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Abstract

The effective ranking of documents in search engines is based on var-

ious document features, such as the frequency of the query terms in

each document, the length, or the authoritativeness of each document.

In order to obtain a better retrieval performance, instead of using a

single or a few features, there is a growing trend to create a rank-

ing function by applying a learning to rank technique on a large set

of features. Learning to rank techniques aim to generate an effective

document ranking function by combining a large number of document

features. Different ranking functions can be generated by using differ-

ent learning to rank techniques or on different document feature sets.

While the generated ranking function may be uniformly applied to all

queries, several studies have shown that different ranking functions

favour different queries, and that the retrieval performance can be

significantly enhanced if an appropriate ranking function is selected

for each individual query.

This thesis proposes Learning to Select (LTS), a novel framework that

selectively applies an appropriate ranking function on a per-query ba-

sis, regardless of the given query’s type and the number of candidate

ranking functions. In the learning to select framework, the effective-

ness of a ranking function for an unseen query is estimated from the

available neighbouring training queries. The proposed framework em-

ploys a classification technique (e.g. k-nearest neighbour) to identify

neighbouring training queries for an unseen query by using a query

feature. In particular, a divergence measure (e.g. Jensen-Shannon),

which determines the extent to which a document ranking function

alters the scores of an initial ranking of documents for a given query,



is proposed for use as a query feature. The ranking function which

performs the best on the identified training query set is then chosen

for the unseen query.

The proposed framework is thoroughly evaluated on two different

TREC retrieval tasks (namely, Web search and adhoc search tasks)

and on two large standard LETOR feature sets, which contain as

many as 64 document features, deriving conclusions concerning the

key components of LTS, namely the query feature and the identifi-

cation of neighbouring queries components. Two different types of

experiments are conducted. The first one is to select an appropriate

ranking function from a number of candidate ranking functions. The

second one is to select multiple appropriate document features from a

number of candidate document features, for building a ranking func-

tion. Experimental results show that our proposed LTS framework

is effective in both selecting an appropriate ranking function and se-

lecting multiple appropriate document features, on a per-query basis.

In addition, the retrieval performance is further enhanced when in-

creasing the number of candidates, suggesting the robustness of the

learning to select framework.

This thesis also demonstrates how the LTS framework can be de-

ployed to other search applications. These applications include the

selective integration of a query independent feature into a document

weighting scheme (e.g. BM25), the selective estimation of the rela-

tive importance of different query aspects in a search diversification

task (the goal of the task is to retrieve a ranked list of documents

that provides a maximum coverage for a given query, while avoiding

excessive redundancy), and the selective application of an appropri-

ate resource for expanding and enriching a given query for document

search within an enterprise. The effectiveness of the LTS framework is

observed across these search applications, and on different collections,

including a large scale Web collection that contains over 50 million

ii



documents. This suggests the generality of the proposed learning to

select framework.

The main contributions of this thesis are the introduction of the LTS

framework and the proposed use of divergence measures as query fea-

tures for identifying similar queries. In addition, this thesis draws

insights from a large set of experiments, involving four different stan-

dard collections, four different search tasks and large document fea-

ture sets. This illustrates the effectiveness, robustness and generality

of the LTS framework in tackling various retrieval applications.
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Chapter 1

Introduction

1.1 Introduction

The effective ranking of documents in information retrieval (IR) systems is based

on various document features, such as the frequency of query terms in each doc-

ument and the length or authority score of each document. In general, document

features can be categorised into two groups: query dependent and query inde-

pendent. Query dependent document features are mainly based on the statistics

of query terms in a document (Upstill et al., 2003), such as the frequency of

query terms in the document or can be computed by more sophisticated models,

e.g., BM25 document weighting model (Robertson et al., 1994). These query

dependent features are computed for each issued query. The query independent

document features, also known as document priors, relating perhaps to document

content, linkage or usage, are computed before retrieval time and regardless of

the query. They can be transformed into a static, per-document relevance weight

for use in ranking (Craswell et al., 2005), e.g., PageRank (Brin & Page, 1998).

Broder (2002) identified that current Web search users’ information needs,

which are represented as queries, can be classified into three types: informa-

tional, whose intent is to acquire some information assumed to be present on

one or more web pages; navigational, whose intent is to reach a particular site;

and transactional, whose intent is to perform some web-mediated activity, such

as online shopping. Different types of queries benefit differently from different

document features. For example, Kraaij et al. (2002) showed that URL type is
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1.1 Introduction

a very effective document feature for finding the homepage of an organisation

and Peng et al. (2007) showed that informational queries usually benefit from the

modelling of term dependency, or term co-occurrence.

In order to obtain a better retrieval performance, instead of using a single or

a few document features, there is a growing trend to create a ranking function

based on a large set of various document features (Geng et al., 2008; Metzler,

2007; Xu & Li, 2007). This is illustrated by the emergence of the learning to

rank field in information retrieval, where a ranking function is usually generated

based on a large number of document features. Learning to rank techniques

generate a ranking function by assigning a weight to each document feature,

then use this generated ranking function to estimate the relevance score for each

document. Several different learning to rank techniques have been proposed in the

literature (Burges et al., 2005; Cao et al., 2007; Herbrich et al., 2000; Nallapati,

2004; Xu & Li, 2007). They mainly differ in terms of the loss function used to

guide the learning process (Liu, 2009).

By using different learning to rank techniques, different ranking functions

can be generated based on different document feature sets. Most of the current

approaches usually use a single ranking function to assign a relevance score to each

document for all given queries, i.e., they systematically apply the same ranking

function to all queries. In contrast, the process of selecting an appropriate ranking

function from a number of candidate ranking functions and applying it to a given

query is called the selective application of ranking functions.

Several studies have shown that retrieval performance can be significantly en-

hanced if an appropriate ranking function is applied for each individual query (Kamps

et al., 2004; Peng & Ounis, 2009; Peng et al., 2009; Plachouras, 2006; Plachouras

& Ounis, 2004). In this thesis, we propose to selectively apply an appropriate

ranking function from a large number of candidate ranking functions for each

given query, regardless of the given query’s type. In addition, in the context

of the learning to rank paradigm, we also propose to selectively apply multiple

appropriate document features for building a ranking function, on a per-query

basis.

The remainder of the introduction describes the motivation for the work in

this thesis (Section 1.2). We present the thesis statement (Section 1.3) and its

2



1.2 Motivation

contributions (Section 1.4). We also list the origins of the material (Section 1.5),

and close this chapter with an overview of the structure for the remainder of the

thesis (Section 1.6).

1.2 Motivation

To build an effective information retrieval system that satisfies all types of users’

information needs, most of the current approaches tend to build a ranking func-

tion on a large number of different document features. Several learning to rank

techniques have been proposed to build such a ranking function, and different

ranking functions can be generated by using different learning to rank techniques

on different document feature sets. These generated ranking functions are usu-

ally systematically applied to all queries. However, many studies have shown

that different queries benefit differently from each ranking function (Kamps et

al., 2004; Peng & Ounis, 2009; Peng et al., 2009; Plachouras, 2006; Plachouras

& Ounis, 2004) and that the retrieval performance can be significantly enhanced

if an appropriate ranking function is used for each individual query. Several se-

lective retrieval approaches have been proposed in the literature (Geng et al.,

2008; Peng et al., 2009; Plachouras & Ounis, 2004; Song et al., 2004; Yang et

al., 2004), which aim to enhance the retrieval performance by applying different

retrieval strategies to different queries. However, these approaches have various

limitations and shortcomings, as described below.

Geng et al. (2008) proposed to apply a specific ranking function for each given

query. This specific ranking function is generated by applying a learning to rank

technique on a set of neighbouring training queries. However, this approach is

only investigated using a single learning to rank technique and using a fixed set

of document features. Its effectiveness is not clear when several different learning

to rank techniques are used and when the number of document features is varied.

Peng et al. (2009) proposed a decision mechanism to decide whether a given

query should be expanded using an internal or an external resource, on a per-

query basis. The decision mechanism is based on the performance (e.g. “good” or

“bad”) of a given query on the internal and external resources. Such performance

is obtained by using a query performance predictor, e.g., query scope (He & Ounis,
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1.3 Thesis Statement

2006). However, this approach may not be applicable to the selective application

of a ranking function. Indeed, the predictors mainly rely on the statistics of the

collection, which are invariant to changes in the ranking function.

Plachouras (2006) proposed a method to selectively apply an appropriate re-

trieval approach for a given query, which is based on a Bayesian decision mecha-

nism. Features such as the occurrence of query terms in the documents were used

to determine the applicability of the retrieval approaches. The retrieval perfor-

mance obtained using this approach only improved slightly over the systematic

application of a retrieval approach and actually decreased when more than two

candidate retrieval approaches are used.

Song et al. (2004) and Yang et al. (2004) tried to apply different retrieval

approaches for different query types (named page, homepage, and topic distilla-

tion). To achieve this, they proposed several different techniques (e.g. the use

of a linguistic classifier) to detect the query type. However, the obtained accu-

racy of the query type prediction is not high (Craswell & Hawking, 2004) and

queries of the same type may benefit from having different retrieval approaches

applied (Peng & Ounis, 2009).

This thesis investigates a novel framework, which is effective in selecting an

appropriate ranking function from a number of candidate ranking functions for a

given query, regardless of the given query’s type as well as the number of candidate

ranking functions/document features. In particular, this framework should not

only be able to select an appropriate ranking function, but should also be able

to select multiple appropriate document features for building a ranking function,

on a per-query basis.

1.3 Thesis Statement

The statement of this thesis is that an appropriate ranking function can be suc-

cessfully selected from a number of candidate ranking functions for each given

query, regardless of the given query’s type and the number of candidate ranking

functions/document features. This is investigated in the context of a framework,

called Learning to Select (LTS), where the effectiveness of a ranking function for a
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given query is estimated based on its performance on the already seen neighbour-

ing queries. In the learning to select framework, if the neighbouring queries of a

given query are successfully identified, then the ranking function that performs

the best on the identified neighbouring queries is selected for the given query.

The learning to select framework comprises two components: a component for

identifying the neighbouring queries and a component called query feature. The

identifying neighbouring queries component employs a classification technique

(e.g. k-nearest neighbour (Cover & Hart, 1967)) to identify a certain number of

neighbouring queries for a given query, by using a query feature which is a rep-

resentative of the characteristics of a given query. The query feature component

is used to build such a query feature. In particular, two divergence measures

(i.e. Kullback-Leibler (Kullback, 1997) and Jensen-Shannon (Lin, 1991)), used

to determine the extent to which a document ranking function alters the scores

of an initial ranking of documents, are proposed as query features in the thesis.

1.4 Contributions

The main contributions of this thesis are the following. A novel framework, called

learning to select (LTS), is introduced for selectively applying an appropriate

ranking function on a per-query basis, and regardless of the given query’s type and

the number of candidate ranking functions/document features. In this framework,

the effectiveness of a ranking function for an unseen query is estimated based on

its retrieval performance on the query’s already seen neighbouring queries. In

addition, we identify the main components of the learning to select framework:

identifying neighbouring queries and query feature. In particular, we propose to

use divergence measures as query features for identifying neighbouring queries.

Moreover, the differences between the learning to select framework and the

previously proposed selective retrieval approaches (described in Section 1.2) are

discussed. In the course of the thesis, two key research questions concerning the

learning to select framework are addressed, namely how to effectively select an

appropriate ranking function, and how to effectively select a set of appropriate

document features for building a ranking function, on a per-query basis.
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Furthermore, we thoroughly evaluate the effectiveness and robustness of the

learning to select (LTS) framework on two different retrieval tasks, namely Web

search and ad hoc search, and on two large standard document feature sets, which

contain as many as 64 document features. Moreover, we study in detail how each

component of the learning to select framework affects retrieval performance.

Finally, to show the generality of the LTS framework, in Chapter 6, we inves-

tigate how the LTS framework can be used in other search applications. These

applications include the selective application of a query independent feature. This

allows the effective integration of an appropriate query independent document

feature into a document weighting scheme on a per-query basis. Therefore, dif-

ferent document features are applied to the queries that are more likely to benefit

from these features; the selective estimation of the relative importance of differ-

ent query aspects in a search diversification task. This allows the ranked list

of documents to provide a complete coverage of different interpretations for an

ambiguous query. In particular, a Web collection that contains over 50 million

documents is used in this evaluation; and the selective application of an appro-

priate resource for expanding a given query, called selective query expansion, for

document search within an enterprise. This alleviates the mismatch problem be-

tween query terms and the intranet documents. The mismatch problem is severe

in an enterprise, because usually only a small number of people tend to create

documents according to autocratic guidelines, reflecting the enterprise policies.

1.5 Origins of the Material

The material that form parts of this thesis have found their origins in various

papers that I have published during the course of my PhD research. In particular:

• The learning to select framework as defined in Chapter 4 is based on work

published in (Peng & Ounis, 2009) (ECIR 2009). The outline of the ex-

periments in Chapter 5 is somewhat similar to those published in ECIR

2010 (Peng et al., 2010).

• The use of divergence measures as query features, as defined in Section 4.4.1,

are based on work initially published in SIGIR 2008 (Peng et al., 2008).
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• The use of bins to identify neighbouring queries, as defined in Section 4.4.2,

is based on work published in (Peng et al., 2007) (RIAO 2007) and (Peng

& Ounis, 2007) (ECIR 2007).

• The use of query performance predictors to conduct a selective external

query expansion (Section 3.4) is based on work initially published in IC-

TIR 2009 (Peng et al., 2009). The experiments on choosing an appropriate

resource for expanding a given query (Section 6.4) are based on work pub-

lished in (Peng et al., 2009) (CIKM 2009).

• The modelling of term dependency introduced in Section 2.5.2 and used in

Section 6.2 is based on work published in SIGIR 2007 (Peng et al., 2007).

1.6 Thesis Outline

The remainder of this thesis is organised as follows:

• Chapter 2 presents various document features on which this thesis relies,

including both query dependent and query independent document features.

The query dependent document features described in this chapter are de-

rived from various document weighting models (BM25, language modelling

and Divergence From Randomness), query expansion approaches, and the

modelling of the term dependency. In addition, various query independent

features (including PageRank, URL type and click distance) are described.

• Chapter 3 provides an overview of several different learning to rank tech-

niques, which are used to generate a ranking function by assigning a weight

to each document feature. These generated ranking functions are usu-

ally systematically applied to all queries, and ignore the fact that different

queries benefit differently from each ranking function. Based on a literature

survey, we introduce several existing selective retrieval approaches. How-

ever, these approaches are either not applicable to the selective application

of a ranking function, or are not able to effectively select an appropriate

ranking function from a large number of candidate ranking functions, or

are totally dependent on the identified query type which ignores the fact
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that the same type of queries may benefit differently from the same ranking

function.

• Chapter 4 introduces the learning to select framework for selectively apply-

ing an appropriate ranking function on a per-query basis. First, it presents

the general idea and the detailed algorithm of the proposed learning to

select framework. Next, it explains how to use the learning to select frame-

work to select multiple document features for building a ranking function.

Following this, the chapter provides the description of each component of

the learning to select framework and presents an example illustrating how

the learning to select framework operates. Finally, the chapter closes with a

detailed discussion on the learning to select framework in comparison with

the existing approaches in the literature.

• Chapter 5 presents the evaluation of the proposed learning to select frame-

work. The evaluation is conducted on two different retrieval tasks (i.e. Web

search and ad hoc search tasks) and on two different standard document

feature sets (i.e. LETOR 3.0 and LETOR 4.0). The document feature sets

used contain as many as 64 different document features, including query

independent and query independent features. Two different evaluations of

the learning to select framework are conducted in this chapter, including

selecting an appropriate ranking function from a number of candidate rank-

ing functions and selecting a set of appropriate document features from a

number of candidate document features for building a ranking function.

Moreover, each component of the LTS framework is thoroughly studied.

• Chapter 6 explores the deployment of the learning to select framework in

other search applications. In particular, we describe an experiment to de-

termine if the learning to select framework can be effectively applied to inte-

grate an appropriate query independent feature into a document weighting

scheme. Moreover, we examine the effectiveness of our proposed learning

to select framework in choosing an appropriate resource (i.e. document

collection) for expanding an initial query. Lastly, we test how effective

the learning to select framework is, by applying it to the xQuAD search
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diversification framework, in which an appropriate sub-query importance

estimator is selectively applied.

• Chapter 7 closes this thesis with the contributions and the conclusions

drawn from this work, as well as possible directions of future work across

the investigated search tasks.
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Chapter 2

Information Retrieval

2.1 Introduction

Information Retrieval (IR) aims at modelling, designing, and implementing sys-

tems able to provide fast and effective content-based access to large amounts of

information (Baeza-Yates, 2003). The aim of an IR system is to estimate the

relevance of information items, such as text documents, images and video, to a

user’s information need. Such information need is represented in the form of a

query, which usually corresponds to a bag of words. Users are only interested in

the information items that are relevant to their information need. The primary

goal of an IR system is to retrieve all the information items that are relevant to

a user query while retrieving as few non-relevant items as possible (Baeza-Yates

& Ribeiro-Neto, 1999). Furthermore, the retrieved information items should be

ranked from the most relevant to the least relevant.

In contrast to data retrieval, which aims to retrieve all objects that satisfy

a clearly defined condition (van Rijsbergen, 1979), information retrieval usually

deals with natural language text which is not always well structured and could

be semantically ambiguous (Baeza-Yates & Ribeiro-Neto, 1999). Therefore, there

tend to be non-relevant items(s) which could be ignored in IR. The information

retrieval field has been evolving quickly in recent years but some core techniques

are still widely used in most IR systems, such as the indexing process, which will

be described in Section 2.2.

This chapter mainly provides an overview of various document features that

this thesis relies on, including both query dependent and query independent docu-
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ment features. The query dependent document features described in this chapter

include: IR models for matching information items with queries (Section 2.3), the

query expansion and collection enrichment techniques which are used to reformu-

late users’ information need (Section 2.4), and the term dependency technique,

which aims to model the dependency between terms (Section 2.5). Apart from

these query dependent document features, we also introduce various query inde-

pendent document features, also called as document priors, such as PageRank,

in Section 2.6. At last, the evaluation of IR systems is described in Section 2.7.

2.2 Indexing

For IR systems, in order to efficiently judge whether the documents from a corpus

match a given query, a pre-process called indexing is usually applied. In general,

the objective of indexing is to extract representatives (e.g. terms) for each doc-

ument and to store them in a specific data structure (e.g. inverted file), which

provides an efficient access to these document representatives.

To better explain the indexing process, we use the following sentence as an

example, taken from (Austen, 1813):

“It is a truth universally acknowledged, that a single man in

possession of a good fortune, must be in want of a wife.”

The indexing process includes several steps, which are described in the fol-

lowing of this section.

2.2.1 Tokenisation

The first stage of the indexing process is typically known as tokenisation (Manning

et al., 2008), which is the task of chopping documents into tokens based on

the boundary between document tokens, such as whitespaces. In addition, at

this stage, all characters contained in the tokens are often lower-cased and all

punctuations are removed. After tokenisation, the above example sentence can

be viewed as:

it is a truth universally acknowledged that a single man in

possession of a good fortune must be in want of a wife
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2.2.2 Stop Words Removal

Luhn (1957) pointed out that the frequency of a term within a document can be

a good discriminator of its significance in the document. In addition, there are

many extremely frequent terms (e.g. “the”) that appear in almost all documents

of a corpus. These terms are called stop words, which bring little value for the

purpose of representing the content of documents and are normally filtered out

from the list of potential indexing terms during the indexing process (Baeza-Yates

& Ribeiro-Neto, 1999). Removing the stop words allows also the reduction of the

size of the generated document index.

Articles, prepositions, and conjunctions are natural candidates for building

such a list of stop words. Moreover, the stop words list can be extended by

determining the most frequent or least informative terms in the document col-

lection (Lo et al., 2005). As an example, a list of 425 stop words is illustrated

in (Frakes & Baeza-Yates, 1992). However, the general trend of IR systems over

time moved from the standard use of a large list of stop words (200 - 300 terms)

towards the use of a smaller list of stop words (7 - 12 terms), by exploiting the

statistics of language (Manning et al., 2008). After applying stop words removal

to our example sentence, the text is reduced to the following:

truth universally acknowledged single man possession for-

tune want wife

2.2.3 Stemming

Often, a user specifies a term (e.g. democracy) in a query when only a variant of

this term (e.g. democratic) is contained in a relevant document. Hence, it would

be beneficial for retrieval if documents containing variants of the query term were

also considered. Plurals, gerund forms, and past tense suffixes are examples of

syntactical variations which prevent a perfect match between a query term and

a respective document term (Baeza-Yates & Ribeiro-Neto, 1999). This problem

can be alleviated by applying stemming, which replaces a term with its stem, so

that different grammatical forms of terms are represented in a common base form.

A stem is the portion of a word which is obtained after chopping off its affixes.
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An example of a stem is the word employ, which is the stem of employment,

employer, employee, employed and employable.

There are several different suffix removal algorithms for the English language,

such as the one-pass Lovins stemmer (Lovins, 1968) which is the first stemming

algorithm, the best known Porter’s stemmer (Porter, 1980) and the newer tech-

nique - the Paice/Husk stemmer (Paice, 1990). Among these stemming algo-

rithms, Porter’s stemmer is the most widely used because of its simplicity and

elegance. In general, Porter’s stemmer consists of five phases of suffix removal.

Within each phase, there are various conventions to select rules, such as select-

ing the rule from each rule group that applies to the longest suffix (Manning et

al., 2008). By applying Porter’s stemming algorithm, our example sentence is

transformed as follows:

truth univers acknowledg singl man possess fortun want wife

It is easy to note that some words are unchanged (e.g. “truth” and “wife”),

some are chopped to their root (e.g. “possess”) while some are transformed into

non-English words (e.g. “univers” and “singl”).

2.2.4 Index Data Structures

To enable efficient access to document representatives, a suitable data structure

is necessary. The most widely used data structure is the inverted index (Frakes

& Baeza-Yates, 1992), which is a word-oriented mechanism. In general, the in-

verted index structure contains two components: the vocabulary and the occur-

rences (Baeza-Yates & Ribeiro-Neto, 1999). The vocabulary is a set of all different

terms extracted from the corpus by the above steps. The occurrences store each

vocabulary term’s statistics in each document, such as term frequency and term

position (see Table 2.1 for an example).

The size of the inverted index can be very large. This can be reduced by

applying appropriate compression techniques, through the way of encoding the

integers, which are normally used to represent document identifiers and term fre-

quencies, with fewer bits or bytes. The bit-wise Elias-Gamma and Elias-Unary

encodings (Elias, 1975) are commonly used for compressing document identi-

fiers and term frequencies, respectively (Witten et al., 1999). Both of them are
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vocabulary occurrences
term frequency term position

truth < 1, 1 > < 1, 1 >
univers < 1, 1 > < 1, 2 >
acknowledg < 1, 1 > < 1, 3 >
singl < 1, 1 > < 1, 4 >
man < 1, 1 > < 1, 5 >
possess < 1, 1 > < 1, 6 >
fortun < 1, 1 > < 1, 7 >
want < 1, 1 > < 1, 8 >
wife < 1, 1 > < 1, 9 >

Table 2.1: An example of the inverted index structure. We assume that a corpus
only contains one document, which only has a single sentence, which is the same
as our example sentence.

parameter-free and achieve an acceptable compression and fast decoding. In ad-

dition, it is possible to obtain a higher compression rate and a faster decoding

by applying parameterised techniques, such as Golomb codes (Golomb, 1966).

However, the choice of an appropriate parameter has a significant impact on the

compression rate when using a parameterised model. Some other compression

techniques operate on bytes instead of bits, with the aim of exploiting the opti-

mised capability of hardware to handle bytes (Williams & Zobel, 1999). Apart

from saving disk space usage, deploying a compressed index brings an additional

benefit to the retrieval speed for an IR system (Scholer et al., 2002).

2.3 Matching

With a given query, an ideal IR system should only return relevant documents

and rank these documents in decreasing order of relevance. The relevance of a

document to a given query can be estimated by various IR models, such as the

Boolean model, which is one of the oldest IR models. It is based on set theory

and Boolean algebra (Spärck Jones & Willett, 1997). Queries in the Boolean

model are formulated as Boolean expressions. As an example, with a given

Boolean query birthday AND cake (NOT card), the Boolean model would re-
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trieve all documents that contain both the terms birthday and cake but not the

term card. In addition, due to its binary decision criterion (i.e., when using the

Boolean model, a document is predicted to be either relevant or non-relevant),

the retrieved documents are returned to the user as a set without any ranking.

The lack of a ranking of the result set has been one of the major drawbacks of

the Boolean model (Salton et al., 1983a).

In contrast to the Boolean model, several other IR models have been pro-

posed to estimate the relevance of a document. One such model is the vector

space model (Salton & McGill, 1986a), where both queries and documents are

represented as vectors in the same space. Each vector dimension corresponds to

a separate term and the number of dimensions of the vector space corresponds to

the number of distinct terms in the corpus. In particular, the term occurrences

are usually weighted by the TF-IDF weighting scheme, given as follows:

score(d,Q) =
∑
t∈Q

tf · log2
N

Nt

(2.1)

where tf is the number of occurrences of the term t from query Q in document

d. N is the total number of documents in the collection, and Nt is the number

of documents in which t occurs. The TF component is motivated by the premise

that the more frequently a term occurs in a document, the more important the

term is for this document (Salton & McGill, 1986b). The component log2
N
Nt

is

called the inverse document frequency (IDF). The IDF component is used to

diminish the importance of terms have very high frequency and to increase the

importance of terms have a rare occurrence in the collection, which is also called

term specificity (Spärck Jones, 1972). A term with high IDF (namely low Nt)

is more useful than a term with low IDF. Moreover, Robertson & Spärck Jones

(1988) proposed several methods for measuring a term’s specificity. Furthermore,

the retrieved documents are ranked according to their similarity to the query,

which can be computed by various measures, such as the cosine similarity.

Another classical retrieval model is the probabilistic model (Robertson &

Spärck Jones, 1988), which is popular due to its effectiveness and strong the-

oretical foundations. Robertson (1977) assumed that the probability of relevance

of a document to a query is independent of other documents, then posed the

probability ranking principle (PRP), which states that:
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“If a reference retrieval system’s response to each request is a ranking

of the documents in the collection in order of decreasing probability of

relevance to the user who submitted the request, where the probabil-

ities are estimated as accurately as possible on the basis of whatever

data have been made available to the system for this purpose, the

overall effectiveness of the system to its user will be the best that is

obtainable on the basis of those data.”

The remainder of the current section describes particular families of the prob-

abilistic models. Section 2.3.1 describes the family of Best Match (BM) mod-

els. The language modelling approach for IR is presented in Section 2.3.2. Sec-

tion 2.3.3 discusses the Divergence From Randomness (DFR) framework of infor-

mation retrieval models.

2.3.1 Best Match Weighting Models

Starting from a basic probabilistic model (Robertson & Spärck Jones, 1988), the

weight of a term t in a document is computed as follows:

w(1) = log
(r + 0.5)/(R− r + 0.5))

(Nt − r + 0.5)/(N −Nt −R + r + 0.5)
(2.2)

where R is the number of relevant documents, r is the number of relevant doc-

uments containing the term t, Nt is the number of documents where the term t

appears and N is the number of documents contained in the collection. In addi-

tion, the above equation can be simplified when the relevance information is not

available (Croft & Harper, 1997):

w(1) = log
N −Nt + 0.5

Nt + 0.5
(2.3)

w(1) is similar to the inverse document frequency (idf): log N
Nt

.

However, the above equations only contain the IDF concept but not TF. Robert-

son et al. (1980) approached this problem by combining the probabilistic model

with the 2-Poisson model. Harter (1975) extended the original 2-Poisson work

with the hypothesis that a set of specialty terms occur randomly across the doc-

ument collection while they occur relatively more densely in an elite set of docu-

ments. The elite set of documents would be the answer to a query that contains
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the specialty terms. However, this approach involves several parameters that

cannot be set in a straight-forward manner. For this reason, Robertson & Walker

(1994) approximated the 2-Poisson model of term frequencies with a simpler for-

mula but with similar shapes and properties, given as follows:

w =
tfn

k1 + tfn
w(1) (2.4)

where k1 is a parameter that controls the saturation of tfn, which is computed

as follows:

tfn =
tf

(1− b) + b · l
avg l

(2.5)

where l is the length of document in tokens, avg l is the average length of all doc-

uments in the corpus, and b is the term frequency normalisation hyper-parameter.

Robertson et al. (1994) proposed the Best Match 25 (BM25) model, which is

used in our experiments (Chapter 6), given as follows:

score(d,Q) =
∑

t∈Q (
(k1 + 1)tfn

k1 + tfn
· (k3 + 1)qtf

k3 + qtf
· w(1)) (2.6)

where k3 is a parameter that controls the saturation of the term frequency in the

query and qtf is the frequency of a term in the query.

Document structure (or fields), such as the title and the anchor text of incom-

ing hyperlinks, have been shown to be effective in Web IR (Craswell & Hawking,

2004). Robertson et al. (2004) proposed the idea of normalising term frequency

on a per-field basis and Zaragoza et al. (2004) introduced a field-based version

of BM25, called BM25F (used in Chapter 6), which applies length normalisation

and weighting of the fields independently.

score(d,Q) =
∑

t∈Q (
(k1 + 1)tfn

k1 + tfn
· (k3 + 1)qtf

k3 + qtf
· w(1)) (2.7)

The above BM25F’ weighting function is the same as Equation (2.6). However,

BM25F applies a per-field normalisation method to assign the normalised term

frequency tfn:

tfn =
∑

f

wf · tfnf =
∑

f

wf ·
tff

(1− bf ) + bf · lf
avg lf

(2.8)
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where wf is the weight of a field f , which reflects the relative contribution of a

field to the document ranking. tfnf is the normalised term frequency on field f .

tff is the frequency of the query term in the field f . lf is the number of tokens

in the field f . avg f is the average length of field f in the collection.

2.3.2 Language Modelling

The aforementioned 2-Poisson indexing based retrieval models have two assump-

tions: the first assumption is that the within-document term frequencies (i.e. tf)

follow a mixture of two Poisson distributions; the second assumption is that the

elite set of documents would be the answer to a query that contains the spe-

cialty terms. Ponte & Croft (1998) suggested that it is not necessary to make

any parametric assumption when the actual data is available and proposed the

application of a language modelling approach in information retrieval. The in-

tuition is that users have a reasonable idea of which terms are likely to occur

in documents of interest and these terms (query) can be used to distinguish the

relevant documents from others in the collection.

In the language modelling approach, documents and queries are considered

as a sequence of words and the probability of a document d being relevant to a

given query Q can be formulated after applying Bayes’ rule:

P (d|Q) =
P (Q|d) · P (d)

P (Q)
(2.9)

where P (Q) can be safely ignored as it does not affect the ranking of documents,

P (d) is the prior probability of relevance of the document d. P (Q|d) is the prob-

ability of generating the query Q given the document d. There are various ways

to estimate this probability. In (Ponte & Croft, 1998), the probability of generat-

ing a query from a document language model is equivalent to the product of the

probability of generating each of the query terms multiplied by the product of the

probability of not generating the terms that do not appear in the query. How-

ever, in (Hiemstra, 1998), the probability of generating a query from a document

language model is only based on the product of the probability of generating the

query terms from the document language model, which is simpler, as it ignores

18



2.3 Matching

the terms that do not occur in the query:

P (Q|d) =
∏
t∈Q

P (t|d) (2.10)

where P (t|d) can be estimated with various models, such as:

P (t|d) =
tf

l
(2.11)

where tf is the number of occurrences of the query term t in document d and l

is the document length in tokens.

However, P (t|d) could be zero if the term t does not appear in the document

d. Ponte & Croft (1998) suggested that it is harsh to assign a zero probabil-

ity to these terms as documents that do not contain a query term will not be

retrieved. Instead, they proposed to supplement the document model with a col-

lection model, which is the probability of a query term t occurring in the entire

collection. This solution is also known as smoothing. Zhai & Lafferty (2004) stud-

ied the effectiveness of various smoothing techniques for language modelling in

IR, such as Jelinek-Mercer, Dirichlet and Absolute discount. The experimental

results show that not only is the retrieval performance generally sensitive to the

smoothing parameters, but also the sensitivity pattern is affected by the query

length, with performance being more sensitive to smoothing for long queries than

for short queries.

In (Hiemstra, 2001), a language modelling approach with Jelinek-Mercer smooth-

ing for ranking documents, which will be used in our experiments (Chapter 6), is

given as follows:

score(d,Q) =
∏
t∈Q

P (t|d)

≈
∑
t∈Q

log(1 +
λ · tf ·#(token)

(1− λ) · TF · l
) (2.12)

where λ is the hyper-parameter of the Jelinek-Mercer smoothing, which is between

0 and 1. tf is the number of occurrences of the query term t in the document d

and #(token) is the number of tokens in the entire collection. TF is the number

of occurrences of the query term t in the whole collection and l is the document

length in tokens.
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2.3.3 Divergence From Randomness

Amati (2003) proposed the Divergence From Randomness (DFR) framework for

building probabilistic IR weighting models, which is a generalisation of Harter’s

2-Poisson indexing model and based on the following idea:

“The more the divergence of the within-document term-frequency

from its frequency within the collection, the more the information

carried by the word t in the document d.”

In the DFR framework, the weight of a term t in a document d is a function of

two probabilities:

w(t, d) = (1− Prob2(tf |Et)) · (−log2Prob1(tf |Collection)) (2.13)

where −log2Prob1(tf |Collection) is the probability that the term t appears with

frequency tf in a document by chance, according to a given model of randomness,

also know as the randomness model component; 1 − Prob2(tf |Et) corresponds

to the information gain obtained by considering a term to be informative for a

document, also known as the aftereffect of sampling component. Et stands for the

elite set of documents, which is already defined in Section 2.3.1. In addition, the

term frequency tf can be normalised with respect to the length of the document,

so that all documents are treated equally (Singhal et al., 1996). This is called

the document length normalisation component. The three components will be

detailed in the rest of this section.

2.3.3.1 Randomness model

In the randomness model component, −log2Prob1(tf |Collection) is higher if the

probability that a term t occurs tf times is lower. A term is considered to be

more informative when −log2Prob1(tf |D) is higher. If the occurrences of a term

are distributed according to a binomial model, then the probability of observing

tf occurrences of a term in a document is given by the probability of tf successes

in a sequence of TF Bernoulli trials with N possible outcomes:

Prob1(tf |Collection) =

(
TF

tf

)
· ptf · qTF−tf (2.14)
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where TF is the frequency of a term in a collection of N documents, p = 1
N

and

q = 1− p.

There are various models that can be used as an approximation of the Bernoulli

model, such as the Poisson model (denoted as P in the DFR framework). Assum-

ing that the maximum likelihood estimator λ = TF
N

of the frequency of a term in

this collection is low, or, in other words, TF � N , the Poisson distribution can

be used to approximate the binomial model described above. In this case, the

informative content of Prob1 is given as follows:

−log2Prob1(tf |Collection) = tf ·log2
tf

λ
+(λ−tf)·log2e+0.5·log2(2π ·tf) (2.15)

2.3.3.2 Aftereffect of sampling

In the DFR framework, (1−Prob2(tf |Et)) takes into account the notion of after-

effect (Feller, 1968) of observing tf occurrences of t in a document. It corresponds

to the information gain obtained by considering a term to be informative for the

weighted document. If a term appears with a high frequency in a document, then

it is almost certain that this term is informative for this document. Amati (2003)

noted that the informative terms are rare in the collections but, in compensation,

when they occur, their frequency is very high, which indicates the importance

of these terms in the corresponding documents. In other words, it may happen

that a sudden repetition of success of a rare event increases our expectation of a

further success to almost certainty. Laplace’s law of succession (denoted as L in

the DFR framework) is one of the possible estimates of such an expectation.

