certain negotiation outcome (e.g.,

two different outcomes with the same utility should be evaluated equally).

If this indication does a good job at describing the negotiation context, this

research can be used effectively. Think of scenarios such as commerce or

salary negotiation, where the concepts that are up for negotiation already

have a clear numerical dimension. In these settings, the tactics described

89

Discussion and Limitations

above for simulated environments can be applied just as well2.

However, there are scenarios imaginable where such a numerical translation

of a party’s preferences fails to fully capture the broader context of a negotia-

tion. After all, it is hard to quantize abstract concepts such as "want", "need",

or "desire" into numbers. You would have to transform the issues into

utilities and the negotiation dynamics into a bilateral round-based setting.

These computational negotiation mechanics are great for artificial agents to

understand and do analysis on but do not capture the social mechanisms

of a real (automated) negotiation. Even for fully automated negotiations,

it is questionable how easily the settings can be translated to one that our

model can interpret. In these situations, the research as it stands now falls

short. Nevertheless, this research can be a step in the right direction to be

able to do this in the future. For this reason, we have developed a modular

application based on this research to predict negotiation outcomes. More

information on this can be found in 7.2.3.

2This does assume the negotiation is still automated. However, the reader is free to
bring an AI to a non-automated salary negotiation if they so desire, we would be very
interested in their findings.

90

7. Conclusion and Future Work

7.1 Conclusion

In this thesis, we made the first steps in predicting the outcomes of auto-

mated negotiations. The main question we sought to answer was:

Research Question

How can we best predict the outcome of an automated negotiation?

We developed a framework for predicting automated negotiation outcomes

as our solution to our research problem. This framework treats negotiations

as time series and divides the problem into two subprocesses. The first of

these is a time series forecasting process and the second an intersection one.

Splitting the framework into these two distinct steps improves its modular-

ity. We believe that this makes our solution comprehensible and suitable

for further experimentation by other researchers, as individual parts can be

easily adjusted.

When applying state-of-the-art TSF methodology to this framework, our so-

lution can predict the utility outcomes of negotiations within 0.04 utility of

the real outcome, on average. It also correctly predicts whether a negotia-

tion ends in an agreement for 82% of negotiations, achieving an F1-score of

0.876.

The first subquestion we answered was:

Research Question 1.1

How can we best predict the utility time series of the agents partici-

pating in a negotiation?

We tested six different TSF methods in forecasting negotiation time series.

91

Conclusion and Future Work

We showed that automated negotiation utility time series are difficult to

predict with classic statistical models. Deep learning models were found

to be the most effective method for TSF, due to their ability to learn from

data across different negotiations. These networks outperformed the other

five methods in forecasting accuracy, as measured with CRPS error. The

best method, DeepAR, achieved an average CRPS error score of 0.081. Ad-

ditionally, we showed the predictability of negotiation time series could be

improved by introducing a behavior-based strategy component. In this the-

sis, this was modeled with the learning rate.

The second subquestion we answered was:

Research Question 1.2

How can we best predict the outcome of an automated negotiation

based on time series forecasts of utility graphs?

We found that Monte Carlo methods are the most effective method for con-

verting utility forecasts to outcome predictions. Notably, performance in

time series forecasting did not translate directly into outcome predictions

for all TSF methods. In general, deep learning methods were once again the

most effective tool for accurately predicting the outcome of negotiations,

both for utility outcome and agreement probability prediction. DeepAR

showed the best performance across the board, especially for agreement

negotiations. In contrast, it has the most room to improve when classify-

ing breakoff negotiations, perhaps because these formed a smaller part of

our data set. DeepAR achieved an average CRPS of 0.04 in utility outcome

prediction, and classified 82% of negotiations correctly for both agreements

and breakoffs. It achieved a recall of 0.82 and a precision of 0.94, resulting

in an F1-score of 0.876.

We also found that the main drawback of deep learning networks is their

inflexibility, as setup takes longer and the network had to be tailored to the

specific negotiation setting at hand. When choosing between classical statis-

tic models only, we found linear extrapolation to perform best. All methods

improved in performance when given more negotiation data ("later cutoff

92

7.2 Future Work

points") and when the opponent behaved more predictable ("learning rate").

In this thesis, we have made the first steps in investigating the possibilities

of predicting the outcome of automated negotiations. In conclusion, auto-

mated negotiation outcomes are still challenging to predict, but we believe

our approach is a valuable first step in their prediction.

7.2 Future Work

As this is the first research of this kind, we believe that the drawbacks de-

scribed here can be mitigated with future research on (deep learning) pre-

diction methods for automated negotiation. In this section, we will discuss

some suggestions for future research directions that we believe may prove

promising for the development of automated negotiation predictions.

7.2.1 Improving the predictions

The most straightforward direction for future research is improving time

series forecasts and outcome predictions. This is best done by further de-

veloping the prediction network. Naturally, a network more equipped for

the task at hand should lead to better predictions. Perhaps a more advanced

type of temporal network can be tested for its ability to make accurate pre-

dictions. Another possibility is to take more parameters into account when

making the prediction. In deep learning, this can make a big difference in

prediction accuracy. We propose to integrate an opponent model into the

network which can assist in the prediction. Additionally, the network can

also be made to directly predict the outcome, as opposed to splitting the

time series forecasting and intersecting in two separate steps. If this is done,

an additional improvement could be to give the network an extra dimension

by integrating the "true" negotiation outcomes into its input and output, in-

stead of just utility scores.

93

Conclusion and Future Work

7.2.2 Widening the scope

To reduce the number of variables that can influence the results, the scope of

this research was kept to one negotiation setting with one type of negotiat-

ing agent. With the first steps made, a logical development of this research

is to widen the scope and see how well it holds up. One option is to include

more agents and strategy types in the research. Perhaps a general predictor

can be developed that works for all or a wide subset of agents. Likewise, the

research can be extended outside of bilateral, alternating-offer negotiations

to include more negotiation settings.

A different direction that is of paramount importance is the network’s ap-

plicability to non-simulated negotiations. Improving the network so that

it can be tested in real use cases should be a next step in its development.

