
A.T. Borgida et al. (Eds.): Mylopoulos Festschrift, LNCS 5600, pp. 335–362, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Dealing with Complexity Using Conceptual Models
Based on Tropos

Jaelson Castro1, Manuel Kolp2, Lin Liu3, and Anna Perini4

1 Universidade Federal de Pernambuco, Recife, Brazil
jbc@cin.ufpe.br

2 University of Louvain, LSM-ISYS, Louvain-la-Neuve, Belgium
manuel.kolp@uclouvain.be

3 Tsinghua University, Beijing, China
linliu@tsinghua.edu.cn

4 Fondazione Bruno Kessler – Irst, CIT, Trento, Italy
perini@fbk.eu

Abstract. Since its establishment, the major objective of the Tropos method-
ology has been to develop an approach for the systematic engineering of agent-
oriented information systems. In this chapter we illustrate a number of ap-
proaches to deal with complexity, which address different activities in software
development and are deemed to be used in combination. We begin with
handling complexity at requirements levels. In particular we examine how
modularization can be improved using some of Aspect Oriented Software De-
velopment Principles. We then examine how model-based testing applied in
parallel to requirements analysis and design can support incremental validation
and testing of software components, as well as help to clarify ambiguities in re-
quirements. We also look at how Tropos can help to address complexity in so-
cial context when making design decisions. Last but not least, we show how to
tackle complexity at the process modelling level. We explore iterative devel-
opment extension to Tropos as well as perspectives taken from software project
management. This allows us to deal with the complexity of large real world
projects.

Keywords: requirements engineering, complexity, aspect, goal modelling, test-
ing, process modelling.

1 Introduction

Enterprises are continually changing their internal structures and business processes,
as well as their external alliances, as they strive to improve and grow. Software sys-
tems that operate within such a setting have to evolve continuously to accommodate
new technologies and meet new requirements. Indeed, it is well known that the latest
generation of software systems, such as Enterprise Resource Planning (ERP), group-
ware, knowledge management and e-business systems, should be designed to perform
within ever-changing organizational environments.

336 J. Castro et al.

These features will characterize more and more future software systems [14],
which will be employed by an increasing number of people for different purposes and
using a variety of devices. These systems will use a growing amount of data stored,
accessed, manipulated, and refined in a distributed way, and rest on a set of interde-
pendencies among software components (services), which may dynamically change.
This increase in size (scale) and dynamicity are considered major sources of complex-
ity of software systems, which calls for new solution approaches and new concepts
for system design, development, operation, and evolution. A rich research agenda is
proposed in [14] that highlights, for example, the need of more expressive modeling
languages and of revisiting model-based, aspect-oriented, and other generative meth-
ods for helping to validate and certify requirements.

The Tropos project [24], [5] was launched with the objective to develop a method-
ology for building agent-oriented information systems, in competition with existing
methodologies founded on structured and object-oriented concepts. Agent-based
technologies are considered a promising solution towards the realization of software
having flexibility and (self-)adaptive properties [23], moreover the agent paradigm
offers a suitable set of concepts to model large-scale systems in terms of socio-
technical ecosystems [14].

The Tropos methodology rests on the idea of starting by building a model of the
organizational context within which the system-to-be will eventually function, then
the system-to-be is introduced and the model is incrementally refined and extended
with a definition of the functional and non-functional requirements of the system-to-
be. This model provides a common interface to the various software development
activities. The model also serves as a basis for documentation and evolution of the
software system. The approach is requirements-driven in the sense that the concepts
used to define requirements for a software system are also used later on during design
and implementation. To this end, Tropos adopts the concepts offered by i* [37], a
modelling framework proposing concepts such as actor (actors can be agents, posi-
tions or roles), social dependency among actors, including goal, softgoal, task and
resource dependencies. Thus, an actor can depend upon another one to satisfy a goal,
execute a task, and provide a resource or satisfice a softgoal. Softgoals are associated
to non-functional requirements, while goals, tasks and resources are associated to
system functionalities. The i* framework offers two models: the Strategic Depend-
ency (SD) and Strategic Rationale (SR). The SD model consists of a set of nodes and
links connecting them, where nodes represent actors and each link indicates a depend-
ency between two actors (dependum). The depending actor is called depender, and the
actor who is depended upon is called the dependee. The SR model provides a more
detailed level of modeling by looking “inside” actors to model internal intentional
relationships.

Researches on how to manage software complexity with Tropos have been
conducted in parallel, by different research groups. They attack the problem from a
number of perspectives, involving technical (e.g. related to issues in modeling and
validation of requirements), as well as managerial and automation issues.

In this chapter, we illustrate some of them, with the objective to show their com-
plementarities and the potential to be used in combination.

It is well known that requirements models may become cluttered, compromising
their evolution and scalability. In fact, empirical evaluation has shown that there is a

 Dealing with Complexity Using Conceptual Models Based on Tropos 337

lack of modularity in the i* framework [13]. This is a serious drawback for large and
complex projects. In fact, i* models tend to include scattered and tangled representa-
tions, i.e. crosscutting, resulting in models with poor modularization and, therefore,
harder to understand and maintain [1]. In Section 3, we present an approach to create
modular i*/Tropos models, where a desired concern is separated as an individual
actor. Consequently, improved modularization mechanisms are required to avoid the
crosscutting representations in i* /Tropos models.

Developing complex software systems requires that single components, as well as
the overall system, are incrementally validated and certified against requirements and
user expectations, along the whole development process. This motivated the adoption
of a V-model1 approach to software development in Tropos that complement analysis
and design with validation phases, which is called Goal-Oriented Software Testing
(GOST) [26]. Section 4 recalls basic elements of GOST and illustrates how it works
when validating early requirements against user goals. A further benefit of the GOST
methodology will also emerge since early test specification will require clarifying
ambiguities in the requirements model, then improving the requirements model itself.

In order to design a better information system, a designer would like to have nota-
tions to visualize how design experts’ know-how can be applied according to one's
specific social and technology situation. Section 5 proposes the combined use of Tropos
and a scenario-oriented notation UCM for representing design knowledge of informa-
tion systems. So that goal models are combined with scenarios descriptions to comple-
ment each other to handle complexity in design decision making. The combined use of
GRL (a variant of i*/Tropos) and a scenario mapping approach is part of the Users
Requirements Notation (URN), a newly approved ITU-T standard [17] [1][22].

Section 6 proposes I-Tropos, a software project management framework dedicated
to extend Tropos with an iterative life cycle. The process fills the project and product
life cycle gaps of Tropos and offers a goal-oriented project management perspective
to support project stakeholders for applying Tropos on large information systems. It is
supported by DesCARTES a specific CASE tool.

2 Running Example

In order to illustrate Tropos requirements models, let us consider the Media Shop
example presented in [10]. Media Shop is a store which sells and ships different kinds
of media items, such as books, newspapers, magazines. To increase market share,
Media Shop has decided to use the Medi@ system, a business to customer retail sales
front-end on the Internet to allow an on-line customer to examine the items in its
catalogue and place orders.

The system uses communication facilities provided by Telecom Cpy. There are no
registration restrictions, or identification procedures for Medi@ users. Potential cus-
tomers can search the on-line store by either browsing the catalogue or querying the
item database. An on-line search engine allows customers with particular items in
mind to search title, author/artist and description fields through keywords or full-text

1 The V-Model gets its name from the fact that the process is often mapped out as a flowchart

that takes the form of the letter V: the left edge defines a sequence of analysis and design ac-
tivities, the right edge the corresponding set of validation and testing activities.

