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Abstract

This is the first time New York University
(NYU) participates in the event nugget (EN)
evaluation of the Text Analysis Conference
(TAC). We developed EN systems for both
subtasks of event nugget, i.e, EN Task 1:
Event Nugget Detection and EN Task 2: Event
Nugget Detection and Coreference. The sys-
tems are mainly based on our recent research
on deep learning for event detection (Nguyen
and Grishman, 2015a; Nguyen and Grishman,
2016a). Due to the limited time we could de-
vote to system development this year, we only
ran the systems on the English evaluation data.
However, we expect that the adaptation of the
current systems to new languages can be done
quickly. The development experiments show
that although our current systems do not rely
on complicated feature engineering, they sig-
nificantly outperform the reported systems last
year for the EN subtasks on the 2015 evalua-
tion data.

1 Overview

We follow a pipelined approach to build the EN
systems this year. Essentially, the whole system
involves three following components in order: (i)
event detection and classification (called typeEN),
(i1) event realis classification (called realisEN), and
(ii1) event coreference resolution (called corefEN).
The input for rypeEN is raw text while the other
components (i.e, realisEN and corefEN) take the
outputs of their previous components (i.e, typeEN
and realisEN respectively) as the inputs. The output
of realisEN is submitted to the EN Task 1 evaluation

while the output of corefEN is used for the EN Task
2 evaluation.

We use neural networks as the main technique in
all the three components (i.e, typeEN, realisEN and
corefEN). This allows us to automatically learn fea-
tures from data rather than doing manual feature en-
gineering as the traditional methods for EN. The fol-
lowing sections will present each component in de-
tail. An overview of the whole system is presented

in Figure 1.
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Figure 1: The NYU 2016 System for Event Nugget.

2 Event Detection and Classification:
typeEN

The goal of this component is to detect the event
mentions in the input documents and classify them
into the predefined types and subtypes of interest.



In the current system, we predict the event subtypes
directly and use these subtypes to map back to the
types when we report the detected event mentions
for submission.

In order to prepare the input documents for neu-
ral networks, our preprocessing steps include sen-
tence detection and tokenization using the OpenNLP
toolkit!, and dependency parsing for the detected
sentences using the CoreNLP toolkit® from Stanford
University.

In this work, we assume event mentions to be only
single tokens in text and do not consider event men-
tions spanning multiple tokens. Although this as-
sumption affects our performance on the multiple-
token event mentions, it enables the introduction
of the position information into the neural network
models that is very helpful to improve our overall
performance.

Given the single-token view, we cast the event de-
tection and classification problem as a classification
problem for every token in the input documents?.
Note that although the selected event subtypes for
evaluation this year (with 19 subtypes) is only a sub-
set of the last year’s event subtype set (with 38 sub-
types), we still predict the tokens for 39 classes in
the systems (38 subtypes in the last year’s evaluation
plus one type for “NONE”). However, in the submis-
sion files, we do not include the detected event men-
tions whose subtypes are excluded in the evaluation
this year. We expect that this inclusion of more sub-
types for prediction would help the systems to iden-
tify event mentions and distinguish them better.

2.1 Encoding

Formally, for every token in an input sentence, we
want to predict its event subtype (“NONE” if it is
not an event mention). The current token along with
its context in the sentence constitute an event men-
tion candidate or an example in multi-class classi-
fication terms. In order to prepare the example for
neural networks, we limit the context to a fixed win-

'https://opennlp.apache.org

http://stanfordnlp.github.io/
CoreNLP

3We do not perform classification at the sentence level in this
work as the token level has been shown to be more effective for
event detection with neural networks in (Nguyen and Grishman,
2016a).

dow size by trimming longer sentences and padding
shorter sentences with a special token when neces-
sary. Let 2w + 1 be the fixed window size, and
T = [T, Tyg1, - - ooy Tyy—1, Ty] b sOMeE
event mention candidate where the current token is
positioned in the middle of the window (token z).
Before entering the neural networks, each token x;
is transformed into a real-valued vector x; using the
concatenation of the following vectors:

-5, L0, -

1. Word Embedding of x; (pre-trained on some
large corpus): to capture the hidden semantic
and syntactic properties of the token (Mikolov
et al., 2013).