Many algorithms and agents in automated negotiations are developed and

tested in a simulated environment, and this research is no exception. If re-

search should ever want to have an impact on stakeholders outside of just

academia, the network must also be made to work in this context. Examples

of relevant settings can include, but are not limited to salary negotiations,

commerce, automated systems communication, or political negotiations.

7.2.3 Application

To give our work back to the scientific community and encourage further

research building on this, we have developed an application for the Python-

based negotiation simulator NegMAS [69]. It comes with the DeepAR mod-

els trained for this research, as well as the possibility to train a custom

model, and all five benchmarks. Additionally, the application is fully modu-

lar, meaning the user can choose which parts of the research they would like

to experiment with, and customize their networks with all options GluonTS

offers for their DeepAR network. This means they can experiment with dif-

ferent model architectures, likelihood-, or loss functions. The intersection

method is included as well, with the possibility to input any combination of

forecasts and true concession curves.

94

A. Additional Information

A.1 Other TSF methods

A.1.1 ARIMA

ARIMA stands for AutoRegressive Integrated Moving Average. It is one

of the most widely used approaches to Time Series Forecasting and aims

to describe autocorrelations in data [32]. Autocorrelations in data are the

similarities between observations made at different points in the time series.

ARIMA uses these earlier value as predictors for future values in the series,

so called "lagged values". An ARIMA model can not easily be used and ran

"as is". It needs to be fine-tuned precisely in accordance with the type of data

which it attempts to predict, and the data must be prepared for it to be used

with ARIMA similarly as well. This is most commonly done using the Box-

Jenkins method [15], a process in which the data is analyzed and differenced

to be made usable for the specific time series. To my knowledge, ARIMA

has not been used for the analysis of negotiations before like this, probably

because of the tedious "tuning" which must be done for each time series.

An ARIMA model is tuned using 3 parameters, corresponding to the 3 dif-

ferent submodels contained within ARIMA [70], [71]. These are:

p: The lag order, or number of lag observations in the model. It corresponds

to the AutoRegressive submodel (AR). This is the time series regressed with

its previous value i.e. y(t-1), y(t-2) and so on. The formula for the AR pre-

diction model is:

ŷ(t) = c + Φ1 · y(t − 1) + Φ2 · y(t − 2) + · · ·+ Φp · y(t − p) + ϵt

95

Additional Information

Where y(t) at any time is the value for the timeseries. c is a constant, and Φ

the coefficient of the AR term y(t).

d: The degree of differencing, or the number of times the time series must

be differenced before it becomes stationary. It corresponds to the Integrated

submodel (I). In general, a time series of a dth order difference can be written

as:

y′(t) = (1 − B)dy(t)

Where y(t) is the regular time series and B the ’backshift operator’.

q: The order of moving average, or the size of the moving average window.

It corresponds to the Moving Average submodel (MA), which uses a regres-

sion model on past forecasting errors.

ŷ(t) = c + θ1 · ϵ(t − 1) + θ2 · ϵ(t − 2) + · · ·+ θq · ϵ(t − q)

This is similar to the AR term, again with y(t) the value for the timeseries, c

a constant, and ϵ the coefficient of the MA term y(t).

Combining these, the full ARIMA model is as follows:

y′(t) = c+Φ1 · y′(t− 1)+ · · ·+Φp · y′(t− p)+ θ1 · ϵ(t− 1)+ · · ·+ θq · ϵ(t− q)+ ϵt

These parameters must be carefully determined to create the optimal model

for every time series. Each parameter has its own method by which its op-

timal value can be determined, which we will go over.

Firstly, the degree of differencing d. As mentioned, the time series must be

made stationary. A stationary time series is one whose statistical properties

do not depend on the time at which the series is observed [32] and thus does

not have any trend or seasonality. To test whether a time series is stationary

96

A.1 Other TSF methods

and how often it must be differenced to be made stationary, a Unit Root Test

can be used as well as analysing an Autocorrelation (ACF) plot [32], [33].

After the degree of differencing has been determined, the p and q values still

must be judged. This is done by analyzing the ACF and Partial Autocorre-

lation (PACF) plots, respectively. An ACF is a bar chart of the coefficients of

the correlation between a time series and lags of itself. A PACF plot is a bar

chart of partial correlation coefficients between the series and lags of itself.

For the sake of brevity, I will not go into detail about the exact analysis for

the above-mentioned methods.

A.1.2 Exponential Smoothing

Exponential Smoothing is another statistical time series forecasting method.

Exponential Smoothing and ARIMA together serve as the most commonly

used approaches within time series forecasting, and can be seen as comple-

mentary approaches [32]. Where ARIMA looks at autocorrelations, Expo-

nential Smoothing describes the trend and seasonality of data. It does this

by using the weighted average of past observations, where the weights of

older observations decay exponentially [72]. Thus, the more recent observa-

tions account for a heavier part of the prediction. The most simple version

was introduced by Brown & Goodell [73], which was then improved by Holt

et al. by making the method better equipped at handing data with a trend

[74]. As our data will likely have trends in it, Holt’s Exponential Smoothing

is the preferred version to use. The formula for Holt’s Exponential Smooth-

ing is:

ŷt+h|t = lt + hbt

Here, lt indicates an estimation of the level of the series at time t and bt in-

dicates the estimation of the trend of the time series at time t. The equations

for lt and bt are:

lt = αyt + (1 − α)(lt−1 + bt−1)

97

Additional Information

bt = β(lt − lt−1) + (1 − β)bt

Where αis the smoothing parameter for the level, and β is the smoothing pa-

rameter for the trend 0 ≤ α, β ≥ 1. There are more versions of exponential

smoothing, the most prevalent of which introduce smoothing and season-

ality, but those are not relevant to the problem at hand, as our data does

not require damping, nor is it seasonal. Since exponential smoothing is a

relatively easy-to-implement method which does not require much tuning,

it can serve as a baseline time series forecasting method.

A.1.3 Linear Extrapolation

Linear Extrapolation is a TSF method which extrapolates a line between the

first and final observation in a time series.

A.1.4 Linear Regression

Linear Regression takes all observations in a time series and applies a re-

gression over said points. The outcome is always a straight line, hence the

name. The regression used in this research is SKLearn’s Linear Regression

module for python [75].