338 J. Castro et al.

search. If the item is not available in the catalogue, the customer has the option of
asking Media Shop to order it.

In Figure 1 you can find an expanded description of the Medi@ actor. In this ac-
tor, a root task Manage Internet Shop is specified (located at the centre-top of the
larger circle that represents the Medi@ actor’s boundary). That task is firstly refined
into Item Searching Handled goal, Secure, Adaptable and Available softgoals, and
Produce Statistics task. These intentional elements are further refined by using task-
decomposition, means-end and contribution links to define the Medi@ system
requirements. These three new types of relationships are explained as follows: (i)
task-decomposition links describe what should be done to perform a certain task (e.g.,
the relationship between the Provide Access Link task and the Provided Internet Ser-
vice task inside the Telecom Cpy actor); (ii) means-end links suggest that one model
element can be offered as a means to achieve another model element (e.g., relation-
ship between the Chose Non-Available Item task and the Item Selection goal inside
the Medi@ actor); (iii) contributions links suggest how a task can contribute (posi-
tively or negatively) to satisfy a softgoal (e.g., the relationship between the Use Fault-
Tolerant Strategies task and the Available softgoal inside the Medi@ actor).

Fig. 1. The Medi@ Strategic Rationale Model

 Dealing with Complexity Using Conceptual Models Based on Tropos 339

Apart from the previous three types of relationships, there are intentional depend-
encies between actors, which can be of four types: goal, task, resource or softgoal. For
example, the Customer actor (depender) is related to Medi@ (dependee) actor through
Availability goal (dependum).

3 Modularization of Requirements Models

As the problem at hand grows, i*/Tropos models may become cluttered, compromis-
ing their evolution and scalability. This is a serious drawback for large and complex
projects. In fact, i* models tend to include scattered and tangled representations, i.e.
crosscutting, resulting in models with poor modularization and, therefore, harder to
understand and maintain [1]. This problem could be avoided if some approach was
available to create modular i*/Tropos models, where a desired concern is separated as
an individual actor. Consequently, improved modularization mechanisms are required
to avoid the crosscutting representations in i*/Tropos models.

In the sequel we introduce (i) a set of guidelines to identify crosscutting concerns
in i* models; and (ii) propose an extension of the i* modelling language [37] by add-
ing aspectual constructors to modularize crosscutting concerns and to allow its
graphical composition with other system modules.

3.1 Identifying and Modularizing Aspects

The following three guidelines described helps to identify aspectual elements.

Guideline G1 (Repeated dependum): if a dependum (i.e. a goal, a task, a resource
or a softgoal) is provided by at least two dependee actors, and the subgraph opera-
tionalizing that dependum is handled equally by all dependee actors, then this opera-
tionalization is part of an aspectual element.

This guideline aims at identifying dependencies in a SD model that have been re-
peated and addressed in similar ways. Thus, if a dependency has multiple similar
occurrences, i.e. different dependee actors can handle (operationalize) it in the same
way, the elements contained in the operationalization sub-graph can be relocated to
an aspectual element. For example, in Figure 1, the Availability softgoal dependum
has multiple occurrences in the model. But this repetition is not sufficient. It is also
necessary to check if their respective operationalizations (inside the respective de-
pendee actors) are the same. Notice that in Telecom Cpy actor, the Availability depen-
dum is related to the softgoal Available, operationalized by Use Fault-Tolerance
Strategies task. The Medi@ actor treats Availability dependum similarly, since it is
also operationalized by Use Fault-Tolerance Strategies task. This means that the
entire sub-graph operationalizing the Availability dependum will be part of an aspec-
tual element, because it is repeated in different actors. This element will be the Avail-
ability Manager aspectual element (Figure 3).

Guideline G2 (Repeated intentional element): This guideline is subdivided into
three sub-guidelines: one deals with the task decomposition link; another deals with
means-ends links (which includes the contribution link); and the last one deals with

340 J. Castro et al.

both links (task-decomposition and means-ends links). These sub-guidelines are
applied to the intentional elements that are internal to the actor’s boundary presented
in the SR model.

Guideline G2.1 (Intentional element in a task-decomposition link): if an inten-
tional element (goal, softgoal or task) is required by (i.e., is a decomposition element
of) two or more internal tasks, indicating a sharing of information, then the subgraph
that contains this element as the root is part of an aspectual element.

In Figure 1, the Item Selection goal is simultaneously required through task-
decomposition by the tasks: Database Querying and Catalogue Consulting. Thus, the
Item Selection goal is part of an aspectual element.

Guideline G2.2 (Intentional element in a means-end link): if an intentional ele-
ment (goal, softgoal or task) is a means element which is required by two or more end
elements (indicating a sharing of information) then the sub-graph containing this
element as a root will be part of an aspectual element.

According to Figure 1, Use Secure Form task is simultaneously a means to Get
Customer Information goal (end) and contributes to Secure softgoal. Hence, if we
consider a contribution link as a means-end link (such as in [37]), the Use Secure
Form is part of an aspectual element.

Guideline G2.3 (Intentional element is found simultaneously in a task-
decomposition link and in a means-end link): if an intentional element (goal, soft-
goal or task) is a means element and also is a sub-element in a task-decomposition
(indicating a sharing of information) then the sub-graph containing this element as
the root is part of an aspectual element.

In Figure 1, this guideline captures the Get Payment Information goal which is a
means to achieve Get Used Payment Way goal (through a means-end link) and a sub-
element of Manage Payment task (through a task-decomposition link). Then the sub-
graph with Get Payment Information goal as the root is part of an aspectual element.

Guideline G3 (Redundancy): the aspectual elements identified by guidelines G1 and
G2 are now merged together to remove multiple occurrences.

In the example, we have captured Encrypt Data task simultaneously by the guide-
lines G2.2 and G2.3. To increase cohesion of the aspectual element, along with each
intentional element identified by the guidelines, it is also required to extract other
intentional elements related to the same concern and locate them all into the same
aspectual element.

For example, in Figure 1, the tasks Update Encryption Strategy and Encrypt Data
were identified by the guidelines and should be modularized by an aspectual element.
However, these tasks are part of the sub-graph that operationalizes the Secure softgoal
which was first identified, separated and located into an aspectual element. Therefore,
those tasks can be seen as related to the Security concern. Thus, all these intentional
elements can be extracted and located into the aspectual element Security Manager
(Figure 2 (b)).

 Dealing with Complexity Using Conceptual Models Based on Tropos 341

3.2 Identifying Relationship among Aspectual Elements

In parallel with the aspect identification, we may store the information of the relation-
ships of all elements captured by the guidelines (for example into a table) to allow the
automation of the process From the model in Figure 1 and the guidelines proposed in
Section 3.1 we list in Table 1 some elements (for lack of space, not all captured ele-
ments are listed in the Table 1) that must be made persistent: (i) the dependee actor,
which provides an intentional element, in both SD and SR models; (ii) the aspect
which is the identified crosscutting intentional element; (iii) the concern addressed by
intentional element; (iv) the related elements which represent the elements of the sub-
graph provided that they have not already been captured as aspect; (v) the chosen
name for the identified aspectual element.

