
Effective partitioning method for computing

generalized inverses and their gradients

Marko D. Petković∗, Milan B. Tasić, Predrag S. Stanimirović
University of Nǐs, Faculty of Science and Mathematics,

Vǐsegradska 33, 18000 Nǐs, Serbia

E-mail: dexterofnis@gmail.com, milan12t@ptt.rs, pecko@pmf.ni.ac.rs

Abstract

We extend the algorithm for computing {1}, {1, 3}, {1, 4} inverses and their gradients from [11]
to the set of multiple-variable rational and polynomial matrices. An improvement of this extension,
appropriate to sparse polynomial matrices with relatively small number of nonzero coefficient matrices
as well as in the case when the nonzero coefficient matrices are sparse, is introduced. For that purpose,
we exploit two effective structures form [6], which make use of only nonzero addends in polynomial
matrices, and define their partial derivatives. Symbolic computational package MATHEMATICA is used
in the implementation. Several randomly generated test matrices are tested and the CPU times required
by two used effective structures are compared and discussed.

AMS Subj. Class.: 15A09, 68Q40.

Key words: Generalized inverses; differentiation; rational matrices; polynomial matrices; sparse matri-
ces; symbolic computation.

1 Introduction

The following Penrose equations are crucial in pseudoinverses definition:

(1) AXA=A, (2) XAX =X, (3) (AX)T =AX, (4) (XA)T =XA.

For a subset ‡ of the elements from the set {1, 2, 3, 4}, the set of matrices obeying the equations determined
by the set ‡ is denoted by A{‡}. A matrix from A{‡} is called an ‡-inverse of A and it is denoted by A‡.
The Moore-Penrose inverse is the unique matrix satisfying all the equations (1)–(4), and it is denoted by
A†.

A lot of methods were proposed to compute various generalized inverses of a matrix. These include
methods arising from the Cayley-Hamilton theorem, the full-rank factorization and the singular value de-
composition (see for instance, [1, 15]). Greville in [2] proposed a finite recursive algorithm for determining
the Moore-Penrose inverse. Due to its ability to undertake sequential computing, this method has been
extensively applied in statistical inference, filtering theory, linear estimation theory, optimization and also
in analytical dynamics [4]. About a decade ago, Udwadia and Kalaba gave an alternative and a simple
constructive proof of Grevilles formula [12]. A generalization of Greville’s method to the weighted Moore-
Penrose inverse is introduced in [14]. The results in [14] are established by using a new technique.

Symbolic computation of generalized inverses and their gradients is one of the most interesting areas of
computer algebra. Matrix differentiation is of considerable importance in statistics. It is especially useful in
connection with the maximum likelihood estimation of the parameters in a statistical model. The maximum
likelihood estimates of the model’s parameters satisfy the equations (known as the likelihood equations)
obtained by equating to zero the first-order partial derivatives (with respect to model’s parameters) of the
logarithm of the so-called likelihood function [3]. In many important cases, the likelihood function involves

∗Corresponding author

1

2 M.D. Petković, M.B. Tasić, P.S. Stanimirović

the determinant and/or inverse of a matrix. The gradient of the pseudo-inverse may be needed for sensitivity
analysis, optimizations or in the nonlinear least squares problems.

There is a lot of extensions of the partitioning method to sets of rational and polynomial matrices. The
algorithm for the computation of the Moore-Penrose inverse of the one-variable polynomial and/or rational
matrix, based on the Greville’s partitioning algorithm, was introduced in [8]. The extension of results from
[8] to the set of the two-variable rational and polynomial matrices is introduced in the paper [7]. The Wang’s
partitioning method from [14], aimed in the computation of the weighted Moore-Penrose inverse, is extended
to sets of one-variable rational and polynomial matrices in the paper [9]. Also the efficient algorithm for
computing the weighted Moore-Penrose inverse, appropriate for the polynomial matrices where only a few
polynomial coefficients are nonzero, is established in [6]. Udwadia and Kalaba derived in [13] a constructive
procedure for determining different types of generalized inverses for constant matrices. These results are
extended to one-variable rational and polynomial matrices in [10].

An efficient method for direct simultaneous computation of the Moore-Penrose inverse in conjunction
with its gradient is derived in [5]. Layton in [5] used the approach to simply differentiate terms arising
from the Grevile’s partitioning method. The resulting algorithm in [5] is usable and efficient because of
its unique property that it requires only elementary matrix operations, such as addition, subtraction and
multiplication. In the paper [11] the Layton’s method is combined with the representation of the Moore-
Penrose inverse of one-variable polynomial matrix from [8]. In consequence, the algorithm for computing
the gradient of the Moore-Penrose inverse for one-variable polynomial matrix is developed. Moreover, using
the representation of various types of pseudo-inverses from [10], more general algorithms for computing
partial derivatives of {1}, {1, 3} and {1, 4} inverses of one-variable rational and polynomial matrices are
derived in [11].

As usual, let R be the set of real numbers, Rm×n be the set of complex m×n matrices, and Rm×n
r ={X ∈

Rm×n | rank(X) = r}. Let A ∈ R(s1, s2, . . . , sp)m×n be arbitrary multi-variable rational or polynomial
matrix. In order to make a notation shorter we denote S = (s1, s2, . . . , sp) and write A(S) instead of
A(s1, s2, . . . , sp). Let Ai(S) be the submatrix of A(S) consisting of first i columns of A(S). If i-th column
of A(S) is denoted by ai(S), then it is obvious that Ai(S) is partitioned as Ai(S) = [Ai−1(S) | ai(S)],
i = 2, . . . , n, assuming A1(S) = [a1(S)]. The set of polynomials (resp. rational functions) with complex
coefficients in the variables S are denoted by R[S] (resp. R(S)). The set of m × n matrices with elements
in R[S] (resp. R(S)) are denoted by R[S]m×n (resp R(S)m×n). Also by O, we denote an appropriate zero
matrix and by 0, appropriate zero vector.

Main results of the present article are summarized in the following.

- Algorithms from [10], which give recursive rules for computation of A‡i (s) in terms of A‡i−1(s), s ∈ R,
are extended from the single-variable polynomial matrix case to the multi-variable polynomial matrix case.

