
SUMMARIZATION SYSTEM EVALUATION VARIATIONS BASED ON

N-GRAM GRAPHS

GEORGE GIANNAKOPOULOS
NCSR DEMOKRITOS, GREECE

AND

VANGELIS KARKALETSIS
NCSR DEMOKRITOS, GREECE

Abstract. Within this article, we present the application of the AutoSummENG method within
the TAC 2010 AESOP challenge. We further present two novel evaluation methods based on

n-gram graphs. The first method is called Merged Model Graph (MeMoG) and it uses the n-

gram graph framework to represent a set of documents with a single, “centroid” graph, offering
state-of-the-art performance. The second method is called Hierarchical Proximity Graph (HPG)

evaluation and it uses a hierarchy of graphs to represent texts, aiming to represent different

granularity levels under a unified view. The experiments indicate that both novel methods offer
very promising performance in different aspects of evaluation, improving on AutoSummENG

scores.

1. Introduction

Throughout the history of artificial intelligence, there has existed the challenge of automatically
analyzing text. For several years the summarization community has progressed and flourished,
moving from single-document to multi-document summarization with promising results. However,
the advancement of summarization systems implied a serious question: how can one measure auto-
matically the quality of a single summary, or of a summarization system?

Automatic methods for the evaluation of summaries exist for some time now [HLZF05, Lin04,
ZLMH06, SK09] and correlate highly to the measure of responsiveness. This measure, first appearing
within the DUC community (see e.g., [Dan05]), is expected to represent a measure of information
completeness and linguistic quality for a given text, as a human assesses it. Even though the
correlation of the automatic methods to the human grades is high on the system level, until recently
there were some other desired characteristics that did not coexist in a single automatic method.
More precisely:

• Language-neutrality. A method that does not require language dependent resources (the-
sauri, lexica, etc.) can be applied directly to different languages, without even the use of
stemming or other language-specific preprocessing.

• Full automation. A method should not require human intervention, apart from the human
model summaries.

• Context-sensitivity. A method should take into account contextual information, so that
well-formedness of text is taken into account. Well-formedness can be loosely defined as
the quality of a text that allows easy reading. A text that is a random sequence of words
would lack this quality, even if the words are on topic.



The AutoSummENG method [GKVS08] (AUTOmatic SUMMary Evaluation based on N-gram
Graphs), holds all these qualities, while bearing results with high correlation to the responsiveness
measure, which indicates correlation to human judgment. Based on the knowledge gained by
AutoSummENG, we hereby describe two novel variations using n-gram graphs: the Merged Model
Graph (MeMoG) variation and the Hierarchical Proximity Graph (HPG) variation, offering the
next step in n-gram graph based methods.

In the following paragraphs, we introduce the basic notions and algorithms for the representation
of texts through n-gram graphs (Section 2). We then describe the methodology for the comparison,
taking into account different representations that we use in our variations, and how this comparison
leads to the grading of summaries and systems (Section 4). We present experimental results on the
TAC2010 AESOP task (Section 5) and conclude the paper (Section 6) with the lessons learned.

2. System Overview

The AutoSummENG system [GKVS08] is based upon the JInsect library1 of “n-gram graph”-
based text processing. For our experiments in TAC 2010, we applied the AutoSummENG method,
as well as two novel variations over the TAC 2010 AESOP task data. Thus, the study refers to
three methods:

• The first method is the original AutoSummENG, for default parameters of Lmin, LMAX and
Dwin for this year’s corpus. This method creates an n-gram graph representation of the
evaluated text and another n-gram graph per model summary. Then, the measure of Value
Similarity is used to compare the similarity of the evaluated text to each model summary.
The average of these similarities is considered to represent the overall performance of the
summary text.

• The second method, instead of comparing the graph representation of the evaluated sum-
mary text to the graph representation of individual model texts and averaging over them,
calculates the merged graph of all model texts. Then, it compares the evaluated summary
graph to this overall model graph. We term this variation the Merged Model Graph method
(MeMoG) and it aims to non-linearly combine the content of texts into one representative
whole.

