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Abstract

This thesis is about the definition, the implementation and the evaluation of statistical
models of variability of curves and surfaces based on currents in the context of Computa-
tional Anatomy. Currents were recently introduced in medical imaging in order to define a
metric between curves and surfaces which does not assume point correspondence between
structures. This metric was used to drive the registration of anatomical data. In this thesis,
we propose to extend this tool to analyze the variability of anatomical structures via the
inference of generative statistical models. Besides the definition and discussion of these
models, we provide a numerical framework to deal efficiently with their estimation. Several
applications on real anatomical database in brain and cardiac imaging tend to show the
generality and relevance of the approach.

In the first part of the manuscript, we extend the computational framework of currents
by introducing new numerical tools for approximation and compression purposes. First,
a rigorous discretization framework based on linearly spaced grids is provided: it enables
to give finite-dimensional projection of currents which converges to the initial continuous
representation as the grids become finer. This leads to a generic way to derive robust and
efficient algorithms on currents, while controlling the numerical precision. This gives for
instance a more stable numerical implementation of the registration algorithm of currents.
Then, we define an approximation algorithm which gives a sparse representation of any
currents at any desired accuracy via the search of an adapted basis for currents decompo-
sition. This sparse representation is of great interest to compress large sets of anatomical
data and to give interpretable representation of statistics on such data sets.

In the second part, we define an original statistical model which considers a set of curves
or surfaces as the result of random deformations of an unknown template plus random resid-
ual perturbations in the space of currents. The inference of such models on anatomical data
enables to decompose the variability into a geometrical part (captured by diffeomorphisms)
and a “texture” part (captured by the residual currents). This approach allows us to address
three anatomical problems: first, the analysis of variability of a set of sulcal lines is used
to describe the variability of the cortex surface, second, the inference of the model on set
of white matter fiber bundles shows that both the geometrical part and the texture part
may contain relevant anatomical information and, third, the variability analysis is used in
a clinical context for the prediction of the remodeling of the right ventricle of the heart in
patients suffering from Tetralogy of Fallot.

In the third part, we define statistical models for shape evolution. First, we define a
spatiotemporal registration scheme which maps the sets of longitudinal data of two subjects.
This registration does not only account for the morphological differences between subjects
but also for the difference in terms of speed of evolution. Then, we propose a statistical
model which jointly estimates a mean scenario of evolution from a set of longitudinal data
along with its spatiotemporal variability in the population. This four-dimensional analysis
opens up new possibilities for characterizing pathologies in terms of variations of the growth

process of anatomical structures.






Résumé

Le but de cette thése est de définir, implémenter et évaluer des modéles statistiques de
variabilité de courbes et de surfaces basés sur des courants en anatomie numeérique. Les
courants ont été récemment introduits en imagerie médicale dans le but de définir une
meétrique entre courbes et surfaces qui ne dépend pas de correspondance de points entre les
structures. Cette métrique a été utilisée pour guider le recalage de données anatomiques.
Dans cette thése, nous proposons d’étendre cet outil pour analyser la variabilité de struc-
tures anatomiques grace a I'inférence de modéles statistiques génératifs. Outre la définition
et la discussion de tels modéles, nous proposons un cadre numérique pour les estimer effi-
cacement. Plusieurs applications en imagerie cérébrale et cardiaque tendent a montrer la
généralité et la pertinence de cette approche.

Dans la premiére partie, nous introduisons de nouveaux outils numériques
d’approximation et de compression des courants. Tout d’abord, un cadre rigoureux de
discrétisation basé sur des grilles réguliéres est proposé: il définit des projections en di-
mension finie des courants qui convergent vers le courant initial quand la grille devient
plus fine. Cela permet de définir de maniére générique des algorithmes robustes et effi-
caces pour traiter les courants, avec un controéle de la précision numérique. En particulier,
cela donne une implémentation plus stable de 'algorithme de recalage de courants. Enfin,
nous définissons une méthode d’approximation qui calcule une représentation éparse d’un
courant & n'importe quelle précision grace a la recherche d’une base adaptée au signal.
Cette représentation éparse est d’un grand intérét pour compresser de grands ensembles de
données anatomiques et pour interpréter les statistiques sur de tels ensembles.

Dans la deuxiéme partie, nous définissons un modéle statistique original qui considére
un ensemble de courbes ou de surfaces comme le résultat de déformations aléatoires d’une
forme prototype inconnue plus des perturbations résiduelles aléatoires dans ’espace des
courants. L’inférence de tels modéles sur des données anatomiques décompose la variabilité
en une partie géométrique (capturée par des difféomorphismes) et une partie de “texture”
(capturée par les courants résiduels). Cette approche nous permet de traiter trois problémes
anatomiques: d’abord ’analyse de la variabilité d’un ensemble de lignes sulcales est utilisée
pour décrire la variabilité de la surface corticale, ensuite I'inférence du modéle sur un ensem-
ble de faisceaux de fibres de la matiére blanche montre qu’a la fois la partie géométrique et
la texture peuvent contenir de I'information anatomiquement pertinente et enfin ’analyse
de la variabilité est utilisée dans un contexte clinique pour la prédiction de la croissance du
ventricule droit du coeur chez des patients atteints de la Tétralogie de Fallot.

Dans la troisiéme partie, nous définissons des modéles statistiques pour I’évolution de
formes. Nous proposons d’abord une méthode de recalage spatio-temporel qui met en cor-
respondance les ensembles de données longitudinales de deux sujets. Ce recalage prend en
compte & la fois les différences morphologiques entre les sujets et la différence en terme de
vitesse d’évolution. Nous proposons ensuite un modéle statistique qui estime conjointement
un scénario moyen d’évolution & partir d’un ensemble de données longitudinales et sa vari-
abilité spatio-temporelle dans la population. Cette analyse ouvre de nouvelles perspectives
pour caractériser des pathologies par une différence de vitesse de dévelopement des organes.
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“And while I have sought to show the naturalist how a few mathematical
concepts and dynamical principles may help and guide him, I have tried
to show the mathematician a field for his labour - a field which few have
entered and mo man has explored. Here may be found homely problems,
such as often tax the highest skill of the mathematician, and reward his
ingenuity all the more for their trivial associations and outward semblance

of simplicity.”

D’Arcy W. Thompson, On Growth and Form (1917)

“Et tandis que je me suis efforcé de montrer au naturaliste combien
quelques concepts mathématiques et quelques principes dynamiques pour-
raient lui venir en aide et le guider, j’ai tenté aussi d’indiquer au math-
ématicien une nouvelle direction de travail - une voie que peu ont em-
pruntée, et que nul n’a encore explorée. Il se trouvera certainement dans
cette voie quelques problémes modestes, qui mettent souvent a rude épreuve
Uhabileté du mathématicien, et qui le recompensent d’autant mieur que
leur résolution nécessite des associations évidentes et qu’elles revétent un

semblant de simplicité.”

D’Arcy W. Thompson, On Growth and Form (1917)
traduction Dominique Teyssié
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Databases

The methodology developed in this thesis has been driven by the analysis of anatomical
data and has been used to provide solutions to the scientific problems which motivated the
constitution of these data. Six different databases were used: a set of sulcal lines, a set
of meshes of subcortical structures of the brain, white matter fiber bundles extracted from
Diffusion Tensor Images, a set of fossil endocasts of bonobos, meshes of the right ventricle
of the heart from patients suffering from Tetralogy of Fallot and CT images of the lungs.

We give here the technical description of the databases which will be used throughout
the thesis:

e As part of a collaborative project involving the Asclepios-LONI associated team
Brain-Atlas, we used a dataset of cortical sulcal landmarks (72 per brain) delineated
manually by neuroanatomists experts in 34 subjects scanned with 3D MRI (age: 51.8
+/- 6.2 years). Detailed protocol of image acquisition and sulci delineation can be

found at http://www.loni.ucla.edu/ khayashi/Public/medial_surface/.

e We access a database of deep brain structures (hippocampus, amygdala, putamen,
pallidum and caudate for each hemisphere) segmented in 50 autistics, 4 developmental
delays and 7 control children scanned at about 2 and 4 years old. Semi automatic,
semi manually segmentation of the structures have been performed. See [Hazlett 2005]
for a detailed description of the protocol.

e As part of a collaboration with P. Fillard at CEA /Neurospin, we access to a set of
fiber bundles segmented from Diffusion Tensors Images. Six brain DTI data sets ac-
quired on a 1.5T GE scanner on healthy volunteers were used. Image dimensions are
128 x 128 x 30, and resolution is 1.8 x 1.8 x 4mm. 25 non-collinear diffusion gradi-

ents and a b-value of 1000s.mm 2

were used. Fiber tractography was performed using
MedINRIA !, which includes a robust tensor estimation and a streamline tractography
algorithm using log-Euclidean tensor interpolation [Fillard 2007b]. Manual segmen-
tation of five fiber bundles was done: the entire corpus callosum, the corticospinal

and the corticobulbar tracts, and the left and right arcuate fasciculi.

e As part of the collaborative project “INRIA-ARC 3D-Morphine”, we access a database
of 60 fossil endocasts of Pan paniscus (bonobos) and 59 endocasts of Pan troglodytes
(chimpanzees). The original endocasts are from the collection of “Musée de I’Afrique
centrale” in Tervuren, Belgium (conservator: E. Gilissen). They have been scanned
by J.Braga using a Siemens Somatom Esprit Spiral CT, with slide thickness between
0.33 and 0.50 mm.

e Joint work with T. Mansi in Chapter 8 involved images of the heart of patients suf-
fering from Tetralogy of Fallot acquired in the framework of the European IP-project

Health-e-child. Steady-State Free Precession cine-MRI of the heart were acquired with

Lhttp://www-sop.inria.fr/asclepios /software/ MedINRIA /
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a 1.5T MR scanner (Avanto, Siemens). Images were acquired in the short-axis view
covering entirely both ventricles (10-15 slices; isotropic in-plane resolution: 1.1x1.1mm
to 1.7x1.7mm; slice thickness: 6-10mm; 25-40 phases). Images were made isotropic
through tri-cubic resampling. Segmentation of the ventricle has been performed as
explained in 8.3.1.

e Joint work with V. Gorbunova in Chapter 4 involved publicly available CT images of
the lungs [Castillo 2009]. Segmentation of blood vessels and surface of the lungs have

been performed as explained in Section 4.5.

We would like to warmly thank P. Thompson (sulcal lines), G. Gerig and M. Styner (deep
brain structures), P. Fillard (white matter fiber bundles) and J. Braga (fossil endocasts of
bonobos) for providing us with the data. This work would not have been possible without

their precious help and support.



Notations

Mathematical symbols

A™R?: m-th exterior power of R%, i.e. set of m-vectors in R? (Def. A.2)
(A™R4)*: space of m-forms on R? (Def. A.4)

CO(R4, (A™R%)*): space of differential m-forms on R? which are continuous and tend
to 0 at infinity (Def. A.6).

d,¢: Jacobian matrix of the diffeomorphism ¢ at point x.

|d.¢|: (signed) determinant of the Jacobian matrix of the diffeomorphism ¢

¢*: pull-back action of the diffeomorphism ¢ on the scalar or vector field (Def. A.11)
¢«: push-forward action of the diffecomorphism ¢ on the space of currents (Def. 1.15)
#!: adjoint push-forward action on the space of currents (Eq. (5.3.21))

|v]: if v is a scalar: absolute value of v, if v € R%: Euclidean norm of v

(.,.) g+ inner-product on the Hilbert space H

||.]| 7+ norm of the Hilbert space H

u X v: cross-product between 3D vectors u, v

Lyw: canonical isometric map between the Hilbert space W and its dual space W*
(Def. B.8)

||.]|: for a scalar or vector field, its supremum norm. For a current, the supremum

norm of its representation in terms of vector fields (Eq. (1.5.20)).

I,,: the n-by-n identity matrix.

A x B: discrete nD-convolution between two n-by-n matrices A and B.
M (T): the mass of a current T (i.e. the mass-norm) (Def. 1.3)

A(T): the Lebesgue measure of the sub-manifold 7.

Vocabulary

0% is called a Dirac delta current. The couple (z,«) is called a momentum. z is the

location of the momentum. « is the coefficient of the momentum. A linear combination

of Dirac delta current is denoted: }_ 0g7. The set of points z; is called the support of this

T4

linear combination.

