
Politecnico di Torino
Dipartimento di Ingegneria Meccanica e
Aerospaziale
Corso di Dottorato in Meccatronica

PhD Thesis

Use of Unmanned Aerial Systems in
Civil Applications

Candidate:
Antonio Toma

Advisor:
Marcello Chiaberge

XXVII ciclo

SDSS: ING-INF/01-Elettronica

Antonio Toma: Use of Unmanned Aerial Systems in Civil Applications. PhD
Thesis, c© april 2015. This work is licensed under a Creative Commons
Attribution-ShareAlike 4.0 International License.

cba

Nam et plerique nobilium Græcorum et Favorinus philosophus,
memoriarum veterum exsequentissimus, affirmatissime scripserunt

simulacrum columbæe ligno ab Archyta ratione quadam disciplinaque
mechanica factum volasse; ita erat scilicet libramentis suspensum et aura

spiritus inclusa atque occulta concitum.

Non solo numerosi autori greci di gran nome ma anche il filosofo Favorino, scrupolosissimo
indagatore di antichità, hanno testimoniato con assoluta sicurezza che Archita fabbricò, in

base a certi principi di ingegneria, un oggetto di legno in forma di colomba, e questa colomba
volò; è evidente che essa era accuratamente equilbrata mediante contrappesi e celava al suo

interno dei fiotti d’aria che le conferivano il moto.

— Gellio X 12 9-10 (Traduzione Italiana G. Bernardi Perini)

C O N T E N T S
1 the rise of civil drones 1

1.1 The projects 2
1.2 The vehicles 4

2 steps 7
2.1 Functional Layout 8

2.1.1 The Tracking System 9
2.1.2 The Quadrotor 9
2.1.3 The Ground Segment 11

2.2 System Modeling and Control 14
2.2.1 Translational (x,y) dynamics model 14
2.2.2 Gas Dynamics 17
2.2.3 Roll and Pitch dynamics 17
2.2.4 PID Controllers 19

2.3 Conclusion 21

3 fly4smartcity 25
3.1 User interface 26
3.2 The cloud platform 27

3.2.1 Implementation of the Fly4SmartCity service 30
3.3 Open Data Oriented MIssion Planner 31

3.3.1 Open Data Driver module (ODD) 32
3.3.2 ODOMI coordinator (OC) 33
3.3.3 Path Planner module (PP) 33

3.4 The agents 35
3.5 Experimental results 36

3.5.1 Test 1 36
3.5.2 Test 2 36
3.5.3 Test 3 36
3.5.4 Test 4 37

3.6 Conclusion 41

4 sensor fusion 43
4.1 An introduction to the MSF 44
4.2 Combining multiple sensors 44

4.2.1 MSF setup 45
4.3 Characterization of the Sensors Noise 49

4.3.1 IMU 49
4.3.2 GPS 51
4.3.3 Camera 54

4.4 Structure of the MSF Code 54
4.5 Preliminary Results 55
4.6 Conclusion 57

5 discussion and conclusion 61
5.1 Summary of this disseratation 61
5.2 Research outlook 61

a vicon precision characterization 65

v

vi contents

a.1 Motors off 65
a.2 Motor on 67

b vibrational tests 71
b.1 Waterfall plots 71

b.1.1 All motors on 71
b.1.2 Motor 1 on 72

b.2 Beam modal analysis 75
b.3 Results 75

c fly4smartcity platform messages 79
c.1 Mission Planner Messages Set 79
c.2 Open Data Messages Set 81

d imu characterization 83

bibliography 89

L I S T O F F I G U R E S
Figure 1 New technologies and UAVs popularity. 2
Figure 2 Projects timeline 3
Figure 3 Autopilots used in the projects 4
Figure 4 Quadrotors used in the projects 6
Figure 5 Functional architecture of the VTNF. 8
Figure 6 The IR markers attached on the vehicle. 9
Figure 7 The Vision-based Terrain Navigation Facility. 10
Figure 8 The quadrotor used in the VTNF. 10
Figure 9 The carrier board for the UAV electronics. 11
Figure 10 Hazard map generated from a Mars picture. 12
Figure 11 A postcard from Mars. 13
Figure 12 Quadrotor model structure. 14
Figure 13 Revised quadrotor model structure. 14
Figure 14 Body (B) and Earth (E) reference frames. 15
Figure 15 Thrust characterization. 18
Figure 16 Experimental roll response vs. fitted one. 18
Figure 17 Experimental pitch response vs. fitted one. 19
Figure 18 Measured and simulated response. 20
Figure 19 The dynamic behaviour of the vehicle on the three

axes. 22
Figure 20 The dynamic behaviour of the vehicle in two 2D flights. 23
Figure 21 A complete flight in the tree dimensional volume. 23
Figure 22 The mobile application. 27
Figure 23 The web graphical user interface. 27
Figure 24 The platform objects and their relationships. 28
Figure 25 The Platform Manager logic architecture. 29
Figure 26 The Application Programming Interfaces (APIs). 29
Figure 27 Implementation of F4SC service in the cloud robotics

platform. 30
Figure 28 High-level architecture of the mission planner. 31
Figure 29 Simulated experiment. 37
Figure 30 omparison between three planning strategies. 38
Figure 31 Real test over a short trajectory. 39
Figure 32 Real test over a short trajectory. Photo of the experi-

ment. 39
Figure 33 Video streaming and mission information during the

live demo (1). 40
Figure 34 Video streaming and mission information during the

live demo (2). 40
Figure 35 The loosely coupled approach allows high system

modularity. 45
Figure 36 MSF reference frames. 46
Figure 37 The diagram of Earth-Centered, Earth-Fixed coordi-

nates, in relation to latitude (ϕ) and longitude (λ). 48
Figure 38 Satellites-receiver geometry influences the precision

of the position measurement. 52

vii

Figure 39 The volume of the tetrahedron formed by the tips
of the receiver-satellite unit vector, is higly correlated
with GDOP. 53

Figure 40 Multi Sensor Fusion (MSF) Test 1. 58
Figure 41 MSF Test 2. 59
Figure 42 New outdoor facility 62
Figure 43 The improved F4SC GUI 62
Figure 44 New advanced products in civil Unmanned Aerial

Vehicle (UAV) market 63
Figure 45 Isometric view of the wand. 66
Figure 46 Three-dimensional position scatter plot. 66
Figure 47 Gaussian distribution and noise trend for the position

measurements. 67
Figure 48 Gaussian distribution and noise trend for the attitude

measurements. 68
Figure 49 Motors off vs motors on position scatter. 68
Figure 50 X position measure with motors off and motors on. 69
Figure 51 The quadrotor bounded on the testing ground. 72
Figure 52 Accelerometers positioning on motor 1. 72
Figure 53 Whole motors ON, waterfall plots. 73
Figure 54 Motor 1 ON, waterfall plots. 74
Figure 55 Impact test frequency responses on motor 1 using

multidirectional carbon fiber beam. 76
Figure 56 Impact test frequency responses on motor 1 using

unidirectional carbon fiber beam. 77
Figure 57 Conditioning chain for the PX4FMU’s inertial sen-

sors. 83
Figure 58 Measurement set 0 - Accelerometers characterization. 85
Figure 59 Measurement set 0 - Gyroscopes characterization. 86
Figure 60 Measurement set 1 - Accelerometers characterization. 87
Figure 61 Measurement set 1 - Gyroscopes characterization. 88

L I S T O F TA B L E S
Table 1 Equipment used in the projects. 5
Table 2 PID parameters. 21
Table 3 Open Data providers. 32
Table 4 Geo-referenced data sources. 32
Table 5 Advantages and disadvantages of the sensors fused

using MSF. 43
Table 6 Noise characteristics and their units (SU: Signal Units). 51
Table 7 Main error sources affecting the Global Positioning

System (GPS) range estimates. 52
Table 8 Description of the main files included in the MSF. 56
Table 9 Expected values, accuracy and precision of Vicon sys-

tem. 65
Table 10 Accuracy and precision differences, static and dy-

namic case. 68
Table 11 IMU characterization experiments - Parameters. 84

viii

List of Tables ix

Table 12 IMU characterization experiments - Results (set 0). 84
Table 13 IMU characterization experiments - Results (set 1). 84

L I S T O F A C R O N Y M S
API Application Programming Interface

ASL Autonomous Systems Lab

CMOS Complementary Metal-Oxide Semiconductor

COA Certificate of Authorization

DIMES Descent Image Motion Estimation System

DOP Dilution of Precision

ECEF Earth-Centered, Earth-Fixed

EDL Entry Descent Landing

EKF Extended Kalman Filter

ENAC Ente Nazionale Aviazione Civile

ETHZ Eidgenössische Technische Hochschule Zürich

FAA Federal Aviation Administration

F4SC FlyForSmartCity

3G 3rd Generation

4G 4th Generation

GCS Ground Control Station

GDOP Geometric Dilution of Precision

GPS Global Positioning System

GUI Graphical User Interface

HDOP Horizontal Dilution of Precision

HTML5 HyperText Markup Language 5

IMU Inertial Measurement Unit

JPL Jet Propulsion Laboratory

JSON JavaScript Object Notation

LAN Local Area Network

LIM Laboratorio Interdisciplinare di Meccatronica

LiPo LIthium POlymer

LTE Long Term Evolution

MAV Micro Aerial Vehicle

MER Mars Exploration Rovers

xi

xii List of Tables

MK MikroKopter

MP MicroPilot

MSF Multi Sensor Fusion

NASA National Aeronautics and Space Administration

NRS Network Robot System

NSD Noise Spectral Density

ODOMI Open Data Oriented MIssion Planner

PaaS Platform-as-a-Service

PID Proportional Integral Derivative

PoE Power over Ethernet

PSD Power Spectral Density

REST REpresentational State Transfer

ROCON RObotics in CONcert

ROS Robotic Operating System

RPA Remotely Piloted Aircraft

RPG Robotics and Perception Group

RSS Root of Sum of Squares

RSSI Received Signal Strength Indication

RTK Real Time Kinematics

RTOS Real Time Operating System

SDK Software Development Kit

SSF Single Sensor Fusion

STEPS Sistemi e TEcnologie per l’esPlorazione Spaziale

SVO Semi-direct Visual Odometry

TAS-I Thales Alenia Space-Italy

UART Universal Asynchronous Receiver-Transmitter

UAS Unmanned Aerial System

UAV Unmanned Aerial Vehicle

UDP User Datagram Protocol

UERE User Equivalent Range Error

UZH Universität Zürich

VDOP Vertical Dilution of Precision

VO Visual Odometry

List of Tables xiii

VPN Virtual Private Network

VTNF Vision-based Terrain Navigation Facility

VTOL Vertical Take Off and Landing

WGN White Gaussian Noise

A B S T R A C T
Interest in drones has been exponentially growing in the last ten years and

these machines are often presented as the optimal solution in a huge num-
ber of civil applications (monitoring, agriculture, emergency management
etc). However the promises still do not match the data coming from the con-
sumer market, suggesting that the only big field in which the use of small
unmanned aerial vehicles is actually profitable is the video-makers’ one.
This may be explained partly with the strong limits imposed by existing
(and often "obsolete") national regulations, but also - and pheraps mainly -
with the lack of real autonomy. The vast majority of vehicles on the mar-
ket nowadays are infact autonomous only in the sense that they are able to
follow a pre-determined list of latitude-longitude-altitude coordinates. The
aim of this thesis is to demonstrate that complete autonomy for UAVs can
be achieved only with a performing control, reliable and flexible planning
platforms and strong perception capabilities; these topics are introduced
and discussed by presenting the results of the main research activities per-
formed by the candidate in the last three years which have resulted in 1) the
design, integration and control of a test bed for validating and benchmark-
ing visual-based algorithm for space applications; 2) the implementation of
a cloud-based platform for multi-agent mission planning; 3) the on-board
use of a multi-sensor fusion framework based on an Extended Kalman Filter
architecture.

xv

R I N G R A Z I A M E N T I
This dissertation would not have been possible without the contribute and

the support of many people. In particular I would firstly like to thank my
supervisor, Prof. Marcello Chiaberge, for guiding me in my PhD studies
and all the staff at LIM Mechatronics Lab. Thanks especially to the "UAV
team" - Gianluca, Mario, Claudio - and also to Max, for his valuable help.

I would like to thank Carlo Paccagnini, who taught me a lot, Prof. An-
drea Tonoli, Roberto Antonini, Mario Nigra and Marco Gaspardone, your
collaboration and support was really precious.

I will forever be thankful to Prof. Davide Scaramuzza, Matthias, Flavio,
Elias and all the incredible UZH’s Robotics and Perception Group. Being
part of your team for six months truly was one of the most important and
formative experiences of my life.

I am grateful to Gabriele Ermacora, Stefano Rosa and Mario Cassaro, with-
out you my PhD years would have been way more boring; I could not have
asked for better friends when I started all this. Thanks guys!

Turin, april 2015 Antonio Toma

xvii

I N T R O D U C T I O N
Civil UAVs are considered by many analysts as one of the most promising

technologies of the last ten years. Their popularity is continuously growing
thanks to new available technologies, scientific research, internet communi-
ties of enthusiasts and industries. However, from a business point of view,
almost the totality of revenue opportunities from the use of civil UAVs at the
moment are in the photographers/video-makers market and in the toy/hi-
tech gadgets one. This apparent contradiction between expected vs. actual
results is likely due to two main reasons: 1) strong limits imposed by ex-
isting (and often "obsolete") regulations and 2) lack of real autonomy, i.e.
the ability to take autonomous decisions. Until now, in fact, almost the to-
tality of the UAV solutions on the market are autonomous in the sense that
they can follow a pre-defined sequence of GPS coordinates, at given altitude,
also being able sometimes to take-off and land automatically. This approach
does not make the vehicles less blind than they already are and, in any way,
help them in overcoming some typical problems in robotics, such as obsta-
cless avoidance, multi-agent coordination, self-localization in unstructured
environments (without any aid from global positioning systems of course)
and mapping. The vehicle is not that autonomous after all.

This dissertation studies the issues of control, planning and perception for
small UAVs, three fundamentals topics in the achievement of complete au-
tonomy in civil operations. In particular:

the first chapter offers an overview of the technologies involved in the
described activities, briefly reviewing the four different types of auto-
pilot boards employed;

the second chapter focuses on control and describes the modelling and
control activities of a UAV in an optically tracked facility, in the field
of space research;

the third chapter focuses on planning and describes an cloud-based in-
frastructure for multi-agent missions management in smart city sce-
narios.

the fourth chapter focuses on perception and describes the (preliminary)
results obtained from the fusion of several on-board sensors using a
state-of-the-art software framework;

the last chapter closes the dissertation discussing its results and pre-
senting the future expected activities and some concluding comments
on the work.

xix

1 T H E R I S E O F C I V I L D R O N E S

In the last ten years the world of civil unmanned vehicles gained an enor-
mous momentum driven by technological development pushed by private
companies, universities and research entities with heterogeneous goals and
aims. The "rise of civil drones" has been mainly triggered by a number of
technologies that became widely available (and less expansive) in the civil
market during the first years of the last decade (see figure 1). Accurate
and fast indoor tracking systems, brushless motors, lightweight transmitter-
s/receivers for wireless communications, LIthium POlymer (LiPo) batteries
and solid-state micro circuits for measuring accelerations and angular veloc-
ities, became increasingly popular and adopted in important mass markets
(such as the then-nascent smartphone industry). The first hobbyists inter-
net communities and open-source/open-hardware projects started to grow
and to attract more and more developers (MikroKopter autopilot, Paparazzi
project and later Ardupilot and Arducopter projects and Diydrones commu-
nity, just to name a few) and, during the same years, also the first commer-
cial products and the first companies completely focused on recreational
UAVs manufacturing born (e.g. DJI and Parrot with its AR.Drone).

The, sometimes wild, development in the field of UAVs has created a lot
of confusion about what actually a drone (as these vehicles are commonly
called) is. Among the terms more commonly found in literature, UAV is
one of the most general ones and it is also the one we will use in this docu-
ment. It focuses on the absence of a human pilot on-board without further
specifying whether the vehicle is fully autonomous or remotely controlled.
This second possibility is on the contrary stressed by the acronym Remotely
Piloted Aircraft (RPA), a term usually preferred by many national regulative
authorities since it underlines the presence of a pilot, albeit not an on-board
one. Micro Aerial Vehicle is another term that can be found in scientific liter-
ature and it addresses to the world of small-dimension autonomous flying
vehicles. The term is particularly common in the robotics-research field in
which Micro Aerial Vehicles (MAVs) use has become wide spread because
of their agility and high dynamics capabilities. Finally, the term Unmanned
Aerial System (UAS) emphasizes the presence of other elements (such as a
control link or a Ground Control Station (GCS)) beyond the aircraft itself;
Thus focusing and the whole architecture instead then on the flying agent.
For the sake of clarity we will try to use only the terms UAV and UAS from
here on in this report.

From the regulative point of view, at time of writing (end 2014), national
and international regulations concerning the flight of UAVs are still not clear
and are slowly evolving. This has somehow prevented the rise of new com-
mercial applications, made possible in theory by the available technology,
but limited by the law. While some nations showed an early interest in the
adoption of permissive rules for the civil flight of UAVs (Australia, Canada
with CASR regulation, 2001 and TC regulation, 2014 respectively), other
nations show extreme caution and just extended pre-existing regulations re-
garding manned aircraft to the case of UAVs. For example, in the United
States a Certificate of Authorization (COA) given by the Federal Aviation

1

2 the rise of civil drones

(a) A small IMU on its board. (b) Brushless motor.

(c) LiPo battery. (d) Two ZigBee radio-modems.

Figure 1: The availability of new technologies in the consumer market sustained the
exponential growth of inexpensive civil UAVs.

Administration (FAA) is needed for public (i.e. operated by the government
of a state) flights of remotely controlled aerial vehicles. Recreational use is
permitted, but commercial use is forbidden in any case, since the FAA do
not grant COAs for commercial uses of UAVs (FAA regulation, 2012). In
Europe, the first country to adopt specific regulations for the flight of UAVs
was France, followed by the United Kingdom and Germany. In Italy the reg-
ulations became effective starting from April 2014 (ENAC regulation, 2014).
The Italian regulations differentiate aerial vehicles according to their use
and not to their technical differences, distinguishing between recreational
and commercial use and consequently granting different rights to the vehi-
cle owner/operator.