For example, in the case study the Customer depends on the Medi@ and Telecom
Cpy for the intentional Availability element (a softgoal). According to guideline G1
the characteristics of this dependency indicated the need to identify an aspect to deal
with the availability concern. Hence, we need to define an appropriate name for it. For
example it could be called Availability Manager. Its related intentional element is
only the Use Fault-Tolerance Strategies task that is present in both original dependee
actors (Medi@ and Telecom Cpy). Hence, it should be transferred to that new element
(Availability Manager). Similar analysis can be performed for the Confirm Payment
goal (by G2.3), Encrypt Data task (by G2.3), and Item Selection task (by G2.1).

Table 1. Modularization of Aspects

Actor Crosscutting
Element

Concern Related Elements Aspectual
Element
Name

Medi@ Confirm
Payment goal

Payment Manage Payment
task, and Process
Payment and Get
Payment Information
goals

Payment
Processor

Medi@ Encrypt Data
task

Security Update Encryption
Strategy task, Secure
softgoal

Security Man-
ager

Medi@ Item Selection
goal

Item
Selection

Choose Available
Item and Choose Non-
Available Item tasks

Item Selector

Medi@,
Telecom

Cpy

Available soft-
goal

Availability Use Fault-Tolerance
Strategies

Avalability
Manager

3.3 Representing Aspectual Elements Using the Aspectual i* Notation

A specific notation has been created to represent aspectual i* models. This leads to
the addition of two new concepts in the i* modeling language, namely aspectual ele-
ment and crosscut relationship. Aspectual elements modularize crosscutting concerns
and the crosscut relationship captures the information of source and target model

342 J. Castro et al.

elements, as well as, when and how an aspectual element crosscuts other model ele-
ments. For modularization purposes and following the principles of AOSD, we should
extract and modularize the aspects, removing them from the original actors, and plac-
ing them in a new type of model element, the so called Aspectual Element. This new
element is graphically represented by an actor with a vertical line crossing it (see, for
example, the Security Manager element in Figure 2). An aspectual element, as well as
an actor, is composed of intentional elements, whereas an intentional element can be a
goal, a softgoal, a resource or a task. An aspectual element can be composed with an
actor or another aspectual element through a Crosscut Relationship. This relationship
specifies how an intentional element, located inside an aspectual element, is related
with another intentional element, which is located inside an actor or another aspectual

Fig. 2. Aspect Modelling for: (a) Payment Processor; (b)Security Manager; (c) Item Selector;
(d) Availability Manager

 Dealing with Complexity Using Conceptual Models Based on Tropos 343

element. The how attribute present in the crosscut relationship means the type of i*
relationship (Task-Decomposition (TD), Means-End (ME) and Contribution) that will
be recovered with the weaving. The crosscut relationship between each aspectual
element and other model elements are shown as arcs, with a dark triangle (Figure 2).

The direction indicated by the triangle suggests the way of the composition, mean-
ing that the source element’s behavior needs to be composed with the target elements’
behaviors. The crosscut relationship also contains a when attribute, which can assume
the values before or after, to specify when an element inside the aspectual element
will be composed with an element inside another aspectual element or Actor. This
composition rule must be defined taking into account the intentional element in rela-
tion to whom the composition must occur, described by the attribute whom (see, for
example, the legend in Figure 2).

In order to describe the aspectual elements and to systematically compose them
with other model elements, we use the concept of model roles [19] which have been
used to describe object-oriented patterns, as proposed in [15], and agent-oriented
patterns, as presented in [32]. They facilitate the graphical composition of concern
and improve the reuse of aspectual elements.

 In particular, to describe aspectual elements, it is necessary to specialize each
target intentional element in a crosscut relationship and the attribute of the crosscut
relationship: how, when and whom. Model roles are identified by preceding the inten-
tional elements (goals, task, softgoals) identifiers with a “|” (see Figure 2). In practice
they work as variables to be instantiated to concrete model elements.

Let us concentrate on Payment Processor, Security Manager, Item Selector, and
Availability Manager depicted in Figure 2(a), Figure 2(b), Figure 2(c) and Figure
2(d), respectively. The composition of the aspectual elements with the original model
requires the instantiation (or binding) of the model roles present in the crosscut rela-
tionship and in the target element related with the crosscut relationship. Thus, to com-
pose the aspectual element Payment Processor with the Medi@ actor, we need to bind
|Goal 2 to Get Used Payment Way (see Figure 3). Since the relationship from a goal to
another goal can only be a means-end link, the properties of that crosscut relationship
do not have any model roles. Observe that the when and whom properties are used just
in case we need to insert the ordering of composition. If the when (and, therefore, the
whom) property is empty, then the order of the task-decomposition weaving does not
matter. Finally, the composition of Payment Processor aspectual element with the
Medi@ Actor needs also to bind |Goal 1 to Get Bought Items and |Task 4 to Shopping
Cart. For the crosscut relationship properties of |Task4, we need to bind |when to after
and |whom to none (this means after all sub-elements of Shopping Cart Task).

Notice also that the how property of this crosscut relationship is already stated as
TD (Task Decomposition) because the relationship from a goal to a task can only be a
task-decomposition link. As a result, in Figure 3, Payment Processor is composed
with the Item Transactor aspectual element by adding a task-decomposition link from
Confirm Payment goal to Shopping Cart task after all intentional elements. It is also
composed with the Medi@ actor by adding both a means-end link from Confirm
Payment goal to Get Bought Items task and a means-end link from Get Payment
Information goal to Get Used Payment Way goal.

344 J. Castro et al.

3.4 Performing Trade-Off Analysis

After composing the aspectual elements with the i* models using the graphical com-
position rules, we should identify and resolve conflicting situations that may exist in
composition points [30].

A trade-off analysis method could be considered, as for example [7], when we have
two or more aspectual elements composed with the same element in a base module. We
start by analyzing if these aspects influence negatively on each other. In such cases, we
need to choose proper trade-off analysis methods to guide the conflict resolution.

In Figure 3, one conflicting situation could be identified in the Manage Internet
Shop task at the Medi@ actor. In this composition point three aspects, the Security
Manager, Availability Manager and Adaptability Manager, are composed through a
task-decomposition. Therefore, it is necessary to establish their order of composition.

In general, conflict resolution might lead to a revision of the requirements specifi-
cation (stakeholders’ requirements, aspectual requirements or composition rules). If
this happens, the requirements are recomposed, the i* models are restructured and any
further conflicts arising are resolved.

Fig. 3. The Medi@ Aspectual Strategic Rationale (SR) Model

 Dealing with Complexity Using Conceptual Models Based on Tropos 345

4 Early Validation of Requirements Models

The V-model defines a software development process that supports incremental valida-
tion of software artefacts as well as code testing, according to a test-first perspective in
software development that is becoming more and more compelling while the complex-
ity of the system-to-be increases. In the V-model, validation and testing activities start at
the beginning of the project, and complement requirements and design activities [12].

Fig. 4. The V-Model in GOST [26]

The Goal-Oriented Software Testing (GOST) approach proposed in [26], applies
the V-model to the Tropos methodology [6]. In GOST test cases are derived from
goal-oriented analysis and design models. GOST identifies five different validation
and testing levels, each one addressing a specific objective, namely, acceptance, sys-
tem, integration, agent, and unit testing. It provides also detailed procedures for deriv-
ing test suites from Tropos design artefacts, based on the relationship between design
and testing artefacts depicted in Figure 4: the acceptance test’s artefact is in relation-
ship with early and late requirements models; system test with late requirements and
architectural design models; agent test with architectural and detailed design; and unit
testing is in relationship with detailed design and agent code.

In this section, we illustrate how the GOST approach works focusing on accep-
tance testing and show how we can derive test suites from early and late-requirements
models using an excerpt of the Tropos requirements model of the Medi@ system,
depicted in Figure 5. Test cases for the other validation and testing levels can be
derived following analogous procedures.