1− Prob2(tf |Et) = 1− tf

1 + tf
=

1

1 + tf
(2.16)

An alternative model for computing Prob2(tf |Et) is the Bernoulli model (de-

noted as B in the DFR framework), which is defined as the ratio of two binomial

distributions:

1− Prob2(tf |Et) =
TF

n · (tf + 1)
(2.17)

where n is the document frequency of the term in the document collection.
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2.3.3.3 Document length normalisation

The length of the document simply corresponds to the number of indexed tokens

and different documents usually have different document lengths. Before using

Equation (2.13) to estimate the weight of a term in a document, the term fre-

quency tf is usually normalised with repsect to the document length, so that

all documents are treated equally. Amati (2003) assumed a decreasing density

function of the normalised term frequency with respect to the document length

and derived the following formula, which is called normalisation 2 :

tfn = tf · log2(1 + c · avg l

l
) (2.18)

where tfn is the normalised term frequency, l is the document length, avg l is

the average document length in the whole collection and c (c > 0) is a hyper-

parameter that controls the normalisation applied to the term frequency with

respect to the document length. If c = 1, then Equation (2.18) becomes:

tfn = tf · log2(1 +
avg l

l
) (2.19)

which is called normalisation 1 in the DFR framework (Amati, 2003).

2.3.3.4 Divergence From Randomness Weighting Models

A DFR document weighting model is generated from a combination of a random-

ness model for computing −log2Prob1(tf |Collection), an aftereffect model for

computing 1 − Prob2(tf |Et), and a term frequency normalisation model. Take

the PL2 weighting model as an example, which will be used in Chapter 6, the

randomness model is the Poisson distribution (Equation (2.15)), the information

gain is computed with the Laplace model (Equation (2.16)), and the term fre-

quencies are adjusted using normalisation 2 (Equation (2.18)), given as follows:

score(d,Q) =
∑
t∈Q

1

1 + tfn
(tfn · log2

tfn

λ
+ (λ− tfn) · log2e + 0.5 · log2(2π · tfn))

(2.20)
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DFR also generates a series of hyper-geometric models. The hyper-geometric

distribution is a discrete probability distribution that describes the number of suc-

cesses in a sequence of draws from a finite population without replacement. Amati

et al. (2007) proposed a hyper-geometric model, called DPH (used in Section 6.3),

which assigns the relevance score of a document d for a query Q as follows:

score(d,Q) =
∑
t∈Q

(1− F )2

tf + 1
·
(
tf · log2(tf ·

avg l

l

N

TF
)
)

+ 0.5 · log2(2π · tf · (1− F )) (2.21)

where F is given by tf/l, tf is the within-document frequency, and l is the

document length in tokens. avg l is the average document length in the collection,

N is the number of documents in the collection, and TF is the term frequency in

the collection. Note that DPH is a parameter-free model, and therefore requires

no particular tuning. qtw is the query term weight and is given by qtf/qtfmax,

where qtf is the query term frequency and qtfmax is the maximum query term

frequency among all query terms.

Macdonald et al. (2005) introduced Normalisation 2F in the DFR framework

for performing independent term frequency normalisation and weighting of fields,

and proposed the PL2F model, which assigns the relevance score of a document

d for a query Q as follows:

score(d,Q) =
∑
t∈Q

1

tfn + 1

(
tfn · log2

tfn

λ
(2.22)

+(λ− tfn) · log2 e + 0.5 · log2(2π · tfn)
)

where λ is the mean and variance of a Poisson distribution, given by λ = F/N ; F

is the frequency of the query term t in the whole collection, and N is the number

of documents in the whole collection. qtf is the query term frequency; qtfmax is

the maximum query term frequency among the query terms.

The above PL2F’ weighting function is the same as Equation (2.20). However,

in PL2F, tfn corresponds to the weighted sum of the normalised term frequencies

tff for each used field f , known as Normalisation 2F (Macdonald et al., 2005):

tfn =
∑

f

(
wf · tff · log2(1 + cf ·

avg lf
lf

)

)
, (cf > 0) (2.23)
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where tff is the frequency of term t in field f of document d; lf is the length

in tokens of field f in document d, and avg lf is the average length of the field

across all documents; cf is a hyper-parameter for each field, which controls the

term frequency normalisation; the importance of the term occurring in field f is

controlled by the weight wf .

2.4 Query Expansion and Collection Enrichment

Queries composed by the users are not always well structured and may be inad-

equate or incomplete representations of user’s information need, as most queries

are quite short and only contain 2 to 3 terms (Jansen et al., 1998; Silverstein

et al., 1999). This could result in word mismatch between query and docu-

ments (Carpineto & Romano, 2004). The problem of word mismatch is funda-

mental to IR. The most commonly used approach to solve this problem is query

expansion, which is the process of expanding the original query with additional

terms with a similar meaning or some other statistical relationships.

2.4.1 Query Expansion

Voorhees (1994) investigated the expansion of short queries based on the lexical-

semantic relations between terms. In her investigation, a lexical database, called

WordNet (Miller et al., 1990), was employed. However, little evidence that the

retrieval effectiveness could be enhanced by expanding the original query with

the selected terms was shown. The selected terms were obtained based on their

lexical relation with the original query terms.

Spärck Jones (1971) proposed to cluster terms based on their term co-

occurrence in the documents and used the obtained clusters to expand the given

queries. Following this idea, a number of similar approaches have been proposed

and are either based on global analysis or local analysis. For the global analysis

approaches, the term co-occurrence in documents is investigated in the whole

corpus (Schütze & Pedersen, 1997; Xu & Croft, 1996). As for the local analysis

approaches, only the top retrieved documents are involved with the term co-

occurrence investigation (Attar & Fraenkel, 1977; Xu & Croft, 1996). Compared
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to the local analysis, the global analysis is more computationally expensive and

less effective in retrieval performance (Xu & Croft, 1996).

Most of the current query expansion algorithms (Carpineto et al., 2001; Robert-

son, 1990; Rocchio, 1971a) follow a similar outline to Spärck Jones’ original work

in (Spärck Jones, 1971). In general, these algorithms contain the following three

steps to conduct query expansion:

Step 1 For a given query, use an IR system to obtain a list of documents, which

is also called as relevant feedback.

Step 2 Rank the terms that are contained in the relevant feedback using a spe-

cific term weighting model.

Step 3 The top ranked terms are added to the original query, and documents

are retrieved by using the expanded query.

For the first and third steps, there are many document weighting models

that can be used to obtain the relevant feedback and rank documents with the

expanded query, such as language modelling (Equation (2.12)), BM25 (Equa-

tion (2.6)) and PL2 (Equation (2.20)). In particular, in the first step, there are

three types of relevant feedback: explicit feedback, implicit feedback and pseudo-

relevant feedback. Explicit feedback is obtained through user interaction (White

et al., 2001). For a given query, the corresponding top retrieved documents are

judged by the users using a binary (i.e. “relevant” or “irrelevant”) or graded (e.g.

“not relevant”, “somewhat relevant”, “relevant”, or “highly relevant”) relevance

scale; Implicit feedback is obtained from users’ behaviour instead of their explicit

judgement (Kelly & Belkin, 2001). Such behaviour includes the duration of time

spent reading a document, page browsing and scrolling actions. Lastly, pseudo-

relevant feedback is obtained by assuming that the top retrieved documents are

relevant. It has the advantage that no user interaction is required.

2.4.1.1 Term Weighting Models

As for the second step, several term weighting models have been proposed for

ranking the terms contained in the relevant feedback (Amati, 2003; Lavrenko &

Croft, 2001; Robertson, 1990). Here, we introduce two different term weighting
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models: the Bo1 term weighting model and the KL-based term weighting model,

which have shown their effectiveness in several retrieval tasks (Amati, 2003; Han-

nah et al., 2007; McCreadie et al., 2009). The Bo1 and KL-based term weighting

models are based on the Bose-Einstein statistics and the KL divergence measure,

respectively. The basic idea of the two term weighting models is to measure the

divergence of a term’s distribution in a relevant feedback from its distribution in

the whole collection. The higher this divergence is, the more likely the term is

related to the topic of the query.

By using Pseudo-relevant feedback, for the Bo1 term weighting model, the

weight w(t) of a term t in the top T ranked documents is given by:

w(t) = tfx · log2

1 + Pn

Pn

+ log2(1 + Pn) (2.24)

where T is usually ranges from 3 to 10 (Amati, 2003), TF is the frequency of the

term t in the collection, N is the number of documents in the collection, Pn is
TF
N

, and tfx is the frequency of the query term in the top T ranked documents

The terms with highest w(t) scores from the top T ranked documents are

extracted. The number of extracted terms #(term) is another parameter involved

in the query expansion mechanism and is usually larger than T (Amati, 2003).

After expanding the original query with new query terms, a parameter-free

function is used to determine the query term weight qtw for each query term,

given as follows:

qtw =
qtf

qtfmax

+
w(t)

limTF→tfx w(t)
(2.25)

= TFmax log2

1 + Pn,max

Pn,max

+ log2(1 + Pn,max)

where limTF→tfx w(t) is the upper bound of w(t), Pn,max is given by TFmax/N ,

and TFmax is the TF of the term with the maximum w(t) in the top ranked

documents. If a query term does not appear in the most informative terms from

the top-ranked documents, its query term weight remains unchanged.

Another term weighting model which has been introduced is based on the KL

divergence measure. Using the KL model, the weight of a term t in the feedback
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document set D is given by (Amati, 2003):

w(t) = p(t|D) · log2

p(t|D)

p(t|Coll)
(2.26)

where p(t|D) = tfx/c(D) is the probability of observing the term t in the feedback

document set D, tfx is the frequency of the term t in the set D, c(D) is the number

of tokens in this set, p(t|Coll) = TF/#(token) is the probability of observing the

term t in the whole collection, TF is the frequency of t in the collection, and

#(token) is the number of tokens in the collection.

Using KL, the query term weight qtw is also determined by Equation (2.25),

while the upper bound of w(t) is given by:

lim
TF→tfx

w(t) =
TFmax · log2

#(token)
lx

lx
(2.27)

where TFmax is the collection frequency TF of the term with the maximum w(t)

in the top-ranked documents, and lx is the length of the feedback documents.

We use Bo1 term weighting model in Chapter 6 as it produces better retrieval

performance than KL in the MAP evaluation measure.

2.4.2 Collection Enrichment

Cao et al. (2008) showed that the performance of query expansion is highly

dependent on the quality of the terms added from the pseudo-relevant set, which

suggests that the selected collection for building the pseudo-relevant feedback is

an important factor for query expansion. Moreover, several studies have shown

that, for some queries, it can be advantageous to obtain the pseudo-relevant

feedback on a larger and higher-quality external collection (Diaz & Metzler, 2006;

Kwok & Chan, 1998; Peng et al., 2009).

The process of expanding a query from an external collection and retrieving

from the local collection using the expanded query is called collection enrich-

ment (Kwok & Chan, 1998), or external query expansion (Diaz & Metzler, 2006).

The collection enrichment algorithm is similar to the query expansion algorithm.

The only difference is at the first step: query expansion builds pseudo-relevant

feedback from the local collection while collection enrichment constructs a pseudo-

relevant feedback from the external collection.
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original query radio astronomy
query expansion astronomy astronomic cosmic frequency in-

terfere radio signal spectrum telescope wave
collection enrichment antennae array astronomy astronomic inter-

ferometric jansky radio ryle telescope wave-
length

Table 2.2: An illustrative example of the query expansion and collection enrich-
ment algorithms.

Table 2.2 shows an example of expanding a query by using query expansion

and collection enrichment. The query “radio astronomy” is from the TREC 2007

Enterprise track topic set, the local collection is the CERC test collection (Bailey

et al., 2007) and the external collection is the English Wikipedia corpus, which is

a snapshot from August 2008 and contains over 3 million articles written collab-

oratively by users worldwide. We note that the query is short and only contains

two terms. Moreover, many astronomy-related terms are added to enrich the

initial short query by using either query expansion or collection enrichment, such

as “spectrum”, “jansky” and “telescope”. In addition, there are some differences

in the added terms between query expansion and collection enrichment. For ex-

ample, the term “cosmic” only appears in the query that was obtained by using

query expansion, while the term “jansky” is only included in the query that was

created by using the collection enrichment algorithm. The collection enrichment

technique will be used later in Chapter 6.

2.4.3 Query Performance Predictors

Many researchers have shown the overall effectiveness of the query expansion and

collection enrichment techniques (Diaz & Metzler, 2006; Kwok & Chan, 1998;

Rocchio, 1971b; Salton et al., 1983b). However, for some “difficult” queries,

the retrieval performance obtained can be decreased after applying query ex-

pansion (Amati et al., 2004). Difficult queries are those where either the query

terms cannot agree on the top results or most of the terms do agree except for a

few outliers (Yom-Tov et al., 2005). Amati et al. (2004) showed that the retrieval

performance can be boosted by avoiding the application of query expansion on
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Predictor Type Single Co-occur
AvICTF Pre-retrieval

√
×

AvIDF Pre-retrieval
√

×
γ1 Pre-retrieval

√
×

γ2 Pre-retrieval
√

×
AvPMI Pre-retrieval

√ √

QS Pre-retrieval
√

×
CS Post-retrieval

√
×

WIG Post-retrieval
√ √

QF Post-retrieval
√

×

Table 2.3: Overview of the techniques employed by the predictors. Columns
Single and Co-occur refer to the use of the statistics of single query terms and
the co-occurrence of multiple query terms, respectively.

the “difficult” queries.

Query performance predictor was proposed to predict whether a given query

is an “easy” or a “difficult” query for a given document collection (Cronen-

Townsend et al., 2002; Hauff et al., 2008). This kind of prediction mainly relies on

the statistics of the collection for this given query, such as query term frequency

in the collection and the number of documents containing the query term.

Many query performance predictors have been proposed in IR (Cronen-Townsend

et al., 2002; Hauff et al., 2008; He & Ounis, 2006; Zhou & Croft, 2007) and

are classified into two types: pre-retrieval predictors and post-retrieval predic-

tors. Generally speaking, pre-retrieval predictors only rely on the statistics of

the collection and the query while post-retrieval predictors are more reliant on

the statistics of the top ranked documents for the query. In this section, several

query performance predictors are presented, including 6 pre-retrieval predictors

(Section 2.4.3.1) and 3 post-retrieval predictors (Section 2.4.3.2). An overview of

the techniques used by these predictors can be found in Table 2.3.

2.4.3.1 Pre-retrieval Predictors

Average Inverse Document Frequency Inverse Document Frequency (IDF)

is a measure of the general importance of a term, which has been integrated into

many weighing models (e.g. BM25) for diminishing the weight of terms that

occur frequently in the collection and increasing the weight of terms that occur
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rarely. It is computed as follows:

IDF (Q) =

|Q|∑
i=1

IDF (qi) =

|Q|∑
i=1

log
N

Nqi

(2.28)

where N is the total number of documents in the whole collection and Nqi
is the

number of documents containing the query term qi.

Based on the IDF measure, Hauff et al. (2008) proposed the Average Inverse

Document Frequency (AvIDF) predictor, which is the mean of the inverse docu-

ment frequency of the query terms, given as follows:

AvIDF (Q) =
1

|Q|
·
|Q|∑
i=1

log
N

Nqi

(2.29)

where |Q| is the number of terms in the given query Q, N is the total number of

documents in the whole collection, and Nqi
is the number of documents containing

the query term qi.

Average Inverse Collection Term Frequency In (Kwok, 1996), Inverse

Collection Term Frequency (ICTF), which is based on the frequency of query

terms in the collection, was proposed to measure the quality of a query term:

ICTF (Q) = log

|Q|∏
i=1

#(token)− TF (qi)

TF (qi)
(2.30)

where qi is a query term, #(token) is the total number of tokens in the collection

and TF (qi) is the number of occurrences of the query term qi in the collection.

The ICTF measure is similar to Inverse Document Frequency (IDF) except

that it takes into account term frequency. Based on the idea of ICTF, He & Ounis

(2006) proposed a query performance predictor, called Average Inverse Collection

Term Frequency (AvICTF), given as follows:

AvICTF (Q) =

log2

|Q|∏
i=1

#(token)

TF (qi)

|Q|
(2.31)

where |Q| is the number of terms in the given query Q, TF (qi) is the number

of occurrences of the query terms qi in the whole collection, and #(token) is the

total number of tokens in the collection.
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γ1 and γ2 For each query term, an Inverse Document Frequency score can

be calculated, which describes the informativeness that such query term car-

ries. Pirkola & Järvelin (2001) observed that the difference between the resolu-

tion power of the query terms, as represented by the IDF scores, could affect the

retrieval effectiveness of an IR system. Based on this observation, He & Ounis

(2006) hypothesised that the distribution of the IDF scores can be used to predict

the query performance and proposed two different query performance predictors,

called γ1 and γ2. In particular, they employ INQUERY’s IDF formula (Allan et

al., 1995) to compute the IDF score for each query term, given as follows:

IDF (qi) =
log2

N+0.5
Nqi

log2(N + 1)
(2.32)

where, for each query term qi from the given query Q, N is the total number of

documents in the whole collection, and Nqi
is the number of documents in which

the query term qi appears.

γ1 is defined as the standard deviation of the query terms’ IDF scores, given

as follows:

γ1(Q) = σIDF (qi) (2.33)

γ2 is defined as the maximum IDF (qi) score divided by the minimum IDF (qi)

score, given as follows:

γ2(Q) =
max

qi

IDF (qi)

min
qi

IDF (qi)
(2.34)

where maxqi
IDF (qi) is the maximum IDF scores among the query terms, and

minqi
IDF (qi) is the minimum IDF scores among the query terms.

Averaged Pointwise Mutual Information The Averaged Pointwise Mutual

Information (AvPMI) predictor was proposed to measure the mutual dependence

of each pair of query terms in the collection (Hauff et al., 2008), given as follows:

AvPMI(Q) =
1

|(qi, qj)|
∑

(qi,qj)∈Q

log2
P (qi, qj)

P (qi) · P (qj)
(2.35)

where |(qi, qj)| is the number of the possible pairs of all query terms, P (qi, qj) is

the probability that query terms qi and qj co-occur in a document, P (qi) and P (qj)
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are the probability that query terms qi and qj occur in a document individually.

These probabilities are computed as follows:

P (qi, qj) =
Nqi,qj

N
(2.36)

P (qi) =
Nqi

N
(2.37)

P (qj) =
Nqj

N
(2.38)

where Nqi,qj
is the number of documents containing both query terms qi and qj,

Nqi
is the number of documents containing query term qi, Nqj

is the number of

documents containing query term qj, and N is the total number of documents in

the whole collection.

Query Scope Plachouras et al. (2003) proposed the notion of Query Scope

(QS), which is defined as a decreasing function of the size of documents that

contain at least one query term. The estimation of query scope is based on the

statistical evidence that is obtained from a set of retrieved documents. In (Pla-

chouras et al., 2003), query scope has been used to decide whether or not to

apply the combination of content and hyperlink analyses for a given query. Fol-

lowing (Plachouras et al., 2003), He & Ounis (2006) defined the query scope

predictor as follows:

QS(Q) = −log
Nq′

N
(2.39)

where, for a given Q, Nq′ is the number of documents containing at least one of

the query term from Q, and N is the total number of documents in the collection.

Equation (2.39) shows that the QS score for a given query Q is a decreasing

function of Nq′ . A higher Nq′ score results in a lower QS score.

2.4.3.2 Post-retrieval Predictors

Clarity Score In (Cronen-Townsend et al., 2002), the concept of Clarity Score

(CS) was introduced, which is used to measure the ambiguity of a query in rela-

tion to the collection of documents being searched. For this predictor, the query

and the collection are represented by a query language model and a collection
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language model, respectively. In addition, the Kullback-Leibler divergence esti-

mation method is employed to compute the degree of ambiguity, as follows:

CS(Q) =
∑
w∈V

P (w|Q)log2
P (w|Q)

P (w|C)
(2.40)

where w is a term included in the entire vocabulary V of the collection, P (w|C)

is a collection language model, and P (w|Q) is a query language model.

The collection language model is computed as follows:

P (w|C) =
TF (w)

#(token)
(2.41)

where TF (w) is the number of occurrences of term w in the whole collection, and

#(token) is the total number of tokens in the whole collection.

The query language model is computed as follows:

P (w|Q) =
∑
d∈D

P (w|d)P (d|Q) (2.42)

where d is a document included in the retrieved document set D for a given Q,

and P (w|d) can be computed by using a document language model:

P (w|d) ' λ · P (w|d) + (1− λ) · P (w) (2.43)

= λ · tfw

l
+ (1− λ) · TFw

#(token)

where tfw is the number of occurrences of term w in the document d, TFw is

the number of occurrences of term w in the collection C, l is the total number of

tokens in the document d, #(token) is the total number of tokens in the collection

C, and λ is a parameter between 0 and 1.

After Bayesian inversion, P (d|Q) is estimated as follows:

P (d|Q) =
P (d) · P (Q|d)

P (Q)

where P (Q) can be ignored as it is the same for all documents, P (d) is the prior

probability of document d, and P (Q|d) can be computed by using a document

language model with a linear smoothing:

P (Q|d) =
∏
w∈Q

P (w|d) (2.44)

where P (w|d) is computed as Equation (2.43).
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Weighted Information Gain Most query performance predictors are based

on the statistics of individual query terms, hence ignoring term dependency.

In (Zhou & Croft, 2007), a query performance predictor, called Weighted Infor-

mation Gain (WIG), was proposed to incorporate both single terms and phrase

terms for predicting the performance of a given query. It is given as follows:

WIG(Q) =
∑
d∈C

weight(Q, d) log
P (Q, d)

P (Q, C)
(2.45)

where

weight(Q, d) =



1
K

if d ∈ D, where D is a document set sampled
from the top K retrieved documents for the
given Q

0 otherwise

(2.46)

By using the MRF model (Section 2.5.1), log P (Q, d) is computed as follows:

log P (Q, d) = − log Z1 +
∑
f∈F

λf log P (f |d) (2.47)

where Z1 is a constant that ensures the sum of P (Q, d) is equal to 1. F contains

both single query terms and phrase terms obtained by using the MRF model.

For example, assuming that query Q is “query performance predictor”, the single

query terms contained in F are “query”, “performance” and “predictor”, and the

phrase terms included in F are “query performance”, “performance predictor”

and “query predictor”. The details about how to generate phrase terms can be

found at Section 2.5. P (f |d) can be computed by using a document language

model linearly smoothed with the collection language model:

P (f |d) ' α · P (f |d) + (1− α) · P (f) (2.48)

= α · tff

l
+ (1− α) · TFf

#(token)

where tff is the number of occurrences of term f in the document d, TFf is the

number of occurrences of term f in the collection C, l and #(token) are the total

number of tokens in the document d and collection C, respectively, and α is a
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parameter between 0 and 1. λf plays a dual role, which assigns different weights

to the term and the phrase, given as follows:

λf =


λ√

#(ST )
if f ∈ ST

1− λ√
#(PT )

if f ∈ PT

(2.49)

where λ is a parameter; #(ST ) and #(PT ) are the number of single terms and

phrase terms, respectively.

Similar to log P (Q, d), log P (Q, C) can be written as:

log P (Q, C) = − log Z2 +
∑
f∈F

λf log P (f |C) (2.50)

where Z2 is a constant and P (f |C) can be computed as:

P (f |C) =
TF (f)

#(token)
(2.51)

where TF (f) is the number of occurrences of term f in the whole collection and

#(token) is the total number of tokens in the whole collection.

When constants Z1 and Z2 are dropped, Equation (2.45) can be reformulated

as follows:

WIG(Q) =
1

K

∑
d∈D

∑
f∈F

λf · log
P (f |d)

P (f |C)
(2.52)

Query Feedback A ranked list of documents can be obtained by submitting

a query to an IR system. Zhou & Croft (2007) viewed the retrieval system as

a noisy channel and assumed that, by going through the channel, the query Q

becomes corrupted and is transformed to a ranked list of documents. Based on

this assumption, they consider the prediction of the retrieval effectiveness as the

task of finding a way to measure the degree of corruption.

To measure the degree of corruption, a query performance predictor, called

Query Feedback (QF), was proposed (Zhou & Croft, 2007), given as follows:

QF (Q) =
#(Co)

K
(2.53)
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where, for a given query Q, a new query Q′ can be generated by using a query

expansion technique based on a list of the top K retrieved documents which are

obtained by submitting Q to an IR system. With this new query Q′, we can

receive another list of top K retrieved documents after submitting Q′ to this IR

system. The number of documents occurring in both lists is denoted as #(Co).

Hence, this predictor calculates the proportion of the documents co-occurring in

both document lists.

2.5 Term Dependency

Most probabilistic document weighting models, such as BM25 and language mod-

elling, assume that terms in both queries and documents are statistically indepen-

dent and rank documents using the statistics of single query term in documents.

However, this assumption does not always hold. For example, it is highly likely

to see the term retrieval if the term information occurs in IR conference pro-

ceedings. This fact suggests that the occurrences of certain pairs of terms are

correlated, which is also called term dependency.

A fair amount of research has been conducted to model term dependency (Fa-

gan, 1987; Gao et al., 2004; Losee, 1994; Metzler & Croft, 2005; Nallapati & Allan,

2002; Peng et al., 2007; Srikanth & Srihari, 2002; van Rijsbergen, 1977). Fagan

(1987) investigated term dependency through the use of non-syntactic (statisti-

cal) phrase indexing. In addition, five different features for identifying phrases

have been proposed (shown in Table 2.4). The experimental results on a range of

document collections suggest that no single feature of phrase identification could

consistently enhance the retrieval performance. For some document collections,

significant improvements were obtained when a phrase was defined as any two

terms co-occuring in a query or a document with unlimited distance. However,

for other document collections, the phrase identification method only makes a

marginal or even has a negative effect on retrieval performance.

Losee (1994) proposed the use of the Bahadur Lazarsfeld Expansion (BLE)

for modelling the term dependency between all terms instead of only two terms.

However, the generalised term dependency model does not bring significant ben-

efit in retrieval effectiveness, compared to the approach that is based on the term
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Feature Description
Length The maximum number of elements in a phrase.
Domain The place that the elements of a phrase co-occur, which could

be a document, a query, or a sentence.
Proximity Elements of a phrase must co-occur within a specified distance

in the specified domain.
DFh The document frequency threshold for the elements of a

phrase. The document frequency of a element is defined as
the number of documents in which the element occurs at least
once.

DFp The document frequency threshold for a phrase. The docu-
ment frequency of a phrase is defined as the number of docu-
ments in which the phrase occurs at least once.

Table 2.4: The proposed features for phrase identification.

independency assumption. This is due to the complex nature of the model, which

sometimes results in more loss from the estimation error than gain from modelling

term dependency.

Gao et al. (2004) proposed to extend the language modelling for IR ap-

proach with a dependency structure, called linkage, which is inspired by link

grammar (Lafferty et al., 1992; Pietra et al., 1994). In the proposed model, a

linkage between a pair of terms in the scale of a sentence is created, by taking

into account several linguistically motivated constraints (e.g. planar, acyclic).

As illustrated in Figure 2.1, a linkage between “affirmative” and “action” is cre-

ated under the linguistically motivated constraints. Their model has shown its

effectiveness on a number of test collections. However, the model only considers

the dependency between pairs of terms. In addition, it needs to build a linkage

information for each query, which is time-consuming.

Other work uses syntactical and lexical phrase detection techniques for query

refinement (Arampatzis et al., 2000; Mitra et al., 1997; Pickens & Croft, 2000).

However, all techniques have been shown to yield little or no improvement in

retrieval effectiveness. Mishne & de Rijke (2005) proposed a shallow approach,

also called everything-is-a-phrase, for modelling term dependency. They explored

the use of phrase and proximity terms in the context of Web retrieval. In their

approach, a phrase term is defined as the subset of consecutive terms from a
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2.5 Term Dependency

Figure 2.1: An example of the linkage between terms in a sentence, where stop
words are bracketed.

given query, which do not need to be actual phrases, either in the syntactical or

statistical sense. For example, for the query “Ireland consular information sheet”,

three phrases are created if we set the phrase length to two:

“Ireland consular” “consular information” “information sheet”

Similar to phrase definition, a proximity term is defined as a subset of words

from a given query within a specific distance. If we take the same aforementioned

query as an example, five proximity terms are created if we set the maximum

distance between the query terms to 3:

“Ireland consular” “Ireland information” “consular information”
“consular sheet” “information sheet”

Experiments on Web retrieval tasks have shown that the proposed phrase

building approaches (Mishne & de Rijke, 2005) can bring some benefit to the

retrieval effectiveness. In addition, a strong positive impact on the retrieval effec-

tiveness has been observed when the proposed approaches are applied on short

queries (i.e. 2 or 3 terms). The proposed approaches also bring other practical

benefits, such as low computational overheads.

2.5.1 Term Dependency via Markov Random Fields

Metzler & Croft (2005) developed a general framework for modelling term depen-

dency via Markov Random Fields (MRF) in a language modelling framework. In

particular, three variants of the MRF model, namely full independence (FI), se-

quential dependence (SD), and full dependence (FD), have been proposed.

For the full independence variant, the query terms are assumed to be indepen-

dent of one another. As shown in Figure 2.2, the query “Buchanan bus station”
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2.5 Term Dependency

Figure 2.2: An example of the Markov random fields model with a full indepen-
dence assumption.

is considered as three independent terms, namely “Buchanan”, “bus”, and “sta-

tion”. By using language modelling (Section 2.3.2) as the weighting scheme, the

relevance score of each document to the query is computed as follows:

scoreFI(d,Q) =

|Q|∑
i=1

score(d, qi) (2.54)

=

|Q|∑
i=1

log

[
(1− α) · tfqi

l
+ α · TFqi

#(token)

]

where score(d, qi) is a language modelling estimate with the Jelinek-Mercer smooth-

ing, |Q| is the number of terms in the query Q, tfqi
is the number of occurrences

of query term qi in the document d, and l is the total number of terms in the

document d. TFqi
is the number of occurrences of query term qi in the collection

and #(token) is the total number of tokens in the collection. α is the parameter

of the Jelinek-Mercer smoothing, ranging from 0 to 1.

For the sequential dependence variant, only the neighbouring query terms are

assumed to be dependent. Moreover, the terms contained in each phrase must be

in the same order as in the query. As shown in Figure 2.3, the query “Buchanan

bus station” is considered to be two phrases if we set each phrase to only contain

two terms:

“Buchanan bus” “bus station”
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Figure 2.3: An example of the Markov random fields model with a sequential
dependence assumption.

In this case, the relevance score of each document to the query is estimated

as follows:

scoreSD(d,Q) =

|FSD|∑
i=1

score(d, fi) (2.55)

=

|FSD|∑
i=1

log

[
(1− α) · tffi

l
+ α · TFfi

#(token)

]

where |FSD| denotes the number of phrases obtained under the sequential depen-

dence assumption. tffi
and TFfi

are the number of occurrences of phrase fi in

the document d and collection C, respectively.

The last variant is full dependence, Metzler & Croft (2005) assumed that

the occurrence of non-neighbouring sets of query terms can also provide valuable

evidence. Moreover, the order of the terms included in each phrase is relaxed.

Under this assumption, as shown in Figure 2.4, the query “Buchanan bus station”

is considered as six phrases if the length of each phrase is set to two:

“Buchanan bus” “bus station” “Buchanan station”
“bus Buchanan” “station bus” “station Buchanan”

Note that there is a free parameter, called window size (denoted as ws), which is

the maximum distance between the terms in the query. For example, the window
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Figure 2.4: An example of the Markov random fields model with a full dependence
assumption.

size between “Buchanan” and “station” in the given query is 3. In this case, the

relevance score of each document to the query is estimated as follows:

scoreFD(d,Q) =

|FFD|∑
i=1

P (d, fi) (2.56)

=

|FFD|∑
i=1

log

[
(1− α) · tffi

l
+ α · TFfi

#(token)

]

where |FFD| denotes the number of phrases obtained under the full dependence

assumption. Based on these different variants, the final relevance score of a

document to the query is estimated by (Metzler & Croft, 2005):

score(d,Q) =
∑

v

λv · scorev(d,Q) (2.57)

= λFI · scoreFI(d,Q) + λSD · scoreSD(d,Q) + λFD · scoreFD(d,Q)

where λFI , λSD and λFD are the parameter of each variant of the MRF model.

In addition,

λFI + λSD + λFD = 1 (2.58)

The variants of the MRF model cover many previously proposed retrieval

and dependence models, such as unigram language modelling (Ponte & Croft,

1998), bigram language modelling (Song & Croft, 1999), and biterm language
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modelling (Srikanth & Srihari, 2002). Extensive experiments have shown the

effectiveness of the MRF model on various search tasks (Metzler & Croft, 2005).

Metzler (2008) also discussed how to integrate the MRF term dependency

model into the BM25 document weighting model, given as follows:

score(d,Q) =
∑

p∈FSD

(k1 + 1) · pf
k1 · ((1− b) + b · l

avg l
) + pf

· log
N − n + 0.5

n + 0.5
(2.59)

score(d,Q) =
∑

p∈FFD

(k1 + 1) · pf
k1 · ((1− b) + b · l

avg l
) + pf

· log
N − n + 0.5

n + 0.5
(2.60)

where FSD and FFD is the phrase set that is obtained under sequential dependence

assumption and full dependence assumption, respectively. pf is the number of

occurrences of the phrase p in d, N is the number of documents in the collection,

n is the number of documents in which the phrase p appears, l is the document

length, avg l is the mean of the document length in the collection. k1 and b are

the parameters of the BM25 document weighting model.

2.5.2 Term Dependency in DFR

In (Peng et al., 2007), we proposed to incorporate term dependency into the

DFR framework. This model assigns scores to each phrase created under a specific

assumption, in addition to the single query terms. Hence, the score of a document

d for a query Q is given as follows:

score(d,Q) = λ1 ·
∑
t∈Q

score(d, t) + λ2 ·
∑
p∈Q2

score(d, p) (2.61)

where score(d, t) is the score assigned to a query term t in the document d,

p corresponds to a phrase that appears within the query Q, score(d, p) is the

score assigned to phrase p in the document d, and Q2 is a set of phrases, as

defined below. The two scores are combined linearly using λ1 and λ2 as weights.

In Equation (2.61), the score
∑

t∈Q score(d, t) can be estimated by any DFR

weighting model, such as PL2 (Equation (2.20)).

This model considers the same three possible variants as the MRF model for

modelling the dependency between query terms:
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• Full independence: the weighting model introduced only computes the first

component of Equation (2.61), as it ignores the term dependencies between

query terms (λ1 = 1, λ2 = 0).

• Sequential dependence: both components of Equation (2.61) (λ1 = 1, λ2 =

1) are computed, and in this case, Q2 is the phrase set. In particular, each

phrase is defined as the ordered neighbouring query terms.