1.1 the projects
This document describes the work done during my PhD years and tries

to follow all the milestones which I believe have to be marked in the path
towards complete autonomy of small UAVs for civil operations, i.e. control,
planning and perception. These three major topics are discussed using the
results achieved during two different research project - Sistemi e TEcnolo-
gie per l’esPlorazione Spaziale (STEPS) and FlyForSmartCity (F4SC) - and
during a period as a visiting PhD student at the Universität Zürich (UZH)
Robotics and Perception Group (RPG) laboratory.

steps - sistemi e tecnologie per l’esplorazione spaziale STEPS
is a research project co-financed by Piedmont Region involving universi-

1.1 the projects 3

STEPS2

F4SC

STEPS

Figure 2: Projects timeline

ties, companies and research institutions of the Piedmont Aerospace District
which aims at supporting the research and innovation activities in the Space
Exploration domain. One of the assignment carried out by Laboratorio In-
terdisciplinare di Meccatronica (LIM)1 as part of this project was to design,
implement and build the Vision-based Terrain Navigation Facility (VTNF).
The VTNF is a platform meant to be used as testbed for innovative vision-
based technologies and solutions, suited to validate them and to perform a
deep analysis of their operation in a situation as similar as possible to the
operative one the technology has been studied for. The VTNF allows image
analysis on pictures taken over a 1:300 scale diorama representing Martian
terrain, by an ideal lander in its Entry Descent Landing (EDL) procedures on
the planet. A quadrotor with a camera attached on it facing down is used to
trigger some shots on the diorama surface. The image processing part is not
independent by the motion of the rotorcraft, that will have to be controlled
in order to reach defined waypoints in an indoor fixed flight volume. We
solved this problem defining a PID (Proportional Integral Derivative) con-
trol architecture and the accessory software needed to perform the goal, and
integrating all the devices (the tracking system, the quadrotor, the ground
station . . .) in a functional system; defining, therefore, a fully operable plat-
form and not only the controller’s abstract layer. The work has been carried
out in collaboration with Thales Alenia Space-Italy (TAS-I)2.

fs4c - fly4smartcity F4SC is a research project started in the late 2013
as a collaboration between Telecom Italia’s Joint Open Lab "CRAB"3, Politec-
nico di Torino and Centro Nexa4. Its goal is to allow a centralized manage-
ment of a fleet of UAVs distributed on the territory exploiting the advan-
tages offered by the Cloud Robotics approach. The emerging cloud robotics
paradigm considers robots as simple agents connected to a remote network
infrastructure; this networked approach allows them to benefit from off-
board powerful computational and storage resources, to easily access data
and to build a common knowledge. FlyForSmartCity aims to demonstrate
that a possible implementation of a cloud-robotics service in a smart city
scenario is possible by integrating a capable, reliable and stable cloud plat-
form, small unmanned vehicles, high-bandwidth/low-latency mobile net-
works and open data publicly available on the internet. To achieve the
project’s goal a quadrotor has been transformed in a network gateway by
providing it with high bandwidth 4G/LTE (4th Generation/Long Term Evo-

1 http://www.lim.polito.it/
2 https://www.thalesgroup.com/en/worldwide/space
3 http://jol.telecomitalia.com/jolcrab/
4 nexa.polito.it

http://www.lim.polito.it/
https://www.thalesgroup.com/en/worldwide/space
http://jol.telecomitalia.com/jolcrab/
nexa.polito.it

4 the rise of civil drones

(a) MK Flight Con-
trol

(b) MP 2128g (c) PX4FMU

Figure 3: Autopilots used in the projects

lution) connectivity. A certain number of core functions managed by the
auto-pilot (GPS navigation, autonomous take off, autonomous landing . . .)
have been exposed by means of specific APIs and have been made accessi-
ble from the internet on a safe Virtual Private Network (VPN) link, in order
to allow low-latency control and monitoring of the agent from the cloud
platform. The first results of the project have been presented in Turin, Italy,
during the workshop "Droni: Prospettive di ricerca e scenari applicativi"
organized by the Politecnico di Torino and Telecom Italia on June 2014.

1.2 the vehicles
The activities described in this document are based on the use of au-

tonomous quadrotors (or quadcopters); a quadrotor is a rotorcraft, more specif-
ically a multirotor helicopter, lifted by 4 propellers attached on an equal
number of motors. This vehicle architecture offer a series of advantages
with respect to other possible choices (e.g. fixed wing autonomous aircrafts
etc.). Their Vertical Take Off and Landing (VTOL) capabilities allow for
quick take-off and landing operations in busy or space-constrained places.
The possibility to hover above the target makes them well-suited for surveil-
lance and monitoring tasks. Moreover they offer a simpler mechanics and re-
quire less maintenance with respect to a standard helicopter, while offering
similar autonomy and payload. However a quadrotor is an inherently un-
stable system (G.M. Hoffmann et al., 2007), and for this reason it requires a
fast on-board controller to guarantee its stability in standard flights (Bouab-
dallah and Siegwart, 2005). This controller typically runs on a dedicated
electronic board, generically called auto-pilot, equipped with a number of
inertial sensors (accelerometers and gyroscopes) to detect the attitude an-
gles of the quadrotor frame and its rotational velocities; barometers and
sonar sensors (for altitude measurements), GPS receivers (for autonomous
waypoint navigation) and magnetometers (providing an estimate of the ab-
solute heading of the aircraft) are other common devices, often mounted on
the same board.

Various quadrotors models and autopilots boards have been used in this
project (see fig. 4 on page 6 and fig. 3); Table 1 lists the various combinations
tested in the different projects and specifies whether the orientation and po-
sition controllers in each project are the auto-pilot standard ones or custom
versions.

micropilot’s mp2128g 5 is an auto-pilot board embedding all the periph-
erals needed for a stable and autonomous quad-rotor flight. This auto-
pilot is specifically addressed to professional use and its software is

5 www.micropilot.com

www.micropilot.com

1.2 the vehicles 5

Table 1: The combinations of the equipment in the projects. See the corresponding
chapter for further details (def: default, cus: custom).

UAV Autopilot Frame
Controller

Project
orientation position

1 MK FC ProS3 def cus STEPS (ch.2)
2 MP 2128g ProS3 def def F4SC (ch.3)
3 AR.Drone AR.Drone def def F4SC (ch.3)
4 PX4FMU AR.Drone cus cus MSF (ch.4)

closed-source. In order to write customized code the user must pur-
chase an add-on set of APIs. These functions constitute a dedicated
dynamic linking library that acts as a intermediate layer between the
user code and the autopilot software. Using the functions encoded
in the library the developer is able to get access to several low-level
parameters of the auto-pilot and can modify their values. The board
has to be mounted on a mechanical quadrotor frame together with the
other peripherals needed for the flight (four motors, the same number
of motor controllers and a battery).

ar.drone 6 is a commercial ready-to-fly quadrotor solution, controllable
via smartphone. It features a front HD camera and the flight stability
is ensured by a mother board (running a real-time Linux-based oper-
ating system) and a navigation board interfaced with the on-board
sensors (two cameras, ultrasonic range finders, gyroscopes and ac-
celerometers). The AR.Drone is mainly conceived for gaming appli-
cations, amusement and augmented reality video games, but due to
its low-cost and the availability of an official Software Development
Kit (SDK), it gained a very good popularity in the academic commu-
nity.

mikrokopter flight control 7 is a commercial auto-pilot board. The
board features an Atmel ATMEGA644 microcontroller running at 20
MHz, a 3-axis accelerometer, three gyroscopes and a barometer sensor.
Since no GPS is installed, the flight control board alone cannot be used
for autonomous navigation, and another board has to be purchased for
this purpose. The firmware of the flight control board allows the user
to take external control of the UAV (i.e., bypassing the radio controller)
by means of a dedicated serial protocol on a Universal Asynchronous
Receiver-Transmitter (UART) interface; this link can be used to send
the Roll, Pitch and Yaw commands to the UAV.

px4fmu 8 is a complete auto-pilot solution designed as part of the PX4
open-source/open-hardware project. It features a 32 bit ARM Cortex
M4 Processor running the NuttX Real Time Operating System (RTOS)
offering Unix/Linux-like programming environment. The presence of
an on-board operating system simplifies a lot the development of cus-
tom applications on the platform for the final user when compared to
firmwares written with a monolithic approach. On the communication

6 ardrone2.parrot.com
7 wiki.mikrokopter.de/en/FlightCtrl_ME_2_1
8 pixhawk.org

ardrone2.parrot.com
wiki.mikrokopter.de/en/FlightCtrl_ME_2_1
pixhawk.org

6 the rise of civil drones

(a) Parrot AR.Drone (b) ProS3 Octane

Figure 4: Quadrotors used in the projects

side the PX4FMU fully support MAVlink9, an header only messaging
library, specifically designed for small and micro UAVs.

Two different mechanical frames have been used in the project. The ProS3
Octane’s frame is composed by 4 multi-directional carbon fiber beams. On
the external side of each beam a brushless motor is fastened on a carbon
fiber plate, linked to the beam through an aluminium support. On the other
end, arms are integrated between two carbon fiber disks, upon which the
electronic boards are assembled. The overall dimensions are 900× 900× 290
mm. The AR.Drone mechanics, on the other side, is simpler and composed
by a central plastic cross with integrated motors and motor controllers on
the 4 ends. The frame is inexpensive and easily replaceable; its dimensions
are 450× 450× 15 mm.

9 http://qgroundcontrol.org/mavlink/start

http://qgroundcontrol.org/mavlink/start

2 S T E P S

This chapter reports the design and the development of the Vision-based
Terrain Navigation Facility (VTNF): a facility for the benchmarking of soft-
ware modules and sensors to be used during planetary Entry Descent Land-
ing (EDL). The motivation for this work lies in the growing need for au-
tonomy in space research. On-board autonomy is in fact the key factor for
the future space robotic missions, and it is particularly relevant for missions
towards planets at high distances from Earth, where a robotic closed loop
control in real time is not possible (e.g. the travel time of a radio-frequency
signal requires from 4 to 22 minutes covering the distance between the
Earth and Mars). Over the last decades, within the Viking1 and Viking2
lander missions (1976), Mars Path Finder (1997), Mars Exploration Rover
(Spirit and Opportunity) (2004), Phoenix (2008), and Mars Science Labora-
tory (2009), the landing major axis ellipse has been reduced from 300 km
to 20 km (Braun and Manning, 2006). The current aim is to further reduce
this dispersion ellipse in order to achieve, within few years, ellipse landing
of hundreds of meters. In this general and ambitious goal, computer vision
algorithms may help obtaining information about the 3D environment of
space missions to verify the correct execution of robotic commands. Un-
fortunately, the difficulty of gathering real data and experimenting on the
field is a real limitation for these approaches, and indeed most of the com-
puter vision research for space applications is carried out by very few well
known premises - such as the NASA Jet Propulsion Laboratory (JPL). With
the exception of some early works (see e.g. Cheng, Johnson, Matthies, and
Wolf, 2001, Cheng, Goguen, et al., 2004), the Descent Image Motion Estima-
tion System (DIMES) (Cheng, Johnson, and Matthies, 2005), developed by
NASA, can be considered as the first historical attempt to exploit computer
vision to control a spacecraft during the EDL phase. More recently, thanks
to the successful application to the Mars Exploration Rovers (MER) landings,
NASA invested in the last years in designing and developing vision-based
solutions for EDL. The works in Huertas et al., 2006 and Cheng, 2010, de-
scribe improvements of DIMES technology for what concerns the problems
of slope estimation and hazard detection on the planet surface.

The VTNF is explicitly designed in order to provide a simulation and val-
idation environment in the study of vision-based routines and algorithms
for space applications. By providing a scenario as similar as possible to the
actual operative one, the VTNF allows a deep analysis of the EDL phase of
a virtual Martian lander approaching Mars. In the experiments, a quadrotor
with a camera attached on it facing down is used to trigger some shots on
the surface of a 1 : 300 scale Mars diorama. The motion of the rotorcraft is
dependent by the analysis of the pictures, since the quadrotor is controlled
in order to reach defined waypoints in the indoor fixed flight volume, com-
puted as a result from the image processing part. The choice of using an
UAV as a flying camera follows the remarkable results reached by a num-
ber of research institutions and laboratories that have focused their work
on the study of the dynamics of small aerial vehicles (e.g. multirotors and
coaxial small helicopters) and their control. In particular, many of these re-

7

8 steps

sults have been made possible by the development of special testbeds that
typically provide a large flight volume in which the exact position and atti-
tude of one or many agents is accurately measured by an optical tracking
system. The MIT Raven (How et al., 2008) testbed is commonly considered
the first described in literature, with STARMAC by Stanford University (G.
Hoffmann et al., 2004), the Flying Machine Arena at Eidgenössische Technis-
che Hochschule Zürich (ETHZ) (Lupashin et al., 2014) and UPenn’s GRASP
Laboratory Test Bed (Michael et al., 2010) being other noticeable examples of
this technology. The uses of these testbeds range from the study of aggres-
sive or coordinated multi-vehicles manoeuvres (Mellinger et al., 2012,Ritz
et al., 2012), to architecture (Willmann et al., 2012), construction (Lindsey et
al., 2012) and entertainment (Augugliaro et al., 2013). The VTNF has been
inspired by the cited works and developed by TAS-I (project leading and
computer vision algorithm) and the LIM (hardware/software integration,
UAV control).

2.1 functional layout
From the functional point of view, the facility is composed by three main

components:

• the Tracking System;

• the Quadrotor;

• the Ground Segment.

Figure 5 depicts the main data flows exchanged between every single
module.

Figure 5: Functional architecture of the VTNF.

2.1 functional layout 9

Figure 6: The IR markers attached on the vehicle.

2.1.1 The Tracking System
The purpose of the tracking system is to measure the position and the

attitude angles of the quadrotor while it flies inside the tracked volume.
The tracking system used in the VTNF is based on the Vicon Motion Capture
System1 and is composed by 13 Vicon Bonita infrared cameras, connected
together in a Power over Ethernet (PoE) network hosted by a dedicated
workstation (Vicon Host in figure 5) on which the proprietary Vicon Tracker
software runs. The infrared cameras are attached on a cube-shaped alu-
minum structure with 9 m long sides, thus providing an available fully
tracked flight volume of approximately 650 m3, not considering the volume
occupied by the diorama. They acquire 0.3 Megapixel images up to 240 Hz
and can track a single marker with an accuracy of 1 mm and sub-mm pre-
cision. The markers are little spheres covered with an infrared-reflective
coating, attached on the body to track (see figure 6). In order to reconstruct
without ambiguity the full pose of a rigid body, at least three markers are
needed.

2.1.2 The Quadrotor
Among the various solutions considered for handling the camera in the

flight volume above the diorama (e.g. robotic arms, blimps, cable cameras)
a quadrotor offers high maneuverability, good payload capabilities, simple
mechanics and low maintenance. The model used in the VTNF is shown
in Fig. 8; as it has already been anticipated in section 1.2, the UAV’s frame
is manufactured by ProS3, while the attitude controller, in charge of the
vehicle stability, is a MK Flight Control board. The quadrotor has a custom
lightweight carbon fiber frame and can bring a payload up to 1 kg heavy
with a battery autonomy of about 15 minutes. In our set-up the camera (in
its gimbaled or fixed version), the position control board, the radio modem
and a PC104+ single board computer constitute the payload of the vehicle;
its total weight amounts to 2.5 kg.

The position controller runs on an additional Arduino Mega 1280. The
board runs four parallel Proportional Integral Derivative (PID) controllers,
one for each of the remaining degrees of freedom (x,y, z and Yaw angle).
This board receives on a dedicated wireless-serial link the feedback obtained

1 http://www.vicon.com/

http://www.vicon.com/

10 steps

Figure 7: The Vision-based Terrain Navigation Facility.

Figure 8: The quadrotor used in the VTNF.

2.1 functional layout 11

Figure 9: The Arduino board running the position controller and the on-board ra-
diomodem attached on their carrier board.

from the User Datagram Protocol (UDP) Vicon data stream and sends the
commands to the auto-pilot board. The board takes also care of triggering
the camera when the MarSim requests a new picture.

A camera and a PC104+ single board computer are used to take pictures
of the diorama and to deliver them to the ground segment. The computer
features an Intel Atom D510 dual core 1.62 GHz CPU with 2GB RAM. It
retrieves the images sent by the camera on the USB link and forwards them
to the MarSim. The camera used in the project is the 1312M model2 by Ed-
mund Optics. It is a Complementary Metal-Oxide Semiconductor (CMOS)
gray level camera (1280× 1024 resolution, 8 bits pixel depth) with a rolling
shutter. This particular model has been chosen since its characteristics are
comparable to the already space qualified camera based on STAR1000 sen-
sor. It can be attached to the UAV both in its fixed mount version and in a
fully integrated gimbal solution.

A wireless link connects the UAV to the ground segment using a couple of
identical radiomodems (see Fig. 9) featuring either a standard RS232 serial
interface or an IEEE802.11a LAN wireless link. The first link is used to send
all the time-critical data to the position controller, i.e. the current attitude
of the quadrotor, the target position and the camera-trigger signal; the latter
conveys via UDP to the ground station the pictures coming from the camera.

2.1.3 The Ground Segment
The Ground Segment in the VTNF is composed by two software modules

(the Ground Station and the MarSim in fig. 5) and by a diorama.

2 http://tinyurl.com/naog3ll

http://tinyurl.com/naog3ll

12 steps

(a) (b)

Figure 10: A real image of Martian terrain (10a) and the output of the hazard map
algorithm (10b). The dangerous areas for landing have been highlighted.

The Ground Station

The Ground Station module is a simple module that accesses in real-time
positions and angles of the UAV, as provided by the Vicon Host on the UDP
link, and adapts them to provide a continue pose feedback to the quadrotor
position controller. Moreover, this module receives the target position by
the MarSim and triggers a new picture when the error is less than a tunable
threshold; then it acknowledges the MarSim that it is ready to compute a
new target point.

The MarSim

The MarSim is a TAS-I proprietary module. It embeds both a complete
functional and dynamical model of the extra-planetary lander and the com-
puter vision routines that are the object of the testing activities. The MarSim
receives as input the pictures triggered by the UAV and outputs a succes-
sion of Martian geographical coordinates, computed and updated at run-
time during the experiment. These are the result of a complex chain of
operations performed to simulate the behaviour of a real lander in its EDL
phase (image processing, data fusing with on-board sensor, computation
of the new nominal trajectory, actuation of thrusters, integration of the dy-
namic until the new point of interest). The coordinates are then scaled and
re-projected in the diorama reference frame and passed to the quadrotor as
target waypoints. Figure 10 offers an example of a hazard map generated
by the simulator in this stage, starting from a picture of a portion of Martian
terrain. Further details about the MarSim can be found in Lanza et al., 2012.

The diorama (8 m × 8 m, 1.5 m of maximum relief height) accurately
reproduces four peculiar geographic details of the Mars surface in 1 : 300

scale:

• Nili Fossae

• Victoria Crater

• Xanthe Terra

• Dilly Crater

Nine mercury-vapor stage lamps provide accurate and homogeneous light-
ing. Figure 11 shows the good level of resemblance between two actual
Martian surfaces, and their equivalent reproduction on the diorama.

2.1 functional layout 13

(a) (b)

(c) (d)

Figure 11: A portion of Western Arabia Terra (a) and Victoria Crater (c) and the
corresponding representations on the diorama (b,d).

14 steps

Figure 12: Quadrotor model structure.

Figure 13: Revised quadrotor model structure.

2.2 system modeling and control
A simple representation of the UAV model is shown in figure 12, where S

represents the sticks references vector, ωref the angular velocity references
in input to the brushless controller boards, ωm is the vector of angular
velocity of the motors, Fm e τm are the generalized force acting on the end
of each arm.

However in the current application, a high dynamic response of the quadro-
tor does not represent a critical requirement; in fact the UAV does not have
to perform aggressive manoeuvres, nor has it to respect strict dynamical or
trajectory constraints. Given the following conditions in the flight of the
quadrotor:

• Small Roll and Pitch angles (±6 ◦),

• Yaw angle fixed at ψ = 0 ◦,

• Low translational velocities,

• Hovering flight (i.e. constant thrust value),

the dynamical model of the vehicle can be completely linearized and the
x,y, z and Yaw dynamics can be decoupled making it possible to model the
vehicle as shown in picture 13.

In the next sections we will show how a very simple control architecture,
featuring four parallel PID controllers (acting on the x,y, z and Yaw degrees
of freedom of the quadrotor), is sufficient to move and stabilize the quadro-
tor on its target position.

2.2.1 Translational (x,y) dynamics model
The coordinate systems for the quadrotor is shown in 14 on the facing

page. The earth frame is defined by the {xE,yE, zE} axis. The body reference
frame is defined by a right-handed reference frame, attached to the center of
mass of the quadrotor, with Z axis oriented downward and X axis opposite
to the preferred forward direction, body frame axes are {xB,yB, zB}. Euler
ZYX angles are used to model the orientation of the quadrotor in the Earth
frame. The final direction cosine matrix representing body frame attitude
in the earth frame is given by 4 on the next page and it is computed as
the product of a first rotation about zE axis by the Yaw angle ψ, a second

2.2 system modeling and control 15

Figure 14: Body (B) and Earth (E) reference frames.

rotation about yE axis by the Pitch angle ϑ and a final rotation about xE axis
by the Roll angle ϕ. The three rotations are referred to the earth frame.