Acceptance testing aims at testing the software system in the customer execution envi-
ronment (with the involvement of the stakeholders), and at verifying that the system meets
the original stakeholder goals. In GOST, acceptance test suites (that is set of test cases) can
be derived from early and late requirements models applying the following procedure2:

2 The procedure to derive acceptance test suites has been here adapted since the original i*

modelling language is used [37], instead of the Tropos variant described in [33].

346 J. Castro et al.

Fig. 5. An excerpt of the Medi@ Early and Late Requirements Model [10]

Acceptance test suites derivation consists of the following steps:
 1: forall actor ∈{stakeholder actors}do
 2: forall d ∈ {actor’s dependencies towards the system}do
 3: analyze the corresponding system goal/task/softgoal (in the SR model of the

system)
 4: for all lt ∈{leaf task in the means-end / decomposition tree}
 and sg ∈{softgoal} do
 5: /*create a test suite for lt and sg */
 6: step1: identify operational or usage scenarios related to lt
 7: step2: identify fulfillment criteria (oracle) for each scenario
 8: step3: create one test suite with at least one test case for each scenario
 9: endfor
 10: endfor
 11: endfor

While deriving test cases we may discover underspecified or potentially conflict-

ing situations that need to refine the original requirements specification. That is, the
test-first perspective brings as additional benefits the possibility of preventing defects
and faults and of improving requirements specifications [3].

This emerged also when applying the above procedure to the early- and late-
requirements models of Media@ which is partially reported in Figure 5, as discussed
in the following.

 Dealing with Complexity Using Conceptual Models Based on Tropos 347

Along step #2 in the test suite derivation procedure, we first identify the Medi@
system requirements that derive from domain stakeholders dependencies. The result is
illustrated in Table 2, which lists: the domain stakeholders (the Media Supplier, the
Customer and the Media Shop); their dependencies to the system-to-be, namely the
Medi@ system; and the associated requirements that may be expressed in terms of
goals, tasks, softgoals.

A first observation is that we have two different dependencies from the same do-
main stakeholder (the Customer) that define the same requirement of Medi@, which
is represented by the Shopping task. This observation raises the following questions:

– is there any real difference between the task dependency and the goal de-
pendency, or shall we consider the Place Order task as the intended way by
the Customer to pursue its Buy Media item goal?

– why does the Place Order task dependency induce the Secure quality while
the Buy Media item goal does not?

These questions should be posed back to the requirements analyst that can refine
the model. A possible refinement could be that of considering only one of the two
dependencies, maintaining the link to the two requirements expressed by the Medi@´s
Shopping Cart task and Secure softgoal.

Let’s focus now on the Medi@’s Shopping Cart task and apply steps from #4 to #9
to derive a test suite for it. Table 3, illustrates examples of test suites for the leaf tasks
Pick available item and Pre-Order non available item, Add Item and Check Out3.

Acceptance tests assume that an URL for Medi@ is available for internet access
through a web browser, and it serves a (set) of Media Shop(s) which sells DVD,
Book, Video concerning a variety of categories, such as Sport, Music of different

Table 2. System-to-be Requirements Derived from Domain Stakeholders Dependencies.

Medi@ requirements Domain
Stakeholder

Dependency
Root
Goal

Root Task Softgoal

[G] Process Internet
Order

- Manage Internet
Shop

- Media Shop

[SG] Adaptability - - Adaptable
MediaSupplier [G] Find User New

Needs
 Pre-Order Non

Available Item

[SG] Availability Available
[G] Buy Media Item - Shopping Cart -
[T] Place Order - Shopping Cart Secure
[T] Keyword Search - Database Querying Secure
[T] Browse Catalogue - Catalogue

Consulting

Customer

[SG] Security - Secure

3 The complete application of the steps #4-#9 to the Shopping cart task will derive test suites

also for the other leaf tasks, namely Check Out, Get Identification Detail. They are not shown
here for space reasons.

348 J. Castro et al.

Table 3. Examples of Test Suite derived by applying the Acceptance Test Suite Derivation
Procedure

TS Leaf
task

TC Scenario Oracle

TC1.1 Given a list of 4 items each one
identified by a unique name (or
a short description) the user can
point and click on the name of
the third item with the mouse or
the pen-stick.

An instance of selected-
item with the ID of item
#3 is created and ready to
be added to the cart.

TC1.2 Given a list of 4 items, two
having similar or equal names,
the user can point it with the
mouse (or the pen-stick) to get
a short description. A further
click on it will define its
selection.

An instance of selected-
item with the right ID is
created and ready to be
added to the cart.

TC1.3 The available item list is empty The customer can switch
to the Pre-Order non
available item function or
perform another query

TS1 Pick
available
item

TC1.4 The session expires while the
customer pick an item from the
list

Resuming the session the
customer is informed
about the current selected
items

TS2 Pre-
order
non
avail-
able
item

TC2.1 The customer can select an item
marked as not available

An instance of selected-
item with the right ID is
created and ready to be
added to the cart in the
pre-order set.

TC3.1 The customer add to the cart
one item from the list of
selected items (both available
or not)

The cart set is updated
upon the inclusion of the
added item

TS3 Add
Item

TC3.2 The customer add to the cart
all the selected items (both
available or not)

The cart set is updated
upon the addition of the
selected items

TC4.1 The customer is shown the list
of items put in the cart and
confirm the order

The order of the selected
items is ready to be
completed with the
customer payment info

TS4 Check
Out

TC4.2 The session expires The order info are saved
and ready to be
resubmitted to the
customer for confirmation

 Dealing with Complexity Using Conceptual Models Based on Tropos 349

genres. These Media Shops rest on (a) Media Supplier(s) to have the ordered items
available to be sent to the customers. Customers access to the Medi@ system with a
laptop equipped with a mouse or with a PDA equipped with a pen-stick.

Focusing on TS2 we may notice that the Pre-order non available item leaf task re-
sults from the analysis of the Medi@´s Shopping Cart root task as well as from the
dependency from the Media Supplier domain stakeholder to achieve the Find User
New Need goal. The requirements model seems to assume that the Medi@ system is
able to provide to the customers a list of items which fit their current needs, and are
marked as available or not. This requires that the Media Suppliers, the Media Shop is
working with, allow the system to access their product databases, which should be
dynamically updated with respect to the (non)/availability of their products.

This requirement should be made explicit, for instance in the analysis of the Item
Searching Handled goal, or in the associated Database Querying and Catalogue Con-
sulting tasks. Here the database or the catalogue the two tasks refer to, may
correspond to a distributed database (or catalogue) that can be built dynamically by
accessing to the catalogues of the media suppliers that work for the Media Shop.

5 Dealing with Complexity Using a Combined Goal and Scenario
Approach

The combined use of goals and scenarios has been explored within requirements en-
gineering, primarily for eliciting, validating and documenting software requirements.
Van Lamsweerde and Willement studied the use of scenarios for requirements elicita-
tion and explored the process of inferring formal specifications of goals and
requirements from scenario descriptions in [21].

In the CREWS project, Rolland et al. have proposed the coupling of goals and
scenarios in requirements engineering with CREWS-L’Ecritoire [31]. In CREWS-
L’Ecritoire, scenarios are used as a means to elicit requirements/goals of the system-
to-be. Both goals and scenarios are represented as structured text. The coupling of
goal and scenario could be considered as a “tight” coupling, as goals and scenarios are
structured into <Goal, Scenario> pairs, which are called “requirement chunks”. Their
work focuses mainly on the elicitation of functional requirements/goals.