• Full dependence: both components of Equation (2.61) (λ1 = 1, λ2 = 1) are

computed, and in this case, Q2 is the set of phrases, which are defined as

the query terms without order limit.

The weight score(d, p) of a phrase in a document is computed as follows:

score(d, p) = − log2(Pp1) · (1− Pp2) (2.62)

where Pp1 corresponds to the probability that there is a document in which a

phrase p occurs a given number of times. Pp1 can be computed with any Ran-

domness model from the DFR framework (see Section 2.3.3.1). Pp2 corresponds

to the probability of seeing the phrase once more, after having seen it a given

number of times. Pp2 can be computed using any of the after-effect models in

the DFR framework (see Section 2.3.3.2). The difference between score(d, p) and

score(d, t) is that the former depends on counts of occurrences of the phrase p,

while the latter depends on counts of occurrences of the query term t.

For example, for the DFR InL2 document weighting model (Amati, 2003):

score(d,Q) =
∑
t∈Q

1

tf + 1

(
tf · log2

N + 1

nt + 0.5

)
(2.63)

where nt is the number of documents that the term t occurs in, N is the number

of documents in the collection, tf is the number of occurrences of the term t in

the document d. After applying term dependency, we obtain:

score(d,Q2) =
∑
p∈Q2

1

pf + 1

(
pf · log2

N + 1

np + 0.5

)
(2.64)

where np corresponds to the number of documents in which the phrase p appears.

pf is the number of occurrences of the phrase p in document d.
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However, like term dependency in language modelling and BM25 (see Sec-

tion 2.5.1), it is quite expensive to estimate the phrase frequency in the docu-

ment collection. To avoid this, a different randomness model has been proposed

in (Peng et al., 2007), which is based on the binomial randomness model, given

as follows:

score(d, p) =
1

pfn + 1
·
(
− log2 (l − w s + 1)! + log2 pfn!

+ log2(l − w s + 1− pfn)!

− pfn log2(pp) (2.65)

− (l − w s + 1− pfn) log2(p
′
p)

)
where l is the length of the document in tokens, pp = 1

l−w s+1
, p′p = 1 − pp,

and pfn is the normalised frequency of the phrase p using Normalisation 2 (see

Section 2.3.3.3):

pfn = pf · log2(1 + cp ·
avg l − w s + 1

l − w s + 1
)(cp > 0) (2.66)

pf is the frequency of the phrase p that appears within w s tokens in the docu-

ment, avg l is the average document length in the collection, and cp is a hyper-

parameter that controls the normalisation applied to the phrase frequency against

document length. The term dependency model in DFR will be used in Chapter 6

with the aim of building a strong baseline.

Experiments on several different test collections showed that both term depen-

dency via MRF and term dependency in DFR can significantly improve retrieval

effectiveness over a baseline that assumes the terms are independent (Metzler &

Croft, 2005; Peng et al., 2007). In particular, the modelling of full dependency

can significantly outperform sequential dependency.

2.6 Query Independent Features

The techniques introduced above for ranking documents are dependent on the

statistics of the terms included in a given query. There is a kind of feature,

called a query independent feature, which is independent of the statistics of a

given query. A query independent feature, relating perhaps to linkage or usage,
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can be transformed into a static, per-document relevant weight for use in rank-

ing (Craswell et al., 2005). Several studies have shown that the application of

query independent features, such as PageRank (Brin & Page, 1998) and URL

depth (Kamps et al., 2004), can enhance the retrieval effectiveness of a Web IR

system (Cai et al., 2004; Craswell et al., 2005; Kraaij et al., 2002; Metzler et al.,

2005). In this work, we classify them into three categories: link-based features,

URL-based features and other features.

2.6.1 Link-based Query Independent Features

Indegree Documents in the Web are connected through hyperlinks. A hyper-

link is a connection between a source and a target document. There is a simple

assumption that a hyperlink from document A to document B stipulates that the

document A’s author considers document B to be valuable. A high number of

incoming links often indicates that many documents’ authors consider the given

document to be of a high quality. This feature is called indegree (InD), which

counts the number of incoming links for each document, given as follows:

scoreInD(d) = #(inlink, d) (2.67)

where #(inlink, d) is the number of incoming link for document d. As an illus-

tration, in Figure 2.5, documents have different number of incoming links:

scoreInD(A) = 4 scoreInD(B) = 3 scoreInD(C) = 2
scoreInD(D) = 2 scoreInD(E) = 1

Outdegree In contrary to indegree, there is another query independent fea-

ture called outdegree (OutD), which counts the number of outgoing links from a

document, given as follow:

scoreOutD(d) = #(outlink, d) (2.68)

where #(outlink, d) is the number of outgoing links from document d. For Fig-

ure 2.5, we obtain:

scoreOutD(A) = 2 scoreOutD(B) = 1 scoreOutD(C) = 2
scoreOutD(D) = 1 scoreOutD(E) = 1
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Figure 2.5: An illustration of the link structure of documents.

PageRank Brin & Page (1998) proposed PageRank (PR), which not only

counts the number of incoming links to a document, but also takes the quality

of these links into account. PageRank is based on citation analysis which is

used to examine the frequency, patterns and graphs of citations in articles and

books (Harris, 2006). PageRank is a probability distribution, which is employed

to represent the likelihood that a document will be selected if a user makes a

random click.

The PageRank feature score of a given document is computed as follows:

scorePR(d) =
(1− λ)

N
+ λ ·

∑
di∈L(d)

scorePR(di)

scoreOutD(di)
(2.69)

where L(d) is a document set, which contains all the documents with a link to

document d, scoreOutD(di) is the number of outgoing links from document di,

N is the number of documents in the collection. λPR is a damping factor and

usually set to λPR = 0.85 (Brin & Page, 1998). Note that the computation of the

PageRank feature score is an iteration process, which stops until a convergence

is met, e.g. most documents’ PageRank scores do not change.

2.6.2 URL-based Query Independent Features

URL Type A Uniform Resource Locator (URL), which contains a string of

symbols, defines the unique location of a document on the Web. Kraaij et al.

(2002) proposed the use of URL type (UT) for identifying homepages. This is

motivated by the fact that homepage documents only contain a domain name,
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optionally followed by the “index.html” string. In particular, they classify a URL

string into four different categories:

• root: a document URL contains either only a domain name or a domain

name followed by “index.html” (e.g. http://www.sigir.org).

• subroot: a document URL contains a domain name followed by a single

directory, optionally followed by “index.html” (e.g. http://www.sigir.

org/sigirlist/).

• path: a document URL contains a domain name followed by a single di-

rectory or many directories, but not ending in a file name other than “in-

dex.html” (e.g. http://www.sigir.org/sigirlist/issues/).

• file: a document URL ends in a filename other than “index.html” (e.g.

http://www.sigir.org/resources.html).

For a document, its URL type score is computed as follows:

scoreUT (d) =
#(ti, D)

#(ti, C)
(2.70)

where #(ti, D) and #(ti, C) are the number of documents that have the same

URL type ti with document d in the query relevance assessment and document

collection, respectively. Therefore, the estimation of the URL type score for each

document is based on a training dataset.

URL Depth The URL string can be divided into many components by the

symbol ‘/’, excluding the “http://” component. The URL depth (UD) feature

counts the number of components after the division. For example, the URL http:

//www.firstgov.gov/topics/science.html can be divided into 3 components:

www.firstgov.gov topics science.html

The URL depth feature score for a given document is defined as follows:

scoreUD(d) = #(component) (2.71)

where #(component) is the number of components after the division.
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URL is a string of symbols, the URL length (UL) feature simply counts the

number of symbols of a document URL, given as follows:

scoreUL(d) = #(symbol) (2.72)

where #(symbol) is the number of symbols in the URL of document d, excluding

the “http://” component. For example, for the URLs given below:

http://www.sigir.org

http://www.sigir.org/sigirlist/

http://www.sigir.org/sigirlist/issues/

http://www.sigir.org/resources.html

their UL feature scores are equal to 13, 24, 31 and 28, respectively.

2.6.3 Other Query Independent Features

Apart from link-based and URL-based query independent features, there are

several other features, such as information to noise ratio and click distance.

Information to Noise Ratio Zhu & Gauch (2000) proposed a feature to

measure the quality of a document, called information to noise ratio (ITNR),

given as follows:

scoreITNR(d) =
#(tokenafter)

#(tokenbefore)
(2.73)

where #(tokenafter) is the number of tokens contained in the document d after

preprocessing, such as removing stop words and HTML tags; #(tokenbefore) is the

raw size of the document d, i.e., the number of tokens contained in the document.

Click Distance Click distance (CD) is a link metric which measures the mini-

mum number of clicks it takes to reach a Web document from a given root (Craswell

et al., 2005):

scoreCD(d) = #(click) (2.74)

where #(click) is the minimum number of clicks from the root to document d.

As shown in Figure 2.6, document A is the root, and there are several different

ways to reach document J , one such path is A → C → F → J , which takes 3
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Figure 2.6: An illustration of the click distance feature.

clicks. However, the shortest path from A to J is A→ B → J , which only takes

2 clicks. In this example, the click distance score for document J is:

scoreCD(J) = |A→ B → J | = 2

In addition, the click distance scores of other documents from the same root A

are given as follows:

2.6.4 The Integration of Query Independent Feature

Several different Query Independent (QI) features have been introduced in the

previous sections. In this section, we present how to integrate these QI fea-

tures into a document weighting scheme. The language modelling approach (Sec-

tion 2.3.2) automatically takes into account the QI features and treats them as a

prior probability:

P (d|Q) =
P (Q|d) · P (d)

P (Q)
(2.75)

where P (d) is the prior probability of the relevance of the document d for a given

QI feature, such as PageRank.

In contrast to the language modelling approach, Craswell et al. (2005) treated

the QI features as static, per-document relevance weights for use in ranking. In

particular, they proposed the FLOE method for transforming a query-independent
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feature value into a relevance score. The method allocates a query-independent

feature score for each document d as follows:

score(d,Q) = scoreQD(d,Q) + scoreQI(d) (2.76)

where scoreQD(d,Q) is the query-dependent relevance score of d given a query

Q and can be estimated by a document weighting scheme, such as BM25 (Equa-

tion (2.6)); scoreQI(d) is the query-independent relevance score for a given doc-

ument d, estimated by FLOE using a query-independent feature. score(d,Q) is

the final relevance score of document d given the query Q.

Craswell et al. (2005) proposed two different versions of the FLOE method,

we denote them as FLOE+ and FLOE−. The two versions of FLOE are defined

as follows:

FLOE+(S, w, k, a) = w · Sa

ka + Sa
(2.77)

FLOE−(S, w, k, a) = w · ka

ka + Sa
(2.78)

where S is the query-independent feature score, w, k and a are parameters. With

the same w, k, and a settings, in Equation (2.77), a document with a higher

query-independent feature score attains a higher relevance score after the trans-

formation, while in Equation (2.78), a document with a higher query-independent

feature score attains a lower relevance score after the transformation. For exam-

ple, when PageRank scores are mapped using FLOE+, a document that has a

high PageRank score is usually considered to be a high-quality document. On the

other hand, when URL depth scores are transformed using FLOE−, documents

with shorter URL depth are usually seen as more authoritative than pages with

longer URL depth.

2.7 Evaluation

In this chapter, we have presented many different retrieval techniques for building

IR systems. A natural question arises on how to evaluate the performance of

an IR system. The evaluation of an IR system is the process of assessing how

well the system meets the information need of its users (Voorhees, 2001). This
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evaluation process normally consists of three components: a document collection,

a set of information needs, which are expressed as queries, and a set of relevance

assessments, which specify which documents are relevant to a specific query.

By submitting a query to an IR system, a set of documents in the collection is

returned. With the relevance assessments set for this query, the performance of

the IR system can be evaluated by examining whether each returned document

is relevant to the query. The most commonly used evaluation measures for an IR

system are precision and recall. Precision measures the percentage of the retrieved

relevant documents in the retrieved set for a particular query, and recall measures

the percentage of the retrieved relevant documents in the whole relevant set for

a particular query.

Over the past decades, several standard test collections have been created

with the aim of providing a consistent test bed and benchmark for evaluating

the performance of IR system, such as the Cranfield collection (Cleverdon, 1962)

which was a pioneer in conducting IR evaluation in a quantitative manner. In

the Cranfield experiments, the small size of the test collection (1,398 abstracts)

allowed the complete assessment of each document for all queries. However, as

small test collections do not reflect the main issues in modern IR environments

such as link analysis, larger collections were created, such as .GOV2 (25 million

documents) (Clarke et al., 2004). With these large test collections, complete

assessment of all documents for each query became impractical.

In the context of the Text REtrieval Conference (TREC), the generation of

relevance assessments is based on the pooling technique (Harman, 1993), which

is developed based on an idea from Spärck Jones & van Rijsbergen (1976). For

each query, the top K returned documents (normally K = 100) from a set of

participating IR systems are merged into a document pool (Voorhees & Harman,

2000). The relevance assessments are then conducted on the merged document

pool, instead of all the documents in the test collection. As the document pool

is built from different IR systems, the generated relevance assessments are not

biased towards any particular IR system. However, when the size of the test

collection increases, the recall value is overestimated as it is highly likely that

many relevant documents have not been contained in the pool (Blair, 2002; Zobel,
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1998). In particular, Zobel (1998) estimated that the document pool comprises

a maximum of 50-70% of the total number of relevant documents.

Choosing the evaluation measures in TREC is task-oriented. Apart from

precision and recall, the average precision measure rewards returning more rel-

evant documents earlier. It is computed as the average of the precision values

after each relevant document is retrieved (Manning et al., 2008). For example,

if an IR system retrieves three relevant documents for a given query, at ranks

1, 3 and 7, the average precision of the system for this query is computed as
1
3
(1

1
+ 2

3
+ 3

7
) = 0.6984. When there is only one relevant document for each query,

the average precision measure is equivalent to the reciprocal rank (RR) of the

first retrieved relevant document (Voorhees, 2008). The comparison of systems

over a set of queries is performed by employing the mean of the above described

evaluation measures, leading to mean average precision (MAP), mean reciprocal

rank of the first retrieved relevant document (MRR).

While average precision measures the retrieval performance based on the full

list of retrieved documents for each query, R-precision calculates the precision

after R relevant documents have been returned (Manning et al., 2008), where

R is the number of relevant documents in the collection for a particular query.

Another measure is precision at k (denoted P@k), which calculates the proportion

of relevant documents in the top k retrieved documents.

Buckley & Voorhees (2004) showed that current evaluation measures are not

reliable on substantially incomplete relevance assessments. To overcome this is-

sue, they proposed the binary preference (bpref) evaluation measure. This cal-

culates a preference relation which measures whether documents judged relevant

are returned ahead of those judged not relevant. There are some other evalu-

ation measures which have been proposed in recent years, such as normalised

Discounted Cumulative Gain (nDCG) (Järvelin & Kekäläinen, 2002) and in-

ferred Average Precision (infAP) (Yilmaz & Aslam, 2006), which can also be

used when the relevance judgements are incomplete. For the latest Web di-

versity task (Clarke et al., 2009), there are two official evaluation measures:

α−normalised discounted cumulative gain (α−NDCG (Clarke et al., 2008)) and

intent-aware precision (IA-P (Agrawal et al., 2009)). The α−NDCG measure

balances relevance and diversity by varying the value of α. The larger the α is,
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the more diversity is rewarded. In the case that α = 0, the α−NDCG measure is

equivalent to the traditional NDCG measure. The IA-P measure extends the tra-

ditional precision measure by taking into account the possible aspects underlying

a given initial query, as well as their relative importance.

2.8 Summary

We have presented an overview of various IR techniques in this chapter, from the

indexing process to ranking and the evaluation of an IR system. In particular,

several different document features for ranking information items have been de-

scribed, such as document weighting models, query expansion, term dependency,

and query independent document features. In the next chapter, we show how

to build a ranking function by using these document features (Section 3.2). In

addition, several state-of-the-art selective retrieval approaches are also presented

(from Section 3.3 to Section 3.6).
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Chapter 3

Learning to Rank and Selective
Retrieval Approaches

3.1 Introduction

The previous chapter presented various retrieval techniques, including document

weighting models, query expansion and term dependency. Each retrieval tech-

nique that was introduced can be treated as a document feature for ranking, e.g.

the document relevance score estimated by the BM25 (Equation (2.6)) weighting

model has been widely used as a document feature in IR (Craswell et al., 2005;

Liu et al., 2007). In order to obtain a better retrieval performance, instead of

using a single or a few features, there is a growing trend to learn appropriate

weights for a large set of features (Cao et al., 2007; Geng et al., 2008; Taylor et

al., 2008; Xu & Li, 2007). Such a set of weighted features for document ranking

forms a ranking function, which is obtained by the use of a learning to rank tech-

nique. Several different learning to rank techniques are introduced in this chapter

(Section 3.2).

However, most current work simply applies a learned ranking function to a

given set of queries (Cao et al., 2007; Metzler, 2007; Taylor et al., 2008; Xu &

Li, 2007), which ignores the fact that different ranking functions favour different

queries. Various selective retrieval approaches have previously been proposed in

IR (Geng et al., 2008; Peng et al., 2009; Plachouras, 2006; Plachouras & Ounis,

2004; Song et al., 2004; Yang et al., 2004). In this chapter, we compare a selection

of retrieval approaches, including query dependent ranking (Section 3.3), selective
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collection enrichment (Section 3.4), selective Web IR (Section 3.5) and query type

prediction (Section 3.6).

3.2 Learning to Rank

Learning to rank is to learn a ranking function by assigning a weight to each

document feature, then using this obtained ranking function to estimate relevance

scores for each document, and finally ranking these documents based on the

estimated relevance scores (Liu et al., 2007; Xu & Li, 2007). In recent years,

many effective learning to rank techniques have been proposed to build ranking

functions, such as AdaRank (Xu & Li, 2007) and Ranking SVM (Herbrich et al.,

2000; Joachims, 2002). These techniques can be classified into three groups based

on their underlying approach to the problem (Liu, 2009): the pointwise approach,

the pairwise approach and the listwise approach.

3.2.1 The Pointwise Approach

The most straightforward way to employ a machine learning technique for ranking

documents is to use existing learning methods. This kind of strategy is in line

with the pointwise approach, which estimates the exact relevance degree of each

document for a given query. In general, the pointwise approach can be divided

into two categories: regression-based and classification-based.

3.2.1.1 The Regression Based Technique

Regression is a statistical technique for estimating the relationship between a

dependent variable and one or more independent variables (Hastie et al., 2001).

Regression can be used as a descriptive method of data analysis (such as curve

fitting) without relying on any assumptions about underlying processes generat-

ing the data (Cook & Weisberg, 1982). By using a regression-based technique,

the output space contains a real-valued relevance score for each document. Fuhr

(1989) proposed the use of least square polynomials for building a retrieval func-

tion. A class of polynomial retrieval functions is defined based on some heuristic
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assumptions, e.g., the loss expectations can be approximated by average values,

and the function that best fits the available data is selected.

With a given query q and a set of retrieved documents D = {dj}mj=1, the

ground truth label for dj is defined as a vector −→yj . For a binary judgement,
−→yj = (1, 0) and −→yj = (0, 1) if the document dj is judged as relevant or irrelevant,

respectively. For a multiply ordered category, only the k-th element of the vector
−→yj is set to 1 and the remaining elements are set to 0, if the document dj is judged

as belonging to the k-th category.

Assuming an n-category judgement case, the retrieval function is defined as:

−−−→
f(dj) = (f1(dj), f2(dj), ..., fn(dj))

where each element fk(dj) is calculated by using the polynomial function, given

as follows:

fk(dj) = wk,0 + wk,1 · dj,1 + · · ·+ wk,T · dj,T (3.1)

+wk,T+1 · d2
j,1 + wk,T+2 · dj,1 · dj,2 + · · ·

where dj,l is the l-th feature in the feature vector of dj, wk,l is the weight coefficient

of dj,l, and T is the number of document features.

In addition, the loss function is defined as the following square loss:

L(
−−−→
f(dj) : dj,

−→yj ) = ‖−→yj −
−−−→
f(dj)‖2 (3.2)

3.2.1.2 The Classification-Based Technique

To avoid the problem of treating the relevance label as a quantitative value,

the classification-based technique has been proposed for building a retrieval func-

tion. Robertson & Spärck Jones (1988) firstly viewed IR as a classification problem

and considered retrieval as a process of classifying the entire collection of docu-

ments into two categories: relevant and non-relevant. In the recent past, Nallapati

(2004) explored the applicability of discriminative models, which are a class of

models used in machine learning for modelling the dependence of an unobserved

variable on an observed variable (Duda et al., 2001), for IR. In particular, two

representative classification models, namely Maximum Entropy (ME) (Berger et

al., 1996) and Support Vector Machines (SVM) (Burges, 1998), were studied.
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The principle of ME is to model all that is known and assume nothing about

the rest. The parametric form of the ME model can be expressed as follows (Nal-

lapati, 2004):

P (R|d,Q) =
1

Z(Q, d)
exp(

n∑
i=1

λifi(d,Q)) (3.3)

where Z(Q, d) is a normalisation constant, n is the number of features, λi is the

weight of the feature function fi(d,Q). The feature weights can be learned based

on the training data using a fast gradient descent algorithm (Malouf, 2002).

The SVM model aims to separate two categories of training examples with

the largest margin in a hyper-plane (Burges, 1998). The hyper-plane is a high

dimension space, which is mapped from the feature space. It is expected that

the larger the margin is, the better the generalisation of the classifier is. The

discriminative model by using SVM is given by:

P (R|d,Q) = −→w • φ(
−−−−→
f(d,Q)) + b (3.4)

where
−−−−→
f(d,Q) is the vector of features, −→w is the weight vector in kernel space, •

denotes the inner product, b is a constant and φ is the mapping from the input

space to the kernel space.

An example of SVM is shown in Figure 3.1. In the figure, the green line (H3)

does not separate the 2 classes while both the blue line (H1) and the red line

(H2) can separate the 2 classes. In particular, the red line performs better than

the blue line as it produces a bigger margin between the 2 classes.

3.2.1.3 Summary

Both the regression based and the classification based techniques have been in-

troduced in this section. There are still other pointwise approaches which have

been previously proposed for ranking documents (Cooper et al., 1992; Cossock &

Zhang, 2006; Gey, 1994). However, there are two main common issues with these

pointwise techniques: First, as the loss function is estimated for each query, the

overall loss will be dominated by the queries that have a large number of retrieved

documents. For example, if q1 has 1000 retrieved documents and q2 has only 10

retrieved documents, then the loss function will be biased towards q1 even though
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Figure 3.1: An illustration of the SVM classifier.

they should be treated equally. Second, as the pointwise approaches treat doc-

uments separately, the relative order between documents is invisible to the loss

functions. This would result in the loss functions mainly focusing on irrelevant

documents as a big proportion of a set of retrieved documents is irrelevant.

3.2.2 The Pairwise Approach

While the pointwise approach focuses on estimating the exact relevance degree

of each document to a given query, the pairwise approach aims to rank a list

of documents by investigating the relative order of pairs of documents. In an

extreme case, for a list of documents, if all the document pairs are correctly

ranked, then the full list of documents will be correctly ranked. For example,

assuming that a document list contains three documents: d1, d2 and d3; and that

we obtain the following relative position between each pair of documents: d1 > d2,

d1 > d3 and d2 < d3; then, these documents can be ranked as: d1 > d3 > d2.

Several pairwise techniques have been previously proposed for ranking docu-

ments (Burges et al., 2005; Cao et al., 2006; Cohen et al., 1998; Freund et al., 2003;

Herbrich et al., 2000; Joachims, 2002; Qin et al., 2007; Tsai et al., 2007). In this

section, we introduce three representative techniques, namely RankNet (Burges

58



3.2 Learning to Rank

et al., 2005), RankBoost (Freund et al., 2003) and Ranking SVM (Herbrich et

al., 2000; Joachims, 2002).

3.2.2.1 RankNet

Burges et al. (2005) proposed the RankNet algorithm, which learns a retrieval

function by employing a probabilistic cost function on a set of pairs of training

examples. In particular, the cross entropy cost function is used in RankNet, given

as follows:

L(f ; du, dv, yu,v) = −Pu,v · logPu,v(f)− (1− Pu,v) · log(1− Pu,v(f)) (3.5)

where du and dv are two documents, which are from the retrieved document set

of a given query, yu,v is obtained based on the ground truth labels (for example,

if the ground truth label indicates that document du should be ranked before

document dv, then yu,v = 1), the target probability Pu,v is constructed according

to yu,v (for example, Pu,v can be defined as Pu,v = 1 if yu,v = 1 and Pu,v = 0

otherwise), and The modelled probability Pu,v(f) is computed by using a logistic

function, given as follows:

Pu,v(f) =
exp(f(du)− f(dv))

1 + exp(f(du)− f(dv))
(3.6)

where f(du) and f(dv) are the relevance score of du and dv given by the retrieval

function f .

In RankNet, a neural network is used to model and the gradient descent

algorithm is employed as the optimisation algorithm to learn the retrieval function

f . The effective performance of RankNet is observed on a real-world ranking

problem with large amounts of data that is sampled from commercial search

engines (Burges et al., 2005). In addition, RankNet was the first learning to rank

algorithm used by commercial search engines (Liu, 2009).

3.2.2.2 RankBoost

Boosting refers to a general method of building a single strong learner by repeat-

edly constructing a weak learner with respect to a specific distribution and adding

it to the strong learner (Freund & Schapire, 1999). A weak learner is defined to
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be a classifier which is only slightly correlated with the true classification. In

contrast, a strong learner is a classifier that is arbitrarily well correlated with the

true classification (Freund, 1990).

Based on the boosting technique, Freund et al. (2003) proposed an efficient

learning technique, called RankBoost. Similar to other boosting algorithms, the

RankBoost algorithm builds a document ranking function by combining several

“weak” rankers of a set of document pairs. The learning algorithm for RankBoost

is given in Algorithm 1:

Algorithm: RankBoost
Input: document pairs
Given: initial distribution Dis1 on input document pairs
For t = 1, ..., T :
• Train weak ranker ft based on distribution Dist.
• Choose αt

• Update Dist+1(du, dv) = Dist(du,dv)·exp(αt(ft(du)−ft(dv)))
Zt

where Zt is a normalisation factor (chosen so that
Dist+1 will be a probability distribution).

Output: f(d) =
∑T

t=1 αtft(d)

Algorithm 1: The algorithm of RankBoost

where Dist is the distribution on document pairs, ft is the weak ranker selected

at the t-th iteration, and the coefficient αt is the weight for linearly combining

the weak ranker ft. In particular, Freund et al. (2003) introduced three different

methods for computing αt:

1. First and most generally, for any given weak ranker ft, it can be shown that

Zt, viewed as a function of αt, has a unique minimum which can be found

numerically via a simple binary search.

2. The second method is applicable in the special case that weak rankers take

a value from {0, 1}. In this case, we can minimise Zt analytically as follows:

For b ∈ {−1, 0, +1}, let

Wt,b =
∑

u,v:yu,v=1

Dist(du, dv)I{ft(du)−ft(dv)=b} (3.7)
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then

αt =
1

2
log

Wt,−1

Wt,1

(3.8)

3. The third method is based on an approximation of Zt, which is applicable

when the weak ranker ft takes a real value from [0, 1]. In this case, if we

define:

rt =
∑

u,v:yu,v=1

Dist(du, dv)(ft(du)− ft(dv)) (3.9)

then

αt =
1

2
log

1 + rt

1− rt

(3.10)

Freund et al. (2003) tested the effectiveness of RankBoost on two differ-

ent tasks: the first one is the meta-searching task, which attempts to com-

bine the rankings of several Web search strategies; the second one is the movie-

recommendation task, which is to rank movies for a user based on the movie

rankings that are provided by other users. Experimental results showed that

RankBoost performed just as well as the best retrieval strategy, whereas it con-

sistently outperformed a regression approach (Hill et al., 1995) and the vector

similarity approach (Breese et al., 1998) for the movie-recommendation task.

3.2.2.3 Ranking SVM

Support Vector Machine (SVM) has been widely and effectively used for binary

classification in many fields. For instance, in information retrieval (IR), SVM is

used to classify documents (Nallapati, 2004), or to estimate whether the most

frequent terms in the pseudo-feedback documents are useful or not for query ex-

pansion (Cao et al., 2008). However, SVM cannot indicate the ranking sequence

among multiple objects (e.g. documents) because it is a binary classifier. In con-

trast, in Web IR, generating a document ranking is the central research question.

In order to solve this issue, Ranking SVM (Herbrich et al., 2000; Joachims,

2002) has been proposed, which is a pairwise approach and based on the theory

of SVM. During the training process for building a ranking function, it formalises

a single ranking among k objects into many (
(

2
k

)
) rankings, where each ranking

is between only two objects, which can be managed by using SVM. For example,
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Figure 3.2: An illustration of the procedure of the Ranking SVM approach during
the training process.

as shown in Figure 3.2, for a list of 3 documents: d1, d2, and d3, instead of

directly producing a one-time ranking for these documents (which is not possible

with SVM), the Ranking SVM algorithm conducts
(
2
3

)
ranking estimations. Each

estimation is conducted between any two of these documents (namely {d1, d2},
{d1, d3}, and {d2, d3}) using SVM, and a final ranking is produced based on the

three ranking estimations.

The mathematical formulation of Ranking SVM is given as follows:

minimise :
1

2
−→w · −→w + C

∑
u,v:yu,v=1

ξu,v (3.11)

subject to : −→w (du − dv) ≥ 1− ξu,v, if yu,v = 1, ξu,v ≥ 0

where −→w is a weight vector that is adjusted during the training process, ξu,v is a

variable that is introduced for the approximation purpose, C is a parameter that

allows trading-off margin size against training error.

Geometrically, the margin is the distance between the two closest projections.

As illustrated in Figure 3.3, the distance between object 1 and object 2 by using

the weight vector −→w1 is δ1 and the distance between object 1 and object 4 by using

the weight vector −→w2 is δ2. Figure 3.3 ((Joachims, 2002)) also illustrates how the

weight vector affects the ordering of four objects in a two-dimension example. For

a particular weight vector, the objects are ordered according to their projection

into the weight vector. Therefore, the four objects are ordered (1, 2, 3, 4) and

(2, 3, 1, 4) when we use −→w1 and −→w2 as the weight vector, respectively.
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Figure 3.3: An illustrative example of the ranking of four objects by adjusting
the weight vector.

Many researchers have experimented with Ranking SVM (Cao et al., 2006;

Joachims, 2002; Metzler & Kanungo, n.d.; Wang et al., 2007). For instance, Joachims

(2002) showed how to use Ranking SVM to exploit click-through data for opti-

mising search engines.

3.2.3 The Listwise Approach

Though the pairwise approach has the advantage that existing classification al-

gorithms can be directly applied, there are also some problems with this ap-

proach (Cao et al., 2007): First, the learning objective of the pairwise approach

is to minimise loss during the classification of document pairs rather than the

ranking of documents. Second, the pairwise approach operates under the as-

sumption that the document pairs are generated independently and identically

distributed. However, it does not always hold in many challenging tasks, such as

ranking, active learning and language processing. Third, the number of generated

document pairs varies largely from query to query, which can result in the loss

function biased towards the queries that have a larger number of document pairs.

In order to avoid these issues, many listwise techniques for learning to rank

have been proposed (Cao et al., 2007; Chakrabarti et al., 2008; Taylor et al., 2008;

Xia et al., 2008; Xu & Li, 2007; Yue et al., 2007), which consider document lists

instead of document pairs as the instances during the training process. In general,

they can be classified into two categories (Liu, 2009): techniques in the first

category perform a direct optimisation of an IR evaluation measure, with the loss
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function defined based on the approximation or bound of the evaluation measure,

such as MAP and P@10. The second category deals with the minimisation of

listwise ranking loss, in which the loss function measures the difference between

the permutation given by the hypothesis and the ground truth permutation.

3.2.3.1 Direct Optimisation of IR Evaluation Measures

SoftRank Typical IR evaluation metrics are only dependent on the ranks of

documents instead of document relevance scores. If we make a slight change to

the parameter of a ranking function, the document relevance scores would be

changed smoothly. However, the ranks of these documents may not change if no

swap between documents. In this case, we cannot see any difference before and

after the parameter modification according to the IR evaluation scores. In other

words, the IR evaluation metrics are non-smooth with respect to the parameter

of the ranking function.

However, many machine learning algorithms require the gradient of a training

objective in order to optimise the parameters of a ranking function. In order to

find a smooth proxy objective for the optimisation, Taylor et al. (2008) proposed

a new family of training objectives that are derived from the rank distributions of

documents, called SoftRank. In particular, they presented a smoothed approxi-

mation to the original IR evaluation measure: Normalised Discounted Cumulative

Gain (NDCG), called SoftNDCG.

The SoftRank algorithm contains the following steps:

• Smoothing scores: For a given query q and a set of retrieved documents

D = {dj}mj=1, each document’s relevance score sj is no longer treated as a

deterministic value but as a smoothed score distribution. In addition, the

smoothed score distribution is modelled by a Gaussian score distribution

whose variance is σs and mean is sj:

p(sj) = N(sj|f(dj), σ
2
s) (3.12)

• From score to rank distribution: Due to the randomness of the ranking

scores of the documents, every document has a probability of being ranked

at a higher position than another. Given a pair of documents: du and dv,
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the probability that document du beats document dv is the difference of two

Gaussian random variables, given as follows:

pu,v =

∫ ∞

0

N(s|f(du)− f(dv), 2σ
2
2)ds (3.13)

This quantity represents the fractional number of times that document du

ranks higher than document dv on repeated pairwise instances from the two

Gaussian score distributions.

Based on the above pairwise probabilities, a rank distribution can be derived

in an iterative manner. Assuming a document du to be added into a ranked

list which already contains document dj, there are two possibilities: either

du beats dj or dj ranks higher. For the first case, the probability of being in

rank r at this iteration is equal to the probability of being in rank r− 1 on

the previous iteration. As to the second case, du leaves dj unchanged and

the probability of being in rank r is the same as it was in the last iteration.

The sum of the two parts is presented as follows:

pu
j (r) = pu−1

j (r − 1)pu,j + pu−1
j (r)(1− pu,j) (3.14)

• SoftNDCG: By taking the NDCG evaluation measure as an example, Sof-

tRank computes the expectation of NDCG with respect to the rank distri-

bution as follows:

SoftNDCG =
1

Zm

m∑
j=1

(2yj − 1)
m−1∑
r=0

d(r)pj(r) (3.15)

where d(r) = 1
log(2+r)

, yj is the relevance label for document dj, Zm is the

maximum value of
∑m

j=1(2
yj − 1)

∑m−1
r=0 d(r)pj(r), which is obtained when

the documents are optimally ordered. To learn a ranking function f by

maximising SoftNDCG, a neural network and gradient descent are used as

the model and optimisation algorithm, respectively.

Experimental results in (Taylor et al., 2008) showed that SoftRank is a very

good way of optimising NDCG, and it is possible to achieve state of the art test

set NDCG results by optimising a soft NDCG objective on the training set with

a different discount function.
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AdaRank Several learning to rank techniques, such as RankNet (Burges et al.,

2005), RankBoost (Freund et al., 2003), and Ranking SVM (Joachims, 2002),

learn a ranking function for a specific task by optimising a selected loss function.

However, for these, the loss function may only be loosely related to standard IR

evaluation measures. This could result in the obtained ranking function deviating

from the target evaluation measure and producing poor retrieval performance.