Rz(ψ) =

cψ −sψ 0

sψ cψ 0

0 0 1

 (1)

Ry(ϑ) =

 cϑ 0 sϑ
0 1 0

−sϑ 0 cϑ

 (2)

Rx(ϕ) =

1 0 0

0 cϕ −sϕ
0 sϕ cϕ

 (3)

RRPY = Rz(ψ)Ry(ϑ)Rx(ϕ) =

cψcϑ −sψcϕ + cψsϑsϕ sψsϕ + cψsϑcϕ
sψcϑ cψcϕ + sψsϑsϕ −cψsϕ + sψsϑcϕ
−sϑ cϑsϕ cϑcϕ


(4)

The full non-linear dynamics of the system can be described using Euler
equations:

mr̈ = FE (5)

Jω̇B +ωB × JωB = MB (6)

where r describes the position of the center of mass of the body, FE is the
resulting force applied to the body in the Earth frame, J represents inertia
matrix of the quadrotor, ωB it the angular velocity seen in the body frame
and MB is the torque resultant acting on the body.

Let g denote the gravity acceleration vector g =
[
0 0 g

]T and let TE

be defined as the total rotors thrust as seen in the earth frame. Neglecting
disturbance due to ground effect and turbulences, it is introduced aD scalar
coefficient modeling the losses of the UAV as a term proportional to its

16 steps

center of mass velocity and acting in opposite direction. The total force FE

acting on the center of mass of the quadrotor can be expressed as

FE = −Dṙ +mg + TE (7)

The not too strong dynamics requirmentes of the desired system allows
to work with:

• small roll and pitch angles;

• near-hovering flight condition;

• limited translational velocities.

The first point allows to linearize some terms in the direction cosine ma-
trix, the second allows to uncouple translational dynamics and rotational
one, the third permits to neglect effects of drag aerodynamics force. The
losses in battery power over time are also neglected so that the system
model can be considered time-invariant. The linearization of the cosine
matrix (sinα ≈ α and cosα ≈ 1) for small roll and pitch angles returns:

Rl
RPY =

cψ −sψ sψϕ+ cψϑ

sψ cψ −cψϕ+ sψϑ

−ϑ ϕ 1

 (8)

Equation 5 on the preceding page can thus be expressed as:

mr̈ = mg + Rl
RPYTB (9)

here T = [0 0 T]T is represented in the body frame: The single acceler-
ation components on the three axis are thus given by:r̈xr̈y

r̈z

 =
1

m

cψ −sψ sψϕ+ cψϑ

sψ cψ −cψϕ+ sψϑ

−ϑ ϕ 1

00
T

+

00
g

 =

=
1

m

 Tsψϕ+ Tcψϑ

−Tcψϕ+ Tsψϑ

T

+

00
g


(10)

This equation still couples roll and pitch attitude angles with the thrust
force and presents some trigonometric terms related to the rotation of the
local frame around ZE axis. However some simplification can still be done.
The terms that couple angles and throttle can be neglected linearizing them
near the hovering condition. In this condition the total thrust approximately
counteracts gravity: T = T ≈ −mg and 10 can be written as follows:r̈xr̈y

r̈z

 =
T

m

 sψ cψ 0

−cψ sψ 0

0 0 1
T

ϕϑ
T

+

00
g

 (11)

In addition, if ψ angle is zero (i.e. if the vehicle keeps its heading constant)
the model can be totally linearized and 10 becomes:r̈xr̈y

r̈z

 =
1

m

 0 T 0

−T 0 0

0 0 1

ϕϑ
T

+

00
g

 =
1

m

 Tϑ

−Tϕ

T

+

00
g

 (12)

The following simple representation of its translational dynamics can be
derived (Castillo et al., 2004; Waslander et al., 2005):

2.2 system modeling and control 17

r̈x
r̈y
r̈z

 =
1

m

 0 T 0

−T 0 0

0 0 1

ϕϑ
T

+

00
g

 (13)

With rx, ry, rz being the coordinates of the center of mass of the UAV in the
earth-fixed frame, m the total mass of the quadrotor, T the hovering thrust
value; ϕ and ϑ respectively are the Roll and Pitch rotation around xB and
yB axes.

However, (13) does not completely characterize the description of the dy-
namics since its angular dynamics is still not known. Unfortunately, Mikro-
kopter offers very poor documentation about the design of the attitude con-
trol loops design, as noted also in Sa and Corke, 2011. For this reason their
dynamics have been experimentally identified and validated by means of
dedicated experiments. A similar procedure has been performed for the
thrust command, however its dynamic response has been approximated
with a simple static gain plus saturation.

2.2.2 Gas Dynamics
In order to identify the Gas Stick Command vs. Thrust the value of the

lift force expressed in Newtons has been measured for increasing gas stick
values using an electronic balance. Also the angular velocity of the pro-
pellers has been measured by using a laser sensor. The results of the exper-
iments are shown in figure 15 and highlight a linear dependence between
gas stick command and lift force with a saturation at 33 N (equation 14)
and a quadratic dependence between the command and the rotation of the
propellers expressed in [rpm].

T =

{
0.1489 ·GAScmd [N], if GAScmd = [1..222]
33 [N], if GAScmd =]222..256]

(14)

ωrpm = −0.06589 ·GAScmd
2 + 36.67 ·GAScmd + 751.2 (15)

2.2.3 Roll and Pitch dynamics
A possible way to perform the identification tests for roll and pitch dy-

namics is by sampling the input and output signal in the frequency domain.
A swept frequency (ranging from 0.1 to 2.0 Hz) sine command waveform
is used as the input signal and the gain and phase displacement of the out-
put waveform for different frequency are measured. This allows to trace
some points of the bode plot of the dynamic system that can be fitted in
between to obtain an approximation of the model characteristic response.
An alternative approach to model identification of MK dynamical model in
time-domain can be found in Sa and Corke, 2011, where the attitude model
of the vehicle is fitted using recursive least squares.

The identification process gives the experimental responses shown in fig-
ure 16 and 17; responses on the two angles are quite similar and then both
have been fitted with a third order transfer function, presenting three poles
in f = 2.39 Hz (equation 16), whose bode plot is shown in the same figures.

FitRP(s) =
0.06299

0.00029s3 + 0.01333s2 + 0.2s+ 1
(16)

18 steps

(a) Command vs. Force.

(b) Command vs. Rpm.

Figure 15: Thrust characterization.

Figure 16: Experimental roll response vs. fitted one. Blue lines represent the an-
gular frequency response of the roll controller, identified by fitting the
experimental results (green lines).

2.2 system modeling and control 19

Figure 17: Experimental pitch response vs. fitted one. Blue lines represent the an-
gular frequency response of the pitch controller, identified by fitting the
experimental results (green lines).

Roll and Pitch dynamics validation

The model validation has been performed by submitting a known wave-
form and comparing the simulated response of the system to the real one. In
our case two peculiar command waveforms have been submitted to the iden-
tified model, the simulated system response versus the real one is reported
both for pitch and roll dynamics in figure 18 on the following page. In both
cases the response of the fitting FitRP(s) function is similar to the experi-
mental one. With the random amplitude square wave input the simulated
response follows quite good the trend of the experimental one; excluding
the oscillation due to disturbances, the most important difference stays in
the overshoots of the experimental response that cannot be modelled by the
low pass function used for the fitting. The frequency sweeping sine ref-
erence instead, gives important information about the phase fitting of the
model that results very similar to the experimental one. The difference be-
tween the two models is represented by the gain, in the modelled case it is
about 25% lower than the experimental curve. In conclusion the modelling
function, despite its simplicity and some response imperfections, matches
in a sufficiently accurate way the experimental results, and gives a good
approximation of the system behaviour.

2.2.4 PID Controllers
The PID controllers have been designed in order to keep the rising time in

the order of 2.5 s for a 1 m step reference on x,y, z. The controller algorithm
runs in one of the Arduino Mega’s timer interrupt routines at 30 Hz. The
digital form of the controller (18) is obtained by discretizing the standard
s-domain PID expression (17) using Backward Euler method.

R(s) = KP +
KP
TIs

+
KPTDs

1+ sTDN
(17)

u(k) = p(k) + i(k) + d(k) (18)

20 steps

(a) Pitch random square wave command.

(b) Pitch swept sine wave command.

(c) Roll random square wave command.

(d) Roll swept sine wave command.

Figure 18: Measured and simulated response.

2.3 conclusion 21

Table 2: PID parameters.

KP KD KI N TS [s]

PID XY 0.091 0.012 0.12 20 0.0328

PID Z 0.055 0.01 0.04 20 0.0328

where: 
p(k) = Kpe(k)

i(k) = i(K− 1) + KPTs
TI

d(k) = TD
NTs+TD

d(k− 1) + KPTDN
NTs+TD

(e(k) − e(k− 1))

(19)

In equation 18 on page 19 TD = KD
KP

, TI = KP
KI

, KP, Ts, are respectively
the Derivative Time, Integrative Time, Proportional Gain and Sampling Time. N
sets the location of the pole in the derivative filter. Table 2 summarizes PID
parameters values.

The final digital transfer functions of the XY and Z controllers are re-
ported in 20 and 21; please note that similarly to the dynamics response,
also the controller transfer function is assumed the same both for the X and
Y controller.

RXY(z) =
1.19z2 − 2.352z+ 1.162
z2 − 1.7z+ 0.699

(20)

RZ(z) =
0.4212z2 − 0.8259z+ 0.4046

z2 − 1.7z+ 0.699
(21)

Experimental tuning of the PID parameters have been conducted directly
on the plant to further adjust the flight performance of the vehicle. Fig-
ures 19, 20 and 21 show the experimental results after some test flights. The
positioning error causes the UAV to hover in a circle of maximum radius
6 cm around the target point while the Z error varies within a maximum
range of ±8 cm (Figure 19c). The Yaw angle is kept within a precision of
±3 ◦. Dedicated tests have shown that Vicon Tracking System provides, after
a good gaber calibration and with optimal camera coverage, 1 mm accurate
and 0.1 mm precise position data. The maximum latency in the camera
trigger signal has been measured to be 40 ms.

2.3 conclusion
In this chapter we have presented the Visual Terrain Navigation Facility, a

testbed for studying and validating vision-based routines and algorithms to
be used during planetary Entry Descent and Landing (EDL) by a lander. We
have described the major technical details of the architecture and the design
choices in relation with its three main functional components: the Tracking
System, the Ground Segment and the Quadrotor. We have finally shown
how, in our operation hypothesis, a very simple PID-based control architec-
ture successfully stabilizes the quadrotor and allows basic autonomous nav-
igation functionalities with good performances. The VTNF is currently used
in Thales Alenia Space’s headquarters in Turin both for the already described
purposes and in technological demonstrations. Although the VTNF has
been created keeping in mind the validation of specific aerospace-derived

22 steps

(a) X response.

(b) Y response.

(c) Z response.

Figure 19: The dynamic behaviour of the vehicle on the three axes.

2.3 conclusion 23

(a) Flight on XY plane.

(b) Flight on YZ plane.

Figure 20: The dynamic behaviour of the vehicle in two 2D flights.

Figure 21: A complete flight in the tree dimensional volume.

24 steps

image algorithms, it offers noticeable potentialities for a number of appli-
cations not strictly related with the original purposes of the project. More-
over the research activities in the facility are not over; experimentation with
visual-aided auto-takeoff and auto-landing routines, visual odometry and
new control strategies are currently carried out in the VTNF. An outdoor
GPS-based version of the facility is also currently under development and
will permit image analysis and EDL simulation on larger scale.

3 F LY 4 S M A R TC I T Y

Cloud robotics is an emerging field in robotics. It embraces typical internet-
based technologies (e.g. cloud computing, cloud storage, web-services, etc.)
in order to allow an artificial agent to take advantage of the network’s
resources to off-load compute-intensive tasks. This naturally leads to a
paradigm shift in which robots become simple agents that belong to a com-
mon cloud computing platform (Waibel et al., 2011), and represents a fur-
ther step in the direction of the Internet of Things (Atzori et al., 2010) from the
definition of a generic Network Robot Systems (NRSs) as presented in San-
feliu et al., 2008. The cloud platform manages the robots and provides them
with the possibility of sharing knowledge and performing demanding real-
time data processing (such as localization, mapping, grasping, multi-input
mission planning, etc.) (Chen et al., 2010, Waibel et al., 2011). Among the
most noticeable works which exploit the cloud robotics approach, Quintas
et al., 2011 presents a service-oriented architecture allowing distant groups
of robots to share and exchange learned skills and improve cooperation with
human agents. The work relies on cloud computing to provide an increased
degree of scalability to the system. In Kamei et al., 2012 the requirements in
typical daily supporting services have been examined through example sce-
narios that target senior citizens and the disabled, together with a discussion
about the key research challenges offered by the cloud network-robotics ap-
proach. Similarly, in Chibani et al., 2013 the use of cloud robotics has been
investigated for physical and virtual companions assisting people in their
daily living (e.g., ubiquitous robots that are able to co-work alongside peo-
ple). In Hunziker et al., 2013 the authors present Rapyuta, an open source
Platform-as-a-Service (PaaS) framework for robotics applications. Rapyuta
is the engine underlying RoboEarth, a Cloud Robotics infrastructure, which
aims to create a World-Wide-Web style database for storing knowledge gen-
erated by humans and robots in a machine-readable format.

The potential of a cloud infrastructure applied to robotics is evident espe-
cially for applications that require high computational resources, quick ac-
cess to vast remote knowledge bases and data repositories and that involve
numerous robots - thus requiring high scalability and multi-agent manage-
ment.

This is well highlighted in all the cited works, however most of these
works do not provide out-of-the-lab examples of cloud-based robotics ap-
plications. We believe that the design of large-scale, cloud-based robotics
applications is already possible in those environments that offer ubiquitous
high-bandwidth connectivity, such as urban environments. To prove this
statement we have proposed Fly4SmartCity, an UAV-based service meant
for being used in smart-city scenarios, running on a modular and scalable
cloud-robotics platform; and we have described its preliminary architecture
in Ermacora et al., 2013

The service is validated using a real test case:

1. A user sends a request to the remote platform via a mobile application
or a web-based Graphical User Interface (GUI),

25

26 fly4smartcity

2. The cloud platform parses the request and arranges the mission based
on the request and on the available information about the scenario,

3. During the mission, authorized users can access the service at any
moment to monitor in real-time the main parameters of the mission,
the status of the UAV(s) and to access the video streaming coming
from the vehicle.

Fly4SmartCity supports various missions requests, including monitoring,
emergency-management, delivery and user-defined flight plan. This is a ma-
jor difference with respect to the work described in Ermacora et al., 2013, in
which just a specific emergency-management service was presented. In the
mission planning phase, useful information about the operating scenario
can be obtained using open-data. The Open Data Oriented MIssion Plan-
ner (ODOMI) module (explained in detail in Section 3.3) is able to access
a number of open data provider on the internet and to exploit available
information (e.g. position and height of obstacles, quality of the internet
connection etc.) to plan, for example, a flight path that avoids connectivity
losses and that provides enough signal coverage for the video streaming.

The cloud platform is based on the Robotic Operating System (ROS)
(Quigley et al., 2009). ROS is an open-source, meta-operating system for
robot software development and it is nowadays becoming the de facto stan-
dard for robotic software development. The platform is also designed to be
resilient: an emergency flight plan (containing a reduced set of basic instruc-
tions such as "land on your current GPS position" or "come back home") is
stored on the physical memory of the UAV and automatically started in
case of failure. Finally the platform is able to reconfigure at any moment
the mission and update the path while the UAV is in flight.

3.1 user interface
In order to interact with the monitoring and emergency management ser-

vice, two Graphical User Interfaces have been implemented. The first one
is a mobile application from which the user (e.g., a citizen in danger) can
request the emergency service. The second one is a web-based graphical in-
terface for the management of the service by authorized users or operators
(e.g., police officers).

The mobile application is an Android app consisting of a simple button.
Once the user presses the button, the application sends a GET request, over
HTTP (HyperText Transfer Protocol), to the service server, which is running
in the cloud robotics platform. The request contains the GPS coordinates
of the user at the time of the emergency call and a unique identification
number (ID). The mobile application is shown in Figure 22.

The second user interface was written in HTML5 (HyperText Markup
Language 5) and Javascript and is accessible via a web browser by autho-
rized operators. The operator can monitor the telemetry of the UAV, whose
position is displayed on a city map, and a video stream coming from the
UAV to offer assistance to the person in emergency. Figure 23 shows the
web-based GUI. The left panel shows a video streaming coming from the
UAV on the top, and flight information (speed, altitude, battery level, etc.)
on the bottom; the right panel shows all the information about the current
mission. In particular, this panel shows the starting point for the UAV, the
desired destination, and the path to reach the destination, overlaid on a map

3.2 the cloud platform 27

Figure 22: The mobile application.

of the city. Controls on the top right panel allow the user to create, delete
and modify missions at run-time.

3.2 the cloud platform
The application is based on a cloud robotics platform, which in turn is

based on ROS and has been designed to be generic and compliant with the
Platform-as-a-Service (PaaS) paradigm presented in Rapyuta (Hunziker et
al., 2013) and RObotics in CONcert (ROCON) (Robotics in Concert 2013).

The cloud robotics platform proposed in this chapter has been designed
in order to abstract the hardware and software layers, to be robust in case
of failures, to offload demanding computations and finally to expose simple

Figure 23: The web graphical user interface.

28 fly4smartcity

N N

N N

N

N

N

N

N

N

N

N

N

NI

SC

SC

SC

N

N N

N

SI

SC

PM

PM

installed

deployed

deployed

deployed

installed

deployed

IE

EE

IE

IE

EE

Figure 24: The platform objects and their relationships.

APIs to the final user. These APIs are built using a set of best practices and
guidelines commonly known as REpresentational State Transfer (REST).

The cloud robotics platform is important to guarantee the robustness
needed for long-term operativeness in a real-world application. The infras-
tructure knows the state of every node of the system and is in charge of
distributing the computational load in a remote location which is able to
provide better computational performances than the robot’s onboard PC.

The basic elements of the developed cloud platform, shown in Figure 24,
are:

• Node (N): it represents the "building block" of a platform service. Can
be installed if it resides in an instance, or started if it resides in a service
container. It is connected if it has internal or external endpoints.

• Internal Endpoint (IE): it connects a node to other nodes in the current
service container, or connects a node to an external endpoint.

• External Endpoint (EE): it belongs to a service container. Connects
nodes belonging to different service containers.

• Service Container (SC): it groups a set of nodes into a service.

• Instance: it is the object where the platform manager (PM) and the
elements described before reside. The instance can be: Normal (NI)
when it contains a SC and installed or started nodes; Simple (SI) when
it does not contain any SC but only installed nodes. To start the nodes
the SI calls a SC inside a NI.

Services for enabling robotics applications are built using these objects.
This can be enacted by starting Nodes (N), which are installed in Instances
(SI, NI), into Service Containers (SC). The platform services can be accessed
by service APIs and can be built by management APIs.

The Platform Manager (PM), shown in Figure 25, is in charge of handling
the objects described before. The PM can send and receive commands
through the Command Manager (CM) object. It can also listen to, and cre-
ate events through, Event Manager (EM) object. Events and commands are
accessed through the Platform API Manager (PAM) object.

The Event Engine (EEn) has a set of controlled counteractions triggered
when previous configured classes of events occur. This has been conceived
to make the platform service robust and resilient. The counteractions can be
both service commands (e.g. publish a message) and platform commands
(e.g. create a SC). The first ones are accessed by Service API Manager while

3.2 the cloud platform 29

PM
rulesEvent

Engine

Command
Manager

Event
Manager

Platfrom API
Manager

Platform API
Manager

Service API
 Manager

Rule API
Manager

Platform
Manager

Figure 25: The Platform Manager logic architecture.

N

N

N

PM

Service
API

connect
publish
subscribe
call_service
send_goal
cancel_goal

Service API
Manager

N

N

Management
API

load_rules
create_rule
delete_rule

robotic application/user

Service API
Manager

Platform API
Manager

Rule API
Manager

connect
publish
call_service
send_goal

connect
publish
call_service
cancel_goal

create
delete
read

SC SC

Figure 26: The APIs.

the second ones are directly accessed by PAM. The counteractions can be
created, read and deleted from users and applications throughout the Rule
API Manager (RAM). The Service API Manager (SAM) is a special node that
needs to be started in a SC. It exposes APIs to external world for managing
service commands and events.

External elements, such as robotic applications and the EE, access differ-
ent kinds of APIs (Figure 26). In particular:

• Platform API Manager: it exposes APIs to the user to manage the plat-
form commands and events.