The word “shape” in this thesis has the very general sense of any kind of geometrical

data (set of points, curves, surfaces, volumes, etc.).






Introduction

The not so random variability of living organisms

Charles Darwin was born two hundreds years ago. He ded-
icated most of his scientific activity to set up a theory which
can explain the anatomical variability of the living organisms.
Since Antiquity, one has observed that, beneath the incredible
variety of the forms of life, large groups of animals share the
same inner framework. For instance, most of the vertebrates
share a similar skeleton with two posterior and two anterior
limbs. As shown in Figure 2, the anterior limb has an homolo-
gous structure in many different species. In the 18th century,
Linné (1707-1778) and Buffon (1707-1788) define species as a
group of individuals which share common anatomical features
and can reproduce within the group. They are the first ones
to introduce the idea that the observed anatomies may be con-

sidered as variations (“degenerations” according to Buffon) of
a common prototype anatomy.
Figure 1: Charles Darwin Darwin went one step further by considering these vari-
(1809-1882) is among the ations in a temporal perspective. The common prototype
first ones to imagine that anatomy is the one of a common ancestor and the variability
the observed anatomies re-  regults from random innovations over ages and a selection of
sult from the selection of these innovations according to competitive advantages. The
random variations of a discovery of genetics strengthens his idea of random innova-
common anatomy. tions introduced during reproduction. This builds a theory,
namely a set of simple hypotheses, which can explain both
the large variability of the anatomy of living organisms and the presence of a structure in
this randomness.

D’Arcy Thompson (1860-1948) introduced the idea that the possible innovations which
can be introduced during evolution are constrained by the inherent structure of the bi-
ological tissues and the physical forces exerted to them [Thompson 1917]. This idea
is strengthen by recent experiments which manage to drive the growth of a plant by
controlling the external pressure or by modifying the physical forces exerted to the
cells [Mulder 2008, Hamant 2008]. As a consequence, the number of degrees of freedom
for introducing new features during evolution might be much smaller than what is expected
by the current stage of the theory of evolution. For instance, the neck could only elongate
or shrink, any other deformations being unlikely to appear from a biological point of view.
In any case, the conclusion is the same: the huge variability observed in nature is not pure
randomness but is structured by underlying rules. This holds whether the random pro-
cess is intrinsically constrained or whether a selection principle makes eventually the actual

variability structured.
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Figure 2: Comparative study of the skeleton of the arm of several vertebrates, by Wil-
helm Leche (1909). Beneath the apparent huge variability of the skeletons, one can find

homologous anatomical structures across species.

Historically, the classification of species was supported mostly by the analysis of skele-
tons. However, the presence of anatomical invariants is not limited to the skeleton. We can
find homologous structures in most of the organs and anatomical structures of the living
organisms. For instance, Fig. 3 shows four different brains of healthy humans. The number
and the location of the cortical sulci (the folding patterns of the cortex surface) seem to
vary a lot from one subject to another. However, some main sulci such as the Sylvian and
Calgarine fissure, the central sulcus appear in almost every human.

Analyzing and understanding the variability of anatomical structures is of great interest,
especially for humans. Knowing the normal variability of an organ would help to detect
abnormal developments of a given subject via large deviations from the normal model.
This would help also to find discriminative anatomical features, to divide a population into
consistent clusters according to some anatomical characteristics, to discover subtypes of
pathologies, etc. Understanding the causes of this variability should offer a way to treat
abnormal developments.

Deterministic integrative models to explain the variability

To understand the variability of structures, we can try to find the physical or biological
causes of this variability. This requires to build generic models which integrate the biological
phenomena which we think are involved in the process. Such models try to explain how every
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particular anatomy derives from a common framework. For instance, the “physiome project”
is an attempt to build integrative models which can derive the anatomy of macroscopic
structures from genetic and proteomic information [Hunter 2003]. A recent morphogenesis
hypothesis supposes that the variability of the cortical folding patterns in the adult brain
derives from a common architecture of folding locations at the fetal stage [Regis 2005].
In oncology, several models have been proposed to explain the growth of a tumor by the
integration of physical and biological interactions between cancerous and healthy cells, like
in [Mayneord 1932, Levine 2000] for instance.

However, it not always possible to design such integrative models, either because the
number and the complexity of the interactions make the derivation of the model impossible
or because we simply lack the physical or biological knowledge to build such models. This is
illustrated by the example of the brain. On the one hand, one has a pretty good understand-
ing of how an individual neuron transports the action potential via the integrate-and-fire
model of [Hodgkin 1952] for instance. On the other hand, we have almost no idea on how to
model the interactions between every neuron of the brain in order to explain brain functions
such as memory for instance. We are also far from having a global model of the physical

interactions between neurons, which can explain the anatomy of the brain.
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Figure 3: Top: four different brains of healthy humans. The folding patterns of the cortex
surface vary a lot across individuals, although some major sulci seems to build a common
architecture of the cortex as illustrated in the bottom figure (top images courtesy of J.-F.
Mangin, bottom image from Gray’s Anatomy of the Human Body)
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Stochastic generative models

To validate the biological assumptions on which a model is based, we need to measure
how well this model can explain the experimental observations. For this purpose, one
personalizes the parameters of the model (such as size, weight or genes for instance) to a
particular patient and compare the prediction of the model with the anatomy of this patient.
Such models establish therefore a deterministic link between the observed anatomies and
a set of physiological parameters. The variability of observations is due to various initial
conditions.

When integrative models are not available, one can re-
place such deterministic approaches by stochastic processes.
Such an approach is common across various fields of science,
see [Grenander 1994] for a general stochastic pattern theory
or [Mumford 2006] for a focus on visual perception, for in-
stance. Here, the idea is to see the observations as some in-
stances of a random process: we consider that they derive ran-
domly from a common prototype anatomy. Such an approach
probes the data to answer the questions: what is invariant
across individuals? what is variable? how is it variable? The
first question is answered by the estimation of the prototype
anatomy, the next two questions by the estimation of the law

of the random process. Such “bottom-up” approaches can be

set up even in the absence of biological knowledge about the

possible causes of the variability. As such, they are comple-

Figure 4: Jacques Bernoulli
(1654-1705), one of the fa-
ther of the theory of proba-

mentary with the “top-down” integrative approaches.

The inference of such stochastic models extracts automat-
o ) ’ ically invariant geometrical structures from anatomical data.
bilities, which gives math- . . . .
] These anatomical findings can be used, in turn, to drive the
ematical tools to find the . . ) .

search for relevant biological hypotheses which can explain the
structures of randomness. . .

structure of the stochastic model. Indeed, having a clear rep-

resentation of the similarities and differences of highly variable
data should help to find the causes of this variability. Moreover, we can think of integrat-
ing biological variables into the statistical framework and therefore give a way to evaluate
the relevance of some biological assumptions. The two approaches, deterministic biological
modeling and stochastic geometrical modeling, should be investigated in parallel. Coming
back and forth between the data and the biological hypotheses should enable firstly to ac-
curately describe and measure the variability of the anatomy and, secondly, to understand
the biological causes of this variability.

The purpose of this thesis is to design a generic statistical framework which can describe
and measure the variability of a set of anatomical data. In this perspective, generative sta-
tistical models have to play a tremendous role over other statistical approaches. Descriptive
approaches test the significance of some hypotheses: this is adapted when one knows be-
forehand what we are looking for. By contrast, generative models do not make strong

assumptions on the variability we are looking for. They infer a random process which can
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generate new data which can be compared to the experimental observations. This can
be used to predict the anatomy of new subjects, thus giving a relevant way to evaluate
the model. More importantly, this offers a way to include biological assumptions in the
variability model, a key feature toward the search of the biological causes of the observed
phenomenon.

To define such generative statistical models, we need first to look carefully at the data
we want to analyze. This will drive the definition of a relevant mathematical and statistical

framework to analyze shape? variations.

The starting point: the data

The evaluation of the theory of evolution relies on very small amount of data: for
example, few fossil skeletons, which are often incomplete and which have been deformed
during fossilization (taphonomic deformations). This makes the quantitative evaluation of
the theory particularly difficult. Working with organs or anatomical structures of still living
organisms makes the evaluation of the models in Computational Anatomy much easier.
Indeed, there is an increasing use of in-vivo imaging devices and modalities (Magnetic
Resonance Imaging (MRI), Diffusion Tensor Imaging (DTI), Ultrasound imaging, Positron
Emission Tomography (PET), etc.) both in the clinical context and for neuroscience studies.
This makes available larger and larger database of images which can be used to understand
the normal anatomy as well as the pathological cases.

The raw experimental data are thus 3D grey-level images of patients or control sub-
jects. Several methods in Computational Anatomy focus on the 3D images. This has the
advantage to base the statistical estimation directly on the experimental data. However,
the images offer a view of the anatomy through a predefined window, whereas one is inter-
ested on some particular anatomical structures contained into this field of view. This is the
reason why we believe that we should select the relevant information in the images before
applying the statistical analysis on these extracted data.

However, this approach raises an important methodological question: how can we re-
liably extract this information if we have no prior about the normal variability of this
information in the population? Using segmentation from anatomical experts is not a com-
pletely satisfactory answer: first the increasing number of available images prevents us from
a systematic manual segmentation of structures and second this extraction is based on an
implicit and uncontrollable prior, which is what the expert thinks the structure should
look like in images. The automatic segmentation of structures is necessarily based on some
priors such as the regularity of the contour of the structure for instance. Of course, these
priors bias the following statistical analysis. But, this statistical analysis helps also to better
understand how the structure varies in the population. It can be used then to adapt the
segmentation priors to take into account the new anatomical knowledge. Defining such a
feedback loop in the segmentation process should increase both the reliability of the segmen-
tation and the power of the statistical estimation. However, this approach is not addressed

2In this thesis, the word “shape” denotes any kind of geometrical data like curves, surfaces, volumes or
point sets for instance.
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Figure 5: Three examples of anatomical data. Left: trace of sulcal lines drawn on the convex
hull of the cortex. Middle: meshes of deep brain structures (hippocampus, amygdala,
putamen, pallidum and caudate for each hemisphere). Right: Five white matter fiber
bundles (corpus callosum, corticospinal and corticobulbar tracts, left and right arcuate

fasciculi). Each bundle consists of thousands of curves.

in this thesis. Our starting point is anatomical structures, which have been either manually
or automatically extracted from images, and we focus on the direct way: the statistical
estimation of the variability from these data.

The anatomical data which we want to deal with may have very various forms. Figure 5
shows three typical examples of data for which we need to design statistical models. The
data may be the contours of the anatomical structures whose representation may be as
structured as a surface mesh or as unstructured as a set of points supposed to belong to
the surface. The data may be also volumetric: a volume mesh or a set of points inside
the structure. However, the anatomical structures of interest are not limited to volumes or
contours of volumes. For instance the sulci of the brain may be represented as a surface
sheet delimited by the gyri as in [Mangin 2004b]: the surface is not necessarily closed.
According to the theory of sulcal roots [Regis 2005], it is interesting to focus also on the
curve drawn on the cortex surface at the bottom of the sulci. In this case, the anatomical
data is a set of curves whose topologies are arbitrary: a sulcal curve may have branching
or be cut in several parts. In this thesis, we will also deal with white matter fiber bundles
(a representation of the collection of neurons which connects two functional areas of the
brain). The extraction and selection of fiber bundles from diffusion tensor images lead to
a large set of individual curves gathered into consistent clusters. The number of curves as
well as the connectivity of the curves within each bundle is highly variable according to the

subject and the extraction method.

Defining generic statistical models for such data requires to answer two fundamental
questions: (1) how can we define a generic mathematical framework which can deal with
so different kind of data? (2) how can we measure the geometrical variations of these data
which would be robust enough to the change of representation of the structure (change
of topology, non-homologous points across subjects, different number of curves within a
bundle, etc.)? This includes, for instance, the comparison between a sulcal curve which has
a branching with the same sulcal curve in another subject which has no branching, or the

comparison between two fiber bundles (a reproducible anatomical structure across subject)
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which have a very different number of curves.

Which mathematical model for shapes?

