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Abstract. In this study, the fully distributed, physically based hydroclimatological model AMUNDSEN is set up for catchments

in the highly glacierized Ötztal Alps (Austria, 558 km2 in total). The model is applied for the period 1997–2013, using a

spatial resolution of 50 m and a temporal resolution of 1 h. A novel parameterization for lateral snow redistribution based

on topographic openness is presented to account for the highly heterogeneous snow accumulation patterns in the complex

topography of the study region. Multi-level spatiotemporal validation is introduced as a systematic, independent, complete and5

redundant validation procedure based on the observation scale of temporal and spatial support, spacing, and extent. This new

approach is demonstrated using a comprehensive set of eight independent validation sources: (i) mean areal precipitation over

the period 1997–2006 derived by conserving mass in the closure of the water balance, (ii) time series of snow depth recordings

at the plot scale, (iii-iv) multitemporal snow extent maps derived from Landsat and MODIS satellite data products, (v) the snow

accumulation distribution for the winter season 2010/11 derived from airborne laser scanning data, (vi) specific surface mass10

balances for three glaciers in the study area, (vii) spatially distributed glacier surface elevation changes for the entire area over

the period 1997–2006, and (viii) runoff recordings for several subcatchments. The results indicate a high overall model skill

and especially demonstrate the benefit of the new validation approach. The method can serve as guideline for systematically

validating the coupled components in integrated snow-hydrological and glacio-hydrological models.

1 Introduction15

Assessing the amount of water resources stored in mountain catchments as snow and ice as well as the timing of meltwater

production and the resulting runoff is of high interest for glaciological and hydrological investigations and hydropower pro-

duction. Climate change induced shifts in snow and ice melt will alter the hydrological regimes in glacierized catchments in

terms of both timing and magnitude of streamflow discharge. Longer periods of negative glacier mass balances first result in

increased runoff due to the enlarged contribution of glacier melt later on, followed by a decline of runoff amounts as a con-20

sequence of the reduced glacier area (e. g., Jansson et al., 2003; Beniston, 2003; Collins, 2008; Bliss et al., 2014). For some

regions, this moment of “peak water” has already passed, while for others it is expected over the course of the current century

(Salzmann et al., 2014; Bliss et al., 2014). Consequently, these catchments undergo a regime shift from icemelt-dominated
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towards snowmelt-dominated runoff cycles, accompanied by a shift of the monthly maximum runoff amounts towards earlier

periods of the year due to accelerated snowmelt (e. g., Horton et al., 2006).

When using hydroclimatological simulation models to investigate past, current or future water resources, it can generally

be distinguished between conceptual and physically based models. Conceptual models often use simple transfer functions

to translate input data (e. g., meteorological data) to the desired output variables (e. g., runoff). They tend to be comparatively5

parsimonious both in terms of input data and the number of parameters, however as the parameters often have no direct physical

meaning their values usually have to be determined by calibration, i. e., by tuning them until the model produces the desired

output. As conceptual models are usually calibrated to optimize results for a certain period of time, their performance under

changing conditions (e. g., climate change) is uncertain. With physically based models on the contrary, it is aimed to explicitly

simulate individual processes by following the laws of physics such as conservation of energy, mass, and momentum. In a fully10

physically based model, all parameters have a physical interpretation and can, in principle, be derived from field measurements.

Determination of these parameters however is highly scale-dependent, both with respect to the investigated processes and the

model itself (e. g., Blöschl and Sivapalan, 1995). In practice, often few direct measurements are available and a number of

required input parameters has to be inter- and extrapolated in space and time.

When validating hydrological models, commonly only runoff records are applied as direct field measurements. It is however15

well established that validating hydrological models by only comparing observed and simulated runoff at the catchment outlet

is not sufficient, as multiple parameter sets may yield the same results (the equifinality problem (Beven, 1993)) – for example,

in glacierized catchments underestimations in simulated precipitation volumes may be compensated by increased ice melt

contributions. This might be acceptable for short-term applications such as operational flood forecasting, where the main aim

is to acquire accurate discharge simulations, however when applying such model parameterizations for long-term simulations20

(e. g., to determine future runoff changes due to climate change), the errors due to the misrepresentation of specific processes

can accumulate and the model provides misleading results. Hence, whenever possible multiple independent data sets should

be used for model calibration and validation (e. g., Refsgaard, 1997; Grayson et al., 2002; Schaefli et al., 2005; Finger et al.,

2015).

For this purpose, for snow-hydrological applications frequently satellite-derived snow extent observations are additionally25

used in the validation process (e. g., Parajka and Blöschl, 2008; Finger et al., 2011). As they are available operationally in high

temporal resolution (up to daily, however always with the constraint of frequent cloud obstructions), they allow to spatially

assess snow accumulation and melt processes in the model. Additionally, incorporating measured glacier mass balances has

shown to lead to more realistic process representations in models (however not necessarily in terms of improved runoff results)

(e. g., Konz and Seibert, 2010; Finger et al., 2011; Schaefli et al., 2005; Schaefli and Huss, 2011). Glacier mass balance is an30

integral measure of the accumulation and ablation processes over the glacier in a defined period, but observations are either

available only for very few glaciers with direct measurements or are acquired using DEM differencing covering multi-year

periods.

Since several studies have shown that especially accurately capturing the amount and distribution of snow accumulation

during the winter is a prerequisite for reliable long-term runoff simulations (e. g., Huss et al., 2014; Magnusson et al., 2011),35
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much work has been put in parameterizing models to better capture winter snow accumulation in terms of spatial distribu-

tion and volume. For this purpose, commonly point measurements of snow depth, snow water equivalent or precipitation are

inter- and extrapolated, but information on the total water volume stored in entire mountain catchments is rare (e. g., Jonas

et al., 2009). Measurements of solid precipitation are impaired with errors (e. g., Sevruk, 1986; Goodison et al., 1998), and the

representativeness of point measurements for entire mountain catchments is uncertain (e. g., Grünewald and Lehning, 2011).5

A relatively recent technology is to use lidar-derived surface elevation differences to obtain snow depth maps in high spatial

resolution (e. g., Deems et al., 2006; Grünewald et al., 2010; Grünewald and Lehning, 2011; Grünewald et al., 2013; Schöber

et al., 2014; Helfricht et al., 2012, 2014a, b). Schöber et al. (2014) demonstrated that using lidar-derived snow water equiv-

alent (SWE) maps in the calibration of a spatially distributed snow hydrological model significantly improved the results for

simulated snow accumulation, compared to the assimilation of optical remote sensing data of the snow-covered area only.10

In our study, we set up the physically based hydroclimatological model AMUNDSEN (Strasser, 2008) for a study region

in the highly glacierized Ötztal Alps (Austria). By introducing a concept for systematic model validation using the “observa-

tion scale” (Blöschl and Sivapalan, 1995) of temporal and spatial support, spacing, and extent, we validate the model results

against (i) mean areal precipitation over the period 1997–2006, (ii) time series of point-based snow depth recordings at several

locations, (iii-iv) multitemporal snow extent maps acquired from Landsat and MODIS imagery, (v) the snow accumulation15

distribution for the winter season 2010/11 acquired using airborne laser scanning surveys, (vi) glacier-averaged annual surface

mass balances for three glaciers in the study area, (vii) spatially distributed glacier surface elevation changes for the entire area

over the period 1997–2006, and (viii) hourly runoff records for several subcatchments.

2 Study site and model input data

The study site is located in the mountain region of the Ötztal Alps (Tyrol, Austria, fig. 1) and comprises the headwater catch-20

ments of the valleys Ötztal, Pitztal, and Kaunertal, which contribute to the streamflow of the river Inn. The combined area of

the investigated catchments is 558 km2, of which 480 km2 are gauged. Elevations range between 1760 m a.s.l. at the lowest

elevated runoff gauge and 3770 m a.s.l. at the top of Wildspitze, the highest summit of Tyrol. The Ötztal Alps are the most

glacierized mountain region of the Eastern Alps, accounting for almost one third of the glacier area in Austria. According to

the glacier outlines of the second Austrian Glacier Inventory (Fischer et al., 2015), in 1997 137 km2 (24 %) of the investigated25

area were covered by glaciers. Only 11 km2 (2 %) of the investigated area are covered by forests, and another 3 km2 (0.5 %)

by shrubs (source: Land Tirol – data.tirol.gv.at). Main surface types besides the ice-covered areas are alpine grass vegetation,

debris cover, and rock walls. Due to the touristic development and the production of hydropower in the region, a large number

of weather stations and discharge measurements ensure an extensive basis of meteorological and hydrological data. Approx.

half of the study area (277 km2) are catchments which supply water to the Gepatsch hydropower reservoir (see fig. 1). Table 130

lists the area, minimum/maximum/mean elevation, and glacierization (as of the year 1997) of the investigated catchments.