To avoid this issue, Xu & Li (2007) proposed the AdaRank algorithm, which

is a boosting-based method and employs an exponential loss function based on

IR evaluation metrics. Similar to the AdaBoost algorithm (Freund & Schapire,

1995), AdaRank can focus more on the difficult queries during the construction

of a ranking function.

AdaRank considers each document feature as a weak ranker and assigns an

equal weight to each query at the beginning. At each round, the weak ranker

with the best overall performance for a considered evaluation measure (e.g. mean

average precision) over the training query set is added into the final ranking

function. After a weak ranker is added, query weights are updated based on

the retrieval performance of the new obtained ranking function, with the aim of

making future weak learners focus more on the queries that previous weak rankers

inaccurately ranked.

For a given training set that contains m queries:{qi}mi=1, the evaluation of a

weak ranker ht and a ranking model ft on a training query are denoted as E(ht, qi)

and E(ft, qi), respectively. The learning algorithm for AdaRank is presented in

Algorithm 2.

Automatic Feature Selection In order to relax the work of manual document

feature selection in IR, Metzler (2007) proposed an Automatic Feature Selection

(AFS) method, which also directly optimises an IR evaluation measure. It is an

interactive algorithm, the general idea of which is as follows: start with an empty

ranking function; then, at each round, the best performing document feature for

the target evaluation measure (e.g. Mean Average Precision) in the training data

set is selected; this selected feature is then removed from the candidate document

feature set and added into the ranking function with an appropriate weight,

which can be obtained by using learning to rank techniques (Burges et al., 2005;
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Algorithm: AdaRank
Input: {qi}mi=1

Initialise: P1(i) = 1
m

For t = 1, ..., T :
• Create a weak ranker ft based on distribution Pt.
• Choose αt

αt = 1
2
· log

Pm
i=1 Pt(i){1+E(ht,qi)}Pm
i=1 Pt(i){1−E(ht,qi)}

• Create ft

ft =
∑t

k=1 αk · hk

• Update Pt+1

Pt+1(i) = exp{−E(ft,qi)}Pm
j=1 exp{−E(ft,qi)}

End For
Output: f = fT

Algorithm 2: The algorithm of AdaRank.

Joachims, 2005; Metzler & Croft, 2007); the algorithm terminates after a finite

number of iterations, or when none of the remaining features improve retrieval

effectiveness. The feature selection algorithm is presented in Algorithm 3.

Compared to the AdaRank algorithm, there are three main differences:

• For the AdaRank algorithm, the document feature (or weak ranker) that

has been picked out from the candidate feature set can be re-used in the

next iteration, while for the AFS method, the selected feature is removed

from the candidate feature set.

• AdaRank uses boosting to focus on improving difficult queries, whereas

queries are treated equally in the AFS method.

• AdaRank is more efficient than the AFS method: in AdaRank, the weight

of a feature is automatically calculated according to the feature’s perfor-

mance on the training dataset after each round; for AFS, the weight of

each candidate feature is obtained using a learning to rank technique at

each iteration.
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Algorithm: Automatic Feature Selection
Input: F = {fi}mi=1

Initialise: t← 0; Rt ← {}
While E(Rt)− E(Rt−1) > ε do
• Choose αi

• f ∗ = arg maxfi
E(Rt + αi · fi)

• Update Rt+1 = Rt + αi · f ∗
• F ← F − f ∗

• t← t + 1
End While
Output: Rt

Algorithm 3: The algorithm of automatic feature selection.

3.2.3.2 Minimisation of Listwise Ranking Loss

In statistics, several famous models have been previously proposed to represent

a probability distribution on permutations, such as the Luce model (Luce, 1959)

and the Mallows model (Mallows, 1975). By using similar probability distribu-

tions, Cao et al. (2007) proposed a probabilistic method to calculate a listwise

ranking loss, called ListNet.

For a given query q and a set of retrieved documents {dj}mj=1, each document’s

relevance score is computed by a scoring function f :{sj}mj=1, where sj = f(dj).

By using the Luce model, the probability of permutation π given the list of scores

s is defined as:

Ps(π) =
m∏

j=1

φ(sπ(j))∑m
k=j φ(sπ(k))

(3.16)

where sπ(j) denotes the score of object at the j-th position of the permutation π.

φ is a transformation function, which can be linear, exponential or sigmoid.

To better understand the equation, we now provide an example. For a given

query q, there are three retrieved documents: A, B and C. In addition, f(A) = 5,

f(B) = 3 and f(C) = 1. The probability of permutation π = (ABC) is equal to

the product of the following three probabilities (i.e. Pπ = P1 · P2 · P3).
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• P1: the probability of document A being ranked at the top position in π,

which is computed as follows:

P1 =
φ(sA)

φ(sA) + φ(sB) + φ(sC)
=

5

5 + 3 + 1
= 0.5556 (3.17)

• P2: the probability of document B being ranked at the second position given

that document A has been ranked at the top position, given as follows:

P2 =
φ(sB)

φ(sB) + φ(sC)
=

3

3 + 1
= 0.75 (3.18)

• P3: the probability of document C being ranked on the third position given

that documents A and B have been ranked in the top two positions, com-

puted as follows:

P3 =
φ(sC)

φ(sC)
=

1

1
= 1 (3.19)

With the Luce model, for a given query, ListNet first computes the permuta-

tion probability distribution based on the scores assigned by scoring function f .

Therefore, Pπ(ABC) = P1 · P2 · P3 = 0.5556 · 0.75 · 1 = 0.4167. Then, it com-

putes another permutation probability distribution based on the ground truth r.

Assuming the ground truth r of the relevance degree of each document to q as:

r(A) = 3, r(B) = 2 and r(C) = 1, then the probability of the permutation by

using the ground truth is computed as:

Pπ(ABC) =
3

3 + 2 + 1
· 2

2 + 1
· 1
1

= 0.3333 (3.20)

With the obtained two permutation probability distributions, the loss function

in ListNet is defined as the difference between the two distributions:

L(y, z) = −
∑
∀g∈G

Py(g)log(Pz(g)) (3.21)

where G is the permutation set, Py(g) and Pz(g) are the permutation probability

distributions obtained by using f and t, respectively.
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MAP
TREC2003 TREC2004 TREC2007 TREC2008

Ranking SVM 0.5366 0.4193 0.4641 0.4752
AdaRank 0.5977 0.5062 0.4537 0.4766

AFS 0.6145 0.5079 0.4596 0.4784
Upper Bound 0.6933 ? ∗ † 0.5744 ? ∗ † 0.5057 ? ∗ † 0.5226 ? ∗ †

Table 3.1: The highest score in each column is highlighted in bold and scores that
are statistically better than RankingSV M , AdaRank, and AFS are marked with
?, ∗, and †, respectively (Wilcoxon matched-pairs signed-ranks test, p < 0.05).

3.2.4 Summary

In this section, several different learning to rank techniques were introduced, in-

cluding the pointwise, pairwise and listwise approaches. However, the ranking

functions learned from these learning to rank techniques are usually systemati-

cally applied to all queries. This ignores the fact that different ranking functions

favour different queries, which was observed in (Peng et al., 2010).

Table 3.1 shows the retrieval performance of three LTR techniques, namely

Ranking SVM, AdaRank and the AFS method, on four different datasets1. More-

over, Upper Bound is achieved by manually selecting the most effective ranking

function on a per-query basis. From this table, it is clear that the retrieval per-

formance can be significantly enhanced if the most appropriate ranking function

is applied for each query. This observation suggests that different ranking func-

tions do favour different queries and that the appropriate selective application

of a ranking function could enhance the retrieval performance. To solve this is-

sue, several selective retrieval approaches are discussed in the remaining of this

chapter.

3.3 Query Dependent Ranking

Geng et al. (2008) proposed a query-dependent ranking approach. For each given

query, they employ a specific ranking function, which is obtained by applying

a LTR technique (e.g. Ranking SVM) on a training query set. This training

1The detailed settings can be found in (Peng et al., 2010).
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query set is dependent on the given query, which can be identified by using a

classification technique (i.e. K-Nearest Neighbour) based on a query feature.

The query feature used in their work is the mean of the document feature scores

of the top retrieved documents, which can be obtained by a reference model (e.g.

BM25), given as follows:

score(q, ri) =

∑n
φ=1 rel(dφ)

n
(3.22)

where n is the number of the top retrieved documents returned by the ranking

function ri for a given query q, and rel(dφ) is the document relevance score of a

document d at position φ of the document ranking list.

In particular, they proposed three different versions of the query dependent

ranking technique with the aim of reducing time complexity: KNN Online, KNN

Offline-1 and KNN Offline-2, which are explained in detail in the following.

3.3.1 The KNN Online Algorithm

The KNN Online algorithm contains two processing stages:

• Offline pre-processing: Compute the query feature score for each training

query qi by using Equation (3.22).

• Online training and testing: 1) For a given test query q, find its k nearest

neighbouring queries from the training query set, according to its query

feature score. 2) Obtain a ranking function by applying a LTR technique

(e.g. Ranking SVM) on the identified neighbour query set. 3) Apply this

obtained ranking function to the given test query q and obtain the document

ranking list.

An illustration of the KNN Online algorithm is presented in Figure 3.4. In this

figure, the square symbol stands for the test query q, each triangle denotes a

training query, and the triangles that are located in the circle stand for the

neighbouring queries of q.

The KNN Online algorithm is easy to follow. However, the main drawback

of the algorithm is efficiency, as it needs to conduct the training of the ranking

function for each test query.
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Figure 3.4: An illustration of the KNN Online algorithm for building a document
ranking function.

3.3.2 The KNN Offline-1 Algorithm

To reduce the time complexity, Geng et al. (2008) proposed another version of

the query dependent ranking technique, called KNN Offline-1, which also contains

two processing stages:

• Offline training: 1) Compute the query feature score for each training query

qi by using Equation (3.22). 2) For each training query qi, find the k nearest

neighbouring queries from the training query set, denoted as Nk(qi). 3)

Learn a ranking function r(qi) for each qi by applying a LTR technique on

its corresponding neighbour query set.

• Online testing: 1) Compute the query feature score for the test query q.

2) Find k nearest neighbour queries from the training query set, denoted

as Nk(q), according to the query feature score. 3) Find the most similar

training set Nk(q∗) by using Equation (3.23). 4) Apply the ranking function

r(q∗) to the test query q and obtain the document ranking list.
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Figure 3.5: An illustration of the KNN Offline-1 algorithm for building a docu-
ment ranking function.

Nk(q∗) = arg max
Nk(qi)

|Nk(qi) ∩Nk(q)| (3.23)

where |Nk(qi) ∩Nk(q)| denotes the number of common queries shared by Nk(qi)

and Nk(q).

An illustration of the KNN Offline-1 algorithm is presented in Figure 3.5. In

this figure, the square symbol stands for the test query q, each triangle denotes

a training query, and the bold triangle stands for the selected training query

based on Equation 3.23. The triangles that are located in the solid-line circle and

dotted-line circle stand for the neighbouring queries of q and q∗, respectively.

Compared to KNN Online, the KNN Offline-1 algorithm saves the online

training time. However, it introduces additional computation for finding the most

similar training query set, namely the third step of the Online testing stage.

3.3.3 The KNN Offline-2 Algorithm

In order to avoid the additional computation time, Geng et al. (2008) proposed

the KNN Offline-2 algorithm, given as follows:
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Figure 3.6: An illustration of the KNN Offline-2 algorithm for building a docu-
ment ranking function.

• Offline training: 1) Compute the query feature score for each training query

qi by using Equation (3.22). 2) For each training query qi, find the k nearest

neighbouring queries from the training query set, denoted as Nk(qi). 3)

Learn a ranking function r(qi) for each qi by applying a LTR technique on

its corresponding neighbour query set.

• Online testing: 1) Compute the query feature score for the test query q. 2)

Find the single nearest neighbouring query q∗ from the training query set,

according to the query feature score. 3) Apply ranking function r(q∗) to

the test query q and obtain the document ranking list.

An illustration of the KNN Offline-2 algorithm is presented in Figure 3.6. In

this figure, the square symbol stands for the test query q, each triangle denotes

a training query, and the bold triangle stands for the selected training query q∗
according to the query feature score. The triangles located in the solid-line circle

and dotted-line circle stand for the neighbouring queries of q and q∗, respectively.

In comparison with the KNN Offline-1 algorithm, we note that the KNN

Offline-2 algorithm actually finds the nearest neighbour query q∗ of q, directly

according to the query feature score.
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Extensive experiments on a large dataset, sampled from a commercial search

engine, have shown the effectiveness of this approach (Geng et al., 2008). How-

ever, this work only investigated the selective application of a ranking function

obtained from a single learning to rank technique and a fixed set of document

features. Hence, the effectiveness of the query-dependent ranking approach is

not clear when there is more than one LTR technique and the number of fea-

tures is varied. Moreover, the use of the mean of the feature scores from the

top retrieved documents simply ignores the importance of the distribution of the

feature scores, which has been effectively used in many applications (Manmatha

et al., 2001; Peng & Ounis, 2009). For example, Manmatha et al. (Manmatha et

al., 2001) use the relevance score distribution to estimate the effectiveness of a

search engine.

3.4 Selective Collection Enrichment

A query performance predictor aims to predict whether a given query is an “easy”

or a “difficult” query for a given document collection (Hauff et al., 2008). This

kind of prediction mainly relies on the statistics of the collection for this given

query, such as query term frequency in the collection and the number of docu-

ments containing the query term. Several query performance predictors, including

both pre-retrieval and post-retrieval predictors, were introduced in Section 2.4.3.

Using query performance predictors, Peng et al. (2009) proposed a decision

mechanism to decide whether or not to apply collection enrichment on a per-

query basis. The approach is based on the predicted performance score of a given

query on the local and external resources. In particular, the decision mecha-

nism applies collection enrichment if and only if the predicted query performance

score obtained on the external resource is higher than a threshold, as well as

the predicted query performance score obtained using the local resource. Ta-

ble 3.2 summarises the proposed decision mechanism for the selective application

of collection enrichment.

It is of note, however, that for some query performance predictors, the lower

the predictor score for the external resource, the higher the query performance

on that resource is predicted to be, and hence the more beneficial collection
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scoreL > T scoreE > T scoreL > scoreE Decision

True True or False True local
True or False True False external

False False True or False disabled

Table 3.2: The decision mechanism for the selective application of CE. scoreL and
scoreE denote the predicted performance of a given query on the local and exter-
nal resources, respectively. local, external and disabled in the column Decision
indicate expanding the initial query on the local resource, external resource and
disabling the expansion, respectively.

enrichment using that resource should be. For example, for the clarity score

predictor (Cronen-Townsend et al., 2002), a lower query performance score on the

external resource means a higher similarity between the query language model and

the external collection’s language model, suggesting that applying CE could bring

more useful expansion terms. Hence, by using the query performance predictor to

selectively apply collection enrichment, the nature of the used predictor is taken

into account when comparing the query performance scores.

The selective collection enrichment approach mainly relies on the statistics of

a given query in a corresponding collection rather than a given ranking function.

Therefore, the selective collection enrichment approach may not be applicable to

the selective application of a ranking function, as these statistics are invariant

with changes in the ranking function.

3.5 Selective Web Information Retrieval

Plachouras (2006) proposed a novel framework for selective Web information

retrieval. They employ a Bayesian decision mechanism to selectively apply a

retrieval approach under the assistance of an experiment ε, which extracts a

feature from a sample of document set.

Among k candidate retrieval approaches, namely r1, ..., rk , the probability of

retrieval approach ri being the most appropriate for a given experiment output

o, according to the Bayes decision rule, is given as follows:

P (ri|o) =
P (ri) · P (o|ri)

P (o)
(3.24)
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where P (ri) is the prior probability of ri being the most appropriate retrieval

approach and is set equal to the proportion of the number of training queries, for

which the retrieval approach ri is the most effective. P (o|ri) is the probability of

the outcome of experiment ε being o when the most effective retrieval approach is

ri. This probability is computed by estimating the density of the outcome values

of the experiment ε on the training dataset, for which the retrieval approach ri

is the most effective. In addition, P (o) is defined as follows:

P (o) =
k∑

i=1

P (ri) · P (o|ri) (3.25)

Furthermore, they estimate the expected loss of applying the retrieval ap-

proach ri as follows:

E[l(ri)] =
k∑

j=1

l(ri, rj) · P (rj|o) (3.26)

where l(ri, rj) is the loss of applying retrieval approach ri while the most effective

retrieval approach for the given query is rj, which is defined as follows:

l(ri, rj) =
rank(ri, rj)

n− 1
(3.27)

where rank(ri, rj) is the rank of the retrieval approach ri among the n candidate

retrieval approaches.

Finally, the retrieval approach with the minimum expected loss E[l(ri)] is

selected for a given query.

Several different experiments ε were defined in their work (Plachouras, 2006)

and are classified into two categories, namely the score-independent and score-

dependent experiments. The score-independent experiments do not take into

account of the relevance scores that are assigned to documents. Instead, they

count the number of documents with at least one, or all query terms, the occur-

rences of query terms in a document and the number of documents that belong

to the same URL domain. The score-dependent experiments are based on es-

timating the usefulness of the hyperlink structure in a sample of the retrieved

document set.

Extensive experiments showed that the selective Web IR approach is effec-

tive when there are only two candidate retrieval approaches (Plachouras, 2006).
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Description
1 information in the query itself: the length of the query, the number

of acronyms in the query and the number of stop words.
2 the inverse document frequency of the query terms.
3 the BM25 scores in the top 2000 returned documents for each query.
4 the number of the matched titles in the top 20 documents returned

by the BM25 weighting model.
5 the number of the matched URLs in the top 20 documents returned

by the BM25 weighting model.
6 the number of the matched anchors in the top 20 documents returned

by the BM25 weighting model.
7 the proximity score in the top 20 documents returned by the BM25

weighting model.
8 the URL depth of the top 2 documents by the BM25 weighting model.

Table 3.3: The description of the query features used in the classification process
for query type detection.

However, the retrieval performance obtained using this approach only improved

slightly and actually decreased when more than two candidate retrieval approaches

are used. This is because, in the selective Web IR framework, the higher num-

ber of retrieval approaches require more queries for the training of the Bayesian

decision mechanism.

3.6 Query Type Prediction

A query classification task was introduced in the TREC 2004 Web track (Craswell

& Hawking, 2004), which aims to classify a mixed set of queries into three different

types, namely homepage finding, named page finding and topic distillation. In

addition, Plachouras et al. (2004) showed that by applying different retrieval

approaches for different query types, the obtained retrieval performance can be

enhanced compared to the uniform application of one retrieval approach to all

query types.

Several different approaches were proposed for predicting the query type for a

given query (Song et al., 2004; Yang et al., 2004). Yang et al. (2004) proposed the

use of a linguistic classifier to predict query type. The proposed linguistic classifier
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uses a set of heuristic linguistic features, which are identified from the analysis

of the training dataset. For example, Yang et al. (2004) noted that queries that

ended with uppercase letters tend to be the homepage finding query, queries that

contain 4-digit year are more likely to be the named page finding query, and

the topic distillation queries are shorter in general compared to the homepage

finding and named page finding queries. In addition, they also identify some

word cues for the named page finding queries (e.g. about, annual and report)

and the homepage finding queries (e.g. home, welcome, office and bureau).

Song et al. (2004) proposed to use a classification technique to predict query

type. In addition, several different query features were extracted, shown in Ta-

ble 3.3, for the classification process. Their query classification technique is a

two-stage process: 1) classify all queries into two categories: the topic distilla-

tion query and the homepage finding and named page finding query. 2) classify

the latter into two categories: the homepage finding query and the named page

finding query.

For these discussed query type prediction approaches, there are two main

issues: First, the accuracy of the state-of-the-art query type prediction approaches

is not high. For example, the highest accuracy of query type prediction between

homepage finding and named page finding is around 68% (Craswell & Hawking,

2004). Second, though the query type-based retrieval strategy can enhance the

retrieval performance, when comparing it with the systematic application of a

retrieval strategy to all queries. Some queries of the same type benefit from

having different retrieval strategies applied (Peng & Ounis, 2009).

3.7 Summary

This chapter described three different groups of the learning to rank (LTR) tech-

niques, which are used to build a ranking function and have been widely used in

IR systems. As the learned ranking functions are usually systematically applied

to all queries, which ignores the fact that different ranking functions favour dif-

ferent queries, several selective retrieval approaches were discussed to solve this

issue. However, the approaches described have various drawbacks, which prevent
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the wide deployment of the selective application of a specific ranking function for

a given query.

The query dependent ranking approach is only investigated in a single learning

to rank technique and a fixed set of document features, its effectiveness is not

clear when there is more than one learning to rank technique and the number

of document features is varied. Moreover, the use of the mean of the document

feature scores from the top retrieved documents ignores the importance of the

distribution of the document relevance scores, which has been effectively used in

many applications (He et al., 2009; Manmatha et al., 2001).

The retrieval performance obtained using the selective Web IR approach only

improved slightly and actually decreased when more than two candidate retrieval

approaches are used. This is because, in the selective Web IR framework, the

higher number of candidate retrieval approaches require more queries for training

the Bayesian decision mechanism.

For the query performance predictor-based approach, it may not be applicable

to the selective application of a ranking function. This is due to the fact that the

predictors mainly rely on the statistics of the collection and these statistics are

invariant to changes in the ranking function. As for the query type prediction

approach, the accuracy of query type prediction is not high (Craswell & Hawking,

2004) and queries of the same type may benefit from having different retrieval

approaches applied (Peng & Ounis, 2009). In the next chapter, we present our

proposed learning to select framework, which is agnostic to the problems that

inherent with these introduced selective retrieval approaches.
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Chapter 4

Learning to Select

4.1 Introduction

The previous chapter presented four different selective retrieval approaches. In

Section 3.3, we discussed the query dependent ranking approach. However, this

approach’s effectiveness is not clear when there is more than one Learning to Rank

(LTR) technique and the number of document features is varied. Moreover, the

use of the mean of the document feature scores from the top retrieved documents

ignores the importance of the distribution of the document relevance scores, which

has been effectively used in many applications (He et al., 2009; Manmatha et al.,

2001). For example, Manmatha et al. (2001) used the relevance score distribution

to estimate the effectiveness of a search engine.

In Section 3.4, the query performance predictor-based approach was discussed.

However, this approach may not be applicable to the selective application of a

ranking function. This is due to the fact that the predictors mainly rely on the

statistics of the collection, such as query term frequency in the collection and the

number of documents containing the query terms. Hence, the query performance

predictor-based approach may not be applicable to the selective application of

ranking functions, as these collection statistics are invariant to changes in the

ranking function.

The selective Web IR approach (Section 3.5) has shown its effectiveness when

there are only two candidate retrieval approaches. However, the retrieval perfor-

mance obtained using this approach only improved slightly and actually decreased
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when more than two candidate retrieval approaches are used. As for the query

type prediction approach (Section 3.6), there are two main issues: first, the ac-

curacy of the existing query type prediction approaches is not high (Craswell

& Hawking, 2004); second, queries of the same type may benefit from having

different retrieval approaches applied (Peng & Ounis, 2009).

In order to selectively apply an appropriate ranking function from a large

set of candidate ranking functions, we propose a novel Learning to Select (LTS)

framework, which is agnostic to the number of ranking functions, as well as to the

type of the queries. A central concept of this framework is that the effectiveness

of a ranking function for a given unseen query can be estimated based on its

performance on similar queries which have already been seen. To identify similar

queries, we propose a neighbouring query search approach. This approach em-

ploys a classification algorithm (e.g. k-Nearest Neighbour) to find similar already

seen queries for a given unseen query, by using a query feature. In particular, we

propose a novel query feature, which takes into account the distribution of the

document relevance scores. This new feature is based on a divergence measure,

which is used to determine the extent to which a document ranking function

alters the scores of an initial ranking of documents.

The remainder of this chapter is organised as follows. Section 4.2 introduces

the proposed learning to select framework for selectively applying an appropriate

ranking function on a per-query basis. Section 4.3 shows how to use the learning

to select framework to select multiple appropriate document features for building

a ranking function, on a per-query basis. The description of each component

of the learning to select framework is presented in Section 4.4. An illustrative

example of the learning to select framework is presented in Section 4.5. Section 4.6

compares the learning to select framework with the existing selective retrieval

approaches. Finally, a summary of this chapter is presented in Section 4.7.

4.2 The Learning to Select Framework

A document ranking function created by a learning to rank technique is based

on the assumption that the training dataset is representative of unseen queries.

However, some queries may benefit from applying different ranking functions. We
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believe that the effectiveness of a ranking function for an unseen query can be

estimated based on similar training queries. A divergence measure can be used to

determine the extent to which a document ranking function alters the scores of

an initial ranking of documents. We propose that this divergence can be used to

identify similar training queries. In this case, a ranking function, which performs

well for training queries that have a similar divergence to the unseen query, will

also perform well on the unseen query.

LTS[q′, R, Q, f(ri, Q)]

1: for i = 1, ..., n do
2: With the ranking function ri, compute its corresponding query feature score

f(ri, q
′)

3: Based on the computed f(ri, q
′), find neighbouring query set Q′

i from
f(ri, Q)

4: Evaluate the performance of the ranking function ri on the obtained neigh-
bouring query set:

P (Q′
i, ri) =

P
qφ∈Q′

i
P (qφ,ri)

|Q′
i|

5: end for

Return r∗i (q
′) = arg max

ri

P (Q′
i, ri)

Algorithm 4: The learning to select framework.

Based on the above general idea, we present the detailed learning to select

algorithm as follows:

• Initially, on a training dataset, we have a set of queries Q = {q1, q2, ..., qm}
and a set of candidate ranking functions R = {r1, r2, ..., rn}. For each query

qj, we estimate a query feature score for each ranking function ri, denoted

as f(ri, qj). For all training queries Q, each ranking function ri’s query

feature scores set is denoted f(ri, Q) = {f(ri, q1), ..., f(ri, qm)}.

• Next, in response to an unseen query q′, for each ranking function ri, we

first estimate a query feature score f(ri, q
′), then employ a neighbouring

query search technique to identify a set of the most similar queries (Q′
i)

from f(ri, Q) according to the distance between queries using the query

feature. Each identified similar query corresponds to a query qφ.
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• Let 0 ≤ E(qφ, ri) ≤ 1 be the outcome of an evaluation measure (see Sec-

tion 2.7) calculated on the ranking function ri for the similar training query

qφ. The performance of ranking function ri on this test query q′ is predicted

based on the performance of ri on the identified similar query set Q′
i of q′:

P (ri, q
′) ' P (ri, Q

′
i) =

∑
qφ∈Q′

i
E(qφ, ri)

|Q′
i|

(4.1)

• Finally, we apply the ranking function ri for the query q′ that has the

highest retrieval performance on the neighbouring query set:

r∗i (q
′) = arg max

ri

∑
qφ∈Q′

i
E(qφ, ri)

|Q′
i|

(4.2)

The LTS algorithm, written in pseudo-code, can also be found in Algorithm 4.

4.3 Selecting Multiple Document Features

Algorithm 4 shows how to select an appropriate ranking function from a number

of candidate ranking functions for a given query. The candidate ranking functions

are usually built on the same set of document features. However, in some cases,

we need to select multiple appropriate document features for building a ranking

function. For example, with two document features (e.g., PageRank and URL

type) and two different queries (e.g., q′A and q′B), assume that the best retrieval

performance for q′A is achieved by a ranking function that is built on both docu-

ment features while the best retrieval performance for q′B is achieved by a ranking

function that is built on PageRank only. In this case, to achieve the overall best

retrieval performance, a system should selectively choose multiple appropriate

document features for building a ranking function.

To adapt our proposed learning to select framework to take into account this

case, only one extra step is required: for a given document feature set, we re-

generate this set by using possible combinations among the included document

features. In other words, for a document feature set that contains n document fea-

tures, there are 2n− 1 possible combinations (excluding the empty combination).
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In the example above, there are 22−1 = 3 possible combinations: PageRank, URL

type and PageRank+URL type. A ranking function can be learned by applying a

learning to rank technique to each combination. In this case, selecting multiple

appropriate document features from a document feature set that contains n doc-

ument features is equivalent to selecting an appropriate ranking function from

2n − 1 candidate ranking functions.

4.4 The Components of Learning to Select

The proposed learning to select framework contains two main components:

• The query feature component, which is used to represent the charac-

teristics of a given query. For example, the mean of the document relevance

scores, as used by Geng et al. (2008).

• The identifying neighbouring queries component, which is a tech-

nique that is used to identify the most similar queries from a training

dataset, for a given unseen query. An example of an applicable algorithm

is the K-Nearest Neighbour (KNN) search (Cover & Hart, 1967).

The details of each component are presented in the remainder of this section.

4.4.1 Query Features

As presented in Section 3.3, Geng et al. (2008) used the mean of document rel-

evance scores as a query feature to identify neighbouring queries. However, this

query feature ignores the distribution of the document relevance scores, which

was shown to be important in many applications (He et al., 2009; Manmatha et

al., 2001). For example, (He et al., 2009) used the distribution of the document

relevance scores to identify a suitable document ranking for blog opinion retrieval.

By plotting the top 1000 retrieved documents’ relevance scores distribution

in Figure 4.1, we observe two different distributions that are produced by two

different ranking functions on a same set of documents. In Figure 4.1, the ranking

function that is used to obtain the initial ranking of documents for a given query

is called the base ranking function. Any other ranking functions that may be
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Figure 4.1: Score distributions of the top 1000 retrieved documents, which are
ranked according to their relevance scores in the base ranking function.

applied are called candidate ranking functions. They assign different document

relevance scores to the same documents as retrieved by the base ranking function.

A divergence measure can be used to determine the extent to which a document

ranking function alters the scores of an initial ranking of documents.

To find the relation between the estimated divergence score and the effec-

tiveness of a ranking function, we plot the distribution of the divergence scores

(estimated between a base ranking function and a candidate ranking function)

versus the relative retrieval effectiveness (obtained by conducting a subtraction

between the retrieval performances, e.g. MAP, of a base ranking function and

a candidate ranking function) in Figure 4.2. In particular, we use the TREC

2004 Web track data as an example, which contains 225 queries. We divide the

estimated divergence scores into 8 equal size bins. The X axis corresponds to

the divergence score of each bin, while the Y axis corresponds to the mean of

the relative retrieval effectiveness that is obtained for the queries which belong

to the same bin. In addition, a standard error bar is also provided to show the

uncertainty in the measure of relative retrieval performance.

From Figure 4.2, we note that the mean of the relative retrieval effectiveness

decreases as the estimated divergence score increases. However, after reaching its

lowest value, the mean of the relative retrieval effectiveness starts increasing as
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Figure 4.2: The distribution of the relative retrieval performance in MAP, with
standard error bars, versus the estimated divergence score.

the divergence score increases. In particular, from the standard error bars, we

observe that queries that have similar divergence scores receive a similar relative

retrieval effectiveness. This observation suggests that the divergence measure can

be used as a query feature to identify similar queries.

Based on this observation, in this section, we propose to use the divergence

measure as a query feature. There are several different ways to estimate the

divergence between two document score distributions that are obtained by using

a base ranking function rb and a candidate ranking function ri. A commonly used

divergence measure is the Kullback-Leibler (KL) (Kullback, 1997) divergence,

given as follows:

KL(rb||ri, q) =
T∑

d=1

rb(d) · log2

rb(d)

ri(d)
(4.3)

where, for the top T retrieved documents of a given query q, rb(d) and ri(d)

are the relevance scores of document d in the base ranking rb and the candidate

ranking ri, respectively.

Another commonly used divergence measure is the Jensen-Shannon (JS) (Lin,

1991) measure, which is a symmetric version of the Kullback-Leibler divergence,

calculated as the average of the KL divergence from probability distribution rb
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to ri, and KL divergence from probability distribution ri to rb, given as follows:

JS(rb||ri, q) = KL(rb||(
1

2
· rb +

1

2
· ri), q) (4.4)

=
T∑

d=1

rb(d) · log2

rb(d)
1
2
· rb(d) + 1

2
· ri(d)

It is easy to verify that adding a constant to the relevance scores of the

documents in ri does not change the ranking position of each document in ri,

however, this affects the divergence between rb and ri. For example, assuming

four retrieved documents for a given query q: d1, d2, d3, and d4. The relevance

scores of each document in the base ranking function rb and a candidate ranking

function ri are given as follows:

rb ri

d1 0.4 0.3
d2 0.3 0.4
d3 0.2 0.1
d4 0.1 0.2

Then the estimated KL divergence score KL(rb||ri, q) is equal to:

KL(rb||ri, q) = 0.4× log2

0.4

0.3
+ 0.3× log2

0.3

0.4
+ 0.2× log2

0.2

0.1
(4.5)

+0.1× log2

0.1

0.2
≈ 0.1415

According to the relevance scores produced by the ranking function ri, the ranking

position of the four documents (Rank(ri)) is given as follows:

rb ri Rank(ri)
d1 0.4 0.3 2
d2 0.3 0.4 1
d3 0.2 0.1 4
d4 0.1 0.2 3
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By deducting a constant (e.g. 0.05) to the relevance scores of the documents

in ri, we obtain another relevance score list r′i:

rb ri r′i
d1 0.4 0.3 0.25
d2 0.3 0.4 0.35
d3 0.2 0.1 0.05
d4 0.1 0.2 0.15

The ranking position of the four documents according to r′i is given below:

rb ri r′i Rank(ri) Rank(r′i)
d1 0.4 0.3 0.25 2 2
d2 0.3 0.4 0.35 1 1
d3 0.2 0.1 0.05 4 4
d4 0.1 0.2 0.15 3 3

which is exactly the same as the ranking position obtained by using ri. However,

the KL divergence score KL(rb||r′i, q) changes to:

KL(rb||r′i, q) = 0.4× log2

0.4

0.25
+ 0.3× log2

0.3

0.35
+ 0.2× log2

0.2

0.05
(4.6)

+0.1× log2

0.1

0.15
≈ 0.5460

In order to avoid the issue of translation invariance, we apply a score normal-

isation, which was proposed by Lee (1997), on each document of the rankings rb

and ri:

rN(d) =
r(d)− r(min)

r(max)− r(min)
(4.7)

where rN(d) is the document relevance score after normalisation, r(max) and

r(min) are the maximum and minimum document relevance scores that have

been observed in the top retrieved documents from the input ranking r, and r(d)

is the relevance score of document d in the input ranking.
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By applying Lee’s score normalisation algorithm on the provided example, we

obtain the following scores:

rb N ri N r′i N

d1
0.4− 0.1

0.4− 0.1
= 1

0.3− 0.1

0.4− 0.1
= 0.66

0.25− 0.05

0.35− 0.05
= 0.66

d2
0.3− 0.1

0.4− 0.1
= 0.66

0.4− 0.1

0.4− 0.1
= 1

0.35− 0.05

0.35− 0.05
= 1

d3
0.2− 0.1

0.4− 0.1
= 0.33

0.1− 0.1

0.4− 0.1
= 0

0.05− 0.05

0.35− 0.05
= 0

d4
0.1− 0.1

0.4− 0.1
= 0

0.2− 0.1

0.4− 0.1
= 0.33

0.15− 0.05

0.35− 0.05
= 0.33

Based on the above normalised document relevance scores, we obtain the

ranking positions of each document in both ri N and r′i N :

rb N ri N r′i N Rank(ri N) Rank(r′i N)
d1 1 0.66 0.66 2 2
d2 0.66 1 1 1 1
d3 0.33 0 0 4 4
d4 0 0.33 0.33 3 3

The above results show that both ranking functions produce the same ordering

of the documents after the score normalisation. In addition, the KL divergence

score KL(rb N ||ri N , q) is equal to KL(rb N ||r′i N , q):

KL(rb N ||ri N , q) = KL(rb N ||r′i N , q) (4.8)

= 1× log2

1

0.66
+ 0.66× log2

0.66

1
+ 0.33× log2

0.33

0

+0× log2

0

0.33

In mathematics, the denominator is required to be non-zero in a division operation

in order to obtain a real value. Moreover, only positive real numbers have real-

valued logarithms. However, from the above equation, we observe log2
0.33
0

and

log2
0

0.33
. In order to obtain real-value scores in the divergence estimation, we

modify Lee’s score normalisation algorithm as follows:

rN(d) =
r(d)− r(min)

r(max)− r(min)
+ c (4.9)

where c is a constant (c > 0).
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4.4.2 Identifying Neighbouring Queries

Finding neighbouring queries for an unseen query can be treated as a classifica-

tion problem, as neighbouring queries are assumed to belong to the same group.