2. Position Embedding of x;: to embed the rela-
tive distance ¢ of x; to the current token xq. In
practice, we initialize this table randomly.

3. Dependency Vector of x;: to encode the depen-
dency features that are shown to be helpful in
the previous research (Nguyen et al., 2016b).
The dimensionality of this vector is the number
of the possible relations between tokens in the
dependency trees. The value at each dimension
is set to 1 if there exists one edge of the corre-
sponding relation connected to x; in the depen-
dency tree of x, and 0 otherwise.

After the transformation for each token, the orig-
inal event mention x is transformed into a matrix
X = [Xew, Xwgly e ey X0y« -+, Xp—1, Xyp] Of size
my X (2w + 1) (my is the dimensionality of the con-
catenated vectors of the tokens). The matrix repre-
sentation x is then fed into a neural network model
to learn a representation for event subtype classifica-
tion.

2.2 Non-consecutive Convolutional Neural
Networks

The main neural network architecture we employ
in this work is the non-consecutive convolutional
neural networks (NCNN) (Nguyen et al., 2016b).
The architecture of NCNN is similar to that of
the traditional convolutional neural networks (de-
noted by CNN) as both NCNN and CNN pass the
input matrix representation x through a convolu-
tion layer, followed by a max pooling layer to in-
duce a more abstract representation (automatic fea-
ture extraction) for the current token (Nguyen and



Grishman, 2015a; Nguyen and Grishman, 2015b;
Nguyen et al., 2016c). However, NCNN differs
from the traditional CNN in that the convolution in
NCNN is done over the arbitrary non-consecutive
n-grams while the traditional CNN only convolutes
over the consecutive n-grams in the sentences tem-
porally. This helps NCNN to explicitly model the
non-consecutive n-grams that are crucial to the pre-
diction of event subtypes in some situations. For
instance, consider the following sentence with the
word “leave” from the ACE 2005 corpus:

The mystery is that she took the job in the first
place or didn’t leave earlier. o

The correct event subtype for the word “leave”
in this case is “End-Position”. However, the tra-
ditional CNN models might not be able to detect
“leave” as an event mention or incorrectly predict
its subtype as “Movement”. This is caused by their
reliance on the consecutive local k-grams such as
“leave earlier”. Consequently, we need to resort
to the non-consecutive pattern “job leave” to cor-
rectly determine the event type of “leave” in this
case. NCNN has been shown to be significantly
better than the traditional CNN for event detection
in the ACE 2005 dataset (Nguyen and Grishman,
2015a; Nguyen and Grishman, 2016a). A more for-
mal presentation of NCNN can be found in (Nguyen
and Grishman, 2016a).

Let fxenn be the vector representation learnt by
NCNN for x. In order to enrich fycnn, We con-
catenate it with the local vector fi,c,. The result-
ing concatenation vector [fNenN, flocal] 1S then used
as input for another fully connected layer, followed
by a softmax layer to compute the probability distri-
bution over the possible event subtypes for the cur-
rent token xq. In this work, the local vector fioca 1S
obtained by concatenating the word embeddings of
the tokens in some fixed context window” of zo. An
overview of NCNN is demonstrated in Figure 2.

2.3 Recurrent Neural Networks

Besides NCNN, in this work, we also examine bidi-
rectional recurrent neural networks for event nugget
(BRNN). However, as BRNN is shown to be worse
than NCNN for event detection in (Nguyen and Gr-
ishman, 2016a), we seek the application of BRNN

*The size of this window is set to 5 in our systems.

by combining it with NCNN. We expect that BRNN
and NCNN would capture different information for
event nugget so their combination would help to im-
prove the overall performance (Nguyen and Grish-
man, 2016d).