An airborne laser scanning (ALS)-derived digital elevation model (DEM) from the year 2006 (source: Land Tirol – data.tirol.gv.at)

resampled to 50 m resolution was used as input for the model and the calculation of derived terrain variables (e. g., slope, as-
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pect, sky-view factor, and catchment boundaries). Meteorological records (air temperature, precipitation, relative humidity,

global radiation, and wind speed) in hourly resolution from 14 automatic weather stations in and surrounding the study re-

gion were used to drive the model. Initial ice thickness distribution of all glaciers in the Ötztal Alps was calculated using the

approach by Huss and Farinotti (2012). The method is based on glacier mass turnover and ice flow mechanics and requires

glacier outlines and a DEM. Mass balance gradients and constants recommended by M. Huss (pers. comm., 2011) were used5

to calculate volumetric balance fluxes of the individual glaciers. Required glacier surface elevations and glacier outlines of the

year 1997 exist from the second Austrian Glacier Inventory (Fischer et al., 2015).

3 Methods

3.1 The hydroclimatological model AMUNDSEN

The modular, physically based, distributed modeling system AMUNDSEN (Strasser, 2008) was applied for the simulation10

of the snow and ice surface mass balance. AMUNDSEN has been designed to specifically address the requirements of snow

modeling in mountain regions under climate change conditions and has already been extensively validated in various Alpine

sites (Strasser, 2004; Pellicciotti et al., 2005; Strasser et al., 2008; Strasser, 2008; Hanzer et al., 2014; Marke et al., 2015).

As input data for the model, a digital elevation model of the model domain with a spatial resolution typically in the order of

tens to hundreds of meters (the comparatively high resolution is necessary for adequately capturing the small-scale processes15

shaping the snow cover in complex terrain), as well as hourly to three-hourly recordings of the meteorological variables

air temperature, relative humidity, precipitation, global radiation, and wind speed are required. Several derived topographic

parameters (slope, aspect, sky-view factor, openness) can either be preprocessed or calculated during runtime. In order to

enable specific submodules (canopy module, evapotranspiration, runoff), various other spatial input fields (land cover, soil,

catchment boundaries) have to be prescribed. The calculations presented in this study have been performed on a 50 m grid and20

with hourly meteorological recordings.

Interpolated fields from the scattered point measurements are – in the case of temperature, precipitation, humidity, and wind

speed – obtained using a combined lapse rate–inverse distance weighting scheme, either using automatically calculated lapse

rates for each time step or using prescribed monthly lapse rates. The latter approach has been chosen for this study – for

temperature and humidity (dew point temperature), the lapse rates derived by Marke (2008) were used, while for precipita-25

tion monthly lapse rates were derived from time series recorded by accumulative precipitation gauges in the study area. In

the case of radiation, first clear-sky global radiation is calculated following Corripio (2002) taking into account hillshading,

transmission losses due to scattering (Rayleigh and aerosol scattering) and absorption (by water vapor, ozone, and other trace

gases), transmission gains due to multiple reflections between the atmosphere and the ground, and reflections from surrounding

terrain. Subsequently, actual global radiation is obtained by correcting the clear-sky radiation with interpolated cloud factor30

fields (obtained using radiation recordings at the meteorological stations). Incoming longwave radiation is also derived fol-

lowing Corripio (2002) using parameterizations for the radiation fractions coming from the clear sky, from clouds, and from

surrounding slopes.

4



Precipitation phase is then determined using a wet-bulb temperature threshold of Tw = 2 ◦C. Wet-bulb temperature is calcu-

lated by iteratively solving the psychrometric equation. Four types of snow/ice layers are distinguished in the model, namely

new snow, old snow, firn, and ice, with each layer having distinct properties in terms of water equivalent, density, and albedo.

Fresh snowfall is always added to the new snow layer. New snow is converted to old snow when reaching a transition density

of 200 kg m−3, old snow to firn always on September 30, and firn to ice when reaching a transition density of 900 kg m−3.5

Fresh snow density ρns is calculated as a function of air temperature Ta [◦C] following Anderson (1976) and Jordan (1991):

ρns =

50 Ta ≤−15 ◦C

50 + 1.7(Ta + 15)1.5 Ta >−15 ◦C.
(1)

Snow compaction for the new snow and old snow layer is calculated following Anderson (1976) and Jordan (1991), taking into

account the effects of compaction and metamorphism:

dρs
dt

= ρs

(
c1W

∗e−c2(T
∗−Ts)e−c3ρs

)
, (2)10

dρs
dt

= ρs

(
c4e−c5(T

∗−Ts)c6

)
, (3)

c6 =

e−c7(ρs−ρd) ρs > ρd

1 ρs ≤ ρd,
(4)

with ρs [kg m−3] being the layer (new snow or old snow) density, W ∗ [kg m−2] the load of snow water equivalent (snow in

the layer above and 50 % of the snow in the current layer), c1 = 0.01 m−1 h (new snow), c1 = 0.001 m−1 h (old snow), c2 =

0.08 ◦C−1, c3 = 0.021 m3 kg−1, c4 = 0.01 m−1 h, c5 = 0.04 ◦C−1, c7 = 0.046 m3 kg−1, ρd = 150 kg m−3 and T ∗ = 0 ◦C.15

For the firn layer, a linear transition from firn to ice in 10 years is assumed, while ice density is kept constant at 900 kg m−3.

Snow surface albedo α is parameterized following Rohrer (1992) taking into account snow age and temperature:

α= αmin + (αt−1−αmin)e−cT /24, (5)

where αmin is the (prescribed) minimum albedo, αt−1 the albedo in the previous time step, and cT a temperature-dependent

recession factor (implemented by prescribing two factors cT≥0 and cT<0 for positive and negative air temperatures, respec-20

tively). For the present study, fresh snow albedo was set to 0.85, while αmin, cT≥0, and cT<0 for new snow and old snow were

set to 0.55, 0.12, and 0.05, respectively. Firn and ice albedo were held constant with αfirn = 0.4 and αice = 0.2.

In forested areas, a canopy submodule optionally modifies the meteorological variables for inside-canopy conditions (Strasser,

2008) and accounts for the forest snow processes of interception, sublimation, and melt unload following Liston and Elder

(2006). Evapotranspiration over vegetated areas is calculated using the FAO Penman-Monteith approach (Allen et al., 1998).25

The snow and ice surface energy balance is calculated as

QN +QH +QE +QA +QB +QM = 0, (6)
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with QN being the shortwave and longwave radiation balance, QH the sensible heat flux, QE the latent heat flux, QA the

advective energy supplied by solid or liquid precipitation, QB the soil heat flux, and QM the energy potentially available for

melt. For a detailed description of the calculation of the individual energy fluxes see Strasser (2008).

For the application in this study, the original model setup of AMUNDSEN was adapted to the mountain region of the Ötztal

Alps by adding modules which enable a more realistic simulation of the catchment precipitation, of the timing of snowmelt5

(by considering cold content and liquid water content of the snowpack), and of runoff concentration. These are described in

the following sections.

3.2 Precipitation correction

With respect to the undercatch of solid precipitation by common rain gauges (e. g., Sevruk, 1986; Goodison et al., 1998), a

number of previous studies showed that the measured values of solid precipitation have to be corrected for systematic errors due10

to wetting loss, evaporation loss, and wind-induced undercatch (e. g., Rohrer and Braun, 1994; Farinotti et al., 2011; Schöber

et al., 2014).

A common and straightforward method to apply a correction for snow undercatch is to introduce a fixed snow correction

factor (SCF) which is applied to the fraction of precipitation identified as snow. However, it has been shown that errors due to

wind-induced undercatch are especially large at lower temperatures, where snowfall mainly consists of smaller particles which15

are blown away more easily (e. g., Sevruk, 1983; Goodison et al., 1998). Using fixed SCF values thus tends to result either

in underestimations of winter snowfall amounts or overestimations of snowfall events during spring and fall. A more robust

method of snow correction is hence to introduce a variable correction factor derived from the meteorological variables (most

importantly wind speed and temperature) measured at the gauge site.

For our study, we used the empirical correction for the Hellmann type precipitation gauge presented in Goodison et al.20

(1998). Catch ratio CR (i. e., the fraction of the actual precipitation amount that is captured by the gauge) in percent is thereby

calculated as a function of air temperature Ta [◦C] and wind speed WS [m s−1]:

CR = 96.63 + 0.41WS2− 9.84WS + 5.95Ta. (7)

Adjusted precipitation values are then obtained by dividing the original values by CR.

This correction is applied to the station measurements at each model time step prior to the spatial interpolation of precipita-25

tion. However, since model results indicated that the simulated snowfall amounts were still underestimated, a post-interpolation

adjustment of solid precipitation using a fixed snow correction factor (for details see section 5.1) was additionally implemented.