Several mathematical frameworks have been proposed to deal with geometrical data,
mostly in the field of Computer Vision. Popular methods used level-set representations
for closed contours: curves in 2D and surfaces in 3D. Such approaches use geometri-
cal constraints (length, area, volume, curvature, etc.) as priors, like in [Leventon 2000,
Leventon 2003, Pardo 2004, Cremers 2006] for instance. However, it is difficult to figure
out how to automatically learn such priors from typical data sets. Indeed, curves in this
setting are embedded into a space which is not a vector space and on which no natural
metric is defined. This makes the definition of statistics particularly difficult, for example,
there is no explicit and simple way to compute a mean.

Other models are based on point distribution and therefore assume point-
correspondences between structures like in [Cootes 1995, Cootes 2008]. Such approaches
can lead to statistical models as in [Twining 2005] for instance. In medical imaging, how-
ever, samples of curves or surfaces segmented from MR images, do not generally correspond
from one structure to another. For instance, it is not possible to assume that points of two
fiber bundles (such as the ones in Fig. 5) are homologous across subjects. Assuming such
correspondence introduces therefore a non-realistic geometrical prior, which eventually may
lead to an important bias in the statistical estimations. Improvements of point distribu-
tion models were proposed to relax the constraint of point-correspondences, for instance
Minimum Description Length approach [Marsland 2008], statistical versions of the Iterative
Closest Points algorithm [Hufnagel 2008] or fuzzy correspondences approaches [Chui 2003].
These techniques, though, are still built on the idea of point correspondences. Moreover,
they deal only with collection of points and do not take into account normals or tangents
of the structures.

Alternatively, Medial Axis representations have been proposed to build statistical models
on surfaces [Pizer 2003, Fletcher 2004]. As a consequence, these methods are only available
for surfaces, they are not robust to changes of connectivity of the structures and are quite
sensitive to variations of the segmentation algorithm. In [Charpiat 2005], dissimilarities
between compact subset of R? or R? (seen as characteristic functions) are measured by
the Hausdorfl distance. In [Mio 2007, Joshi 2007], a metric between closed contours is
provided which is invariant under a certain group of transformations (rigid transformations
and/or scaling) on the shapes. The definition of general Riemannian metrics on the space
of closed planar curves, which are invariant under re-parameterization of the curves, are
given in [Michor 2006, Michor 2007].

In contrast to these methods, the framework based on currents, as introduced
in [Vaillant 2005, Glaunes 2005], is not limited to a particular kind of data. Indeed, it
provides a unifying framework to process any sets of points, curves and surfaces or mix of
them. No hypothesis on the topology of the shapes is assumed. In particular, it is robust
to the change of connectivity of the structures. Moreover, it is weakly sensitive to the

sampling of shapes. The main advantage of this stetting is that shapes are embedded into
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a vector space provided with an inner-product. This gives a mathematically well-grounded
framework to compute statistics like mean and principal modes of a population of shapes,
without selecting a set of arbitrary features like volume, length or curvature for instance.
Eventually, the metric on currents does not assume any kind of correspondences between
structures.

For these reasons, we choose to root our statistical models into the framework of currents,
since it seems particularly adapted to process the kind of anatomical data such as the ones

in Figure 5.

Which statistical model for shape variations?

Once one has defined a model for shapes, one must find a way to compare them. There
are mostly two different perspectives for measuring shape variations. In the perspective of
Kendall’s work [Kendall 1989], a metric is directly defined in the space of shapes. In this
original work, shapes are first aligned using similarity transformations and then a metric is
derived in the manifold of the set of N-points identified by similarity (quotient space). In
this setting, a shape is defined by invariance properties: the shape is what remained after
registration, once a class of deformations has been defined (rigid transformation, similarity,
diffeomorphism, etc.). Shape comparison is performed directly in the shape space, once the
deformations between different instances have been discounted.

By contrast, following the ideas of D’Arcy Thompson [Thompson 1917], later rooted in
a mathematical framework by Grenander [Grenander 1994|, the distance between shapes is
measured by the “quantity of” deformation which is needed to warp one shape onto another.
In this setting the variable of interest is precisely the (elastic) deformation between shapes,
whereas the remaining part is considered as uninformative noise. This framework has the
advantage to be compatible to many shape representations, provided that the deformation
of a shape can still be represented in the same setting.

As we shall discuss in Chapter 5, none of the approaches is completely satisfactory,
since they assume that the interesting part of the variability is either on the deformation
or on the residual which remain after registration. The statistical model proposed in this
thesis is an attempt to bridge the gap between the two points of view. We propose to
consider a collection of shapes as a random deformation of a template shape plus a random
perturbation in the shape space (here the space of currents). Then, the consistent estimation
of both the deformations and the residual perturbations leads to the decomposition of the
variability into two terms. The variability which is captured by the deformations is mostly
geometric and describe torque, elongation, shrinking effects, etc. The variability which
is captured by the residual describes topology changes, matter creation or deletion, etc.
This approach has the advantage to take into account the whole variability without making
strong assumptions on the kind of variability one is looking for.

This statistical model focuses on sets of 3D shapes. In some sense, it can be seen as
a systematic version of the approach followed by Buffon in the 18th century to classify
living organisms. After Darwin, we need to put this analysis of variability into a temporal
perspective. Indeed, to understand the differences between species, it is better to compare
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the evolution of the anatomy of the species over ages rather than their anatomical difference
at a given time point. Similarly, the pathology of an organ might not be characterized by the
anatomical differences observed at a given age, since it may affect the development of the
organ more than its shape. Therefore, we propose to extend the previous statistical models
of shape to statistical models of shape evolution. The prototype anatomy is replaced by a
prototype scenario of evolution. The geometrical variability is replaced by a spatiotemporal
variability of the growth scenario. This variability describes both the morphological changes

and variations of the speed of evolution across individuals.

Manuscript overview

The purpose of this thesis is therefore to use the framework of currents to define
generative statistical models of shapes. The manuscript is divided into three parts.
In the first part, we introduce the currents as a unifying tool to model shapes. Al-
though currents have been successfully applied for the registration of pair of anatomical
data [Vaillant 2005, Glaunés 2008], a clear bottleneck appears when dealing with group-
wise statistics. Therefore, we need to develop a new numerical framework to define robust
and numerically stable algorithms to process collection of currents.

In the second part, we focus on the statistical modeling to measure the variability
of a set of anatomical shapes. This model decomposes the variability into a geometrical
part captured by the deformations and an “texture” part captured by the residual, as an
attempt to conciliate Kendall’s and Grenander’s approach. Then, this model is used first
to estimate the variability of the cortex surface knowing the positions of several sulcal lines,
second to describe the anatomical variability of white matter fiber bundles both in terms
of geometrical deformations and in terms of variations of the density of fibers and third to
predict the remodeling of the heart of patients suffering from repaired Tetralogy of Fallot.

In the third part, we extend this statistical model of shapes to a statistical model of
shape evolution. The variability of longitudinal data is described in terms of morpholog-
ical changes and of change of speed of evolution. This offers a way to detect possible
developmental delays in a population and to characterize pathologies by its impact on the
development of anatomical structures.

In details, each part is divided as follows:

Part I: Currents for modeling curves and surfaces

e Chapter 1: We introduce the theory of currents in the perspective of [Glaunés 2005].
We propose a unifying framework to process various kind of geometrical data like point
sets, curves, surfaces and volumes for instance, which may be associated with some
attributes. We show also how the metric on currents addresses the problem of point

correspondence in Computational Anatomy.

e Chapter 2: We propose finite-dimensional approximation spaces for currents via
linearly spaced grids. This provides a numerical framework to compute the usual
operations on currents via sampling, partial volume interpolation and Fast Fourier

Transforms. We prove that the approximated currents converge to the initial current
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as the grid becomes finer and provide speed of convergence. This gives a generic way
to derive fast and numerically stable algorithms dealing with currents, in particular
the matching pursuit algorithm of Chapter 3, the registration of currents of Chapter 4

and atlas estimation of Chapters 5 and 9.

e Chapter 3: We introduce a matching pursuit algorithm for currents, which defines a
sparse approximation of currents at any desired accuracy via the search of an adapted
basis for currents decomposition. This allows us, in particular, to have a numerically
stable representation of statistics on currents. Indeed, the addition in the space of
currents represents the union of curves or surfaces. Therefore, the mean or modes
of a collection of shapes has an increasing complexity as the size of the database is
increasing, whereas the statistics converge to their asymptotic values. The sparse ap-
proximation of currents enables to approximate these statistics with a rather constant
complexity. It offers a tractable way to use such statistics in more general algorithms,

like for the estimation of the statistical model of Chapter 5 for instance.

e Chapter 4: This chapter deals with the diffeomorphic deformation of currents. First,
we recall how currents may be used to register geometrical data in the framework
of [Vaillant 2005]. The numerical framework set up in Chapter 2 is used to give a
new numerical implementation of the registration algorithm. Then, we extend this
registration framework to the temporal regression of a set of time-indexed shapes.
Eventually we show two original applications: (1) the joint registration of both curves
and surfaces extracted from CT-scans of the lung, which is shown to compare with
a registration based on image intensity and (2) the temporal regression of fossil en-
docasts of bonobos, which provides a continuous growth scenario from data sparsely

distributed in time.
Part II: Statistical models of sets of curves and surfaces

e Chapter 5: We introduce and discuss statistical models on geometrical data modeled
as currents. The data are seen as the random deformation of an unknown current
plus an additive Gaussian noise in the space of currents. The inference of this model
leads to the estimation of a template shape (a current) and the variability of this
template shape in the population. The variability is decomposed into two terms: a
geometrical part captured by the deformations and a “texture” part captured by the
residual currents. A simulated example shows how this model can be used to find

discriminative features between two sets of shapes.

e Chapter 6: In this chapter, we address the problem of estimating the variability of
the cortex surface from the positions of sulcal landmarks. We take advantage here of
the registration framework based on currents to integrate consistently a set of geomet-
rical constraints. In this work, the template is given and statistics are performed on
template-to-subjects deformations. The estimated measure of variability is compared
with a more pragmatic method applied to the same database. This chapter can be
read independently of the rest of the thesis.
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e Chapter 7: In this chapter, we describe the anatomical variability of a set of white
matter fiber bundles extracted from diffusion tensor images. Following Chapter 5, a
set of prototype fiber bundles is estimated along with its variability in the population.
Statistics on the diffeomorphisms and the residual currents show that both the geo-
metrical part and the “texture” part of the variability may contain relevant anatomical

information. This chapter can be read independently of the rest of the thesis.

e Chapter 8: This chapter is an attempt to bridge the gap between the estimated
geometrical variability and clinical variables. We use our atlas construction method
on the right ventricle of the heart segmented in images of patients suffering from
repaired Tetralogy of Fallot. Then, we statistically analyze the correlations between
the deformations and clinical parameters to provide a personalized scenario of the
remodeling of the heart. This scenario is used to predict the future evolution of
new patients, thus showing the relevance of the approach. This chapter can be read
independently of the rest of the thesis.

Part III: Statistical models of shape evolution

e Chapter 9: We extend the 3D-statistical models of Chapter 5 to take into account
shape evolution along time. First, we define a spatiotemporal registration scheme
which aligns two sets of time-indexed anatomical shapes. This registration does not
only account for the morphological differences between subjects but also for the dif-
ference in terms of the speed of evolution (i.e. it synchronizes the two evolutions).
Then, we introduce a statistical model which enables to estimate a mean scenario of
evolution and its spatiotemporal variability in a set of longitudinal data. We use this
model on a set of deep brain structures segmented in autistics, developmental delayed
and control children scanned at 2 and 4 years old. The results tend to show that
such pathologies may be characterized by variations of the growth of the anatomical

structures rather than by morphological differences at a given age.

Guidelines for reading the thesis

In this thesis, we try to show the links between the mathematical modeling based on
currents, its inclusion into statistical models, the derivation of the theory as algorithms and
the results of these algorithms on real data. Each processing is one piece of a jigsaw: the
assumptions of the one influence the result of the others. One of the main contribution of
the thesis is precisely to embed all the processing units into a single consistent framework
for which all the underlying hypotheses are explicit. As a result, the global framework is
controlled by a small set of parameters and the impact of these parameters on the final
result is relatively clear. This also allows us to guarantee the stability of the numerical
implementation of the theory and therefore its ability to deal with various kinds of data.