• The third method aims to alleviate the burden of estimating AutoSummENG parameters
(see [GKVS08] for more). The approach uses graphs of minimal n-gram size (n=2) as a
first level description of texts and, then, identifies subgraphs creating a second level of
graphs. This second level of graphs, termed proximity graph, expresses neighborhood of
subgraphs (viewed as distinct symbols) in the original text. Iteratively, new, higher levels
of proximity graphs are then built using the subgraphs of the previous level as symbols to
form a hierarchy of graphs, representing texts with multiple granularity levels.

In order to introduce the reader to the method and its alternatives, we need to recapitulate the
basic concepts of AutoSummENG and the n-gram graph representation theory.

3. Representation and Basic Algorithms

In the domain of natural language processing, there have been a number of methods using n-
grams. An n-gram is a, possibly ordered, set of words or characters, containing n elements (see
Example 3.1). N-grams have been used in summarization and summary evaluation [BV04, LH03,

1See http://sourceforge.net/projects/jinsect and http://www.ontosum.org for more information.
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CS04]. In the automatic summarization domain, n-grams mostly appear as word n-grams, as
happens in the ROUGE/BE family of evaluator methods [HLZ05, Lin04].

Example 3.1. Examples of n-grams from the sentence: This is a sentence.
Word unigrams: this, is, a, sentence
Word bi-grams: this is, is a, a sentence
Character bi-grams: th, hi, is, s , a, ...
Character 4-grams: this, his , is , ...

3.1. Extracting N-grams. To extract the n-grams (Sn) of a text T l, we follow the (elementary)
algorithm indicated as algorithm 1. The algorithm’s complexity is linear to the size |T | of the input
text T .

Input: text T
Output: n-gram set SSn

// T is the text we analyze

SSn ← ∅;1

for all i in [1,length(T)-n+1] do2

SSn ← SSn ∪ Si,i+n−13

end4

Algorithm 1: Extraction of n-grams

The algorithm applies no preprocessing (such as extraction of spaces, punctuation or lemmati-
zation). Furthermore, it obviously extracts overlapping parts of text, as the sliding window of size
n is shifted by one position and not by n positions at a time. This technique is used to avoid the
problem of segmenting the text. The redundancy apparent in this approach proves to be useful
similarly to a convolution function: summing similarities over a scrolling window may prove useful
when you do not know exactly where to start matching two strings.

In the case of summary evaluation we may compare common n-grams between a peer (judged)
summary and a model summary. The extracted, overlapping n-grams are certain to metch corre-
sponding n-grams of the model summary, if such n-grams exist. That would not be the case for a
method where the text would be segmented in equally sized n-grams.

Example 3.2. Application of our method to the sentence we have used above, with a requested
n-gram size of 3 would return:
{‘Do ’, ‘o y’, ‘ yo’, ‘you’, ‘ou ’, ‘u l’, ‘ li’, ‘lik’, ‘ike’, ‘ke ’, ‘e t’, ‘ th’, ‘thi’, ‘his’, ‘is ’, ‘s s’, ‘ su’,
‘sum’, ‘umm’, ‘mma’, ‘mar’, ‘ary’, ‘ry?’}
while an algorithm taking disjoint n-grams would return
{‘Do ’, ‘you’, ‘ li’, ‘ke ’, ‘thi’, ‘s s’, ‘umm’, ‘ary’} (and ‘?’ would probably be omitted). The segmen-
tation has reduced the number of existing n-grams examined, based on the disjointness prerequisite.

The n-gram graph is a graph G = {V G, EG, L,W}, where V G is the set of vertices, EG is the
set of edges, L is a function assigning a label to each vertex and to each edge and W is a function
assigning a weight to every edge. The graph has n-grams as its vertices vG ∈ V G. The edges
eG ∈ EG (the superscript G will be omitted where easily assumed) connecting the n-grams indicate
proximity of the corresponding vertex n-grams.