- Algorithm which gives recurrent relations between the partial derivatives ∂A‡i (S)

∂sk
and

∂A‡i−1(S)

∂sk
, estab-

lished in [11], is improved in the case when a great number of coefficient matrices vanishes to zero matrix as
well as in the case when the nonzero coefficient matrices are sparse. In order to define effective algorithm for
computing partial derivatives of generalized inverses, it is necessary to define partial derivatives of effective
structures defined in the papers [6] and [7].

Generally, the present paper is a continuation of the papers [6, 7, 9, 10, 11] on multi-variable polynomial
matrices and sparse matrices.

Extension of results from [10, 11] to multi-variable polynomial matrices is presented in the second
section. In this way, a finite recursive algorithm for symbolic computation of generalized inverses A‡i (S) and
their gradients is derived. Algorithms effectively applicable to sparse polynomial matrices are developed in
the third section. Implementation, evaluated in the package MATHEMATICA, is exploited in development of
several illustrative examples in the last section. A comparison of two used effective structures is given.

2 Multi-variable polynomial matrix case

Udwadia and Kalaba [13] proved the following theorem which gives the expressions for compute genera-
lized inverses of partitioned matrix Ak = [Ak−1 | ak] where Ak−1 ∈ Rm×k, ak ∈ Rm×1 and k ∈ {2, 3, . . . , n}.

Effective partitioning method for computing generalized inverses... 3

Theorem 2.1. (Udwadia and Kalaba, 1999) Denote by ‡ any of following generalized inverses: {1},
{1, 3}, {1, 4} or {1, 2, 3, 4}. Also let ck = (I −AkA‡k)ak and dk = A‡kak. Then

A‡k =
[
A‡k−1 − dkbT

k

bT
k

]

where bk is given by:

1. If ck = 0 then

bk =
(A‡k−1)

T dk

1 + dT
k dk

, ‡ = {1, 2, 3, 4} or ‡ = {1, 4},

and bk is an arbitrary vector from Rm×1 if ‡ = {1, 3} or {1}.
2. Otherwise, if ck 6= 0 then

bk =
cT
k (I −Ak−1A

‡
k−1)

cT
k ck

, ‡ = {1, 4} or ‡ = {1},

and

bk =
cT
k

cT
k ck

, ‡ = {1, 3} or ‡ = {1, 2, 3, 4}

Previous theorem gives the recursive method for computing A‡ = A‡n. Note that for k = 1 and a1 6= 0
we have [10]

a‡1 =
aT
1

aT
1 a1

, ‡ = {1, 3} or ‡ = {1, 2, 3, 4}

and

a‡1 =
rT
1

rT
1 a1

, ‡ = {1} or ‡ = {1, 4}.

Moreover, for a1 = 0 trivially holds a‡1 = 0.
Based on the Theorem 2.1, Stanimirović and Tasić [10] developed an algorithm for recursive computation

of generalized inverses of one variable rational or polynomial matrix A(s). The computation of the derivative
of A‡(s) is shown by same authors in [11].

Generalizations of results form [10, 11] to the multi-variable polynomial or rational matrices gives the
following algorithm.

Algorithm 2.1 Moore-Penrose inverse, {1}, {1, 3}, {1, 4}-inverses and corresponding gradients.
Require: Initial value: matrix A(S) ∈ R(S)m×n, inverse ‡ and r1(S), . . . , rn(S) ∈ R(S)m×1 arbitrary

vectors.
1: if a1(S) = 0 then

2: A‡1(S) = aT
1 (S); ∂A‡1(S)

∂sk
= ∂aT

1 (S)
∂sk

.
3: else
4: if ‡ = {1, 2, 3, 4} or ‡ = {1, 3} then

5: A‡1(S) = aT
1 (S)

aT
1 (S)a1(S)

;

6:
∂A‡1(S)

∂sk
=

aT
1 (S)a1(S)

∂aT
1 (S)

∂sk
− ∂aT

1 (S)
∂sk

a1(S)aT
1 (S)−aT

1 (S)
∂a1(S)

∂sk
aT
1 (S)

(aT
1 (S)a1(S))2

.

7: end if
8: if ‡ = {1, 4} or ‡ = {1} then

9: A‡1(S) = rT
1 (S)

rT
1 (S)a1(S)

;

10:
∂A‡1(S)

∂sk
=

rT
1 (S)a1(S)

∂rT
1 (S)

∂sk
− ∂rT

1 (S)
∂sk

a1(S)rT
1 (S)−rT

1 (S)
∂a1(S)

∂sk
rT
1 (S)

(rT
1 (S)a1(S))2

.

11: end if

4 M.D. Petković, M.B. Tasić, P.S. Stanimirović

12: end if
13: for i = 2 to n do
14: di(S) = A‡i−1(S)ai(S);

15:
∂di(S)

∂sk
=

∂A‡i−1(S)

∂sk
ai(S) + A‡i−1(S)∂ai(S)

∂sk
;

16: ci(S) = ai(S)−Ai−1(S)di(S);
17:

∂ci(S)
∂sk

= ∂ai(S)
∂sk

− ∂Ai−1(S)
∂sk

di(S)−Ai−1(S)∂di(S)
∂sk

;
18: if ci 6= 0 then
19: if ‡ = {1, 2, 3, 4} or ‡ = {1, 3} then
20: bi(S) = ci(S)

cT
i (S)ci(S)

;

21:
∂bT

i (S)
∂sk

=
cT

i (S)ci(S)
∂cT

i (S)
∂sk

− ∂cT
i (S)

∂sk
ci(S)cT

i (S)−cT
i (S)

∂ci(S)
∂sk

cT
i (S)

(cT
i (S)ci(S))2 ;

22: end if
23: if ‡ = {1, 4} or ‡ = {1} then

24: bi(S) = (I−Ai−1(S)A‡i−1(S))T
ci

ci(S)T ci(S)

25:

∂bT
i (S)
∂sk

=
∂ci(S)T

∂sk
−ci(S)T Ai−1(S)

∂(A
‡
i−1(S))

∂sk
−ci(S)T ∂Ai−1(S)

∂sk
A‡i−1(S)− ∂ci(S)T

∂sk
Ai−1(S)A‡i−1(S)

cT
i (S)ci(S)

−
(

∂cT
i (S)

∂sk
ci(S)+cT

i (S)
∂ci(S)

∂sk

)
(ci(S)T−ci(S)T Ai−1(S)A‡i−1(S))

(cT
i (S)ci(S))2 .