Having said that, the different chapters have been written so that they are as indepen-
dent as possible. As a consequence, the thesis can be read in several ways, depending if the
reader is interested in:
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e The mathematical modeling: how the mathematical modeling of shapes addresses the

targeted applications is mostly discussed in the presentation of currents in Chapter 1
(along with the Appendix A on differential forms and B on RKHS), the presentation
of the sparse representation of currents in Chapter 3 (especially Section 3.2 about the
orthogonal matching pursuit) and Chapter 4 about registration (in particular Sec-
tion 4.3 which couples the diffeomorphic deformations and the modeling of currents).
Discussions on the model parameters can be found also in Chapter 6 in case of joint

registration of a set of sulcal lines.

The statistical modeling: the definition and discussion of the statistical models can
be found in the presentation of the sparse representation of currents in Chapter 3
(especially Section 3.4 about the sparse representation of statistics on currents and 3.5
about the deconvolution of noise of currents), in the presentation of the joint statistical

model “deformation+texture” in Chapter 5 and its 4D extension in Chapter 9.

The computational framework: to know how the theory can be translated as al-
gorithms, one should focus mainly on the presentation of the discretization frame-
work in Chapter 2 and the approximation of currents in Section 3.3 which are used
throughout the thesis to derive numerically stable algorithms. This is the case for
the matching pursuit algorithm (Algorithm 2 in Section 3.2.2), the atlas construction
(Algorithm 3 and 4 in Section 5.3.3) and its spatiotemporal extension (Algorithm 5
in Section 9.3.3.3). The new optimization scheme for the registration of currents can
be found in Section 4.4 (the details of the implementation of the original algorithm
can be found in [Glaunés 2005]).

The applications in Computational Anatomy: to know how this theoretical and com-
putational framework can be used to address concrete anatomical problems, the reader
should focus on the joint registration of vessels and lung surfaces in Section 4.5, on the
temporal regression of fossil endocasts of bonobos in Section 4.6), on the whole three
chapters about the estimation of the cortex variability from sulcal lines (Chapter 6),
about the description of the anatomical variability of white matter fiber bundles
(Chapter 7) and about the prediction of the remodeling of the heart (Chapter 8),
which can be read independently of the rest of the thesis, and the section about the
use of the spatiotemporal statistical model to detect developmental delay in longi-
tudinal data set (Section 9.4). In addition, a non mathematical introduction of the

theory of currents is provided in Section 1.2.



Part 1

CURRENTS FOR MODELING CURVES
AND SURFACES






CHAPTER 1
Curves and surfaces embedded 1n

a metric space

Contents
1.1 The giants on whose shoulders we stand . ............. 20
1.2 An overview of currents in Computational Anatomy . ... ... 21
1.2.1 Currents: an object which integrates vector fields . . . . . . . .. .. 22
1.2.2  Correspondence-less distance between curves or surfaces . . . . . . . 26
1.2.3 Diffeomorphic deformations of currents . . . . ... ... ... ... 29
1.2.4 Currents: a solution to the (point)-correspondence issue . . . . . . . 30
1.3 The mathematical construction of currents . . . . . ... ... .. 32
1.3.1 A unified model of geometrical data . . . . . . ... ... ... ... 32
1.3.2 Discretization in the space of currents . . . . . . ... ... ... .. 34
1.3.3  Action of the group of diffeomorphism on the space of currents . . . 38
1.4 Particular cases of practical interest . . . ... ... ... ..... 39
1.4.1 Unstructured point sets . . . . . . . . . ... ... 39
1.4.2 Curves in any dimension . . . . . . . . . ... L oL 40
1.4.3 Surfacesin 3D . . ... ... 40
1.4.4 Volumes in any dimension . . . . . . . ... ... ... ... ... .. 41
1.5 Thespaceof currentsasa RKHS. ... ............... 43
1.5.1 Why the mass-norm is not adapted to measure shape dissimilarity . 43
1.5.2 The space of currents as the dual space of a RKHS . . . . .. .. .. 45
1.5.3 Random Gaussian Currents . . . . . . . .. ... ... ... ..... 51
1.6 Conclusion . ... ... ...t 53

In this chapter, we present mathematical objects called “currents”, which are used as a
model for general geometrical objects. In particular, we show that any sets of curves or
surfaces may be embedded in the space of currents. This gives a non-parametric represen-
tation of such geometrical objects. These objects inherit from the metric defined in the
space of currents: a geometric similarity measure between objects is provided, which does
not assume any kind of point-correspondence between structures. The space of currents
is a wvector space: any set of geometrical structures may be decomposed into the union of
several parts and each part may be weighted separately. This allows us to compare two
sets of anatomical structures while adjusting the level of correspondence: correspondence
between clusters of curves or between individual curves, for instance. This allows us to
use any anatomical knowledge as prior without introducing arbitrary correspondences. The

space of currents is also topologically complete and therefore allows us to process in the
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same framework both discrete geometrical structures and continuous objects seen as the
limit of sampled structures. This guarantees the robustness of the framework with respect
to different sampling of the data.

Note: The first two sections may be read independently of the rest of the chapter. If you
are not interested in the mathematical details of the modeling, you can switch to Chapter 2

after reading Section 1.2.

1.1 The giants on whose shoulders we stand

The idea of currents is deeply rooted into the theory of distributions, as set up by L.
Schwartz in the 1940’s [Schwartz 1966]. The distributions generalize the concept of function
and measure on an open sub-space of R?. A distribution is characterized by its action on
any infinitely differentiable (i.e. smooth) functions with compact support. A function f for
instance, is completely determined by the collection of the integrals [ f¢ for any smooth
functions ¢ with compact support. Similarly, a measure y is determined by the collection of
J ¢dp. More generally, a distribution is a continuous linear operator on the “test space” of
the smooth functions with compact support. This idea of seeing an object (a distribution)
via its action on a test space allowed to extend the concept of differentiability to non
differentiable functions. In particular, this enables to state rigorously that the derivative of
the Heaviside function is the Dirac delta distribution defined by 6, (¢) = ¢(z). The theory
of distributions plays therefore a crucial role in the theory of partial differential equations
and in Fourier analysis.

Distributions extend the concept of scalar functions. Currents is a similar construction
but which extends the concept of differential forms on an open subset of R? or on a smooth
manifold. The theory of homological currents was developed by de Rham, as outlined in
[Cartan 1970] and reported by Raoul Bott:

“When I met de Rham in 1949 at the Institute in Princeton he was lecturing
on the Hodge theory in the context of his “currents”. These are the natural
extensions to manifolds of the distributions which had been introduced a few years
earlier by Laurent Schwartz and of course it is only in this extended setting that
both the de Rham theorem and the Hodge theory become especially complete.”

He named these objects “currents” by analogy with electromagnetism. For instance
the Faraday’s law of induction states that the intensity within a wire loop C induced by
variations of a magnetic field B is proportional to the variations of the flux of this magnetic
field through the surface S delimited by the wire (i.e. the boundary of S is C): ®(B) =
JgB'md\ (where n is the normal of the surface). This means that if we measure the
intensity of the current within the wire (via the flux ®(B)) for every possible variations
of the magnetic field (created by a moving magnet for instance), then we can retrieve the
geometry of the wire. On the contrary, we can fix the magnetic field and move the wire C
in the space. We can retrieve the value of the magnetic field by measuring the intensity of
the Eddy currents in the wire for every possible motions of the wire. In this case, the wire
is used to probe the magnetic field. In the first case, the magnetic field was used to probe
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the geometry of the wire. These two examples show that the current C and the vector field
B are two “dual” objects.

Initially, de Rham developed currents in order to find algebraic characterization of topo-
logical invariants on manifolds, which leads to his famous cohomology groups. However,
currents quickly spread far beyond the field of algebraic and differential topology. In partic-
ular, they played a key role in the emergence of the “Geometric Measure Theory”, pioneered
by H. Federer [Federer 1969, Morgan 1987]. This theory tries to extend the measure theory
(which leads to the integration theory of Lebesgue) to sub-manifolds, which are usually de-
scribed by some parameterization (parametric curve or surface for instance). As explained

by H. Federer, this should lead to a parameterization-free characterization of sub-manifolds:

“(...) one must abandon the idea of describing all the competing surfaces by con-
tinuous maps from a single predetermined parameter space. One should rather
think of surfaces as m-dimensional mass distributions, with tangent m-vectors
attached.”

This seminal vision leads to many theoretical developments and applications in various
fields such as image processing and computational geometry. For instance, Wintgen and
Zahle [Wintgen 1982| introduced particular currents called “Normal cycles” which generalize
for singular objects the unit normal bundle of a smooth manifold. This tool was used to
define curvature measures on a large class of geometric objects. Recent results of J.-M.
Morvan and D. Cohen-Steiner [Cohen-Steiner 2003a, Cohen-Steiner 2003b] give an upper-
bound of the error between the curvature measures of a polyhedron “close to” a sub-manifold
and the curvature measures of the sub-manifold itself.

In 2005, J. Glaunés and M. Vaillant introduced the concept of currents in the field
of Computational Anatomy [Glaunés 2005, Vaillant 2005]. Their purpose was to give a
dissimilarity measure between meshes or polygonal curves which does not assume point-
correspondence between structures, a key feature for comparing anatomical structures seg-
mented automatically from Magnetic Resonance Images. They used this dissimilarity metric
to drive the deformation of a source object (a set of curves or surfaces) to a target object.
They proposed also to use the framework of reproducible kernel Hilbert space (RKHS) to
give tractable formula of the metric as well as its derivatives.

In this chapter, we present the currents in the perspective of J. Glaunés’ work with an
emphasis on these two seminal ideas of currents: (1) currents model geometrical objects
via their action on a test space of vector fields and (2) the modeling based on currents
consider objects as a mass distribution without any kind of parameterization which would
give a particular label to each point. Moreover, the topological properties of the space of
currents enable to embed in a single framework smooth geometrical objects (on which the
usual metric properties are naturally defined) and their discrete representation (the only

objects to be accessible from a computational point of view).

1.2 An overview of currents in Computational Anatomy

The purpose of this section is to give a concise introductions of the currents without

going into too much mathematical details. We introduce the concept of currents and the



22 Chapter 1. Curves and surfaces embedded in a metric space

main properties which are useful in the context of Computational Anatomy. The rigorous
definitions and the proofs of the claimed properties will be given in the next section (see
Section 1.3).

1.2.1 Currents: an object which integrates vector fields
Curves and surfaces tested on vector fields

As emphasized in the previous section, the main idea of currents is to probe shapes by
vector fields. The word “shape” here is a generic word, which denotes a set of piecewise
smooth curves or piecewise smooth surfaces (which will be modeled as rectifiable subsets
of R? and R? in Section 1.3). As a consequence, a shape can be represented by an infinite
set of oriented points: the set of all normals of the surfaces (resp. tangents of the curves).
Such oriented points are called “momenta” in the sequel. In the discrete setting, shapes are
given as meshes (resp. polygonal lines): the direction of the normals (resp. tangents) is
constant over each mesh cell (reps. each segment).

Given w a square integrable 3D vector field (a mapping from R3 to R3), any set of

piecewise smooth surfaces S integrates w thanks to the flux equation:
S(w) = / w(z)n(z)d\(z), (1.2.1)
s

where n(x) is the unit normal of the surface at point = and dX the Lebesgue measure on
the surface. This equation computes the flux of the vector field w through the surface S.
Similarly, any set of piecewise smooth curves L integrates a vector field w thanks to the
path-integral:
L(w) = / w(z)ir(x)d\(x), (1.2.2)
L
where 7 is the tangent of the curve at point x and dX the Lebesgue measure on the curve.

This equation computes the flux of the field of tangents through the equipotential surfaces

of w.
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Figure 1.1: In the framework of currents, curves and surfaces are tested on vector fields
via the path-integral of the vector field along the curves (left) or via the flux-integral of
the vector field through the surface (right). When we know the result of this operation for

every vector fields possible, we get a characterization of the geometrical object.
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The idea of currents is to characterize a shape by the collection of the real numbers
S(w) or L(w) (given in Eq. (1.2.1) and (1.2.2) respectively) for all possible vector fields w.
For this purpose, we need to make precise the idea of ‘all possible vector fields’ by defining
a proper test space of vector field: W.