• Rule API Manager: it exposes APIs for the management of the event
engine.

30 fly4smartcity

Virtual
Machine

Uav 1 Uav 2 (SI) Gateway Uav n

A1

ODOMI

Ad1

Ad2

Adn
Dr1

D1

D2

An

Dn

A1

A2

/d

/d

/d

/fp

RB

OD

OC

MP

PP

RB: Rosbridge
OC: ODOMI Coordinator
MP: Mission Planner
OD: OpenData Driver
PP: Path Planner
A: Adapter
D: Driver

Nodes

ROS topics/services

/bm: build mission
/map: map
/od: open data
/bbox: bounding box
/fb: telemetry feedback
/w: waypoints
/d: drone mission
/fp: low-level flight plan instuctions
/t: low-level telemetry data/fb/fb /fb

/fb

/bm

/map

/w

/w

/w

/fb

/fb

/t
/t

/t

/fp /d

/d

/w

/od

/bbox

/t

/d

/fp

/fp

Service Containers

ODOMI:
Open Data Oriented MIssion Planner
Ad: Adapter
Dr: Driver

ROS topics

ROS services

Cloud to Agents

Agents to Cloud

Figure 27: Implementation of our service in the cloud robotics platform. Sharp-
edged rectangles represent Normal Instances, rounded rectangles rep-
resent Standard Containers, dotted-edged rectangles indicate Simple In-
stances. Small circles represent ROS Nodes and Endpoints are shown as
small squares.

3.2.1 Implementation of the Fly4SmartCity service
The concepts outlined in previous chapters have been implemented in

practice as follows:

• Normal Instance (NI): a real or virtual machine with high perfor-
mance.

• Simple Instance (SI): a real or virtual machine with low performance.

• Service Container (SC): a ROS container identified by its ROS master.

• The multi-master Robotics In Concert technology (Robotics in Concert
2013) enables ROS container multiplicity.

• Node (N): a ROS node.

• Internal Endpoint (IE): ROS topic, ROS service or ROS action.

• External Endpoint (EE): ROS topic, ROS service or ROS action of a
node in another Service Container.

Figure 27 shows our implementation of the cloud robotics platform. Sharp-
edged rectangles represent NIs, rounded rectangles represent SCs, dotted-
edged rectangles indicate SIs. Small circles represent ROS nodes and End-
points are shown as small squares. The figure also highlights the difference
occurring between Normal and Simple Instances. In the case of UAV 1,
the Normal Instance contains a Service Container running the driver node,
while the UAV 2 constitutes a Simple Instance, since its service container is
shared with the normal instance named "Virtual Machine". In this case UAV

3.3 open data oriented mission planner 31

ODOMI

Path Planner
Open Data

Driver
ODOMI

Coordinator

Mission
Planner

Uav

GUI and
Mobile Application

Rosbridge

Figure 28: High-level architecture of the mission planner. Solid arrows represent
communication over ROS topics, dotted arrows represent ROS service
calls.

n is the Service Container (named Adn) and runs in a Gateway (ground
station). Here, both the adapter and the driver nodes are placed on the
same physical machine. The fourth Normal Instance shown in the figure,
named "Virtual Machine", contains both the Open Data Oriented MIssion
Planner (ODOMI), which will be presented in the next section, and the
Adapter (Ad1 and Ad2) Service Containers. Adapter SCs translate ROS
messages coming from UAVs into platform messages. ODOMI is the core
Service Container of the whole platform, and it runs five nodes: the ODOMI
Coordinator, the rosbridge node (the Service API manager described in pre-
vious section), the Mission Planner, the Path Planner and the Open Data
Driver (described in the next section). Figure 28 offers a more functional
overview of the communication between each module installed on the plat-
form for the single-UAV case. Ensuring a secure access to the platform is
fundamental. API access is strictly regulated by means of specific security
keys provided to the developer after a mandatory registration phase. More-
over, the instances are connected to the platform via VPN in order not to be
easily accessed by malicious users and softwares.

3.3 open data oriented mission planner
ODOMI is the service container in charge of creating flight plans for the

UAVs. The main idea is to aggregate different open data and other online
sources of information in order to provide different path planning strategies
for unmanned aerial vehicles. ODOMI is the only service container who has
the right to START, STOP or ABORT the mission. It is composed by five
nodes as shown in Figure 28:

32 fly4smartcity

Table 3: Open Data providers.

Provider Data Response License

OpenStreet Maps 2D Map Open Data Commons
Open Database License
(ODbL)

Open Weather Map Temperature, wind, hu-
midity

XML/JSON Creative Commons CC
BY-SA

Geoportale Torino 2D Map, height, pedes-
trian areas, rivers and
waterways, treed areas,
green areas

GML(XML) Creative Commons CC-
BY 2.5 IT

5T Torino traffic, tram and train
lines

XML/CSV Creative Commons CC0
1.0 (Public Domain)

Table 4: Geo-referenced data sources.

Provider Data Response License

Google Maps Digital Elevation Map XML/JSON Google Maps API licensing

OpenSignal Average RSSI, tower Info XML/JSON OpenSignal API licensing

• Open Data Driver (ODD): this module retrieves available information
about the mission scenario by calling the appropriate providers. It
packs the retrieved data into a ROS message and sends it to the coor-
dinator module.

• Path Planner (PP): this module receives the costmap generated by the
coordinator and plans the path (as a simple succession of waypoints)
that the UAV has to follow in order to successfully accomplish the
mission. The module is described in more detail in the next Section.

• RosBridge (RB): it provides JavaScript Object Notation (JSON) APIs to
access ROS topics and services (Crick et al., 2011). This node serves as
the interface between the smartphone application and the web GUI on
one hand, and the robotics platform on the other hand, via the Service
API Manager that exposes the APIs for sending the goal coordinates
that the UAV has to reach to the Mission Planner. The GPS coordinates
are sent as a ROS message.

• ODOMI Coordinator (OC): this module coordinates all messages in the
ODOMI service container. It is in charge of the coordination of the
whole architecture and it creates the mission for the UAV according to
the suitable policy.

• Mission Planner (MP): This module is responsible of choosing the best
available UAV for the mission. It receives the set of waypoints and
packs them in a custom message to be sent to the chosen UAV.

3.3.1 Open Data Driver module (ODD)
The ODD module connects and retrieves information made available on

internet by several Open Data providers as shown in Table 3. Additional
geo-referenced data, shown in Table 4, are used to add even more informa-
tion to the Mission Planner; some of these data belong to private companies
and are usually subject to restrictive license and limited access, hence they

3.3 open data oriented mission planner 33

cannot be defined "open" in a strict sense (Open Knowledge Foundation Blog.
Defining Open Data 2013), however they are typically publicly available un-
der some constraints (e.g., maximum number of daily/monthly API calls).

Given the current position of the UAV and a goal, the Open Data Module
creates a bounding box which includes these two points, plus a suitable
padding in all directions, and gathers open data and other geo-referenced
data as shown in Tables 3 and 4.

It should be noted that a driver must be created for accessing each differ-
ent data source, as open data and other sources do not necessary comply
to a standard format. As of now, in our implementation we developed the
drivers for Geoportale Torino, OpenStreetMaps, 5T Torino, Google Maps
and OpenSignal.

When all the data have been retrieved, they are sent to the OC, which
will create a cost-map for the Path Planner module (as explained in the next
Section).

3.3.2 ODOMI coordinator (OC)
This module receives the current position of the UAV and the goal from

the web GUI or the mobile application. It then sends a request to the ODD
module that answers with raw information, gathered from open data. The
coordinator module creates a costmap using these data, according to the
chosen policy of the mission. Policies define the cost to be optimized by
the Path Planner module for the creation of the path. These policies can be
chosen by the user according to the desired service. In general, policies that
maximize flight over buildings and trees are thought for real applications
in urban environments, in order to minimize the risk of hurting humans or
things in case of failures. The coordinator then sends the costmap to the
Path Planner module.

3.3.3 Path Planner module (PP)
The PP module exploits the data provided by the ODD module as ex-

plained in the Section 3.3.1. Once defined, the flight plan is provided to the
Mission Planner that will send it to the agents in order to start the mission.

Path planning or trajectory planning is a well-known problem in mobile
robotics, and it has been recently applied to UAVs. Path planning is one
crucial task for UAVs that have semi-autonomous or autonomous flight ca-
pabilities. As technology and legislation move forward, the need arises for
an increase in their level of autonomy. Therefore, the focus is moving from
system modeling and low-level control to higher-level mission planning, su-
pervision and collision avoidance, shifting the perspective from vehicle con-
straints to mission constraints (Gutiérrez et al., 2006). UAVs present some
peculiar characteristics, like their flight dynamics, 6DOF movement, and
high levels of uncertainty in their own state knowledge, as well as limited
sensing capabilities (Goerzen et al., 2010). However, other problems have
already been addressed by the robotics community, like partial knowledge
of the environment. The autopilot is in charge of low-level vehicle control.
Some work has been carried out in Jun and D’Andrea, 2003 for path plan-
ning in presence of uncertainties and with signal constraints in Grøtli and
Johansen, 2012, Grancharova et al., 2014, Chi et al., 2012. Most of path
planning approaches rely on a two-stage procedure: they first solve what
is called the global path planning problem, by finding a feasible trajectory

34 fly4smartcity

given the current pose of the agent, the destination and a map of the envi-
ronment. They implement then a control strategy called local path planning
to follow the found trajectory (Goerzen et al., 2010).

In our work we focus on global path planning, since our objective is the
generation of a trajectory, which will be decomposed into a series of inter-
mediate waypoints, which in turn will be fed to the UAV’s autopilot. In
our application, in order to simplify our case study, we also assume that the
UAV flies at a fixed altitude; this is also motivated by the fact that most of
the available open data are basically 2D and do not provide useful informa-
tion for 3D navigation. Based on the assumption of having a fixed altitude,
we simplify the problem to the 2D case and we use the implementation of
the D*-Lite algorithm described in Koenig and Likhachev, 2002. D*-Lite is
a fast implementation of the D* algorithm, and is based on Lifelong Plan-
ning A* (LPA*) (Koenig and Likhachev, 2001). D* is an incremental heuristic
graph search algorithm which is able to deal with incomplete information
and observations. D* algorithm ensures completeness and optimality prop-
erties. The Path Planner (PP) module is implemented as follows. Given
a bounding box area of operation, we first build a static cost-map. Given
the current position of the UAV and the desired goal, and given a planning
strategy, we calculate the optimal path using D*-Lite. The Path Planner can
also force the UAV to fly on areas which are considered "safer" from the
citizen’s point of view, like roofs, trees and water surfaces. This problem
is often referred to as risk-aware path planning, and refers to techniques that
try to minimize the risk involved with autonomous flight. Although in risk-
aware path planning the "risk" often refers to the risk of hitting obstacles
(De Filippis et al., 2011, Carpin S., 2014), it can also be considered as the
risk of hitting people in case of hardware or software failures of the UAV.
This choice is motivated by the high interest in risk minimization which is
stressed in both national and international regulations (e.g., see ENAC reg-
ulation, 2014 for the Italian regulations). Currently, we implemented three
strategies. All those strategies try to minimize path length.

In addition to that, the first strategy also avoids obstacles represented by
buildings which are higher than the flying altitude of the UAV.

The second strategy tries instead to minimize risk of damages in case of
faults. Areas which are not covered by buildings or trees are considered as
risky areas (the UAV can cause more damage falling in case of hardware
failures).

The third strategy tries to minimize risk and at the same time to maximize
network connection, so an higher cost is given to areas with no Long Term
Evolution (LTE) coverage. In our application we use LTE Received Signal
Strength Indication (RSSI) heat-maps. This information is again given by the
ODD Module. The cost of each cell is based on the RSSI for that particular
cell; if the RSSI is below a critical threshold, the cell is marked as obstacle,
since in our application we cannot afford to lose connectivity. We then
extract a series of waypoints from the path using a simple procedure. First
we compute the distance transform of the map. For each cell p we compute
the distance of the nearest obstacle as

Dp(p) = min
q∈P

(d(p,q)),

where P is a grid of points representing obstacles and d(·) is the distance
between two points. Then, for each waypoint we expand a circle around
it with a radius of value DP(p), where p is the cell corresponding to the
waypoint. The next point of the trajectory that lies on the circumference is

3.4 the agents 35

taken as the next waypoint. The process is then repeated until the last point
of the trajectory. With this procedure we extract a list of waypoints that are
given to the UAV’s autopilot.

3.4 the agents
Only quadrotors have been chosen as the agent for validating the overall

system in its first stage, since they offer a series of advantages with respect
to other possible architectures (e.g. fixed wing autonomous aircrafts etc).
Their VTOL (Vertical Take Off and Landing) capabilities allow for quick
take-off and landing operations in busy or space-constrained places. The
possibility to hover above the target makes them well-suited for surveillance
and monitoring tasks. Moreover they offer a simpler mechanics and require
less maintenance with respect to a standard helicopter, while offering simi-
lar autonomy and payload. However a quadrotor is an inherently unstable
system (G.M. Hoffmann et al., 2007), and for this reason it requires a fast on-
board controller to guarantee its stability in standard flights (Bouabdallah
and Siegwart, 2005). This controller typically runs on a dedicated electronic
board, equipped with a number of inertial sensors (accelerometers and gyro-
scopes) to detect the attitude angles of the quadrotor frame and its rotational
velocities; barometers and sonar sensors (for altitude measurements), GPS
receivers (for autonomous waypoint navigation) and magnetometers (pro-
viding an estimate of the heading of the aircraft) are other common devices,
often mounted on the same board.

For the validation of the proposed cloud robotics service both a MicroPi-
lot’s MP2128g and a Parrot AR.Drone have been used.
MP2128g1 is an auto-pilot board embedding all the peripherals needed for
a stable and autonomous quad-rotor flight. This auto-pilot is specifically
addressed to professional use and is closed-source software. In order to
write customized code the user must purchase an add-on set of APIs. These
functions constitute a dedicated dynamic linking library that acts as a in-
termediate layer between the user code and the autopilot software. Using
the functions encoded in the library the developer is able to get access to
several low-level parameters of the auto-pilot and can modify their values.
The board in this case is mounted on a custom carbon-fiber quadrotor frame
together with the other peripherals needed for the flight (four motors, the
same number of motor controllers and a battery).
The AR.Drone2 is a commercial ready-to-fly quadrotor solution, controllable
via smartphone. It features a front HD camera and the flight stability is en-
sured by a mother board (running a real-time linux-based operating system)
and a navigation board interfaced with the on-board sensors (two cameras,
ultrasonic range finders, gyroscopes and accelerometers). The AR.Drone is
mainly conceived for gaming applications, amusement and augmented re-
ality video games, but due to its low-cost and the availability of an official
SDK (Software Development Kit), it gained a very good popularity in the
academic community.

1 http://www.micropilot.com
2 http://ardrone2.parrot.com

http://www.micropilot.com
http://ardrone2.parrot.com

36 fly4smartcity

3.5 experimental results
We tested our approach in several different simulated scenarios, as well as

in the real ones. In this section we show and comment some of these results.
The first two tests show the integration of different open data in ODOMI
in simulated scenarios; the third test shows the integration of ODOMI, the
PP module and the AR.Drone commercial quadcopter; the last test shows
a live demonstration of the whole system (GUI, cloud platform) using a
commercial quadcopter in a private flying area.

Simulated scenarios are based on real data gathered from open data (build-
ings perimeter and height, trees and waterways) and crowd-sourcing using
a mobile Android app (3rd Generation (3G) and 4th Generation (4G) cover-
age). The only difference with real experiments is that we only generate a
path but we don’t actually fly a UAV. This is due to current legal restrictions,
as stressed along the dissertation, and also to security reasons.

The system was implemented using C++ and Python on GNU/Linux.
The tests have been carried out on a standard PC. The source code for the
ODOMI mission planner is available online3, together with the web-based
GUI4.

3.5.1 Test 1
In this test we show a simple planning strategy in a simulated scenario,

in which an agent has to fly in an urban area. The Path Planner tries to min-
imize path length, while avoiding obstacles. Since the simulated AR.Drone
quadrototor can fly using its onboard GPS receiver at a maximum altitude
of only 6 m, obstacles are represented by buildings which are higher than
the flying altitude of the UAV, as well as trees. Figure 29 shows the results.
The starting position for the UAV and the final goal are pointed by markers.
The small markers show the extracted waypoints.

3.5.2 Test 2
In this experiment we compare three different planning strategies among

the possible ones, in a simulated scenario. All three strategies try to mini-
mize path length. The first strategy avoids obstacles represented by build-
ings which are higher than the flying height of the UAV. The second strategy
instead considers risk factors. Areas which are not covered by buildings or
trees are considered as risky areas (the UAV can cause more damage falling
in case of hardware failures). The second strategy tries to balance path
length and to minimize travel over risky areas. The third strategy also takes
into account 4G coverage. Areas with no 4G coverage are also considered
"risky"; the traversal cost for these areas is treated as in strategy two. Figure
30 shows the results.

3.5.3 Test 3
We show a real use case of our system running on a real low-cost platform.

The platform is an AR.Drone Parrot 2.0. The UAV is equipped with a GPS
module (Parrot Flight Recorder). The GUI is running on a laptop, connected

3 https://github.com/fly4smartcity/odomi
4 https://github.com/fly4smartcity/rendezvous

https://github.com/fly4smartcity/odomi
https://github.com/fly4smartcity/rendezvous

3.5 experimental results 37

100 200 300 400 500 600 700

100

200

300

400

500

600

700

800

Figure 29: Simulated experiment. Obstacles from open data are shown as black
cells; computed waypoints are shown in blue. The starting point is in the
top-left and the goal in the bottom-right.

to the cloud platform via a 4G link. Communication between the Parrot and
the laptop is done using ROS over Wi-Fi. Given the initial position of the
UAV, the user selects a goal. An obstacle map is created using open data
and a feasible trajectory is found. Then, waypoints are automatically sent to
a guidance system.

In Figure 31 we show the results of a typical experiment. It should be
noted that GPS localization of the Parrot has an average error of up to 5-10 m
in an area surrounded by buildings like the one we show in this experiment.
For this reason we inflated the obstacles by 5 m. Due to its poor GPS accu-
racy and wind dynamics, it can be seen that the Parrot is not able to follow
the given trajectory accurately, but it is still able to avoid obstacles. Figure
32 shows the experiment in progress. It can be seen that the AR.Drone was
able to reach the goal only within a large tolerance circle (10 m) due to the
inaccuracy of GPS localization in narrow areas; for the same reasons it was
not able to correctly follow the trajectory.

3.5.4 Test 4
Finally, we present the results of a live demonstration in which we tested

the whole system. A commercial quadrotor was used in this case, with a
MicroPilot’s MP2128g autopilot managing the in-flight stabilization of the
UAV. The live demonstration was performed in Aero Club Torino’s airport
in Turin, Italy. The UAV was connected both to a ground station via a
standard Radio Frequency (RF) 5.8 GHz radio link and to the cloud robotics
platform via a 4G LTE link. The flight was performed at line-of-sight and

38 fly4smartcity

50 100 150 200 250 300 350 400

50

100

150

200

250

300

350

400

450

500

550

600

650

700

750

800

Figure 30: Comparison between three planning strategies. Black cells represent ob-
stacles, grey cells represent areas with no 4G connectivity. Green line:
optimize for shortest path, avoid obstacles, ignore connectivity; blue line:
optimize for shortest path and maximize travel over roofs and trees for
safety, ignore signal; red line: same as blue line, but prefer areas with
4G connectivity. The starting point is in the top-left and the goal in the
bottom-right.

3.5 experimental results 39

Figure 31: Real test over a short trajectory. Obstacles from open data are shown
in red; starting point and final goal are shown as markers; computed
waypoints are shown as red markers. Real trajectory followed by the
UAV is shown in green.

Figure 32: Real test over a short trajectory. Photo of the experiment.

40 fly4smartcity

Figure 33: Video streaming and mission information during the live demonstration
(first test-case).