The edges can be weighted by the distance between the two neighboring n-grams in the original
text, or the number of co-occurrences within a given window (as indicated below we use the co-
occurrences for the TAC task). We note that the meaning of distance and window size changes



by whether we use character or word n-grams. The labeling function L for edges assigns to each
edge the concatenation of the labels of its corresponding vertices’ labels in a predefined order: for
directed graphs the order is the order of the edge direction while in undirected graphs the order
can be the lexicographic order of the vertices’ labels. To ensure that no duplicate vertices exist, we
require that the labeling function is an one-to-one function.

More formally:

Definition 3.3. if S = {S1, S2, ...}, Sk 6= Sl, for k 6= l, k, l ∈ N is the set of distinct n-grams
extracted from a text T l, and Si is the i-th extracted n-gram, then G = {V G, EG, L,W} is a graph
where V G = S is the set of vertices v, EG is the set of edges e of the form e = {v1, v2}, L : V G → L
is a function assigning a label l(v) from the set of possible labels L to each vertex v and W : EG → R
is a function assigning a weight w(e) to every edge.

In our implementation, the edges E are assigned weights of ci,j where ci,j is the number of times
a given pair Si, Sj of n-grams happen to be neighbors in a string within some distance Dwin of each
other. The distance between two strings in a text is the absolute difference of the positions of their
first characters in the text. The vertices vi, vj corresponding to n-grams Si, Sj that are located
within this distance Dwin are connected by a corresponding edge e ≡ {vi, vj}. In the TAC 2010
case we use the symmetric approach for character n-gram graph extraction, which has proved to
be the most promising in several experiments [GKVS08].

3.2. N-gram Graphs and Proximity Graphs. A proximity graph (PG) is a graph that describes
relations of proximity between symbols si ∈ S, where S the alphabet of symbols, in a domain where
an operator of proximity P over S×S is defined. Thus, P : S×S → R gives a graded value for the
proximity of two symbols within a world where proximity of symbols makes sense. In the summary
evaluation case the world is the world of texts, and we define P as:

(1) P (s1, s2) = |{(si, sj) : si = s1, sj = s2 and d(si, sj) ≤ Dwin}|
where d(si, sj) is the distance between si, sj in the original text. P in fact measures the number
of times two strings are found to be neighbors within the given distance Dwin in a text. Given
Equation 1, we can define a proximity graph as follows.

Definition 3.4. If R = {R1, R2, ...}, Rk 6= Rl, for k 6= l, k, l ∈ N is the set of distinct symbols
extracted from a text T l, and Ri is the i-th extracted symbol, then J = {V J , EJ ,M,X} is a graph
where V J = S is the set of vertices v, EJ is the set of edges e of the form e = {v1, v2}, M : V J → L
is a function assigning a label m(v) from the set of possible labels M to each vertex v and X : EJ → R
is a function assigning a weight w(e) to every edge.

In fact, n-gram graphs are a special case of proximity graphs, because in n-gram graphs the set
of symbols is the set of distinct n-grams: R = S. The weighting function on R is based on the
cardinality of co-occurrences of n-grams within Dwin distance of each other, as this is calculated by
P . The generalized notion of proximity graphs, however, allows creating multiple levels of graphs,
where the symbol set changes on each level.

Elaborating, consider a mapping Rg : G→ R, where G is the set of possible n-gram (sub)graphs
and R the set of symbols. Also, consider a proximity measure P ′, which measures the times two
graphs G1, G2 ∈ G where found to be neighbors in a sequence of graphs, within a distance Dwin

′ of
each other. Then, we can create proximity graphs of graphs. Exactly this notion of PGs of graphs
is used in the following section to represent texts as a hierarchy of PGs, attempting to capture the
information of multiple granularity in texts.



3.3. Hierarchical Proximity Graphs. A hierarchical proximity graph of L ∈ N∗ levels is a
hierarchy H of proximity graphs, where subgraphs of symbols from a lower level l − 1 form the
symbols for the next upper level l, l ∈ [1, L]. Each level Hl holds a proximity graph Jl and an index
of symbols Il for that level.