A.1.5 Naive

The Naive approach simply extends the last observation in the time series

until the end of the range. This approach is often chosen for random walk

models when no other prediction method is shown to work well.

A.2 Statistical Intersection Methods

A numerical way to calculate the intersection point probabilities is by utiliz-

ing statistical methods. The negotiations ran have discrete timesteps, upper-

bounded by the maximum number of bids allowed to be made by an agent,

which is defined in the Genius environment. So, there is always a maxi-

mum number of bids left to be made, equal to this upper bound minus the

98

A.2 Statistical Intersection Methods

number of bids already made. As established earlier, a prediction of the

utility trajectories gives a probability density function (PDF) for every one

of these (potential) future time steps for all trajectories. For each time step,

these PDFs can be used to find the probability the points will intersect, as

well as which point they are most likely to meet on. Here, it should be taken

into account that earlier time steps influence the probabilities of later time

steps as well, as the chance the trajectories intersect earlier decreases their

chances of intersecting at a later timestep.

When looking at a single timestep. We have two probability density func-

tions X ∼ N(µ, σ2) and Y ∼ N(µ, σ2), where µ represents the mean and σ2

the variance. X is the utility given to us by the opponents’ bids, and Y is the

utility we receive for the bids made ourselves. We assume that X will start

lower than Y, and will trend upwards by the opponent conceding, and Y

will trend downwards by us making concessions. So, Y(µ) > X(µ). The tra-

jectories meet when they cross each other, and thus X > Y. In other words,

the probability that the two utilities intersect is the chance that a random

sample from X is larger than a random sample from Y. Given that this is the

case, a new probability density function must be made by combining the

two other functions which gives the most likely point of overlap. Thus, we

are interested in the joint probability function under the condition that X >

Y. If we let Z be the joint probability function, then fZ|X>Y(t).

Having found the individual timestep distributions, the next step is adding

them. Calculating this joint probability function for each timestep gives

a multitude of distributions over the utility space [0,1]. Combining these

gives the mixture distribution f (x) = ∑n
i=1 wi pi(x) where p1(x), . . . , pn(x)

corresponds to the probability density functions for all timesteps and w1(x),

. . . , wn(x) the weights belonging to the functions. These weights are com-

puted relative to the chance a negotiation ends at the given timestep. The

chance a negotiation ends at t is found by multiplying the chance the prob-

abilities overlap for timestep t, (P(Xt > Yt)) by the chance the probabilities

do not overlap at an earlier timestep. jt = ∏t−1
i=1(1 − p(i))× p(t) where p(t)

is the probability a negotiation ends at timestep t. Conveniently, the comple-

ment of the sum of these probabilities gives the chance the negotiation does

99

Additional Information

not end at any timestep, and thus no deal is made, P(nodeal) = 1 − ∑n
i=1 ji.

The weights are then computed by wt(x) = jt
∑n

i=1 ji
, and can be used to cal-

culate the final mixture distribution, which gives a probability density func-

tion describing the expected utility for our agent.

100

A.2 Statistical Intersection Methods

Figure A.1: Statistical process of generating a probability distribution outcome
from utility graph distributions 101

Additional Information

A.3 Genius

The application used in this research to run and analyze negotiations is Ge-

nius [10]. Genius is the most commonly used automated negotiation sim-

ulator, sporting a robust community of researchers working on the devel-

opment of automated negotiations. Most other research referenced here

regarding automated negotiation is developed, ran and tested at least par-

tially in the program. In Genius, the outcome space of a negotiation and the

associated utilities are represented as seen in figure A.2

Figure A.2: Outcome space as shown in the genius environment, empty

In this image, red points on the plane indicate all possible outcomes of the

negotiation, the outcome space. The blue and green points show the start-

ing points for both agents, being the outcomes for which they receive max-

imum utility. Finally, the purple line indicates the Pareto frontier, which

contains all Pareto optional outcomes for the negotiation. Ideally, a nego-

tiation should result in an outcome which is Pareto optimal. An outcome

is Pareto optimal when there exists no outcome which improves the utility

for one agent while keeping the utility for the other at least the same (e.g.

this outcome would be flatly better than the other one, as no agent has to

compromise anything).

During a negotiation, Genius will also track the offers made by both agents,

which will show how much the agents concede. An example of a full nego-

102

A.3 Genius

tiation can be found in A.3:

Figure A.3: Outcome space as shown in the genius environment after a negoti-
ation

103

B. Additional Results

B.1 Results Experiment 1

104

B.2 Results Experiment 2

B.2 Results Experiment 2

Figure B.1: Proportion of deals pre-
dicted by different methods for ne-
gotiations which ended in a deal, for
cutoff point 20.

Figure B.2: Proportion of deals pre-
dicted by different methods for ne-
gotiations which ended in a deal, for
cutoff point 40.

Figure B.3: Proportion of deals pre-
dicted by different methods for ne-
gotiations which ended in a deal, for
cutoff point 60.

Figure B.4: Proportion of deals pre-
dicted by different methods for ne-
gotiations which ended in a deal, for
cutoff point 80.

105

Additional Results

Figure B.5: Proportion of deals
predicted by different methods
for negotiations which ended in a
breakoff, for cutoff point 20.

Figure B.6: Proportion of deals
predicted by different methods
for negotiations which ended in a
breakoff, for cutoff point 40.

Figure B.7: Proportion of deals
predicted by different methods
for negotiations which ended in a
breakoff, for cutoff point 60.

Figure B.8: Proportion of deals
predicted by different methods
for negotiations which ended in a
breakoff, for cutoff point 80.

106

B.2 Results Experiment 2

B.2.1 ARIMA

Here, it becomes clear that ARIMA, while scoring decently at TSF, nearly

always predicts that a negotiation ends in a breakoff. The gaps in the pre-

diction graph are present because ARIMA did not predict a deal for any

negotiation with those settings.

107

Additional Results

B.2.2 Exponential Smoothing

108

B.2 Results Experiment 2

B.2.3 Linear Regression

109

Additional Results

B.2.4 Linear Extrapolation

110

B.3 Parameter Effect

B.3 Parameter Effect

B.3.1 Concession rate

111

Additional Results

112

B.3 Parameter Effect

The figures show the time series of two TDAs for 20 different concession

rates, between 0.1 and 2.0. Parameters m and l are both 0.

