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Abstract 

This paper describes the Systematic Review Information Extraction (SRIE) track that was conducted as 
part of the 2018 National Institute for Standards and Technology (NIST) Text Analysis Conference (TAC).  
Participating teams were provided with annotated text passages of methods sections from research articles 
in PubMed. The annotations focused on details of experimental methods as well as grouping of the details 
into concepts. Participants were challenged in two tasks to develop computer models that could extract the 
mentions (Task 1) and group the mentions into concepts (Task 2). Seven teams submitted at least one run 
with 18 submissions in total across both tasks. 
 
Background 
The National Toxicology Program (NTP), the National Institute of Environmental Health Sciences (NIEHS, 
part of the National Institutes of Health), and the Environmental Protection Agency (EPA) routinely 
conduct systematic reviews of environmental agents to identify potential human health hazards. These 
reviews collect toxicity and health effects information on different chemicals from the published scientific 
literature including study details such as outcomes assessed, test methods, animal models, and results. 
Because this information can vary widely from study to study, systematic reviews serve a critical purpose 
by providing a transparent, standardized, multistep approach to identify, select, critically assess, and 
synthesize information for developing objective, evidence-based conclusions about potential chemical 
hazards [7]. Furthermore, because research practices and reporting procedures change over time, the 
systematic review approach serves to promote transparency and facilitate reproducibility of literature-based 
evaluations on environmental agents [12]. 
 
Some elements of information extraction (IE) in systematic reviews are straightforward, such as identifying 
the species or sex of the experimental models. Others are more complex such as the results as publications 
may report multiple experiments with various exposures and doses and evaluate several endpoints. Authors 
may report experimental details using different measurement units, different names for the same chemical, 
and other variations in terminology. In addition, this information may be located in the text of the 
publication or in a table, figure caption, or the figure itself. Currently, the information extracted in a 
systematic review is collected through a labor-intensive, manual, and well-structured process [11] that is 
slow and often costly. NTP and EPA are interested in developing and adopting automated or semi-
automated processes for IE in systematic reviews of environmental chemicals in order to reduce time and 
labor-costs while maintaining quality and reproducibility.  
 
The purpose of the SRIE track was to develop and evaluate IE methods that would increase the use of 
automation in systematic reviews of potential health effects from exposure to environmental agents. This 
track focused on IE of experimental design factors found in the Material and Methods section ("methods 
section") of published studies of experimental animals exposed to environmental chemicals. The first goal 
of the track was to identify and annotate the experimental design factors. The second goal of the track was 
to identify relations between different experimental design factors and assign the factors into logical groups. 
 
Related Work 



The use of structured systematic review has been adopted in multiple application areas, including hazard 
identification, clinical and public health interventions, adverse effects assessment, and economic 
evaluations. Although there is variation in the procedures across these disciplines, the systematic review 
methodology has a common multistep process including problem formulation, identification and selection 
of relevant documents/articles, de-duplication of articles, data extraction, risk of bias assessment of 
individual studies, data analysis or meta-analysis, and evidence integration [7]. While efforts exist in all of 
these steps to increase the use of automation, there exists a deficit in automated and semi-automated tools 
to aid in the data extraction stage [9], in part due to the lack of training sets and comparative metrics for 
developing data extraction algorithms. As recently noted in Jonnalagadda’s review of data extraction 
automation efforts [4], “Biomedical natural language processing techniques have not been fully utilized to 
fully or even partially automate the data extraction step of systematic reviews." 
 
The NIST TAC challenge and associated SRIE training and test sets are meant to help address this gap by 
beginning to develop gold standard corpora and performance benchmarks for future methods. A limited 
number of related data sets exist, including the Cochrane Database of Systematic Reviews (CDSR) [3]. The 
CDSR contains a large set of manually annotated systematic reviews that have been used in model 
development, e.g., to develop risk of bias models [6], to aid in data extraction in clinical reviews [2], and 
to allow the use of distant supervision as a model development technique to overcome the lack of training 
data [10]. Jonnalagadda et al. includes an assessment of data sets that have been used to support model or 
tool development.  The list of data sets includes 17 generated from abstracts only and 9 generated from 
portions of full text articles. Only 11 of the data sets focus on the extraction of concepts versus identification 
of relevant sentences and only 5 focus on the extraction of concepts from full text. Most data sets are 
specific to clinical interventions, e.g., PICO (Patient, Intervention, Condition, Outcome), PECO (Patient, 
Exposure, Condition, Outcome), or PIBOSO (Patient, Intervention, Background, Outcome, Study Design, 
and Other). Jonnalagadda et al. also includes an assessment of 26 published data extraction systems. 
Importantly, only 3 used a common corpus, the PIBOSO corpus, which hinders direct comparison of the 
systems. The PIBOSO corpus, which was developed from 1000 medical abstracts, is targeted at 
classification of sentences [5] and was released under a Kaggle competition [1].  
 