In particular,
input matrix x as a
X =

for BRNN, we consider the
sequence of vectors:
(Xpy Xqpb 1y« -« 3 X0y« « s Xep—1, Xyp )5 10
dexed from —w to w. At each step 7, we compute
the hidden vector «; based on the current input
vector x; and the previous hidden vector «;_1,
using the non-linear transformation function® &:
a; = ®(x;,;—1). This recurrent computation is
done over x to generate the hidden vector sequence
(Oé_lﬂ;w_i_l, e Oy ey Q1 Q) denoted
by RNN(X_yy, Xy 1y-eey X0y e s X1, Xpp) =
(s Qg Ty e vy QO e e ey Qg1 Qg In ad-
dition, following (Nguyen et al., 2016b),
we run a second recurrent neural network
in the reverse direction from x, from

X_, to generate second hidden sequence:

NN (X, Xpp—Ts -+« 3 X0y« + s Ko 1y X)) =
(O O ey QO ey Qg 1, (). Afterward,
the concatenation of the hidden vectors «ag and
«, is used as the representation fgrnn = [, )]
of BRNN for the original entity mention z. Fi-
nally, in order to combine BRNN and NCNN,
we concatenate the representation vectors fgrnn,
fnenn and fioeq to form the input for computing the
subtype probability distribution as in Section 2.2.
This combined model is called NCNN+BRNN for

convenience.

3 Realis Classification: realisEN

We employ the similar encoding and network archi-
tectures (i.e, NCNN and NCNN+BRNN) as typeEN
to classify entity mentions for realis. The only dif-
ference is that we are predicting three classes for re-
alis (i.e, ACTUAL, GENERIC and OTHER) rather
than 39 event subtype classes as in fypeEN. Note
that as our system is pipelined, we only perform
realis prediction for the event mentions detected in
typeEN.

Modality Features

In this work, beside the automatic learnt features

SWe use the gated recurrent units (GRU) for @ to avoid the
vanishing gradient problem in this work.



event mention with input sentence and current token for classification
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Figure 2: Non-consecutive Convolutional Neural Networks for Event Detection and Classification.

from neural network models for realis classification,
we also examine some in-house binary features that
are specifically designed to capture the modality of
the event mentions. We augment the automatic fea-
tures from the neural networks with such binary fea-
tures in the same way we combine the representa-
tions of BRNN and NCNN.

Specifically, we use the following types of fea-
tures extracted from the output of the GLARF se-
mantic parser (Meyers et al., 2009; Meyers et al.,
2011)%, including:

e Features based on whether event tokens (or
their arguments) are in the scope of par-
ticular scope operators, including: quanti-
fiers (i.e, “every”, “some” etc.), verbs licens-
ing belief contexts (i.e, “believe”, “assume”
etc.), epistemic adverbs/adjectives (i.e, “possi- °
ble”, “possibly”, “maybe” etc.), modals (i.e,

*http://nlp.cs.nyu.edu/meyers/GLARF.
html

“may”, “will” etc.), infinitival “t0”, tempo-
ral adverbs/adjectives (i.e, “tomorrow”, “fu-
ture” etc.), negation words (i.e, “not”, “no”,
“none”, “never”, “deny”, “refuse”, etc.) and
others. In the following examples, the bold-
faced event word is in the scope of the under-
lined word, indicating that the event is not AC-
TUAL.

o A military spokesman on Saturday denied
troops had crossed into Iraq.

o This upcoming visit to Russia will be my
first trip aboard.

o Terrorists normally attack during the win-
ter.

o Every terrorist gets arrested eventually.

Morphological features of particular words,
projected on words within their scope. For ex-
ample, present tense verbs with non-definite
noun arguments are the most likely to be



generic, e.g., Terrorists attack in March.

e Features about attribution, indicating if an
event is attributed to someone other than the au-
thor (e.g., John said that they attacked) or fur-
thermore, expressing something about the re-
alis features of the attribution event, e.g., Mary
may have said that they attacked.

e Features based on manual rules that predict a
more fine-grained set of realis-like distinctions
(similar to the features used in ACE (LDC,
2005)). The last type of features are largely
dependent on all of the former sets among
other features. These are rules tying partic-
ular morphological tenses to particular fea-
tures, e.g., past tense largely predicts ACTUAL
(They attacked in March), and present tense
in combination with indefinite noun arguments
largely predicts GENERIC (Terrorists attack in
March).