Remark 1.1. We distinguish here between the case of curves and the case of surfaces. In
Section 1.3, we will define a unifying framework for modeling curves, surfaces, unconnected
point sets and volumes. In this framework, vector fields are replaced by differential forms.
As shown in Appendix A, it appears that differential forms can be identified to vector
fields when modeling curves in 2D or 3D and surfaces in 3D, thus leading to Eq. (1.2.1)
and (1.2.2). These two particular cases are the one of most interest for the applications in
Computational Anatomy. [J

Test space of vector fields

We choose for the test space W the set of the convolutions between any square integrable
vector fields and a smoothing kernel. Formally, W is defined as a Reproducing Kernel
Hilbert Space (see Appendix B). The kernel plays the role of the transfer function of a
low-pass filter. It enables to map every square integrable vector field to a smooth one. As
a consequence, W cannot contain vector fields with too high spatial frequencies. In our
applications, we will use a Gaussian kernel: KW (z,y) = exp(— |z —y|° JA4)Id for any
points (x,y), where Id stands for the identity map. In this case, the standard deviation Ay
is the typical scale at which the vector fields w in W may vary spatially. As we shall see
below, this kernel will allow us to control the metric on the space of currents and hence the
measure of the distance between shapes.

In contrast to the usual space of square integrable vector fields (L?), the RKHS of vector
fields W have two important properties:

e W is the closed span of the vector fields of the form w(z) = KW (x,y)j for any fixed
points y and vectors § (i.e. momentum (y, 3)), meaning that any vector field w can

be written as an infinite linear combination of the basis elements K" (z, )3

e W is provided with an inner product which is defined on these basis vectors by
(KY (ca)oa, KV (,9)B)y, = o' KW (2,9)8 (1.2.3)

If we denote w the vector field K" (.,y)3 in Eq. (1.2.3), this equation can be written as:

(KY (., z)a,w>w = olw(z). (1.2.4)

Since the set of vector field of the form K" (., %)/ is dense in the RKHS W, this equation still
holds for any vector fields w in W (see Appendix B for details). It is called the “reproducing
property”.

The space of currents

The space of currents, denoted W*, is the space of the continuous linear mappings from
W to R. Equations (1.2.1) and (1.2.2) show two examples of such mappings, thus making



24 Chapter 1. Curves and surfaces embedded in a metric space

any set of curves or surfaces a particular cases of currents. This means that shapes can
be embedded into the space of currents. Each test space W defines a different embedding
space W*. As we shall see in the sequel, the parameter of the kernel Ay, will allow us to
tune the metric properties of the embedding space of currents.

As a space of mappings, the space of currents is a vector space. Let T and T be two
surfaces (or two curves). The flux through the sum of the two currents T4+ 7" is equal to the
sum of the flux through each surface: (T 4+ 7")(w) = T'(w) + T"(w). The sum in the space
of currents is equivalent to the union of geometrical data. The opposite surface —7T in the
space of current is the same surface but with opposite orientation (since the flux through
the surface has then the opposite sign). A surface T' may be weighted by a coefficient A:
((AT)(w) = AM(T'(w)). This allows us to give a relative weight to different pieces of surfaces,

or to different surfaces within a set of surfaces.

Representation of currents in terms of vector fields

As a consequence of this definition, the Riesz representation theorem ensures that there
is a linear mapping between the space of vector fields W and its dual space W*, the space
of currents (see Appendix B and Section 1.5 for more details). We denote this mapping
Lw : W — W*. It is defined by:

Lo @)(@) = (w,0'y (1.2.5)

for all vector fields (w,w’) € W (for w € W, Ly (w) is a current, i.e. a mapping from W to
R). We call Ly (w) the dual representation of the vector field w.

The dual representation of the basis vectors K" (z,.)a are called the Dirac delta cur-
rents: 0¢ = Ly (KW (z,.)a) (where the couple (z, ) is called a momentum). This shows
that K" is the Green function of the differential operator! Ly,. Combining Eq. (1.2.4)
and Eq. (1.2.5), we get:

62 (w) = (K" (a, .)a,w>W = a'w(x). (1.2.6)

Decomposition of sub-manifolds as discrete currents

The previous equation shows that 6 (w) = a'w(z), which is the term within integrals

in Eq. (1.2.1) and Eq. (1.2.2). A Dirac delta current may be interpreted therefore as an
infinitesimal segment (or normal) « entirely concentrated at point z. Since W is a closed
span of the vector fields K" (z,.)a, the space of currents is a closed span of the Dirac
delta currents 05. This means that any currents may be decomposed into an infinite set of
Dirac currents, like any piecewise smooth curves or surfaces is decomposed into the set of
its tangents or normals.

In the discrete setting, the tangents of polygonal lines or normals of meshes are constant
over the segments or the mesh cells. Therefore, one can approximate the set of tangents

(resp. normals of a given segment (resp. mesh cell) by a single Dirac delta current §¢

1An equivalent construction would consist of fixing a differential operator Ly and to denote KW its
Green function. However, we prefer here to have a closed form for the kernel instead of the differential
operator. See Appendix B for more details.
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where the momenta (x,a) is located at the center of mass the segment (resp. mesh cell)
and the magnitude of the coefficient o encodes the length of the segment (resp. the are of
the mesh cell). As a consequence the whole set of polygonal lines (resp. the meshes) may

be approximated by a finite sum:

T~ o0 (1.2.7)
k

Here we see again that the addition in the space of currents plays the role of the union of
shapes: a surface mesh is seen as the union of its cells, each cells being approximated by a
single Dirac delta current. We will prove in Section 1.3 that this approximation converges in
the space of currents when the sampling of the discrete shapes becomes finer and finer. This
shows that this modeling of curves and surfaces is weakly sensitive to the sampling of the
geometrical objects. Moreover, the description in terms of the collection of momenta (i.e.
oriented points) accounts only for local properties of the shapes. It makes the framework
based on currents fully robust to topology changes or the change of connectivity between
structures (like curves interruption or reconnection for instance). See illustrative example
in Fig. 1.2.

The dual representation of this approximation in terms of vector field is given by (ap-
plying the linear map L;‘,l to Eq. (1.2.7) and combining with Eq. (1.2.5)):

LM (T)(x) ~ > KW (2, 2p ),
k

for any point 2 € R3. This representation in terms of vector field is simply given by the
convolution of every momentum (z, ) by the smoothing kernel K"
Thanks to this approximation, the integrals in Eq. (1.2.1) and Eq. (1.2.2) are replaced

by their Riemann sums:

S(w) = /S w(@)n(@)dA(@) ~ 3w i

Figure 1.2: Both continuous and discrete shapes are handled
in the same space of currents. In the continuous form, smooth
curves are decomposed into the infinite set of their tangents.
If curves are sampled, they can be approximated by a finite
set of oriented points (called momenta) encoding each segment.
The integral of a vector field w on the smooth curve (ie. a
continuous current) is given as L(w) = [, w(x)'7(x)dz. For
the discrete approximation, this integral becomes a finite sum
L(w) = >, w(zk)'7k. The discrete current converges to the
continuous one as the sampling of the curves becomes finer and

finer.
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1.2.2 Correspondence-less distance between curves or surfaces

In this section, we introduce the metric on the space of currents. It will allow us to define
a measure of the dissimilarity between two shapes without assuming point correspondences
between structures.

The test space of vector field W is provided with an inner-product which satisfies
Eq. (1.2.4). We can carry this inner-product to the space of current W* via the lin-
ear map Ly . The inner-product between two currents T and T’ is then given as:
(T, T") - = (L7} (D), E;[}(T’)>W where £} (T') denotes the vector field associated to T' (if
T is a discrete curve, E;Vl(T) is the convolution of its tangents by the kernel). This makes
Ly an isometric map between the space of vector field W and the space of currents W*.

In W, the basis elements are the vector fields of the form KW (.,z)a. In W*, the cor-
responding basis elements are the Dirac delta currents: 6% = Ly} (K" (.,z)a). Therefore,
the this inner-product between Dirac delta currents is given (thanks to Eq. (1.2.3)):

(62,68 e = (K (), K(,y)B)y

K ). (1.2.8)

By linearity, the inner product between two finite sets of Dirac currents 7' = . 657 and

=3 (55}? (which may model two discrete surfaces or two discrete curves) is given by:

(T, Ty ZZ& KW (z:,9)5;. (1.2.9)

This equation gives ezxplicit and easily tractable formula to compute the inner product
between two discrete shapes. For continuous curves or surfaces, the sums in Eq. (1.2.9) are
replaced by integrals.

We define now the distance between two shapes modeled as currents as the norm of

their difference:

A(T,T) = T~ Ty = \HT =TT~ T')y.. (1.2.10)

Combining with the definition of the map Ly in Eq. (1.2.5), we get:
1T =13, = (T =T L T —T)). (1.2.11)

In this equation, T'— T’ is a current, namely an object which integrates vector fields,
which is applied here to the vector field £,/ (T — T"). Let us denote this vector field
A(z) = Ly} (T — T')(x). If T and T" are two curves whose tangents are denoted 7(z) and

7/(x) respectively, then:

T — T'||W* /A r)dr — [ A(z)'7(v)dz, (1.2.12)

T’

as illustrated in Fig. 1.3. If T and 7" are discretized as finite sets of momenta ((x,, o) and

(yq, Bq) respectively), then this squared norm becomes:

IT =T[5 =D Aly)'ap =Y Alyg)' By (1.2.13)
p q



1.2. An overview of currents in Computational Anatomy 27

;Figure 1.3: Distance between two curves L
yand L. One builds the current L — L' by in-
{ verting the orientation of L' and building the
; union of the tangents of both curves. The as-
, sociated vector field A(x) = Ly (L — L) (x)
_is shown in red (i.e. the convolution of all the
~momenta of the L and —L). The distance be-
~tween both curves is given by the integration
~of this vector field along the curve L and the
~curve —L" IL-L'|” = [, A z)dx —
A x)dz. If the polygonal hnes are

approx1mated with a finite number of mo-
~menta, these integrals become finite sums over

~the segments of the lines.

The dense vector field A(z) is the vector field associated to the current T — 7’. In
case T and 1" are given by the set of momenta (z,,a,)p=1..n and (yq, By)g=1...n’, then
the current —7T” is given by the momenta (y,, —8,) (i.e. the orientation of the curve or
the surface is changed) and eventually the current T'— T” is given by the union of all the
momenta: {(zp,ap)p=1..N, (Yq, —B¢)q=1..n" }. Its associated vector field is given by the
convolution of these momenta by the kernel K, namely:

N N’
Alx) = Ly (T =T (@) =Y KWV (2, 2p)0 — > K" (2,y4)8, (1.2.14)

Combining this last equation with Eq. (1.2.13) leads to:

N N’ N’ N’
=Ty = 3 3 oY g2 3 5™ Y ()i 3 3 A ()
p=1q=1 p=1g=1 p=1g=1

(1.2.15)
This gives a closed form of the distance between two discrete curves or two discrete surfaces,
which implies the kernel and every momenta representing the segments or the mesh cells of
the shapes. Using Eq. (1.2.9), this last equation can be written as:

2 2 2
||T*T/||W* - HTHW* -2 <T, T/>W* + HT,”W* (1-2~16)

which is the usual formula for computing the norm form inner-products.