The Software Architecture Analysis Method (SAAM) [17] is a scenario-based
method for evaluating architectures. It provides a means to characterize how well a
particular architectural design responds to the demands placed on it by a particular set
of scenarios. Based on the notion of context-based evaluation of quality attributes,
scenarios are used as a descriptive means of specifying and evaluating quality attrib-
utes. SAAM scenarios are use-oriented scenarios, which are designed specifically to
evaluate certain quality attributes of architecture. The evaluations are done using
simulations or tests on a finished design.

This section first introduces the goal and scenario model integrated design process
based on Tropos and UCM [8]. Then the running example is used to illustrate how to
deal with design decision making problems with the Tropos concepts. Part of this
work is based on [22] and the URN [17] notation, new development of this work is
that we aim at using the joint goal and scenario analysis to cope with the complexity
in the organizational environment – mutual social dependencies, conflicting intentions
and interests, hard to express operational scenarios.

350 J. Castro et al.

5.1 Coping with Complexity Using TROPOS

Based on the Tropos concepts, we now explore how to capture the organizational and
environmental complexity with strategic dependency network, and how agents can
respond to the complexity according to their own needs and capabilities based on
strategic rationale analysis.

Fig. 6. Goal and Scenario Model Integrated Design Process

 Dealing with Complexity Using Conceptual Models Based on Tropos 351

We use the running example to illustrate the complementary application of Tropos
and UCM. The approach is applicable to information systems in general, where there
are conflicting goals and tradeoffs during design. Starting from the identification of
the major stakeholders of the domain, we explain in sequence how to capture the
original business objectives of the stakeholders, refine and operationalize these objec-
tives into applicable design alternatives with Tropos and how to visualize and concre-
tize some solutions with UCM.

Step 1: Placing system design within its broader social context, the proposed model-
ing approach can help to address the following questions systematically: Who are the
major players in the business domain? What kinds of relationships exist among them?
What are the business objectives and criteria of success for these players? The various
dependency links in the model depict that in the Media example, the Medi@ is a key
player, who provides media products and services to Customers through the Internet.
At the same time, it depends on the support of Telecom Company, Media Supplier and
Bank.

Step 2: After the main players are identified, we ask them what their business objec-
tives are, i.e., what they hope to accomplish for their organization, their sponsors, or
their financial backers. Assume that, in our specific e-commerce system, the Medi@
is playing the role of "Media Service Provider", who should then have two things in
mind:

Attract new customer by selling media products online
Improve availability, adaptability and security of the service
They are represented as softgoals in the Tropos model in Figure 7.

Step 3: Explore the alternative business processes, methods or technologies used in
this industry or business. Evaluate how these alternatives are serving the specific
business objectives and the quality expectations of stakeholders.

In Figure 7, we see how the two solutions Medi@ and Conventional Media Shop
contribute differently to the goals. By using contribution links labeled with numbers
or different symbolic types, the model portrayed that Medi@ makes the goal of Avail-
ability satisficable, while media shop method hurts the fulfillment of this goal. Fur-
thermore, the fulfilling of this goal helps the achievement of Attract New Customer
goal. The result of this analysis suggests that Medi@ may be a better option for cur-
rent stakeholder. Part of this model (the two softgoals and the help relationship
between them) is only applicable to current system, while other part (the structure
showing the different resource consumption of the two solutions) depicts generic
domain knowledge reusable to all service providers of Media Products.

Step 4: The advantages and disadvantages of the candidate solution are further inves-
tigated by evaluating its contributions to other concerned softgoals. For each disad-
vantage, mitigation plans are considered to complement the current solution.

The corresponding goal model shows that the advantages of Media@ include
Availability, Increase Market Share and Adaptablity is satisfied. Consequently, the
overall quality of service improved. It also contributions positively to Globalization,
Flexibility, both of which contribute positively (helps) to the customer's satisfactory.

352 J. Castro et al.

Fig. 7. Two Alternative Solutions in the Medi@ Example

However, there are also disadvantages e.g., the inherent Security and More Efforts on
Electronic Delivery of Media@ hurts the high level goals of the stakeholder. These
disadvantages can be mitigated by countermeasures such as “DRM”, which is repre-
sented as tasks connected with a negative correlation links (the dotted lines with
arrows) to the unfavorable contributions links in the graph.

To identify the best design solutions, goal-reasoning techniques such as qualitative
goal labeling algorithms are used. Quantitative techniques, such as probability or
other quantitative measures, are used. With the help of i* model, we are able to ex-
plore a space of design alternatives of considerable size. If there are m decision points
(goals/softgoals with black rectangle shadow) and average n options at each point,
there will be about nm alternatives to be chosen from. Considering the presence of
some external domain constraints, not all of alternatives are workable. When there is a
large space of alternatives to choose from, system designers will greatly appreciate
automated support such as an approximate ranking according to some criteria. The
ranking of design alternatives is determined by the contributions to the softgoals of
concern. In order to rank design alternatives, various criteria can be adopted. We can
then either rank alternatives according to their overall contributions to all softgoals, or
rank according to user’s specific preferences.

Step 5: Identify the alternative essential sub-processes/components to implement the
candidate solution. Next, we build model to elaborate the generic knowledge about
Media Shop Managed. First of all, a media shop manager needs to Choose a Business
Front-end, decide whether to use bricks or clicks, and order handling Process for the
business. As all of these sub-processes are necessary steps for the finishing of the root
task, they are represented as subgoals connected to the root task with decomposition
links.

 Dealing with Complexity Using Conceptual Models Based on Tropos 353

Step 6: As the goal-oriented design proceeds, finer-grained analysis needs to be con-
ducted; hence the scenario-based notation comes into use. To elaborate the goal Pick
Ordering Process, alternative processes are denoted in the i* model as task nodes
having different usage. For instance, Media Shop provides physical shopping experi-
ence, as they provide a Safe and convenient solution.

Each of the alternative processes can be described as a UCM scenario. Medi@ sys-
tem and Customer are represented as agent components (rectangles), holders of
responsibilities (small crosses along on the wiggle lines). In the scenario, the use case
path shows that different Customers can have different routines if they choose differ-
ent subjects in the Web Interface. The Customer and the Medi@ system collaborates
on searching on the web for materials of interest, so they are sharing responsibilities
(denoted by adding a square S between the shared responsibilities).

Having analyzed the benefits and tradeoffs of these structures, we can see that
UCM is a useful counterpart to Tropos in the process from requirements to high-
level design, because it provides a concrete model of each design alternative. Based
on the features in such a model, new non-functional requirements may be detected
and added to the Tropos model. At the same time, in the Tropos model, new means
to achieve the functional requirements can always be explored and concretized in
a UCM model. Thus the above design process may iterate several rounds until an
acceptable design is made.

Fig. 8. Medi@ Scenario Model in UCM

6 Software Project Management Process

Due to benefits and perspectives such as efficient software project management, con-
tinuous organizational modeling and requirements acquisition, early implementation,
continuous testing and modularity, iterative development is more and more used by
software engineering professionals especially through methodologies such as the
Unified Process [34].