4 Event Coreference Resolution: corefEN

Regarding the event coreference resolution compo-
nent corefEN, we cast it as a binary classification
task for every event mention pair in a document (i.e,
whether two event mentions in a document corefer
or not). The coreference decisions for all the event
mention pairs are then used to form an undirected
graph whose connected components are reported as
coreference chains for the document. Again, we
only consider the pairs of event mentions that are
detected in the previous components.

Our coreference resolution component is based on
the assumption that two event mentions corefer if
their subtypes and realises match, and their context
information is similar. In this work, the matches
of subtypes and realis are encoded via a one-hot
feature vector while the context similarity is cap-
tured via the vector representations learnt from neu-
ral networks for event mentions. In particular, let
u and v be the two event mentions of interest, and
foinary be the one-hot feature vector for the matches
of subtypes and realis of u and v. Note that we
also include the number of sentences between the
two event mentions in the document as one piece
of information in fyjpary. Also, let iy and £y be
the two vector representations learnt by some neu-

ral network (i.e, NCNN or NCNN+BRNN)7, and
fio..; and f2 , be the local vector for u and v re-
spectively. Given such vectors, their concatenation,
Le, [fﬁN’ fl@N’ flqécal’ fl?)cal’ fbinary]> is then used as fea-
tures to make the coreference decision for u and v

in corefEN.

S Parameters, Resources and Training

We use the same parameters for the neural network
models in typeEN, realisEN and corefEN. Specifi-
cally, we employ: window sizes in the set {2, 3,4, 5}
for the convolution operations (Nguyen and Grish-
man, 2015a; Nguyen and Grishman, 2016a), 300 fil-
ters for each convolution window size, and 300 hid-
den units for BRNN.

Regarding the embeddings, we use 50 and 300
dimensions for the position embeddings and word
embeddings respectively. We pre-train the word em-
beddings from the English Gigaword corpus utiliz-
ing the word2vec toolkit®. Following the previous
work, we employ the context window of 5, the sub-
sampling of the frequent words set to 1e-05 and 10
negative samples (Nguyen et al., 2016b; Nguyen
et al., 2016e). Note that we modify the CBOW
model in word2vec so it predicts the current words
using the concatenation of the word embeddings
of the surrounding words. We apply this modified
CBOW model for training the word embeddings as
in (Nguyen et al., 2016b; Nguyen et al., 2016e).

Finally, we train the neural network models us-
ing stochastic gradient descent with shuffled mini-
batches (batch size = 50), dropout for regularization
(rate = 0.5), back-propagation for gradients, and the
AdaDelta update rule. We rescale the weights whose
lo-norms exceed a predefined threshold (set to 3 in
this work)?. Most of the parameters and settings in
this section are inherited from our previous studies
(Nguyen and Grishman, 2015a; Nguyen and Grish-
man, 2015b). The other parameters are tuned via the
development data.

"Note that the encoding of the event mentions in corefEN is
similar to that of rypeEN and realisEN.

$Shttps://code.google.com/p/word2vec/

There is one exception in the corefEN component where we
do not apply dropout and the l2 norm in the training.



6 Evaluation

NYU submitted three runs to the EN evaluation this
year (called NYU1, NYU2 and NYU3). The runs
are different in the type of the neural networks and
features employed in the components typeEN, re-
alisEN and corefEN. The configurations of the runs
are presented in Table 1.

System | Plain | Type | Realis Type Coref

& Realis | score
NYU1 | 71.07 | 62.72 | 56.12 49.70 43.14
NYU2 | 71.16 | 62.65 | 57.41 50.43 43.40
NYU3 | 70.03 | 62.38 | 55.62 49.86 43.94

Table 2: Performance of NYU1, NYU2 and NYU3 on
the development data.