We could have derived the closed form for the norm in Eq. (1.2.15) using only the
usual identity in Eq. (1.2.16) and Eq. (1.2.9). However, we prefer to compute the distance
T —T'||y by introducing the vector field A(x), since this vector field has a geometrical
interpretation. Indeed, we will show in Section 1.3 that this vector field is the one which

achieves the supremum:

sup |T(w) = T'(w)] / lwlly - (1.2.17)
leollyy 70
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This means that if 7" and 7" are two curves, the vector field A( ) =Ly (T T’)( ) is

the one which maximizes the dlﬁerence between the integral T'(w fT x)dx and
the integral T (w fT, x)dx over all the possible vector ﬁelds w in the test space
W. In some sense, this vector ﬁeld is the one in W which best separates the two curves.
Of course, if one changes the test space W, one changes this maximizing vector field and
hence the measured distance between the curves. As illustrated in Fig 1.4, the highest
the spatial frequencies of the vector fields in W, the more differences between both curves
the maximizing vector field captures, the further the curves in the space of currents. The
bandwidth of the vector fields in W is determined by the kernel (by the standard deviation
Aw for Gaussian kernel). This parameter can be tuned to set of “scale of noise” of shapes
under which the geometrical details of shapes will be neglected, as illustrated in Fig. 1.5.
Fig. 3.15 and 3.16 in Chapter 3 will also illustrate of the impact of the kernel on the distance

between shapes.
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Figure 1.4: Impact of the kernel on the distance between two curves L and L’ in blue. As in
Fig. 1.3, the vector field associated to the current L — L’ is shown in red. This is the vector
in the test space W which best separates the two curves. The result is shown for 3 different
W: RKHS with Gaussian kernel and standard deviation: Ay = 5,10 and 20. For small Ay,
the vector field can vary fast enough, so that it can follows almost every small details of the
curves and therefore almost perfectly interpolates between the directions of the curves: the

|(L1,L2>W*‘ — 85°

two curves are almost orthogonal in the space of currents (arccos <|L1|”L2”
—_— W

for A\yy = 5). For large Ay, the highest spatial frequencies are excluded from W: the vector

field cannot adapt to the small-scale variations of the curves: the two curves become more
. . Ly,L *
and more aligned in the space of currents (arccos ( [(L1.L2)w ) = 65° for Ay = 10 and

Ty TE2 Ty
38° for Ay = 20).
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Noise Feature of interest

Aw Aw

Figure 1.5: The choice of the kernel enables to adjust the metric on the space of currents.
In particular, the rate of decay of the kernel (Ay) determines the scale under which shape
variations are considered as noise. On the left hand side, the bump is smoothed by the
kernel and both lines are considered similar as currents. On the right-hand side the metric
detects the bump as a shape dissimilarity. More precise discussion about the ability of the

metric on currents to capture shape dissimilarity can be found in Section 3.5.2

1.2.3 Diffeomorphic deformations of currents

To include registration into the analysis of variability of anatomical structures, we need
to define the deformation of currents in a way which is compatible with the usual geometric
deformation of shapes.

Let ¢ be a diffecomorphism (a smooth deformation of the underlying 3D space, with
smooth inverse) and S a surface. As a surface, S may be deformed by ¢ into ¢(S) (the
geometrical transportation of the points of S which still draw a surface). If we model
S as a current, we define the push-forward current ¢,S such that the flux of any vector
field w through ¢.S is equal to the flux of w through the transported surface ¢(S). A
change of variable within integrals of Eq. (1.2.1) and Eq. (1.2.2) leads to the definition:
¢+S(w) = S(¢*w) where the pull-back vector field ¢*w is equal to |d,¢| (d.¢) tw(g(z))
for surfaces and d,¢'w(¢(x)) for curves (d,¢ denotes the Jacobian matrix of ¢ and |d,¢|
its determinant). This action replaces for curves and surfaces the usual action on images:
(¢o1)(x) = I(¢~1(z)). This is here slightly more complex since we do not transport points
but tangents or normals (differential 1 and 2-forms, as will be explained in Section 1.3).

In practice, the push-forward action on the basis vectors is simply given by:

o d1¢(a)
6,65 = 51200, (1.2.18)

in case « is a tangent of a curve. And

BT = Gzt ), (1.2.19)

in case u X v is the normal of a surface. One notices that by definition of the cross product,

for any vector w, we have:
(dep(u) x dptp(v))'w = det(d,p(u), dpd(v), w)
= |d,¢| det(u, v, d, ¢~ (w)) (1.2.20)
= |dat| (u x v)!'dpp ™" (w) = (|deg| dogp™"(u x v))" w,

where A% stands for (A71)t. Therefore, we have: d,¢(u) x dyd(v) = |dpd| dpddt(u x v).
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And the deformation of an infinitesimal normal « is given by:

a |deldzdp™ P x
6,85 = slt=! . (1.2.21)

1.2.4 Currents: a solution to the (point)-correspondence issue

As emphasized in the introduction, this framework of currents has been chosen to mea-
sure dissimilarities between anatomical data. The anatomical structures extracted from
MRI consist mostly of set of points which draw polygonal lines or surface meshes, as shown
in Figure 1.6. These data may be seen as a hierarchical structure: points build curves or
surfaces, individual curves or surfaces are gathered into clusters, a set of cluster builds com-
plex multi-objects structures. At a certain level, these structures are labeled as anatomical
structures, which have been proved to be stable features across the population. In the con-
text of brain imaging for instance, some sulcal lines such as the Sylvian fissure can be found
in almost every subject, whereas the individual points of the delineated Sylvian fissure are
determined by the segmentation process and are not a stable anatomical feature.

It is crucial to account for this anatomical knowledge when comparing two sets of
anatomical structure: the distance between these two sets should put into correspondence
the clusters of points only at the anatomically relevant level. Comparing the data at a higher
level leads to a less constrained distance, which will be less able to capture fine geometrical
differences. It will also compare parts of the data which have different anatomical roles.
Comparing the data at a lower level introduces correspondence without any anatomical
reason. Such arbitrary constraints introduce bias in the analysis of the variability.

In the example of the fiber tracts of Fig. 1.6 (which will be explained with more details
in Chapter 7), individual fibers extracted from diffusion images have never been shown to
be a representation of some biological structures and have never been shown to be a stable
feature across subjects. By contrast, clusters of these fibers draw fiber tracts which are
considered as a representation, up to a certain precision, of the underlying white matter
fiber bundles which connect two different functional areas of the cortex. In this example,
we must compare pairs of fiber tracts and not pair of individual fibers.

The structure of vector space of the currents enables precisely to adjust the level of
correspondence according to the anatomical knowledge. To compare the anatomical data
of two subjects, one decomposes the data of each subject into the set of every tangent or
normal. Let T'= 3", 637 and U = 3 65j be the set of such oriented points for each subject.
Then, we divide this set into clusters Cy according to the anatomical labels. Note that the
number of points in a cluster may be very different for both subjects. By contrast, every
subject is supposed to share the same anatomical description and, in particular, to have
the same number of clusters. A cluster may be reduced to one single point if this point
is considered as anatomically relevant, such as the anterior or the posterior commissure of
the brain for instance. Then, a metric between the two data sets which account for the

anatomical prior without introducing arbitrary correspondences can be written as:

2

1T = Ul =D M (Z 55;;) = > . (1.2.22)
Ck

1€Cy JECK W



1.2. An overview of currents in Computational Anatomy 31

The two extreme cases are: (1) in absence of any anatomical knowledge, we com-

o=y ) and (2)

each point has an anatomical label and we can assume correspondence between every

pare the whole data-set as a single cluster (HT - Ullw. = ’

pair of points (which requires that all the subjects have the same number of points)
2 . v
(1T = Ul = S e [0z — o3

Zq

iv) The parameters A; enable to weight one anatomi-
cal structure with respect to the others. They can be used to normalize the total length or

area of each anatomical structure for instance.

We remark that each cluster is considered as a global feature: a collection of infinitesimal
tangents or normals. The topology of the shape is not taken into account. This makes the
framework robust to curve interruption or reconnection for instance, a key feature for the
comparison of fiber bundles as emphasized in Chapter 7. The distance on currents is also

blind to the number of connected components of a mesh for instance.

points points points

set of sulci set of meshes fiber bundles

- - all fibers

Figure 1.6: Three examples of anatomical data-sets. Left: a set of sulcal lines. Each line is
labeled (Sylvian fissure, central sulcus, etc.) and is supposed to be present in every subject
in a normal population. Middle: set of 5 internal structures of the brain for each hemi-
sphere. These structures are labeled (hippocampus, amygdala, etc..), whereas no point on
this surface has been proved to play a particular anatomical role. Right: 5 white matter
fiber bundles. Each bundle (set of thousands of curves) is labeled (corpus callosum, arcuate
fasciculi, etc.) but not individual curves, whose number within a bundle may vary a lot
across subjects. Only labeled structures are stable features across the population. Each
of these structures must be compared as a global feature, without introducing arbitrary
correspondence at a lower level (such as the individual curve level or point level, for in-
stance). The framework based on currents allows us precisely to adjust the right level of

correspondence according to the anatomical knowledge.
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1.3 The mathematical construction of currents

In this section, we give the rigorous definitions of the concepts introduced in the previous
one, prove the claimed properties and discuss the relevance of this model for anatomical
data.

1.3.1 A unified model of geometrical data

The framework of currents has been presented in [Vaillant 2005] for modeling surfaces
and in [Glaunes 2008] for modeling curves. A global framework for curves and surfaces
has been introduced in [Glaunés 2005], along with objects called “measures” which model
unstructured point-sets. In this thesis, we adopt a slightly different point of view and
present a unified framework for modeling unstructured point sets, curves, surfaces, volumes
and more generally any sub-manifold of dimension m in R¢. This framework allows us also
to account for possible scalar attributes on the geometrical structures. This feature could
be used for image matching purposes for instance.

The key tool of the theory is the differential m-forms (see Appendix A). These objects
generalize the concept of vector field (to a field of normals for instance, since the normal
is the cross-product between two vectors). Therefore, they enable to embed in the same
framework all kind of geometrical data.

The general definition of currents is given as a continuous linear map from a space of
differential m-forms to R, namely a linear form on differentiable m-forms. The parameter
m determines the dimension of the sub-manifold which can be seen as a current. If m =0
(differential O-forms are scalar fields), a current is simply a distribution of Schwartz. For
m = 1 and m = 2 we retrieve the case of curves and surfaces introduced in the previous

section.

Definition 1.2 (currents). The space of m-currents is the dual space of the space of dif-
ferential m-forms CO(R?, (A™R%)*) (as in Definition A.6). The topological dual is meant in
the same sense as for the Schwartz distributions [Schwartz 1966].

Therefore, a m-current T maps every m-differential form w to a real T(w) such that:
T(w) < Or .. (1.3.1)

for a fived constant Cr (||.||,, denotes the supremum norm on C°(R%, (A™R?)*) as in Def-
inition A.6).

As a space of linear mappings, the space of m-currents is a vector space. For all currents
T and T" and real A, the map (T +\T")(w) = T'(w) + AT’ (w) defines a m-current. Moreover,
the space of current is provided with the following operator norm:

Definition 1.3 (mass-norm on currents). Let T be a m-current. The mass-norm of T is

defined as the operator norm:

M(T)= sup |T(w). (1.3.2)

lleoll oo <1



1.3. The mathematical construction of currents 33

The main interest of currents is that sub-manifolds in R? can be seen as currents. The
following proposition shows that this is achieved via the integration of differential m-forms
on sub-manifolds as introduced in Appendix A. In this proposition, we account for a possible

image I which is drawn on the sub-manifold.

Proposition 1.4. Let T be an oriented rectifiable sub-manifold of dimension m in R and
I a scalar function on T, such that [, ]|1(z)| d\(z) < oo.
Then, for any m-differential form w in C°(R?, (A™RY)*) the mapping:

Tr(w) = / Tw, (1.3.3)
T
defines a m-current (the integral having the sense given in Definition A.7).

Proof. The mapping Ty defined in Eq. (1.3.3) is obviously linear with respect to w. To
make T a current, we must verify that this mapping is continuous. Using the notations of

Definition A.7, we have:

up () Ao A ugy, ()
[up (@) Ao A u ()]

i)l < [ o)) )| e

< sup sup lw(z)(v1 Ao Av)l /T |I(z)] d\(x) (1.34)

zER? [V AL Avp, | <1

< llwllee AM(T7),

where X\(T7) = [ [I(x)| dA(x) is the measure of the colored manifold T' (if I = 1, A\(T') is
the length, area or volume of T' according to the dimension m). This proves the continuity

of the mapping. |

Remark 1.5. In Proposition 1.4, the definition of the current T depends on the orientation
of the sub-manifold. If we change the orientation of the sub-manifold 7', then the integral
has the opposite sign. Therefore the sub-manifold with the opposite orientation corresponds
to the current —7'. In other words, the sign of a current encodes an orientation. A sub-

manifold vanishes in the space of currents if it is added to itself with opposite orientation.
O

Now, we can show that the mass-norm introduced in Definition 1.3 is the generalization

of the volume of a m-dimensional sub-manifold.

Proposition 1.6. Let T be a bounded oriented rectifiable sub-manifold of dimension m in
R? and I a bounded non-negative scalar function on T. Proposition 1.4 makes the couple
(T,I) a current denoted Ty. Then,

M(Ty) = MTy), (1.3.5)

where M(Ty) is the mass-norm of the current Ty (see Definition 1.3) and \(T1) =
J I(x)d\(x) the Lebesgue measure of the colored sub-manifold.