Figure B.9: Effect concession rates 0.1 - 2.0 have on the concession curve.

113

Additional Results

B.3.2 Target Utility

The figures show the time series of two TDAs for 10 different target utilities,

between 0 and 0.9. Parameter e is 1, and l is 0. See figure B.9 for the transition

from a 0 to a 0.9 target utility.

114

B.3 Parameter Effect

Figure B.10: Effect target utilities 0 - 0.9 have on the concession curve.

115

Additional Results

B.3.3 Learning Rate

The figures show the time series of two TDAs for 10 different learning rates,

between 0.1 and 1.0. Parameter e is 1, and m is 0.

116

B.3 Parameter Effect

117

Bibliography

[1] R. Benjamin, “The natural history of negotiation and mediation:
The evolution of negotiative behaviors, rituals, and approaches,”
Mediate–Everything Mediation, 2012.

[2] R. I. M. Dunbar, Grooming, gossip, and the evolution of language. Har-
vard University Press, 1996.

[3] D. A. Lax and J. K. Sebenius, The Manager as Negotiator. NY: Free
Press, 1986.

[4] P. Faratin, C. Sierra, and N. R. Jennings, “Negotiation decision func-
tions for autonomous agents,” Robotics and Autonomous Systems, vol. 24,
no. 3-4, pp. 159–182, 1998, ISSN: 09218890. DOI: 10.1016/S0921-
8890(98)00029-3.

[5] N. R. Jennings, P. Faratin, A. R. Lomuscio, S. Parsons, C. Sierra, and
M. Wooldridge, “Automated negotiation: Prospects, methods and
challenges,” International Journal of Group Decision and Negotiation,
vol. 10, no. 2, pp. 199–215, 2001.

[6] M. M. Delaney, A. Foroughi, and W. C. Perkins, “An empirical study
of the efficacy of a computerized negotiation support system (nss),”
Decision Support Systems, vol. 20, no. 3, pp. 185–197, 1997.

[7] S. Chakraborty, T. Baarslag, and M. Kaisers, “Automated peer-to-
peer negotiation for energy contract settlements in residential co-
operatives,” Applied Energy, vol. 259, p. 114 173, 2020.

[8] C. Eran, M. O. Keskin, F. Cantürk, and R. Aydoğan, “A decentral-
ized token-based negotiation approach for multi-agent path find-
ing,” in European Conference on Multi-Agent Systems, Springer, 2021,
pp. 264–280.

[9] B. J. Clement and A. C. Barrett, “Continual coordination through
shared activities,” in Proceedings of the second international joint con-
ference on Autonomous agents and multiagent systems, 2003, pp. 57–64.

[10] R. Lin, S. Kraus, T. Baarslag, D. Tykhonov, K. Hindriks, and C. M.
Jonker, “Genius: An integrated environment for supporting the de-
sign of generic automated negotiators,” Computational Intelligence,
vol. 30, no. 1, pp. 48–70, 2014.

[11] C. R. Williams, V. Robu, E. H. Gerding, and N. R. Jennings, “Using
gaussian processes to optimise concession in complex negotiations
against unknown opponents,” 2011. [Online]. Available: https://
eprints.soton.ac.uk/271965/.

[12] S. Chen, H. B. Ammar, K. Tuyls, and G. Weiss, “Transfer learning
for bilateral multi-issue negotiation,” Belgian/Netherlands Artificial
Intelligence Conference, 2012, ISSN: 15687805.

118

https://doi.org/10.1016/S0921-8890(98)00029-3
https://doi.org/10.1016/S0921-8890(98)00029-3
https://eprints.soton.ac.uk/271965/
https://eprints.soton.ac.uk/271965/

Bibliography

[13] K. Hindriks, C. M. Jonker, and D. Tykhonov, “Let’s dans! An an-
alytic framework of negotiation dynamics and strategies,” Web In-
telligence and Agent Systems, vol. 9, no. 4, pp. 319–335, 2011, ISSN:
15701263. DOI: 10.3233/WIA-2011-0221.

[14] V. Dhar, “Data science and prediction,” Communications of the ACM,
vol. 56, no. 12, pp. 64–73, 2013.

[15] G. E. Box, G. M. Jenkins, G. C. Reinsel, and G. M. Ljung, Time series
analysis: forecasting and control. John Wiley & Sons, 1970.

[16] G. Yesevi, M. O. Keskin, A. Doğru, and R. Aydoğan, “Time Series
Predictive Models for Opponent Behavior Modeling in Bilateral Ne-
gotiations,” Lecture Notes in Computer Science (including subseries Lec-
ture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),
vol. 13753 LNAI, pp. 381–398, 2023, ISSN: 16113349. DOI: 10.1007/
978-3-031-21203-1_23. [Online]. Available: http://dx.doi.org/
10.1007/978-3-031-21203-1_23.

[17] C. Hou, “Predicting agents tactics in automated negotiation,” Pro-
ceedings - IEEE/WIC/ACM International Conference on Intelligent Agent
Technology. IAT 2004, pp. 127–133, 2004. DOI: 10.1109/iat.2004.
1342934.

[18] A. Sengupta, Y. Mohammad, and S. Nakadai, “An autonomous ne-
gotiating agent framework with reinforcement learning based strate-
gies and adaptive strategy switching mechanism,” Proceedings of the
International Joint Conference on Autonomous Agents and Multiagent
Systems, AAMAS, vol. 2, pp. 1151–1160, 2021, ISSN: 15582914. DOI:
10.5555/3463952.3464087. arXiv: 2102.03588.

[19] M. Li, P. K. Murukannaiah, and C. M. Jonker, “A data-driven method
for recognizing automated negotiation strategies,” no. 1, 2021. arXiv:
2107.01496. [Online]. Available: https://arxiv.org/abs/2107.
01496v2.

[20] L. Ilany and Y. Gal, “Algorithm selection in bilateral negotiation,”
Autonomous Agents and Multi-Agent Systems, vol. 30, no. 4, pp. 697–
723, 2016, ISSN: 15737454. DOI: 10.1007/s10458-015-9302-8.