3.3 Snow redistribution

With the standard method for the spatial interpolation of point precipitation measurements implemented in AMUNDSEN,

obtained interpolation values are influenced by the respective grid cell elevation and its distance to surrounding weather stations.30

However, it is well known that snow accumulation patterns in complex terrain are fundamentally influenced by topographic

controls beyond elevation alone, most importantly being attributed to redistribution of snow by wind and gravitational forces
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(McKay and Gray, 1981; Blöschl and Kirnbauer, 1992; Grünewald et al., 2014; Bernhardt et al., 2010; Warscher et al., 2013).

Considering these processes is a prerequisite for reliable long-term mass balance simulations, hence the distribution of solid

precipitation in AMUNDSEN has been updated using an empirical relation between SWE and topographic parameters.

Numerous studies have applied statistical models to explain snow cover variability using multiple regressions of topographic

parameters such as elevation, slope, aspect, curvature, viewshed, and terrain roughness (e. g., Elder et al., 1991; Chang and5

Li, 2000; Pomeroy et al., 2002; Winstral et al., 2002; Lehning et al., 2011; Grünewald et al., 2013), However, Grünewald

et al. (2013) showed that statistical relations between snow depth and topography are site-specific and performance decreases

considerably when applying calibrated regression formulas to snow depth distributions in other catchments. Additionally, the

topographic derivatives depend distinctly on the spatial scale used for calculation. Helfricht et al. (2014b) showed that the

spatial variability of snow depth in a glacierized catchment is caused by a short-range variability based on small-scale terrain10

roughness, but also by a long-range variability with respect to the glacierized and wind-sheltered cirques and valleys in contrast

to wind-exposed mountain ridges.

In this study we used topographic openness (Yokoyama et al., 2002) for the parameterization of the spatial snow distribution

according to Helfricht (2014). Openness is a parameter originally developed to visualize topographic character and features in

images, as it expresses the degree of dominance or enclosure of a location on an irregular surface. Topographic openness has15

two viewer perspectives in terms of positive and negative openness. Positive openness for a DEM grid point is obtained by

averaging the zenith angles calculated for all eight compass directions from the grid point, while negative openness is obtained

by averaging the respective nadir angles. The latter was used in this study to parameterize the spatial snow distribution, as it

yields low values for convex forms and high values for concave forms. The openness values depend on the length scale L,

which is the maximum distance considered for calculation: low L values result in a high spatial variability of openness, while20

high L values display large-scale topography of ridges and valley floors and hence highlight the overdeepening of, e. g., the

surface elevations of glacier tongues compared to the surrounding ridges and peaks (Helfricht, 2014).

Negative openness ΨL was calculated for the entire Ötztal mountain range based on a 50 m DEM for L= 50 m and

L= 5000 m, according to the definitions given in Yokoyama et al. (2002) (resulting values for a subset of the area are shown

in fig. 2 (top)). A linear relation was applied between the minimum and the maximum threshold of negative openness to derive25

the snow redistribution factor SRF, shown in fig. 2 (bottom):

Ψ̃50 = 3 · (Ψ50− 1.2), (8)

Ψ̃5000 = 3 · (Ψ5000− 1), (9)

30

SRF =
1

2

(
>1.6
⊥0.1Ψ̃50 +>1.6⊥0.1Ψ̃5000

)
, (10)

where >1.6⊥0.1Ψ̃ denotes Ψ̃ clipped to values between 0.1 and 1.6. Hence, at least 10 % of the initial atmospheric solid precipitation

can be stored even in almost vertical slopes and in very exposed areas for the time of the precipitation event, while wind-
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sheltered areas can hold a maximum of 1.6 times the initial amount. At each time step, solid precipitation of each raster cell is

multiplied with the corresponding redistribution factor. The new total amount of solid precipitation over the entire area is related

to the initial precipitation amount in order to keep the total precipitation volume constant (mass conservation). Consequently,

simulated accumulation is reduced in areas of low negative openness (i. e., exposed ridges, sheer rock faces) and increased

in sheltered areas (i. e., cirques and low elevated valley floors). The two length scales and the factors in eqs. (8)–(10) were5

determined by manual optimization for the best fit of the redistribution factor field with the ALS-derived surface elevation

differences (interpreted as snow accumulation over the winter season).

To summarize, in total three steps of snow adjustments are applied: (i) the wind speed and temperature-dependent correc-

tion of measured precipitation at the meteorological stations (eq. (7); variable in time and space), (ii) the additional post-

interpolation snowfall adjustment using a fixed snow correction factor (constant in time and space), and (iii) the adjustment10

using the snow redistribution factors acquired using eq. (10) (constant in time, variable in space). Whereas the first two steps

are required to correct precipitation input towards a realistic precipitation volume, the latter does not change the total volume

but rather redistributes the solid precipitation with respect to the terrain.

3.4 Cold content and liquid water content

To account for temperature changes inside the snow cover, a parameterization for cold content and liquid water content based15

on the work of Braun (1984) has been added to the model. Meltwater is thereby not immediately removed from the snowpack,

but a certain amount of liquid water (originating from surface melt or rain) can be retained in the snowpack. In the case of

negative surface energy balances, this liquid water can refreeze. Further heat loss is used to build up a cold content, which

needs to be depleted again before actual melt can occur. The cold content corresponds to the energy required to warm the

entire (dry) snowpack to 0 ◦C. By relating this energy with the latent heat of fusion of ice (333.7 kJ kg−1), cold content can20

alternatively also be expressed in units of water equivalent (corresponding to the equivalent amount of liquid water needed to

release the required amount of energy by freezing), which is the formulation we use within this study. The module for cold

content and liquid water content is described in more detail in the article supplement.

Following Blöschl and Kirnbauer (1991), for the new snow and old snow layers the liquid water retention capacity of the

snowpack was set to 10 % of the total snowpack weight, and the maximum possible cold content to 3 % of the total snowpack25

weight for this study. The refreezing factor (the amount of heat loss that is used to build up the cold content) was set to 0.65.

This value, slightly higher than the literature value of 0.5, was determined by comparison of observed and simulated snow

depth recordings.

3.5 Runoff concentration

For runoff concentration, a linear reservoir cascade approach (Nash, 1960) following Asztalos et al. (2007) was implemented in30

the model. Runoff originating from rainfall and from meltwater released from glaciers and the snowpack is thereby cumulated

in each time step and catchment and routed through four parallel linear reservoir cascades for unglacierized areas, bare ice

areas, firn-covered areas on glaciers, and snow-covered areas on glaciers (the latter consisting of the AMUNDSEN “new snow”
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and “old snow” layers, which are not treated separately in terms of runoff concentration). A constant fraction fglacierized of the

inflow into the snow, firn, and ice reservoirs, as well as a fraction funglacierized of the inflow into the unglacierized reservoir is

diverted into an additional soil reservoir. The parameters of the linear reservoir model (for each cascade the number of parallel

reservoirs n and the storage constant k, as well as fglacierized and funglacierized) are determined by calibration separately for each

catchment. Calibration is performed using an automatic optimization routine with the aim to maximize the objective function5

NSEV = NSE− 0.1|VE |, (11)

i. e., maximizing the Nash-Sutcliffe efficiency NSE and minimizing the relative volume error VE (following Lindström (1997)).

Table 2 shows the allowed ranges for the parameters during the automatic calibration.

4 Validation approach and data

In this study, the individual model components are validated against (i) mean areal precipitation values for the period 1997–10

2006 for the gauged catchments, (ii) daily to hourly snow depth recordings at five locations in the study area, (iii-iv) snow-

covered area maps acquired by Landsat and MODIS imagery, respectively, (v) the snow accumulation distribution for the

winter season 2010/11 acquired using airborne laser scanning surveys, (vi) glacier-averaged annual surface mass balances for

three glaciers in the study area, (vii) spatially distributed glacier surface elevation changes for the entire area over the period

1997–2006, and (viii) hourly runoff records for 8 of the investigated catchments. Besides the satellite-derived snow extent15

maps which only give binary information (snow yes/no), all other data sets also include volumetric information about the water

resources in the study area (in varying spatial and temporal scales).

According to Blöschl and Sivapalan (1995), any finite set of observations is accompanied by an “observation scale” in space

and time, that can be defined by a “scale triplet” of support, spacing, and extent. Support is the integration volume or time of a

single sample, spacing is the distance or time between individual samples, and extent is the total coverage in space or time of20

the entire data set. These concepts are illustrated in fig. 3. Table 3 lists the spatial and temporal support, spacing, and extent of

the used validation data sets, as well as the associated information type (binary vs. continuous information).