Figure 34: Video streaming and mission information during the live demonstration
(second test-case).

a pilot was ready to take control of the UAV in case of trouble, as required
by the current Italian legislation. In addition to that, the flight zone was
segregated and the spectators were kept at a distance of 150 m.The live
demonstration was divided in two test-cases.

In the first one, a user requests the emergency service using a mobile
phone. The authorized user authorizes the flight using the GUI. The UAV
reaches the user and performs a circle around him and sends back the video
streaming and its telemetry. A screenshot of the GUI during the experiment
is shown in Figure 33.

In the second case, the authorized user selects a set of waypoints using the
GUI, by clicking on the map. Then, the user authorizes the mission and the
UAV performs the mission and sends the video streaming and its telemetry
to the GUI. A screenshot of the GUI during the experiment is shown in
Figure 34. The live demo described in this section has been authorized by
Ente Nazionale Aviazione Civile (ENAC), the Italian civil flight authority.
Videos of the experiment are available online5.

5 http://tinyurl.com/l5lbry4,
http://tinyurl.com/qd2whr5

http://tinyurl.com/l5lbry4
http://tinyurl.com/qd2whr5

3.6 conclusion 41

3.6 conclusion
Fly4SmartCity is a cloud-robotics service that aims to prove that a real

world application of cutting-edge technologies in robot-networking and un-
manned vehicles is actually possible. The goal of Fly4SmartCity is to pro-
vide a service for emergency management in smart city environment; this
is achieved by the strict integration of a capable, reliable and stable cloud
platform; small agile autonomous agents; a high-bandwidth, low-latency
mobile network; a rich set of data drawn from various providers; a well-
documented and supported robotics middleware. A ROS-based cloud-robotics
platform has been expressly developed to support the service and the main
concepts of its implementation have been discussed. Then the service itself
has been presented and the software modules have been described from
a functional point of view. Several major technical issues (e.g. autonomy
of the UAVs) and legal restrictions imposed by the civil flight authorities
still prevent a common and practical use of the presented system, however
we have proved here how information about the urban fabric, that are in
large part of public domain in a smart city, offer a valuable source that it
is possible to exploit in order to guarantee safer flights and operations. We
showed how this information can be integrated into a simple 2D path plan-
ning module able to generate feasible flight trajectories that are also com-
plaint with safety and signal quality constraints (e.g., fly over rivers when
possible, avoid crowded areas, avoid areas with low mobile signal strength,
etc.). Finally, the cloud platform has been designed not to be tied with the
described service. The source code for our system is available online.

4 S E N S O R F U S I O N

One of the most promising and active field of robotics is related to the
problem of sensor fusion. Sensor fusion can be defined in general as the
combination of sensory data (or data derived from sensory data) with the
goal of obtaining a better representation of the state of a system than the one
that would be possible if the data sources were used individually. This def-
inition includes equally measurements coming from multiple sensors but
also measurements produced by a single sensor at different time instants
(Mitchell, 2007). One of the most relevant use-cases of sensor fusion in UAV
applications is the fusion of the inertial measurements coming from the ve-
hicle Inertial Measurement Unit (IMU) (accelerometers and gyroscopes) for
obtaining a robust estimate of the three orientation degrees of freedom of
the aircraft. Another possible example could be the fusion between the gy-
roscopes and a magnetometer sensor for getting a high-rate estimate of the
global heading of the vehicle, less susceptible to magnetic error and interfer-
ences. This chapter will focus on some preliminary work aimed to introduce
some sensor-fusion capabilities in the UAVs developed for both STEPS and
F4SC projects. The activities here described are indeed relevant for the fu-
ture developments of the two projects and have as a common goal the fusion
of the data coming from a monocular-camera Visual Odometry (VO) algo-
rithm, the GPS and the IMU, to achieve a stable and reliable pose (position +
orientation) estimate with reduced effects of uncertain and erroneous mea-
surements. The fusion is performed by the Multi Sensor Fusion (MSF), as
described in section 4.1. The main characteristics of the employed sensors
are listed in table 5, together with the advantages and disadvantages of each
of them.

Table 5: Advantages and disadvantages of the sensors fused using MSF.

Sensor − +

Accelerometers noisy fast (100 to 1000 Hz)

Gyroscopes
noisy

fast (100 to 1000 Hz)
temporal drift

Camera (VO) spatial drift
high accuracy (0.01 to
0.1 m)
works outdoor/indoor

GPS

low accuracy (±5 m)

no drift
multi-path effects
works only outdoor
slow (1 to 5 Hz)

43

44 sensor fusion

4.1 an introduction to the msf
The Multi Sensor Fusion (MSF)1 is a modular framework for multi-sensor

fusion based on an Extended Kalman Filter and developed by the Autonomous
Systems Lab (ASL) based at ETHZ. The MSF software expands the poten-
tialities of the Single Sensor Fusion (SSF) framework2, previously developed
by the same group.

An high-level overview of the framework is given in Weiss, 2012, Weiss,
Achtelik, et al., 2012 and Lynen et al., 2013.

The MSF allows to fuse information coming from a theoretically unlimited
number of sensors managing at the same time:

• delayed measurements

• acquisitions at different frame-rates

• absolute and relative measurements

• on-line estimation of the calibration states of the sensors (self calibra-
tion)

Furthermore the framework is explicitly designed and optimized for being
used with micro UAVs.

For these reasons in this work we have decided to integrate the ASL’s
MSF as part of the existing software stack, being the development of a new
framework out of the scope of the projects. In particular the MSF will be
used to fuse the inertial sensors (accelerometers and gyroscopes) with the
GPS receiver and a vison sensor (monocular camera).

4.2 combining multiple sensors
The MSF uses an Extended Kalman Filter to fuse the information coming

from several sensors at run-time following a loosely-coupled approach (see fig-
ure 35); this means that the sensors are considered as independent modules
exchanging information at different data rates with the module processing
the fusion. On the contrary, in a tightly-coupled approach, the raw measure-
ments coming from different sensors are not processed independently and
are used directly to compute the final estimate (Corke et al., 2007). The use
of a loosely-coupled approach makes it possible to consider the sensors as
black-boxes and also allows the final user to integrate new sensors without
any modification of the fusion part of the code (core).

The multi-sensor fusion algorithm is based on an EKF. The EKF is a gen-
eralization of the standard Kalman Filter for non-linear systems, based on
a linearization about an estimate of the current mean and covariance. Fur-
thermore the MSF uses an indirect formulation for the filter, i.e. it uses the
error state vector in spite of the standard one, this is particularly convenient
when using quaternions as attitude representation parameters (Trawny and
Roumeliotis, 2005). In the MSF the states of the system are divided in two
categories: core and auxiliary states. Basically the core states are the IMU
ones:

xTcore =
[
piw
T

, viw
T

,qiw
T
]

(22)

1 https://github.com/ethz-asl/ethzasl_msf
2 https://github.com/ethz-asl/ethzasl_sensor_fusion

https://github.com/ethz-asl/ethzasl_msf
https://github.com/ethz-asl/ethzasl_sensor_fusion

4.2 combining multiple sensors 45

MSF core - EKF propagation

MSF updates - EKF updates

- Process model Jacobian matrix
- Delays and Relative states management

- State definition
- Measurement model
 Jacobian matrix

- Measurement noise
- State initialization

- State estimates
IMU

~ 90 Hz

GPS
~5 Hz

SVO
~ 60 fps

Figure 35: The loosely coupled approach allows high system modularity, with the
MSF core block managing EKF states propagation and an arbitrary num-
ber of update blocks participating to the update part of the filter.

where piw
T , viw

T , and qiw
T correspond to the relative position, velocity

and orientation of the IMU w.r.t. the inertial (world) frame.
These states are fixed and are used for the propagation part of the Ex-

tended Kalman Filter. On the contrary the auxiliary states can be defined by
the user depending on which sensors are currently used in the system (e.g.
magnetomer, camera, GPS . . .) and are used for the filter update step. This
design choice is justified by the fact that usually the measurements from the
external sensors are 1 to 3 order of magnitude slower with respect to the
IMU ones (usually in the range of 100 Hz to 10 kHz) and in systems with
limited computational power performing also the update step at the same
frame rate of the inertial sensors would be too demanding; furthermore this
choice helps in keeping the code modular.

4.2.1 MSF setup
We introduce here the MSF setup used in the experiments with the fol-

lowing sensor suite:

• IMU

• Monocular camera

• GPS

where the IMU is used to estimate a pose (position + orientation) informa-
tion for the UAV; a Visual Odometry (VO) algorithm is used in conjunction
with a monocular camera in order to estimate the pose of the UAV and the
GPS to get an absolute position measurement of the vehicle. The MSF is
agnostic with respect to the particular VO algorithm used due to its loosely-
coupled approach. Every algorithm is equally usable in the framework as
long as it returns a pose information. In our experiment we have used the
Semi-direct Visual Odometry (SVO) algorithm, developed by the Robotics
and Perception Group at UZH and whose details are illustrated in Forster
et al., 2014.

46 sensor fusion

Figure 36: MSF reference frames. Green lines represent roughly constant transfor-
mations, red lines denote the variables used for robot control, blue lines
show the values of the camera-vision frame transformation measured by
the visual framework and grey lines highlight the translational and angu-
lar drift in the visual frame with respect to the world frame (Weiss and
Siegwart, 2011).

Measurement models

In this section the generic translation from l to m frame will be denoted
with pml , similarly qml and C(qml) will denote the quaternion and the rota-
tion from the l to the m reference frame respectively.

imu In an Inertial Measurement Unit a three axis gyroscope provides mea-
surements of the rotational velocity and a three axis accelerometer measures
linear accelerations. We consider the single-axes measurements of angular
velocity and acceleration affected by two types of errors: a random additive
noise n and a bias b (Trawny and Roumeliotis, 2005).

ωm = ω+nω + bω am = a+na + ba (23)

Furthermore we model the noise as a Gaussian White Noise with the fol-
lowing characteristics

E[nω] = E[na] = 0 (24)

E[nω(t+ τ) ∗nTω(t)] = Rωδ(τ) (25)

E[na(t+ τ) ∗nTa(t)] = Raδ(τ) (26)

and the bias as a Random Walk Process

ḃω = nbω ḃa = nba (27)

with characterstics:

4.2 combining multiple sensors 47

E[nbω] = E[nba] = 0 (28)

E[nbω(t+ τ) ∗nTbω(t)] = Rbωδ(τ) (29)

E[nba(t+ τ) ∗nTba(t)] = Rbaδ(τ) (30)

This model applies independently to each of the three sensors axis.

monocular visual odometry sensor The measurement model intro-
duced for the camera is the same described in Lynen et al., 2013. It can be
divided in its position and angular parts.

zpVO = pcv = CT(qwv)(p
i
w +CT

(qiw)
pci)λ+ p

v
w +npVO (31)

zqVO = qcv = qci ⊗ qiw ⊗ (qvw)
−1 +nqVO (32)

with CT
(qiw)

being the IMU attitude and CT(qwv) the rotation from the visual

frame to the world one, and qci , qiw and qwv the quaternions describing the
rotation of the inertial to the camera frame, the world to the inertial frame
and the visual to the world frame respectively (see figure 36). λ is a visual
scale factor.

gps In the following we will assume that the position measurements com-
ing from the GPS receiver installed on the UAV is described by:

zGPS = piw +CT(qwi)p
g
i +npGPS (33)

similarly to the IMU case we model the noise npGPS as a White Gaus-
sian Noise. This is a very simplifying hypothesis, since, as it will be seen
in section 4.3.2, GPS satellite transmissions are usually affected by several
different phenomena influencing the precision and the accuracy of the po-
sition information, and the White Gaussian Noise (WGN) assumption does
not model important source of errors (e.g. the multipath effect). Still, this
hypothesis makes the integration of a GPS sensor in an EKF a lot easier;
therefore we will keep the assumption, aware of the limitations introduced.
It is also noticed here that incoming GPS measurements are converted to
metric Earth-Centered, Earth-Fixed (ECEF) frame (see figure 37), and the
offset from the ECEF measurement to the local ECEF initialization position
is subtracted before the measurement gets applied to the filter.

State definition

The prediction part of the EKF is driven by the IMU measurements. We
define the following core states vector:

xTcore =
[
piw
T

, viw
T

,qiw
T

,bTw,bTa
]

(34)

where piw
T , viw

T , and qiw
T correspond to the relative position, velocity and

orientation of the IMU w.r.t. the inertial (world) frame; bTw and bTa repre-
sent the angular velocity and acceleration bias. The addition of a camera
introduces a set of auxiliary states:

xTcam =
[
λ,pci

T ,qci
T ,pwv

T ,qwv
T
]

(35)

48 sensor fusion

Figure 37: The diagram of Earth-Centered, Earth-Fixed coordinates, in relation to
latitude (ϕ) and longitude (λ).

λ is the visual scale factor and it is not known a-priori when a monocular
camera is used. The states pci

T and qci
T describe the transformation (trans-

lation and rotation) between the IMU and the camera frame; this kind of
states are also called extrinsic calibration state. pwv

T and qwv
T represent the

position and orientation of the visual frame V w.r.t. the fixed inertial one.
These quantities are affected by spatial and not temporal drift, therefore their
(time) derivative can be considered zero (eq. 38i, 38j).

Finally we introduce the auxiliary states added by the global position
sensor (GPS):

xTgps =
[
p
g
i
T
]

(36)

The position sensor state vector only consists in a calibration state pgi
T rep-

resenting the translation between the origin of the sensor and the IMU refer-
ence frame. This offset does not increase its uncertainty over time, thus we
can model it as shown in equation 38k.

System model

The final resulting state vector is:

X =
[
piw
T

, viw
T

,qiw
T

,bTw,bTa, λ,pci
T ,qci

T ,pwv
T ,qwv

T ,pgi
T
]

(37)

4.3 characterization of the sensors noise 49

while the equations describing the model of the system are:

ṗiw = viw (38a)

v̇iw = CT
qiw

(am − ba −na) − g (38b)

q̇iw =
1

2
Ω(ωm − bω −nω)qiw (38c)

ḃω = nbω (38d)

ḃa = nba (38e)

λ̇ = 0 (38f)

ṗci = 0 (38g)

q̇ci = 0 (38h)

ṗwv = 0 (38i)

q̇wv = 0 (38j)

ṗ
g
i = 0. (38k)

The 32-elements state vector X can be expressed in its indirect 29-element X̃
formulation as:

X̃ =
[
∆piw

T
,∆viw

T
, δθiw

T
,∆bTw,∆bTa,∆λ,∆pci

T , δθci
T ,∆pwv

T , δθwv
T ,∆pgi

T
]

(39)
The equations governing the states have now to be formulated with respect
to the new state vector, however, for the sake of simplicity we will not do
it here. The focus of this section is to highlight the main concepts underly-
ing the MSF framework and not its thorough mathematical description; the
interested reader can find all the details and the final derivation of the error-
state (or indirect) representation in Trawny and Roumeliotis, 2005. It has to
be noticed also that in an actual use of the framework the user has to define
and implement only the measurement equations (and their linearization)
for the auxiliary sensors that are not already integrated in the framework
because the state equations of the system are already implemented in the
core part of the MSF.

4.3 characterization of the sensors noise
4.3.1 IMU

In the classical Kalman Filter formulation we assume that our sensors
cannot measure directly all the physical states of the system. Only certain
output variables (linear combinations of the state variables) are measurable
and the measurements are affected by additive continuous-time WGN n(t)

with expected value and covariance described (in the scalar case) by:

E[n(t)] = 0, for all t (40)

cov[n(t+ τ);n(t)] = E[n(t+ τ) ∗n(t)] = Rδ(τ) (41)

The quantity R is sometime called signal strength or signal intensity in liter-
ature and it coincides with the Power Spectral Density (PSD) of the signal

50 sensor fusion

which is, in the case of the WGN, a constant quantity. The PSD is a dis-
tribution describing how the total power of the signal is distributed across
the various frequencies of the signal. A discrete implementation of the White
Gaussian process described by 40 and 41 can be obtained as follows (Cras-
sidis, 2006):

nd[k] = Rdw[k] (42)

with

w[k] ∼ N(0, 1) (43)

Rd = R
1√
∆t

(44)

or equivalently

R2d =
R2

∆t
= R2dfs (45)

where N(µ,σ) is a normal distribution characterized by mean µ and stan-
dard deviation σ, ∆t is the sampling time and fs is the sampling frequency.
It is noted here how the discrete formulation of the covariance is equiva-
lent to the integral of the power spectral density of the (WGN) signal up
to the frequency of interest. The same white gaussian modelization of the
noise described here is typically assumed by the manufacturer of the iner-
tial sensors that usually report the value of the PSD (Or the Noise Spectral
Density (NSD), NSD =

√
PSD) on the datasheet.

Dimensional analysis reveals its dimensional units for the continuos time.
As an example, for the gyroscope measurements:

[
E[nω(t+ τ) ∗nTω(t)]

]
=
[
R2ωδ(τ)

]
=

rad2

s2
(46)

Knowing that [δ(τ)] = 1
s , we obtain:

[Rω] =
rad2

s
[Rω] =

rad/s√
Hz

(47)

and similarly for the accelerometers:

[Ra] =
m2

s3
(48)

In general the PSD has units SU2/Hz (where SU stands for "signal units").
The term power in the PSD denomination comes from the fact that, in elec-
trical circuits, the power can be written, in terms of the voltage V applied
to the circuit, as V2/Z, being Z the impedance of the circuit. The concept
can be widened to the case of transducers returning a voltage output pro-
portional, through a scaling factor k, to the extent of the input (measured)
quantity, as it is shown in eq. 49.(

m/s2
)2

Hz
k∝ V2

Hz
1/Z∝ W

Hz
(49)

Table 6 on the next page shows an overview of the parameters normally
used to characterize the noise from statistical and spectral point of views.
The parameter used by the MSF for initializing the noise variables in the
EKF is the Continuos Time Noise Spectral Density. The framework will take
care of the discretization of the parameters.

4.3 characterization of the sensors noise 51

Table 6: Noise characteristics and their units (SU: Signal Units).

Parameter unit

Standard Deviation SU
Variance SU2

Noise Spectral Density SU/
√

Hz
Power Spectral Density SU2/Hz

IMU characterization tool

In order to automatically characterize the noise parameters of the sensors,
and to double-check the NSD values provided by the datasheet a Matlab
script has been specifically developed. The script allows to compute an ap-
proximation of the sensor’s noise characteristics in the frequency domain
and in the time one and it is freely downloadable3 and editable in the terms
of the GNU general public license v34. The results of the toolbox are pre-
sented and discussed in the appendix D.

4.3.2 GPS
GPS receivers work by measuring range to four or more satellites. This

measurements are normally affected by a number of different error sources,
therefore they are usually referred as psuedoranges. Among the most com-
mon causes of error in the range estimation we find (Kaplan and Hegarty,
2005):

satellite ephemeris error errors in the set of orbital information broad-
cast by the GPS satellites;

satellite clock error Error in the compensation of the drift of the GPS
satellites’ atomic clocks;

ionospheric delay Error caused by the changes of the signal speed, in-
troduced by the transit in the ionosphere

tropospheric delay Error caused by the changes of the signal speed, in-
troduced by the transit in the troposphere;

multipath The multipath error occurs when a signal reaches an antenna
following two ore more paths. Often man-made structures or natural/-
geographic features reflect the signal, causing the final signal received
by the antenna to be a combination of the direct line-of-sight signal
and some delayed reflected multipath replicas.

receiver measurement error Error introduced by the internal replica
of the expected signal, generated by the particular GPS receiver in use
to measure the pseudorange.

These error components - treated as independent random variables - are
root-sum-squared (RSS) to define a single parameter, called User Equivalent
Range Error; the User Equivalent Range Error (UERE) conveniently express
the standard deviation of the pseudorange measurements. The pseudor-
ange error budgets for a Standard (Single Frequency) Positioning Service
are shown in table 7.

52 sensor fusion

Table 7: Main error sources affecting the GPS range estimates.

Error Source σ error (m)

Satellite ephemeris error 0.8
Satellite clock error 1.1
L1 P(Y)-L1 C\A group delay 0.3
Ionospheric delay 7.0
Tropospheric delay 0.2
Multipath 0.2
Receiver measurement error (σUERE) 0.1

Total (Root of Sum of Squares (RSS)) 7.1

(a) Closest transmitters give higher uncer-
tainty

(b) More spaced apart transmitters reduce
the positioning uncertainty

Figure 38: Satellites-receiver geometry influences the precision of the position mea-
surement.