In the area of hazard and exposure related systematic reviews, we are not aware of other openly available 
corpus that can support development of data extraction tools and serve to provide benchmarks for methods 
development. 
 
SRIE Tasks 
Task 1: Task 1 focused on accuracy (F1 score) in extracting mentions of experimental design factors, such 
as species of animal, substances that animals were exposed to, and dose of exposure. This is similar to 
natural language processing (NLP) named entity recognition (NER) tasks.  
 
Task 2: Building on Task 1, Task 2 focused on accuracy (F1 score) in grouping related mentions extracted 
as part of Task 1. This is similar to NLP slot filling tasks. 
 
Data 
The SRIE track targeted IE of experimental design factors found in the Materials and Methods section of 
published experimental animal exposure studies. Extracted data included the mention of specific types of 
entities (mention annotations) as well as grouping of those entities into related concepts (grouping 
annotations). Table 1 lists the mention and group types that our team selected for the 2018 SRIE TAC 
challenge as relevant for animal exposure studies. This list is a subset of types that we considered of interest 
for animal exposure studies, for instance it does not include mentions such as ‘Endpoint Method’ or ‘Test 
Article Source’. Those additional types may be pursued in future efforts. 
 



Table 1: Annotation Types for Animal Exposure Study Methods 
Category Annotation Tag Description 

Exposure TestArticle Test article or exposure evaluated 
Vehicle The solution the test article is in 
TestArticlePurity Purity of test article  
TestArticleVerification Text indicating that the test article was confirmed, if present, 

typically just a statement saying the purity was confirmed by a 
third party  

Animal Group GroupName If reported, a name given to animal treatment groups (e.g., ‘DES-
10’, ‘treated’) or control groups (‘negative control’, ‘positive 
control’).  

GroupSize The number of animals in a group where a group is a set of 
animals given the same dosing regimen or used for an endpoint 
measurement. 

SampleSize The number of animals used in an experiment 
Species The species names 
Strain The strain names 
Sex Sex of the animal group(s) 
CellLine The cell line name used in the experiment  

Dose Group Dose Dose 
DoseUnits Units of dose 
DoseFrequency Frequency at which doses are given  
DoseDuration Duration of treatment (dose) 
DoseDurationUnits Units of dose duration 
DoseRoute Route of administration 
TimeAtDose Time when dose is given (typically the age) 
TimeUnits Units used for time (typically days) 
TimeAtFirstDose Time at which first dose is given 
TimeAtLastDose Time at which last dose is given  

Endpoint Endpoint Endpoint evaluated 
EndpointUnitOfMeasure Units of measured endpoint 
TimeEndpointAssessed Time at which the endpoint was accessed (typically number of 

days after some event) 
 

Group Annotation Tag Description 

TestArticleGroup 
 

TestArticle Test article or exposure evaluated 
Vehicle The solution the test article is in 
TestArticlePurity Purity of test article  

TestArticleVerification Verification of purity of test article 

AnimalGroup 
 

Species The species names 

Strain The strain names 
Sex Sex of the animal group(s) 

Group name (possibly) Animal group name if multi-generational 

 
Selection of research articles: Studies from toxicological, open-access (CC0, CC-BY), peer-reviewed 
journals in PubMed were selected for the challenge. Studies were randomly assigned to a training set 
(n=100) and a test set (n=100). See Table 2 for article counts by journal. A majority of studies came from 
four journals (Environmental Health Perspectives, PLoS One, International Journal of Environmental 
Research and Public Health, Particle and Fibre Toxicology), which is a recognized limitation of the data 
set that reflects the challenge of developing training sets from open access articles. 
 