26: end if
27: else
28: if ‡ = {1, 2, 3, 4} or ‡ = {1, 4} then

29: bi(S) =
(A‡i−1(S))T di(S)

1+di(S)T di(S)

30:
∂bT

i (S)
∂sk

=
(1+dT

i (S)di(S))
(

∂dT
i (S)

∂sk
A‡i−1(S)+dT

i (S)
∂(A

‡
i−1(S))

∂sk

)
−(dT

i (S)A‡i−1(S))
(

∂dT
i (S)

∂sk
di(S)+dT

i (S)
∂di(S)

∂sk

)

(1+dT
i (S)di(S))2 .

31: end if
32: if ‡ = {1, 3} or ‡ = {1} then

33: bi(S) = ri(S); ∂bT
i (S)
∂sk

= ∂rT
i (S)
∂sk

34: end if
35: end if

36: A‡i (S) =
[

A‡i−1(S)− di(S)bT
i (S)

bT
i (S)

]

37:
∂A‡i (S)

∂sk
=

∂(A‡i−1(S))

∂sk
− ∂di(S)

∂sk
bT
i (S)− di(S)∂bT

i (S)
∂sk

∂bT
i (S)
∂sk

 .

38: end for
39: return The stopping criterion: A(S)‡ = A‡n(S); ∂A(S)‡

∂sk
= ∂A‡n(S)

∂sk
.

Now assume that A(S) ∈ R[S]m×n is a multi-variable polynomial matrix. We can represent the matrix
A in the polynomial form

A(S) =
d1∑

i1=0

· · ·
dp∑

ip=0

Ai1,...,ipsi1
1 · · · sip

p =
Q∑

I=0

AIS
I , (2.1)

where I = (i1, . . . , ip), AI = Ai1,...,ip are constant m × n matrices (called the coefficient matrices), SI =
si1
1 si2

2 · · · sip
p , Q = (d1, . . . , dp) = deg A(S). Here di = deg (A(S), si) is the degree of A(S) with respect to

variable si in (2.1).

Theorem 2.2. Consider the matrix A(S)∈R[S]m×n of the form (2.1). The following statements are valid:

(1) Generalized inverse A‡i (S) ∈ R[S]i×m and its partial derivative ∂A‡i (s)

∂sk
, corresponding to the first i

Effective partitioning method for computing generalized inverses... 5

columns in A(S) have the general form

A‡i (S) =
Xi(S)
Yi(S)

, i = 1, . . . , n, (2.2)

∂A‡i (S)
∂sk

=
Yi(S)∂Xi(S)

∂sk
− ∂Yi(S)

∂sk
Xi(S)

Yi(S)2
, i = 1, . . . , n. (2.3)

where Xi(S) ∈ R[S]i×m and Yi(S) ∈ R[S].

(2) Matrix Xi(S) and polynomial Yi(S) can be computed from Xi−1(S), Yi−1(S), Ai−1(S) and ai(S) (or
ri(S)), using exact recurrence relations, for each i ≥ 2.

(3) Partial derivatives ∂Xi(s)
∂sk

and ∂Yi(s)
∂sk

can be computed from Xi−1(S), Yi−1(S), Ai−1(S), ai(S) (or

ri(S)) and partial derivatives ∂Xi−1(s)
∂sk

, ∂Yi−1(s)
∂sk

and ∂ai(s)
∂sk

(or ∂ri(s)
∂sk

), using exact recurrence relations
and no derivative operation, for each i ≥ 2.

Proof. We prove theorem by the induction. Exact relations for X1(S) and Y1(S) can be derived after the
investigations of two possible cases: a1(S) = 0 and a1(S) 6= 0.

In the case a1(S) = A1(S) = 0 it suffices to use X1(S) = 0, Y1(S) = 1. Indeed, since

∂X1(S)
∂sk

=
∂Y1(S)

∂sk
= 0,

the proof follows from Step 2 of Algorithm 2.1.

In the case a1(S) = A1(S) 6= 0 we observe two different cases, (a) and (b).

(a) Assume that ‡ = {1, 3} or ‡ = {1, 2, 3, 4}. Algorithm 2.1 computes a1(S) in steps 5 and 6. Note that
aT
1 (S) is the numerator and aT

1 (S)a1(S) is denominator of a‡1(S), given by step 5. Since X1(S) and
Y1(S) are polynomials, we conclude that X1(S) = aT

1 (S), Y1(S) = aT
1 (S)a1(S) and

∂X1(S)
∂sk

=
∂aT

1 (S)
∂sk

,
∂Y1(S)

∂sk
=

∂aT
1 (S)
∂sk

a1(S) + aT
1 (S)

∂a1(S)
∂sk

(b) Otherwise, let ‡ = {1, 4} or ‡ = {1}. Algorithm 2.1 then executes steps 9 and 10 of Algorithm 2.1.
From the same reasons as in the previous case, we have

X1(S) = rT
1 (S), Y1(S) = rT

1 (S)a1(S)

∂X1(S)
∂sk

=
∂rT

1 (S)
∂sk

,
∂Y1(S)

∂sk
=

∂rT
1 (S)
∂sk

a1(S) + rT
1 (S)

∂a1(S)
∂sk

,

Consider now the inductive step. From the inductive hypothesis we can write

A‡i−1(S) =
Xi−1(S)
Yi−1(S)

and
∂A‡i−1(S)

∂sk
=

Yi−1(S)∂Xi−1(S)
∂sk

− ∂Yi−1(S)
∂sk

Xi−1(S)

Yi−1(S)2
.