Table 1: Models and features for different runs of NYU.

6.1 Evaluating the Proposed Systems

In order to train the proposed systems for official
submission, we use the union of the three following
corpora:

e The training data for the EN 2015 evaluation
(called A)

e The DEFT Rich ERE English Training Anno-
tation Dataset (called B)

e Haft of the evaluation data for EN 2015 evalu-
ation (i.e, 102 out of 202 evaluation documents
for 2015) (called C)

We utilize the remaining documents in the 2015
evaluation data for system development (i.e, 100 re-
maining documents). The performance of the three
systems on the development data and the official
evaluation data for English this year is presented in
Table 2 and Table 3 respectively. These tables in-
cludes the scores for event detection (Plain), event
classification (Type), realis classification (Realis),
realis and type classification (Type & Realis), and
coreference resolution (coref). All the scores are
computed using the official scorer this year. Note
that the scores in Table 2 are based on the 38 event
subtypes in the 2015 evaluation while the scores in
Table 3 correspond to the 19 evaluated event sub-
types this year.

As we can see from the tables, the reduction from
the 38 subtypes last year to the subset of 19 subtypes
this year causes the significant performance drops

System | Plain | Type | Realis Type Coref
Runs Components & Realis | score
typeEN realisEN corefEN NYU1 | 53.84 | 44.37 | 42.68 35.24 27.07
Eﬁg; gggg gggg gggg NYU2 | 5239 | 4412 | 41.73 | 3522 | 26.28
+ Modality Features NYU3 | 54.07 | 44.38 | 41.19 | 33.60 | 26.94

NYU3 | NCNN+BRNN | NCNN+BRNN | NCNN+BRNN Table 3: Performance of NYU1, NYU2 and NYU3 on

the 2016 official evaluation data for English.

over all the subtasks and systems. This demonstrates
that the selected subtypes for this year are actually
more challenging than the other subtypes last year
and we should spend more research effort targeting
these challenging subtypes. Regarding the compar-
ison of NYU1, NYU2 and NYUS3, it is very diffi-
cult to draw a concrete conclusion as their perfor-
mance in the two tables shows some mixed assess-
ments over different subtasks and settings (i.e, using
38 subtypes or 19 subtypes). For instance, NYU?2 is
better than NYU1 and NYU3 on the two tasks of re-
alis (i.e, Realis and Type & Realis) in Table 2 for the
development data, suggesting the benefits of the bi-
nary modality features for event realis classification.
However, this is not true in Table 3 for the evalua-
tion data this year as NYU2 turns out to be a little
worse than NYUI in this case. The only general
trend we can observe is the small performance gap
between the systems (i.e, NYU1, NYU2 and NYU3)
in the same settings. This suggests that BRNN and
the modality features do not introduce much new in-
formation for NCNN and we can just use NCNN for
different subtasks of event nugget. Consequently,
we will only focus on NYUT in the following evalu-
ation.

6.2 Comparing to the 2015 Systems

In order to compare our neural network systems with
the systems participating in the event nugget evalua-
tion last year, we train NYU1 on the the union of the
corpora A and B and evaluate it on the 2015 official
evaluation data. Table 4 presents the performance of



NYUI and the three top systems in the evaluation
last year (Mitamura et al., 2015).

System Plain | Type | Realis Type Coref

& Realis | score
NYU1 67.77 | 59.74 | 53.82 47.26 40.11
Top 1in 2015 | 60.77 | 57.18 | 40.35 38.06 39.12
Top 2in 2015 | 62.13 | 57.41 | 47.85 43.73 37.23
Top 3in 2015 | 64.56 | 57.45 | 45.21 39.67 32.36

Table 4: Performance comparison of NYUT1 and the best
systems in the 2015 event nugget evaluation.

It is very clear from the table that NYUT is sub-
stantially better than the top systems last year over
all the tasks, demonstrating the advantages of the
NCNN model for the event nugget tasks.
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