[21] D. Van Poucke and M. Buelens, “Predicting the outcome of a two-
party price negotiation: Contribution of reservation price, aspira-
tion price and opening offer,” Journal of Economic Psychology, vol. 23,
no. 1, pp. 67–76, 2002, ISSN: 01674870. DOI: 10.1016/S0167-4870(0
1)00068-X.

[22] Max H. Bazerman, Jared R. Curhan, Don A. Moore, and Kathleen L.
Valley, “Negotiation,” Annual Review of Psychology, vol. 51, pp. 279–
314, 2000.

[23] S. Sharma, W. P. Bottom, and H. A. Elfenbein, “On the role of per-
sonality, cognitive ability, and emotional intelligence in predicting
negotiation outcomes: A meta-analysis,” journals.sagepub.com, vol. 3,
no. 4, pp. 293–336, 2013. DOI: 10.1177/2041386613505857. [Online].
Available: https://journals.sagepub.com/doi/pdf/10.1177/
2041386613505857 ? casa _ token = B5UhB9y8tgwAAAAA : EfZX3Muz -

119

https://doi.org/10.3233/WIA-2011-0221
https://doi.org/10.1007/978-3-031-21203-1_23
https://doi.org/10.1007/978-3-031-21203-1_23
http://dx.doi.org/10.1007/978-3-031-21203-1_23
http://dx.doi.org/10.1007/978-3-031-21203-1_23
https://doi.org/10.1109/iat.2004.1342934
https://doi.org/10.1109/iat.2004.1342934
https://doi.org/10.5555/3463952.3464087
https://arxiv.org/abs/2102.03588
https://arxiv.org/abs/2107.01496
https://arxiv.org/abs/2107.01496v2
https://arxiv.org/abs/2107.01496v2
https://doi.org/10.1007/s10458-015-9302-8
https://doi.org/10.1016/S0167-4870(01)00068-X
https://doi.org/10.1016/S0167-4870(01)00068-X
https://doi.org/10.1177/2041386613505857
https://journals.sagepub.com/doi/pdf/10.1177/2041386613505857?casa_token=B5UhB9y8tgwAAAAA:EfZX3Muz-PA-wr4s9uMYVKMm5by7yNos42kW6gXd7Xnxbz6hBbzuMt17BiBScsEku5qnpt8clBo
https://journals.sagepub.com/doi/pdf/10.1177/2041386613505857?casa_token=B5UhB9y8tgwAAAAA:EfZX3Muz-PA-wr4s9uMYVKMm5by7yNos42kW6gXd7Xnxbz6hBbzuMt17BiBScsEku5qnpt8clBo
https://journals.sagepub.com/doi/pdf/10.1177/2041386613505857?casa_token=B5UhB9y8tgwAAAAA:EfZX3Muz-PA-wr4s9uMYVKMm5by7yNos42kW6gXd7Xnxbz6hBbzuMt17BiBScsEku5qnpt8clBo

Bibliography

PA-wr4s9uMYVKMm5by7yNos42kW6gXd7Xnxbz6hBbzuMt17BiBScsEku5
qnpt8clBo.

[24] H. Kristensen and T. Gärling, “The effects of anchor points and ref-
erence points on negotiation process and outcome,” Organizational
behavior and human decision processes, vol. 71, no. 1, pp. 85–94, 1997.

[25] A. D. Galinsky, W. W. Maddux, D. Gilin, and J. B. White, “Why it
pays to get inside the head of your opponent: The differential effects
of perspective taking and empathy in negotiations,” Psychological
science, vol. 19, no. 4, pp. 378–384, 2008.

[26] D. C. Moosmayer, A. Y. L. Chong, M. J. Liu, and B. Schuppar, “A
neural network approach to predicting price negotiation outcomes
in business-to-business contexts,” Expert Systems with Applications,
vol. 40, no. 8, pp. 3028–3035, 2013, ISSN: 09574174. DOI: 10.1016/j.
eswa.2012.12.018. [Online]. Available: http://dx.doi.org/10.
1016/j.eswa.2012.12.018.

[27] J. Mell, G. M. Lucas, and J. Gratch, “Pandemic Panic: The Effect
of Disaster-Related Stress on Negotiation Outcomes,” Proceedings
of the 21st ACM International Conference on Intelligent Virtual Agents,
IVA 2021, pp. 148–155, 2021. DOI: 10.1145/3472306.3478353.

[28] K. Chawla, G. Lucas, J. May, and J. Gratch, “BERT in Negotiations:
Early Prediction of Buyer-Seller Negotiation Outcomes,” 2020. arXiv:
2004.02363. [Online]. Available: http://arxiv.org/abs/2004.
02363.

[29] R. A. Carbonneau, G. E. Kersten, and R. M. Vahidov, “Pairwise issue
modeling for negotiation counteroffer prediction using neural net-
works,” Decision Support Systems, vol. 50, no. 2, pp. 449–459, 2011,
ISSN: 01679236. DOI: 10.1016/j.dss.2010.11.002.

[30] J. Brzostowski and R. Kowalczyk, “Adaptive negotiation with on-
line prediction of opponent behaviour in agent-based negotiations,”
Proceedings - 2006 IEEE/WIC/ACM International Conference on Intelli-
gent Agent Technology (IAT 2006 Main Conference Proceedings), IAT’06,
pp. 263–269, 2006. DOI: 10.1109/IAT.2006.26.

[31] M. O. Keskin, U. Çakan, and R. Aydogan, “Solver agent: Towards
emotional and opponent-aware agent for human-robot negotiation,”
Proceedings of the International Joint Conference on Autonomous Agents
and Multiagent Systems, AAMAS, vol. 3, pp. 1545–1547, 2021, ISSN:
15582914.

[32] R. J. Hyndman and G. Athanasopoulos, Forecasting: principles and
practice. OTexts, 2018.

[33] R. Nau, Statistical forecasting: notes on regression and time series analy-
sis, 2020. [Online]. Available: https://people.duke.edu/$%5Csim$
rnau/411home.htm.

[34] F. X. Diebold and L. Kilian, “Measuring predictability: Theory and
macroeconomic applications,” Journal of Applied Econometrics, vol. 16,
no. 6, pp. 657–669, 2001, ISSN: 08837252. DOI: 10.1002/jae.619.