Then A‡i (S) can be computed by using Step 2 of Algorithm 2.1. From Steps 14 and 16 we have:

di(S) = A‡i−1(S)ai(S) =
Xi−1(S)ai(S)

Yi−1(S)
=

Di(S)
Yi−1(S),

ci(S) =
(

I −Ai−1(S)
Xi−1(S)
Yi−1(S)

)
ai(S)

=
(Yi−1(S)I −Ai−1(S)Xi−1(S)) ai(S)

Yi−1(S)
=

Mi−1(S)ai(S)
Yi−1(S)

=
Ci(S)

Yi−1(S)
,

6 M.D. Petković, M.B. Tasić, P.S. Stanimirović

where we denoted by Mi−1(S) = Yi−1(S)I −Ai−1(S)Xi−1(S). Note that

∂Di(S)
∂sk

=
∂Xi−1(S)

∂sk
ai(S) + Xi−1(S)

∂ai(S)
∂sk

,

∂Mi(S)
∂sk

=
∂Yi−1(S)

∂sk
I − ∂Ai−1(S)

∂sk
Xi−1(S)−Ai−1(S)

∂Xi−1(S)
∂sk

,

∂Ci(S)
∂sk

=
∂Mi−1(S)

∂sk
ai(S) + Mi−1(S)

∂ai(S)
∂sk

.

Therefore,

∂di(S)
∂sk

=
Yi−1(S)∂Di(S)

∂sk
− ∂Yi−1(S)

∂sk
Di(S)

Yi−1(S)2
,

∂ci(S)
∂sk

=
Yi−1(S)∂Ci(S)

∂sk
− ∂Yi−1(S)

∂sk
Ci(S)

Yi−1(S)2
.

In the case Ci(S) 6= 0 we have two possibilities, corresponding to the class of pseudoinverses we compute
(holds directly from steps 20, 21, 24 and 25 of Algorithm 2.1):

(a) If ‡ = {1, 4} or ‡ = {1} then

bi(S) =

(
I −Ai−1(S)Xi−1(S)

Yi−1(S)

)T
Ci(S)

Yi−1(S)

CT
i (S)Ci(S)

Y T
i−1(S)Yi−1(S)

=
MT

i−1(S)Ci(S)
CT

i (S)Ci(S)
=

Vi(S)
Wi(S)

,

∂Vi(S)
∂sk

=
∂MT

i−1(S)
∂sk

Ci(S) + MT
i−1(S)

∂Ci(S)
∂sk

,
∂Wi(S)

∂sk
=

∂CT
i (S)

∂sk
Ci(S) + CT

i (S)
∂Ci(S)

∂sk
.

(b) If ‡ = {1, 3} or ‡ = {1, 2, 3, 4} then

bi(S) =
Ci(S)

Yi−1(S)

CT
i (S)Ci(S)

Y T
i−1(S)Yi−1(S)

=
Y T

i−1(S)Ci(S)
CT

i (S)Ci(S)
=

Vi(S)
Wi(S)

,

∂Vi(S)
∂sk

=
∂Y T

i−1(S)
∂sk

Ci(S) + Y T
i−1(S)

∂Ci(S)
∂sk

,
∂Wi(S)

∂sk
=

∂CT
i (S)

∂sk
Ci(S) + CT

i (S)
∂Ci(S)

∂sk
.

Otherwise if Ci(S) = 0 we have (holds directly from steps 29, 30 and 33 of Algorithm 2.1):

(a) If ‡ = {1, 3} or ‡ = {1} then Vi(S) can be chosen arbitrarily and Wi(S) = 1.

(b) If ‡ = {1, 4} or ‡ = {1, 2, 3, 4} then

bi(S) =

XT
i−1(S)

Y T
i−1(S)

Di(S)
Yi−1(S)

1 + DT
i (S)Di(S)

Y T
i−1(S)Yi−1(S)

=
XT

i−1(S)Di(S)
Y T

i−1(S)Yi−1(S) + DT
i (S)Di(S)

=
Vi(S)
Wi(S)

,

∂Vi(S)
∂sk

=
∂XT

i−1(S)
∂sk

Di(S) + XT
i−1(S)

∂Di(S)
∂sk

,

∂Wi(S)
∂sk

=
∂Y T

i−1(S)
∂sk

Yi−1(S) + Y T
i−1(S)

∂Yi−1(S)
∂sk

+
∂DT

i (S)
∂sk

Di(S) + DT
i (S)

∂Di(S)
∂sk

.

The gradient ∂bi(S)
∂sk

is in all cases equal to

∂bi(S)
∂sk

=
Wi(S)∂Vi(S)

∂sk
− ∂Wi−1(S)

∂sk
Vi(S)

Wi(S)2
.

Now from Step 36 we obtain

A‡i (S) =

Xi−1(S)
Yi−1(S) − Di(S)

Yi−1(S)
V T

i (S)

W T
i (S)

V T
i (S)

W T
i (S)

 =

1
Yi−1(S)WT

i (S)

[
Xi−1(S)WT

i (S)−Di(S)V T
i (S)

Yi−1(S)V T
i (S)

]
.

Effective partitioning method for computing generalized inverses... 7

From the last expression we can conclude that

Xi(S) =
[
Xi−1(S)WT

i (S)−Di(S)V T
i (S)

Yi−1(S)V T
i (S)

]
, Yi(S) = Yi−1(S)WT

i (S)

and therefore

∂Xi(S)
∂sk

=

[
∂Xi−1(S)

∂sk
WT

i (S) + Xi−1(S)∂W T
i (S)

∂sk
− ∂Di(S)

∂sk
V T

i (S)−Di(S)∂V T
i (S)
∂sk

∂Yi−1(S)
∂sk

V T
i (S) + Yi−1(S)∂V T

i (S)
∂sk

]
,

∂Yi(S)
∂sk

=
∂Yi−1(S)

∂sk
WT

i (S) + Yi−1(S)
∂WT

i (S)
∂sk

.

This completes the proof by mathematical induction of the part (1) of the theorem. Parts (2) and (3)
directly hold according to the above expressions.

From Theorem 2.2 we can conclude that ∂A‡(S)
∂sk

depends only on ∂A(S)
∂sk

, A(S) and ∂R(S)
∂sk

where R(s) =
[r1(S) r2(S) · · · rn(S)] is the matrix whose columns are arbitrary vectors used in steps 9 and 10 of Algorithm
2.1.

Based on Theorem 2.2, it is not hard to construct the algorithm for computing A‡(S) and its partial
derivatives.