Most agent-oriented software development and requirements-driven methodologies
only use a waterfall system development life cycle (SDLC) or advice their users to
proceed iteratively without offering a strong project management framework to sup-
port that way of proceeding. Consequently they are not suited for the development of
huge and complex user-intensive applications. The aim of this section is to present a
research dedicated to extend Tropos with an iterative life cycle called I-Tropos4. This

4 I-Tropos stands for Iterative Tropos.

354 J. Castro et al.

methodology fills the project and product life cycle gaps of Tropos and offers a goal-
oriented project management perspective to support project stakeholders for applying
the methodology.

The I-Tropos project management framework covers several dimensions including
risk, quality, time and process management. Contributions include, among others,
taking threats and quality factors’ evaluation directly in account for planning the goals
realization over multiple iterations. The process is exposed in this section and illus-
trated on the Medi@ case study using DesCARTES, a CASE-tool designed to support
I-Tropos.

6.1 Process Engineering Concepts

An I-Tropos development is made of disciplines5 iteratively repeated while the rela-
tive effort spend on each one is variable from one iteration to the other. The Organiza-
tional Modeling and Requirements Engineering disciplines are respectively largely
inspired by Tropos’ Early and Late Requirements disciplines. The Architectural and
Detailed Design disciplines correspond to the same stages of traditional Tropos. I-
Tropos includes core activities i.e. Organizational Modeling, Requirements Engineer-
ing, Architectural Design, Detailed Design, Implementation, Test and Deployment but
also support disciplines to handle the project development called Risk Management,
Time Management, Quality Management and Software Process Management. There is
little need for support activities in a process using a waterfall SDLC since the core
disciplines are sequentially achieved one for all. When dealing with a process using
an iterative SDLC, the need for support disciplines for managing the whole software
project is from primary importance. I-Tropos process’ disciplines are described in
detail in [35].

Using an iterative SDLC implies repeating process’ disciplines many times during
the software project. Each iteration belongs to one of the four phases inspired by the
Unified Process (UP); a complementary documentation can be found in [20] while a
summary of each phase objective is depicted into the next section. These phases are
achieved sequentially and have different goals evaluated at milestones through
knowledge and achievement oriented metrics, those are informally described into the
next section. Figure 9 offers a two dimensional view of the I-Tropos process: it shows
the disciplines and the four different phases they belong to.

5 The phase and discipline notions are often presented as synonyms in software engineering

literature. In [24], Tropos is described as composed of five phases (Early Requirements, Late
Requirements, Architectural Design, Detailed Design and Implementation). However [29]
defines disciplines as “a particular specialization of Package that partitions the Activities
within a process according to a common “theme”.”, while the phase is defined as “a speciali-
zation of WorkDefinition such that its precondition defines the phase entry criteria and its
goal (often called a "milestone") defines the phase exit criteria”. In order to be compliant
with the most generic terminology, traditional Tropos phases will be called disciplines in our
software process description since they partition Activities under a common theme. In the
same way, phases will be considered as groups of iterations which are workflows with a mi-
nor milestone.

 Dealing with Complexity Using Conceptual Models Based on Tropos 355

Requirements

Engineering

TestTestTestTestTestTest

ImplementationImplementationImplementationImplementationImplementationImplementation

Requirements

Organizational

Modeling

Organizational

Modeling

Organizational

Modeling

Organizational

Modeling

Organizational

Modeling

Organizational

Modeling

Organizational

Modeling

Requirements

Engineering

Architectural

Design

Detailed

Design

Implementation

Architectural

Design

Detailed

Design

Architectural

Design

Detailed

Design

Architectural

Design

Detailed

Design

Architectural

Design

Detailed

Design

Architectural

Design

Detailed

Design

Architectural

Design

Detailed

Design

D

I

S

C

I

P

L

I

N

E

S

Deployment Deployment Deployment Deployment Deployment Deployment Deployment

Test

Requirements

Engineering

Requirements

Engineering

Requirements

Engineering

Requirements Requirements

Engineering

Requirements

Engineering

Software Project

Management

Software Project

Management

Software Project

Management

Software Project

Management

Software Project

Management

Software Project

Management

Software Project

Management

SETTING BLUEPRINTING BUILDING SETUPING

Major

Milestone

Major

Milestone

Major

Milestone

Major

Milestone

Fig. 9. I-Tropos: Iterative Perspective

6.2 Process Phases

I-Tropos phases are inspired by the UP phases6; each one is made of one or more
iterations. Disciplines are gone through sequentially; as stressed before the phases are
separated by major milestones. Each of them has its own goal:

The setting phase is designed to identify and specify most stakeholders require-
ments, have a first approach of the environment scope, identify and evaluate project’s
threats and identify and evaluate quality factors.

The blueprinting phase is designed to produce a consistent architecture for the sys-
tem on the basis of the identified requirements, eliminate most risky features in priority
and evaluate blueprints/prototypes to stakeholders; feedback will feed next iterations.

The building phase is designed to build a working application and validate
developments.

The setuping phase is designed to finalize production, train users and document the
system.

6.3 Process Core Disciplines

The I-Tropos process has been fully described using the Software Engineering Process
Metamodel in [35]. That technical report describes each process’ Discipline, Activity,

6 The phases milestones expressed hereafter are based on the metrics expressed in the Unified

Process (see [20]).

356 J. Castro et al.

Role, WorkDefinition and WorkProduct, so that it can be used as reference or guide to
the methodology. A lightened overview of the process is given in this section.

The Organizational Modeling discipline, strongly inspired from the Tropos Early
Requirements stage, aims to understand the problem by studying the existing organ-
izational setting.

The Requirements Engineering discipline, inspired from the Tropos Late Require-
ments stage, extends models created previously by including the system to-be, mod-
eled as one or more actors.

The Architectural Design discipline, inspired by the Tropos Architectural Design
stage, aims to build the system’s architecture specification, by organizing the depend-
encies between the various sub-actors identified so far, in order to meet functional and
non-functional requirements of the system.

The Detailed Design discipline, inspired by Tropos Detailed Design, aims at defin-
ing the behavior of each architectural component in further detail.

The Implementation discipline aims to produce an executable release of the appli-
cation on the basis of the detailed design specification.

The Test discipline aims on evaluating the quality of the executable release.
The Deployment discipline aims to test the software in its final operational envi-

ronment.

6.4 Process Support Disciplines

These disciplines provide features to support software development i.e. tools to man-
age risks, quality levels, time, resources allocation but also the software process itself.
All those features can be regrouped onto the term software project management.

Risk Management is the process of identifying, analyzing, assessing risk as well as
developing strategies to manage it. Strategies include transferring risk to another
party, avoiding risk, reducing its negative effects or accepting some or all of the con-
sequences of a particular one. Technical answers are available to manage risky issues.
Choosing the right mean to deal with particular risk is a matter of compromise be-
tween level of security and cost. This compromise requires an accurate identification
of the threats as well as their adequate evaluation.

Quality Management is the process of ensuring that quality expected and con-
tracted with clients is achieved throughout the project. Strategies include defining
quality issues and the minimum quality level for those issues. Technical answers are
available to reach quality benchmarks. Choosing the right mean to deal with quality
issues is a matter of compromise between level of quality and cost. This compromise
requires an accurate identification of the quality benchmarks as well as their adequate
evaluation.

Time Management is the process of monitoring and controlling the resources (time,
human and material) spent on the activities and tasks of a project. This discipline is of
primary importance since, on the basis of the risk and quality analyses, the global
iterations time and human resources allocation are computed; they are revised during
each iteration.