To create the first level, we extract the set of non-overlapping2 n-grams from the source text.
Then, the index I1 maps, through a bijection, every distinct n-gram in the source to an integer-
symbol. This allows the conversion of the original text to a sequence Z of integers. Then, vertices
are created in the proximity graph J1: one for each symbol. Following the creation of vertices,
and given a window Dwin, all symbols the are found to be neighbors within a maximum distance
of Dwin in Z have their vertices linked by an edge. The distance between two n-grams n1, n2 is
now measured as the number of n-grams (and not characters) between n1 and n2. The process of
finding neighbors is repeated for every symbol in Z in the graph creation process.

Each subgraph of J1 generated in every such iteration is called an s-neighborhood. Each s-
neighborhood is considered to be a symbol for the next level of graphs and is, thus, mapped to an
integer in the corresponding Il index. This, from l = 1 we extract the s-neighborhoods that form the
I2 symbols. Then, the sequence of the current level is replaced by the sequence of s-neighborhoods.

For each of the following levels 1 < l ≤ L of representation in the hierarchical graph the process
is as follows.

• Get the s-neighborhood from the previous level l − 1.
• Create the s-neighborhoods of the current level, adding them to Il+1 as symbols.
• Generate the current level PG Jl.

We note a few important design choices we have made:

• Every level uses a different size of Dwin. In fact, on each level, Dwinl = bDwin ∗ lc and ḃc is
the round-down operator. This stands upon the intuition that the notion of neighborhood
when you go from a word to a paragraph changes completely: things that are further away
are considered neighbors.

• The index allows fuzzy matching of PGs, with a parametrically defined fuzziness. We will
not describe the process of the index creation due to space limitations.

Given the above algorithms, we can extract from a given text a hierarchy of PGs, that describe
the text in a variety of levels. This hierarchy J =< J1, ..., JL > is the Hierarchical Proximity Graph
(HPG).

3.4. MeMoG: The Merged Model Graph. Given two instances of n-gram graph representation
G1, G2, there is a number of operators that can be applied on G1, G2 to provide the n-gram graph
equivalent of union, intersection and other such operators of set theory. In our applications
we have used the update operator U (similar to the merging operator), which allows the creation
of a “centroid” graph. The update function U(G1, G2, l) takes as input two graphs, one that is
considered to be the pre-existing graph G1 and one that is considered to be the new graph G2. The
function also has a parameter called the learning factor l ∈ [0, 1], which determines the sensitivity
of G1 to the change G2 brings.

Focusing on the weighting function of the graph, resulting from the application of U(G1, G2, l),
the higher the value of learning factor, the higher the impact of the new graph to the resulting
graph of the update. More precisely, a value of l = 0 indicates that G1 will completely ignore the
(considered new) graph G2. A value of l = 1 indicates that the weights of the edges of G1 will be

2In this case we chose non-overlapping n-grams, because n is minimal (n = 2). Nevertheless, we plan to evaluate

whether this was a correct decision in the future.



assigned the values of the new graph’s edges’ weights. A value of 0.5 gives us the merging operator.
The definition of the weighting performed in the graph resulting from U is:

(2) W i(e) = W 1(e) + (W 2(e)−W 1(e))× l

The U function allows using graphs to model a whole set of documents: in our case the model set.
The model graph creation process comprises the initialization of a graph with the first document of
the model set and the updating of that initial graph with the graphs of following model summaries.
Especially, when one wants the overall graph’s edges to hold weights averaging the weights of all
the individual graphs that have contributed to it, then the i-th new graph that updates the overall
graph should use a learning factor of l = 1

i , i > 1. This gives a graph that has a role similar to the
centroid of a set of vectors: it functions as a representative graph for the set its constituent graphs.

4. From Graph Matching to Summary Evaluation

Graph similarity calculation methods can be classified into two main categories.