4.3 characterization of the sensors noise 53

Figure 39: The volume of the tetrahedron (in the simple case of four observable
satellites) formed by the tips of the receiver-satellite unit vector, is highly
correlated with GDOP. Maximizing the volume tends to minimize the
GDOP. Image source: Langley, 1999.

The UERE is one of the two parameters describing the precision and the
accuracy of the GPS estimate of the position of the receiver. The second
parameter is called Geometric Dilution of Precision (GDOP) and it is a unit-
less multiplier on σUERE, accounting for the effects of satellite geometry on
the accuracy of position estimates (see Figure 38). Intuitively it is easy to
depict the dependence of the positioning problem on the geometry of the
satellites in the four-satellites example depicted in Figure 39 (four is the
minimum number of satellites that have to be observed to correctly retrieve
the position of the receiver antenna and the global time measure). In this
case the position measured will be more accurate when the satellites are
spread out in the sky, i.e. the accuracy increases with the volume of the
tetrahedron connecting the four satellites and the receiver’s antenna. The
GDOP is a measure of the overall quality of the least-squares solution of the
estimation problem that recovers position of the antenna and global time
from pseudorange measurements. It is correlated with the volume of the
tetrahedron in the four-satellites example; maximizing the volume tends to
minimize GDOP.

The GDOP can be usually expressed as:

σG =
√
σ2E + σ2N + σ2U + σ2T (50)

where σ2E, σ2N, σ2U, σ2T are respectively the variances on East, North, Up
positions and Time; and σ represents the standard deviation of the pseudo-
range measurements, i.e. the UERE parameter previously introduced, plus
the residual model error introduced in the least-squares problem formula-
tion (Langley, 1999). It is common to refer to the specific position, horizontal,

3 https://github.com/blackistheanswer/IMU_analysis
4 http://www.gnu.org/copyleft/gpl.html

https://github.com/blackistheanswer/IMU_analysis
http://www.gnu.org/copyleft/gpl.html

54 sensor fusion

vertical and time components of GDOP to get better insight about the perfor-
mance of the receiver.

PDOP =

√
σ2E + σ2N + σ2U

σ
=
σP

σ
(51a)

HDOP =

√
σ2E + σ2N

σ
=
σH

σ
(51b)

VDOP =

√
σ2U

σ
=
σU

σ
(51c)

TDOP =

√
σ2T

σ
=
σT

σ
. (51d)

with σP and σH being the 3D position and 2D position standard devia-
tions. Note also that the following relationships occurs between the various
Dilution of Precision (DOP) values:

GDOP2 = PDOP2 + TDOP2 (52a)

PDOP2 = HDOP2 + VDOP2. (52b)

The vast majority of GPS receivers on the market provide at least the VDOP
and the HDOP and update it in real-time to give the user a quality check on
the accuracy of positioning information. This is also the case of the u-blox
LEA-6H GPS receiver used in the sensor-fusion experiment. The Horizontal
Dilution of Precision (HDOP) value in particular is directly forwarded to the
Multi Sensor Fusion that uses it for the update of the covariance information
of the position states; its minimum value is in the order of 2, 3 m.

4.3.3 Camera
The problem of calculating the covariance of a pose estimate obtained

via visual-odometry is not trivial since the precision (and accuracy) of the
pose measurement is not only dependent on the performances of the sensor
used, but also on the particular VO algorithm. Weiss, 2012, pp. 73-74,
cites some reference papers addressing this problem. Moreover, some VO
implementations running on Robotic Operating System provide the real-
time covariance of the pose estimates, allowing the user to avoid an explicit
computation; unfortunately this is not the case of the Semi-direct Visual
Odometry, the VO algorithm used in this work, for which a fixed value of
the covariance has been considered.

4.4 structure of the msf code
The MSF comes with a certain number of sensors already integrated in

the framework. The directory tree 1 lists the essential files in the MSF frame-
work code, assuming the general case of a set of two different sensors, x and
y, which have to be fused with the IMU readings. For the sake of clarity file
names are italicized.

As already pointed out before, the core part of the algorithm is constituted
mainly by the propagation equation for the IMU and by the actual EKF

4.5 preliminary results 55

ethzasl_msf
core

...
updates

include
msf_updates

x_sensor_handler
x_measurement.h
x_sensorhandler.h

implementation
x_sensorhandler.hpp

y_sensor_handler
y_measurement.h
y_sensorhandler.h

implementation
y_sensorhandler.hpp

src
x_y_module_msf

main.cpp
msf_statedef.hpp
x_y_sensormanager.h

Directory Tree 1: MSF code tree.

code. We will not describe the implementation details for the core part
of the framework since the user is not required to modify/customize this
part in a standard use of the framework. On the contrary the user may
have to edit the files in the updates section of the framework in order to
customize it for his own sensors set-up. The structure of the directory tree
of the framework highlights its modularity: every sub-folder in the include
directory refers to a single sensor, so, in our example, we find two folders
here: x_sensor_handler and y_sensor_handler. In the src directory instead
the focus is now on the particular sensor-fusion problem hence the code here
works at higher level, managing the state definition for the EKF, the variable
and state initialization and some ROS-related routines. Table 8 offers an
index of the framework files and the related functionalities.

4.5 preliminary results
In this section some preliminary results obtained using the MSF are pre-

sented. These results cannot be considered complete because of two main
reasons. Firstly the SVO software at the moment does not provide a real-
time estimate of the covariance on the pose measurements, this is a strong
limitation when trying to fuse SVO with other pose sensor in a EKF frame-
work, since we have already discussed how this kind of visual odometry
measurements present a spatial drift that grows with the elapsed distance.
In the tests presented here the covariance has been set to a constant value in
the order of few mm2, unfortunately this means we are ignoring the spatial
drift of the SVO software (that can grow up to several meters). Secondly
the absence of a ground truth reference makes not possible to compare the
accuracy of the fused data w.r.t. the GPS raw measurements and/or the
pure visual odometry. A possible way to measure the ground truth in this

56 sensor fusion

Table 8: Description of the main files included in the MSF.

File Description

ethzasl_msf\include\msf_updates\x[y]_sensor_handler\

x[y]_measurement.h provides methods for associating the sen-
sor reading with a meaningful measure of
the x[y]-type, computing the H matrix (lin-
earized measurement model) for the mea-
surement and applying the measure to the
core part of the framework.

x[y]_sensorhandler.h contains the x[y]SensorHandler

class prototype; the methods de-
clared here are implemented
in \implementation\x[y]_sensorhandler.hpp.

ethzasl_msf\include\msf_updates\x[y]_sensor_handler\implementation\

x[y]_sensorhandler.hpp manages the ROS sensor-reading callback for
the x[y] sensor

ethzasl_msf\src\x_y_module_msf\

main.cpp main entry point for the ROS node, con-
structs a XYSensorManager object.

msf_statedef.hpp State definition of the EKF as defined for a
given set of sensors.

x_y_sensormanager.h cointains the XYSensorManager constructor,
the states initialization routines and the ROS
dynamic reconfiguration callback.

4.6 conclusion 57

kind of experiments is to use a tracking system like the Leica Total Station5: a
device capable of long-range continuous laser tracking of a prism attached
on the body to be monitored. Keeping clear in mind these two limitations,
the experiments still highlight some of the advantages implicit in the use of
sensor fusion in complex perception problems.

The result of a first experiment are shown in figure 40 on the following
page; it shows, qualitatively, the effect of multipath on raw GPS measure-
ments. When the GPS receiver is close to buildings or other artificial or
natural structures, the signal may be reflected before reaching the antenna,
affecting the final position measurement (see 4.3.2). This effect is clear com-
paring the yellow trace (GPS raw measurements) with the red one (the ac-
tual path traveled); however the position estimate resulting from the fusion
of the GPS and the camera is not affected by the issue (figure 40b). This ex-
periments ends with the UAV trying to enter the building, this causes imme-
diate loss of GPS signal, but also the vision part is affected by the transition,
because of the sudden variation in the brightness of the scene. The imple-
mentation of an algorithm for adaptive exposure correction of the camera,
and intelligent sensors switch-on/off routines, would allow not to lose the
visual tracking of the environment and to perform autonomous outdoor/in-
door (and viceversa) transitions almost seamlessly (the interested reader is
referred to Shen, 2014). The simultaneous loss of information from the two
sensors makes the IMU the only on-board available sensor and its direct
integration causes an almost immediate drift (see 40d at second 115)

In the second experiment (figure 41 on page 59) the UAV follows a close
trajectory, therefore in this case it is possible to draw some information
about the extent of the spatial drift of the visual odometry. In this experi-
ment the drift is about 6% of the total distance travelled (50 m). Similarly
to the first experiment also in this test there are some external elements (the
trees) disturbing the GPS signal; and exactly as in the previous case also
here the fused output is immune to this problems, resulting in the much
cleaner and smooth trace in figure 41b.

The hardware setup of the described test includes a PX4FMU auto-pilot
(see 1.2) and its IMU (200Hz), a Matrix Vision BlueFox camera (global shut-
ter, 752 × 480 pixel resolution, 60 fps), and a 3DRobotics6 GPS module
(5 Hz).

4.6 conclusion
Where is the robot in this world? What is around it? How can it safely

interact with its environment and how can it solve "new" emerging prob-
lems? These are four questions the research in robots perception tries to
answer. However we have already mentioned in the Introduction how the
majority of UAVs in the market today are "autonomous" in the sense they
are able to follow pre-programmed sequences of latitude/longitude/alti-
tude points, without any further information about their surroundings. We
have shown in this chapter how a possible implementation of a sensor fu-
sion architecture on a capable UAV can augment the available information
of the state of the system, providing a result that is better then the measure-
ments of the sensors taken singularly. In particular we choose to integrate
on-board the Multi Sensor Fusion, an EKF-based framework developed by

5 http://www.leica-geosystems.com/en/Total-Stations-TPS_4207.htm
6 http://3drobotics.com/

http://www.leica-geosystems.com/en/Total-Stations-TPS_4207.htm
http://3drobotics.com/

58 sensor fusion

40m

(a) GPS raw measurements

x [m]
-160 -140 -120 -100 -80 -60 -40 -20 0

y
[m

]

-20

0

20

40

60

80

100

120

140

(b) Position estimate output from sensor fusion

time [s]
0 20 40 60 80 100 120 140

x
[m

]

-200

-150

-100

-50

0

50

(c) X Position estimate

time [s]
0 20 40 60 80 100 120 140

y
[m

]

0

50

100

150

(d) Y Position estimate

Figure 40: MSF Test 1.

4.6 conclusion 59

10m

(a) GPS raw measurements

x [m]
-2 0 2 4 6 8 10 12 14 16 18

y
[m

]

-10

-5

0

5

10

(b) Position estimate output from sensor fusion

time [s]
0 10 20 30 40 50 60 70 80 90

x
[m

]

-5

0

5

10

15

20

(c) X Position estimate

time [s]
0 10 20 30 40 50 60 70 80 90

y
[m

]

-5

0

5

10

(d) Y Position estimate

Figure 41: MSF Test 2.

60 sensor fusion

Autonomous Systems Lab at ETHZ, to fuse the information coming from a
GPS receiver, the IMU and a monocular camera. In addition to offering a se-
ries of advantages with respect to other, simpler, EKF-based softwares (such
as intrinsically managing: delayed measurements, acquisitions at different
frame-rates, absolute and relative measurements, on-line estimation of the
calibration states of the sensors), one of the most appealing characteristics of
the MSF is its modularity, i.e. the possibility to assume new sensors as black-
boxes, simplifying the integration of new devices in the framework. Once
introduced the system and measurement models for the sensor payload in
use, we focused on the noise characterization of these sensors, since a cor-
rect model of the noise contributes is critical when using an EKF. Finally we
have shown and discussed the preliminary results of two tests performed
with the IMU-GPS-camera fusion running in real-time. Although these re-
sults are still preliminary and cannot be used for detailed analysis of the
performance of the system, they set an important milestone for the follow-
up of the activities and projects described in this dissertation, as it will be
further discussed in the next chapter.

5 D I S C U S S I O N A N D
C O N C L U S I O N

In this dissertation we have presented our contributions in the field of
Unmanned Aerial Systems, trying to highlight the advantages of research
in control, planning and perception in order to achieve actual autonomy in
UAVs missions. The importance of such an integration of these three dif-
ferent aspects is demonstrated by recent development in flying autonomous
systems market (see figure 44 on page 63), with new products that are grad-
ually integrating new control strategies, improved mission planner and new
devices used for better in-flight perception (and not just mission-related sen-
sor payload).

5.1 summary of this disseratation
In chapter 2 we have presented the design and implementation of a test

facility for the benchmark of visual-based routines for aerospace operations.
The focus here is on the model and the control of an autonomous quadrotor,
we have approached the problem defining a simple PID control architec-
ture completely capable of stabilizing the UAV and satisfying the system
requirements.

In chapter 3 we shifted the focus on planning, proposing an original cloud-
based architecture for mission management of one or more autonomous
agents. The platform autonomously accesses open-data from the web and
builds missions compatible with a set of given constraints. The platform
has been publicly presented in June 2014 in Turin during a demonstration
authorized by the Italian Civil Aviation Authority (ENAC).

In chapter 4 we presented an implementation of a sensor fusion architec-
ture on a capable UAV. We have presented the system (based on the Multi
Sensor Fusion, developed at ETHZ) and discussed in details the characteri-
zation of the sensors noise and the results of two tests performed with the
IMU-GPS-camera fusion running in real-time.

5.2 research outlook
The result obtained and documented in this dissertation offer some inter-

esting starting point for future research activities and - in particular - for
the follow-up of the already described STEPS and F4SC projects. In fact the
follow-up of the STEPS project requires to build and integrate an outdoor,
1 : 1 scale, benchmarking facility. The final goals of the new project are the
same as in STEPS (see 2), but working outdoor with precision and accuracy
comparable to the indoor ones is challenging since it is not possible to rely
on a standard GPS, because its error range would be too wide. A multi
sensor fusion approach could be in this case a smart way to improve the
performance of the system without the need to buy expansive device for
external outdoor tracking, such as total stations, differential or Real Time
Kinematics (RTK) GPS receivers. From a control point of view, moving out-

61

62 discussion and conclusion

Figure 42: A possible area for the new STEPS facility in Piedmont, Italy

Figure 43: An improved GUI is already available and will be used for the future
F4SC activities

door in a 1 : 1 facility would mean adding a lot of new disturbances sources,
mainly due to atmospheric agents, but also larger distances to travel; the
simple point-to-point PID-based control architecture is very likely to fail in
these conditions and new, improved trajectory controls should be studied
in this case. A better perception represents the key-factor for the future de-
velopment of the F4SC activities as well. In-flight faults due to poor GPS
signal or multi-path disturbances are simply not admissible when flying in
a city; and we have already shown in section 4.5 how a monocular camera
helps in solving this issue, without loosing the global positioning data of the
vehicle. Vision-based strategies for obstacle avoidance are also being stud-
ied. At the same time an improved open-source Graphical User Interface
(figure 43) is already available on-line1 and will let the remote user have a
better interaction with the cloud platform.

1 https://github.com/fly4smartcity/rendezvous

https://github.com/fly4smartcity/rendezvous

5.2 research outlook 63

(a) Fotokite
fotokite.com

(b) Sensefly Exom
sensefly.com

(c) DJI Inspire
dji.com

(d) U|G|CS
ugcs.com

Figure 44: Civil UAV manufacturers are progressively investing more effort in the
development of advanced control, sensors and mission planning solu-
tions.
(a) Fotokite’s solution for aerial photography exploits the dynamics prop-
erties of a tethered quadrotor to make the control of the vehicle more
intuitive; (b) Sensefly Exom UAV features a gimballed sensor head and
a total of five combined camera/sonar sensors for environmental aware-
ness ; (c) the recently released DJI Inspire uses a dedicated camera for
imporved stability in indoor navigation; (d) U|G|CS is a ground station
for advanced planning and execution of multi-vehicles missions. (Pictures
courtesy of fotokite.com, notebookitalia.it, cnet.com, ugcs.com)

fotokite.com
sensefly.com
dji.com
ugcs.com
fotokite.com
notebookitalia.it
cnet.com
ugcs.com

A V I C O N P R E C I S I O N
C H A R A C T E R I Z AT I O N

As stated in chapter 2 on page 7, to satisfy STEPS project requirements
the quadrotor position and attitude have to be known with high precision
when the photo is triggered. Vicon Bonita camera datasheet declares a posi-
tional accuracy down to 1 mm when a 4 m × 4 m area intersects the angle
of view of the camera. In order to verify both the accuracy and precision
of the system two tests have been performed. In the first one, a reference
object of known geometry has been used as the tracked object; in the second
test, the quadrotor has been directly tracked with all its motors on, in order
to check the influence of the vibrations on the system precision.

a.1 motors off
In this test the wand object has been tracked in order to get the system

precision for a steady target. The wand is a tool used to calibrate the Vicon
system cameras and to set the origin of the global reference frame as shown
in figure 45 on the following page, for this reason its geometry is known by
the Vicon system.

After the calibration the wand is left in the center of the workspace at the
same distance from each camera. Vicon system recognizes the wand object,
hence sets there the global reference frame and starts tracking it. The wand
local reference frame has been set in the center of one marker with X,Y and
Z axes parallel to the global ones, therefore the expected measuring values
are listed in table 9.

The results listed in table 9 confirms the Vicon performances declared in
the datasheet, the system precision is lower than 1 mm while the position
accuracy is in the order of 1 mm.

The figure 46 on the next page shows the three-dimensional scatter graph
of the captured position data. It is possible to notice a main cloud where
the great part of measures falls, and a separated cloud with few points.
This cloud is due to several Z position glitches as shown in figure 47 on
page 67. The main cloud extends itself mainly along the Y position axis, it
means that the precision measure is affected by a larger error with respect

Table 9: Expected values, accuracy and precision of Vicon system.

Expected values Accuracy Precision

X 7 mm 1.174 mm ±0.104 mm
Y 7 mm 0.844 mm ±0.143 mm
Z 53 mm 1.115 mm ±0.105 mm
X rotation 0 rad 1.28 · 10−3 rad ±0.83 · 10−3 rad
Y rotation 0 rad 1.15 · 10−3 rad ±1.08 · 10−3 rad
Z rotation 0 rad 4.74 · 10−3 rad ±0.90 · 10−3 rad

65

66 vicon precision characterization

Figure 45: Isometric view of the wand.

Figure 46: Three-dimensional position scatter plot [mm]

a.2 motor on 67

(a) X position. (b) X position noise.

(c) Y position. (d) Y position noise.

(e) Z position. (f) Z position noise.

Figure 47: Gaussian distribution and noise trend for the position measurements.

to others axis, indeed it presents the higher standard deviation value and
the normal distribution graph is the most dilated. The Y position measure
presents several peaks and it is affected by more noise than other measures.

In figure 48 on the next page are showed the Gaussian distributions and
the noise captures of angular measures around the axis of the global refer-
ence frame.

a.2 motor on
The aim of this test is to verify how the vibrations due to motors rotation

influences the system precision. The quadrotor is positioned on the ground
and the motors are turned on at the minimum gas value. The vibrations
on the UAV induces markers displacement; as a result a higher standard
deviation value with respect to the steady test is expected (see table 10 on
the following page).

The results of this experiment are shown in figure 50 on page 69. In
figure 49 on the following page the difference between the points clouds in
both cases is shown.

The tests confirm the good damping behaviour of the electronic platform
supports: the precision value, also with motors on, stays under 1 mm.

68 vicon precision characterization

(a) Rotation around the X axis. (b) Rotation around the X axis, noise.

(c) Rotation around the Y axis. (d) Rotation around the Y axis, noise.

(e) Rotation around the Z axis. (f) Rotation around the Z axis, noise.

Figure 48: Gaussian distribution and noise trend for the attitude measurements.

Table 10: Accuracy and precision differences, static and dynamic case.