Proof. Equation (1.3.4) shows precisely that for all w € CO(R?, (A™R?)*):

T (W) < [lwlloo A(TT) (1.3.6)
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This shows that M (Ty) < A(T7). To show the equality, we construct a differential m-form
w which achieves the supremum in Equation (1.3.4).

Let z € T and (u1 (), ..., um(x)) a positively oriented orthonormal basis of the tangent
space of T at point z, defined almost everywhere. Then, we define the m-form w(z) such
that w(x)(u1(x)A. .. Aum(z)) = 1 and w(z)(n) = 0 in every direction 5 orthogonal to uq (x)A
- A (x) in AR?. Such a w is build such that Ty(w) = [, I(z)dA(z). This collection of
m-forms w(z) (for z € T') is therefore a good candidate to achieve the supremum. However,
we still need to prove that it can be extended to continuous differential m-form defined on
the whole space R?.

Since the sub-manifold is rectifiable, we can choose the orthonormal basis vectors u;(x)

on each tangent space such that the map = — w;(x) is continuous almost everywhere
w1 ()N AU (T)
oriented basis in the tangent space of T at point x). This makes the mapping * — w(x)

(we recall that the m-mutivector is invariant under a change of positively
continuous almost everywhere on T. If T' is continuously differentiable, then z — w(x) is
continuous on T and it can be extended to a continuous differential m-form from R? to
A™R? which tends to zero at infinity. This constructed w achieves the supremum. If T’
is only piecewise smooth, x — w is piecewise continuous. It can be approximated by a

continuous differential m-form at any precision. This leads to the same supremum. |

Remark 1.7. In this proof, we supposed that the bounded scalar function I is non-negative.
This is not a strong limitation, since we can always shift this bounded function so that it
is non-negative. In any case we have M (T;) < A(T7). If I is the linear, surface or volume
mass density of the sub-manifold T, then M (T7) is the total mass of the manifold. This
function I can also be used to give a weight to different parts of the shape T', for comparison
purpose for instance. I can be also a gray-level image drawn on the manifold.

If I =1 and if T is bounded (i.e. A(T) < 00), then

M(T) = X(T). (1.3.7)

In this case the mass of T is equal to the length, the area or the volume of the sub-manifold.

If the sub-manifold is of dimension 0, the mass of T' equals the number of points of 7. [J

1.3.2 Discretization in the space of currents

In this section, we show how polygonal lines, surface or volume meshes can be discretized
in the space of currents: each face of the mesh can be approximated by a single Dirac delta
current which represents an infinitesimal tangent or normal. Then, the approximation
converges when the sampling of the meshes tend to zero, namely when the discrete mesh
converges to a continuous curve or surface.

Before introducing the Dirac delta currents, we define general m-meshes in 3D. A 0-
mesh is a finite set of points, a 1-mesh is set of segments, a 2-mesh is a set of triangles and
a 3-mesh is a set of tetrahedrons.

Definition 1.8 (m-mesh). We define an oriented m-mesh in R as a finite collection of
oriented m-dimensional simplexes (0 < m < 3). Each simplex is called the face or the cell
of the m-mesh. It is denoted f; fori=1,...,N and N the total number of mesh cells. For
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y % % : - _ 1 m+1 4 -
each cell i, we denote vi,..., vy, its vertices and ¢; = 3 Y ke Uy its center of mass.

We define also uj, = (vj_, — vg)/(mDY™ m vectors parallel to the edges of the simplex i
(for k =1...m). We suppose that the order of the vertices have been chosen so that the
basis (ufc)k:lmm has the same orientation as the mesh cell. Therefore, the m-multivector
(see Appendiz A) ui A...Aul, has the same sign as the orientation of the mesh cell and its
norm equals the m-volume of the mesh cell (here m-volume denotes length, area or volume

according to the dimension m).

In this definition, we limit the mesh cells to be simplexes, so that surface mesh cells
must be triangles and volume mesh cells tetrahedrons. However, it is possible to extend this
definition of arbitrary polyhedrons. In this case, we must define carefully a basis of vector
space spanned by each polyhedron so that the m-multivector has the same orientation as
the mesh cell and whose norm is equal to the m-volume of the cell. We also limit the
definition of m-mesh to the 3D case. The definition could also be extended for arbitrary

dimension, like the 4D dimension for modeling moving surfaces for instance.

Definition 1.9 (Dirac delta current). We denote by §“1"-""m the linear form defined by:
Vw € CORY, (AMRY)*),  §arNum () = w(@)(uy A .. Atyy). (1.3.8)
This mapping is obviously continuous and defines therefore a m-current.

Remark 1.10 (computing with Dirac delta currents). We notice that this definition leads
to the following rule:
ad® 4 08 = 69 4 §8 = §acth, (1.3.9)

for any scalar a, m-multivectors «, 8 and point z € R?. As a consequence, we will write
linear combination of Dirac delta currents as ), 657 where the upper-scripts include the

weighting coefficients. In such sums, each point x; are supposed to be distinct. [J

According to Proposition 1.4, any bounded m-mesh with scalar attributes I is a current.
In this setting, the mesh is considered as a piecewise C' sub-manifold. However, from a
computational point of view, a mesh is a discrete structure with a finite number of faces.
In the following proposition, we show how a m-mesh can be approximated by a finite set
of Dirac delta currents. The idea is simply to replace each cell of the mesh by a Dirac
delta current: the entire m-volume of the cell is concentrated at its center of mass. This
proposition shows also that currents can handle continuous and discrete structures in the

same framework.

Proposition 1.11. Let T be a m-mesh in the sense of Definition 1.8 and I a bounded
scalar function defined on T. Thanks to Proposition 1.4, Tt is a current.

We assume that the differential m-forms w € CO(RY, (A™R?)*) are C' and verify
IVow| o < Cx |lwll,, for a fized constant Cx.

With the notations of Definition 1.8, let I; = V% ffi I(x)d\(x) be the mean intensity of
I over each face f; of T, where V; = |u11 AL /\uﬁn} is the m-volume of the face f;. We
define the current _ _

Ty = Lot (1.3.10)
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Then, the dissimilarity between T and T in the space of currents is such that:
M(T} — T}) < Coo 1]l M(T) max diam(f:), (1.3.11)
7

where diam(f;) denotes the diameter of the face f;.
Therefore, when the sampling of the mesh becomes finer (max;diam(f;) — 0), the
current Tf converges to Tr.

Proof. Let w € C°(R?, (A™R?)*). By definition of the Dirac delta currents, we have:

= ;Izw(cl)(ull A Z/ (W) dX(z)

’“1

Thanks to Eq. (1.3.3), we have for T7:
() Ao A ()
=/ @)
|u1 YA A U ()]

where u1(2), ... un(x) denotes a positively oriented basis of the tangent plane of T" at point

x, this integral being independent of the choice of the positively oriented basis. One notices
now that every point on the ﬂat face f; shares the same tangent space, so that one can

choose the same basis u¢, ..., u!, at every point on the face. We have therefore:

ud AL Aub, ol ud AL AU,
Tr(w) ’ Z )<|u1 /\u”) (z)<‘u1 /\uz‘>‘
< IIIHOOZ/ sup  |(w(@) — wle)) (v A ... Av)| dA(x)

[v1i A AV, |=1

(@) —(e0) | mpey=

< ||Iw||vzw||ooz/f & — ¢;| dA(2)

< o Coo IIMIIOO(mﬁxdiam(fi))/Td)\(w)-

(1.3.12)
According to Proposition 1.6, A(T') = M (T'). This leads to:
sup | Tr(w) — Tr(w)| < CocM(T) |1 max diam(f;).
flwll oo <1 ‘
]

The following proposition shows that the discretization of a mesh in the space of currents
preserves the mass-norm of the mesh.

Proposition 1.12. Let T be a current of the form:

N
T=Y om, (1.3.13)
i=1

for N distinct points x; and N m-multivectors n;.
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Then the mass-norm of T is given as:

N
M(T) =3 Imi] - (1.3.14)

Proof. For any m-differential form w, we have:

T(w) = . w(@i)(ni) - (1.3.15)

M(T) < 3532 il

To show the equality, we build a particular differential m-form w which achieves the
supremum in the previous equation (similarly as in the proof of Proposition 1.6). We
choose a m-form w(x;) for every point x; so that w(xz;)(n;/|n:]) = 1 in the direction of
n; and w(z;)(ni) = 0 in the directions n;- orthogonal to 7; in A™R?. Since, every points
are distinct, we can interpolate between the points x; so that the interpolated m-form is
continuous and tends to 0 at infinity. For such a w, T'(w) = Zf\;l 7. |
Corollary 1.13. Let T be a m-mesh and I a non-negative bounded map on 1. Let
T = Zf IZ-(SZ“'”M;’ be the discrete current which approzimate T in the sense of Propo-

sition 1.11. Then T; and Ty have the same mass-norm:

M(Ty) = M(Ty). (1.3.16)

Proof. By application of Proposition 1.6, the mass-norm of 77} is equal to:
M(Ty) = / I(z)d\(z) = Z/ I(@)dXz) =Y Vil =Y LjujA...Aul,| . (1.3.17)
T - Jfi : ;
fi fi fi

This last expression is precisely the mass-norm of T; by application of Proposition 1.12. W

Remark 1.14 (Geometry and attributes: ambiguities?). This discretization of colored cur-
rents in terms of Dirac delta currents may lead to some ambiguities. Indeed, let Iid;‘;n”““m
be an element of the discretization of a m-mesh. Due to the properties of the Dirac delta

currents (see Eq. (1.3.9)), for any scalar a, we have:

Lot L gainn, (1.3.18)
a
This means that a change of attribute (I; becomes I;/a) may balance a scaling of the
mesh cell. In other words, the discretization of two meshes with different size of mesh
cells could be undistinguishable if the change of size is overcome by a change of attributes.
However, such meshes, seen as continuous currents, are distinct. This is a bad effect of the
discretization.
In this thesis, we will not use scalar attributes. As a consequence, the magnitude of the
momenta of the discrete approximation of a m-mesh encodes the area of the mesh cells.
The possible ambiguity between geometry and scalar attributes may be a problem for

using currents to match grey-level images. During registration of discretized images with
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currents, the algorithm may tend to change the size of the voxel to accommodate to the
change of intensity. Although we believe that image registration can be performed in this
framework, one must design specific solution to this problem. A re-meshing of the image

during registration could be investigated, for instance. [J

1.3.3 Action of the group of diffeomorphism on the space of cur-
rents

In this section, we define the deformation of a general current T so that, when T is
the current associated to a sub-manifold, the deformation of the current (denoted ¢.T)
corresponds to the deformed sub-manifold ¢(7T).

If T is an oriented rectifiable sub-manifold of dimension m in R% and ¢ is diffeomorphism
of R, then ¢(T) remains an oriented rectifiable sub-manifold (with the same regularity as
T). If I is a scalar map on the sub-manifold T, then To¢~"! is a map on ¢(T): the attribute
of ¢(T) at point ¢(z) is the same as the attribute of T at point x: attributes are not affected
by the deformation. Therefore, Proposition 1.4 makes the couple (¢(T),I o 1) a colored
current. We denote this current ¢,T7o4-1. This current maps every differential m-forms
w € CO(RY, (AMRY)) to ¢ Trog—1(w) = f¢(T)(I o ¢ 1)w. We can now apply the change of
variable formula as in Eq. (A.3.8) to this integral. This gives:

$Trog—1(w) = /

To¢p tw= / I¢*w = Ty (¢*w), (1.3.19)
$(T) T

where 17 in the last term is the colored current associated to the sub-manifold 7" and the
map I. ¢* denotes the pullback action on differential m-forms as in Definition A.11. The
equality: ¢.Tjop-1(w) = Tr(¢*w) still makes sense even if T is not the current associ-
ated to a sub-manifold but a more general current. This allows us to define the action a

diffeomorphism ¢ on any current T as follows:

Definition 1.15 (push-forward action on currents). Let T be a m-current in R? and ¢
a diffeomorphism of RY such that sup |d,¢| < co. The push-forward action of ¢ on T is

zERC
defined by:
DT (w) =T (¢d*w) (1.3.20)
for all differential m-forms w € CO(R4, (A™R®)*).
We can easily check that this defines an action of the group of diffeomorphism on the

space of currents: (¢ o). T = ¢.(1.T), since the pullback is also an action as mentioned

in Appendix A. Moreover, the action is linear:
O (T + XT") = T + Ao T, (1.3.21)
for any currents 7" and 7" and any real numbers \.