120

https://journals.sagepub.com/doi/pdf/10.1177/2041386613505857?casa_token=B5UhB9y8tgwAAAAA:EfZX3Muz-PA-wr4s9uMYVKMm5by7yNos42kW6gXd7Xnxbz6hBbzuMt17BiBScsEku5qnpt8clBo
https://journals.sagepub.com/doi/pdf/10.1177/2041386613505857?casa_token=B5UhB9y8tgwAAAAA:EfZX3Muz-PA-wr4s9uMYVKMm5by7yNos42kW6gXd7Xnxbz6hBbzuMt17BiBScsEku5qnpt8clBo
https://journals.sagepub.com/doi/pdf/10.1177/2041386613505857?casa_token=B5UhB9y8tgwAAAAA:EfZX3Muz-PA-wr4s9uMYVKMm5by7yNos42kW6gXd7Xnxbz6hBbzuMt17BiBScsEku5qnpt8clBo
https://journals.sagepub.com/doi/pdf/10.1177/2041386613505857?casa_token=B5UhB9y8tgwAAAAA:EfZX3Muz-PA-wr4s9uMYVKMm5by7yNos42kW6gXd7Xnxbz6hBbzuMt17BiBScsEku5qnpt8clBo
https://doi.org/10.1016/j.eswa.2012.12.018
https://doi.org/10.1016/j.eswa.2012.12.018
http://dx.doi.org/10.1016/j.eswa.2012.12.018
http://dx.doi.org/10.1016/j.eswa.2012.12.018
https://doi.org/10.1145/3472306.3478353
https://arxiv.org/abs/2004.02363
http://arxiv.org/abs/2004.02363
http://arxiv.org/abs/2004.02363
https://doi.org/10.1016/j.dss.2010.11.002
https://doi.org/10.1109/IAT.2006.26
https://people.duke.edu/$%5Csim$rnau/411home.htm
https://people.duke.edu/$%5Csim$rnau/411home.htm
https://doi.org/10.1002/jae.619

Bibliography

[35] F. Pennekamp, A. C. Iles, J. Garland, et al., “The intrinsic predictabil-
ity of ecological time series and its potential to guide forecasting,”
Ecological Monographs, vol. 89, no. 2, pp. 1–17, 2019, ISSN: 15577015.
DOI: 10.1002/ecm.1359.

[36] P. Xu, L. Yin, Z. Yue, and T. Zhou, “On predictability of time series,”
Physica A: Statistical Mechanics and its Applications, vol. 523, pp. 345–
351, 2019, ISSN: 03784371. DOI: 10.1016/j.physa.2019.02.006.
arXiv: 1806 . 03876. [Online]. Available: https : / / doi . org / 10 .
1016/j.physa.2019.02.006.

[37] K. Pearson, “The problem of the random walk,” Nature, vol. 72,
no. 1865, pp. 294–294, 1905.

[38] E. F. Fama, “Random walks in stock market prices,” Financial ana-
lysts journal, vol. 51, no. 1, pp. 75–80, 1995.

[39] J. Brownlee, A Gentle Introduction to the Random Walk for Times Series
Forecasting, 2020. [Online]. Available: https://machinelearningma
stery.com/gentle-introduction-random-walk-times-series-
forecasting-python/.

[40] A. Seth, “Granger causality,” Scholarpedia, vol. 2, no. 7, p. 1667, 2007,
revision #127333. DOI: 10.4249/scholarpedia.1667.

[41] S. Makridakis, E. Spiliotis, V. Assimakopoulos, A. A. Semenoglou,
G. Mulder, and K. Nikolopoulos, “Statistical, machine learning and
deep learning forecasting methods: Comparisons and ways forward,”
Journal of the Operational Research Society, vol. 74, no. 3, pp. 840–859,
2023, ISSN: 14769360. DOI: 10.1080/01605682.2022.2118629. [On-
line]. Available: https : / / doi . org / 10 . 1080 / 01605682 . 2022 .
2118629.

[42] A. Vaswani, N. Shazeer, N. Parmar, et al., “Attention is all you need,”
Advances in neural information processing systems, vol. 30, 2017.

[43] A. Ramesh, P. Dhariwal, A. Nichol, C. Chu, and M. Chen, “Hier-
archical text-conditional image generation with clip latents,” arXiv
preprint arXiv:2204.06125, vol. 1, no. 2, p. 3, 2022.

[44] J. Gu, Z. Wang, J. Kuen, et al., “Recent advances in convolutional
neural networks,” Pattern recognition, vol. 77, pp. 354–377, 2018.

[45] J. Zou, M. Huss, A. Abid, P. Mohammadi, A. Torkamani, and A.
Telenti, “A primer on deep learning in genomics,” Nature genetics,
vol. 51, no. 1, pp. 12–18, 2019.

[46] S. Amari, “A theory of adaptive pattern classifiers,” IEEE Transac-
tions on Electronic Computers, no. 3, pp. 299–307, 1967.

[47] N. McCullum, Deep Learning Neural Networks Explained in Plain En-
glish, 2020. [Online]. Available: https://www.freecodecamp.org/
news/deep-learning-neural-networks-explained-in-plain-
english/#:$%5Csim$:text=Neurons%20in%20deep%20learning%
20models,layer%20of%20the%20neural%20net..

[48] L. Shukla, Fundamentals of Neural Networks, 2023. [Online]. Avail-
able: https://wandb.ai/wandb_fc/articles/reports/Fundament
als-of-Neural-Networks--Vmlldzo1NDQ0Mzk1.