Table 2: Article Count by Journal 

Journal Count 

Appl Environ Microbiol 1 

Basic Clin Pharmacol Toxicol 2 

Birth Defects Res B Dev Reprod Toxicol 1 

BMC Pharmacol Toxicol 13 

Elife 2 

Environ Health 14 

Environ Health Perspect 246 

Environ Health Prev Med 1 

Environ Mol Mutagen 7 

Food Chem Toxicol 1 

Inhal Toxicol 4 

Int J Environ Res Public Health 74 

J Immunotoxicol 1 

J Toxicol Environ Health A 2 

Microbes Environ 1 

Nanotoxicology 2 

Part Fibre Toxicol 84 

PLoS Biol 2 

PLoS Genet 1 

PLoS Med 1 

PLoS Negl Trop Dis 4 

PLoS One 102 

PLoS Pathog 4 

Radiat Environ Biophys 2 

Toxicol Lett 1 

Toxicol Mech Methods 5 

Toxicol Sci 1 

 
Training/Test Sets: The training data set was released in two parts. The first release, Task 1, consisted of 
a set of 100 studies with the experimental design factors annotated (the mentions). The second release, Task 
2, consisted of the same data from the first release with the inclusion of group annotations.  
 
A test data set was generated and used as the gold standard for evaluation of the submitted IE models. For 
the test data set, another set of 100 studies was annotated for mentions and groups. Text files of these 100 
studies were released to study participants with an additional 344 studies to make up the full test set. The 
344 studies were not annotated and were pulled from the same set of journals. 
 



The training and test sets were annotated with the BRAT annotation tool [8]. A customized version of 
BRAT was developed to support the generation of groups of mentions (see example annotations below). 
Participants were provided with the training set (100 studies) as text files (*.txt), BRAT-annotation files 
(*.ann), and XML formatted annotation files (*.xml) (see [13] for details). Participants were given 444 
studies of the test set as text files. Challenge participants trained their IE models using the training data set, 
ran their IE models on the test set, and then submitted their results for evaluation (in .xml format). 
 
Annotation Process: To guide the annotation process and ensure consistency, a set of Annotation 
Guidelines was developed [13]. The guidelines included a listing of mention and groups types to annotate 
as well as details on how to use the BRAT software, how to handle fragmented annotations, how to generate 
the grouping of mentions, and how to use keyboard shortcuts within the BRAT tool to make annotating the 
studies easier.  
 
For both Tasks 1 and 2, an initial set of pilot annotations was produced on three to five studies by two or 
more of the annotators and other members of the SRIE team. The guidelines were then updated based on 
the review and discussion of identified issues. 

 

Figure 1: An example of mention annotations 



The process for generating final annotations for both the training and test sets was as follows. Three 
directories were created within BRAT, labeled Annotator1, Annotator2, and QA. Two annotators 
independently annotated each study, and the second annotator copied their version to the QA directory. A 

third reviewer compared the annotations from Annotator 1 to Annotator 2, resolved any discrepancies, and 
produced a final QA version by modifying the QA copy as needed. Articles were replaced by an alternative 
study if the methods section was unclear or focused on in vitro methods. These annotation guidelines were 
updated periodically when there was a change in guidance or more specific guidance was provided based 
on questions that arose during the annotation process.  
 
Example Annotations: Figure 1 shows a set of annotations extracted from one of the research articles and 
illustrates some of the extraction challenges. For instance, the extraction of TestArticle is similar to the task 
of extracting chemical names (the majority of TestArticles are chemicals); however, a TestArticle must also 
be given to the test animals for the purpose of evaluating the impact (as opposed to being given to the 
animal as an anesthetic, for example). For many of the mention types, extraction was highly dependent on 
the content within the sentence and paragraph. Figure 2 illustrates a set of Endpoint and 
EndpointUnitOfMeasure mentions, which presented additional challenges as these mention types often 
included multiple spans that could cross multiple words and included word combinations that were not 
trivial to recognize from look-up tables, dictionaries, or ontologies.  
 
Figure 3 shows examples of Animal Group and Equivalence Group annotations. In this case, the annotator 
generated four different animal groups (Animal-0, Animal-1, Animal-2, and Animal-3) and two 
equivalence groups (Equiv-1, Equiv-2). Mentions labeled with the same group type (e.g., Animal) and same 

group number (e.g., 0) were assigned to the same group. For instance, in this case, Animal Group 0 consists 
of the Male and Mice mentions, Animal Group 1 consists of the Female and Mice mentions, and the mention 
Male is in an equivalence relationship with the mention Stud. To support this type of grouping, the BRAT 
tool was modified to allow annotators to create, edit, and delete group instances and easily assign a set of 
mentions to a group. 