However, as the tabular representation of the scales makes it rather difficult to interpret and compare them, a visual method

to display the observation scale of a data set is proposed: The seven dimensions (support, spacing, and extent in both space and

time, as well as information type) are arranged as axes on a radar chart, where the left and right halves of the chart represent the25

spatial and temporal dimensions, respectively. The ranges of the individual axes and their ordering (from low to high or from

high to low values) are designed such that a “perfect” validation data set (i. e., having the lowest possible support and spacing,

the highest possible extent, and continuous information) is represented by a regular heptagon with the maximum possible

diameter (i. e., extending to the maximum axis extent in each dimension). This implies that the ordering of the axis values is

not consistent (extent ranges from low to high values, while support and spacing range from high to low values), however it30

allows for an easier visual interpretation (bigger is always better). Fig. 4 shows the resulting axes including the possible values

for our particular case study, while fig. 5 shows the resulting charts for the eight validation data sets used in this study. As
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the charts are supposed mainly for a qualitative interpretation and comparison between the different data sets, they are shown

without axis and tick labels in the latter.

The various data sets and the respective validation strategies are outlined in the following sections.

4.1 Areal precipitation

As a method to estimate long-term mean annual catchment precipitation for all gauged catchments to use as a validation data5

set for the respective AMUNDSEN simulation results, the OEZ approach (Kuhn and Batlogg, 1998; Kuhn, 2000) was used.

This method calculates catchment-scale precipitation P from measured runoff Q, evaporation E and glacier mass changes ∆S

as the remainder from the water balance equation

P =Q+E+ ∆S, (12)

and has proven to be very robust for the simulation of decadal mean values (Kuhn, 2000). Evaporation E, typically compara-10

tively small in glacierized catchments, is approximated using constant values depending on the surface type (ranging between

15 mm/month for snow and ice surfaces and 60 mm/month for forested areas). Liquid water storage within the snowpack

and the ground is accounted for by the residuals of measured runoff vs. calculated monthly runoff originating from snow melt,

ice melt, and precipitation minus evaporation (Kuhn et al., 2016). Interannual changes in ground water storage are neglected,

as the method aims at mean annual values over longer periods.15

To calculate areal precipitation values for our study catchments, for runoff Q the respective measurements at the catchment

outlets were used, while glacier volume changes ∆S were derived from the surface elevation changes between 1997 and 2006

according to the glacier inventories performed in these years (Abermann et al., 2009).

4.2 Snow depth

Comparisons with snow depth measurements at the locations of meteorological stations allow to evaluate model performance20

in terms of realistic representation of accumulation (adequate correction for gauge undercatch, snow/rain separation) and

ablation (surface albedo evolution, cold content and liquid water content, surface energy balance) at the point scale, as well the

conversion of snow water equivalent to snow depth. The latter has however already been evaluated in previous studies (e. g.,

Marke et al. (2015)) and has proven to be robust. Snow depth is evaluated at five locations covering an elevation range of

almost 2000 m: Prutz (871 m a.s.l.), Nauders (1330 m a.s.l.), Obergurgl (1942 m a.s.l.), Weisssee (2480 m a.s.l.), and Pitztaler25

Gletscher (2864 m a.s.l.).

4.3 Snow distribution

4.3.1 Satellite-derived snow distribution

Satellite-derived snow cover images allow to spatially validate simulation results in comparatively high spatial and temporal

resolutions. For this study, we used a comprehensive set of Landsat (5/7) and MODIS scenes to derive snow extent maps for30
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the study area. Landsat products are available in 30 m spatial resolution and a 16-day revisit time, while MODIS snow products

are available daily from two satellites (Aqua and Terra), however with a coarser spatial resolution of 500 m. However, both

Landsat and MODIS images are subject to frequent cloud obstructions, hence only a limited subset of the available scenes was

usable for this study.

With regard to Landsat data, a set of 26 suitable scenes covering the period 1998–2012 was manually selected (a list of the5

scenes can be found in the article supplement). Besides the requirement of no or minimum cloud coverage over the study area,

images acquired in the early morning hours especially during winter were not taken into account, as illumination effects from

low sun elevation angles often pose problems in terms of sensor saturation on sun-facing slopes and topographic shadowing,

making it difficult to retrieve snow cover.

To derive snow maps from the raw Landsat bands, first the digital numbers (DNs) of the individual bands were converted to10

top-of-atmosphere reflectances using the i.landsat.toar module from GRASS GIS (GRASS Development Team, 2012).

Subsequently, the reflectances were topographically corrected using i.topo.corr. Then, the normalized difference snow

index (NDSI) (Hall et al., 1995) was calculated using the band ratio

NDSI =
green−SWIR
green + SWIR

, (13)

where green and SWIR (shortwave infrared) correspond to TM bands 2 and 5, respectively, for both Landsat 5 and 7. Several15

NDSI thresholds for the binary snow/no snow classification were subsequently evaluated, however the commonly chosen value

of 0.4 (Hall et al., 1995) provided adequate results and was thus used for all 26 scenes. Following Hall et al. (1998), additional

to the NDSI threshold a threshold of the near-infrared (NIR) channel (TM band 4) was used to avoid misclassifying water

bodies as snow – pixels with NIR< 11 % are thereby never classified as snow.

The applied NDSI threshold generally also classifies ice surfaces as snow. To discriminate snow from glacier ice, for all20

glacier pixels (according to the used glacier mask) broadband albedo α was calculated from Landsat TM bands 2 and 4 (green

and NIR) following the relation by Knap et al. (2010):

α= 0.726α2− 0.322α2
2− 0.051α4 + 0.581α2

4, (14)

where α2 = TM 2 and α4 = TM 4. Then, for each scene an α threshold for discriminating snow from ice was manually derived

using a histogram analysis of the α values over the glaciers. For 22 of the 26 scenes a threshold of α= 0.3 was found to be25

applicable, while for the remaining scenes values of 0.25, 0.35, and 0.4 were used.

In contrast to Landsat, precomputed MODIS snow cover products are readily available for download (Hall et al., 2002). For

our study we used the binary snow cover products MYD10A1 and MOD10A1 (for the Aqua and Terra satellites, respectively),

which are available in 500 m resolution on a daily basis. To reduce the influence of clouds and misclassifications, Aqua and

Terra scenes for each day were merged into a composite image: if a pixel in one scene was classified as cloud-covered in one30

scene and cloud-free in the other, the respective value of the cloud-free scene was taken, while if one pixel was considered

snow-covered in one scene and snow-free in the other, the pixel was classified as snow. This approach is similar to methods

applied in other studies (e. g., Xie et al. (2009); Gafurov and Bárdossy (2009)).
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MODIS snow products are calculated using a NDSI thresholding approach and hence also do not discriminate between snow

and ice surfaces. Some studies have used the 250 m visible and near-infrared MODIS bands to classify snow and ice surfaces

(e. g., Shea et al. (2013)), however we found this method not applicable for our study, since the coarse resolution of the MODIS

scenes makes it challenging to differentiate between snow and ice facies for the majority of (small) glaciers in the study area.

As a pragmatic solution we excluded all MODIS scenes taken in the months July–September from the analyses, since it can be5

assumed that outside of this period the glaciers are snow-covered and MODIS “snow” pixels are actually snow rather than ice.

To compare simulation results with the satellite products, the daily AMUNDSEN SWE maps were converted into binary

snow cover images using an SWE threshold of 1 mm (this amount of snowfall is required to turn a summer landscape into

“white winter” landscape). For the Landsat validation, the Landsat 30 m pixels were resampled to the 50 m model resolu-

tion, while for the MODIS validation the AMUNDSEN snow maps were resampled to the MODIS resolution using mode10

resampling, i. e., a 500 m pixel was classified as snow if at least 50 % of the 50 m pixels it comprises were snow-covered.

For the comparison and evaluation of observed and simulated snow cover patterns, we use the contingency table-based

efficiency criteria ACC, BIAS, and CSI (Zappa, 2008):

ACC =
n11 +n00
nxx

, (15)

15

BIAS =
n1x
nx1

, (16)

CSI =
n11

nxx−n00
. (17)

For the definitions of n00 to nxx see table 4. Accuracy ACC is the number of correct predictions divided by the total number

of samples (values between 0 and 1, with a perfect score being 1). This score, however, tends to be comparatively optimistic,20

as it usually yields high values both during winter (where most of the pixels are snow-covered) and summer (where most of

the pixels are snow-free). A more sensitive score is the critical success index CSI, which is the number of correctly predicted

snow events divided by the number of times where snow is predicted in the model and/or observed. Finally, BIAS corresponds

to the frequency of correct snow predictions, i. e., the number of times where snow is present in the simulations divided by

the number of times where it is observed. Again, a value of 1 is a perfect match, while here values below 1 indicate that snow25

cover is underrepresented in the model, and values above 1 indicate that the model overestimates the snow cover.