Remark 2.1. At the end of this section, note that parts (1) and (2) of Theorem 2.2 ares valid also in
the case of multi-variable rational and polynomial complex matrix, i.e. for A ∈ C[S]m×n. Same holds
for Algorithm 2.1 when A ∈ C(S)m×n is multi-variable rational complex matrix. In such case, the matrix
A∗ is rational or polynomial matrix with respect to the conjugated variables s1, s2, . . . , sp, i.e. A∗ ∈
R(s1, s2, . . . , sp)m×n. Hence by using conjugate-transpose operation on rational matrices, together with
matrix addition and multiplication, results will be rational or polynomial matrices with respect to the
variables s1, s2, . . . , sp, s1, s2, . . . , sp. Therefore, in the case of complex matrices, we have to assume that
S = (s1, s2, . . . , sp, sp, sp−1, . . . , s1), i.e. the number of variables is 2p.

3 Effective method

Polynomial matrices which occur in many mathematical and scientific applications are sparse, in the sense
that they have a comparatively small number of nonzero coefficients. Also, it is possible that polynomial
entries of these matrices are sparse. To avoid executing redundant operations on zero matrices in the case
when a substantial minority of nonzero elements (coefficients) is detected, appropriate sparse structures
should be used in such things. We assume that algorithms on polynomial matrices are effective if the sparse
data structure represents a matrix in a space proportional to the number of nonzero coefficients and matrix
operations are performed in a time adequate to measured sparsity.

We restate the next two definitions which provide the quantitative measure of sparsity for multi-variable
polynomial matrices.

Definition 3.1. [6] For a given matrix A(S) = [aij(S)] ∈ R[S]m×n (polynomial or constant), the first
sparse number sp1(A) is the ratio of the total number of nonzero elements and total number of elements
in A(S):

sp1(A(S)) =
|{(i, j) | aij(S) 6= 0}|

m · n .

Definition 3.2. [6] For a given polynomial matrix A(S) ∈ R[S]m×n and S = (s1, . . . , sp), the second
sparse number sp2(A(S)) is the ratio

sp2(A(S)) =
| {(i, j, k1, . . . , kp) | 0≤kj≤deg(A(S), sj), Coef(aij(S), sk1

1 · · · skp
p) 6=0} |

deg(A(S), s1) · · · deg(A(S), sp) ·m · n ,

where Coef(P (S), sk1
1 · · · skp

p) denotes the coefficient corresponding to sk1
1 · · · skp

p in polynomial P (S).

8 M.D. Petković, M.B. Tasić, P.S. Stanimirović

The first sparse number represents the density of nonzero elements. The second sparse number represents
density of nonzero coefficients contained in elements aij(S). Both sparse numbers are between 0 and 1.

In this section we briefly recall sparse storage formats Eff and Ef from [6] and consider the partial
derivative computation on both structures. The result is the effective algorithm for computing A‡(S) and
corresponding partial derivatives.

The main idea in the sparse structure Eff is to exploit only nonzero coefficient matrices AI =Ai1,...,ip 6=O
of the polynomial matrix A(S) given in the form (2.1).

Definition 3.3. [6] The effective sparse structure of the polynomial matrix A(S), defined in (2.1), is equal
to

EffA = {(J,AJ) |AJ 6= O, 0 ≤ J ≤ deg A(S)} . (3.1)

Recall that by 0 we denote appropriate zero vector and by O we denote appropriate zero matrix. Also, the
index set of this effective structure is defined by

IndA = {J |AJ 6= O, 0 ≤ J ≤ deg A(S)} . (3.2)

Define operations +, −, · and T on sparse structures by

EffA + EffB = EffA+B , EffA −EffB = EffA−B ,

EffA ·EffB = EffA·B , EffT
A = EffAT .

(3.3)

Denote the size of the structure EffA by eA = |EffA| = |IndA|.
It is not hard to prove that if C(S) = A(S) ·B(S) then eC ≤ eA + eB and hence the effective structure

EffC can be computed in the time O(eA + eB). Similarly, if D(S) = A(S) + B(S) then eD ≤ max{eA, eB}
which implies that EffD can be computed in time O(max{eA, eB}). In view of (3.3), we compute EffT

A=
{(I,AT

I) | (I,AI)∈EffA} with complexity O(eA).

Definition 3.4. The partial derivative of the sparse structure Eff of the polynomial matrix A(S), defined
in (2.1), is defined by ∂kEffA(S) = ∂sk

EffA(S) = Eff ∂A(S)
∂sk

.

Since

∂A(S)
∂sk

=
∂

∂sk

∑

J∈IndA

AJsj1
1 sj2

2 · · · sjp
p =

∑

J∈IndA,jk 6=0

jkAJsj1
1 · · · sjk−1

k−1 sjk−1
k s

jk+1
k+1 · · · sjp

p ,

we conclude that ∂kEffA(S) is equal to

∂kEffA(S) = ∂sk
EffA(S) = Eff ∂A(S)

∂sk

= {(J − ek, jkAJ) | J = (j1, j2, . . . , jp) ∈ IndA, jk 6= 0, ek = (0, . . . , 0︸ ︷︷ ︸
k−1

, 1, 0, . . . , 0)}. (3.4)

It is clear that the derivative computation can be performed in the time complexity equal to O(eA).
Usually, coefficient matrices AI in the polynomial representation (2.1), i.e. in the sparse representation

(3.1) are sparse. Using this fact we can significantly improve our sparse structure Eff by using an appropriate
structure for these constant coefficient matrices.

Definition 3.5. [6] For the constant matrix A = [aij] ∈ Rm×n, define the following sparse structure:

SpA = {(i, j, aij) | aij 6= 0} . (3.5)

Denote by sA = |SpA| the size of the structure SpA.

Similarly as in the case of EffA, we can define elementary matrix operations on SpA (see [6]). In this
way, we have the following improvement of the structure Eff :

Eff ′A =
{
(J,SpAJ

) |AJ 6= O, 0 ≤ J ≤ deg A(S)
}

= {(J, {i, j, (AJ)ij |(AJ)ij 6= 0}) |AJ 6= O, 0 ≤ J ≤ deg A(S)} .
(3.6)

Effective partitioning method for computing generalized inverses... 9

It can be seen that the complexity of computing SpA +SpB is O(sA +sB) and for SpT
A is O(sA). In the case

of multiplication the complexity depends on concrete implementation. Sparse structure Sp is implemented
in MATHEMATICA as the structure SparseArray. Note that in MATHEMATICA, the basic matrix operations are
performed in the same way on SparseArray structure and usual matrices [16]. Hence, the same code can
be used in both cases. It is also possible in object-oriented programming languages, using the inheritance
concept and virtual classes.