Software Process Management is the use of process engineering concepts, tech-
niques, and practices to explicitly monitor, control, and improve the systems
engineering process. The objective of systems engineering process management is to

 Dealing with Complexity Using Conceptual Models Based on Tropos 357

enable an organization to produce system/segment products according to plan while
simultaneously improving its ability to produce better products [9]. In this context,
Software Process Management regroups the activities aimed to tailor the generic
process onto a specific project as well as improving the software process.

6.5 Applying I-Tropos on Medi@

Figure 10 depicts DesCARTES [11], more specifically the cost and effort estimation
interface provided by the module supporting the Software Project/Time Management
Disciplines from I-Tropos. Project Management Features such as scale drivers, cost
factors, increment settings, labor rates, breakage, etc., can directly be tuned through
this kind of interfaces.

Fig. 10. DesCARTES: Estimating the Medi@ Application with the I-Tropos Software Pro-
ject/Time Management Disciplines Module

DesCARTES (Design CASE Tool for Agent-Oriented Repositories, Techniques,
Environments and Systems) Architect is a Computer-Aided Software Engineering
Tool developed as a plug-in for the Eclipse Platform by the Information Systems Unit
at the University of Louvain. It is designed to support various models edition: i* mod-
els (Strategic Dependency and Strategic Rationale models), NFR models, UML mod-
els, AUML models in the context of I-Tropos or Unified Process-like developments.
The originality of the tool is that it allows the development of the methodology
models throughout iterative software life cycle processes as well as forward engineer-
ing capabilities and integrated software project management, time and risk/quality
management modules.

358 J. Castro et al.

Figure 11 provides graphical reporting outputs directly produced by DesCARTES
related to the cost, effort, activities and schedule estimation for Medi@.

Instantiated to Medi@, these outputs applying regression models based on CO-
COMO or SLIM [4] and factor scales supported by maturity models such as CMM-I
give the following estimation figures. Total size is estimated to 101700 Java SLOC
while the total cost will be 271 400 $. The duration of the project will be 13.6 months
with 46.7 actual person-months (PM) and a nominal PM at 29.1. Productivity is esti-
mated to 256.9 SLOC per PM at the unit cost at 22.26$ per line. Average staffing
during the project is 3.43 persons with a high at 4.87 during Building a low at 1.71
during Setting.

Fig. 11. Graphical Outputs from DesCARTES: Cost, Effort, Activities and Schedule Estimation
for Medi@

7 Conclusion

This chapter presents a set of approaches to deal with complexity, which address
various activities in software development, namely requirements modeling, testing
and project management.

More specifically, we outlined an approach to improve modularization of require-
ments models described in i*, by identifying, separating and composing crosscutting
concerns. A specific notation has been created to represent aspectual i* models. This
leads to the addition of two new concepts in the i*/Tropos modeling language, namely
aspectual element and crosscut relationship. Aspectual elements modularize crosscut-
ting concerns while the crosscut relationship captures the information of source and
target model elements, as well as, when and how an aspectual element crosscuts other
model elements. The approach introduces modularity (it creates units that are strongly
cohesive and loosely coupled), reduces the scalability (removing the redundant ele-
ments and links) and improves the reusability. Work in under way to evaluate the
resulting models by means of metrics to assess well-known attributes in software
engineering, such as separation of concerns, size, cohesion and coupling. In the near

 Dealing with Complexity Using Conceptual Models Based on Tropos 359

future we plan to define a trade-off analysis method to complement the proposed
process as well as to provide tool support for the approach.

The application of a V-model software development process in Tropos, namely the
GOST methodology [26], has been introduced, as an approach to enable incremental
validation and testing of artifacts while building complex software system. Further
benefits of using this test-first perspective for clarifying ambiguities in requirements
models has also been illustrated by applying GOST to a fragment of the early- and
late-requirements models of the Media@ system. The systematic application of the
GOST approach can be supported by the eCAT tool, which automatically generates
test suite skeletons from goal models [25]. Extensions of GOST with automated test
case generation techniques are described in [27] and [28]. This is a necessary step
towards supporting a continuous validation and testing approach for the development
of complex software systems.

The combined use of Tropos and UCM enables the description of functional and
non-functional requirements, abstract requirements and concrete system models, in-
tentional strategic design rationales and non-intentional details of concurrent, tempo-
ral aspects of the future system. It is natural to adopt Tropos as a basic requirements
knowledge representation language, and try to find how other existing requirements
modeling languages relate and complement to it. So following the attempt in integrat-
ing i*(GRL) with UCM, we move to integrate i* with the Problem Frames. The ulti-
mate objective is to build a requirement ontology that incorporates as many perspec-
tives as possible.

In terms of software process management, I-Tropos represents an evolution of the
Tropos process. It constitutes an operationalization of the Tropos methodology in
order to be used in large software developments. I-Tropos mainly fills up the gap of
project management which is, for now, seldom approached in MAS literature. The
main contributions include meta-level process documentation, a full software and
product life cycle coverage, a project management framework for the inclusion of
Tropos developments into an iterative and incremental process template and the sup-
port of a specific CASE tool, DesCARTES. I-Tropos is an adequate project manage-
ment for building large-scale enterprise systems from scratch. However, many firms
have turned to the reuse of existing software or using commercial off-the-shelf
(COTS) software as an option due to lower cost and time of development. Work for
enlarging its scope including COTS software customization onto specific case and
adequate project management is in progress. The basic adaptation of I-Tropos to sup-
port this paradigm of software development is described in [36].

Acknowledgements

This work was supported by several research grants: National Natural Science
Foundation of China (Grant No.60873064), National Basic Research and Develop-
ment 973 Program of China (Grant No.2009CB320706), CNPq Grant 308587/2007-3,
BIT Initiative, FUR-PAT Trento (STAMPS project). We thank our colleagues at
Universidade Federal de Pernambuco and Universidade Nova de Lisboa, in particular
Fernanda Alencar, João Araújo and Ana moreira for their contributions to the
aspectualization of i* models.

360 J. Castro et al.

References

1. Amyot, D.: Introduction to the User Requriements Notation: Learning by Example. Com-
puter Networks~42(3), 285--301 (2003)

2. Alencar, F., Castro, J., Moreira, A., Araújo, J., Silva, C., Ramos, R., Mylopoulos, J.: Inte-
gration of aspects with i* models. In: Kolp, M., Henderson-Sellers, B., Mouratidis, H.,
Garcia, A., Ghose, A.K., Bresciani, P. (eds.) AOIS 2006. LNCS, vol. 4898, pp. 183–201.
Springer, Heidelberg (2008)

3. Beck, K.: Test Driven Development: By Example. Addison-Wesley Longman Publishing
Co., Inc., Boston (2002)

4. Boehm, B., et al.: Software cost estimation with COCOMO II. Prentice-Hall, Englewood
Cliffs (2000)

5. Bresciani, P., Perini, A., Giunchiglia, F., Giorgini, P., Mylopoulos, J.: A Knowledge Level
Software Engineering Methodology for Agent Oriented Programming. In: Proc. of the 5th
Int. Conference on Autonomous Agents (Agents 2001), Montreal, pp. 648–655 (2001)

6. Bresciani, P., Giorgini, P., Giunchiglia, F., Mylopoulos, J., Perini, A.: Tropos: An Agent-
Oriented Software Development Methodology. Autonomous Agents and Multi-Agent Sys-
tems 8(3), 203–236 (2004)

7. Brito, I.S., Vieira, F., Moreira, A., Ribeiro, R.A.: Handling conflicts in aspectual require-
ments compositions. In: Rashid, A., Aksit, M. (eds.) Transactions on AOSD III. LNCS,
vol. 4620, pp. 144–166. Springer, Heidelberg (2007)