4.3.2 ALS-derived snow distribution

While satellite-derived snow cover maps can be used to analyze binary snow coverage (snow yes/no) in high temporal reso-

lution, lidar-derived surface elevation fields allow to obtain snow depth maps in very high spatial resolution. For this purpose,

two lidar surveys are required: one for mapping the snow-free terrain, and one for recording the snow-covered terrain. The30
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difference between both surface elevations can be interpreted as snow depth (in case of glacier surfaces, the vertical component

of the ice flow has to be evaluated and considered for error analysis (e. g., Sold et al., 2013; Helfricht et al., 2014a)).

Airborne laser scanning (ALS) surveys of a 746 km2 large area encompassing all investigated catchments were performed

for the winter 2010/2011 to determine the spatial snow distribution and depth at the end of the accumulation season. The two

ALS surveys were performed from October 7–12, 2010, and April 20–23, 2011, respectively. An Optech ALTM Gemini device5

was used for both surveys, with a mean flight speed of 65 m s−1 and a mean flight altitude above ground of 1000 m. Mean

point densities of 3.6 and 3.8 points per square meter, respectively, were achieved. Digital elevation models with 1 m resolution

were processed and surface elevation changes were calculated in the original 1 m resolution. The DEM differences were then

resampled to the grid size of 50 m according to the model resolution. On the basis of the determined distribution of snow depth,

SWE was calculated using an empirical relation between snow depth SDALS [m] and snow density ρALS [kg m−3] derived by10

Schöber et al. (2014):

ρALS = SDALS · 14.8 + 347. (18)

This relation has already been applied for the investigation area in previous studies and has proven to be robust, with average

errors in the order of 10 % (Schöber, 2014).

4.4 Glacier mass balance15

For three glaciers in the study region (Hintereisferner, Kesselwandferner, and Vernagtferner), long-term annual mass balance

series are available. For these glaciers, the simulated specific annual mass balance is compared with the observations, as well as

the cumulative values over the entire simulation period 1997–2013. In addition, using two DEMs of the study region acquired

in 1997 and 2006 spatially distributed glacier surface elevation changes during this period were calculated, which allows

assessing the performance of the multiannual simulated mass balance for all glaciers in the study region over this period. The20

respective snow/ice volume changes as simulated by AMUNDSEN are thereby converted to surface elevation changes using

the respective layer densities as calculated by the model (see section 3.1).

4.5 Runoff

Hydrological data from eight runoff gauges with adequate hourly records are used. Runoff is modeled in an hourly resolution

for the time period 1997–2013. The period 1998–2006 is used for model calibration, while the period 2007–2013 is used25

for the validation of simulated runoff. Model performance is evaluated using the efficiency criteria percent bias PBIAS and

Nash-Sutcliffe efficiency NSE, as well as the benchmark efficiency BE (Schaefli and Gupta, 2007):

PBIAS = 100 ·
∑
t (Qsim,t−Qobs,t)∑

tQobs,t
, (19)

NSE = 1−
∑
t (Qobs,t−Qsim,t)

2∑
t

(
Qobs,t−Qobs

)2 , (20)30
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BE = 1−
∑
t (Qobs,t−Qsim,t)

2∑
t (Qobs,t−Qbench,t)

2 . (21)

For BE, the benchmark model runoff Qbench is calculated as the multiannual mean observed runoff per calendar day and hour.

5 Results and discussion

5.1 Precipitation5

Mean areal precipitation for the gauged catchments in the region for the period 1997–2006 as derived by closing the water

balance using the OEZ method (see section 4.1) was compared to the respective AMUNDSEN simulation results.

As the applied correction of the precipitation recordings using wind speed and temperature (eq. (7)) still resulted in an

underestimation of precipitation amounts (as indicated by comparisons with (i) the catchment precipitation simulated by closing

the water balance (table 5), (ii) the temporal progress of snow depth (fig. 6), (iii) the spatial distribution of accumulation at the10

end of the winter season (fig. 10), and (iv) the long-term glacier mass changes in the Ötztal Alps (fig. 15)), an additional post-

interpolation snow correction factor (i. e., a constant factor with which the interpolated snowfall field is multiplied in each time

step) was applied. By comparing precipitation amounts derived by closing the water balance with the respective AMUNDSEN

results over all gauged catchments, this factor was set to a value of 1.15 (i. e., 15 % increase of snowfall amounts). Using

this additional adjustment, AMUNDSEN mean areal precipitation for all gauged catchments deviates less than 1 % from the15

respective values as acquired by closing the water balance, as compared to a difference of−31 % when using uncorrected values

(table 5). Especially considering that precipitation amounts for the largest catchments are reproduced very well, these results

can be considered satisfactory. The largest differences occur in the medium-sized catchments, with the maximum deviation

being approx. 25 %, while the smaller catchments generally show the smallest deviations.

In several of the following sections, results obtained using uncorrected and corrected precipitation are compared and evalu-20

ated. “Uncorrected” in this terminology corresponds to the elevation-dependent remapping of unaltered precipitation recordings

alone, while “corrected” refers to the combination of the adjustment of snowfall amounts (eq. (7) and the additional increase

by 15 %) and the topographic snow redistribution (eq. (10)).

5.2 Snow depth

Table 6 lists the performance measuresR2, Nash-Sutcliffe efficiency NSE, and percent bias PBIAS for the comparison of daily25

snow depth observations at the point scale to the respective simulation results for five stations located in elevations between

871 and 2864 m a.s.l. for the model runs using uncorrected and corrected precipitation, respectively.

At the stations Obergurgl, Weisssee, and Pitztaler Gletscher, using corrected precipitation leads to significantly improved

results in terms of all three performance measures. At the low-elevated stations Prutz and Nauders, the applied precipitation

correction leads to a severe overestimation of snow depth of 223 and 120 %, respectively, on average. However, while these30
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stations are within the simulation area (i. e., the rectangle surrounding the study catchments shown in fig. 1), they are located

outside of the investigated catchments and are significantly lower elevated (minimum elevation of the study catchments is

1760 m).

Fig. 6 shows observed and simulated (using both uncorrected and corrected precipitation, respectively) snow depth for the

stations Obergurgl and Pitztaler Gletscher and the period 2003–2013. While some uncertainty also can be attributed to the5

applied snow densification parameterization for the conversion from water equivalent to snow depth, these results show that

the applied precipitation corrections (correction for undercatch as well as topography-based correction) considerably improve

results especially at high elevations, as can be seen for the station Pitztaler Gletscher. Nevertheless, at this station snow depth is

still underestimated in most seasons despite using corrected precipitation. For the medium-elevated station Obergurgl, while the

differences between uncorrected and corrected precipitation are less distinct, the applied corrections result in a very satisfying10

representation of snow depth over the course of the seasons.

5.3 Snow distribution

5.3.1 Comparison with satellite data

For the comparison of simulated snow distributions, 26 cloud-free Landsat scenes as well as daily MODIS scenes (starting

in the year 2000) were obtained. With regard to the latter, as outlined in section 4.3.1 images acquired in the months July–15

September were discarded due to difficulties in discriminating snow and ice surfaces. Additionally, only scenes with less than

5 % total cloud coverage over the study area were considered. This left 733 usable MODIS scenes, corresponding to approx. one

image every 5 days (in the period October–June) on average.

Fig. 7 exemplarily shows the observed and simulated snow cover distributions for the Landsat and MODIS scenes from

June 1, 2002. With regard to the observations, the effect of the reduced resolution of the MODIS product is clearly visible –20

while the Landsat image also highlights small-scale variations in snow cover (e. g., snow-free ridges, small snow patches), a

large amount of detail is smoothed out in the MODIS image. This is also illustrated in the total snow-covered area – in the

Landsat image, 45 % of the total area are classified as snow-covered, as compared to 37 % for the MODIS image. Simulation

results agree well with the observations for this date, both with regard to the visual comparison as well as to the performance

measures, being for Landsat (MODIS): ACC = 0.85 (0.87), CSI = 0.72 (0.73), BIAS = 0.98 (1.18).25

Fig. 8 shows the obtained values for ACC, CSI, and BIAS for all selected Landsat and MODIS scenes sorted by calendar

date, as well as the 30-day running means for the MODIS values (blue lines). Generally, the average performance measures

(displayed in the bottom left of each figure) show better results for MODIS, however it has to be noted that the average

values are not directly comparable, since in the case of Landsat they are calculated from significantly fewer samples and

additionally – in contrast to MODIS – also include scenes acquired during the summer months. As expected, for all three30

measures performances are very good during the winter months (particularly January to March), where most of the area is

snow-covered. However, they deteriorate during spring and fall. ACC shows the highest performance values, with on average

approx. 90 % of all pixels being correctly classified for MODIS data, and 83 % for Landsat data. Values decrease during spring
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and fall, however are rarely (in 9 % of the MODIS scenes and 8 % of the Landsat scenes) below 0.7. The range of CSI values

in contrast is much larger, with – when looking at the MODIS 30-day running mean – an approximately linear in-/decrease

during fall and spring from values around 0.4 in late spring to approx. 0.95 during winter. Lowest values (between 0.25 and