Isomorphism-based: Isomorphism is a bijective mapping between the vertex set of two
graphs V1, V2, such that all mapped vertices are equivalent, and every pair of vertices from
V1 shares the same state of neighborhood, as their corresponding vertices of V2. In other
words, in two isomorphic graphs all the nodes of one graph have their unique equivalent in
the other graph, and the graphs also have identical connections between equivalent nodes.
Based on the isomorphism, a common subgraph can be defined between V1, V2, as a subgraph
of V1 having an isomorphic equivalent graph V3, which is a subgraph of V2 as well. The
maximum common subgraph of V1 and V2 is defined as the common subgraph with the
maximum number of vertices. For more formal definitions and an excellent introduction to
the error-tolerant graph matching, i.e., fuzzy graph matching, see [Bun98].

Given the definition of the maximum common subgraph, a series of distance measures
have been defined using various methods of calculation for the maximum common subgraph,
or similar constructs like the Maximum Common Edge Subgraph, or Maximum Common
Induced Graph (also see [RGW02]).

Edit-distance Based: Edit distance has been used in fuzzy string matching for some time
now, using many variations (see [Nav01] for a survey on approximate string matching). The
edit distance between two strings corresponds to the minimum number of edit character
operations (namely insertion, deletion and replacement) needed to transform one string to
the other. Based on this concept, a similar distance can be used for graphs [Bun98]. The
edit operations for graphs’ nodes are node deletion, insertion and substitution. The same
three operations can by applied on edges, giving edge deletion, insertion and substitution.

Using a transformation from text to graph, the aforementioned graph matching methods can be
used as a means to indicate text similarity.

We have applied the Value Similarity calculation [GKVS08], which offers graded similarity in-
dication between two document graphs. Moreover, in order to compare a whole set of documents
(model summaries) to a single evaluated text (evaluated summary) we represent the set of docu-
ments with a single graph, as we show in the following sections, whether be it an n-gram graph or
a hierarchical proximity graph.

To compare two texts (or character sequences in general) T1 and T2 e.g., for the task of summary
evaluation against a gold standard text, we need to compare the texts’ representations. Given that
the representation of a text Ti is a set of graphs Gi, containing graphs of various ranks, we use
the Value Similarity (VS) for every n-gram rank, indicating how many of the edges contained in



graph Gi are contained in graph Gj , considering also the weights of the matching edges. In this

measure each matching edge e having weight wi
e in graph Gi contributes VR(e)

max(|Gi|,|Gj |) to the sum,

while not matching edges do not contribute (consider that for an edge e /∈ Gi we define wi
e = 0).

The ValueRatio (VR) scaling factor is defined as:

(3) VR(e) =
min(wi

e, w
j
e)

max(wi
e, w

j
e)

The equation indicates that the ValueRatio takes values in [0, 1], and is symmetric. Thus, the full
equation for VS is:

(4) VS(Gi, Gj) =

∑
e∈Gi

min(wi
e,w

j
e)

max(wi
e,w

j
e)

max(|Gi|, |Gj |)
VS is a measure converging to 1 for graphs that share both the edges and similar weights, which
means that a value of VS = 1 indicates perfect match between the compared graphs. Another
important measure is the Normalized Value Similarity (NVS), which is computed as:

(5) NVS(Gi, Gj) =
V S

min(|Gi|,|Gj |)
max(|Gi|,|Gj |)

The fraction SS(Gi, Gj) = min(|Gi|,|Gj |)
max(|Gi|,|Gj |) , is also called Size Similarity. The NVS is a measure of

similarity where the ratio of sizes of the two compared graphs does not play a role. In the TAC
case there is no real difference, however, because the SS factor is almost constant and equal to 1:
the summaries have an almost fixed size. Thus, VS is equivalent to NVS.

The overall similarity VSO of the sets G1,G2 is computed as the weighted sum of the VS over
all ranks:

(6) VSO(G1,G2) =

∑
r∈[Lmin,LMAX] r ×VSr∑

r∈[Lmin,LMAX] r

where VSr is the VS measure for extracted graphs of rank r in G, and Lmin, LMAX are arbitrary
chosen minimum and maximum n-gram ranks.