In the second type of the sparse structure for polynomial matrices we represent the matrix A(S) in the
form A(S) = [aij(S)], where aij(S) are scalar polynomials, and construct effective sparse structures Effaij

for each aij(S) [6].

Definition 3.6. [6] Effective structure for the scalar polynomial a(S) =
∑deg a(S)

I=1 aIS
I is defined similarly

as in the matrix case (3.1):

Efa = {(J, aJ) | aJ 6= 0, 0 ≤ J ≤ deg a(S)}. (3.7)

Sparse representation of the matrix A(S) is denoted by EfA(S) = [Efaij(S)].

If we use notations efA =
∑m

i=1

∑n
j=1 eaij

, then the complexity for the addition is O(efA + efB) while
the complexity of matrix multiplication is O (

∑n
k=1 col(A, k)row(B, k)). Here we denoted by row(B, k) =∑p

j=1 ebkj
and col(A, k) =

∑m
i=1 eaik

.
Partial derivative of the sparse structure Ef is introduced in the next definition.

Definition 3.7. The partial derivative of the sparse structure Ef of the polynomial matrix A(S), defined
in (2.1), is equal to ∂kEfA(S) = ∂sk

EfA(S) = Ef ∂A(S)
∂sk

.

As in the previous case, ∂kEfA(S) can be computed using the following relation

∂kEfA(S) = {(J − 1, jkaJ) | aJ 6= 0, 0 ≤ J ≤ deg a(S)} . (3.8)

The following algorithm is the effective partitioning method for computing the generalized inverses of
polynomial matrices and its partial derivatives. It is suitable for sparse matrices. Generally, the same
method can be used with both two presented sparse structures. Therefore, we will denote general sparse
structure with E , which can be exchanged either by Eff or Ef . Also by O we will denote the general
effective structure of an appropriate zero matrix. We also use the same symbol for the effective structure
of the number 0.

Algorithm 3.2 Computing the {1}, {1, 3}, {1, 4} or {1, 2, 3, 4} inverse A‡(S) of sparse matrix A(S) and

corresponding partial derivative ∂A‡(S)
∂sk

.

Require: Effective structure of matrix A(S)
and of the matrix R(S) =

[
r1(S) r2(S) · · · rn(S)

]
in the case ‡ = {1, 3} or ‡ = {1}.

1: EdA = ∂kEA, also compute Edai = ∂kEai and EdAi = ∂kEAi .
2: if ‡ = {1, 3} or ‡ = {1} then
3: EdR = ∂kER and Edri = ∂kEri .
4: end if
5: if Ea1 = O then
6: EX1 = O, EY1 = E1, EdX1 = O, EdY1 = O.
7: else
8: if ‡ = {1, 2, 3, 4} or ‡ = {1, 3} then
9: EX1 = ET

a1
, EY1 = ET

a1
· Ea1 , EdX1 = ET

da1
, EdY1 = ET

da1
· Ea1 + ET

a1
· Eda1 .

10: end if
11: if ‡ = {1, 4} or ‡ = {1} then
12: EX1 = ET

r1
, EY1 = ET

r1
· Ea1 , EdX1 = ∂kET

r1
, EdY1 = ∂kET

r1
· Ea1 + ET

r1
· Eda1 , where r1(S) is an

arbitrary vector.
13: end if
14: end if

10 M.D. Petković, M.B. Tasić, P.S. Stanimirović

15: for i = 2, . . . , n do
16: Edi

= EXi−1 · Eai
, Eddi

= EdXi−1 · Eai
+ EXi−1 · Edai

.
17: EMi−1 = EYi−1 · EI − EAi−1 · EXi−1 , EdMi−1 = EdYi−1 · EI − EdAi−1 · EXi−1 − EAi−1 · EdXi−1 ,
18: Eci

= EMi−1 · Eai
, Edci

= EdMi−1 · Eai
+ EMi−1 · Edai

.
19: if Eci 6= O then
20: if ‡ = {1, 4} or ‡ = {1} then

21:
EVi

= ET
Mi−1

· Eci
, EWi

= ET
ci
· Eci

,

EdVi = ET
dMi−1

· Eci + ET
Mi−1

· Edci , EdWi = ET
dci
· Eci + ET

ci
· Edci .

22: end if
23: if ‡ = {1, 3} or ‡ = {1, 2, 3, 4} then

24:
EVi = ET

Yi−1
· Eci , EWi = ET

ci
· Eci ,

EdVi
= ET

dYi−1
· Eci

+ ET
Yi−1

· Edci
, EdWi

= ET
dci
· Eci

+ ET
ci
· Edci

.
25: end if
26: else
27: if ‡ = {1, 3} or ‡ = {1} then
28: EVi

= Eri
, EWi

= E1, EdVi
= ∂kEri

, EdWi
= O.

(Eri
is an effective structure of an arbitrary vector ri(S)).

29: end if
30: if ‡ = {1, 4} or ‡ = {1, 2, 3, 4} then

31:
EVi = ET

Xi−1
· Edi , EWi = ET

Yi−1
· EYi−1 + ET

di
· Edi ,

EdVi = ET
dXi−1

· Edi + ET
Xi−1

· Eddi , EdWi = ET
dYi−1

· EYi−1 + ET
Yi−1

· EdYi−1 + ET
ddi

· Edi + ET
di
· Eddi .

32: end if
33: end if

34:
EΘi = EXi−1 · ET

Wi
− Edi · ET

Vi
, EΨi = EYi−1 · ET

Vi

EdΘi = EdXi−1 · ET
Wi

+ EXi−1 · ET
dWi

− Eddi · ET
Vi
− Edi · ET

dVi
, EdΨi = EdYi−1 · ET

Vi
+ EYi−1 · ET

dVi
.

35: Xi =
[
Θi

Ψi

]
, dXi =

[
dΘi

dΨi

]
, EYi = EYi−1 · ET

Wi
, EdYi = EdYi−1 · ET

Wi
+ EYi−1 · ET

dWi
.