In pattern recognition, several different classification algorithms have been pre-

viously proposed, which are based on either prior knowledge or the statistical

information that is extracted from the patterns (Duda et al., 2000). In Fig-

ure 4.2, we observe that queries that have similar divergence scores receive a

similar relative retrieval effectiveness. However, from the global distribution of

the divergence scores, we note that some queries receive similar relative retrieval

performances but have far different divergence scores. For example, queries with

divergence scores around -10 exhibit similar relative retrieval performance with

queries, whose divergence scores around 7. This observation emphasises the lo-

cality property of the queries. Hence, in the learning to select framework, we

propose to use the k-nearest neighbour and k-means approaches for finding the

neighbouring queries. In addition, the bin approach that was proposed in (Peng

& Ounis, 2009) for classifying queries is also presented (Section 4.4.2.3).

4.4.2.1 k-Nearest Neighbour

The nearest neighbour search (NNS) approach, also known as proximity search,

similarity search or closest point search, is used to find the closest points in a

metric space, for a given point (Feustela & Shapiro, 1982). There are a number of

variants of NNS, among which the most well-known is the k-Nearest Neighbour

(KNN) classification technique. KNN is a type of instance-based learning, in

which the function is only approximated locally (Cover & Hart, 1967). The KNN

classification technique is one of the most fundamental classification techniques

and is widely used for classifying objects when there is little or no prior knowledge

about the distribution of the objects.

In the KNN classification algorithm, an object is classified by majority vote of

its neighbours. The steps of the KNN algorithm are as follows (Mitchell, 1997):

1. Set the parameter k, which is the number of the nearest neighbours that

need to be identified.
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Figure 4.3: An illustration of the KNN algorithm for classifying objects.

2. Compute the distance between a target object and those that were sampled.

3. Sort the samples according to the calculated distances.

4. Collect the k nearest samples.

5. Use the simple majority of the category of the k nearest samples as the

prediction value of the target object.

As illustrated in Figure 4.3, the target object (black pentagon) should be

classified either as a blue square or as a red circle. It is classified as a red circle if

we set k = 3, as the red circle is the majority among the three nearest neighbours

(inside the solid-line circle). Also, it can be classified as a blue square if we set

k = 5, as the blue square is the majority among the five nearest neighbours

(inside the dotted-line circle).

To adapt the KNN algorithm for identifying similar queries in the LTS frame-

work (the 3rd step of Algorithm 4), we modify this algorithm as follows:

1. Set the parameter k, which is the number of the similar queries that need

to be identified.
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2. Compute the distance between a test query q′ and each training query, as

the absolute difference between the feature scores of these two queries.

3. Sort the training queries according to the calculated distances.

4. Identify the k most similar (nearest) queries.

5. The identified k most similar queries are used in Equation (4.2) to decide

which ranking function is the most appropriate for the test query q′.

4.4.2.2 k-means

While the KNN algorithm, which classifies an object based on the vote of its

neighbours, the k-means classification algorithm aims to partition n objects into

k groups, in which each object belongs to the group with the nearest mean (Mac-

Queen, 1967). The steps of the algorithm are as follows:

1. Set the parameter k, which is the number of groups.

2. Generate k centroids, randomly or evenly separated within the range of the

query feature scores.

3. Assign each object to its nearest centroid, the objects that are assigned to

the same centroid form a group.

4. Update each centroid with the mean of the scores of the objects that are

assigned to this centroid.

5. Repeat the previous two steps until some convergence criterion is met (usu-

ally when no object moves from one group to another).

Figure 4.4 illustrates the steps of the k-means algorithm. There are twelve

objects (black squares) that need to be classified into three groups. In the first

step, three centroids are randomly generated (namely the red circle, the green

circle, and the blue circle). In the second step, each object is assigned to its

nearest centroid. In this case, there is only one object that belongs to the red

centroid group, six objects belong to the green centroid group and five objects

belong to the blue centroid. In the third step, each centroid is updated with the
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Figure 4.4: An illustration of the k-means algorithm for classifying objects.

mean of the objects that are assigned to this centroid. The second and third

steps are repeated until convergence has been reached. In this illustration, the

final three groups are presented in step 4.

We adapt the k-means algorithm with the aim of making it suitable for iden-

tifying neighbouring queries in the LTS framework (the 3rd step of Algorithm 4):

1. Set the parameter k, which is the number of groups.

2. Randomly or heuristically generate k centroids, which are in the range of a

given query feature space.

3. Assign each training query to its nearest centroid, according to the query

feature score (e.g., the KL divergence score). The queries that are assigned

to the same centroid form a group.

4. For each group, update its centroid with the mean of its corresponding

query feature scores.
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5. Repeat the previous two steps until no training query moves from one group

to another.

6. For a given test query q′, find its nearest centroid.

7. The training queries that belong to the identified centroid are used in Equa-

tion (4.2) to decide which ranking function is the most appropriate for the

test query q′.

4.4.2.3 The Bin Approach

Peng & Ounis (2009) proposed the use of bins to find an interval that a given

query belongs to. Each interval corresponds to a sub-bin. The intervals are

defined based on the feature scores of training queries. The algorithm steps are

given as follows:

1. Set the parameter k, which is the number of sub-bins.

2. Divide the bin, which contains all training queries, into k equal size sub-bins

according to the logscale of the feature scores of these training queries.

3. For a given test query q′, find the sub-bin (interval) that it belongs to,

according to its query feature score.

4. The training queries that belong to the identified sub-bin are used in Equa-

tion 4.2 to decide which ranking function is the most appropriate one for

the test query q′.

By comparing the algorithms of the bin approach and k-means, we note that

the bin approach is similar to k-means. Both approaches aim to generate k

centroids/sub-bins based on the feature scores of training queries, and assign the

test query to the nearest centroid or the sub-bin that it belongs to. The only

difference is that k-means conducts several iterations to generate centroids while

the bin approach only conducts one iteration to build sub-bins. In the learning to

select framework, we employ KNN and k-means but not the bin approach, since

it can be considered as a variant of k-means.

95



4.5 Example of Learning to Select

MAP r1 r2

qφ E(qφ, r1) E(qφ, r2) f1(r1, qφ) f1(r2, qφ)
q1 0.1 0.2 3 2
q2 0.5 0.3 5 7
q3 0.3 0.2 8 10
q4 0.4 0.5 7 6
q5 0.2 0.1 6 1
q6 0.3 0.4 10 5
q7 0.7 0.5 4 11
q8 0.1 0.3 2 13

Table 4.1: An example of query feature scores and MAP evaluations for 10 train-
ing queries and 2 ranking functions.

4.4.3 Variants of Learning to Select

Given the components of the learning to select framework described above, sev-

eral variants of this framework can be generated by suitably combining different

versions of the components. When using the KNN algorithm to identify neigh-

bouring queries, three variants are generated according to the used query feature:

the mean of the relevance scores (Rel), the KL divergence score (KL) and the JS

divergence score (JS). In the remaining chapters, we denote them as KNN-Rel,

KNN-KL and KNN-JS respectively. In addition, another three variants can be

generated when using k-means as the neighbouring query finding algorithm, the

three variants are denoted as Kmeans-Rel, Kmeans-KL and Kmeans-JS.

4.5 Example of Learning to Select

Let us illustrate the learning to select framework using an example. Assuming our

training dataset has 8 queries, namely Q = {q1, q2, q3, q4, q5, q6, q7, q8}, and that

we have two candidate ranking functions, namely R = {r1, r2}. The retrieval

performance (e.g., MAP) of each ranking function and its query feature score for

each training query qφ are presented in Table 4.1.

Then, for an unseen query q′, we estimate the query feature scores for each

ranking function. In this example, we assume f(r1, q
′) = 2 and f(r2, q

′) = 5. In
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d(qφ, q
′)

qφ r1 r2

q1 1 3
q2 3 2
q3 6 5
q4 5 1
q5 4 4
q6 8 0
q7 2 6
q8 0 8

Table 4.2: The distance between each training query qφ and the given test query
q′, which is an absolute value of the subtraction between the two queries’ feature
scores.

addition, we employ the KNN algorithm and set k = 3 in order to find the three

nearest neighbouring queries.

Next, we compute the distance between the given test query q′ and each

training query qφ for each ranking function, according to the query feature score.

The distance results are presented in Table 4.2.

Then, we sort the distance scores (shown in Table 4.3) and collect the three

nearest neighbouring queries for each ranking function. In this case, q1, q7, q8 are

collected for r1 and q2, q4, q6 are collected for r2.

Finally, the effectiveness of each candidate ranking function on this test query

q′ is computed as follows:

∑k
φ=1 E(qφ, r1)

k
=

E(q1, r1) + E(q7, r1) + E(q8, r1)

3
(4.10)

=
0.1 + 0.7 + 0.1

3
= 0.3∑k

φ=1 E(qφ, r2)

k
=

E(q2, r2) + E(q4, r2) + E(q6, r2)

3
(4.11)

=
0.3 + 0.5 + 0.4

3
= 0.4

In this case, for q′, we apply r2 as its mean retrieval performance for the

nearest queries is higher than for r1 (0.4 > 0.3).
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d(qφ, q
′) ranking selected?

qφ r1 r2 r1 r2 r1 r2

q1 1 3 2 4 Yes No
q2 3 2 4 3 No Yes
q3 6 5 7 6 No No
q4 5 1 6 2 No Yes
q5 4 4 5 5 No No
q6 8 0 8 1 No Yes
q7 2 6 3 7 Yes No
q8 0 8 1 8 Yes No

Table 4.3: The ranking of training queries according to the computed query
distance scores.

4.6 Discussion

The proposed learning to select framework is different from the previously pro-

posed selective retrieval approaches (Chapter 3) in several aspects.

First, the query dependent ranking approach (Geng et al., 2008) (described

in Section 3.3) tries to learn a ranking function for a given query, through the

way of applying a single learning to rank algorithm to the neighbouring queries

of the given query. However, in this approach, it is not clear how to obtain

a ranking function when there is more than one learning to rank algorithm. In

contrast, our proposed learning to select framework selects an appropriate ranking

function from a number of candidate ranking functions, which can be created by

using several different learning to rank techniques, for each given query.

Three different variants of the query dependent ranking algorithm were pro-

posed, namely KNN Online (Section 3.3.1), KNN Offline-1 (Section 3.3.2) and

KNN Offline-2 (Section 3.3.3), which have different time complexities. Compared

to KNN Online, the learning to select framework is much more efficient as the

weights of each document feature are learned beforehand. However, to generate

a ranking function, KNN Online learns the document feature weights for each

given query at retrieval time, which is time-consuming, and results in the KNN

Online algorithm being impractical.

To alleviate the time complexity during the retrieval process, KNN Offline-1

and KNN Offline-2 were proposed. Instead of conducting a single online training
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for each given query, KNN Offline-1 and KNN Offline-2 learn a specific ranking

function for each training query before the retrieval process. However, compared

to KNN Online, this kind of process significantly increases the training overheads,

as n times training hours are spent if there are n training queries. In particular,

the KNN Offline-1 algorithm introduces additional computation overheads for

finding the neighbours of a given query, in comparison with KNN Offline-2.

Second, the selective collection enrichment approach (Section 3.4) selectively

applies an appropriate collection for enriching and expanding a given query ac-

cording to the given query’s predicted performance on the corresponding collec-

tion. The performance prediction mainly relies on the statistics of a given query

in a corresponding collection rather than a given ranking function. Therefore,

the selective collection enrichment approach may not be applicable to the selec-

tive application of a ranking function, as these collection statistics are invariant

to changes in the ranking function. However, our proposed learning to select

framework is not only able to selectively apply an appropriate ranking function,

but is also capable of selectively choosing an appropriate collection for expanding

a given query. This is achieved since a same set of documents receive different

relevance scores, according to different expanded queries, which are obtained by

applying query expansion on different collections. In this case, each collection is

represented by a list of document relevance scores.

Third, the selective Web IR framework (Section 3.5) is formulated in terms

of statistical decision theory and based on a Bayesian decision mechanism. For

a given query, the retrieval approach with the minimum expected loss is applied.

However, the loss function employed in selective Web IR is loosely related with

the target evaluation measure (e.g., MAP). Several studies have shown that it is

advantageous to define the loss function directly in line with the target evalua-

tion measure (Cossock & Zhang, 2006; Donald et al., 2005; Järvelin & Kekäläinen,

2000). In the learning to select framework, the decision mechanism is directly

related with the target evaluation measure. For a given query, the ranking func-

tion that receives the highest estimated retrieval performance (e.g., MAP) on

its neighbouring queries is applied. In addition, the retrieval performance of the

selective Web IR framework is highly dependent on the number of candidate

retrieval approaches. The obtained retrieval performance by using the selective
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Web IR framework decreased when more than two candidate retrieval approaches

are used. This is because, in the selective Web IR framework, a higher number

of candidate retrieval approaches require more queries for training the Bayesian

decision mechanism. However, in the learning to select framework, the effec-

tiveness of each candidate ranking function is estimated based on its retrieval

performance on a set of neighbouring training queries, which is independent of

the size of candidate ranking functions.

Fourth, the query type prediction method (Section 3.6) attempts to identify

the type of a given query, then applies different retrieval approaches for different

query types. Instead, the learning to select framework selectively applies an

appropriate ranking function on a per-query basis, which is agnostic to the type

of the queries. The learning to select framework could bring more benefit to

the retrieval performance as queries of the same type may benefit from having

different retrieval approaches applied.

4.7 Summary

In this chapter, we presented a novel framework, called learning to select, for

selecting an appropriate ranking function (see Section 4.2) or multiple document

features (see Section 4.3). The framework is based on the concept that the ef-

fectiveness of a ranking function for an unseen query can be estimated based on

its performance on similar already seen queries. The framework consists of two

main components: computing a set of query features (Section 4.4.1) and identi-

fying neighbouring queries (Section 4.4.2). In the learning to select framework,

a classification algorithm is employed to identify neighbouring queries by using a

query feature. Moreover, to build this query feature, we propose the use of a di-

vergence measure to determine the extent to which a document ranking function

alters the scores of an initial ranking of documents.

In Section 4.6, we discussed how the learning to select framework differs from

the existing selective retrieval approaches, including query dependent ranking

(Section 3.3), selective collection enrichment (Section 3.4), selective Web IR (Sec-

tion 3.5), and query type prediction (Section 3.6). The remainder of this thesis
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focuses on evaluating the effectiveness of the learning to select framework in dif-

ferent search applications.
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Chapter 5

Experiments using Learning to
Select

5.1 Introduction

The previous chapter presented a novel learning to select (LTS) framework for

selectively applying an appropriate ranking function and multiple document fea-

tures for a given query. In this chapter, we aim to evaluate the performance of

our proposed LTS framework on several different aspects.

Section 5.2 presents the research questions of this chapter. As described in

Chapter 4, our proposed LTS framework is capable of selecting an appropriate

ranking function and multiple appropriate document features. We investigate

the effectiveness of our proposed LTS framework in both cases. In particular, the

robustness of our proposed LTS framework is investigated by increasing the size of

the candidate set. Furthermore, the performance of each component (i.e., query

feature and the neighbouring query finding technique) of the LTS framework is

also investigated.

Our experimental settings are described in Section 5.3. Section 5.4 shows the

importance of selectively applying an appropriate ranking function on a per-query

basis. Sections 5.5 and 5.6 discuss the evaluation of our proposed LTS framework

when selecting a single and multiple candidates, respectively. We summarise this

chapter and draw our conclusions in Section 5.7.
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5.2 Research Questions

In the following experiments, we address five main research questions:

• RQ1: We assess how important it is to selectively apply an appropriate

ranking function on a per-query basis (Section 5.4).

• RQ2: We test how effective our proposed LTS framework is for selecting

an appropriate ranking function for a given query, by comparing it to three

state-of-the-art LTR techniques and a simulated oracle query type predic-

tion approach which knows with certainty the query type before applying

a given ranking function (Section 5.5.1).

• RQ3: As the number of candidate ranking functions increases, the selection

becomes more challenging. To test how robust our proposed LTS framework

is, we apply it on a large number of candidate ranking functions, which

contains as many as 63 different ranking functions (Section 5.5.2).

• RQ4: We test how effective our proposed LTS framework is when select

multiple appropriate candidates (i.e. document features) from the candi-

date set (Section 5.6).

• RQ5: We test how effective each LTS component is, by investigating three

different query features (i.e., the mean of the relevance scores, KL diver-

gence, and JS divergence) and two different neighbouring query finding

techniques (i.e., KNN and k-means) (Sections 5.5 and 5.6).

5.3 Experimental Settings

We present the experimental settings in this section, which includes the retrieval

tasks (Section 5.3.1), the used collections and topics (Section 5.3.2), the used

baselines (Section 5.3.3), and the training procedure (Section 5.3.4).

103



5.3 Experimental Settings

Number of pages 1,247,753
Average page size 15.2 kB
Number of hostnames 7,794
Total number of links 11,164,829
Number of cross-host links 2,470,109
Average cross-host links per host 317

Table 5.1: Salient properties of the .GOV corpus

5.3.1 Retrieval Tasks

The LETOR 3.0 and LETOR 4.0 feature sets (Liu et al., 2007) are sampled using

datasets from two tracks: Web track and Million Query track. Web track 2003

and 2004 aim to formulate Web-specific search tasks (i.e., topic distillation task,

named page finding task and homepage finding task), which are representative

of common Web search activities (Craswell & Hawking, 2002). As we mentioned

in Section 2.7, most relevance assessments in the context of the Text REtrieval

Conference (TREC) are conducted on the merged document pool, which is de-

veloped based on the idea from Spärck Jones & van Rijsbergen (1976). For each

query, the top K returned documents (normally K = 100) from a set of partici-

pating IR systems are merged into a document pool (Voorhees & Harman, 2000).

The Million Query track 2007 and 2008 are proposed with the aim to investigate

whether it is better to evaluate retrieval systems using many shallow judgments

or instead fewer thorough judgments. Moreover, the Million Query track is an

exploration of ad hoc retrieval on a large collection of documents (Allan et al.,

2007).

5.3.2 Collections and Topics

The TREC Web track 2003 and 2004 are conducted on the .GOV corpus, which

is a crawl of Web sites in the .gov domain from early 2002. The crawl includes

binary and text mime types, and is stopped after 1 million HTML pages. The

HTML text, plus the extracted text from other document types, amount to a

total of 1.25 million documents (Craswell & Hawking, 2002). Some properties

of .GOV are listed in Table 5.1. The Million Query track 2007 and 2008 are

conducted on the .GOV2 corpus, which is crawled from Web sites in the .gov
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Web track
Topic Type TREC 2003 TREC 2004

Homepage finding 150 75
Named Page finding 150 75
Topic Distillation 50 75

Total 350 225

Million Query track
TREC 2007 TREC 2008

Total 1692 784

Table 5.2: The number of queries for the TREC 2003 & 2004 Web Track and
TREC 2007 & 2008 Million Query Track.

domain during early 2004 (Clarke et al., 2004). There are 25 million documents

contained in the .GOV2 corpus, including HTML documents, plus the extracted

text of PDF, Word and postscript files.

We use the TREC 2003 and 2004 Web track query sets, which contain three

different topic types, namely homepage finding, named page finding and topic

distillation. The target of the homepage finding task is to find the homepage of

a site for a given query, while the target of the named page finding task is to

find non-homepage pages for a given query. The topic distillation task involves

finding homepages of relevant sites, given a broad query (Craswell & Hawking,

2002). The number of queries for each topic type can be found in Table 5.2. In

search applications, users do not specify the type of their submitted query. In

order to simulate a real IR environment, we mix the three topic types together.

The query sets of the TREC 2007 and 2008 Million Query tracks are drawn from

a large collection of queries that are collected by a large Internet search engine.

The number of assessed queries from the TREC 2007 and TREC 2008 Million

Query tracks can also be found in Table 5.2.

Two feature sets are used in our experiments, namely LETOR 3.0 and LETOR

4.0 (Liu et al., 2007). The LETOR 3.0 dataset contains 64 different document

features, including document length and HostRank (Xue et al., 2005), among

others. The documents in LETOR 3.0 are sampled from the top retrieved docu-

ments by using BM25 (Equation (2.6)) on the .GOV corpus with the TREC 2003

and TREC 2004 Web track queries. In contrast, the LETOR 4.0 dataset contains
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46 document features for documents similarly sampled from the .GOV2 corpus

using the TREC 2007 and TREC 2008 Million Query track queries. The detailed

features included in LETOR 3.0 and LETOR 4.0 are presented in Table A.1 and

Table A.2, respectively (see appendix).

5.3.3 Retrieval Baselines

Many different learning to rank techniques have been proposed during the past

few years. Due to the fact that the pointwise learning to rank approaches treat

documents separately, the relative order between documents is invisible to the

loss functions. To build a strong baseline, in this work, we use the pairwise and

listwise learning to select approaches. In particular, three state-of-the-art learning

to rank techniques are employed: Ranking SVM (Herbrich et al., 2000; Joachims,

2002), AdaRank (Xu & Li, 2007) and the AFS method (Metzler, 2007). These

learning to rank methods have been described in detail in Section 3.2.

All of these learning to rank techniques are used as the retrieval baseline,

in comparison with our proposed learning to select framework. Moreover, for

the Web track, we simulate an oracle Query Type Prediction (QTP) approach

as another baseline. The simulated query type prediction approach knows with

certainty the query type before applying a ranking function. In addition, the

best performing ranking function for each query type, which can be learned on

the training dataset, is applied for an identified query type.

5.3.4 Training Procedure

BM25 is used as our base ranking function as the features included in the LETOR

datasets are computed over the top retrieved documents, which are sampled using

BM25 (Liu et al., 2007). The feature weights that are related with each candi-

date ranking function by using the AFS approach are set by optimising Mean

Average Precision (MAP) on the training dataset, using a simulated annealing

procedure (Skíscim & Golden, 1983). The number of the top ranked documents

(T ) and the number of neighbouring queries (K), introduced in Chapter 4, are

also set by optimising MAP over the training dataset, using a large range of dif-

106



5.3 Experimental Settings

TREC 2003
MAP P@5 P@10 nDCG@5 nDCG@10

Ranking SVM 0.5367 0.1811 0.1043 0.6396 0.6528
AdaRank 0.6038 0.1754 0.0997 0.6663 0.6785

AFS 0.6117 0.1766 0.1051 0.6748 0.6959
Upper Bound 0.6915 ? ∗ † 0.2046 ? ∗ † 0.1180 ? ∗ † 0.7590 ? ∗ † 0.7725 ? ∗ †

TREC 2004
MAP P@5 P@10 nDCG@5 nDCG@10

Ranking SVM 0.4185 0.2098 0.1404 0.5398 0.5530
AdaRank 0.4901 0.2044 0.1333 0.5844 0.5986

AFS 0.4943 0.2196 0.1418 0.6062 0.6127
Upper Bound 0.5700 ? ∗ † 0.2560 ? ∗ † 0.1622 ? ∗ † 0.6831 ? ∗ † 0.6758 ? ∗ †

TREC 2007
MAP P@5 P@10 nDCG@5 nDCG@10

Ranking SVM 0.4615 0.4082 0.3820 0.4076 0.4391
AdaRank 0.4597 0.4025 0.3749 0.4056 0.4353

AFS 0.4591 0.4068 0.3750 0.4128 0.4381
Upper Bound 0.5016 ? ∗ † 0.4643 ? ∗ † 0.4171 ? ∗ † 0.4782 ? ∗ † 0.4964 ? ∗ †

TREC 2008
MAP P@5 P@10 nDCG@5 nDCG@10

Ranking SVM 0.4714 0.3434 0.2489 0.4671 0.2284
AdaRank 0.4735 0.3446 0.2478 0.4723 0.2297

AFS 0.4766 0.3487 0.2474 0.4782 0.2304
Upper Bound 0.5146 ? ∗ † 0.3708 ? ∗ † 0.2578 ? ∗ † 0.5168 ? ∗ † 0.2509 ? ∗ †

Table 5.3: For each dataset, the highest score in each column is highlighted in bold
and scores that are statistically better than RankingSV M , AdaRank, and AFS
are marked with ?, ∗, and †, respectively (Wilcoxon matched-pairs signed-ranks
test, p < 0.05).

ferent value settings. We evaluate our experimental results using MAP, Precision

at N , and normalised Discounted Cumulative Gain (nDCG).

In our experiments, we divide each of the four datasets (Table 5.2) into five

equal size folds. We iteratively test our LTS framework on one fold by using

another fold as a validation set and the remaining three folds as a training set.

We report the obtained results and their analysis in the following section.
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5.4 The Importance of Selective Application

In order to assess how important it is to selectively apply an appropriate ranking

function. We produce the upper bounds of the retrieval performance by manually

selecting the most effective ranking function on a per-query basis.

Table 5.3 shows the retrieval performance of the three learning to rank tech-

niques (i.e. Ranking SVM, AdaRank and the AFS method) and Upper Bound

(100% correct per-query application) on four different datasets. From this table,

it is clear that the retrieval performance can be significantly enhanced if we apply

the most appropriate ranking function for each query. This observation suggests

that different ranking functions do favour different queries and that the appro-

priate selective application of a ranking function could significantly enhance the

retrieval performance.

5.5 Selecting A Single Ranking Function

In this section, we investigate how effective our proposed learning to select frame-

work is for selecting an appropriate ranking function on a per-query basis (Sec-

tion 5.5.1). In addition, as the number of candidate ranking functions increases,

the selection becomes more challenging. To test how robust our proposed learn-

ing to select framework is, we apply it on a large number of candidate ranking

functions (Section 5.5.2).

5.5.1 The Effectiveness of Learning to Select

In order to test the effectiveness of our proposed framework for selectively ap-

plying an appropriate ranking function for a given query, we compare it with

the simulated oracle query type prediction approach, and the three state-of-the-

art learning to rank techniques, which are systematically applied to all queries.

In addition, six variants that are derived from the learning to select framework

are investigated. KNN-rel, KNN-KL and KNN-JS denote that we employ the

KNN algorithm for identifying similar queries based on the query feature of the

mean of the relevance score, the KL divergence score and the JS divergence score,
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TREC 2003
MAP P@5 P@10 nDCG@5 nDCG@10

Ranking SVM 0.5367 † 0.1811 0.1043 0.6396 † 0.6528 †
AdaRank 0.6038 † 0.1754 0.0997 0.6663 † 0.6785 †
AFS 0.6117 † 0.1766 0.1051 0.6748 † 0.6959 †
QTP 0.6126 † 0.1789 0.1031 0.6801 0.6949

Learning to Select
KNN-Rel 0.6271 ∗ � 0.1800 0.1040 0.6793 0.6926
KNN-KL 0.6362 ∗ � 0.1811 0.1034 0.6950 ∗ � 0.6997
KNN-JS 0.6364 ∗ � 0.1806 0.1046 0.6915 ∗ 0.6993
Kmeans-Rel 0.6219 ∗ 0.1834 0.1051 0.6815 0.6935
Kmeans-KL 0.6425 ∗ � 0.1783 0.1034 0.6921 ∗ 0.7049
Kmeans-JS 0.6418 ∗ � 0.1777 0.1026 0.6880 ∗ 0.7090 ∗ �

Table 5.4: Comparison between LTS and state-of-the-art LTR techniques using
different evaluation measures on the LETOR 3.0 TREC 2004 dataset. Results
are the mean over 5 folds.

respectively; Kmeans-rel, Kmeans-KL and Kmeans-JS denote that we use the k-

means algorithm for identifying similar queries based on the query feature of the

mean of the relevance score, the KL divergence score and the JS divergence score,

respectively.

Tables 5.4, 5.5, 5.6 and 5.7 present the evaluation of the retrieval perfor-

mances obtained by using the three state-of-the-art LTR techniques, the oracle

query type prediction (QTP) approach and by applying our proposed LTS frame-

work in terms of MAP, Precision at N & nDCG on the LETOR 3.0 & LETOR 4.0

datasets, respectively. The best retrieval performances for each evaluation mea-

sure on each different dataset are emphasised in bold. The † symbol indicates

that the retrieval performance obtained by the best variant of our proposed LTS

framework is significantly better than the compared baseline, according to the

Wilcoxon Matched-Pairs Signed-Ranks Test (p < 0.05). The best retrieval per-

formance obtained by systematically applying an LTR technique on all queries is

highlighted with underline. The ∗ and � symbols indicate that the retrieval per-

formance obtained by using our proposed LTS framework is significantly better

than the underlined score and the QTP approach, respectively.
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TREC 2004
MAP P@5 P@10 nDCG@5 nDCG@10

Ranking SVM 0.4185 † 0.2098 0.1404 0.5398 † 0.5530 †
AdaRank 0.4901 † 0.2044 0.1333 0.5844 † 0.5986 †
AFS 0.4943 † 0.2196 0.1418 0.6062 0.6127

QTP 0.4976 † 0.2124 0.1364 0.5963 0.6092

Learning to Select
KNN-Rel 0.4998 0.2133 0.1356 0.5800 0.5971
KNN-KL 0.5229 ∗ � 0.2062 0.1347 0.6124 � 0.6129
KNN-JS 0.5243 ∗ � 0.2116 0.1360 0.6138 � 0.6134
Kmeans-Rel 0.5047 0.2080 0.1369 0.6074 0.6011
Kmeans-KL 0.5216 ∗ � 0.2133 0.1364 0.6039 0.6137
Kmeans-JS 0.5259 ∗ � 0.2098 0.1382 0.6026 0.6115

Table 5.5: Comparison between LTS and state-of-the-art LTR techniques using
different evaluation measures on the LETOR 3.0 TREC 2004 dataset. Results
are the mean over 5 folds.

From the results in Tables 5.4, 5.5, 5.6 and 5.7, we observe that, in general, the

best retrieval performance in each column is achieved by using our proposed LTS

framework, e.g., on the LETOR 3.0 TREC 2003 dataset (Table 5.4), the highest

score in MAP is 0.6425. The only exceptions are for the Precision evaluation

measure. However, in each exception case, the performance of LTS is close to

the highest Precision score. For example, the best retrieval performance in P@5

on the LETOR 4.0 TREC 2008 dataset (Table 5.7) is 0.3487 and the retrieval

performance obtained by using our LTS framework is 0.3482 (Kmeans-KL).

Furthermore, from the MAP column, the best retrieval performance obtained

by using our proposed LTS framework constantly outperforms all the LTR tech-

niques across all datasets, e.g., on the TREC 2003 dataset (Table 5.4): 0.5367→
0.6425; 0.6038→ 0.6425; and 0.6117→ 0.6425. In particular, these improvements

are statistically significant. Moreover, compared to the oracle QTP approach that

is obtained by simulating an ideal 100% accuracy in detecting the query type,

we can see that our proposed method constantly outperforms the QTP method

on both the TREC 2003 and TREC 2004 datasets. For example, in the MAP

measure, 0.6126 → 0.6425 on the TREC 2003 dataset (Table 5.4); and 0.4976
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TREC 2007
MAP P@5 P@10 nDCG@5 nDCG@10

Ranking SVM 0.4615 † 0.4082 0.3820 0.4076 0.4391
AdaRank 0.4597 † 0.4025 † 0.3749 0.4056 † 0.4353 †
AFS 0.4591 † 0.4068 0.3750 0.4128 0.4381

Learning to Select
KNN-Rel 0.4654 0.4078 0.3760 0.4110 0.4380
KNN-KL 0.4696 0.4146 0.3790 0.4157 0.4440
KNN-JS 0.4681 0.4080 0.3779 0.4172 0.4443
Kmeans-Rel 0.4632 0.4087 0.3819 0.4107 0.4403
Kmeans-KL 0.4707 ∗ 0.4123 0.3810 0.4162 0.4433
Kmeans-JS 0.4698 ∗ 0.4115 0.3816 0.4155 0.4436

Table 5.6: Comparison between LTS and state-of-the-art LTR techniques using
different evaluation measures on the LETOR 4.0 TREC 2007 dataset. Results
are the mean over 5 folds.

→ 0.5259 on the TREC 2004 dataset (Table 5.5). This particularly stresses the

effectiveness of our approach, given that the query type prediction in a practical

system is usually much lower than 100%. It also suggests that queries which have

the same type do not necessarily equally benefit from the application of a given

ranking function.

From the results in tables 5.4, 5.5, 5.6 & 5.7, we observe that the JS diver-

gence measure and the KL divergence measure are producing very close retrieval

performances and both of them consistently outperform the mean of the rele-

vance scores. For example, by using the KNN algorithm on the TREC 2003

dataset: 0.6271 vs. 0.6362; and 0.6271 vs. 0.6364. This is explained by the

fact that they are mathematically related. Particularly, in some cases, the re-

trieval performances obtained by using the divergence measures (i.e. KL and JS)

make significant improvement over the baselines (i.e., the best LTR technique

and the QTP baseline) while the mean of the relevance scores does not. For

example, on the TREC 2004 dataset (Table 5.5), KNN-KL and KNN-JS make

significant improvements over AFS (0.5229 vs. 0.4943 and 0.5243 vs. 0.4943)

while KNN-Rel does not (0.4998 vs. 0.4943). By comparing the two different

neighbouring query finding techniques, we observe that k-means is slightly better
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TREC 2008
MAP P@5 P@10 nDCG@5 nDCG@10

Ranking SVM 0.4714 † 0.3434 0.2489 0.4671 † 0.2284
AdaRank 0.4735 † 0.3446 0.2478 0.4723 0.2297
AFS 0.4766 † 0.3487 0.2474 0.4782 0.2304

Learning to Select
KNN-Rel 0.4806 0.3477 0.2471 0.4730 0.2284
KNN-KL 0.4859 ∗ 0.3464 0.2473 0.4731 0.2286
KNN-JS 0.4857 ∗ 0.3477 0.2487 0.4732 0.2322
Kmeans-Rel 0.4805 0.3477 0.2491 0.4727 0.2304
Kmeans-KL 0.4860 ∗ 0.3482 0.2491 0.4794 0.2303
Kmeans-JS 0.4843 ∗ 0.3451 0.2477 0.4769 0.2314

Table 5.7: Comparison between LTS and state-of-the-art LTR techniques using
different evaluation measures on the LETOR 4.0 TREC 2008 dataset. Results
are the mean over 5 folds.

than KNN and always produces the highest retrieval performance in MAP, e.g.,

on the TREC 2003 dataset, the best retrieval performance is 0.6425, which is

obtained by Kmeans-KL.