The similarity function calculation has a complexity of O(|G1| × |G2|), due to the fact that for
each edge in G1 one needs to lookup its identical edge in G2. The similarity function calculation
has a complexity of O(|G1| × |G2|), due to the fact that for each edge in G1 one needs to lookup
its identical edge in G2. If an index is maintained with the edges’ labels or the vertices’ labels, this
complexity can be diminished, which is the case in our implementation. Therefore, for every edge
in the smallest of the two graphs, we perform a low complexity lookup in the edges of the biggest
graph. If an edge is found we perform the calculation of the edge’s contribution to the similarity
sum. Otherwise, we continue with the next edge from the small graph. This gives a real complexity
that is O(hmin(|G1|, |G2|)), where h is the constant time for a hash map lookup, if the edges are
hashed. If the vertices are hashed, then the complexity is O(hmin(|G1|, |G2|) degree(G2)), where
the degree(G2) function returns the maximum number of edges connected to a single node in G2.

For the comparison of HPGs we simply use, instead of ranks, the level of the graph in Equation
6. Thus, the similarity between two HPGs J1 and J2 is the weighted, normalized sum of value
similarities between the corresponding levels of J1 and J2:

(7) VSO(J1, J2) =

∑
l∈[1,L] l ×VSl∑

l∈[1,L] r



where VSl is the VS measure for graphs of level l in J.
In the AutoSummENG and the HPG cases, the grade of a summary is the average of the

similarities to the model summaries — using the corresponding n-gram graph representations. In
the case of MeMoG, there is only one similarity measurement, which is set to be the summary score.
The performance of a summarization system is calculated as the average of its summary scores.

5. Experiments

The presented methods have been applied as part of the AESOP task of TAC2010. The task
was “to create an automatic scoring metric for summaries, that would correlate highly with two
manual methods of evaluating summaries, as applied in the TAC 2010 Guided Summarization task”,
namely the Pyramid method (modified pyramid score) [PMSG06] and Overall Responsiveness (see
[DO08]).

The scoring metrics (better “measures”) are to evaluate summaries including both model (i.e.,
human generated) and automatic (non-model) summaries, produced within the TAC 2010 Guided
Summarization task. In that task, 8 human summarizers produced a total of 368 model summaries,
and 43 automatic summarizers produced a total of 3956 automatic summaries. The summaries are
split into Main (or Initial) Summaries (Set A) and Update Summaries (Set B), according to the
part of the Guided Summarization Task they fall into3. Two baseline summarizers were included
in the set of automatic summarizers, namely one that uses the first sentences in the most recent
document of a document set (ID:1). The second is the MEAD summarizer4 (ID:2).

The experiments conducted upon the TAC 2010 corpus were based on the application of the
AutoSummENG, the MeMoG , and the HPG methods on the TAC corpus. The n-gram graph
parameters used for AutoSummENG were (Lmin, LMAX, Dwin) = (3, 3, 3), which seems to offer
near-optimal results on many English corpora. The same parameters were used for the MeMoG
case. For the HPGs the distance factor parameter was set to 3, the minimum n-gram size to 2 and
the number of levels L = 5.

We note that there were two different types of evaluation: the All Peers and the No Models
evaluation. In the No Models case, the peer summaries are evaluated against all model summaries.
In the All Peers case, the model summaries are evaluated against the remaining model summaries;
on the other hand, the peer summaries are evaluated using jack-knifing against all the model
summaries. The process of jack-knifing is the following. Given that there are 4 model summaries to
evaluate against, the peer summary is evaluated against all combinations of the 4 models in groups
of 3. The average grade assigned by all the evaluations is assigned to be the grade of the summary.
The results of the evaluation, concerning the correlation to the Pyramid score are shown in Tables
1, 2; the results concerning the correlation to the Overall Responsiveness score are shown in Tables
3, 4. In the tables, the top performance for each column (i.e., correlation test) is depicted in bold.
All the correlation tests gave a p-value of less than 10−3, making the results statistically highly
significant.