36: If we use Ef or Eff sparse structure, EXi is equal respectively to:

EfXi =
[
EfΘi

EfΨi

]
, EffXi =

{(
j,

[
(Θi)j

(Ψi)j

])
| (j, (Θi)j)∈EffΘi , (j, (Ψi)j)∈EffΨi

}

∪
{(

j,

[
(Θi)j

0

])
| (j, (Θi)j) ∈ EffΘi , (Ψi)j = 0

}

∪
{(

j,

[
O

(Ψi)j

])
| (Θi)j = O, (j, (Ψi)j) ∈ EffΨi

}
(3.9)

Analogously we compute EdXi from EdΘi and EdΨi .
37: Find the polynomials Xi(S), Yi(S), dXi(S) and dYi(S) from its effective structures and compute:

A‡i (S) =
Xi(S)
Yi(S)

,

∂A‡(S)i

∂sk
=

dXi(S)Yi(S)− dYi(S)Xi(S)
Yi(S)2

(3.10)

38: end for
39: The stopping criterion is i = n. In this case is A‡(S) = A‡n(S) and ∂A‡(S)

∂sk
= ∂A‡n(S)

∂sk
.

4 Examples

Algorithm 3.2 is implemented in the programming package MATHEMATICA (version 7.0) and tested on
several test matrices. Functions KalabaEf and KalabaEff provide the implementation of Algorithm 3.2 for
Ef and Eff sparse structures effectively. Tests are run on Intel Core i5 CPU at 2.6 GHz, without multicore
optimization.

Effective partitioning method for computing generalized inverses... 11

Example 4.1. The following table contains the CPU times of functions KalabaEf and KalabaEff, while
computing {1, 3} inverses, on test matrices from [17]. All presented times are in seconds.

Table 1. CPU times corresponding to test matrices from Zielke [17]
Test matrix Alg 3.2 with Ef Alg. 3.2 with Eff

V2(s, t) 0.094 7.363
V3(s, t) 20.131 78.329
V3(s, s) 0.031 3.127
S2(s) 0.234 0.843
S3(s) 17.847 61.312
H3(s) 0.016 0.046
H4(s) 0.032 0.218
H5(s) 0.203 3.073
H6(s) 2.668 50.217

Comparing the numerical data arranged in Table 1, it is clear that the sparse structure Ef requires signifi-
cantly smaller computational time with respect to Eff structure.

We also tested our implementations on randomly generated test matrices. Results are provided for
different levels of sparsity of the input matrices.

Example 4.2. In the following tables, we provide running times of the functions KalabaEf and KalabaEff
for randomly generated test matrices of various dimensions and degrees. We have chosen six groups of tests,
as the combination of three different levels of sparsity of an input matrix (0.4, 0.6 and 0.9) and two levels
of its rank (2 and 4). That choose is made in order to demonstrate the dependence of running time of
Algorithm 3.2 of both sparsity and rank.

Table 2. Numerical experiments for various dimensions m, n and degree d
m n d Alg 3.2 with Ef Alg. 3.2 with Eff
4 4 2 0.002 0.054
4 4 4 0.013 0.059
5 4 2 0.005 0.058
5 4 4 0.012 0.103
5 5 2 0.013 0.081
5 5 4 0.017 0.103
6 4 2 0.011 0.061
6 4 4 0.025 0.136
6 5 2 0.013 0.088
6 5 4 0.033 0.201
6 6 2 0.016 0.107
6 6 4 0.058 0.359

m n d Alg 3.2 with Ef Alg. 3.2 with Eff
4 4 2 0.009 0.087
4 4 4 0.061 0.433
5 4 2 0.025 0.130
5 4 4 0.047 0.302
5 5 2 0.035 0.230
5 5 4 0.271 1.305
6 4 2 0.025 0.125
6 4 4 0.458 1.628
6 5 2 0.096 0.402
6 5 4 0.946 3.750
6 6 2 0.118 0.530
6 6 4 1.051 4.524

sp1(A(S)) = 0.4, sp2(A(S)) = 0.4, rank(A(S)) = 2 sp1(A(S)) = 0.4, sp2(A(S)) = 0.4, rank(A(S)) = 4

m n d Alg 3.2 with Ef Alg. 3.2 with Eff
4 4 2 0.027 0.122
4 4 4 0.072 0.302
5 4 2 0.029 0.138
5 4 4 0.074 0.333
5 5 2 0.057 0.243
5 5 4 0.136 0.586
6 4 2 0.055 0.202
6 4 4 0.076 0.327
6 5 2 0.052 0.222
6 5 4 0.208 0.688
6 6 2 0.142 0.507
6 6 4 0.382 1.181

m n d Alg 3.2 with Ef Alg. 3.2 with Eff
4 4 2 0.393 1.548
4 4 4 2.621 9.479
5 4 2 0.590 1.981
5 4 4 4.028 13.367
5 5 2 1.271 4.223
5 5 4 4.914 16.146
6 4 2 0.811 2.496
6 4 4 5.005 15.282
6 5 2 1.532 4.481
6 5 4 7.117 20.068
6 6 2 2.453 7.471
6 6 4 13.191 38.625

sp1(A(S)) = 0.6, sp2(A(S)) = 0.6, rank(A(S)) = 2 sp1(A(S)) = 0.6, sp2(A(S)) = 0.6, rank(A(S)) = 4

m n d Alg 3.2 with Ef Alg. 3.2 with Eff
4 4 2 0.079 0.248
4 4 4 0.179 0.509
5 4 2 0.117 0.296
5 4 4 0.288 0.634
5 5 2 0.177 0.473
5 5 4 0.542 1.117
6 4 2 0.132 0.318
6 4 4 0.384 0.757
6 5 2 0.247 0.538
6 5 4 0.733 1.330
6 6 2 0.347 0.731
6 6 4 1.072 1.895

m n d Alg 3.2 with Ef Alg. 3.2 with Eff
4 4 2 0.998 3.145
4 4 4 4.859 15.853
5 4 2 1.763 5.006
5 4 4 6.382 18.622
5 5 2 3.058 7.839
5 5 4 11.191 30.075
6 4 2 1.886 5.019
6 4 4 8.208 21.998
6 5 2 3.482 8.562
6 5 4 15.175 36.473
6 6 2 5.569 12.648
6 6 4 21.530 50.610

sp1(A(S)) = 0.9, sp2(A(S)) = 0.9, rank(A(S)) = 2 sp1(A(S)) = 0.9, sp2(A(S)) = 0.9, rank(A(S)) = 4

12 M.D. Petković, M.B. Tasić, P.S. Stanimirović

It can be noticed, from Table 2, that the running time of Algorithm 3.2 increases when the sparsity of
matrix A(S) increases. The fact that this dependence is significant, shows that sparse structures considerably
improve the performances of Algorithm 3.2. Moreover, it shows that intermediate matrices in Algorithm
3.2 are also sparse.