The above observations suggest that our proposed LTS framework is effective

in applying an appropriate ranking function on a per-query basis. In addition,

both KNN and k-means are effective in finding neighbouring queries. Moreover,

our proposed use of divergence measures as a query feature is more effective than

the use of the mean of the relevance scores.

5.5.2 The Robustness of Learning to Select

The analysis in Section 5.5.1 demonstrates the effectiveness of the proposed LTS

framework on a small candidate set, which contains three different ranking func-

tions that are learned by using three different learning to rank techniques. In this

section, we investigate the robustness of our LTS framework when the number

of candidate ranking functions increases. To achieve this, we simulate a number

of candidate ranking functions by applying a single LTR technique on several

different combinations of document features. In particular, in order to have a
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5.5 Selecting A Single Ranking Function

strong baseline, we use AFS, since it produces higher retrieval performances on

average than the other two LTR techniques (e.g. see Tables 5.4 and 5.5).

In this investigation, six different document features are chosen from the

LETOR feature set. There are then 26 − 1 possible combinations (excluding

the empty combination). Integrating each combination into the base ranking

function (namely BM25) by using AFS produces one candidate ranking function.

In this case, our task becomes to select an appropriate ranking function from a set

of candidate ranking functions, which contains as many as 26− 1 = 63 candidate

ranking functions.

Figures 5.1, 5.2, 5.3 and 5.4 show the effect on MAP as the number of can-

didate ranking functions is varied, on different TREC datasets. We order the 63

ranking functions according to their performance on the training dataset and the

best performing ranking function is used as our baseline. The x axis denotes the

number of top performing ranking functions applied. For example, for TREC

2003, 10 in the x axis means that we use the top 10 performing ranking func-

tions, which are assessed on the training dataset, as candidate ranking functions

to selectively apply on the test dataset.

From Figures 5.1, 5.2, 5.3 and 5.4, we observe that all variants derived from

our LTS framework consistently outperform the baseline when the number of

candidate ranking functions is increased. For the used query feature, the KL

divergence and the JS divergence have similar distributions. In particular, the

divergence measures (i.e. KL and JS) always perform better than the mean of

the relevance scores (i.e. Rel), with both KNN and k-means. This is particularly

noticeable for the TREC 2004 by using KNN (Figure 5.2(a)).

Indeed, in contrast to the Rel measure, both JS and KL are enhanced as

the number of candidate ranking functions increases. For example, in the TREC

2003 KNN case (see Figure 5.1 (a)), the retrieval performances obtained by using

the KL and JS measures in general increase from 2 to 35. This is mainly because

each newly added ranking function has different behaviour and favours different

queries. Hence, with more ranking functions added, the retrieval performance can

be further improved if they can be selectively applied in an appropriate manner.

However, the retrieval performance only improves slightly when the number

of candidate ranking functions keeps increasing after 35. The reason for this is
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that these ranking functions are created based on the combination of a small set

of features, most of them with similar behaviour, which results in these newly

added ranking functions (from 35 to 50 in the TREC 2003 KNN case) favouring

the same queries as the previously chosen ranking functions.

We also observe that the best retrieval performance is obtained when there

are around 50 candidate ranking functions in the TREC 2003 KNN case (Fig-

ure 5.1(a)). However, the performance starts to decrease after 50 − as the

last added ranking functions perform poorly on the training dataset and bring

noise to the LTS framework. In addition, by comparing the retrieval perfor-

mances obtained by the two different neighbouring query finding techniques in

Figures 5.1, 5.2, 5.3 & 5.4, we observe that KNN and Kmeans have a similar

distribution across all datasets.

This investigation suggests that our method is a robust approach, which can

increasingly improve the retrieval performance as more ranking functions are

added. The only caveat is when the most poorly-performing ranking functions are

added to the candidate set. However, this can be controlled by setting the number

of top-performing candidate ranking functions from which to select. In addition,

both KNN and k-means are effective in finding neighbouring queries, and our

proposed use of divergence measures as a query feature is more effective than the

use of the mean of the relevance scores, which is in line with the observation in

Section 5.5.1.

5.6 Selecting Multiple Document Features

Section 5.5 demonstrated the effectiveness and robustness of our proposed LTS

framework for selecting a single ranking function from many candidate ranking

functions, which are built on a fixed set of document features. However, in

some cases, we need to selectively use multiple appropriate document features for

building a ranking function for a given query.

In this section, we investigate the effectiveness of our learning to select frame-

work for selecting multiple appropriate document features. In particular, the

investigation is conducted with the number of candidate document features rang-

ing from 2 to 6. There are then 22 − 1, 23 − 1, 24 − 1, 25 − 1 and 26 − 1 possible
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Figure 5.1: MAP versus the number of candidate ranking functions on the TREC
2003 dataset.

115



5.6 Selecting Multiple Document Features

Figure 5.2: MAP versus the number of candidate ranking functions on the TREC
2004 dataset.

116



5.6 Selecting Multiple Document Features

Figure 5.3: MAP versus the number of candidate ranking functions on the TREC
2007 dataset.
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Figure 5.4: MAP versus the number of candidate ranking functions on the TREC
2008 dataset.
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combinations (excluding the empty combination) for each case. In this investiga-

tion, a candidate ranking function is created by integrating a combination into a

base ranking function (BM25 in this case). Moreover, in order to have a strong

baseline, we use AFS to learn the weight of each document feature that included

in each combination, since it produces on average higher retrieval performance

than the other two LTR techniques (e.g. see Tables 5.4 and 5.5).

Tables 5.8, 5.9, 5.10 and 5.11 present the evaluation of the retrieval perfor-

mances obtained by using different variants of the learning to select framework

on different TREC datasets in terms of MAP. For each multiple selection, the

systematic application of the best performing combination is used as our base-

line. The best retrieval performances on different candidate sizes are emphasised

in bold. The ∗ symbol indicates that the retrieval performance obtained by the

variants of our proposed LTS framework is significantly better than the baseline,

according to the Wilcoxon Matched-Pairs Signed-Ranks Test (p < 0.05).

From Tables 5.8, 5.9, 5.10 and 5.11, we observe that the baseline performance

is further enhanced when we increase the number of candidate document features

from 2 to 6. For example, in Table 5.8, the baseline retrieval performance is

increases from 0.5463 to 0.5823 when the number of candidate document features

is increased from 2 to 6. This is probably because a larger number of effective

document features used for ranking documents, a better retrieval performance can

be obtained. This is also in line with the current growing trend which consists in

applying an LTR technique on a large set of features in order to obtain a more

effective ranking function.

We also observe that the retrieval performances obtained by the learning to

select framework always make improvement over the baseline on various sizes

of candidate document features and on all TREC datasets. For example, in

Table 5.8, with two candidate document features, the retrieval performance is

enhanced from 0.5463 (Baseline) to 0.5928 (Kmeans-JS). In particular, such im-

provements are significant in most cases on the TREC 2003 and 2004 datasets.

Moreover, the best retrieval performance on each TREC dataset is obtained on

the feature set that with the largest number of candidate document features (6

in our this investigation).
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MAP
2 3 4 5 6

Baseline 0.5463 0.5689 0.5694 0.5801 0.5823
KNN-Rel 0.5711 ∗ 0.5813 0.5823 0.5881 0.5966
KNN-KL 0.5838 ∗ 0.5918 ∗ 0.5997 ∗ 0.6042 ∗ 0.6073 ∗
KNN-JS 0.5782 ∗ 0.5895 ∗ 0.5959 ∗ 0.6105 ∗ 0.6007 ∗
Kmeans-Rel 0.5692 ∗ 0.5869 ∗ 0.5875 ∗ 0.5947 0.5991
Kmeans-KL 0.5888 ∗ 0.5931 ∗ 0.6021 ∗ 0.6120 ∗ 0.6111 ∗
Kmeans-JS 0.5928 ∗ 0.5953 ∗ 0.6004 ∗ 0.6071 ∗ 0.6128 ∗

Table 5.8: The evaluation of the LTS framework for selectively applying multiple
document features on the TREC 2003 dataset with different numbers of candidate
document features. Results are the mean over 5 folds.

In addition, we note that the close retrieval performances obtained by using

KL and JS, e.g. in Table 5.8 and with six candidate document feature, 0.6111

(Kmeans-KL) vs. 0.6128 (Kmeans-JS). Moreover, both divergence measures con-

sistently produce higher retrieval performances than the mean of the relevance

scores (Rel). This suggests that our proposed use of divergence measures as a

query feature is more effective than the mean of the relevance scores, which is in

line with the observation found in Section 5.5. Furthermore, we observe that both

KNN and k-means are producing similar retrieval performances, e.g. in Table 5.9

and by using KL as a query feature, 0.4691 (KNN-KL) vs. 0.4644 (Kmeans-KL).

The above observations suggest that our proposed learning to select framework

is also effective for selecting multiple document features for building a ranking

function on a per-query basis. In addition, the robustness of the learning to select

framework is also observed as it is effective with various different sizes of candidate

document features. Furthermore, the investigation on the components of the

learning to select framework suggests that both KNN and Kmeans are effective

in finding neighbouring queries and our proposed use of divergence measures as

a query feature is more effective than the mean of the relevance scores, which is

in line with the observation in Section 5.5.
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MAP
2 3 4 5 6

Baseline 0.4463 0.4644 0.4656 0.4676 0.4686
KNN-Rel 0.4495 0.4657 0.4767 0.4794 0.4779
KNN-KL 0.4691 ∗ 0.4830 ∗ 0.4881 ∗ 0.4876 ∗ 0.4942 ∗
KNN-JS 0.4692 ∗ 0.4817 ∗ 0.4858 ∗ 0.4951 ∗ 0.4976 ∗
Kmeans-Rel 0.4528 0.4695 0.4793 0.4796 0.4801
Kmeans-KL 0.4644 ∗ 0.4844 ∗ 0.4858 ∗ 0.4887 ∗ 0.4923 ∗
Kmeans-JS 0.4670 ∗ 0.4809 ∗ 0.4850 ∗ 0.4917 ∗ 0.4891 ∗

Table 5.9: The evaluation of the LTS framework for selectively applying multiple
document features on the TREC 2004 dataset with different numbers of candidate
document features. Results are the mean over 5 folds.

MAP
2 3 4 5 6

Baseline 0.3386 0.3388 0.3398 0.3403 0.3403
KNN-Rel 0.3411 0.3412 0.3416 0.3425 0.3418
KNN-KL 0.3415 0.3414 0.3421 0.3426 0.3428
KNN-JS 0.3417 0.3418 0.3426 0.3426 0.3432
Kmeans-Rel 0.3403 0.3405 0.3410 0.3415 0.3414
Kmeans-KL 0.3412 0.3411 0.3412 0.3425 0.3422
Kmeans-JS 0.3413 0.3413 0.3417 0.3426 0.3427

Table 5.10: The evaluation of the LTS framework for selectively applying multiple
document features on the TREC 2007 dataset with different numbers of candidate
document features. Results are the mean over 5 folds.

MAP
2 3 4 5 6

Baseline 0.3614 0.3616 0.3618 0.3621 0.3625
KNN-Rel 0.3627 0.3635 0.3638 0.3639 0.3637
KNN-KL 0.3630 0.3647 0.3650 0.3645 0.3649
KNN-JS 0.3632 0.3642 0.3643 0.3637 0.3658
Kmeans-Rel 0.3619 0.3630 0.3635 0.3633 0.3632
Kmeans-KL 0.3637 0.3647 0.3641 0.3649 0.3653
Kmeans-JS 0.3631 0.3651 0.3646 0.3648 0.3656

Table 5.11: The evaluation of the LTS framework for selectively applying multiple
document features on the TREC 2008 dataset with different numbers of candidate
document features. Results are the mean over 5 folds.
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5.7 Summary

In this chapter, we tested our Learning to Select (LTS) framework on the LETOR

3.0 & LETOR 4.0 feature sets and their corresponding TREC tasks. In particular,

we compared it with a simulated query type prediction approach that with a 100%

accuracy in predicting the type of a given query as well as three state-of-the-art

Learning To Rank (LTR) techniques, namely Ranking SVM, AdaRank, and the

AFS method.

Our experimental results showed that the retrieval performance obtained by

using our proposed LTS framework could constantly outperform the query type

prediction approach and three state-of-the-art techniques in the MAP measure on

different datasets (see Section 5.5.1). In addition, improvements over the query

type prediction approach and all LTR techniques were statistically significant in

most cases.

Moreover, we investigated the effectiveness of our framework when the number

of candidate ranking functions increases. By plotting the distribution of MAP

versus the number of candidate ranking functions, we found that by using our

proposed framework, the retrieval performance was enhanced when increasing the

number of candidate ranking functions (see Section 5.5.2). This suggests that

learning to select is a robust framework for selectively applying an appropriate

ranking function.

In addition, we tested the effectiveness of our framework for selectively ap-

plying multiple appropriate document features for building a ranking function on

a per-query basis. Experimental results showed that our proposed framework is

effective for selecting multiple appropriate document features and the obtained

retrieval performance can be further enhanced when we increase the size of the

candidate document features.

Furthermore, our proposed use of divergence measures as query features to

identify neighbouring queries was always more effective than the mean of the rele-

vance scores measure, which ignores the distribution of relevance scores. Besides,

both KNN and Kmeans are effective approach for finding neighbouring queries

for information retrieval.
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Chapter 6

Learning to Select in Other
Search Applications

6.1 Introduction

The previous chapter evaluated the performance of the learning to select frame-

work on two different tasks: selecting an appropriate ranking function from a

number of candidate ranking functions and selecting multiple document features

from a number of candidate document features for building a ranking function.

In this chapter, we show how the learning to select framework can be deployed

in other search applications.

In Section 6.2, we experiment to determine if the learning to select framework

can be effectively applied to choose an appropriate query independent feature.

This allows different document features to be applied to the queries that are

more likely to benefit from these features. Moreover, we test how effective the

learning to select framework is, by applying it to the xQuAD search diversification

framework, in which an appropriate sub query importance estimator is selectively

applied (Section 6.3). This allows the ranked list of documents to provide a

complete coverage for an ambiguous query. Lastly, we examine the effectiveness

of our proposed learning to select framework in choosing an appropriate resource

for expanding an initial query (Section 6.4). This allows to alleviate the problem

of mismatch between query terms and intranet documents, which are usually with

a limited use of lexical representations. Section 6.5 draws the conclusions based

on the observations found in Sections 6.2, 6.3 and 6.4.
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6.2 Selective Application of Query Independent

Features

The experiments conducted in Chapter 5 were based on the use of a learning

to rank technique on a large number of document features, with the aim of

building an effective ranking function for retrieval. However, several previous

researchers (Craswell et al., 2005; Kamps et al., 2004; Kraaij et al., 2002; Lioma

et al., 2006; Macdonald et al., 2008; Metzler et al., 2005; Peng et al., 2007) focused

on the use of a small number of selected query independent document features,

and showed that the retrieval performance can be boosted if an appropriate query

independent document feature is used. In particular, the FLOE method, which

transforms a query independent document feature value into a document rele-

vance score (introduced in Section 2.6.4), has shown its effectiveness in the work

of various authors (Craswell et al., 2005; Hannah et al., 2007; Serdyukov et al.,

2008). However, most of this research systematically applies the obtained rele-

vance scores to all queries, which ignores the fact that different queries benefit

differently from different query independent document features.

In this section, we deploy the learning to select framework for selectively in-

tegrating an appropriate query independent document feature into a document

weighting scheme, on a per-query basis. In particular, in the learning to select

framework, the retrieval strategy without the use of query independent features

is set as the base ranking function (see Section 4.4.1), and the retrieval strate-

gies that use a given query independent feature, are set as the candidate ranking

functions (see Section 4.4.1). For the remainder of this section, we introduce

our research questions in Section 6.2.1; the settings for our experiments in Sec-

tion 6.2.2; and the experimental results and analysis in Section 6.2.3. Conclu-

sions of the selective application of a query independent feature are drawn in

Section 6.2.4.

6.2.1 Research Questions

In the following experiments, we address three main research questions:
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TREC 2003 TREC 2004
HP NP TD HP NP TD

Number of topics 150 150 50 75 75 75
Percentage 42.9% 42.9% 14.2% 33.3% 33.3% 33.3%

Table 6.1: Details of the number and percentage of topics associated to each topic
type for TREC 2003 and TREC 2004 Web tracks.

• RQ1: we assess how important it is to selectively apply an appropriate

query independent feature on a per-query basis (Section 6.2.3.1).

• RQ2: we test how effective the learning to select framework is at selectively

applying one appropriate query independent feature out of two candidate

features (Section 6.2.3.2).

• RQ3: as the number of candidate features increases, the selective applica-

tion becomes more challenging. We further investigate how effective the

learning to select framework is for selectively applying a query independent

feature when there are more than two candidate features. In particular, we

compare the learning to select with a simulated query type prediction ap-

proach, which knows with certainty the query type before applying a query

independent feature (Section 6.2.3.3).

6.2.2 Experimental Settings

We use the TREC 2003 and 2004 Web track datasets, which contain three types

of topic, namely homepage finding (HP), named page finding (NP) and topic

distillation (TD) topics. This allows us to simulate an oracle query type prediction

approach, which is used as a baseline in our third research question (RQ3). A

breakdown of these topics per topic type is presented in Table 6.1.

In particular, the TREC 2003 and 2004 Web track are based on the TREC

.GOV test collection. For indexing and retrieval, we use the Terrier IR platform1

(Ounis et al., 2006), and apply standard stopwords removal. In addition, to boost

early precision, we apply the first two steps of the Porter’s stemming algorithm for

English. We index the body, anchor text and titles of documents as separate fields

1http://www.terrier.org
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and use the PL2F field-based DFR document weighting model (Equation (2.22)),

which has shown its effectiveness in various retrieval tasks (Hannah et al., 2007;

Lioma et al., 2006). Moreover, to build a strong baseline, we apply term depen-

dency (described in Section 2.5.2) into the PL2F weighting scheme, denoted as

PL2FProx. In particular, we employ the full dependency as it generally performs

better than the sequential dependency (Peng et al., 2007). We experiment with

the three query independent features introduced in Section 2.6, namely PageR-

ank (PR), URL depth (UD) and click distance (CD), which have shown their

effectiveness in various applications (Craswell et al., 2005; Kamps et al., 2004;

Metzler et al., 2005; Peng & Ounis, 2009; Peng et al., 2007). For example, URL

depth is very effective for finding a homepage (Kamps et al., 2004).

In search applications, users do not specify the type of their submitted query.

In order to simulate a real IR environment, we mix the three topic types together.

As in the training procedure in Section 5.3.4, we divide each of the two datasets

(Table 6.1) into five equal size folds, testing the framework on one fold, using

another as a validation set and the other three as a training set.

The evaluation measure used in all our experiments is the mean average preci-

sion (MAP). The parameters that are related with the PL2F document weighting

model, the term dependency model, and the FLOE methods are set by optimising

MAP on the training dataset, using a simulated annealing procedure (Skíscim &

Golden, 1983). We use FLOE+ (Equation (2.77)) for PageRank and FLOE−

(Equation (2.78)) for the URL depth and click distance. The number of the top

ranked documents (T ) and the number of neighbouring queries (K), introduced

in Chapter 4, are also set by optimising MAP over the training dataset, using

a large range of different value settings. For the click distance feature, we use

firstgov.gov as the root. The maximum Click Distance is 46 in the .GOV col-

lection. For those documents that cannot be reached from the root, we assume

a Click Distance of 47. In addition, six variants (namely KNN-Rel, KNN-KL,

KNN-JS, Kmeans-Rel, Kmeans-KL, and Kmeans-JS) derived from the learning

to select framework are investigated in the experiments. These variants have

been described in detail in Section 4.4.3. We report the obtained results and

their analysis in the following section.
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6.2.3 Experimental Results

In this section, we investigate three different research questions that are defined in

Section 6.2.1. Section 6.2.3.1 investigates how important it is to selectively apply

an appropriate query independent feature. The effectiveness of the learning to

select framework for selecting an appropriate query independent feature from

two candidate document features and from more than two candidate document

features are investigated in Section 6.2.3.2 and Section 6.2.3.3, respectively.

6.2.3.1 The Importance of Selective Application

To assess the benefit that could be received by selectively integrating an appro-

priate query independent document feature into a document weighting model,

We produce the upper bounds of the retrieval performance by manually selecting

the most effective query independent feature on a per-query basis. This allows us

to estimate the extent to which it is indeed possible to enhance the retrieval per-

formance of an IR system when the most appropriate query independent feature

is applied on a per-query basis.

Table 6.2 provides the MAP upper bounds that can be achieved by manually

and selectively applying a query independent feature on a per-query basis, first

when there are two possible candidate features (rows 5-7), and second when we

use all three features (row 8). PR|UD, PR|CD, UD|CD, and PR|UD|CD denote

that the selective application is conducted between PageRank and URL depth,

PageRank and click distance, URL depth and click distance, and Pagerank, URL

depth and click distance, respectively. In each column, values that are statistically

different from PL2FProx, PL2FProx+PR, PL2FProx+UD and PL2FProx+CD

are marked with ∗, �, ? and •, respectively (Wilcoxon Matched-Pairs Signed-

Ranks Test, p < 0.05).

From Table 6.2, it is clear that using a manual selective method leads to signif-

icant increases in performance compared to the PL2FProx baseline, as well as to

systems where a query independent feature was applied uniformly to all queries.

We also observe that the upper bounds of the selective application among three

query independent features are markedly higher than the selective application

between any two of them, although not significantly so. This suggests that the
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TREC 2003 TREC 2004
1 PL2FProx 0.6066 0.4661
2 +PR 0.6541 0.5231
3 +UD 0.6359 0.5092
4 +CD 0.6216 0.5170
5 +(PR|UD) 0.6889 ∗ � ? 0.5743 ∗ � ?
6 +(PR|CD) 0.6688 ∗ � • 0.5620 ∗ � •
7 +(UD|CD) 0.6616 ∗ ? • 0.5699 ∗ ? •
8 +(PR|UD|CD) 0.6934 ∗ � ? • 0.5914 ∗ � ? •

Table 6.2: The MAP upper bounds, highlighted in bold, which are achieved by
the manual selective application of a query independent feature on the TREC
2003 and TREC 2004 datasets.

selective application of a query independent feature on a per-query basis is very

important for a Web search system, and that the retrieval performance could be

further improved when the number of query independent features increases.

6.2.3.2 Learning to Select with Two Candidates

We test how effective our proposed learning to select framework is for selectively

applying a query independent feature when there are two candidate features. In

order to do so, we compare our proposed method to the PL2FProx baseline, as

well as to the retrieval method that applies a query independent feature uniformly

to all queries.

Tables 6.3, 6.4 and 6.5 show the MAP obtained by applying our proposed

learning to select framework when there are two candidate features. The best

retrieval performance in each MAP column is highlighted in bold. The symbol ∗
denotes that the MAP obtained by using learning to select is statistically better

than the one achieved by the PL2FProx baseline, as well as all the systems where

a query independent feature has been uniformly applied to all queries, according

to the Wilcoxon Matched-Pairs Signed-Ranks Test (p < 0.05). Number reports

the number of queries for which the selected query independent feature has been

correctly applied (denoted Pos.), using the manual upper bound approach as a

ground truth. Conversely, the column Neg. reports the number of queries for

which the system has failed to apply the most appropriate feature. The col-
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umn Neu. reports the number of queries where all query independent features

produced the same MAP. The symbol † denotes that the learning to select frame-

work applies the most appropriate query independent feature for a statistically

significant number of queries, according to the Sign Test (p < 0.05).

From Tables 6.3, 6.4 and 6.5, we can see that, for the three different combina-

tions, namely PR|UD, PR|CD and UD|CD, the learning to select framework can

always markedly improve on the PL2FProx baseline and on that of the systems

where a query independent feature is uniformly applied. In particular, for the

selective application between PageRank and URL depth, the improvement is con-

stantly statistically significant on both datasets by using our proposed query fea-

tures (i.e. KL and JS). For example, in Table 6.3 and on the TREC 2003 dataset,

0.6066 (PL2FProx)→ 0.6809 (KNN-JS), 0.6541 (+PR)→ 0.6809 (KNN-JS), and

0.6459 (+UD) → 0.6809 (KNN-JS). In addition, by comparing the two different

neighbouring query finding techniques, we observe that both KNN and k-means

are effective. For example, in Table 6.3 and on TREC 2003 dataset, 0.6541 (+PR)

→ 0.6809 (KNN-JS) and 0.6541 (+PR) → 0.6776 (Kmeans-JS). Moreover, the

retrieval performances obtained by using KNN and k-means are close. For exam-

ple, in Table 6.3 and on the TREC 2004 dataset, 0.5566 (KNN-KL) vs. 0.5554

(Kmeans-KL). Furthermore, we observe that a statistically significant number of

queries have been applied with the most appropriate query independent feature

on all possible combinations and on both TREC 2003 and TREC 2004 datasets.

This suggests that learning to select is an effective method for selecting an

appropriate feature from any two candidate features. In particular, our proposed

use of a divergence measure as a query feature is more effective than the use of

the mean of the relevance scores. Besides, both KNN and k-means are effective

in finding neighbouring queries.

6.2.3.3 Learning to Select with Three Candidates

As the number of candidate features increases, the selective application method

raises more challenges. We further investigate how effective our proposed learning

to select framework is for selectively applying the most appropriate query inde-

pendent feature when there are more than two candidate features. In particular,
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TREC 2003 TREC 2004
Number Number

MAP Pos. Neg. Neu. MAP Pos. Neg. Neu.
PL2FProx 0.6066 - - - 0.4661 - - -
+PR 0.6541 - - - 0.5231 - - -
+UD 0.6359 - - - 0.5092 - - -

Learning to Select
KNN-Rel 0.6679 † 100 50 200 0.5476 † 90 54 81
KNN-KL 0.6794 † ∗ 111 39 200 0.5566 † ∗ 101 43 81
KNN-JS 0.6809 † ∗ 107 43 200 0.5559 † ∗ 103 41 81
Kmeans-Rel 0.6616 † 98 52 200 0.5435 † 89 55 81
Kmeans-KL 0.6771 † ∗ 107 43 200 0.5554 † ∗ 102 42 81
Kmeans-JS 0.6776 † ∗ 108 42 200 0.5539 † ∗ 100 44 81

Table 6.3: Evaluation of the learning to selective framework for selectively apply-
ing a query independent feature between PageRank (PR) and URL depth (UD).

TREC 2003 TREC 2004
Number Number

MAP Pos. Neg. Neu. MAP Pos. Neg. Neu.
PL2FProx 0.6066 - - - 0.4661 - - -
+PR 0.6541 - - - 0.5231 - - -
+CD 0.6216 - - - 0.5170 - - -

Learning to Select
KNN-Rel 0.6570 † 90 47 213 0.5312 † 89 47 89
KNN-KL 0.6636 † 95 42 213 0.5363 † 95 41 89
KNN-JS 0.6649 † 96 41 213 0.5363 † 95 41 89
Kmeans-Rel 0.6573 † 89 48 213 0.5315 † 88 48 89
Kmeans-KL 0.6647 † 97 40 213 0.5378 † 96 40 89
Kmeans-JS 0.6648 † 97 40 213 0.5378 † 96 40 89

Table 6.4: Evaluation of the learning to selective framework for selectively ap-
plying a query independent feature between PageRank (PR) and click distance
(CD).
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TREC 2003 TREC 2004
Number Number

MAP Pos. Neg. Neu. MAP Pos. Neg. Neu.
PL2FProx 0.6066 - - - 0.4661 - - -
+UD 0.6359 - - - 0.5092 - - -
+CD 0.6216 - - - 0.5170 - - -

Learning to Select
KNN-Rel 0.6432 † 90 56 204 0.5317 † 84 55 86
KNN-KL 0.6500 † 99 47 204 0.5345 † 90 49 86
KNN-JS 0.6497 † 97 49 204 0.5345 † 90 49 86
Kmeans-Rel 0.6480 † 91 55 204 0.5198 † 82 57 86
Kmeans-KL 0.6485 † 100 46 204 0.5338 † 89 50 86
Kmeans-JS 0.6505 † 99 47 204 0.5336 † 89 50 86

Table 6.5: Evaluation of the learning to selective framework for selectively ap-
plying a query independent feature between URL depth (UD) and click distance
(CD).

we select the most appropriate query independent feature out of the three used

PR, UD, and CD features.

Table 6.6 shows the MAP obtained by applying our proposed learning to

select framework when there are more than two candidate features. The best

retrieval performance in each MAP column is highlighted in bold. The symbol †
denotes that the learning to select framework applies the most appropriate query

independent feature for a statistically significant number of queries, according to

the Sign Test (p < 0.05). The symbol ∗ denotes that the MAP obtained by using

learning to select is statistically better than the one achieved by the PL2FProx

baseline, as well as all the systems where a query independent feature has been

uniformly applied to all queries, according to the Wilcoxon Matched-Pairs Signed-

Ranks Test (p < 0.05).

The evaluation results from Table 6.6 show that our proposed learning to select

framework can constantly make a significant improvement over PL2FProx and

that of the systems where a query independent feature was uniformly applied, by

using our proposed query features (i.e. KL and JS). The observation is upheld on

both datasets and in consistency with what we found in Section 6.2.3.2, namely

KL and JS are more effective than Rel.
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Moreover, we also observe that a statistically significant number of queries

have been applied with the most appropriate query independent feature on both

the TREC 2003 and the TREC 2004 datasets. In addition, comparing the best

MAP results (highlighted in bold) that can be obtained in each dataset in Ta-

bles 6.3, 6.4, 6.5, and 6.6, we can see that the retrieval performance obtained by

using our proposed learning to select framework can be further improved when

there are more than two candidate query independent features. For example,

on the TREC 2003 dataset, 0.6809 → 0.6864, 0.6649 → 0.6864, and 0.6505 →
0.6864. This is encouraging, as this suggests that our proposed framework re-

mains effective and robust even when the number of candidate features increases.

Overall, while the results obtained in Tables 6.3, 6.4, 6.5, and 6.6 are naturally

lower than the upper bounds performances in Table 6.2, they are nevertheless

roughly reasonably comparable.

In addition, since there are three types of queries on the Web track TREC 2003

and TREC 2004 datasets, we simulate a query type prediction (QTP) method,

which applies the most appropriate query independent feature for a given query

type, and compare it with the best performing variant of the learning to select

framework. The simulation process is the same as we conducted in Section 5.3.3.

From Table 6.7, we can see that our proposed method constantly outperforms

the QTP method in both accuracy and MAP on both datasets. This particularly

stresses the effectiveness and robustness of our approach compared to the QTP

method, given that the query type prediction in a practical system is usually

much lower than 100% (see Section 3.6). It also suggests that queries which have

the same type do not necessarily equally benefit from the application of a given

query independent feature since the MAP value obtained from the QTP method

is not equal to the value of the upper bound on each dataset, even though the

accuracy of the query type prediction is simulated equal to 100%.

6.2.4 Summary

In this section, we deployed our proposed learning to select framework for the

selective application of a query independent feature on a per-query basis. We

tested the effectiveness of the learning to select framework on the TREC .GOV
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TREC 2003 TREC 2004
Number Number

MAP Pos. Neg. Neu. MAP Pos. Neg. Neu.
PL2FProx 0.6066 - - - 0.4661 - - -
+PR 0.6541 - - - 0.5231 - - -
+UD 0.6359 - - - 0.5092 - - -
+CD 0.6216 - - - 0.5170 - - -

Learning to Select
KNN-Rel 0.6718 † 100 61 189 0.5501 † 97 57 71
KNN-KL 0.6843 † ∗ 109 52 189 0.5610 † ∗ 100 54 71
KNN-JS 0.6813 † ∗ 103 58 189 0.5604 † ∗ 103 51 71
Kmeans-Rel 0.6716 † 101 60 189 0.5457 † 94 60 71
Kmeans-KL 0.6859 † ∗ 108 53 189 0.5658 † ∗ 103 51 71
Kmeans-JS 0.6864 † ∗ 108 53 189 0.5647 † ∗ 104 50 71

Table 6.6: Evaluation of the learning to selective framework for selectively apply-
ing a query independent feature among PageRank (PR), URL depth (UD), and
click distance (CD).

MAP Pos. Neg. Neu. Accuracy

TREC 2003
Kmeans-JS 0.6864 108 53 189 67.08 %
QTP 0.6752 103 58 189 63.97%

TREC 2004
Kmeans-KL 0.5658 103 51 71 66.88%
QTP 0.5569 99 55 71 64.28%

Table 6.7: Comparison between the best performing variant of learning to select
and the oracle QTP method for the selective application of a query independent
feature among PageRank, URL depth, and click distance.
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Web test collection and the mixed topic sets from the TREC 2003 and TREC

2004 Web tracks.

We obtained very encouraging experimental results. First, we showed that

the retrieval performance can be significantly improved by an optimal selective

application of a query independent feature (Section 6.2.3.1). This indicates that

the selective application of the query independent feature on a per-query basis

can indeed significantly enhance the retrieval performance of a Web IR system.

Second, using our proposed learning to select framework, and any two query

independent features, we observed that the most appropriate feature has been

applied for a statistically significant number of queries (see Section 6.2.3.2). The

improvement in MAP was statistically significant when the selective application

occurred between PageRank and URL depth, by using our proposed query fea-

tures (see Table 6.3 in Section 6.2.3.2).

Third, as the number of candidate features increases, the selective application

raises more challenges. Therefore, we further investigated how effective our pro-

posed framework is for selectively applying the most appropriate query indepen-

dent feature when there are more than two candidate features. The experimental

results showed that our proposed learning to select framework can make further

improvement to the retrieval performance, when the number of candidate features

increases. We also observed that the most appropriate query independent feature

has been applied in a statistically significant number of queries. Moreover, we

compared our proposed method to a simulated QTP method, which has an ideal

100% accuracy on the query type prediction. We observed that our proposed

framework constantly outperforms the QTP method on both datasets. This sug-

gests that our proposed learning to select framework is effective and robust.

By comparing the retrieval performances obtained by the six variants of the

learning to select framework, we observed that both KNN and k-means are effec-

tive in finding neighbouring queries for Web search. In addition, the divergence

measures are more effective than the mean of the relevance scores, which ignores

the distribution of relevance scores. This observation is consistent with the find-

ings of Chapter 5.
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6.3 Web Search Diversification

Users’ information need is represented in the form of a query, which is often

short and this makes it ambiguous to IR systems (Spärck Jones et al., 2007). For

example, the query “terrier” can be interpreted as involving a topic related to

“dog” or “IR platform”. In such a situation, an accurate interpretation of the

users’ information need is hard to be determined.

The simplest approach could be to assume the provided query is well defined

to satisfy users’ information need and directly return the ranked list of retrieved

documents for the given query. An alternative approach could be to infer the

most plausible meaning underlying the given query (e.g. the most popular), and

return the ranked documents which are related to the inferred particular meaning.

Both approaches may answer the users’ information need by chance, but could

also fail in some cases, leading to users dissatisfaction. A different approach that

has been deployed in many Web search engines is to propose several different

interpretations of the underlying meaning for a given query and ask users for

explicit feedback. However, not every user is willing to conduct this additional

step for a simple search.