0.4) are obtained for the 8 Landsat scenes during the summer months. With regard to BIAS, values are very close to the optimal

value of 1 during winter. Outside of this period, larger deviations occur. It is notable, that – with very few exceptions – BIAS5

values are always above 1, meaning that the model tends to overestimate the snow cover. The particularly high values during

fall might indicate that rainfall events are frequently misinterpreted as snowfall events in the model, as well as early-season

snowfall events that rapidly melt again in reality, while in the model the snow lasts on the ground. However, if only little snow

is present in the observation, even comparatively moderate overestimations in the model can lead to high BIAS values, which

is also an explanation for the particularly high values of this parameter for some of the Landsat scenes during summer.10

The performance measures can be calculated not only space-integrated (i. e., for each scene), but also time-integrated, i. e.,

calculating them on a pixel-by-pixel basis over all scenes. The results are shown in fig. 9 for Landsat at the top and MODIS

at the bottom. For all three performance measures, best results are obtained on the glaciers and high-elevated regions (where a

snow cover is present most of the time). Largest deviations occur in forested areas, which becomes particularly visible for the

CSI and BIAS scores. Satellite-based snow cover mapping in forests is notoriously difficult and associated with larger errors15

than in the open due to the obstruction of snow on the ground by the trees. While in the MODIS snow mapping algorithm

in forested areas the NDSI threshold is lowered in order to increase the classification accuracy (Klein et al., 1998), no such

distinction was made for the Landsat snow classification performed for this study, which might be one reason for the lower

model skill for Landsat as compared to MODIS in these areas. For most non-forested pixels, ACC and CSI values are above

0.7 for both Landsat and MODIS, underlining the satisfying model performance. BIAS is in the range of 20 % over- or20

underestimation for most MODIS pixels, while in the Landsat comparison larger areas fall into the class of BIAS values up

to 2. Once again it has to be noted however that most of the Landsat scenes were acquired during spring or summer, where

a correct representation of snow/rain distinction is especially crucial, hence the lower performance scores for Landsat are not

unexpected.

To summarize, these results show that the total snow-covered area is frequently overestimated, on average by 20 % (60 %)25

for MODIS (Landsat). Whereas in only 1 % (0 %) of all investigated scenes snow cover is underestimated by more than 5 %,

it is overestimated by more than 5 % in 51 % (92 %) of all scenes. The largest mismatches between the observations and the

simulations occur during the summer months (where accurately reproducing the snow cover is the most challenging), followed

by fall and spring. Elevation-wise the largest errors occur below the lowest-elevated runoff gauge (further analyses are shown

in the supplementary material). A likely explanation for this effect (which is also observed in the snow depth comparisons) is30

that snow correction and snow redistribution factors are overestimated in these low elevations.

5.3.2 Comparison with ALS data

Fig. 10 shows the observed and simulated snow distributions (i. e., observed surface elevation differences between the ALS

acquisition dates converted to SWE using eq. (18), and simulated SWE differences for the same period) for the winter 2010/11.
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A 746 km2 large area was covered by the ALS acquisitions, resulting in a sample size of 298468 pixels (with 50 m resolution)

available for model validation. As seen in fig. 10, despite the applied precipitation corrections the total snow volume is still

underrepresented in the model by approx. 15 % in this particular period, however the applied snow redistribution parameteri-

zation leads to a significantly improved representation of the accumulation patterns (snow-free ridges, increased accumulation

on glacierized areas) as compared to model results using elevation-dependent precipitation fields only. Fig. 11 shows the5

high correlation of simulated with observed snow water equivalent values with an R2 value of 0.57. This is a considerable im-

provement in model performance considering the results using uncorrected precipitation (elevation-dependent remapping only)

(R2 = 0.07) and using undercatch-corrected precipitation without topographic redistribution (R2 = 0.23) (plots are shown in

the supplementary material). Fig. 12 shows the SWE differences by elevation (50 m bands) for the ALS data, the simulation

results without any precipitation adjustment (elevation-dependent remapping only), the simulation results derived using cor-10

rected precipitation but no topographic redistribution (eq. (7) + constant snow correction factor (15 %)), and the simulation

results derived using corrected precipitation and topographic redistribution (eq. (10)). From this figure it is evident that the

snowfall adjustments strongly increase model performance in the lower and medium elevations (where snow accumulation is

dramatically underestimated in the simulation run without precipitation correction), however only the simulation run including

topographic redistribution is able to reproduce the observed decline in SWE following the peak at approx. 3000 m a.s.l.15

The obtained correlations are in the range of the results by Schöber et al. (2014), who obtained R2 = 0.52 in a 166 km2

large subcatchment of our study region, also using a cell size of 50 m. Grünewald et al. (2013) obtained R2 values between

0.30 and 0.91 for different investigation areas between 1.5 and 28 km2, however using a coarser cell size of 400 m, and

Schirmer et al. (2011) obtained R2 = 0.42 for a site in Switzerland using 10 m resolution (however, both of these studies used

statistical models based on topographic parameters alone to model snow depth distribution and did not employ snow cover20

models). Hence, considering the size of the investigated area and the high spatial resolution, our results can be considered very

satisfactory. However, again it has to be emphasized that – as also shown in other studies (e. g., Grünewald et al. (2013)) –

the relations between snow depth and topography are site-specific and hence have to be calibrated for different study regions

individually. In the case of the openness-based correction applied in this study, this concerns the choice of the scale parameters

L for negative openness, the value range of negative openness for the different scale parameters (eqs. (8) and (9)), and the final25

relation to precipitation correction (eq. (10)).

5.4 Glacier mass balance

Figs. 13 and 14 show the annual and cumulative mass balances for Hintereisferner (HEF), Kesselwandferner (KWF), and

Vernagtferner (VF). The individual annual mass balances of the three glaciers are reproduced reasonably well by the model,

with R2 = 0.46 for HEF, R2 = 0.64 for KWF, and R2 = 0.81 for VF. The cumulative mass balance over the period 1997–30

2013 is captured very well for VF and HEF, with differences of only 39 mm (0.3 %) for VF and -377 mm (2.1 %) for

HEF, while KWF shows the lowest performance with a deviation of -2633 mm (32 %). For all three glaciers, results improve

with increasing simulation time, possibly due to the improved representation of the interpolated meteorological fields due to

increased station density (cf. Schöber, 2014, p. 40f.). A meteorological station is located in direct vicinity to VF, which is a
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possible explanation for the distinctively good performance of the model with regard to this glacier. The largest errors in mass

balance simulations for all three glaciers occur in the year 2003. Further investigation reveals that this can at least partly be

traced back to the meteorological forcing data, specifically two precipitation events in October and November 2002 which have

not been captured by the precipitation recordings at the station Vernagtbach. Excluding the precipitation recordings from this

station in the period October–November 2002 distinctly improves the simulated mass balances for the glaciological year 20035

(a more detailed analysis and further results are shown in the article supplement).

The generally satisfying model performance for the three glaciers indicates that the model setup is suitable for glacier mass

balance simulations at the regional scale, as no glacier-specific model calibration has been performed. This is further underlined

when looking at the long-term glacier surface elevation changes in the period 1997–2006. The respective observations are

derived from the glacier inventories of the respective years and allow to spatially assess the model performance in simulating10

the surface mass balance for all glaciers in the study region over this period. The mean surface elevation change derived from

the glacier inventory was −5.81 m between 1997 and 2006, while surface elevation changes simulated with AMUNDSEN

amount to −5.50 m for the same period (fig. 15, R2 = 0.44). Hence, the mean value of simulated multi-annual snow and

ice water resources loss is approx. 0.3 m (5 %) more positive compared to the observed value. This relatively low value is

in the same order of magnitude as the uncertainties arising from glacier volume change measurements. Hence, the model15

can be considered capable of realistically simulating the runoff contribution by glacier melt. Possible explanations for the

deviation – beside the measurement uncertainty – are processes such as basal melt or collapsing glacier tongues, which are not

represented in the model. Additionally, the albedo of the dirty glacier tongues covered with mineral dust and cryoconite might

be overestimated by the model. Since no ice flow is considered in AMUNDSEN up to now, the spatial distribution of glacier

thickness changes is biased at the low elevated glacier tongues and in high elevated accumulation areas. Although glacier ice20

flow velocities slowed down in the past decades and the contribution of vertical ice flow is low at most of the glaciers in the

study region (e. g., Helfricht et al., 2014a), surface elevation changes caused by ice flow accumulate to considerable values in

multi-annual time periods. Hence, in order to prevent systematic model biases in long-term applications it is crucial to integrate

a dynamic tracking of the glacier surface, which is proposed to be implemented in a future version of AMUNDSEN.