121

https://doi.org/10.1002/ecm.1359
https://doi.org/10.1016/j.physa.2019.02.006
https://arxiv.org/abs/1806.03876
https://doi.org/10.1016/j.physa.2019.02.006
https://doi.org/10.1016/j.physa.2019.02.006
https://machinelearningmastery.com/gentle-introduction-random-walk-times-series-forecasting-python/
https://machinelearningmastery.com/gentle-introduction-random-walk-times-series-forecasting-python/
https://machinelearningmastery.com/gentle-introduction-random-walk-times-series-forecasting-python/
https://doi.org/10.4249/scholarpedia.1667
https://doi.org/10.1080/01605682.2022.2118629
https://doi.org/10.1080/01605682.2022.2118629
https://doi.org/10.1080/01605682.2022.2118629
https://www.freecodecamp.org/news/deep-learning-neural-networks-explained-in-plain-english/#:$%5Csim$:text=Neurons%20in%20deep%20learning%20models,layer%20of%20the%20neural%20net.
https://www.freecodecamp.org/news/deep-learning-neural-networks-explained-in-plain-english/#:$%5Csim$:text=Neurons%20in%20deep%20learning%20models,layer%20of%20the%20neural%20net.
https://www.freecodecamp.org/news/deep-learning-neural-networks-explained-in-plain-english/#:$%5Csim$:text=Neurons%20in%20deep%20learning%20models,layer%20of%20the%20neural%20net.
https://www.freecodecamp.org/news/deep-learning-neural-networks-explained-in-plain-english/#:$%5Csim$:text=Neurons%20in%20deep%20learning%20models,layer%20of%20the%20neural%20net.
https://wandb.ai/wandb_fc/articles/reports/Fundamentals-of-Neural-Networks--Vmlldzo1NDQ0Mzk1
https://wandb.ai/wandb_fc/articles/reports/Fundamentals-of-Neural-Networks--Vmlldzo1NDQ0Mzk1

Bibliography

[49] B. Lim and S. Zohren, “Time-series forecasting with deep learning:
A survey,” Philosophical Transactions of the Royal Society A: Mathemat-
ical, Physical and Engineering Sciences, vol. 379, no. 2194, 2021, ISSN:
1364503X. DOI: 10.1098/rsta.2020.0209. arXiv: 2004.13408.

[50] J. Manyika, M. Chui, B. Brown, et al., “Big data: The next frontier for
innovation, competition, and productivity,” 2011.

[51] P. Taylor, “Amount of data created, consumed, and stored 2010-
2020, with forecasts to 2025,” Statista, 2022. [Online]. Available: h
ttps://www.statista.com/statistics/871513/worldwide-data-
created/.

[52] Y. Yu, X. Si, C. Hu, and J. Zhang, “A Review of Recurrent Neural
Networks: LSTM Cells and Network Architectures,” Neural Compu-
tation, vol. 31, no. 7, pp. 1235–1270, Jul. 2019, ISSN: 0899-7667. DOI:
10.1162/NECO_A_01199. [Online]. Available: https://direct-mit-
edu.proxy.library.uu.nl/neco/article/31/7/1235/8500/A-
Review-of-Recurrent-Neural-Networks-LSTM-Cells.

[53] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neu-
ral computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[54] S. Merity, N. S. Keskar, and R. Socher, “Regularizing and optimiz-
ing lstm language models,” arXiv preprint arXiv:1708.02182, 2017.

[55] J. Schmidhuber, The 2010s: Our Decade of Deep Learning / Outlook on
the 2020s, 2020. [Online]. Available: https://people.idsia.ch/$%
5Csim$juergen/2010s-our-decade-of-deep-learning.html.

[56] A. Alexandrov, K. Benidis, M. Bohlke-Schneider, et al., “GluonTS:
Probabilistic Time Series Modeling in Python,” arXiv preprint arXiv:1906.05264,
2019.

[57] D. Salinas, V. Flunkert, J. Gasthaus, and T. Januschowski, “DeepAR:
Probabilistic forecasting with autoregressive recurrent networks,”
International Journal of Forecasting, vol. 36, no. 3, pp. 1181–1191, 2020,
ISSN: 01692070. DOI: 10.1016/j.ijforecast.2019.07.001. arXiv:
1704.04110. [Online]. Available: https://doi.org/10.1016/j.
ijforecast.2019.07.001.

[58] A. Lambert, D. Gruyer, and G. S. Pierre, “A Fast Monte Carlo al-
gorithm for collision probability estimation,” 2008 10th International
Conference on Control, Automation, Robotics and Vision, ICARCV 2008,
vol. 1, no. December, pp. 406–411, 2008. DOI: 10 . 1109 / ICARCV .
2008.4795553.

[59] V. Vahedi and M. Surendra, “A monte carlo collision model for
the particle-in-cell method: Applications to argon and oxygen dis-
charges,” Computer Physics Communications, vol. 87, no. 1, pp. 179–
198, 1995, Particle Simulation Methods, ISSN: 0010-4655. DOI: http
s://doi.org/10.1016/0010-4655(94)00171-W. [Online]. Avail-
able: https://www.sciencedirect.com/science/article/pii/
001046559400171W.

122

https://doi.org/10.1098/rsta.2020.0209
https://arxiv.org/abs/2004.13408
https://www.statista.com/statistics/871513/worldwide-data-created/
https://www.statista.com/statistics/871513/worldwide-data-created/
https://www.statista.com/statistics/871513/worldwide-data-created/
https://doi.org/10.1162/NECO_A_01199
https://direct-mit-edu.proxy.library.uu.nl/neco/article/31/7/1235/8500/A-Review-of-Recurrent-Neural-Networks-LSTM-Cells
https://direct-mit-edu.proxy.library.uu.nl/neco/article/31/7/1235/8500/A-Review-of-Recurrent-Neural-Networks-LSTM-Cells
https://direct-mit-edu.proxy.library.uu.nl/neco/article/31/7/1235/8500/A-Review-of-Recurrent-Neural-Networks-LSTM-Cells
https://people.idsia.ch/$%5Csim$juergen/2010s-our-decade-of-deep-learning.html
https://people.idsia.ch/$%5Csim$juergen/2010s-our-decade-of-deep-learning.html
https://doi.org/10.1016/j.ijforecast.2019.07.001
https://arxiv.org/abs/1704.04110
https://doi.org/10.1016/j.ijforecast.2019.07.001
https://doi.org/10.1016/j.ijforecast.2019.07.001
https://doi.org/10.1109/ICARCV.2008.4795553
https://doi.org/10.1109/ICARCV.2008.4795553
https://doi.org/https://doi.org/10.1016/0010-4655(94)00171-W
https://doi.org/https://doi.org/10.1016/0010-4655(94)00171-W
https://www.sciencedirect.com/science/article/pii/001046559400171W
https://www.sciencedirect.com/science/article/pii/001046559400171W

Bibliography

[60] D. P. Kroese, T. Brereton, T. Taimre, and Z. I. Botev, “Why the monte
carlo method is so important today,” Wiley Interdisciplinary Reviews:
Computational Statistics, vol. 6, no. 6, pp. 386–392, 2014.