By comparing fourth and fifth column from each table in Table 2, we observe that the effective structure
Ef posses considerably better performances than the effective structure Eff , for all test matrices.

Finally, by comparing values in tables from left and right side of Table 2, we can see that running time
of Algorithm 3.2 depends on the rank of an input matrix A(s). That dependence is notable both for sparse
and dense matrices.

Example 4.3. We also compared Algorithm 3.2 (with both effective structures) without derivative com-
putation with Algorithm 3.1 from [10]. Results are shown in the following tables.

Table 3. Comparison of both effective structures and usual representation
m n d Alg 3.2 Alg. 3.2 Alg. 3.1

with Ef with Eff from [10]
4 4 2 0.012 0.044 0.621
4 4 4 0.025 0.105 1.217
5 4 2 0.025 0.049 0.643
5 4 4 0.027 0.118 1.617
5 5 2 0.026 0.104 0.899
5 5 4 0.052 0.208 3.931
6 5 2 0.027 0.098 1.111
6 5 4 0.062 0.213 4.150
6 6 2 0.047 0.166 2.532
6 6 4 0.135 0.348 5.528

m n d Alg 3.2 Alg. 3.2 Alg. 3.1
with Ef with Eff from [10]

4 4 2 0.088 0.312 5.538
4 4 4 0.575 1.603 18.606
5 4 2 0.193 0.614 12.199
5 4 4 0.655 1.880 42.549
5 5 2 0.212 0.684 32.841
5 5 4 1.205 3.851 111.954
6 5 2 0.343 0.986 79.631
6 5 4 1.329 4.088 331.623
6 6 2 0.427 1.383 129.777
6 6 4 2.027 6.664 487.912

sp1(A(S)) = 0.7, sp2(A(S)) = 0.5, rank(A(S)) = 2 sp1(A(S)) = 0.7, sp2(A(S)) = 0.5, rank(A(S)) = 4

Besides the before observed advantages of the sparse representation Ef with respect to the representation
Eff , from Table 3 we also observe significant acceleration of Algorithm 3.1 after the usage of both sparse
representations. We also see that the difference is larger for right table (higher value of matrix rank).

5 Conclusion

We extended the algorithm for computing {1}, {1, 3}, {1, 4}, the Moore-Penrose inverse and the weighted
Moore-Penrose inverse from [10] to the set of multiple-variable rational matrices with complex coefficients.
An adaptation of the algorithm from [11], applicable to sparse polynomial matrices is developed. Two
effective structures from [6], which make use of only nonzero addends in polynomial matrices, are used.
Partial derivatives on these sparse structures are defined. In the last section we presented illustrative
examples and compared various algorithms. Significant improvements with respect to previous results on
the set of sparse matrices are observed.

Acknowledgement

Authors wish to thank to anonymous referee for valuable comments improving the quality of the paper.
Also, authors gratefully acknowledge the support from the research project 174013 of the Serbian Ministry
of Science.

References

[1] A. Ben-Israel and T.N.E. Grevile, Generalized inverses, Theory and applications, Second edition, Cana-
dian Mathematical Society, Springer, New York, 2003.

[2] T.N.E. Grevile, Some applications of the pseudo-inverse of matrix, SIAM Rev. 3 (1960), 15–22.

[3] D.A. Harville, Matrix algebra From a Statistician’s Perspective, Springer Science+Business Media, New
York, 1997.

Effective partitioning method for computing generalized inverses... 13

[4] R.E. Kalaba, F.E. Udwadia, Analytical Dynamics: A New Approach, Cambridge University Press,
Cambridge 1996.

[5] B.J. Layton, Efficient direct computation of the pseudo-inverse and its gradient, Internat. J. Numer.
Methods Engrg. 40 (1997), 4211–4223.

[6] M.D. Petković, P.S. Stanimirović and M.B. Tasić, Effective partitioning method for computing weighted
MoorePenrose inverse, Comput. Math. Appl. 55 (2008), 1720-1734.

[7] M.D. Petković and P.S. Stanimirović, Symbolic computation of the Moore-Penrose inverse using parti-
tioning method, International Journal of Computer Mathematics 82 (2005), 355–367.

[8] P.S. Stanimirović and M.B. Tasić, Partitioning method for rational and polynomial matrices, Appl.
Math. Comput. 155 (2004), 137–163.

[9] M.B. Tasić, P.S. Stanimirović, M.D. Petković, Symbolic computation of weighted Moore-Penrose inverse
using partitioning method, Appl. Math. Comput. 189 (2007), 615–640.

[10] M.B. Tasić, P.S. Stanimirović, Symbolic and recursive computation of different types of generalized
inverses, Appl. Math. Comput. 199 (2008), 349–367.

[11] M.B. Tasić, P.S. Stanimirović, Differentiation of generalized inverses for rational and polynomial ma-
trices, Appl. Math. Comput. 216 (2010), 2092-2106.

[12] F.E. Udwadia and R.E. Kalaba, An Alternative Proof for Greville’s Formula, J. Optim. Theory Appl.
94 (1997), 23–28.

[13] F.E. Udwadia and R.E. Kalaba, A Unified Approach for the Recursive Determination of Generalized
Inverses, Comput.Math. Appl. 37 (1999), 125–130.

[14] G.R. Wang and Y.L.Chen, A recursive algorithm for computing the weighted Moore-Penrose inverse
A†MN , J. Comput. Math. 4 (1986), 74–85.

[15] G. Wang, Y. Wei, S. Qiao, Generalized inverses: theory and computations, Science Press, 2003.

[16] S. Wolfram, The MATHEMATICA Book, 5th ed., Wolfram Media/Cambridge University Press, Cham-
paign, IL 61820, USA, 2003.

[17] G. Zielke, Report on test matrices for generalized inverses, Computing, 36 (1986), 105–162.