We can easily determine that the MeMoG variant of the n-gram graphs application is the most
promising variant when we aim to correlate best to the Pyramid score (Tables 1, 2). On the other
hand, things are not as clear for the Overall Responsiveness case. There, the results illustrate that,

3See http://www.nist.gov/tac (Last visit: Feb 14, 2011) for more info on the Guided Summarization Task of
TAC 2010.

4MEAD summarizer v3.12, publicly available at http://www.summarization.com/mead/ (Last visit: Feb 14,
2011). Default settings used, set to producing 100-word summaries.

http://www.nist.gov/tac


Variant (ID) Pearson (Rank) Spearman (Rank) Kendall (Rank)
Group A - All Peers

AutoSummENG (25) 0.897 (10) 0.945 (8) 0.824 (7)
MeMoG (16) 0.956 (3) 0.956 (4) 0.834 (4)
HPG (12) 0.880 (15) 0.941 (10) 0.818 (9)

Group B - All Peers
AutoSummENG (25) 0.807 (12) 0.920 (9) 0.779 (8)
MeMoG (16) 0.968 (1) 0.935 (4) 0.799 (4)
HPG (12) 0.726 (16) 0.931 (6) 0.788 (6)

Table 1. Correlation of grades to Pyramid score for All Peers

Variant (ID) Pearson (Rank) Spearman (Rank) Kendall (Rank)
Group A - No Models

AutoSummENG (25) 0.950 (11) 0.913 (9) 0.778 (10)
MeMoG (16) 0.970 (4) 0.934 (5) 0.798 (6)
HPG (12) 0.951 (10) 0.908 (10) 0.774 (11)

Group B - No Models
AutoSummENG (25) 0.899 (13) 0.870 (11) 0.711 (11)
MeMoG (16) 0.956 (5) 0.901 (7) 0.758 (6)
HPG (12) 0.898 (14) 0.892 (9) 0.729 (9)

Table 2. Correlation of grades to Pyramid score without models

Variant (ID) Pearson (Rank) Spearman (Rank) Kendall (Rank)
Group A - All Peers

AutoSummENG (25) 0.909 (11) 0.942 (9) 0.836 (4)
MeMoG (16) 0.944 (3) 0.949 (6) 0.818 (10)
HPG (12) 0.892 (14) 0.945 (8) 0.820 (8)

Group B - All Peers
AutoSummENG (25) 0.797 (11) 0.892 (9) 0.747 (9)
MeMoG (16) 0.977 (1) 0.915 (7) 0.772 (5)
HPG (12) 0.724 (15) 0.925 (2) 0.777 (4)
Table 3. Correlation of grades to Overall Responsiveness score for All Peers

even though MeMoG offers the best linear correlation to Responsiveness, it is the HPG that offers
the best rank-based performance (Tables 3, 4).

Overall, the performance of both MeMoG and HPG in their corresponding domains is within the
first 7 ranks between the 27 systems in the AESOP task. We should note that, in the top ranks, it is
often the case that the difference in the performance of the top evaluator from the presented variants
is very low (< 0.03). This means that the difference between performance may be attributed to
chance, since the corresponding confidence intervals may well cover the 0.03 difference.

In Tables 5, 6 we illustrate the number of agreements and disagreements (see Appendix A for
their definition) between measures, on whether the difference in performance between systems is
statistically significant or not. Thus, the first row in Table 5 indicates that the verdict that came



Variant (ID) Pearson (Rank) Spearman (Rank) Kendall (Rank)
Group A - No Models

AutoSummENG (25) 0.923 (11) 0.911 (8) 0.799 (5)
MeMoG (16) 0.949 (7) 0.920 (6) 0.772 (8)
HPG (12) 0.932 (9) 0.916 (7) 0.779 (7)

Group B - No Models
AutoSummENG (25) 0.876 (13) 0.829 (11) 0.686 (10)
MeMoG (16) 0.933 (5) 0.866 (9) 0.709 (8)
HPG (12) 0.888 (10) 0.885 (5) 0.733 (6)