[61] C. J. Spoerer, P. McClure, and N. Kriegeskorte, “Recurrent convo-
lutional neural networks: A better model of biological object recog-
nition,” Frontiers in Psychology, vol. 8, no. SEP, pp. 1–14, 2017, ISSN:
16641078. DOI: 10.3389/fpsyg.2017.01551.

[62] M. Taboga, "Log-likelihood", Lectures on probability theory and mathe-
matical statistics. 2021. [Online]. Available: https://www.statlect.
com/glossary/log-likelihood.

[63] A. Amini, A. Amini, S. Karaman, and D. Rus, “Spatial uncertainty
sampling for end-to-end control,” May 2018.

[64] J. Matheson and R. Winkler, “Scoring rules for continuous proba-
bility distributions,” Management Science, vol. 22, no. 10, pp. 1087–
1096, 1976.

[65] L. Tsaprounis, Metrics for Distributional Forecasts, 2023. [Online]. Avail-
able: https : / / medium . com / trusted - data - science - haleon /
metrics-for-distributional-forecasts-60e156c60177.

[66] T. Gneiting and M. Katzfuss, “Probabilistic forecasting,” Annual Re-
view of Statistics and Its Application, vol. 1, pp. 125–151, 2014, ISSN:
2326831X. DOI: 10.1146/annurev-statistics-062713-085831.

[67] I. Faran, CRPS: A scoring function for bayesian machine learning models,
2023. [Online]. Available: https://towardsdatascience.com/cr
ps - a - scoring - function - for - bayesian - machine - learning -
models-dd55a7a337a8.

[68] K. Hindriks, C. M. Jonker, and D. Tykhonov, “Analysis of negotia-
tion dynamics,” Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformat-
ics), vol. 4676 LNAI, pp. 27–35, 2007, ISSN: 16113349. DOI: 10.1007/
978-3-540-75119-9_3.

[69] Y. Mohammed, NegMAS, 2018. [Online]. Available: https://negma
s.readthedocs.io/en/latest/#.

[70] N. Bora, Understanding ARIMA Models for Machine Learning, 2021.
[Online]. Available: https://www.capitalone.com/tech/machine-
learning/understanding-arima-models/.

[71] Shweta, Introduction to Time Series Forecasting — Part 2 (ARIMA Mod-
els), 2021. [Online]. Available: https://towardsdatascience.com/
introduction- to- time- series- forecasting- part- 2- arima-
models-9f47bf0f476b.

[72] E. S. Gardner Jr, “Exponential smoothing: The state of the art—part
ii,” International journal of forecasting, vol. 22, no. 4, pp. 637–666, 2006.

[73] R. G. Brown, “Exponential smoothing for predicting demand. cam-
bridge, mass., arthur d. little,” Book Exponential Smoothing for Pre-
dicting Demand, 1956.

[74] C. C. Holt, “Forecasting trends and seasonals by exponentially weighted
moving averages,” ONR Memorandum, vol. 52, no. 52, pp. 5–10, 1957.

123

https://doi.org/10.3389/fpsyg.2017.01551
https://www.statlect.com/glossary/log-likelihood
https://www.statlect.com/glossary/log-likelihood
https://medium.com/trusted-data-science-haleon/metrics-for-distributional-forecasts-60e156c60177
https://medium.com/trusted-data-science-haleon/metrics-for-distributional-forecasts-60e156c60177
https://doi.org/10.1146/annurev-statistics-062713-085831
https://towardsdatascience.com/crps-a-scoring-function-for-bayesian-machine-learning-models-dd55a7a337a8
https://towardsdatascience.com/crps-a-scoring-function-for-bayesian-machine-learning-models-dd55a7a337a8
https://towardsdatascience.com/crps-a-scoring-function-for-bayesian-machine-learning-models-dd55a7a337a8
https://doi.org/10.1007/978-3-540-75119-9_3
https://doi.org/10.1007/978-3-540-75119-9_3
https://negmas.readthedocs.io/en/latest/#
https://negmas.readthedocs.io/en/latest/#
https://www.capitalone.com/tech/machine-learning/understanding-arima-models/
https://www.capitalone.com/tech/machine-learning/understanding-arima-models/
https://towardsdatascience.com/introduction-to-time-series-forecasting-part-2-arima-models-9f47bf0f476b
https://towardsdatascience.com/introduction-to-time-series-forecasting-part-2-arima-models-9f47bf0f476b
https://towardsdatascience.com/introduction-to-time-series-forecasting-part-2-arima-models-9f47bf0f476b

Bibliography

[75] Sklearn Linear Regression, 2023. [Online]. Available: https://www.
simplilearn.com/tutorials/scikit-learn-tutorial/sklearn-
linear-regression-with-examples (visited on 02/22/2024).

124

https://www.simplilearn.com/tutorials/scikit-learn-tutorial/sklearn-linear-regression-with-examples
https://www.simplilearn.com/tutorials/scikit-learn-tutorial/sklearn-linear-regression-with-examples
https://www.simplilearn.com/tutorials/scikit-learn-tutorial/sklearn-linear-regression-with-examples

	Introduction
	Predicting the outcome
	Existing Approaches
	Research Question
	Thesis Outline

	Literature Review
	Predicting Classical Negotiations
	Predicting Automated Negotiations
	Time Series Forecasting
	Deep Learning
	Monte Carlo Methods

	Predicting the Negotiation Outcome
	Negotiation Outcomes
	TSF Solution: Neural Networks
	Intersection Solution: Monte Carlo Methods
	CRPS

	Experiments
	Experiment Overview
	Experiment Setup
	Preliminary Experiments

	Results
	Time Series Forecasting
	Outcome Prediction

	Discussion and Limitations
	Discussion
	Limitations

	Conclusion and Future Work
	Conclusion
	Future Work

	Additional Information
	Other TSF methods
	Statistical Intersection Methods
	Genius

	Additional Results
	Results Experiment 1
	Results Experiment 2
	Parameter Effect

	Bibliography