5.5 Runoff25

For the runoff simulations, calibration and validation periods were generally 1998–2006 and 2007–2013, respectively, however

for some catchments only shorter time series of runoff measurements were available. Table 7 shows the results (Nash-Sutcliffe

efficiency NSE, benchmark efficiency BE, and percent bias PBIAS) of the simulations for the catchments in which respective

hourly runoff observations were available, while fig. 16 shows the fractions of the individual runoff components as simulated

by AMUNDSEN using uncorrected and corrected precipitation, respectively, for the calibration period (1998–2006). Fig. 1730

exemplarily shows the observed and simulated runoff as well as the individual runoff components for the gauge Gepatschalm

(1893–3526 m a.s.l.) and the year 2012.

By means of the applied precipitation correction, NSE values for almost all catchments slightly improve as compared to the

model run using uncorrected precipitation, with values of around or above 0.8, with the exception of two small catchments with
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very low glacierization (as the runoff module is specifically designed for glacierized catchments it is expected to perform worse

in catchments with no or low glacierization). However, for most catchments even the use of uncorrected precipitation leads to

comparatively high NSE values. This is typical for catchments with a strong runoff seasonality: the fact that NSE uses the mean

observed runoff as reference makes it a rather inefficient skill score in these cases – high NSE values can be obtained as soon

as the seasonality is represented in the model, regardless if smaller scale fluctuations are misrepresented (Schaefli and Gupta,5

2007). Looking at benchmark efficiency BE, variations between catchments as well as the effects of the applied precipitation

correction are much more pronounced. Using corrected precipitation significantly increases BE in almost all catchments in both

the calibration and validation period. Despite using corrected precipitation, in the two smallest and least glacierized gauged

catchments BE values are below zero, indicating that the multiannual mean per calendar day and hour as predictor would be

better than the model. When looking not only at the respective single best-performing parameter set (with regard to eq. (11)) for10

each catchment but at a range of similarly performing parameter sets, it shows that similarly performing parameter sets result

in a remarkably large spread of BE (results shown in the supplementary material). However, the best-performing parameter

sets in terms of eq. (11) are also among the best-performing sets in terms of BE.

The total runoff volume bias PBIAS is (absolutely) smaller for the model runs with uncorrected precipitation (with runoff on

average underestimated by approx. 5 % in both the calibration and the validation period) than when corrected precipitation is15

used, where runoff is on average overestimated by 6.4 % and 15.6 %, respectively, with even higher values for the two largest

catchments. This can also be seen in fig. 16, which also illustrates that underestimated precipitation amounts are compensated

by increased ice melt amounts in the model runs using uncorrected precipitation. The calibration criterion NSEV (eq. (11),

values not shown in table 7) shows little variation in all catchments, with mean values between 0.74 and 0.79 for both runs

(uncorrected vs. corrected) and in both the calibration and validation period.20

6 Conclusions

The physically based hydroclimatological model AMUNDSEN was set up and applied for a partly glacierized, 558 km2 large

region in the Ötztal Alps (Austria) on a 50 m grid. Model validation was performed by comparing mean areal precipitation,

point-based snow depth recordings, remotely sensed snow extent maps from MODIS and Landsat satellites, lidar-derived sur-

face elevation changes for the accumulation season 2010/11, glacier-averaged annual surface mass balances for three glaciers,25

spatially distributed glacier surface elevation changes for the entire area over the period 1997–2006, and hourly runoff obser-

vations for 8 catchments. A correction function for solid precipitation has been added to the model in order to compensate for

the severe undercatch of precipitation measurements in high elevated and wind-exposed areas. This pre-interpolation correc-

tion of the recorded precipitation depths using temperature and wind speed has proven to significantly improve model results,

however an additional snow correction factor of 15 % had to be applied to the resulting snowfall fields. A parameterization for30

cold content and liquid water content of the snowpack has been implemented to account for the delayed start of melting of the

snowpack following cold periods and nights with clear-sky conditions. Finally, a parameterization for snow redistribution using
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topographic openness has been added to the model, helping to significantly better represent the complex snow accumulation

patterns in the study site as compared to assuming an elevation dependency alone.

The results of the study especially emphasize the importance of a systematic model validation based on multiple data

sources. When looking solely at runoff, also using entirely implausible precipitation inputs for the model leads to acceptable

results as the respective missing snow melt inputs are compensated by enlarged ice melt contributions, even though the spatial5

patterns of snow accumulation and snow depth amounts are misrepresented in the model. Hence, in order to produce realistic

contributions of the individual runoff components, it is necessary to assess and validate the individual model components

and processes separately: Areal catchment precipitation derived from the hydrological balance can be used to derive realistic

total precipitation volumes. Point-based snow depth observations are necessary for the evaluation of the simulated temporal

evolution of the snowpack in terms of the correct timing and magnitude of accumulation and melt. Binary snow extent maps10

allow a multitemporal evaluation of the simulated snow distribution, while lidar-derived surface elevation differences add

detailed information about the amount of snow resources stored in the area during the winter. Finally, annual glacier mass

balances from field surveys as well as long-term mass balances derived from DEM differencing allow the evaluation of model

performance in reproducing the long-term surface mass balance over the glaciers, which is essential prior to applying the model

for scenario studies. Currently, an ice flow parameterization is being implemented in the model, which will allow to apply the15

model setup for climate change scenarios in order to estimate future runoff conditions and glacier retreat in the study site.

While the value of using multiple data sets for model validation has already been investigated in previous studies, our concept

of multi-level spatiotemporal validation represents a new approach for assessing glacio-hydrological simulation accuracy on

a fully comprehensive level. Usually, exemplary comparisons of single simulated model variables are utilized for validation,

either (i) with time series of local recordings of the respective variable, (ii) with discrete (in time) shots of the spatial distribution20

of the variable, or (iii) runoff is compared to gauge recordings. The latter is a measure that summarizes all relevant processes

(of accumulation, redistribution and ablation of snow and ice in our case), but does not allow for separating these processes.

Multi-level spatiotemporal validation is a systematic, independent, complete and – here – even fully redundant validation

procedure for the simulated key variables in the model. The spatial distribution of the simulation result is validated in all six

dimensions of the observation scale – temporal as well as spatial support, spacing, and extent – by means of two independent25

satellite data products. Likewise, the water volume (i. e., the mass balance) of the simulation results is validated by at least two

independent validation data sources for each dimension, e. g., spatial spacing (in high model resolution) by long-term glacier

mass balances and ALS. Redundancy of the validation data sources will only seldom be available in most applications and

in practice. It may serve here as additional proof of robustness and reliance for both the simulation results and the validation

concept. This concept may serve as a next piece for a new generation of integrated environmental system models with coupled30

components, separately validated, and defined interface design in between them (Strasser et al., 2014).
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Figure 2. Negative openness of a subset of the study area for length scales L = 50 m and L = 5000 m (top), and the snow redistribution

factor derived by a combination of both data sets (bottom; black frame shows the boundaries of the upper plots).
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Figure 7. Observed and simulated snow cover distribution for June 1, 2002, using Landsat (top, 50 m resolution) and MODIS (bottom,

500 m resolution) scenes.
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Figure 8. ACC, CSI, and BIAS for all selected Landsat (triangles) and MODIS (red circles; blue line is the 30-day running mean) scenes,

sorted by calendar date.
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Figure 9. Pixel-based statistics of ACC, CSI, and BIAS over all selected Landsat and MODIS scenes.
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Figure 10. Observed (i. e., surface elevation differences converted to SWE using eq. (18)) and simulated end-of-season snow distribution for

the winter 2010/11 (October 8 to April 22).
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Figure 11. Binned scatter plot (colors represent point density) of observed vs. simulated water equivalent differences for the winter 2010/11

(October 8 to April 22).
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Figure 12. Observed vs. simulated water equivalent differences for the winter 2010/11 (October 8 to April 22) by elevation (50 m bands).

Simulation results are displayed for using uncorrected precipitation (elevation-dependent remapping only), corrected precipitation without

topographic redistribution (eq. (7) + constant snow correction factor (15 %)), and corrected precipitation with topographic redistribution

(eq. (10)). The gray bars represent the relative area distribution of the elevation bands.
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Figure 13. Observed (dashed) and simulated (solid) specific mass balance for Hintereisferner (HEF, top), Kesselwandferner (KWF, center),

and Vernagtferner (VF, bottom) in the period 1997/98–2012/13.
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Figure 14. Observed (dashed) and simulated (solid) cumulative specific mass balance for Hintereisferner (HEF), Kesselwandferner (KWF),

and Vernagtferner (VF) in the period 1997/98–2012/13.
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Figure 15. Observed and simulated glacier surface elevation change for the period 1997–2006.
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Figure 16. Runoff components (prior to the diversion into the soil reservoir) as simulated by AMUNDSEN for the calibration period 1998–

2006 shown as fractions of the mean observed runoff in the same period. The two bars for each catchment show the results for the model

runs using uncorrected (left) and corrected (right) precipitation, respectively.
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Figure 17. Observed vs. simulated runoff (including individual runoff components) for gauge Gepatschalm (1893–3526 m a.s.l.) in the

period April–October 2012.
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Table 1. Area, minimum/maximum/mean elevation, and glacierization (as of the year 1997) of the investigated catchments. The catchment

IDs correspond to the labels in fig. 1.