Turn off Turn on Increment

X ±0.104 mm ±0.504 mm ±0.400 mm
Y ±0.143 mm ±0.450 mm ±0.307 mm
Z ±0.105 mm ±0.444 mm ±0.339 mm
X rotation ±0.83 · 10−3 rad ±3.18 · 10−3 rad ±2.35 · 10−3 rad
Y rotation ±1.08 · 10−3 rad ±3.90 · 10−3 rad ±2.82 · 10−3 rad
Z rotation ±0.90 · 10−3 rad ±3.60 · 10−3 rad ±2.70 · 10−3 rad

(a) Motors off. (b) Motors on.

Figure 49: Motors off vs motors on position scatter.

a.2 motor on 69

(a) Motors off. (b) Motors on.

Figure 50: X position measure with motors off and motors on.

B V I B R AT I O N A L T E S T S
During the gas dynamics characterization experiments (Gas Dynamics),

a specific vibrational behaviour of the quadrotor has been observed: in the
hovering condition the cross beams of the quadrotor presented a consider-
able vibrational motion on the propellers plane. Amplitude of this motion
varied in a range of about ±5 mm. In order to better investigate the ori-
gin of this problem some tests have been performed. These tests use the
modal analyser LMS SCADAS III1 to acquire the signals from piezoelectric
accelerometers (glued with a special wax on the motor bracket) and from
a diode excited by a laser beam, periodically interrupted by the spinning
propeller. Once acquired, the software allows the signals to be aggregated
and post-processed in a number of different ways (Fast Fourier Transform,
Frequency Domain Response, Time Domain Response).

b.1 waterfall plots
The first set of experiments tries to reproduce a flight alike vibrational

condition. Motors are controlled with a rising ramp in a range of velocities
close to the hovering one, with a laser/diode couple measuring the pro-
pellers rotational speed. The results of the analysis are shown in a waterfall
plot, presenting vibrational frequencies against angular velocity against vibra-
tion amplitude on the three axes. The SCADAS system triggers new captures
at 25 rpm steps and at each capture the software calculates the Fast Fourier
Transform FFT of the horizontal (H1) and vertical (V1) vibration on motor 1
(see figure 52 on the next page) and the horizontal (H3) vibration on motor
3 which is orthogonal to the first (see 51). The system has been tested both
with all the four motors active and with just one.

The testbed is composed by:

• Quadrotor;

• LMS SCADAS III system;

• 3 piezoelectric accelerometers;

• Laser sensor;

b.1.1 All motors on
Each waterfall of figure 53 on page 73, shows the first three rotational

orders. On waterfall related to H1 (figure 53a), a peak resonance appears on
the first order when the motor rotates at 3800 rpm, this can be related with
the response to propeller unbalance. In the same picture a clear quadratic
trend appears on the second order, this effect is probably due to the aero-
dynamic effects caused by the propeller rotation on the laser bracket. The
same trend can be found looking at the second order of the V1 waterfall on

1 http://tinyurl.com/kcojkwn

71

http://tinyurl.com/kcojkwn

72 vibrational tests

1

2

3

4

Figure 51: The quadrotor bounded on the testing ground.

H1

V1

Figure 52: Accelerometers positioning on motor 1.

the amplitude-rpm plane (see fig. 53b). The hypothesis is confirmed by the
fact that the amplitude is much lower on motor 3, that is not obstructed by
the laser sensor support. The first order of H3 has a less regular vibrational
response with two clear peaks at different angular velocities (figure 53c). It
is possible to suppose that they correspond to two critical speed excited by
the unbalance, probably also due to the interferences coming from the other
motors. In order to better investigate on the frequency response of arm and
to remove the coupled effects of the other motors, an experiment with only
motor one turned on has been performed.

b.1.2 Motor 1 on
If the motors rotate at the critical speed, the natural frequency of the body

is excited generating a resonance, at higher velocity the vibration amplitude
remains constant unless others critical speed. The analysis of the system with
a single motor on, and in particular the results shown in figure 54a, confirms
the presence of a resonance peak at 3800 rpm. This peak is likely due to the
rotation unbalance on the first critical speed. Looking then to the response
on H3 (figure 54c) this behaviour is confirmed even if motor 3 is turned
off; this effect is of particular interest since it proves that the vibrations

b.1 waterfall plots 73

(a
)H

1.
(b

)V
1.

(c
)H

3.

Fi
gu

re
53

:W
ho

le
m

ot
or

s
O

N
,w

at
er

fa
ll

pl
ot

s.

74 vibrational tests

(a)
H

1.
(b)

V
1.

(c)
H

3.

Figure
54:M

otor
1

O
N

,w
aterfallplots.

b.2 beam modal analysis 75

generated by the unbalance on motor 1 are transmitted through the vehicle
framework and excite the natural frequency of each beam. This proves that
the H3 response observed with all the motors turned on, is also affected by
the unbalances of the other motors. The quadratic trend already observed
before is still evident here in the second order V1 response (figure 54b),
but its amplitude is slightly lower, probably because there are not other
transmitted excitations from the other three motors.

b.2 beam modal analysis
In order to define the natural frequency of the arm, an impact test has

been done. The test is performed only on one arm (i.e. the whole beam +
motor + propeller system) of the quadrotor. The arm is tied on a seismic
mass and two accelerometers are attached on the motor frame as illustrated
in figure 52 on page 72. The arm is then hit by a special hammer connected
to the SCADAS system. The software records the hammer input signal mag-
nitude and the responses of the accelerometers. Because the accelerometers
are positioned in both horizontal and vertical directions, given an impact
direction, it is possible to measure the frequency response of the co-located
sensor or of the orthogonal one.

The impact test results (see figure 55 on the following page), for both hor-
izontal and vertical hammering, show a natural frequency at 63 Hz. When
the motor rotates at 3800 rpm, corresponding to 63Hz, the unbalance excites
the beam natural frequency causing a resonance hence an high vibration on
the XY plane.

b.3 results
We start from the data on the weight of the quadrotor (1.56 kg corre-

sponding approximately to 15.3 N) and use the combination of the thrust
and rpm characteristics (see section Gas Dynamics) to compute the hovering
rpm value for the vehicle, which result in about 3800 rpm, corresponding to
63 Hz.

GASH
cmd =

TH

0.1489
= 15.3/0.1489 ≈ 103 (53)

ωH
rpm = −0.06589 ·GASH

cmd
2
+ 36.67 ·GASH

cmd + 751.2 ≈ 3800 rpm ≈ 63 Hz
(54)

It has been then confirmed that the vibration rises because of the motors
unbalance, in fact unfortunately the quadrotor hovering angular velocity
corresponds to a critical speed of the system and flying in the hovering con-
dition excites the beams causing large vibrations. The vibrational behaviour
stresses the whole system and can cause fatigue problem. Probably the
stress in carbon tube is negligible but this seems not to be true for pro-
pellers, since several catastrophic failures has occurred during the tests. The
results suggest that a possible solution to this problem would be to increase
the beam stiffness using unidirectional carbon fiber beams instead of the
multi-directional ones used until now. Further impact tests on the beam
demonstrate that, in the unidirectional case, the natural frequency of the

76 vibrational tests

(a) Frequency response to a horizontal hammer tap.

(b) Frequency response to a vertical hammer tap.

Figure 55: Impact test frequency responses on motor 1 using multidirectional carbon
fiber beam.

b.3 results 77

(a) Frequency response to a horizontal hammer tap.

(b) Frequency response to a vertical hammer tap.

Figure 56: Impact test frequency responses on motor 1 using unidirectional carbon
fiber beam.

arm shifts to higher frequencies, with a both horizontal and vertical natural
frequency at 90 Hz, as shown in figure 56.

According to equation 53 on page 75 and 54 on page 75, a natural fre-
quency of 90 Hz moves the critical speed from 3800 rpm to 5400 rpm, out of
the hovering range. During the flight the propellers angular velocity will
always be lower than 5400 rpm, this ensures a less critical behaviour.

C F LY 4 S M A R TC I T Y P L AT F O R M
M E S S A G E S

c.1 mission planner messages set
Listing 1: Action.msg

string name

int8 DEVICE = 0

int8 FEEDBACK = 1

int8 CHECK = 2

int8 UNICAST_NOTIFY = 3

int8 MULTICAST_NOTIFY = 4

int8 BROADCAST_NOTIFY = 5

enumerate above

int8 type

filled only in case of DeviceAction and Feedback

string action_name

filled only in case of DeviceAction and Feedback

Parameter[] parameters

filled only in case of Notify (any kind) or CheckNotification

string slot_name

filled only in case of MulticastNotify or UnicastNotify

string[] receivers_name �
Listing 2: Bool.msg

bool data �
Listing 3: Coordinate.msg

float64 latitude

float64 longitude

float64 altitude

float64 heading �
Listing 4: CoordinateArray.msg

Coordinate[] waypoint �
Listing 5: Drone.msg

Header header

string name

string type_name

Coordinate home

Move[] movements

string[] slot_names

uint8 SAFE=0

uint8 NORMAL=1

uint8 AGGRESSIVE=2

uint8 travel_mode �
79

80 fly4smartcity platform messages

Listing 6: ListString.msg

std_msgs/String[] list �
Listing 7: Move.msg

string name

uint8 START=0

uint8 STOP=1

uint8 TAKE_OFF=2

uint8 LAND=3

uint8 GO_TO=4

uint8 HOVER=5

uint8 CIRCLE=6

uint8 HEAD_TO=7

#enumerated above

uint8 type

Action[] pre_actions

Action[] post_actions

#filled only in case of TakeOff and Circle moves

float64 altitude

#filled only in case of Goto or Circle move

Coordinate target_position

uint8 DIRECT=0

uint8 HORIZONTAL_FIRST=1

uint8 VERTICAL_FIRST=2

#enumerated above, filled only in case of GoTo move

uint8 strategy

#filled only in case of Hover or Circle moves

duration duration

#following parameters are filled only in case Circle move

float64 radius

bool clockwise

#filled only in case of HeadTo move

float64 direction �
Listing 8: Parameter.msg

string key

string value �
Listing 9: SensorPacket.msg

GPS_current_position

float64 c_longit

float64 c_latit

int32 c_altit

GPS_home_position

float64 h_longit

float64 h_latit

int32 h_altit

GPS_target_position

float64 t_longit

float64 t_latit

int32 t_altit

Flight_status

uint8 current_wayp

uint8 tot_wayp

int16 altimeter

c.2 open data messages set 81

uint16 fly_time

uint8 grd_speed

int16 top_speed

Attitude

int16 compass_heading

int8 roll_ang

int8 pitch_ang

uint8 battery �
c.2 open data messages set

Listing 10: Coordinate.msg

float64 x

float64 y

float64 z �
Listing 11: Data.msg

Status status

Open_data[] data �
Listing 12: OpenData.msg

int8 TYPE_STATIC=0

uint8 TYPE_DYNAMIC=1

uint8 type

string label

Parameter[] attributes

geometry_msgs/Polygon area �
Listing 13: Parameter.msg

string key

string value �
Listing 14: Polygon.msg

Coordinate[] vertex �
Listing 15: Status.msg

int8 status_code

string reason �
evi

D I M U C H A R A C T E R I Z AT I O N
This appendix briefly summarizes the results obtained after the character-

ization of the PX4FMU IMU’s sensors. The standard sensors-conditioning
chain implemented in the PX4FMU is here simplified in a sampler stage fol-
lowed by a first hardware low-pass filter (HW LPF), embedded in the IMU
IC circuit, and a software one (SW LPF), implemented in the PH firmware.
The chain is illustrated in figure 57. The experiments are performed given
two different configurations of the sampling frequency Fs and the cut-off fre-
quencies of the two hardware and software low-pass filtering stages, fCHW

and fCSW.

Fs

SW LPFHW LPF

Integrated Circuit

SENS s(k)

Figure 57: Conditioning chain for the PX4FMU’s inertial sensors.

Figures 58, 59, 60 and 61 show the results (samples distribution, time
history and noise spectral density) of the characterization experiments per-
formed for each of the 15 seconds-long s(k)i acquisitions, using two distinct
parameters sets, both for the accelerometers and the gyroscopes. While the
first parameter set (set 0) is the one currently in use in the autopilot, the
second one is useful to understand how different settings influences the ex-
periments’ output. In particular, in the second case the software low-pass
filter has been turned off, with the cut-off frequency of the hardware one
almost matching the Nyquist frequency of the signal (~100 Hz). This results
in an high quantization of the gyroscopes readings (61a and 61b) and in a
(predictably) flat noise-density spectrum (60c and 61c). The maximum error
on the value of the noise spectral density computed by the toolbox is 52%
and it may look very high; however it has to be noted that only a single value
for the noise spectral densities of the three accelerometers (and similarly for
the gyroscopes) is given by the datasheet. Since usually a conservative ap-
proach is used for describing this parameters, the datasheet value is likely
to be the worst-case (the most "noisy") among the three values of the noise
spectral densities, computed for all the axes of the two sensors. A compar-
ison of the worst experimentally found NSD value with the datasheet one
would reveal different error ranges: 17% (z-axis accelerometer NSD) and
just 1% (x-axis gyroscope NSD).

The results of the experiments are summarized in tables 12 and 13, while
table 11 offers a quick summary of the experiment setups and the reference
to the associated figures, for a better readability.

83

84 imu characterization

Table 11: IMU characterization experiments - Parameters.

sensors
parameters

section
FS fC

HW fC
SW

set 0
accelerometers

200 Hz 42 Hz 30 Hz
58

gyroscopes 59

set 1
accelerometers

200 Hz 10 Hz 30 Hz
60

gyroscopes 61

Table 12: IMU characterization experiments - Results (set 0).

s̄ RMSs NSDs NSDs (datasheet) % error

[m/s2] [m/s2]
[

m/s2√
Hz

] [
m/s2√

Hz

]
acc.

ax -0.0865 0.0113 0.00186
0.00392

52%
ay 0.1026 0.0116 0.00189 52%
az 9.8511 0.0184 0.00324 17%

[rad/s] [rad/s]
[

rad/s√
Hz

] [
rad/s√

Hz

]
gyr.

ωx 0.000364 0.000507 0.0000864
0.0000873

1%
ωy -0.000732 0.000423 0.0000718 17%
ωz 0.003783 0.000476 0.0000788 10%

Table 13: IMU characterization experiments - Results (set 1).

s̄ RMSs NSDs NSDs (datasheet) % error

[m/s2] [m/s2]
[

m/s2√
Hz

] [
m/s2√

Hz

]
acc.

ax 0.0275 0.0204 0.0021
- -ay -0.3276 0.0207 0.0020

az 10.2365 0.0298 0.0029

[rad/s] [rad/s]
[

rad/s√
Hz

] [
rad/s√

Hz

]
gyr.

ωx 0.008347 0.000981 0.0000962
- -ωy 0.013806 0.000854 0.0000853

ωz 0.013704 0.000969 0.0000981

imu characterization 85

−0.1 −5 · 10−2 0 5 · 10−2 0.1
0

50

100

150

200

250

300

Y Acceleration values [m/s2]
#

of
oc

cu
rr

en
ce

s

−0.1 −5 · 10−2 0 5 · 10−2 0.1
0

50

100

150

200

250

300

X Acceleration values [m/s2]

#
of

oc
cu

rr
en

ce
s

−0.1 −5 · 10−2 0 5 · 10−2 0.1
0

50

100

150

200

250

300

Z Acceleration values [m/s2]

#
of

oc
cu

rr
en

ce
s

(a) Accelerometers samples distribution

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

−5

0

5

·10−2

time [s]

Y
A

cc
el

er
at

io
n

[m
/s

2]

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

−5

0

5

·10−2

time [s]

X
A

cc
el

er
at

io
n

[m
/s

2]

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

−5

0

5

·10−2

time [s]

Z
A

cc
el

er
at

io
n

[m
/s

2]

(b) Accelerometers time history

0 20 40 60 80 100
−110

−100

−90

−80

−70

−60

−50

−40

HW cut-off: 42.00 Hz
SW cut-off: 30.00 Hz

Frequency [Hz]

Po
w

er
Sp

ec
tr

al
D

en
si

ty
[(

m
/s

2)2 /H
z]

0 20 40 60 80 100
−110

−100

−90

−80

−70

−60

−50

−40

HW cut-off: 42.00 Hz
SW cut-off: 30.00 Hz

Frequency [Hz]

Po
w

er
Sp

ec
tr

al
D

en
si

ty
[(

m
/s

2)2 /H
z]

0 20 40 60 80 100
−110

−100

−90

−80

−70

−60

−50

−40

HW cut-off: 42.00 Hz
SW cut-off: 30.00 Hz

Frequency [Hz]

Po
w

er
Sp

ec
tr

al
D

en
si

ty
[(

m
/s

2)2 /H
z]

(c) Accelerometers noise spectral density

Figure 58: Measurement set 0 - Accelerometers characterization.

86 imu characterization

−2 −1 0 1 2 3

·10−3

0

50

100

150

200

250

Z Angular Velocity values [rad/s]

#
of

oc
cu

rr
en

ce
s

−2 −1 0 1 2 3

·10−3

0

50

100

150

200

250

X Angular Velocity values [rad/s]

#
of

oc
cu

rr
en

ce
s

−2 −1 0 1 2 3

·10−3

0

50

100

150

200

250

Y Angular Velocity values [rad/s]

#
of

oc
cu

rr
en

ce
s

(a) Gyroscopes samples distribution

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
−2

−1

0

1

2

3
·10−3

time [s]

Z
A

ng
ul

ar
Ve

lo
ci

ty
[r

ad
/s

]

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
−2

−1

0

1

2

3
·10−3

time [s]

Y
A

ng
ul

ar
Ve

lo
ci

ty
[r

ad
/s

]

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
−2

−1

0

1

2

3
·10−3

time [s]

X
A

ng
ul

ar
Ve

lo
ci

ty
[r

ad
/s

]

(b) Gyroscopes time history

0 20 40 60 80 100
−140

−130

−120

−110

−100

−90

−80

−70

HW cut-off: 42.00 Hz
SW cut-off: 30.00 Hz

Frequency [Hz]

Po
w

er
Sp

ec
tr

al
D

en
si

ty
[(

ra
d/

s)
2 /H

z]

0 20 40 60 80 100
−140

−130

−120

−110

−100

−90

−80

−70

HW cut-off: 42.00 Hz
SW cut-off: 30.00 Hz

Frequency [Hz]

Po
w

er
Sp

ec
tr

al
D

en
si

ty
[(

ra
d/

s)
2 /H

z]

0 20 40 60 80 100
−140

−130

−120

−110

−100

−90

−80

−70

HW cut-off: 42.00 Hz
SW cut-off: 30.00 Hz

Frequency [Hz]

Po
w

er
Sp

ec
tr

al
D

en
si

ty
[(

ra
d/

s)
2 /H

z]

(c) Gyroscopes noise spectral density

Figure 59: Measurement set 0 - Gyroscopes characterization.

imu characterization 87

−0.1 −5 · 10−2 0 5 · 10−2 0.1
0

100

200

300

400

500

600

Z Acceleration values [m/s2]

#
of

oc
cu

rr
en

ce
s

−0.1 −5 · 10−2 0 5 · 10−2 0.1
0

100

200

300

400

500

600

X Acceleration values [m/s2]

#
of

oc
cu

rr
en

ce
s

−0.1 −5 · 10−2 0 5 · 10−2 0.1
0

100

200

300

400

500

600

Y Acceleration values [m/s2]
#

of
oc

cu
rr

en
ce

s

(a) Accelerometers samples distribution

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
−0.1

−5 · 10−2

0

5 · 10−2

0.1

time [s]

Z
A

cc
el

er
at

io
n

[m
/s

2]

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
−0.1

−5 · 10−2

0

5 · 10−2

0.1

time [s]

Y
A

cc
el

er
at

io
n

[m
/s

2]

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
−0.1

−5 · 10−2

0

5 · 10−2

0.1

time [s]

X
A

cc
el

er
at

io
n

[m
/s

2]

(b) Accelerometers time history

0 20 40 60 80 100
−100

−90

−80

−70

−60

−50

−40

HW cut-off: 98.00 Hz

Frequency [Hz]

Po
w

er
Sp

ec
tr

al
D

en
si

ty
[(

m
/s

2)2 /H
z]

0 20 40 60 80 100
−100

−90

−80

−70

−60

−50

−40

HW cut-off: 98.00 Hz

Frequency [Hz]

Po
w

er
Sp

ec
tr

al
D

en
si

ty
[(

m
/s

2)2 /H
z]

0 20 40 60 80 100
−100

−90

−80

−70

−60

−50

−40

HW cut-off: 98.00 Hz

Frequency [Hz]

Po
w

er
Sp

ec
tr

al
D

en
si

ty
[(

m
/s

2)2 /H
z]

(c) Accelerometers noise spectral density

Figure 60: Measurement set 1 - Accelerometers characterization.