Figure 2: An example of Endpoint and EndpointUnitOfMeasure mentions 

Figure 3: Examples of group annotations 



 
Table 3 provides the count of annotations types produced for Task 1 and Task 2.   
 

Table 3: Counts of Annotation Types 
Table Training Test 
Type Count Count 
CellLine 39 91 
Dose 659 611 
DoseDuration 216 188 
DoseDurationUnits 204 176 
DoseFrequency 96 106 
DoseRoute 572 524 
DoseUnits 493 441 
Endpoint 4411 3756 
EndpointUnitOfMeasure 706 698 
GroupName 963 1058 
GroupSize 387 496 
SampleSize 45 74 
Sex 612 608 
Species 1624 1639 
Strain 375 338 
TestArticle 1922 2207 
TestArticlePurity 28 19 
TestArticleVerification 6 2 
TimeAtDose 117 56 
TimeAtFirstDose 47 66 
TimeAtLastDose 23 44 
TimeEndpointAssessed 672 830 
TimeUnits 608 733 
Vehicle 440 358 
Total 15265 15119    

Group Animal 
 

602 
Group Equivalence 

 
1375 

Group TestArticle 
 

445 
Total 

 
2422 

 
Evaluation 
Participants submitted results for all of the 444 documents within the test set. Only 100 of the test set 
documents were annotated; however, participants were not aware of which documents were annotated. The 
evaluation software (see https://github.com/niehs/systematic_review_eval_nist2018) was available to all 
participants to use in the development of their models. 
 
For the evaluation of mentions, the evaluation script computed the number of true positives (TP), number 
of false positives (FP), and number of false negatives (FN) for each paper and each mention type and then 
computed precision, recall, and F1 measures for each mention type across the 100 test articles and computed 
the overall scores. To compute per article TPs, FPs, and FNs, the evaluation script computed a distance 
between each model-generated annotation and each human-provided annotation, where the distance 
between two annotations was equal to the sum of the overlap between the annotations divided by the total 
length of annotations. Distances below a threshold, Tmd, were set to 0. The distance matrix created a 
bipartite graph in which one model annotation may be assigned to more than one human-provided 
annotation (and vice versa). To create unique assignments, the python linear_sum_assignment algorithm 
(an implementation of the Hungarian algorithm for unique assignments on bipartite graphs [11]) from the 



scipy.optimize library was used. After unique assignments were made, the values for TP, FP, and FN were 
computed. 
 
The evaluation of groups used the same approach as for the evaluation of mentions. In this case, however, 
the overlap between two groups was computed as the number of matching mentions divided by the total 
number of mentions in the two groups. Mentions were considered to be matching if they were determined 
to be matching during the mention evaluation (so group scores were dependent upon the value for Tmd).  
As with mentions, distances below a threshold, Tgd, were set to 0. The code for evaluation of groups did 
not account for equivalence relations, which is a shortcoming to be addressed in future work. 
 
For the challenge, teams were evaluated using Tmd=0.5 and Tgd=0.5. However, to understand the impact 
of thresholds on results, we present scores for Tmd values ranging from 0.1 to 0.99 (Tgd was also set equal 
to Tmd).   
 
Participants 
Seven participants submitted results for Task 1 and two teams submitted results for Task 2. A brief 
description of the approaches of teams that submitted reports follows: 
 
• DASCIM: Ecole Polytechnique. For Task 1, the team utilized a multi-level entity detection approach 

in which qualitative and unit-based mentions were first identified to aid in identification of context 
specific mentions. Identification rules included string matching based on training set data combined 
with context-based rules. 

• EP: Evidence Prime, LLC. The team developed a deep learning architecture based on a bidirectional 
Long Short-Term Memory (LSTM) units with highway connections coupled with a Conditional 
Random Field (CRF). The team made use of novel approaches to connect layers, pre-trained word 
embeddings using GloVe [15] and ELMo [16], and used various regularization techniques as ways to 
address the large model parameter space of their neural network-based model. 