A more sensible approach is to return a ranked list of documents that provide

a complete coverage for a query, while avoiding excessive redundancy in the result

list (Clarke et al., 2009). This is called a diversity search task and several different

approaches have been proposed in the Web track 2009 (Balog et al., 2009; Chandar

et al., 2009; Craswell et al., 2009). In particular, a novel framework called xQuAD

(eXplicit Query Aspect Diversification) (McCreadie et al., 2009; Santos et al.,

2010) has achieved the best retrieval performance on different evaluation measures

on the large-scale TREC ClueWeb09 category B collection (Clarke et al., 2009).

Moreover, one of the most important components of xQuAD called sub-query

importance estimator has many variants, the details of which will be introduced

in Section 6.3.1. In this section, we deploy and test our proposed learning to

select framework for selectively applying an appropriate sub-query importance

estimator variant in the xQuAD framework on a per-query basis.

The remainder of this section is organised as follows: Section 6.3.1 introduces

the xQuAD framework; we present our research questions in Section 6.3.2; Sec-
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tion 6.3.3 describes the settings of our experiments; The experimental results

obtained and their analysis are discussed in Section 6.3.4. We draw conclusions

on the application of our proposed learning to select framework for the Web search

diversity task in Section 6.3.5.

6.3.1 The xQuAD Framework

The xQuAD framework (Santos et al., 2010) is centred around the concept of sub-

queries, which is inspired by the greedy approximation approach to the general

diversification problem (Carbonell & Goldstein, 1998). However, in contrast to

other approaches in the literature, xQuAD performs an explicit diversification of

the documents retrieved for a given query, by exploiting the relation between these

documents and the aspects uncovered from this query in the form of sub-queries.

For example, the first query of Web track 2009 is “obama family tree”, which

has three different sub-queries: “Find the TIME magazine photo essay - Barack

Obama’s Family Tree”, “Where did Barack Obama’s parents and grandparents

come from”, and “Find biographical information on Barack Obama’s mother”.

In the xQuAD framework, there is an important component called sub-query

importance estimator, which models the relative importance of different query

aspects that are represented as different sub-queries. In particular, three different

ways of computing the importance of a sub-query have been proposed along with

the xQuAD framework (Santos et al., 2010).

The first estimator (denoted U) considers each sub query with equal weight,

given as follows:

iU(s, q)s∈Q(q) =
1

|Q(q)|
(6.1)

where Q(q) is the sub query set that is associated with the initial query q.

Based on the idea that the relative importance of each sub-query can be

discovered from how well it is covered by a given collection, the second estimator

(denoted W ) is defined as follows:

iW (s, q)s∈Q(q) =
n(s)∑

si∈Q(q) n(si)
(6.2)

where n(s) is the estimated number of documents that are retrieved for the sub

query s by using a commercial search engine.
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The third estimator (denoted C) is inspired by resource selection techniques in

distributed information retrieval (Callan, 2000): Central Ranked-based Collection

Selection (CRCS) (Shokouhi, 2007). CRCS not only ranks resources according

to their estimated sizes but also considers the ranking position of each sampled

document in the centralised ranking of resource descriptions. The basic idea is

that a higher ranked document should convey more importance to its resource

than a document appearing lower. Inspired by CRCS, the sub query importance

estimator is given as follows:

iC(s, q)s∈Q(q) =
n(s)

maxsi∈Q(q)n(si)
× 1

n̂(s)

∑
d|r(d,s)>0

τ − j(d, q) (6.3)

where n(s) is the total number of documents retrieved for s, n̂(s) is the number

of documents associated to the sub-query s that are among the top τ ranked

documents for the initial query q, j(d, q) is the ranking position of the document

d with respect to q. More details about the xQuAD framework can be found

in (Santos et al., 2010).

6.3.2 Research Questions

By deploying our proposed learning to select framework for the Web diversity

search task, we tackle the following three research questions:

• RQ1, we assess how important it is to selectively apply the sub-query im-

portance estimator in the xQuAD framework for the Web search diversity

task (Section 6.3.4.1).

• RQ2, we investigate the effectiveness of our proposed learning to select

framework for the selective application of the sub-query importance esti-

mator. In particular, the investigation is conducted across three different

document weighting schemes (Section 6.3.4.2).

• RQ3, we test the importance of the query feature and neighbouring query

finding components in our proposed learning to select framework (Sec-

tion 6.3.4.3).
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6.3.3 Experimental Settings

We conduct our experiments on the newly released TREC ClueWeb09 dataset1,

which was constructed by crawling the Web during January and February 2009,

and contains roughly 1 billion web pages. In our experiments, we use the subset

of this collection (also called “Category B”), which is used in the TREC 2009 Web

diversity task and consists of about 50 million English-language documents. For

evaluation, we use the latest TREC 2009 Web track dataset, which has 50 query

topics with relevance assessments that were created and assessed by National

Institute of Standards and Technology (NIST). Each topic has 3 to 8 sub-topics

and with a mean of 4.9.

Similar to the settings in Section 6.2.2, we use the Terrier IR platform (Ounis

et al., 2006) for indexing and retrieval. All corpora are indexed by removing

standard stopwords and applying Porter’s stemming algorithm for English. We

use three different document weighting models, namely BM25 (Equation (2.6)),

Hiemstra’s language modelling (LM) (Equation (2.12)) and the parameter-free

DPH Divergence From Randomeness model (Equation (2.21)), which are the

representatives of different probabilistic retrieval families.

The evaluation measures for the new Web diversity task are α−normalised

discounted cumulative gain (α−NDCG (Clarke et al., 2008)) and intent-aware

precision (IA-P (Agrawal et al., 2009)), which are described in Section 2.7. As

before, we divide the dataset into 5 folds of equal size and iteratively test our

learning to select framework on one fold by using another fold as a validation

dataset and the remaining three folds as a training dataset. The number of the

top ranked documents (T ) and the K value in Chapter 4, are set by optimising

α−NDCG@10 during the training process, using a large range of different value

settings. The parameters that are related with the BM25 and LM document

weighting models are also set by optimising α−NDCG@10, using a simulated

annealing procedure (Skíscim & Golden, 1983). DPH is a parameter-free model,

therefore it does not require training.

To deploy our proposed learning to select framework for selectively applying an

appropriate sub-query importance estimator for the Web diversity task, we use the

1http://boston.lti.cs.cmu.edu/Data/clueweb09/
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ranking function that is obtained by using a document weighting model only (e.g.

BM25) as the base ranking function (see Section 4.4.1), and the ranking function

that is obtained by using one of the sub-query importance estimator variant in

the xQuAD framework as the candidate ranking function (see Section 4.4.1).

6.3.4 Experimental Results

In this section, we tackle three different research questions, which are defined in

Section 6.3.2. Section 6.3.4.1 investigates the importance of selectively applying

a sub-query importance estimator on a per-query basis. In Section 6.3.4.2, we

investigate the effectiveness of the learning to select framework in selecting an

appropriate sub-query importance estimator for each given query in three different

document weighting schemes. The importance of each component of the learning

to select framework is investigated in Section 6.3.4.3.

6.3.4.1 Importance of Selective Application

In order to assess how important it is to selectively apply an appropriate sub-

query importance estimator in the xQuAD framework on a per-query basis for

the Web diversity task, we simulate an oracle system that applies the best per-

forming estimator for each query. This allows us to know the extent to which it

is indeed possible to enhance the diversification effectiveness when the sub-query

importance estimator is correctly applied on a per-query basis.

Table 6.8 provides the evaluation of the systematic application of a sub-query

importance estimator, and the simulated selective application of an appropri-

ate sub-query importance estimator with 100% accuracy, using different weight-

ing schemes and using different evaluation measures. xQuADU , xQuADW and

xQuADC denote that we systematically apply the U estimator (Equation (6.1)),

the W estimator (Equation (6.2)), and the C estimator (Equation (6.3)) in the

xQuAD framework for diversity search, respectively. From the results in Ta-

ble 6.8, we observe that the systematic application of the sub-query importance

estimator can constantly make marked improvements on the diversification per-

formance across DPH, BM25 and LM, using α−NDCG at different levels, e.g.,

in α−NDCG@10 on the DPH weighting scheme: 0.2121 → 0.2551; 0.2121 →
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α−NDCG IA-P
@5 @10 @100 @5 @10 @100

DPH 0.1983 0.2121 0.3042 0.1090 0.1064 0.0621
+xQuADU 0.2217 0.2551 0.3390 0.1113 0.1073 0.0611
+xQuADW 0.2178 0.2373 0.3265 0.1158 0.1043 0.0606
+xQuADC 0.2381 0.2522 0.3392 0.1105 0.1002 0.0548
Upper Bound 0.2780 ∗�? 0.2968 ∗�? 0.3747 ∗�? 0.1412 ∗�? 0.1290 ∗�? 0.0663 ∗�?
BM25 0.1868 0.2126 0.3063 0.0881 0.0838 0.0634
+xQuADU 0.2543 0.2785 0.3614 0.1256 0.1120 0.0614
+xQuADW 0.2528 0.2630 0.3583 0.1218 0.0994 0.0611
+xQuADC 0.2430 0.2643 0.3462 0.1167 0.1035 0.0515
Upper Bound 0.3033 ∗�? 0.3161 ∗�? 0.3933 ∗�? 0.1445 ∗�? 0.1252 ∗�? 0.0636 ∗�?
LM 0.0925 0.1064 0.1895 0.0495 0.0478 0.0339
+xQuADU 0.1142 0.1288 0.2148 0.0567 0.0497 0.0358
+xQuADW 0.1064 0.1146 0.2011 0.0540 0.0478 0.0343
+xQuADC 0.1539 0.1721 0.2562 0.0750 0.0597 0.0445
Upper Bound 0.1752 ∗�? 0.1861 ∗�? 0.2773 ∗�? 0.0875 ∗�? 0.0744 ∗�? 0.0523 ∗�?

Table 6.8: The highest score based on each weighting scheme is highlighted in
bold and scores that are statistically better than the corresponding xQuADU ,
xQuADW , and xQuADC are marked with ∗, �, and ?, respectively (Wilcoxon
matched-pairs signed-ranks test, p < 0.05).

0.2373; and 0.2121 → 0.2522. Whereas, for the IA-P measure, in some cases, the

obtained retrieval performances are decreased after applying the xQuAD frame-

work, e.g., in IA-P@100 on the DPH weighting scheme: 0.0621 → 0.0611; 0.0621

→ 0.0606; and 0.0621 → 0.0548.

However, by selectively applying the xQuAD framework with an appropriate

sub-query importance estimator, the obtained retrieval performances constantly

outperform the DPH, BM25, and LM ranking baselines, using all evaluation mea-

sures and at all levels, e.g., using α−NDCG on the DPH weighting scheme: 0.1983

→ 0.2780 when @5; 0.2121→ 0.2968 when @10; and 0.3042→ 0.3747 when @100.

Furthermore, compared to the systematic application of a sub-query importance

estimator, the obtained retrieval performance is always significantly boosted, e.g.,

using α−NDCG@10 on the DPH weighting scheme: 0.2551 → 0.2968; 0.2373 →
0.2968; and 0.2522→ 0.2968. The above observations show that, indeed, different

sub-query importance estimators do favour different queries and that the appro-

priate selective application of a sub-query importance estimator could enhance

the diversification performance.
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α−NDCG IA-P
@5 @10 @100 @5 @10 @100

DPH+xQuADU 0.2217 α 0.2551 0.3390 0.1113 0.1073 0.0611
DPH+xQuADW 0.2178 β 0.2373 β 0.3265 0.1158 0.1043 0.0606
DPH+xQuADC 0.2381 0.2522 0.3392 0.1105 0.1002 γ 0.0548

Learning to select
KNN-Rel 0.2373 0.2644 ↑ 0.3468 ↑ 0.1186 ↑ 0.1102 ↑ 0.0564
KNN-KL 0.2521 ↑ 0.2760 ↑ 0.3539 ↑ 0.1198 ↑ 0.1128 ↑ 0.0574
KNN-JS 0.2510 ↑ 0.2750 ↑ 0.3537 ↑ 0.1188 ↑ 0.1123 ↑ 0.0574
Kmeans-Rel 0.2360 0.2596 ↑ 0.3415 ↑ 0.1159 ↑ 0.1082 ↑ 0.0544
Kmeans-KL 0.2544 ↑ 0.2679 ↑ 0.3558 ∗ ↑ 0.1225 ↑ 0.1119 ↑ 0.0577
Kmeans-JS 0.2519 ↑ 0.2710 ↑ 0.3550 ↑ 0.1210 ↑ 0.1096 ↑ 0.0582

Table 6.9: Evaluation of the selective application of the sub-query importance
estimator on the TREC Web diversity task using the DPH weighting scheme.

6.3.4.2 Effectiveness of the LTS Framework

In order to test the effectiveness of our proposed learning to select framework for

selectively applying an appropriate sub-query importance estimator for a given

query, we compare it with the diversification performances that are obtained by

using xQuAD with different sub-query importance estimators, which are system-

atically and equally applied to all queries.

Tables 6.9, 6.10, and 6.11 present the evaluation of the diversification perfor-

mances obtained by using xQuAD with different sub-query importance estimators

and by applying our proposed LTS framework in terms of α−NDCG and IA-P at

different levels, using the DPH, BM25 and LM weighting schemes, respectively.

The best diversification performance obtained by systematically applying a

sub-query importance estimator on all queries is highlighted with underline. ↑
denotes that the obtained diversification performance by using our proposed LTS

framework is better than the underlined score. The ∗ symbol indicates that the

retrieval performance obtained by using our proposed LTS framework is signifi-

cantly better than the underlined score, according to the Wilcoxon Matched-Pairs

Signed-Ranks Test (p < 0.05). The best diversification performances for each

evaluation measure are emphasised in bold. The α, β, and γ symbols indicate that

the retrieval performance obtained by the best of our proposed LTS framework

is significantly better than the xQuADU , xQuADW , and xQuADC , respectively.
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α−NDCG IA-P
@5 @10 @100 @5 @10 @100

BM25+xQuADU 0.2543 α 0.2785 0.3614 0.1256 0.1120 0.0614
BM25+xQuADW 0.2528 β 0.2630 β 0.3583 0.1218 0.0994 β 0.0611
BM25+xQuADC 0.2430 γ 0.2643 0.3462 γ 0.1167 γ 0.1035 0.0515 γ

Learning to select
KNN-Rel 0.2616 ↑ 0.2823 ↑ 0.3614 0.1284 ↑ 0.1099 0.0592
KNN-KL 0.2711 ↑ 0.2926 ↑ 0.3749 ↑ 0.1309 ↑ 0.1140 ↑ 0.0605
KNN-JS 0.2686 ↑ 0.2897 ↑ 0.3707 ↑ 0.1250 0.1085 0.0594
Kmeans-Rel 0.2657 ↑ 0.2842 ↑ 0.3695 ↑ 0.1291 ↑ 0.1101 0.0597
Kmeans-KL 0.2834 ∗ ↑ 0.3021 ↑ 0.3774 ↑ 0.1323 ↑ 0.1121 ↑ 0.0616 ↑
Kmeans-JS 0.2825 ↑ 0.3010 ↑ 0.3782 ↑ 0.1267 ↑ 0.1053 0.0570

Table 6.10: Evaluation of the selective application of the sub-query importance
estimator on the TREC Web diversity task using the BM25 weighting scheme.

In addition, as defined in Section 4.4.3, KNN-Rel, KNN-KL and KNN-JS denote

that we employ the KNN algorithm for identifying similar queries based on the

query feature of the mean of the relevance scores, the KL divergence score and

the JS divergence score respectively; Kmeans-Rel, Kmeans-KL and Kmeans-JS

denote that we use the Kmeans algorithm for identifying similar queries based on

the query feature of the mean of the relevance scores, the KL divergence score,

and the JS divergence score, respectively.

From the results in Tables 6.9, 6.10, and 6.11, we observe that the best di-

versification performance in each column is achieved by using our proposed LTS

framework, e.g., using the DPH weighting scheme (Table 6.9), we obtain 0.2544

in α−NDCG@5, 0.2760 in α−NDCG@10 and 0.3558 in α−NDCG@100. More-

over, the best performing results always make marked improvements over the

systematical application approaches. In particular, such improvements are sta-

tistically significant in some cases, e.g., using the language modelling approach

(Table 6.11) and using α−NDCG@10: 0.1288 → 0.1822 and 0.1146 → 0.1822.

Furthermore, compared to the best performing sub-query importance esti-

mator (highlighted with underline), the diversification performances obtained by

using our proposed LTS framework, with various neighbouring querying finding

algorithms and various query features, make marked improvement in most cases,

e.g., using DPH weighting scheme (Table 6.9) and using α−NDCG@10: 0.2551→
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α−NDCG IA-P
@5 @10 @100 @5 @10 @100

LM+xQuADU 0.1142 α 0.1288 α 0.2148 α 0.0567 α 0.0497 α 0.0358 α
LM+xQuADW 0.1064 β 0.1146 β 0.2011 β 0.0540 β 0.0478 β 0.0343 β
LM+xQuADC 0.1539 0.1721 0.2562 0.0750 0.0597 0.0445

Learning to select
KNN-Rel 0.1512 0.1676 0.2544 0.0724 0.0588 0.0460 ↑
KNN-KL 0.1668 ↑ 0.1822 ↑ 0.2632 ↑ 0.0815 ↑ 0.0664 ↑ 0.0466 ↑
KNN-JS 0.1682 ∗ ↑ 0.1819 ↑ 0.2655 ↑ 0.0805 ↑ 0.0650 ↑ 0.0464 ↑
Kmeans-Rel 0.1643 ↑ 0.1776 ↑ 0.2621 ↑ 0.0781 ↑ 0.0633 ↑ 0.0462 ↑
Kmeans-KL 0.1657 ↑ 0.1816 ↑ 0.2640 ↑ 0.0791 ↑ 0.0645 ↑ 0.0462 ↑
Kmeans-JS 0.1640 ↑ 0.1821 ↑ 0.2640 ↑ 0.0801 ↑ 0.0659 ↑ 0.0467 ↑

Table 6.11: Evaluation of the selective application of the sub-query importance
estimator on the TREC Web diversity task using the language modelling weight-
ing scheme.

0.2644; 0.2551 → 0.2760; 0.2551 → 0.2750; 0.2551 → 0.2596; 0.2551 → 0.2679;

and 0.2551 → 0.2710. In particular, such an improvement is consistent using

α−NDCG@10 with the only exception being the use of the language modelling

weighting scheme with the mean of the relevance scores as a query feature.

The above observations suggest that our proposed LTS framework is effective

in applying an appropriate sub-query importance estimator on a per-query basis

for the Web search diversity task.

6.3.4.3 Importance of the Query Feature and the Neighbouring Query
Finding Algorithm

It is of note that there are two key components in the LTS framework: the query

feature and the neighbouring object finding algorithm. In particular, we have

investigated three different query features: namely the mean of the relevance

scores, the KL divergence, and the JS divergence; and two different neighbouring

query finding algorithms: KNN and k-means.

By using different query features and different neighbouring object finding

algorithms for identifying similar queries in the LTS framework, from Tables 6.9,

6.10, and 6.11, we observe that the JS divergence measure and the KL divergence

measure are producing very close retrieval performances, which is explained in
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that they are mathematically related. This observation is in line with the sum-

mary in Section 5.7. In addition, both divergence measures outperform the mean

of the relevance scores in most cases. For example, using the BM25 weighting

scheme (Table 6.10) and using α−NDCG@10: 0.2823→ 0.2926; 0.2823→ 0.2897;

0.2842 → 0.3021; and 0.2842 → 0.3010. Furthermore, we also observe that both

neighbouring object finding algorithms produce very close results, e.g., in the

DPH weighting scheme and in α−NDCG@10: 0.2760 versus 0.2679; and 0.2750

versus 0.2710. This is in consistency with the observation found in Chapter 5.

The above observations suggest that our proposed use of divergence measures

as a query feature and the use of KNN and Kmeans as neighbouring query finding

algorithms for identifying neighbouring queries are very effective.

6.3.5 Summary

In this section, we have deployed the learning to select framework for selectively

applying a sub-query importance estimator in the xQuAD framework for the Web

search diversity task. In addition, a full study of the effectiveness of our proposed

learning to select framework in this application has been investigated on the

TREC ClueWeb09 (category B) test collection and its corresponding TREC 2009

Web track topic set, using different weighting schemes.

Our experimental results showed that the diversification performance of the

xQuAD framework can be significantly enhanced with the optimal selective appli-

cation of a sub-query importance estimator (see Section 6.3.4.1). By comparing

our proposed learning to select framework with several different baselines, we

found that our proposed framework is effective and robust. Indeed, the learning

to select framework always enhances the diversification performance across all

weighting schemes (see Section 6.3.4.2).

In addition, by investigating the importance of query features and the neigh-

bouring query finding algorithms, we found that our proposed use of divergence

measures as a query feature is producing very close retrieval performance in two

different neighbouring query finding algorithms. Moreover, both divergence mea-

sures are more effective than the mean of the relevance scores, which ignores the
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distribution of the document relevance scores (see Section 6.3.4.3). This is in line

with the observations found in Chapter 5 and Section 6.2.

6.4 Enterprise Document Search

The IDC report from Feldman & Sherman (2003) quantifies the importance of

information access within enterprises. The report suggests that not finding rele-

vant information could result in poor decisions and lost sales because customers

cannot find the required information on products or services and hence give up

in frustration. The most common form of search within enterprises is document

search. Compared to Web document search, there are several differences (Fagin

et al., 2003):

• Enterprise documents are often created for the simple dissemination of in-

formation, rather than to attract and hold the attention of any specific

group of users.

• A large fraction of queries tend to have a small set of correct answers (in

most cases, there is only one relevant document that satisfies the user’s

information need), and the correct answer pages do not usually have any

special characteristics.

• The number of documents in the Web is significantly larger than the number

of documents in an enterprise. Documents in the Web are created by a large

number of people while enterprise documents are created by a small number

of individuals, for example, employees and IT contractors.

In general, the query expansion technique (see Section 2.4.1) helps to enhance

the retrieval performance for enterprise document search (Balog et al., 2007).

However, for some enterprise search queries, query expansion may fail. This is

explained by the fact that an intranet collection generally reflects the view of the

organisation that it serves and content generation often tends to be autocratic

or bureaucratic rather than democratic (Fagin et al., 2003). This leads to a re-

stricted use of alternative lexical representations, limiting the usefulness of query

expansion. For these queries, it may be advantageous to use the well-known
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collection enrichment method (see Section 2.4.2), also called as external query

expansion (Diaz & Metzler, 2006; Kwok & Chan, 1998), which performs query

expansion using a larger and higher-quality external resource and then retrieves

from the local collection using the expanded query.

Peng et al. (2009) proposed the use of query performance predictors to se-

lectively apply collection enrichment (see Section 3.4). In particular, this ap-

proach uses a query performance predictor (see Section 2.4.3) to predict a given

query’s performance on both the internal and external resources. Then, it decides

whether or not to apply CE based on the predicted performances. In this section,

we deploy the learning to select framework for selectively applying an appropriate

resource for expanding a given query, by setting the retrieval strategy without

QE and CE as the base ranking function (see Section 4.4.1), and the retrieval

strategy with the application of QE or CE as the candidate ranking function

(see Section 4.4.1). For the remaining of this section, we introduce our research

questions in Section 6.4.1. The settings for our experiments are presented in Sec-

tion 6.4.2. Section 6.4.3 shows the experimental results and analysis. We draw

conclusions about selectively applying an appropriate resource for expanding a

query in Section 6.4.4.

6.4.1 Research Questions

In the following experiments, we address three main research questions:

• RQ1, we assess how important it is to selectively apply collection enrichment

for enterprise search (Section 6.4.3.1).

• RQ2, we investigate the effectiveness of our proposed learning to select

framework for selective CE. In particular, we use the query performance

predictor-based approach, which was introduced in Section 3.4, as one of

our baselines (Section 6.4.3.2).

• RQ3, we study the importance of the selected resource, which is used to

expand an initial query. (Section 6.4.3.3).
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6.4.2 Experimental Settings

We use the standard TREC Enterprise CERC test collection (Bailey et al., 2007),

which is a crawl of the website of an Australian government research organisa-

tion, namely the Commonwealth Scientific and Industrial Research Organisation

(CSIRO). This collection is a realistic setting for experimentation in enterprise

search, with a real enterprise corpus and real user information needs. The collec-

tion contains research publications and reports, as well as Web sites devoted to

the research areas of CSIRO. Approximately 7.9 million hyperlinks included in

the collection, and 95% of pages have one or more outgoing links containing an-

chor text. For evaluation, we use the TREC 2007 and 2008 enterprise document

search datasets, which are the last datasets used for the enterprise document

search task and have 42 and 63 query topics with relevance assessments, respec-

tively. These topics have title and narrative fields, however, for a realistic setting,

we use query terms from only the title field.

We experiment with three different external resources, namely Wikipedia1,

Aquaint22, and .GOV (Craswell & Hawking, 2002). The Wikipedia corpus used

in this paper is a snapshot from August 2008 and contains over 3 million articles

written collaboratively by users worldwide. Articles in this collection cover a wide

range of topics, including sports, historical events and science. The Aquaint2

collection consists of newswire information in English from six different sources,

such as New York Times and Xinhua News Agency. The .GOV collection, which

is also used in Section 6.2, is a crawl of the federal and state US government

websites from early 2002, which includes 7, 794 hostnames, 11, 164, 829 hyperlinks

and 2, 470, 109 cross-host hyperlinks. An overview of these collections can be

found at Table 6.12. We use two different types of query performance predictors

introduced in Section 2.4.3, including 6 pre-retrieval predictors (AvICTF, AvIDF,

γ1, γ2, AvPMI and QS) and 3 post-retrieval predictors (CS, WIG and QF).

Similar to the settings in Sections 6.2.2 and 6.3.3, we use the Terrier IR

platform (Ounis et al., 2006) for indexing and retrieval. All corpora are indexed

by removing standard stopwords and applying Porter’s stemming algorithm for

1http://en.wikipedia.org/wiki/Wikipedia:Database download
2http://trec.nist.gov/act part/tracks/qa/qa.07.guidelines.html#documents
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Collection Description # Docs Fields
CERC TREC Enterprise Track 370,715 body, anchor text, title
Wikipedia User-Generated Online En-

cyclopedia (August 2008)
3,588,998 body, title

Aquaint2 Newswire Articles 906,777 body, title
.GOV TREC Corpus of US Gov-

ernment Websites
1,247,753 body, anchor text, title

Table 6.12: Overview of the test collections for expanding a given query.

English. We index the body, anchor text and titles of documents as separate fields.

For Wikipedia, we ignore the anchor text field as our initial experiments found

that it does not help to improve the retrieval performance, while the Aquaint2

newswire corpus does not have any anchor text. An overview of the fields applied

for each collection is also included in Table 6.12. Documents are ranked using

two different field-based document weighting model: PL2F (Equation (2.22)) and

BM25F (Equation (2.7)).

Also, like the settings used in Sections 6.2.2 and 6.3.3, in the experiment,

for each year’s dataset, we divide it into 5 equal-size folds. We iteratively use

one fold as test set, another fold as validate set and the remaining three folds

as training set. The number of selected terms and the number of documents

included in the pseudo-relevant set, namely #(term) and Kdoc in Section 2.4,

are set to 10 and 3, respectively, as suggested by (Amati, 2003). The number

of the top ranked documents (T ) and the K value in Chapter 4, are set by

optimising MAP on the training dataset, using a large range of different value

settings. The parameters that are related to the PL2F and BM25F document

weighting models, the predictors and the threshold of the decision mechanism are

also set by optimising MAP on the training dataset, using a simulated annealing

procedure (Skíscim & Golden, 1983). Finally, for the post-retrieval predictors,

the number of top ranked documents is also set by optimising MAP over the

training dataset, using a large range of different value settings. The evaluation

measures used in all our experiments are the Mean Average Precision (MAP)

and the normalised Discounted Cumulative Gain (nDCG), which are the official

evaluation measures of the enterprise document search task.
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6.4.3 Experimental Results

In this section, we address three different research questions that are defined in

Section 6.4.1. In Section 6.4.3.1, we assess the importance of choosing an appro-

priate resource for expanding a given query on a per-query basis. Section 6.4.3.2

investigates the effectiveness of the learning to select framework in selectively

applying an appropriate resource for expanding a given query. In particular, the

query performance predictor-based approach (Section 3.4) is used as one of our

baselines. In Section 6.4.3.3, we study the importance of the selected resource for

expanding a given query.

6.4.3.1 Importance of Selective CE

In order to assess how important it is to selectively apply collection enrichment

on a per-query basis for enterprise document search, we simulate an oracle system

that applies collection enrichment only for the queries where it is more beneficial

to retrieval performance by applying collection enrichment compared to query

expansion. This allows us to know the extent to which it is indeed possible to

enhance the retrieval performance when collection enrichment is correctly applied

on a per-query basis.

Tables 6.13 and 6.14 provide the evaluation of the systematic application of

QE or CE and the retrieval performance upper bounds in the PL2F and BM25F

document weighting schemes, respectively, in terms of MAP and nDCG on the

TREC 2007 and TREC 2008 datasets. In each column, the highest value is

highlighted in bold and the values that are statistically better than the systematic

application of QE and CE are marked with ∗ (Wilcoxon Matched-Pairs Signed-

Ranks Test (p < 0.05)).

From the results in Tables 6.13 and 6.14, we observe that the systematic ap-

plication of query expansion can constantly make marked improvements on the

retrieval performance over PL2F and BM25F, using both the MAP and nDCG

evaluation measures, e.g. the retrieval performance in MAP is increased from

0.4588 to 0.5015 on the TREC 2007 dataset using the PL2F weighting scheme.

Moreover, the retrieval performance of the optimal selective application of col-

lection enrichment leads to a further significant improvement over the systematic
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TREC 2007 Enterprise Document Search Task
Wikipedia Aquaint2 .GOV

MAP nDCG MAP nDCG MAP nDCG
PL2F 0.4588 0.7161 0.4588 0.7161 0.4588 0.7161
+QE 0.5015 0.7596 0.5015 0.7596 0.5015 0.7596
+CE 0.4859 0.7349 0.4747 0.7298 0.4777 0.7318
Upper Bound 0.5241 ∗ 0.7762 ∗ 0.5164 ∗ 0.7697 ∗ 0.5185 ∗ 0.7710 ∗

TREC 2008 Enterprise Document Search Task
Wikipedia Aquaint2 .GOV

MAP nDCG MAP nDCG MAP nDCG
PL2F 0.3564 0.5370 0.3564 0.5370 0.3564 0.5370
+QE 0.3695 0.5563 0.3695 0.5563 0.3695 0.5563
+CE 0.3629 0.5506 0.3504 0.5378 0.3544 0.5478
Upper Bound 0.4058 ∗ 0.5913 ∗ 0.3976 ∗ 0.5745 ∗ 0.3954 ∗ 0.5782 ∗

Table 6.13: The MAP and nDCG results for applying QE and CE systematically
using the PL2F document weighting model, and Upper Bound highlighted in
bold, which is achieved by the optimal selective application of CE.

application of query expansion across three different external resources (e.g. on

the TREC 2007 dataset and the Wikipedia external resource, the retrieval perfor-

mance is significantly boosted from 0.5015 to 0.5241). This shows that, for some

enterprise document search queries, it is indeed advantageous to use CE and the

selective application of CE on a per-query basis is important for the enterprise

document search.

6.4.3.2 Effectiveness of Selective CE

In this part, we investigate how effective our proposed learning to select frame-

work is for selectively applying CE on a per-query basis, by comparing it with

two different baselines: the first baseline is the document weighting model with

the systematic application of QE. We use the application of QE as our baseline

instead of CE given the observation from Tables 6.13 and 6.14, which shows that

QE is consistently better than CE across three different external resources; the

second baseline is the query performance predictor-based approach, which was

described in Section 3.4.

Tables 6.15, 6.16, 6.17 and 6.18 present the evaluation of the selective appli-
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TREC 2007 Enterprise Document Search Task
Wikipedia Aquaint2 .GOV

MAP nDCG MAP nDCG MAP nDCG
BM25F 0.4587 0.7166 0.4587 0.7166 0.4587 0.7166
+QE 0.4847 0.7495 0.4847 0.7495 0.4847 0.7495
+CE 0.4755 0.7308 0.4646 0.7232 0.4656 0.7226
Upper Bound 0.5095 ∗ 0.7703 ∗ 0.5058 ∗ 0.7686 ∗ 0.5093 ∗ 0.7669 ∗

TREC 2008 Enterprise Document Search Task
Wikipedia Aquaint2 .GOV

MAP nDCG MAP nDCG MAP nDCG
BM25F 0.3366 0.5220 0.3366 0.5220 0.3366 0.5220
+QE 0.3423 0.5233 0.3423 0.5233 0.3423 0.5233
+CE 0.3382 0.5229 0.3225 0.5205 0.3325 0.5178
Upper Bound 0.3760 ∗ 0.5524 ∗ 0.3633 ∗ 0.5482 ∗ 0.3670 ∗ 0.5435 ∗

Table 6.14: The MAP and nDCG results for applying QE and CE systematically
using the BM25F document weighting model, and Upper Bound highlighted in
bold, which is achieved by the optimal selective application of CE.

cation of collection enrichment on different external resources by using the query

performance predictor-based and our proposed learning to select framework on

the TREC 2007 and TREC 2008 datasets and in the PL2F and BM25F weight-

ing schemes. The best retrieval performance in each column is highlighted in

bold. The α, β, and γ symbols indicate that the retrieval performance obtained

by the best of our proposed LTS framework is significantly better than PL2F

(or BM25F), the systematic application of QE, and the systematic application of

CE, respectively (Wilcoxon Matched-Pairs Signed-Ranks Test (p < 0.05)). The

best retrieval performance obtained by the query performance predictor-based

approach is emphasised with underline. ↑ denotes that the obtained retrieval

performance by our proposed learning to select framework outperforms the un-

derlined score. In particular, the ∗ symbol indicates that such improvement is

statistically significant.