ID Catchment Area [km2]
zmin

[m a.s.l.]

zmax

[m a.s.l.]

zmean

[m a.s.l.]

Glacierization

1997 [%]

1 Rofenache 98.6 1891 3762 2890 38.3

2 Am Barst/Gurgler Ache 72.4 1883 3496 2780 31.8

3 Niedertalbach 66.7 1878 3585 2883 31.1

4 Gepatschalm 53.9 1893 3526 2821 39.7

5 Speicher Gepatsch 52.3 1744 3445 2480 1.7

6 Taschachbach 44.7 1789 3754 2737 26.1

7 Pitze 27.0 1812 3519 2830 48.2

8 Radurschlbach 24.0 1794 3349 2601 1.5

9 Tscheybach 16.4 1800 3055 2417 0.0

10 Rifflsee Ausfluss 15.9 2232 3386 2777 17.8

11 Venter Ache 15.0 1836 3498 2680 13.5

12 Verpeilbach 12.1 1807 3370 2562 9.3

13 Fissladbach 11.4 1797 3137 2576 2.1

14 Poschach/Gurgler Ache 8.1 1826 3217 2435 1.6

15 Platzertal 7.9 2298 3104 2667 2.8

16 Watzebach 6.7 1819 3525 2718 10.2

17 Ferwallbach 6.3 1851 3254 2608 4.5

18 Königsbach 5.9 1876 3077 2607 0.0

19 Rostizbach 4.8 1842 3389 2628 0.7

20 Gsallbach 3.9 1843 3250 2560 9.1

21 Madatschbach 3.8 1847 3339 2605 13.6

22 Bloabachl 0.2 1775 2638 2323 0.0

23 Poschach 0.2 1828 2328 2004 0.0

Total 558.1 1744 3762 2740 24.6
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Table 2. Parameter ranges for the runoff module calibration.

Parameter Lower limit Upper limit

ksnow [h] 5 20

kfirn [h] 5 20

kice [h] 1 5

kunglacierized [h] 5 20

ksoil [h] 10 100

nsnow [–] 1 20

nfirn [–] 2 6

nice [–] 1 4

nunglacierized [–] 1 7

nsoil [–] 2 10

fglacierized [–] 0.05 0.50

funglacierized [–] 0.05 0.80

Table 3. Information type (binary or continuous) as well as spatial and temporal support, spacing, and extent of the validation data sets used

in this study.

Space Time

Data set
Information

type
Support Spacing Extent Support Spacing Extent

Snow depth continuous point varying point instant 1 d 17 yr

Runoff continuous catchment varying catchment 1 h 1 h 17 yr

MODIS snow-covered

area
binary 500 m 500 m catchment instant 1 d 14 yr

Landsat snow-covered

area
binary 50 m 50 m catchment instant 16 d 17 yr

Glacier mass balance continuous glacier varying glacier 1 yr 1 yr 17 yr

Long-term glacier mass

balance
continuous 50 m 50 m glacier 10 yr once 10 yr

ALS-based snow

accumulation
continuous 50 m 50 m catchment 6 mo once 6 mo

Areal precipitation continuous catchment varying catchment 10 yr once 10 yr
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Table 4. 2×2 contingency table for the comparison of binary snow cover observations and simulations (after Zappa (2008)). O and S denote

observations and simulations, while the subscripts 0 and 1 correspond to snow-free and snow-covered situations, respectively.

S1 S0 Σ

O1 n11 n01 nx1

O0 n10 n00 nx0

Σ n1x n0x nxx

Table 5. Mean annual areal precipitation for the gauged catchments in the study area as calculated by closing the water balance (OEZ method)

and AMUNDSEN (using uncorrected and corrected precipitation, respectively) for the period 1997–2006.

ID Catchment Area [km2]
Precipitation

OEZ [mm]

Precipitation

AMUNDSEN

uncorrected

[mm]

Difference

uncorrected

[%]

Precipitation

AMUNDSEN

corrected

[mm]

Difference

corrected [%]

1 Rofenache 98.6 1507 1056 -30.0 1627 8.0

2

Am

Barst/Gurgler

Ache

72.4 1745 1137 -34.8 1617 -7.3

3 Niedertalbach 66.7 1410 1111 -21.2 1593 13.0

4 Gepatschalm 53.9 1799 1079 -40.0 1606 -10.7

6 Taschachbach 44.7 1632 1034 -36.6 1523 -6.7

7 Pitze 27.0 1552 1056 -32.0 1706 9.9

8 Radurschlbach 24.0 1402 882 -37.1 1113 -20.6

9 Tscheybach 16.4 1309 905 -30.9 1130 -13.6

11 Venter Ache 15.0 1253 1030 -17.8 1473 17.5

12 Verpeilbach 12.1 1093 1135 3.8 1360 24.4

13 Fissladbach 11.4 1481 1147 -22.5 1473 -0.6

14
Poschach/Gurgler

Ache
8.1 1584 1019 -35.6 1441 -9.0

15 Platzertal 7.9 1395 1073 -23.1 1399 0.3

17 Ferwallbach 6.3 1537 1094 -28.8 1489 -3.1

18 Königsbach 5.9 1554 1089 -30.0 1490 -4.1

19 Rostizbach 4.8 1413 1135 -19.6 1465 3.7

Total 475.2 1545 1067 -30.9 1543 -0.2
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Table 6. R2, Nash-Sutcliffe efficiency NSE, and percent bias PBIAS for observed vs. simulated snow depth obtained using uncorrected and

corrected precipitation, respectively.

Uncorrected Corrected

Station
Elevation

[m a.s.l.]
Period R2 NSE

PBIAS

[%]
R2 NSE

PBIAS

[%]

Prutz 871 2005–2013 0.62 0.60 10.3 0.66 -2.21 222.5

Nauders 1330 2004–2013 0.84 0.74 -29.2 0.74 -0.35 119.5

Obergurgl 1942 1999–2013 0.65 0.60 -28.8 0.85 0.85 -6.0

Weisssee 2480 2006–2013 0.39 -0.13 -69.6 0.76 0.52 28.7

Pitztaler Gletscher 2864 1997–2013 0.57 -0.52 -76.8 0.71 0.68 7.1

Table 7. NSE, BE, and PBIAS of simulated vs. observed runoff obtained using uncorrected and corrected precipitation. Calibration and

validation periods are – if not otherwise stated – 1998–2006 and 2007–2013, respectively. The subscripts c and v denote calibration and

validation periods, respectively.

Uncorrected Corrected

ID Catchment NSEc NSEv BEc BEv

PBIASc

[%]

PBIASv

[%]
NSEc NSEv BEc BEv

PBIASc

[%]

PBIASv

[%]

1 Rofenache 0.81 0.75 0.11 0.30 6.1 0.1 0.81 0.78 0.56 0.35 12.1 20.0

2
Am Barst/Gurgler

Ache1
0.81 0.77 0.25 0.28 -3.0 0.3 0.82 0.80 0.46 0.26 5.6 20.8

3 Niedertalbach2 0.79 – 0.07 – 7.6 – 0.79 – 0.47 – 14.1 –

4 Gepatschalm 0.86 0.84 0.11 0.23 3.6 -3.5 0.88 0.87 0.57 0.50 4.9 7.3

6 Taschachbach3 0.85 0.82 0.28 0.18 -14.2 -18.7 0.90 0.88 0.49 0.45 3.4 2.2

7 Pitze3 0.85 0.84 -0.60 -0.24 10.3 2.9 0.88 0.87 0.61 0.53 6.3 4.4

8 Radurschlbach4 0.46 0.56 -1.09 -0.80 -31.9 -10.9 0.66 0.67 -0.26 -0.43 -8.4 22.7

13 Fissladbach4 0.60 0.68 -0.46 -0.10 -17.4 -3.0 0.67 0.63 -0.16 -0.23 12.8 31.9

Mean 0.75 0.75 -0.17 -0.02 -4.86 -4.69 0.80 0.79 0.34 0.20 6.4 15.6

1 No runoff observations for 2013
2 No runoff observations for 2003–2013
3 No runoff observations for 2009–2013
4 No runoff observations for 2011–2013
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