88 imu characterization

−4 −2 0 2 4

·10−3

0

500

1,000

1,500

2,000

2,500

Z Angular Velocity values [rad/s]

#
of

oc
cu

rr
en

ce
s

−4 −2 0 2 4

·10−3

0

500

1,000

1,500

2,000

2,500

X Angular Velocity values [rad/s]

#
of

oc
cu

rr
en

ce
s

−4 −2 0 2 4

·10−3

0

500

1,000

1,500

2,000

2,500

Y Angular Velocity values [rad/s]

#
of

oc
cu

rr
en

ce
s

(a) Gyroscopes samples distribution

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

−4

−2

0

2

4

·10−3

time [s]

Z
A

ng
ul

ar
Ve

lo
ci

ty
[r

ad
/s

]

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

−4

−2

0

2

4

·10−3

time [s]

Y
A

ng
ul

ar
Ve

lo
ci

ty
[r

ad
/s

]

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

−4

−2

0

2

4

·10−3

time [s]

X
A

ng
ul

ar
Ve

lo
ci

ty
[r

ad
/s

]

(b) Gyroscopes time history

0 20 40 60 80 100
−120

−115

−110

−105

−100

−95

−90

−85

−80

−75

−70

HW cut-off: 98.00 Hz

Frequency [Hz]

Po
w

er
Sp

ec
tr

al
D

en
si

ty
[(

ra
d/

s)
2 /H

z]

0 20 40 60 80 100
−120

−115

−110

−105

−100

−95

−90

−85

−80

−75

−70

HW cut-off: 98.00 Hz

Frequency [Hz]

Po
w

er
Sp

ec
tr

al
D

en
si

ty
[(

ra
d/

s)
2 /H

z]

0 20 40 60 80 100
−120

−115

−110

−105

−100

−95

−90

−85

−80

−75

−70

HW cut-off: 98.00 Hz

Frequency [Hz]

Po
w

er
Sp

ec
tr

al
D

en
si

ty
[(

ra
d/

s)
2 /H

z]

(c) Gyroscopes noise spectral density

Figure 61: Measurement set 1 - Gyroscopes characterization.

B I B L I O G R A P H Y

Atzori, L., A. Iera, and G. Morabito
2010 “The internet of things: A survey”, Computer networks, 54, 15, pp. 2787-

2805. (Cited on p. 25.)

Augugliaro, F., A. Schoellig, and R. D’Andrea
2013 “Dance of the flying machines”, IEEE Robotics and Automation Mag-

azine, 117, December. (Cited on p. 8.)

Austin, R.
2011 Unmanned aircraft systems: UAVs design, development and deployment,

John Wiley & Sons, vol. 54.

Bouabdallah, S. and R. Siegwart
2005 “Backstepping and sliding-mode techniques applied to an indoor

micro quadrotor”, in Robotics and Automation, 2005. ICRA 2005. Pro-
ceedings of the 2005 IEEE International Conference on, IEEE, pp. 2247-
2252. (Cited on pp. 4, 35.)

Braun, R.D. and R.M. Manning
2006 “Mars exploration entry, descent and landing challenges”, in Aerospace

Conference, 2006 IEEE, IEEE, 18-pp. (Cited on p. 7.)

Carpin S., Feyzabadi S.
2014 “Risk aware path planning using hierarchical constrained Markov

decision processes”, in Proceedings of the 2014 IEEE International Con-
ference on Automation Science and Engineering, pp. 297-303. (Cited on
p. 34.)

Castillo, P., A. Dzul, and R. Lozano
2004 “Real-Time Stabilization and Tracking of a Four-Rotor Mini Rotor-

craft”, IEEE Transactions on Control Systems Technology, 12, 4 (July
2004), pp. 510-516, issn: 1063-6536, doi: 10.1109/TCST.2004.82505
2. (Cited on p. 16.)

Chen, Y., Z. Du, and M. García-Acosta
2010 “Robot as a service in cloud computing”, in Service Oriented Sys-

tem Engineering (SOSE), 2010 Fifth IEEE International Symposium on,
IEEE, pp. 151-158. (Cited on p. 25.)

Cheng, Y.
2010 “Real-time surface slope estimation by homography alignment for

spacecraft safe landing”, in Robotics and Automation (ICRA), 2010
IEEE International Conference on, IEEE, pp. 2280-2286. (Cited on p. 7.)

Cheng, Y., J. Goguen, A. Johnson, C. Leger, L. Matthies, M.S. Martin, and
R. Willson

2004 “The mars exploration rovers descent image motion estimation sys-
tem”, Intelligent Systems, IEEE, 19, 3, pp. 13-21. (Cited on p. 7.)

89

http://dx.doi.org/10.1109/TCST.2004.825052
http://dx.doi.org/10.1109/TCST.2004.825052

90 bibliography

Cheng, Y., A. Johnson, and L. Matthies
2005 “MER-DIMES: a planetary landing application of computer vision”,

in Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE
Computer Society Conference on, IEEE, vol. 1, pp. 806-813. (Cited on
p. 7.)

Cheng, Y., A. Johnson, L. Matthies, and A. Wolf
2001 “Passive imaging based hazard avoidance for spacecraft safe land-

ing”, in Proc. iSAIRAS. (Cited on p. 7.)

Chi, T., Y. Ming, S. Kuo, C. Liao, et al.
2012 “Civil UAV path planning algorithm for considering connection

with cellular data network”, in Computer and Information Technology
(CIT), 2012 IEEE 12th International Conference on, IEEE, pp. 327-331.
(Cited on p. 33.)

Chibani, A., Y. Amirat, S. Mohammed, E. Matson, N. Hagita, and M. Barreto
2013 “Ubiquitous robotics: Recent challenges and future trends”, Robotics

and Autonomous Systems, 61, 11, pp. 1162-1172. (Cited on p. 25.)

Corke, P., J. Lobo, and J. Dias
2007 “An introduction to inertial and visual sensing”, The International

Journal of Robotics Research, 26, 6, pp. 519-535. (Cited on p. 44.)

Crassidis, J.L.
2006 “Sigma-point Kalman filtering for integrated GPS and inertial nav-

igation”, Aerospace and Electronic Systems, IEEE Transactions on, 42,
2, pp. 750-756. (Cited on p. 50.)

Crick, C., G. Jay, S. Osentoski, B. Pitzer, and O.C. Jenkins
2011 “Rosbridge: ROS for non-ros users”, in Proceedings of the 15th inter-

national symposium on robotics research (ISRR). (Cited on p. 32.)

De Filippis, L., G. Guglieri, and F. Quagliotti
2011 “A Minimum Risk Approach for Path Planning of UAVs”, Journal

of Intelligent & Robotic Systems, 61, 1-4, pp. 203-219, issn: 0921-0296,
doi: 10.1007/s10846-010-9493-9. (Cited on p. 34.)

Ermacora, G., A. Toma, B. Bona, M. Chiaberge, M. Silvagni, M. Gaspardone,
and R. Antonini

2013 “A cloud robotics architecture for an emergency management and
monitoring service in a smart city environment”, in IROS - Cloud
Robotics Workshop, IEEE. (Cited on pp. 25, 26.)

Forster, C., M. Pizzoli, and D. Scaramuzza
2014 “SVO: Fast Semi-Direct Monocular Visual Odometry”, in Proc. IEEE

Intl. Conf. on Robotics and Automation. (Cited on p. 45.)

Goerzen, C., Z. Kong, and B. Mettler
2010 “A survey of motion planning algorithms from the perspective of

autonomous UAV guidance”, Journal of Intelligent and Robotic Sys-
tems, 57, 1-4, pp. 65-100. (Cited on pp. 33, 34.)

http://dx.doi.org/10.1007/s10846-010-9493-9

bibliography 91

Grancharova, A., E. Grøtli, D. Ho, and T. Johansen
2014 “UAVs Trajectory Planning by Distributed MPC under Radio Com-

munication Path Loss Constraints”, English, Journal of Intelligent &
Robotic Systems, pp. 1-20, issn: 0921-0296, doi: 10.1007/s10846-
014-0090-1, http://dx.doi.org/10.1007/s10846-014-0090-1.
(Cited on p. 33.)

Grøtli, E.I. and T.A. Johansen
2012 “Path planning for UAVs under communication constraints using

SPLAT! and MILP”, Journal of Intelligent & Robotic Systems, 65, 1-4,
pp. 265-282. (Cited on p. 33.)

Gutiérrez, P., A. Barrientos, J. del Cerro, and R. San Martín
2006 “Mission planning and simulation of unmanned aerial vehicles

with a GIS-based framework”, in Proceedings of the AIAA Guidance,
Navigation, and Control Conference and Exhibit, Keystone, CO, Paper
No. AIAA, vol. 6198. (Cited on p. 33.)

Hoffmann, G., D.G. Rajnarayan, S.L. Waslander, D. Dostal, J.S. Jang, and C.J.
Tomlin

2004 “The Stanford testbed of autonomous rotorcraft for multi agent
control (STARMAC)”, The 23rd Digital Avionics Systems Conference
(IEEE Cat. No.04CH37576), pages, doi: 10.1109/DASC.2004.139084
7. (Cited on p. 8.)

Hoffmann, G.M., H. Huang, S.L. Waslander, and C.J. Tomlin
2007 “Quadrotor helicopter flight dynamics and control: Theory and ex-

periment”, in Proc. of the AIAA Guidance, Navigation, and Control
Conference, vol. 2. (Cited on pp. 4, 35.)

How, J., B. Bethke, and A. Frank
2008 “Real-time indoor autonomous vehicle test environment”, Control

Systems, IEEE, 28, April, pp. 51-64. (Cited on p. 8.)

Huertas, A., Y. Cheng, and R. Madison
2006 “Passive imaging based multi-cue hazard detection for spacecraft

safe landing”, in Aerospace Conference, 2006 IEEE, IEEE, 14-pp. (Cited
on p. 7.)

Hunziker, D., M. Gajamohan, M. Waibel, and R. D’Andrea
2013 “Rapyuta: The roboearth cloud engine”, in Robotics and Automa-

tion (ICRA), 2013 IEEE International Conference on, IEEE, pp. 438-
444. (Cited on pp. 25, 27.)

Jun, M. and R. D’Andrea
2003 “Path planning for unmanned aerial vehicles in uncertain and ad-

versarial environments”, in Cooperative Control: Models, Applications
and Algorithms, Springer, pp. 95-110. (Cited on p. 33.)

Kamei, K., S. Nishio, N. Hagita, and M. Sato
2012 “Cloud networked robotics”, Network, IEEE, 26, 3, pp. 28-34. (Cited

on p. 25.)

Kaplan, E.D. and C.J. Hegarty
2005 Understanding GPS: principles and applications, Artech house. (Cited

on p. 51.)

http://dx.doi.org/10.1007/s10846-014-0090-1
http://dx.doi.org/10.1007/s10846-014-0090-1
http://dx.doi.org/10.1007/s10846-014-0090-1
http://dx.doi.org/10.1109/DASC.2004.1390847
http://dx.doi.org/10.1109/DASC.2004.1390847

92 bibliography

Koenig, S. and M. Likhachev
2001 “Incremental A*”, in NIPS, pp. 1539-1546. (Cited on p. 34.)
2002 “D* Lite”, in AAAI/IAAI, pp. 476-483. (Cited on p. 34.)

Langley, R.B.
1999 “Dilution of precision”, GPS world, 10, 5, pp. 52-59. (Cited on p. 53.)

Lanza, P., N. Noceti, C. Maddaleno, A. Toma, L. Zini, and F. Odone
2012 “A vision-based navigation facility for planetary entry descent land-

ing”, in Computer Vision–ECCV 2012. Workshops and Demonstrations,
Springer, pp. 546-555. (Cited on p. 12.)

Lindsey, Q., D. Mellinger, and V. Kumar
2012 “Construction with quadrotor teams”, Autonomous Robots, 33, 3

(June 2012), pp. 323-336, issn: 0929-5593, doi: 10.1007/s10514-
012-9305-0. (Cited on p. 8.)

Lupashin, S., M. Hehn, and M.W. Mueller
2014 “A platform for aerial robotics research and demonstration: The

Flying Machine Arena”, Mechatronics, 24, 1, pp. 41-54, issn: 0957-
4158, doi: 10.1016/j.mechatronics.2013.11.006. (Cited on p. 8.)

Lynen, S., M.W. Achtelik, S. Weiss, M. Chli, and R. Siegwart
2013 “A robust and modular multi-sensor fusion approach applied to

MAV navigation”, in Intelligent Robots and Systems (IROS), 2013
IEEE/RSJ International Conference on, IEEE, pp. 3923-3929. (Cited on
pp. 44, 47.)

Mellinger, D., N. Michael, and V. Kumar
2012 “Trajectory generation and control for precise aggressive maneu-

vers with quadrotors”, The International Journal of Robotics Research,
31, 5 (Jan. 2012), pp. 664-674, issn: 0278-3649, doi: 10.1177/027836
4911434236. (Cited on p. 8.)

Michael, N., D. Mellinger, Q. Lindsey, and V. Kumar
2010 “The GRASP Multiple Micro-UAV Testbed”, IEEE Robotics & Au-

tomation Magazine, 17, 3 (Sept. 2010), pp. 56-65, issn: 1070-9932, doi:
10.1109/MRA.2010.937855. (Cited on p. 8.)

Mitchell, H.B.
2007 Multi-sensor data fusion: an introduction, Springer Science & Business

Media. (Cited on p. 43.)

Quigley, M., K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler,
and A.Y. Ng

2009 “ROS: an open-source Robot Operating System”, in ICRA workshop
on open source software, vol. 3, p. 5. (Cited on p. 26.)

Quintas, J., P. Menezes, and J. Dias
2011 “Cloud robotics: towards context aware robotic networks”, in Inter-

national Conference on Robotics, pp. 420-427. (Cited on p. 25.)

Ritz, R., M.W. Müller, M. Hehn, and R. D’Andrea
2012 “Cooperative quadrocopter ball throwing and catching”, 2012 IEEE/RSJ

International Conference on Intelligent Robots and Systems (Oct. 2012),
pp. 4972-4978, doi: 10.1109/IROS.2012.6385963. (Cited on p. 8.)

http://dx.doi.org/10.1007/s10514-012-9305-0
http://dx.doi.org/10.1007/s10514-012-9305-0
http://dx.doi.org/10.1016/j.mechatronics.2013.11.006
http://dx.doi.org/10.1177/0278364911434236
http://dx.doi.org/10.1177/0278364911434236
http://dx.doi.org/10.1109/MRA.2010.937855
http://dx.doi.org/10.1109/IROS.2012.6385963

bibliography 93

Sa, I. and P. Corke
2011 “Estimation and control for an open-source quadcopter”, Proceed-

ings of the Australasian Conference on Robotics and Automation 2011.
(Cited on p. 17.)

Sanfeliu, A., N. Hagita, and A. Saffiotti
2008 “Network robot systems”, Robotics and Autonomous Systems, 56, 10,

pp. 793-797. (Cited on p. 25.)

Sarris, Z.
2001 “Survey of UAV applications in civil markets”, in IEEE Mediter-

ranean Conference on Control and Automation, June.

Shen, S.
2014 Autonomous navigation in complex indoor and outdoor environments

with micro aerial vehicles, PhD thesis, University of Pennsylvania.
(Cited on p. 57.)

Trawny, N. and S.I. Roumeliotis
2005 “Indirect Kalman filter for 3D attitude estimation”, University of

Minnesota, Dept. of Comp. Sci. & Eng., Tech. Rep, 2. (Cited on pp. 44,
46, 49.)

Waibel, M., M. Beetz, J. Civera, R. d’Andrea, J. Elfring, D. Galvez-Lopez, K.
Haussermann, R. Janssen, J.M.M. Montiel, A. Perzylo, et al.

2011 “A World Wide Web for Robots”, IEEE Robotics & Automation Mag-
azine. (Cited on p. 25.)

Waslander, S.L., G.M. Hoffmann, and C.J. Tomlin
2005 “Multi-agent quadrotor testbed control design: integral sliding mode

vs. reinforcement learning”, 2005 IEEE/RSJ International Conference
on Intelligent Robots and Systems, pp. 3712-3717, doi: 10.1109/IROS.
2005.1545025. (Cited on p. 16.)

Weiss, S.
2012 Vision based navigation for micro helicopters, PhD thesis, Diss., Eid-

genössische Technische Hochschule ETH Zürich, Nr. 20305, 2012.
(Cited on pp. 44, 54.)

Weiss, S., M.W. Achtelik, M. Chli, and R. Siegwart
2012 “Versatile distributed pose estimation and sensor self-calibration

for an autonomous MAV”, in Robotics and Automation (ICRA), 2012
IEEE International Conference on, IEEE, pp. 31-38. (Cited on p. 44.)

Weiss, S. and R. Siegwart
2011 “Real-time metric state estimation for modular vision-inertial sys-

tems”, in Robotics and Automation (ICRA), 2011 IEEE International
Conference on, IEEE, pp. 4531-4537. (Cited on p. 46.)

Willmann, J., F. Augugliaro, T. Cadalbert, R. D’Andrea, F. Gramazio, and M.
Kohler

2012 “Aerial robotic construction towards a new field of architectural re-
search”, International journal of architectural computing, 10, 3, pp. 439-
460. (Cited on p. 8.)

FAA regulation
2012 Unmanned Aircraft Systems, http://tinyurl.com/jw42q8f. (Cited

on p. 2.)

http://dx.doi.org/10.1109/IROS.2005.1545025
http://dx.doi.org/10.1109/IROS.2005.1545025
http://tinyurl.com/jw42q8f

94 bibliography

CASR regulation
2001 Part 101 - Unmanned aircraft and rocket operations, http://tinyurl.

com/npwnc5w. (Cited on p. 1.)

TC regulation
2014 Unmanned Aerial Vehicle Regulations, http://tinyurl.com/74egk3o.

(Cited on p. 1.)

ENAC regulation
2014 La regolazione per la Sicurezza - Sistemi Aeromobili a Pilotaggio Remoto

(SAPR), http://tinyurl.com/oqaxtej. (Cited on pp. 2, 34.)

Micropilot MP2128g homepage n.d. , http://tinyurl.com/pue2892.

Parrot AR.Drone homepage n.d. , http://tinyurl.com/7dp6nnh.

Robotics in Concert 2013 , http://tinyurl.com/puomcre. (Cited on pp. 27,
30.)

Open Knowledge Foundation Blog. Defining Open Data 2013 , http://tinyu
rl.com/nhjq25u. (Cited on p. 33.)

ETHZ ASL Multi Sensor Fusion Framework n.d. , https://github.com/
ethz-asl/ethzasl_msf.

ETHZ ASL Single Sensor Fusion Framework n.d. , https://github.com/
ethz-asl/ethzasl_sensor_fusion.

http://tinyurl.com/npwnc5w
http://tinyurl.com/npwnc5w
http://tinyurl.com/74egk3o
http://tinyurl.com/oqaxtej
http://tinyurl.com/pue2892
http://tinyurl.com/7dp6nnh
http://tinyurl.com/puomcre
http://tinyurl.com/nhjq25u
http://tinyurl.com/nhjq25u
https://github.com/ethz-asl/ethzasl_msf
https://github.com/ethz-asl/ethzasl_msf
https://github.com/ethz-asl/ethzasl_sensor_fusion
https://github.com/ethz-asl/ethzasl_sensor_fusion