For the learning to select approach, six variants (defined in Section 4.4.3) are

investigated in this section: KNN-Rel, KNN-KL and KNN-JS denote that we

employ the KNN algorithm for identifying similar queries based on the query

feature of the mean of the relevance scores, the KL divergence score and the JS

divergence score respectively; Kmeans-Rel, Kmeans-KL and Kmeans-JS denote
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TREC 2007 Enterprise Document Search Task
Wikipedia Aquaint2 .GOV

MAP NDCG MAP NDCG MAP NDCG
PL2F 0.4588 α 0.7161 α 0.4588 α 0.7161 α 0.4588 α 0.7161 α
+QE 0.5015 β 0.7596 β 0.5015 β 0.7596 0.5015 β 0.7596
+CE 0.4859 γ 0.7349 γ 0.4747 γ 0.7298 γ 0.4777 γ 0.7318 γ

Pre-retrieval Predictors
AvICTF 0.4939 0.7434 0.4876 0.7429 0.4970 0.7569
AvIDF 0.4919 0.7422 0.4901 0.7451 0.4983 0.7589
Gamma1 0.5091 0.7621 0.5001 0.7564 0.5009 0.7573
Gamma2 0.5113 0.7645 0.5008 0.7562 0.4994 0.7561
AvPMI 0.5022 0.7594 0.5001 0.7593 0.5041 0.7614
QS 0.4931 0.7451 0.4885 0.7444 0.4986 0.7593

Post-retrieval Predictors
CS 0.4858 0.7401 0.5051 0.7592 0.5014 0.7586
WIG 0.4858 0.7401 0.4964 0.7555 0.4959 0.7567
QF 0.5000 0.7548 0.5050 0.7607 0.5013 0.7560

Learning to Select
KNN-Rel 0.5074 0.7533 0.5052 ↑ 0.7607 0.5010 0.7612
KNN-KL 0.5191 ↑ 0.7656 ↑ 0.5120 ↑ 0.7629 ↑ 0.5164 ↑ ∗ 0.7628 ↑
KNN-JS 0.5191 ↑ 0.7656 ↑ 0.5118 ↑ 0.7623 ↑ 0.5164 ↑ ∗ 0.7628 ↑
Kmeans-Rel 0.5057 0.7610 0.5027 0.7590 0.4954 0.7477
Kmeans-KL 0.5206 ↑ 0.7678 ↑ 0.5134 ↑ 0.7647 ↑ 0.5138 ↑ ∗ 0.7604
Kmeans-JS 0.5206 ↑ 0.7678 ↑ 0.5132 ↑ 0.7631 ↑ 0.5136 ↑ ∗ 0.7614

Table 6.15: Evaluation of the selective application of collection enrichment on the
TREC 2007 enterprise document search task using the PL2F weighting scheme.

that we use the k-means algorithm for identifying similar queries based on the

query feature of the mean of the relevance score, the KL divergence score and the

JS divergence score, respectively.

From the tables, we observe that the best retrieval performance (highlighted

in bold) on each external resource is always achieved by our proposed learning to

select framework, e.g., using the PL2F weighting scheme and on the TREC 2007

dataset (Table 6.15), the highest MAP and nDCG scores are: 0.5206 and 0.7678

on Wikipedia; 0.5134 and 0.7647 on Aquaint2; and 0.5164 and 0.7628 on .GOV.

In particular, the best retrieval performance obtained by using our proposed

learning to select framework constantly makes improvement over the document
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TREC 2007 Enterprise Document Search Task
Wikipedia Aquaint2 .GOV

MAP NDCG MAP NDCG MAP NDCG
BM25F 0.4587 α 0.7166 α 0.4587 α 0.7166 α 0.4587 α 0.7166 α
+QE 0.4847 β 0.7495 0.4847 β 0.7495 0.4847 β 0.7495
+CE 0.4755 γ 0.7308 0.4646 γ 0.7232 γ 0.4656 γ 0.7226 γ

Pre-retrieval Predictors
AvICTF 0.4809 0.7399 0.4735 0.7324 0.4727 0.7426
AvIDF 0.4791 0.7379 0.4773 0.7382 0.4798 0.7477
Gamma1 0.4897 0.7560 0.4857 0.7481 0.4841 0.7468
Gamma2 0.4940 0.7590 0.4895 0.7501 0.4813 0.7472
AvPMI 0.4759 0.7414 0.4811 0.7477 0.4716 0.7407
QS 0.4744 0.7333 0.4696 0.7332 0.4806 0.7484

Post-retrieval Predictors
CS 0.4821 0.7421 0.4787 0.7395 0.4915 0.7540
WIG 0.4842 0.7413 0.4915 0.7518 0.4837 0.7363
QF 0.4815 0.7497 0.4825 0.7467 0.4821 0.7472

Learning to Select
KNN-Rel 0.4916 0.7466 0.4980 ↑ 0.7547 ↑ 0.4951 ↑ 0.7540
KNN-KL 0.5063 ↑ ∗ 0.7640 ↑ 0.4999 ↑ 0.7581 ↑ 0.5000 ↑ 0.7520
KNN-JS 0.5063 ↑ ∗ 0.7640 ↑ 0.4999 ↑ 0.7581 ↑ 0.5001 ↑ 0.7541 ↑
Kmeans-Rel 0.4817 0.7332 0.4837 0.7360 0.4804 0.7315
Kmeans-KL 0.5053 ↑ 0.7623 ↑ 0.4987 ↑ 0.7594 ↑ 0.5021 ↑ 0.7544 ↑
Kmeans-JS 0.5058 ↑ 0.7607 ↑ 0.4987 ↑ 0.7584 ↑ 0.5035 ↑ 0.7562 ↑

Table 6.16: Evaluation of the selective application of collection enrichment on the
TREC 2007 enterprise document search task using the BM25F weighting scheme.

weighting model, and the systematic application of QE/CE in both document

weighting schemes across two different topic datasets and three different exter-

nal resources in terms of MAP and nDCG. For example, on the TREC 2007

dataset and by using the Wikipedia external resource using the PL2F weighting

scheme (Table 6.15), the obtained retrieval performances in MAP and nDCG are

increased from: 0.4588 → 0.5206 and 0.7161 → 0.7678; 0.5015 → 0.5206 and

0.7596 → 0.7678; and 0.4859 → 0.5206 and 0.7349 → 0.7678. Moreover, such

improvements are statistically significant in most cases (56 out of 72).

For the query performance predictor-based approach, marked improvement

over the systematic application of query expansion is also observed across differ-
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ent external resources when an appropriate query performance predictor is used.

In particular, the γ1 (Equation (2.33)) and γ2 (Equation (2.34)) predictors con-

sistently boost the retrieval performance across three different external resources

using the PL2F weighting scheme on the TREC 2008 dataset. In comparison

with the best retrieval performance that is obtained by using the query perfor-

mance predictor-based approach (emphasised with underline), we note that our

proposed learning to select framework produces higher a retrieval performance in

most cases. For example, on the TREC 2007 dataset and in the PL2F weighting

scheme (Table 6.15), the retrieval performance is increased from 0.5113→ 0.5191

in MAP and 0.7654 → 0.7656 in nDCG when we use KNN-KL. Moreover, such

improvements are statistically significant in some cases (marked with ∗), e.g., on

the TREC 2007 dataset and by using the PL2F weighting scheme on the .GOV

external resource: 0.5041 → 0.5164 in MAP.

Among three different query features, namely the mean of the relevance scores,

the KL divergence score and the JS divergene score, we observe that the KL diver-

gence score and the JS divergence score produce very close retrieval performance,

which is explained in that they are mathematically related. In addition, both

of them consistently outperform the mean of the relevance scores in both KNN

and Kmeans algorithms. This observation is in line with what we found in Sec-

tions 6.4.3.3, 6.2.3.2, and 6.2.3.3. For example, in the PL2F weighting scheme

and by using Wikipedia as the an external resource on the TREC 2007 dataset:

0.5074 → 0.5191 (KNN-Rel vs. KNN-KL) and 0.5074 → 0.5206 (Kmeans-Rel

vs. Kmeans-KL) in MAP. With respect to the two different neighbouring query

finding algorithms (KNN and k-means), both algorithms have shown their effec-

tiveness and the obtained retrieval performances are quite close.

In order to better understand the accuracy of the two different selective ap-

plication techniques, we have plotted their accuracy in the Receiver Operating

Characteristics (ROC) space based on different external resources for the TREC

2007 and TREC 2008 datasets using different weighting schemes, respectively,

as shown in Figures 6.1, 6.2, 6.3 and 6.4. Y and X axes provide True Positive

Rate (TPR) and False Positive Rate (FPR), respectively. The TPR determines

a classifier or a diagnostic test performance on classifying positive instances (CE

in this case) correctly among all positive samples available during the test. FPR,
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TREC 2008 Enterprise Document Search Task
Wikipedia Aquaint2 .GOV

MAP NDCG MAP NDCG MAP NDCG
PL2F 0.3564 α 0.5370 α 0.3564 α 0.5370 α 0.3564 α 0.5370 α
+QE 0.3695 β 0.5563 0.3695 β 0.5506 0.3695 β 0.5506
+CE 0.3629 γ 0.5506 γ 0.3504 γ 0.5378 γ 0.3544 γ 0.5478

Pre-retrieval Predictors
AvICTF 0.3695 0.5495 0.3654 0.5454 0.3698 0.5448
AvIDF 0.3678 0.5474 0.3635 0.5453 0.3705 0.5488
Gamma1 0.3819 0.5571 0.3806 0.5610 0.3785 0.5602
Gamma2 0.3791 0.5567 0.3700 0.5558 0.3728 0.5546
AvPMI 0.3654 0.5506 0.3616 0.5498 0.3631 0.5458
QS 0.3661 0.5499 0.3557 0.5390 0.3580 0.5396

Post-retrieval Predictors
CS 0.3730 0.5586 0.3666 0.5431 0.3675 0.5590
WIG 0.3715 0.5515 0.3672 0.5425 0.3706 0.5496
QF 0.3652 0.5492 0.3729 0.5466 0.3611 0.5434

Learning to Select
KNN-Rel 0.3889 ↑ 0.5683 ↑ 0.3840 ↑ 0.5541 0.3852 ↑ 0.5575
KNN-KL 0.4025 ↑ ∗ 0.5765 ↑ 0.3945 ↑ ∗ 0.5587 0.3930 ↑ ∗ 0.5608 ↑
KNN-JS 0.4044 ↑ ∗ 0.5767 ↑ 0.3945 ↑ ∗ 0.5640 ↑ 0.3930 ↑ ∗ 0.5618 ↑
Kmeans-Rel 0.3789 0.5559 0.3791 0.5561 0.3731 0.5507
Kmeans-KL 0.4013 ↑ ∗ 0.5725 ↑ 0.3930 ↑ ∗ 0.5544 0.3913 ↑ ∗ 0.5572
Kmeans-JS 0.4009 ↑ 0.5699 ↑ 0.3930 ↑ ∗ 0.5538 0.3895 ↑ ∗ 0.5605 ↑

Table 6.17: Evaluation of the selective application of collection enrichment on the
TREC 2008 enterprise document search task using the PL2F weighting scheme.

on the other hand, defines how many incorrect positive results occur among all

negative samples (QE in this case) available during the test. The dashed line

represents a random guess. For points above the dashed line, the further the

distance from the line, the higher the accuracy.

From the figures, we notice that the accuracy of the query performance

predictor-based approach is highly dependent on the selected weighting scheme

and the used external resource. For example, on the TREC 2007 dataset and

by using the .GOV collection as the external resource, the retrieval performance

obtained by the AvICTF predictor is markedly above the dashed line in the PL2F

weighting scheme (Figure 6.1). However, in the BM25F weighting scheme, the

accuracy achieved by the same predictor is below the randome guess (Figure 6.2).

155



6.4 Enterprise Document Search

TREC 2008 Enterprise Document Search Task
Wikipedia Aquaint2 .GOV

MAP NDCG MAP NDCG MAP NDCG
BM25F 0.3366 α 0.5220 α 0.3366 α 0.5220 0.3366 α 0.5220
+QE 0.3423 β 0.5233 β 0.3423 β 0.5229 0.3423 β 0.5229
+CE 0.3382 γ 0.5229 γ 0.3225 γ 0.5205 0.3325 γ 0.5178

Pre-retrieval Predictors
AvICTF 0.3362 0.5188 0.3343 0.5246 0.3490 0.5286
AvIDF 0.3372 0.5182 0.3354 0.5276 0.3476 0.5245
Gamma1 0.3385 0.5169 0.3396 0.5252 0.3326 0.5158
Gamma2 0.3355 0.5156 0.3378 0.5250 0.3338 0.5200
AvPMI 0.3336 0.5196 0.3307 0.5166 0.3459 0.5256
QS 0.3359 0.5186 0.3284 0.5264 0.3427 0.5219

Post-retrieval Predictors
CS 0.3538 0.5337 0.3341 0.5141 0.3424 0.5228
WIG 0.3495 0.5301 0.3357 0.5217 0.3453 0.5237
QF 0.3420 0.5216 0.3437 0.5245 0.3395 0.5226

Learning to Select
KNN-Rel 0.3539 ↑ 0.5223 0.3523 ↑ ∗ 0.5237 0.3575 ↑ 0.5278
KNN-KL 0.3702 ↑ ∗ 0.5376 ↑ 0.3578 ↑ ∗ 0.5260 0.3644 ↑ ∗ 0.5289 ↑
KNN-JS 0.3696 ↑ ∗ 0.5414 ↑ ∗ 0.3579 ↑ ∗ 0.5252 0.3644 ↑ ∗ 0.5290 ↑
Kmeans-Rel 0.3496 0.5333 0.3387 0.5174 0.3415 0.5226
Kmeans-KL 0.3688 ↑ ∗ 0.5356 ↑ 0.3546 ↑ ∗ 0.5145 0.3644 ↑ ∗ 0.5199
Kmeans-JS 0.3680 ↑ ∗ 0.5347 ↑ 0.3529 ↑ ∗ 0.5287 ↑ 0.3623 ↑ ∗ 0.5268

Table 6.18: Evaluation of the selective application of collection enrichment on the
TREC 2008 enterprise document search task using the BM25F weighting scheme.

Moreover, we can see that most predictors are not always above the dashed

line. For example, the AvIDF predictor points are constantly above the dashed

line on the TREC 2007 dataset through all external resources in the PL2F weight-

ing scheme (see Figure 6.1). However, it always performs close or worse than a

random guess on all external resources for the TREC 2008 dataset (see Fig-

ure 6.3). Furthermore, the accuracy of some predictors is close to a random guess

which suggests that the selective application of collection enrichment for enter-

prise document search is a challenging task, e.g., the accuracy of the CS predictor

on the TREC 2007 dataset using the BM25F weighting scheme is close to the

dashed line on both the Wikipedia and Aquaint2 collections.

Among nine different predictors, only the γ1 predictor (Equation (2.33)) has

a constantly marked improvement over a random guess in the PL2F weighting
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scheme. In addition, we also observe that the accuracy of our proposed learning

to select framework can consistently and markedly improve over the random guess

for all external resources on both datasets. The only exception is when the mean

of the relevances is used as a query feature on the TREC 2007 dataset and by

using the PL2F weighting scheme on the .GOV external resource.

The above observations suggest that our proposed learning to select framework

is effective in selectively applying an appropriate collection for expanding the

initial query. In addition, our proposed use of divergence as a query feature is

more robust than the mean of the relevances.

6.4.3.3 Importance of the External Resource

The performance of collection enrichment is dependent on the usefulness of the

expansion terms extracted from the pseudo-relevant set, which is typically ob-

tained from the top ranked documents on the external resource. In this part, we

investigate the importance of the external resource for the selective application

of collection enrichment.

From Tables 6.13 and 6.14, we note that the systematic application of CE can

decrease the retrieval performance over the retrieval performance that is obtained

by using the document weighting model only. For example, in the PL2F document

weighting scheme and for the MAP evaluation measure, the retrieval performance

decreases from 0.3564 to 0.3504 on the TREC 2008 dataset after applying CE on

the Aquaint2 collection for all queries. However, systematically applying CE on

the Wikipedia collection can always enhance the retrieval performance for both

the TREC 2007 and TREC 2008 datasets using both the PL2F and the BM25F

weighting scheme.

Moreover, from Tables 6.15, 6.16, 6.17 and 6.18, we observe that the perfor-

mance of the query performance predictor-based approach is dependent on the

selected external resource, e.g., in the BM25F weighting scheme, the γ2 predictor

(Equation (2.34)) makes an improvement on the TREC 2007 dataset when the

external resource is Wikipedia or Aquaint2, whereas, the retrieval performance

decreases when the .GOV collection is used as the external resource. This is prob-

ably because the topics covered in the .GOV collection are more concentrated on

the government domain, while the Wikipedia and Aquaint2 collections comprise
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Figure 6.1: Comparison between different selective application techniques by plot-
ting ROC space based on different external resources for TREC 2007 enterprise
document search using the PL2F weighting scheme.
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Figure 6.2: Comparison between different selective application techniques by plot-
ting ROC space based on different external resources for TREC 2007 enterprise
document search using the BM25F weighting scheme.
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Figure 6.3: Comparison between different selective application techniques by plot-
ting ROC space based on different external resources for TREC 2008 enterprise
document search using the PL2F weighting scheme.
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Figure 6.4: Comparison between different selective application techniques by plot-
ting ROC space based on different external resources for TREC 2008 enterprise
document search using the BM25F weighting scheme.
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a broader range of topics, such as technology, science, etc. In addition, we also

observe that the proposed learning to select framework is not highly dependent

on the external resource chosen, as the retrieval performance can be consistently

improved on all external resources by using either the KL divergence score or

the JS divergence score as the query feature. In particular, the best retrieval

performances for both TREC 2007 and TREC 2008 enterprise document search

tasks are obtained from the Wikipedia collection, e.g. 0.5206 in MAP on TREC

2007 (see Table 6.15) and 0.4044 in MAP on TREC 2008 (see Table 6.17).

The above observations confirm that choosing an appropriate external re-

source before applying the selective collection enrichment is important and that

the Wikipedia collection is the most appropriate one for the studied enterprise

document search.

6.4.4 Summary

In this section, we have deployed the learning to select framework for selectively

applying an appropriate resource for expanding a given query for the enterprise

document search task. In addition, a full study of the effectiveness of our proposed

learning to select framework in this application has been investigated on the

TREC Enterprise CERC test collection and its corresponding 2007 and 2008 topic

sets, in combination with three different external resources and several different

baselines, including the query performance predictor-based approach.

Our experimental results showed that the retrieval performance for enterprise

search can be significantly enhanced with the optimal selective application of CE

(Section 6.4.3.1). By comparing the learning to select framework with several

different baselines, we found that our proposed approach is effective for the se-

lective application of collection enrichment. In addition, we also observed the

robustness of our proposed approach as it always enhances retrieval performance

on all external resources by using our proposed query features (Section 6.4.3.2).

In addition, by investigating the importance of different external resources

for selective collection enrichment, we found that Wikipedia is the most useful

external resource for enterprise search among those tested (Section 6.4.3.3). This
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is probably because most 2007 and 2008 enterprise topics are science-oriented,

which are better covered in the Wikipedia collection.

6.5 Summary

In this chapter, we explored the deployment of the learning to select framework in

various search applications, including selectively integrating an appropriate query

independent feature into a document weighting scheme (Section 6.2), selective es-

timation of the relative importance of different query aspects in a search diversifi-

cation task (Section 6.3), and selective application of an appropriate resource for

expanding a given query (Section 6.4). The obtained experimental results from

these search applications showed that our proposed learning to select framework

can consistently make improvements on the retrieval performance, in comparison

with these systematic application approaches. In particular, such improvements

are significant in some cases. Moreover, the learning to select framework can

also outperform these existing selective retrieval approaches, such as the query

performance predictor-based approach (Section 3.4). This suggests that learning

to select is an effective framework for selective application and emphasises the

generality of the learning to select framework.

The investigations of the components of the learning to select framework

showed that our proposed use of divergence measures as query features for iden-

tifying neighbouring queries was always more effective than the mean of the rele-

vance scores, this observation is in line with the conclusions found in Chapter 5.

In addition, for the neighbouring query finding component, both KNN and k-

means have shown their effectiveness across these search applications, and the

retrieval performances obtained by these two techniques are quite close, which is

also in consistency with the observation in Chapter 5
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Chapter 7

Conclusions and Future Work

7.1 Contributions and Conclusions

This thesis has investigated the selective application of an appropriate ranking

function for Information Retrieval (IR) on a per-query basis, regardless of the

query type and the number of candidate ranking functions/document features.

This section discusses the contributions and conclusions of this thesis.

7.1.1 Contributions

The main contributions of this thesis are as follows:

• A novel framework, called learning to select (LTS), has been proposed for

selectively applying an appropriate ranking function on a per-query basis,

regardless of the given query’s type and the number of candidate rank-

ing functions/document features (Section 4.2). In the learning to select

framework, the effectiveness of a ranking function for an unseen query is es-

timated based on its performance on the similar (i.e. neighbouring) already

seen queries. In addition, the main components of the learning to select

framework have been defined: query features (Section 4.4.1) and identifica-

tion of neighbouring queries (Section 4.4.2).

• In the proposed learning to select framework, a classification algorithm

is modified to identify neighbouring queries by using a query feature (Sec-

tion 4.4.2). In particular, we propose to use the divergence measure to build
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such a query feature (Section 4.4.1). Two divergence measures have been

used as query features, namely the Kullback-Leibler (KL) and the Jensen-

Shannon (JS) divergence measures. These divergence measures quantify

the extent to which a document ranking function alters the scores of an

initial ranking of documents.

• The differences between the learning to select framework and the existing

selective retrieval approaches have been discussed (Section 4.6). The ex-

isting selective retrieval approaches include query dependent ranking (Sec-

tion 3.3), selective collection enrichment (Section 3.4), selective Web IR

(Section 3.5), and query type prediction (Section 3.6). Overall, compared

to these existing selective retrieval approaches, our proposed learning to

select framework represents a general approach for selectively applying an

appropriate ranking function on a per-query basis, which is agnostic to the

number of candidate ranking functions/document features and the type of

the queries.

• In Chapter 5, the proposed LTS framework has been thoroughly evalu-

ated on two large standard document feature sets, which contain as many

as 64 document features, and their corresponding TREC tasks. The fea-

tures cover a wide range of query dependent and query independent fea-

tures, such as the frequency of query terms in a document and PageRank

(Equation (2.69)). In particular, several high-performance baselines are

used in the evaluation, including a simulated query type prediction ap-

proach with a 100% accuracy in predicting the type of a given query and

three state-of-the-art Learning to Rank (LTR) techniques, namely Ranking

SVM (Section 3.2.2.3), AdaRank (Section 3.2.3.1), and the AFS method

(Section 3.2.3.1). In particular, two different tasks have been investigated:

selecting an appropriate ranking function from a number of candidate rank-

ing functions (Section 5.5), and selecting a set of appropriate document

features from a number of candidate document features for building an ef-

fective ranking function (Section 5.6). Moreover, to test the robustness of

the learning to select framework, the selective application of an appropriate
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ranking function has been conducted by varying the number of candidate

ranking functions from 2 to 63 (Section 5.5.2).

• To show the generality of the learning to select framework, we have deployed

it for selectively integrating an appropriate query independent feature into

a document weighting scheme (Section 6.2). This allows the document

features to be applied to the queries that are more likely to benefit from

these features. Moreover, a full study of the effectiveness of the learning

to select framework in this search application has been investigated on the

TREC 2003 and TREC 2004 Web track datasets. In particular, a simulated

oracle query type prediction approach is used as one of our baselines (see

Section 6.2.3.3).

• We have also deployed the learning to select framework for the selective

estimation of the relative importance of different query aspects in a search

diversification task (Section 6.3). This allows the ranked list of documents

to provide a complete coverage of different interpretations for an ambigu-

ous query. In addition, the effectiveness of the learning to select framework

in this search application has been thoroughly tested using the large-scale

TREC ClueWeb09 (category B) test collection, which contains over 50 mil-

lion documents, and its corresponding TREC 2009 Web track topics set.

Moreover, to test the robustness of the learning to select framework, three

different weighting schemes, including BM25 (Equation (2.6)), DPH (Equa-

tion (2.21)), and language modelling (Equation (2.12)) were used.

• Furthermore, the learning to select framework has been deployed for the

choice of an appropriate resource (e.g. an external document collection,

such as Wikipedia) for expanding and enriching an initial query, for docu-

ment search within an enterprise (Section 6.4). This alleviates the mismatch

problem between query terms and the intranet documents. As mentioned

in Section 6.4, the mismatch problem is severe in an enterprise, due to

the sparsity of the vocabulary used within an enterprise. In addition, a

full study of the effectiveness of the learning to select framework in this

search application has been investigated on the TREC Enterprise CERC
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test collection and its corresponding 2007 and 2008 topic sets, in combina-

tion with three different external resources (see Section 6.4.2). Moreover,

the query performance predictor-based approach is used as one of the base-

lines. In particular, nine different predictors (Section 2.4.3), including both

pre-retrieval and post-retrieval predictors, were used in this investigation.

7.1.2 Conclusions

This section discusses the achievements and conclusions of this work.

Effectiveness of Learning to Select The evaluation of the effectiveness of

the proposed learning to select framework in Chapter 5 includes two main in-

vestigations: selecting an appropriate ranking function from a number of candi-

date ranking functions (Section 5.5), and selecting a set of appropriate document

features from a number of candidate document features for building a ranking

function (Section 5.6).

In the first investigation, we compared the retrieval performance obtained

by the learning to select framework with a simulated query type prediction ap-

proach that has a 100% accuracy in predicting the type of a given query, as well

as three state-of-the-art Learning To Rank (LTR) techniques, namely Ranking

SVM (Section 3.2.2.3), AdaRank (Section 3.2.3.1), and the AFS method (Sec-

tion 3.2.3.1). Our experimental results showed that the retrieval performance

obtained by using our proposed learning to select framework could consistently

outperform the query type prediction approach and three state-of-the-art learning

to rank techniques in terms of the MAP measure on different datasets (see Sec-

tion 5.5.1). In addition, improvements over the query type prediction approach

and all learning to rank techniques were statistically significant in most cases (see

Tables 5.4, 5.5, 5.6 and 5.7 in Section 5.5.1).

The experimental results in the second investigation showed that our proposed

framework is also effective for selecting multiple appropriate document features

for building a ranking function and the obtained retrieval performance can be

further enhanced when we increase the number of candidate document features

from 2 to 6 (see Tables 5.8, 5.9, 5.10 and 5.11 in Section 5.6). These results attest

to the effectiveness of the learning to select framework.
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Robustness of Learning to Select We investigated the robustness of our learn-

ing to select framework by increasing the number of candidate ranking functions

from 2 to 63. To achieve this, we simulate a number of candidate ranking func-

tions by applying a learning to rank technique on several different combinations

of document features (see Section 5.5.2).

By plotting the distribution of MAP versus the number of candidate rank-

ing functions (see Section 5.5.2), we found that by using the learning to select

framework, the obtained retrieval performance can be enhanced when increasing

the number of candidate ranking functions. This suggests that learning to select

is a robust framework for selectively applying an appropriate ranking function

and emphasises the point that the learning to select framework is agnostic to the

number of candidate ranking functions used.

Generality of Learning to Select To show the generality of the learning to

select framework, we explored the deployment of the learning to select framework

in various search applications, ranging from the selective application of query

independent features in the Web search task (Section 6.2), to selectively applying

a sub-query importance estimator in the search diversification task (Section 6.3),

or selective application of query expansion for the enterprise document search

task (Section 6.4).

The obtained experimental results from these search applications showed that

our proposed learning to select framework can consistently make improvements

on the retrieval performance, in comparison with several strong baselines (see Sec-

tions 6.2.3.3, 6.3.4.2, and 6.4.3.2). In particular, such improvements are signifi-

cant in some cases (e.g. see Table 6.6 in Section 6.2.3.3). Moreover, the learning to

select framework can also outperform the existing selective retrieval approaches,

such as the query performance predictor-based approach (Section 3.4). These

results attest to the generality of the learning to select framework.

The Components of Learning to Select Furthermore, to better understand

the proposed learning to select framework, the components (i.e., the neighbouring

query finding technique and query features) of the learning to select framework

have been thoroughly investigated. Two different neighbouring query finding

techniques have been described in Section 4.4.2, namely KNN and k-means. Three
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different query features have been introduced in Section 4.4.1, namely, the mean

of the relevance scores, the KL and the JS divergence measures.

Experimental results from Chapter 5, Sections 6.2, 6.3 and 6.4 have shown

that our proposed use of divergence measures (i.e. KL and JS) as query features

to identify neighbouring queries was always more effective than the mean of the

relevance scores measure, which ignores the distribution of relevance scores. Be-

sides, for the neighbouring query finding component, both KNN and k-means

have shown their effectiveness across all search applications (e.g. Table 6.3 in

Section 6.2.3.2). In addition, based on the three used query features, the re-

trieval performances obtained by these two identification of neighbouring queries

techniques are quite close (e.g. Table 5.5 in Section 5.5).

7.2 Directions for Future Work

This section discusses several directions for future work related to, or stemming

from this thesis.

Other Query Features Three different query features (i.e., the KL divergence

measure, the JS divergence measure and the mean of the relevance scores) have

been evaluated in the proposed learning to select framework in this thesis. In our

evaluation results, both divergence measures (i.e. KL and JS) outperform the

mean of the relevance scores. The divergence measures are used to determine the

extent to which a document ranking function alters the scores of an initial ranking

of documents. Apart from the divergence measure, the correlation measure (e.g.,

Pearson’s correlation coefficient (Pearson, 1896)) could be used as a query feature.

The correlation measures the dependence between two variables. In our case, the

two variables correspond to a base ranking function and a candidate ranking

function (see Section 4.4.1). Hence, the correlation measure could be used to

determine the strength of the dependence between the two variables.

Query log is a record of user interactions with search engines, such as the user

queries, the number of corresponding document clicks, and the URL of the clicked

documents (Dupret et al., 2006). Several different query log-based features have

been extracted and used for different search applications (Baeza-Yates & Tiberi,

2007; Dupret & Mendoza, 2006; Joachims, 2002; Lee et al., 2005; Liu et al., 2006).
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For example, Lee et al. (2005) proposed the use of the number of clicks to detect

the user intent, as the informational queries usually have higher number of clicks

than the navigational queries. These query log-based feature could be used as

query features for identifying similar queries. For example, similar queries might

have similar clicked documents. However, this requires the availability of large

query logs, which are currently not available in academia.

Multi-Dimensional Query Feature Space The experiments conducted in this

thesis used a single query feature (e.g., a divergence measure or the mean of the

relevance scores) to identify neighbouring queries. Several other possible query

features have been discussed above. Similar to the growing trend of building a

ranking function from a large number of document features (see Section 3.2), we

plan to build a multi-dimensional query feature space with the aim of achieving a

higher retrieval performance. In addition, techniques that can be used to combine

document features could also be deployed for combining the query features, such

as the linear combination (Berry et al., 1995) and the FLOE method (described

in Section 2.6.4).

Identifying Neighbouring Queries In this thesis, we used two different class-

ification-based techniques (i.e. KNN and k-means (see Section 4.4.2)) to identify

the neighbouring queries for a given test query. In the future, we will investigate

some other neighbouring queries identification approaches. For example, Baeza-

Yates & Tiberi (2007) generated the semantic relationships between queries by

representing queries in a vector space based on the query-click bipartite graph.

Inspired by this work, we plan to employ the semantic relationships of queries,

as derived from query logs, to identify neighbouring queries.

Learning to Select in Other Applications In this thesis, we have investigated

the effectiveness of the learning to select framework in various search applications.

In the future, we plan to deploy the learning to select framework in other fields,

such as the blogosphere. With the advent of Web 2.0, more and more Web users

report their daily life, as well as publish their views and opinions on various events

as they happen using blogging tools (Ounis et al., 2006). There are two main

search tasks based on the analysis of a commercial blog search engine: opinion-

finding (i.e., “What do people think about X?”) and blog distillation (i.e., “Find

me a blog with a principal, recurring interest in X.”) (Ounis et al., 2006).
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The opinion-finding task requires finding not only relevant, but also opin-

ionated blog posts for a given topic. Hannah et al. (2007) proposed two different

approaches for this task: the first one is a light-weight dictionary-based statistical

approach and the second one applies techniques in Natural Language Processing

(NLP) for subjectivity analysis. These two different approaches lead to different

retrieval performances on the TREC Blog track dataset. By treating the rank-

ing functions generated by the these two different opinion-finding techniques as

candidate ranking functions, the proposed learning to select framework could be

used to selectively apply the most appropriate technique on a per-query basis,

so as to enhance the opinion-finding performance. Moreover, the number of can-

didate ranking functions can be extended by adding some other opinion-finding

techniques, such as the use of document priors (e.g. the number of comments for

each post) for finding opinionated blog post (Ernsting et al., 2007).

For the blog distillation search task, various approaches have been devel-

oped (Ounis et al., 2008), such as the use of expert search techniques to rank

blogs, the use of folksonomies to expand the queries and the use of the query

likelihood language modelling approach. By treating the ranking functions cre-

ated by these techniques as candidate ranking functions, our proposed learning

to select framework could also be used to selectively apply an appropriate blog

retrieval technique on per-query basis for the blog distillation search task.
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Appendix A

Additional Tables

ID Feature Description
1 Term frequency (TF) of body
2 TF of anchor
3 TF of title
4 TF of URL
5 TF of whole document
6 Inverse document frequency (IDF) of body
7 IDF of anchor
8 IDF of title
9 IDF of URL
10 IDF of whole document
11 TF * IDF of body
12 TF * IDF of anchor
13 TF * IDF of title
14 TF * IDF of URL
15 TF * IDF of whole document
16 Document length (DL) of body
17 DL of anchor
18 DL of title
19 DL of URL
20 DL of whole document
21 BM25 of body
22 BM25 of anchor
23 BM25 of title
24 BM25 of URL
25 BM25 of whole document
26 LMIR.ABS of body
27 LMIR.ABS of anchor
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ID Feature Description
28 LMIR.ABS of title
29 LMIR.ABS of URL
30 LMIR.ABS of whole document
31 LMIR.DIR of body
32 LMIR.DIR of anchor
33 LMIR.DIR of title
34 LMIR.DIR of URL
35 LMIR.DIR of whole document
36 LMIR.JM of body
37 LMIR.JM of anchor
38 LMIR.JM of title
39 LMIR.JM of URL
40 LMIR.JM of whole document
41 Sitemap based term propagation
42 Sitemap based score propagation
43 Hyperlink base score propagation: weighted in-link
44 Hyperlink base score propagation: weighted out-link
45 Hyperlink base score propagation: uniform out-link
46 Hyperlink base feature propagation: weighted in-link
47 Hyperlink base feature propagation: weighted out-link
48 Hyperlink base feature propagation: uniform out-link
49 HITS authority
50 HITS hub
51 PageRank
52 HostRank
53 Topical PageRank
54 Topical HITS authority
55 Topical HITS hub
56 Inlink number
57 Outlink number
58 Number of slash in URL
59 Length of URL
60 Number of child page
61 BM25 of extracted title
62 LMIR.ABS of extracted title
63 LMIR.DIR of extracted title
64 LMIR.JM of extracted title

Table A.1: Document features included in the LETOR 3.0 dataset.
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ID Feature Description
1 Term frequency (TF) of body
2 TF of anchor
3 TF of title
4 TF of URL
5 TF of whole document
6 Inverse document frequency (IDF) of body
7 IDF of anchor
8 IDF of title
9 IDF of URL
10 IDF of whole document
11 TF * IDF of body
12 TF * IDF of anchor
13 TF * IDF of title
14 TF * IDF of URL
15 TF * IDF of whole document
16 Document length (DL) of body
17 DL of anchor
18 DL of title
19 DL of URL
20 DL of whole document
21 BM25 of body
22 BM25 of anchor
23 BM25 of title
24 BM25 of URL
25 BM25 of whole document
26 LMIR.ABS of body
27 LMIR.ABS of anchor
28 LMIR.ABS of title
29 LMIR.ABS of URL
30 LMIR.ABS of whole document
31 LMIR.DIR of body
32 LMIR.DIR of anchor
33 LMIR.DIR of title
34 LMIR.DIR of URL
35 LMIR.DIR of whole document
36 LMIR.JM of body
37 LMIR.JM of anchor
38 LMIR.JM of title
39 LMIR.JM of URL
40 LMIR.JM of whole document
41 PageRank
42 Inlink number
43 Outlink number
44 Number of slash in URL
45 Length of URL
46 Number of child page

Table A.2: Document features included in the LETOR 4.0 dataset.
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