8. Buhr, R.J.A.: Use Case Maps as Architectural Entities for Complex Systems. Transactions
on Software Engineering 24(12), 1131–1155 (1998)

9. Capability Assessment Working Group on Systems Engineering, Systems Engineering
Capability Assessment Model, INCOSE-TP-1996-002-01, Version 1.50a (June 1996)

10. Castro, J., Kolp, M., Mylopoulos, J.: Towards Requirements-Driven Information Systems Engi-
neering: The Tropos Project. Information Systems Journal 27(6), 365–389 (2002)

11. DesCARTES Architect: Design CASE Tool for Agent-Oriented Repositories, Techniques,
Environments and Systems (2008), http://www.isys.ucl.ac.be/descartes/

12. Development Standards for IT Systems of the Federal Republic of Germany, The V-Model
(2005), http://www.v-modell-xt.de

13. Estrada, H., Rebollar, A.M., Pastor, Ó., Mylopoulos, J.: An empirical evaluation of the i*
framework in a model-based software generation environment. In: Dubois, E., Pohl, K.
(eds.) CAiSE 2006. LNCS, vol. 4001, pp. 513–527. Springer, Heidelberg (2006)

14. Feiler, P., Gabriel, R.P., Goodenough, J., Linger, R., Longsta, T., Sullivan, K., Wallnau,
K.: Ultra-large-scale systems: The software challenge of the future. Technical report,
Software Engineering Institute (July 2006), http://www.sei.cmu.edu/uls/

15. France, F., Kim, D., Ghosh, S., Song, E.: A UML-Based Pattern Specification Technique.
IEEE Transactions on Software Engineering 30(3), 193–206 (2004)

16. Graham, D.R.: Requirements and testing: Seven missing-link myths. IEEE Software 19(5),
15–17 (2002)

17. International Telecommunications Union (ITU-T) Recommendation Z.151: User Require-
ments Notation (URN) - Language Definition (2008)

 Dealing with Complexity Using Conceptual Models Based on Tropos 361

18. Kazman, R., Bass, L., Abowd, G., Webb, M.: SAAM: A Method for Analyzing the Proper-
ties of Software Architectures. In: Proceedings of the 16th International Conference on
Software Engineering, Sorrento, Italy, May 1994, pp. 81–90 (1994)

19. Kim, D., France, R., Ghosh, S., Song, E.: Using Role-Based Modeling Language as Pre-
cise Characterizations of Model Families. In: 8th Intl. Conf. on Engineering of Complex
Computer Systems, IEEE, USA (2002)

20. Kruchten, P.: The Rational Unified Process: An Introduction. Addison-Wesley, Reading
(2003)

21. van Lamsweerde, A., Willemet, L.: Inferring Declarative Requirements Specifications
from Operational Scenarios. IEEE Transactions on Software Engineering, Special Issue on
Scenario Management (December 1998)

22. Liu, L., Yu, E.: Designing Information Systems in Social Context: A Goal and Scenario
Modelling Approach. Information Systems 29(2), 187–203 (2004)

23. Luck, M., McBurney, P., Shehory, O., Willmott, S.: Agent Technology: Computing as Inter-
action (A Roadmap for Agent Based Computing). AgentLink, Liverpool, UK (2005)

24. Mylopoulos, J., Castro, J.: Tropos: A Framework for Requirements-Driven Software De-
velopment. In: Brinkkemper, S., Lindencrona, E., Sølvberg, A. (eds.) Information Systems
Engineering: State of the Art and Research Themes, pp. 261–273. Springer, Heidelberg
(2000)

25. Nguyen, C.D., Perini, A., Tonella, P.: eCAT: a Tool for Automating Test Cases Generation
and Execution in Testing Multi-Agent Systems (Demo Paper). In: Proc. Of the 7th Interna-
tional Conference on Autonomous Agents and Multiagent Systems (AAMAS 2008), Demo
Proceedings, Estoril, Portugal, May 12-16, 2008, pp. 1669–1670 (2008)

26. Nguyen, C.D., Perini, A., Tonella, P.: Goal-Oriented Testing for MAS. Int. Journal of
Agent-Oriented Software Engineering (submitted, 2008)

27. Nguyen, C.D., Perini, A., Tonella, P.: Automated Continuous Testing of Autonomous Dis-
tributed Systems. In: 1st International Workshop on Search-Based Software Testing, in
conjunction with the IEEE International Conference on Software Testing, Verification and
Validation, ICST 2008 (2008)

28. Nguyen, C.D., Miles, S., Perini, A., Tonella, P., Harman, M., Luck, M.: Evolutionary Test-
ing of Autonomous Software Agents. In: Decker, Sichman, Sierra, Castelfranchi (eds.)
Proc. of 8th Int. Conf. on Autonomous Agents and Multiagent Systems (AAMAS 2009),
Budapest, Hungary, May 10-15 (2009)

29. OMG: The Software Process Engineering Metamodel Specification. Version 1.1 (January
2005)

30. Rashid, A., Moreira, A., Araujo, J.: Modularisation and Composition of Aspectual Re-
quirements. In: Proc. of the 2nd Intl. Conf. on Aspect-Oriented Software Development, pp.
11–20. ACM Press, New York (2003)

31. Rolland, C., Grosz, G., Kla, R.: Experience With Goal-Scenario Couplingin Requirements
Engineering. In: Proceedings of the IEEE International Symposium on Requirements En-
gineering 1998, Limerick, Ireland (1998)

32. Silva, C., Araújo, J., Moreira, A., Castro, J.: Designing Social Patterns using Advanced
Separation of Concerns. In: Krogstie, J., Opdahl, A.L., Sindre, G. (eds.) CAiSE 2007 and
WES 2007. LNCS, vol. 4495, pp. 309–323. Springer, Heidelberg (2007)

362 J. Castro et al.

33. Susi, A., Perini, A., Giorgini, P., Mylopoulos, J.: The Tropos metamodel and its use. In-
formatica 29(4), 401–408 (2005)

34. Royce, W.: Software Project Management. A Unified Framework. Addison-Wesley, Read-
ing (1998)

35. Wautelet, Y., Kolp, M., Achbany, Y.: S-Tropos: An Iterative SPEM-Centric Project Manage-
ment Process. Working Paper IAG 06/01, Université catholique de Louvain (2006)

36. Wautelet, Y., Achbany, Y., Kiv, S., Kolp, M.: A Service-Oriented Framework for Compo-
nent-Based Software Development: An i* Driven Approach. In: Proceedings of the 11th
International Conference on Enterprise Information Systems, ICEIS 2009, Milan (2009)

37. Yu, E.: Modelling Strategic Relationships for Process Reengineering. Ph.D Thesis, De-
partment of Computer Science, University of Toronto, Canada (1995)

	Dealing with Complexity Using Conceptual Models Based on $Tropos$
	Introduction
	Running Example
	Modularization of Requirements Models
	Identifying and Modularizing Aspects
	Identifying Relationship among Aspectual Elements
	Representing Aspectual Elements Using the Aspectual i* Notation
	Performing Trade-Off Analysis

	Early Validation of Requirements Models
	Dealing with Complexity Using a Combined Goal and Scenario Approach
	Coping with Complexity Using TROPOS

	Software Project Management Process
	Process Engineering Concepts
	Process Phases
	Process Core Disciplines
	Process Support Disciplines
	Applying I-Tropos on Medi@

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