• ICF: ICF Inc. The ICF team worked with the organizers to provide a baseline model in advance of the 
evaluation process. This model was used to validate the evaluation software, uncover annotation issues, 
explore precision versus recall tradeoffs, and develop an expectation of model performance. ICF was 
instructed to not use external data and to limit model development time and complexity. The team 
employed a CRF model based on preceding tokens and parts of speech with minimal tuning. For Task 
2, the ICF team developed simple, easy-to-implement heuristics to assign nearby mentions into groups. 
The developed models were submitted to the challenge. 

• Sciome: Sciome, LLC. For Task 1, the team employed separate models for different mention types, 
including linguistic rules and regular expressions for simpler mentions (e.g., sex, species), CRF models 
for mention types with less than 1000 data points, and LSTM-CRF neural network-based models for 
remaining mention types. For Task 2, the team used heuristics based on distance between mentions to 
develop groups. 

• VCU: Virginia Commonwealth University. The VCU team used a multi-class classification system for 
identifying mentions. The system is based upon a Python package, MedaCy, which includes four 
components, text tokenization, rule-based token grouping, feature extraction, and a CRF model.  Of 
note, the feature extraction included terms from medical terminologies, including UMLS concept 
mappings along with morphological, orthographic, lexical, synatactic, and semantic features.  

 
Results 
Mention Results: Table 4 shows the precision, recall, and F1 scores across all mention types from the seven 
teams. Each team was allowed to submit up to three models for evaluation. Several teams steered away 
from deep learning approaches, or limited their use, out of concern over the ability to train such models 
with the available data. The success of the EP and Sciome teams in using deep learning approaches 



demonstrates that transfer learning and regularization techniques can provide competitive models despite 
modest training set size. 

Table 4: Precision, Recall, and F1 Scores for Mentions. FDUKW is a team from Fudan University University in Shanghai, China. 
AIMRL is a team from the Punjab University College of Information Technology, University of the Punjab, Lahore, Pakistan 

Team Model Precision Recall F1 

EP ep_2 58.79 63.17 60.90 
EP ep_3 58.30 63.11 60.61 

EP ep_1 58.65 62.02 60.29 

Sciome sciome_2 53.55 46.46 49.76 

Sciome sciome_1 53.87 44.83 48.94 
Sciome sciome_3 47.87 47.57 47.72 

FDUKW fdukw_1 57.07 40.28 47.23 

VCU vcu_1 48.61 28.27 35.75 
ICF icf_1 20.26 44.68 27.88 

DASCIM dascim_2 28.14 22.57 25.05 

DASCIM dascim_1 23.35 26.09 24.64 

ICF icf_2 13.63 48.46 21.28 
ICF icf_3 10.68 49.79 17.59 

AIMRL aimrl_2 5.36 2.01 2.92 

AIMRL aimrl_1 5.60 1.92 2.86 

 
To provide a reference for evaluating the computational models, we compared the final annotations 
produced by the third annotator against those produced by the two initial annotators using the evaluation 
script to generate an inter-annotator human F1 score. Figure 4 shows the top F1 score by mention type for 
the human annotators (blue) versus the top F1 score (orange) from the submitted models.     
 
Generally, the F1 scores in Figure 4 for the human annotators are in the 80+ range with a few noticeable 
exceptions. The agreement is lowest for CellLine. Cell Line was originally not included in the mention 
types as the focus of the data set is on animal studies; however, we noted during the course of annotating 
studies that many articles contained a combination of animal and molecular studies on cell lines. As such, 
we made a late decision to capture cell lines and the low F1 score reflects that the guidance was only 
implemented by the QA annotator for the studies that had already been annotated by Annotators 1 and 2 at 
the time of the revised guidance. The lower score for TestArticlePurity also likely reflects refinement issues 
with the annotation guidelines as there were very few instances of TestArticlePurity across studies. Finally, 
we believe the lower score for EndpointUnitOfMeasure, TimeAtFirstDose, TimeAtLastDose, 
TimeEndpointAssessed, and TimeUnit (all slightly below 80) reflects the high variability by authors in 
describing these types.   
 
In looking at the scores from the top models in Figure 4, we see similar trends to those from the inter-
annotator scores, namely that time-based scores and EndpointUnitOfMeasure were especially challenging. 
In addition, the algorithms did especially poorly on SampleSize compared to human annotators. However, 
the algorithms came close to matching annotator agreement on Sex, Species, CellLine, and 
TestArticlePurity.  The better performance on these mentions likely reflects a combination of fewer unique 
instances for these mentions as well as less dependence on context. 
 