Table 4. Correlation of grades to Overall Responsiveness score without models

Group A - All Peers
Pyramid Responsiveness

Agreement Disagreement Agreement Disagreement
AutoSummENG (25) 280 64 280 64
MeMoG (16) 344 0 344 0
HPG (12) 200 144 200 144

Group B - All Peers
Pyramid Responsiveness

Agreement Disagreement Agreement Disagreement
AutoSummENG (25) 284 60 284 60
MeMoG (16) 344 0 344 0
HPG (12) 157 187 157 187

Table 5. Agreement concerning discrimination - All Peers

by using AutoSummENG grades to determine statistically significant difference in performance
between systems, agrees 813 times with the verdict when using Pyramid score, while it disagrees
90. There are also columns for the Responsiveness measure and there is differentiation between
Group A (Main Summaries) and Group B (Update Summaries) texts.

We notice the excellent level of performance for the MeMoG variation in the All Peers case
(marked in bold). It is also important to note that MeMoG is the only variation the grades of
which are affected by jack-knifing (due to its non-linearity).

6. Conclusion - Future work

This paper briefly described two novel methods for summarization system evaluation. The first,
named MeMoG, relies on a merged n-gram graph representation for the model summaries. The
second, named HPG, relies on a hierarchy of proximity graphs — which are a generalization of
n-gram graphs — to represent model texts. Both methods were applied on the TAC 2010 AESOP
task corpus, offering very promising results in different aspects of the evaluation. Both methods
offered an improvement over the AutoSummENG method, pointing into new directions for statistical
summary evaluation.

In the future, we plan to optimize parameters for the HPG method and apply all the n-gram
graph based methods to corpora of varying languages to support our language-neutrality claim.



Group A - No Models
Pyramid Responsiveness

Agreement Disagreement Agreement Disagreement
AutoSummENG (25) 813 90 793 110
MeMoG (16) 798 105 788 115
HPG (12) 798 105 788 115

Group B - No Models
Pyramid Responsiveness

Agreement Disagreement Agreement Disagreement
AutoSummENG (25) 742 161 723 180
MeMoG (16) 764 139 753 150
HPG (12) 792 111 787 114

Table 6. Agreement concerning discrimination - No Models
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Appendix A. Discriminative Power Definitions

The following example and definitions originate from the README aesop.txt file in the evalua-
tion results, kindly provided by NIST.

Pyramid

Submission 7

224 294 0

143 820 0

0 0 4

(Column1,Row1) shows the number of pairs of summarizers (X,Y), where

the AESOP metric (Submission 7) and the Pyramid method agree that

summarizer X is significantly better than summarizer Y, or that

summarizer Y is significantly better than summarizer X (here: 224

agreements).

(Column2,Row1) shows the number of pairs of summarizers (X,Y), where

there is a significant difference between X and Y according to the

AESOP metric, but there is no significant difference according to the

Pyramid method (here: 294 disagreements).

(Column1,Row2) shows the number of pairs of summarizers (X,Y), where

there is a significant difference between X and Y according to the

Pyramid method, but there is no significant difference according to

the AESOP metric (here: 143 disagreements).

(Column2,Row2) shows the number of pairs of summarizers (X,Y), where

the AESOP metric and Pyramid method agree that there is no significant

difference between summarizer X and summarizer Y (here: 820

agreements).

(Column3,Row3) shows the number of pairs of summarizers (X,Y), where

the AESOP metric and the Pyramid method both say that summarizer X is

significantly different from summarizer Y, but disagree as to which

summarizer is better (here: 4 disagreements). Either

(1) according to the AESOP metric X < Y,

and according to Pyramid Y < X; or

(2) according to the AESOP metric Y < X,

and according to Pyramid X < Y.

The remaining cells can be ignored.

In this work, we consider as Agreements the sum of cells (Column1, Row1) + (Column2, Row2)
and as Disagreements the sum of the remaining cells (Column1, Row2) + (Column2, Row1) +
(Column3, Row3). The data were provided by NIST.
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