Figure 5 details the impact of the number of annotations on performance. In this figure, the F1 score of the 
top algorithm (orange) and the inter-annotator F1 score (blue) are plotted for each mention type against the 

number of annotations for the mention type. A few trends are worth noting. First, the performance of the 
models drops dramatically below the inter-annotator score around 50-60 annotation instances. Second, the 
performance of the models’ results clusters around 60 while the inter-annotator scores cluster around 80, 
despite the number of annotation instances. The two highest data points for the models are Species and Sex, 
which are generally easier annotations to extract. This result hints at the idea of generating limited 
annotations and using those to understand the gaps between human and machine results before investing in 

large scale annotations, especially given that the mentions annotated in this data set were specifically 
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Figure 5: F1 scores by mention counts. 
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limited to experimental animal studies and their methods and covered only a portion of the domain where 
systematic review is employed for research and where training data are needed. The two right-most points 
in the graph represent Endpoints and TestArticle. Further exploration of whether machine performance 
would increase with additional annotations is worth pursuing. 
 
Figure 6 highlights the impact of the evaluation threshold on performance. In this figure, the top F1 model 
scores are presented for each mention type and for each evaluation threshold (for thresholds ranging from 
0.1 to 0.99). It is worth noting that the models were trained and evaluated using a threshold of 0.5. In 
examining the figure, a few mention types are only moderately impacted by threshold (e.g., Dose, Dose 
Unit), while a few are strongly impacted by the threshold (e.g., Endpoint, Strain, Vehicle). In examining 
the annotation results, one of the impacts on threshold is the presence of annotations that span multiple 
words, including words that are separated by a few and in some cases multiple, intervening, non-annotated 
words. In this case, performance increases when the threshold is low enough that getting only one of the 
sets of annotated words correct is sufficient to generate a hit call. The other factor is that lower thresholds 
allow for some amount of tolerance over word boundaries, especially for shorter unit and time-based 
mention types that may or may not include characters such as parenthesis or unit symbols. 
 

Grouping Results: Two teams competed in Task 2 and the results for their models are presented in Table 
4. It is important to note that the ICF team was asked by the project team to develop a simple model for 
Task 2 in order to generate a baseline expectation of performance. In discussion with challenge teams, most 
teams did not compete on Task 2 due to the limited time provided within the challenge timeline and the 
dependency of Task 2 on good results from Task 1.   
 
 
 

Table 4: Results of Models for Group Annotation 
TeamId Category Precision Recall F1 

sciome_1rel Animal 43.48 46.15 44.78 

Figure 6: Top F1 score for each mention for varying threshold levels. 



sciome_1rel Equiv 31.43 27.54 29.36 

icf_2rel Animal 12.95 31.28 18.32 

icf_1rel Animal 6.17 55.38 11.11 

sciome_1rel TestArticleGroup 9.88 8.56 9.17 

icf_2rel Equiv 3.31 7.57 4.60 

icf_2rel TestArticleGroup 1.48 23.29 2.78 

icf_1rel Equiv 0.76 35.28 1.49 

icf_1rel TestArticleGroup 0.46 39.38 0.90 

 
Discussion 
Overall, the results of the challenge were promising. While the gap between machine and human 
performance on mention extraction is clear, the performance of machine models was not unexpected given 
the limited time span participants were provided to generate models for an entirely new training set. The 
work by the various research teams showed that neural network-based deep learning models are performing 
at a high level. Despite the large number of parameters in such models, the SRIE track results demonstrated 
that the building of word embeddings and language models from articles outside the training set allows for 
the generation of data-driven models despite the limited number of annotated research articles. The SRIE 
results also identified several items for consideration in subsequent challenges and for subsequent/revised 
training sets, such as including other sections of research articles (e.g., title, abstract, results) and increases 
in targeted annotations (e.g., for cell lines, time units).  Finally, the SRIE track results emphasized that use 
of computer models is beginning to be viable for inclusion in systematic review data extraction.   
 
Conclusion 
The goal of the TAC SRIE track was to stimulate the development of machine-based approaches that can 
be employed in systematic reviews, particularly in machine-aided extraction of information from research 
articles by human reviewers. Seven teams submitted models. The top submission for Task 1, the annotation 
of design features from the methods section of experimental animal studies, achieved results, which 
although below human-level performance, suggested that computer-assisted IE is a viable option to assist 
researchers in the labor and resource intensive steps in the systematic review process.  
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