Proposition 1.16. If T is a sub-manifold of R? and I a map on T such that
S (@) dA(z) < oo, then the sub-manifold ¢(T') associated to the map Io¢~' is a current.
This current is equal to ¢, (Trop-1).
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Proof. This is exactly what we proved in Eq. (1.3.19). |

Now, we can apply Definition 1.15 on Dirac delta currents:

Proposition 1.17. Let ¢ be a diffeomorphism of R¢. The deformation of a m-Dirac delta

current is given by:

Gu (0511 = 00 : (1.3.22)
Proof. For any differential m-form w, we have by definition of the push-forward action on
currents:
¢* (5:1/\.../\71,,1) (LU) — 6z1A.,.Aum (¢*W)
= ¢ w(x) (ur A ... Aup)
(1.3.23)
= w(P(x)) (ded(ur) A - .. A dod(tm))
dep(u D Ad e O (U
_ 6¢(;¢’)( DA Adg d( )(w)
which gives the expected result. |

1.4 Particular cases of practical interest

In the applications, we are mainly interested in modeling unstructured point-sets in 2D
or 3D (m = 0,d = 2,3), curves in 2D or 3D (m = 1, d = 2,3), surfaces in 3D (m = 2,
d = 3) and volumes in 3D (m = 3, d = 3). These cases, all of great practical interest, fall
into one of these 4 categories: they are of dimension 0 (m = 0), co-dimension 0 (d—m = 0),
dimension 1 (m = 1) or co-dimension 1 (d —m = 1). In these cases, the m-forms can be
represented by scalar fields (dimension or co-dimension 0) or vector fields (dimension or
co-dimension 1), as shown in Appendix A.

In this section, we apply the construction of the previous section to these particular
cases. We retrieve then the properties claimed in Section 1.2.

1.4.1 Unstructured point sets

The 0-forms are constant mappings and differential 0-forms map every point = € R? to
a scalar w(z). A differential 0-form is therefore a scalar field.

Let A be a discrete set of points {z;} associated to some scalar I; such that
JaI(@)dA(x) = 3,04 Ii < 0o. We recall that for sub-manifold of dimension 0, the measure
d\ = c 4 0z counts the number of elements in A. Therefore, A may be modeled as the

O-current via :

Aﬂwy:jgfquxmxgg::Z:LWCQy (1.4.1)

This shows that the sub-manifolds of dimension 0 are directly given as a sum of Dirac
delta currents:

A=Y"sk (1.4.2)

Let ¢ be a diffeomorphism of R?. The push-forward action of ¢ on the O-current A is

given as:

DA =6k

Lo (1.4.3)
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In these equations, we notice that the diffeomorphism ¢ just moves the point of A while
keeping unchanged the attributes I;. These coefficients are seen as intrinsic weights of each

points, or probabilities if >, I; = 1.

1.4.2 Curves in any dimension

A 1-form is a linear form on R? (i.e. linear mapping from R? to R). Thanks to the
Riesz theorem, any linear form may be represented by the inner product: w(u) = w'u for
a constant vector @ € R%. A differential m-form may be represented therefore by a vector
field @(z) such that for all points x € R% and all vectors u € R?, w(z)(u) = ©(x)'u. In the
sequel, we denote w both the 1-form w(z) and the vector field w(x).

Let L be a set of piecewise continuous curves and I(z) an integrable scalar map on these

curves. L may be seen as a l-current via:
Li(w) = / I(z)w(z)!7(z)d\(z) (1.4.4)
L

for every vector field w, where 7(x) is the unit tangent vector of the curves L at point x.
We recall that dA denotes the Lebesgue measure on the curves, so that |’ 1 dA(z) equals the
total length of the curves.

If the curves L are polygonal lines (whose segments are denoted s;), they can be ap-
proximated as

Ly=Y o™, (1.4.5)
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where 7; is the oriented segment s; and I; = ﬁ f5i I(x)d\(x) the mean attribute over the
segment s;. Its action on a vector field w is given by: L;(w) = >, Liw(c;)' .

If ¢ is a diffeomorphism of R?, then the deformed current ¢, L Top—1 18 given by

$2Lios1(w) = Li(¢"w) = / I(2)ld())! (de)7(x)dA(z)
(1.4.6)

- / I(z) (da () 7(2)dA(z)

In the discrete case, we have:

b (Z L-a?f> =" noe ). (1.4.7)

In this equation, we remark that the density I(z) remains unchanged during the deforma-
tion and that the tangents of the curves are deformed according to the Jacobian of the

deformation ¢.

1.4.3 Surfaces in 3D

As shown in Appendix A, the space of 2-forms in dimension 3 is of dimension 3. Each
2-form w is associated isometrically to a 3D-vector w, such that w(u,v) = det(u,v,w) =
w'(u x v) for all vectors (u,v), where x denotes the cross-product in R3. Therefore, a
differential 2-form may be represented by a vector field w(z): w(x)(u,v) = w(x)! (u X v).
In the sequel, w(x) denotes both the differential 2-form and its associated vector field.
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Let S be a set of piecewise continuous surfaces and I an integrable scalar map on S. S

may be seen as a 2-current via:

Sr(w) = /Sf(x)w(:r)t (u(z) x v(z)) dA(z) = /Sl(x)w(z)tn(:c)d/\(x) (1.4.8)

for every vector field w, where n(x) = u(z) x v(x) is the unit normal vector of the surfaces
S at point = ((u(z),v(x)) being an orthonormal basis of the tangent plane of the surface S
at point x).

If the surfaces S are surface meshes (whose mesh cells are denoted f;), they can be
approximated as

Sp=Yy 6k, (1.4.9)
fi

where n; = uf x u} (in the sense of Definition 1.8) is the oriented normal of face f; whose
norm is equal to the surface of f;, I; = \%I S 1 (z)dA(z) the mean attribute over the face
fi and ¢; the center of mass of the face f;. Its action on a vector field w is given by:
Sr(w) = 3, Liw(c;)tn;. Note that in this equation we write 6" for the 2-multivector u Av
in 3D as §¥*Y where u X v is the 3D-vector which characterizes u A v (see Appendix A).
This notation, however, may be misleading since the dimension of the current (m = 2) is
no more visible in this expression (see Remark 1.18).

If ¢ is a diffeomorphism of R¢, then the deformed current ¢, S Top—1 1S given by

62 S10po1 (W) = Sr(6*w) = [5 I(2)(d()! (dedulz) x dav(x)) dA(z)
(1.4.10)
- /g 1(2) (|dad| datb™ ' w((2)))" n(x)dA(z).

In the discrete case, we have:
o <Z Mg;) _ Z[i(slf%”d”‘f'”i . (1.4.11)

1.4.4 Volumes in any dimension

As shown in Appendix A, all d-forms in dimension d are proportional to the determinant.
This means that every d-form in R? has the form: w(ui A...Aug) = wdet(uy,...,uq), where
w is a scalar which characterizes the d-form w. As a consequence, a differential d-form in
R is characterized by a scalar field @W(z) such that w(x)(u, v, w) = @w(x) det(u, v, w). In the
sequel, w(x) denotes both the differential d-form and its associated scalar field.

Let V be a set of continuous volumes and I an integrable scalar map on V. V may be

seen as a 3-current via:
Viw) = /V I(2)w(z) det(ua (z), . . ., ua(x))dA(z) = /V w(z)dA(z) (1.4.12)

for every scalar field w, where u(z),...,uq(z) is a positively oriented orthonormal basis of
R? and as such det(uy(z),...,uq(x)) = 1.

If the volumes V are volume meshes in 3D (whose mesh cells are denoted f;), they can
be approximated as

Vi=Y ol (1.4.13)
fi
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where ¢; denotes the center of the polyhedron f;, v; the volume of the polyhedron f; and
I, = vi f 7, 1(x)dA(x) the mean intensity in the volume f;. The action of this 3-current on
a vector field w is given by: Vi(w) = >, Liv,w(c;).

If ¢ is a diffeomorphism of R¢, then the deformed current ¢+ Viop—1 is given by

O+ Viog-1(w) = Vi(¢*w) = /V I(x)w(o(z)) det(dydur (), . . ., drduq(x))dA(x)
(1.4.14)

_ / I(2)w(¢()) |ded| dA(z) .
;

We notice in particular that this action is different from the one on the scalar field associated
to a O-current due to the Jacobian |d,d|.

In the discrete case, we have:

o, (Z M;z) =3l

Note that, like the O-currents, 3-currents are build on scalar fields. But for 3-currents,

Vi

(1.4.15)

the action of a diffeomorphism takes into account the deformation of the geometry of the
volumes. The volume v; is changed according to the determinant of the Jacobian of the

deformation.

Remark 1.18 (On the notations). The notation of Dirac Delta current 6% in this context
is misleading since it may denote 0-,1-,2- and 3-currents. Indeed o may be a scalar, a
vector, the vector associated to a 2-multivector or the scalar associated to a 3-multivector.
In particular, the reader has to keep in mind that the upper-script in this notation has a
unit! For the O-current §¢, « is a pure scalar (without any unit) and it is not affected by the
deformation. On the contrary, if §¢ denotes a 3-current, then the scalar « is the measure of
a volume which is mutliplied by the Jacobian of the deformation when the current moves
in space. Similarly, a vector « in the notation 6% has the unit of a length for a 1-current
and the unit of a surface for a 2-current. It is deformed by a diffeomorphism according to

its dimension. O

Remark 1.19 (Take care of the dimension!). In this section, we introduced m-currents
for modeling sub-manifolds of dimension m in R3. However, it is possible to consider a
manifold of dimension m as a collection of manifolds of lower dimension. For instance,
curves, surfaces or volumes can be all considered as continuous point sets. Similarly, a
surface may be described as dense collection of curves (a moving curve which sweeps the
surface). In this example, the surface may be modeled as a single 2-current or as a sum
of 1-currents. One must be aware that these two currents are not equivalent. They do
not have the same geometrical properties. This is particularly visible when considering the
deformation of the currents. The action of a diffeomorphism on the collection of curves
deforms the surface in the direction of the curves only, whereas the action on the 2-current

affects also the surface in the direction orthogonal to the curves.

Similarly, let C be a polygonal line {x1,...,z,}. Modeled as a l-current this curve
is represented by €y = 27765417, Modeled as a collection of points, the curve is

represented by the O-current: Cy = Z?:o 0z,. Let ¢ be a diffeomorphism of the space.
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The deformed 1-current is given by: ¢.C; = 2?2_11 6;”(”;?)(““_%), whereas the deformed 0

current is written as: ¢,.Co =Y ., 04 (x;)- Only the first current ¢.C1 is the discretization
of the deformed curve ¢(C) (in particular the mass-norm of ¢.C; is equal to the length of
#(C)). By contrast, ¢.Cy does not take the tangential information into account. C and the
set of points on C are two different objects: the one is of dimension 1, the other of dimension
0. As a conclusion, any current is associated to a particular dimension m. And there is no
simple way to describe a m-current as a collection of (m — 1)-currents while preserving the
same geometrical properties.

In practice, the segmentation of an anatomical surfaces or volumes may be given as
an unstructured point-set. In absence of surface or volume mesh, one has no other choice
than modeling this set of points as a O-current. One must be aware, however, that building
a surface or a volume mesh from this point set would reconstruct the geometry of the
anatomical structure and lead eventually to different measures of similarity, which would

account for this richer geometrical information. O

Remark 1.20 (Why using m-forms instead of scalar/vector fields?). There are some cases
of practical interest which are not modeled with differential m-forms of dimension or co-
dimension 0 or 1. For instance, one may be interested in the temporal evolution of a curve
in 3D. This can be seen as a tubular surface (m = 2) in a 4D space (d = 4). In this
case, the representation in terms of vector field is no more possible, whereas the framework
based on currents still applies. However, from a computational point of view, the algorithms
presented in this thesis take advantage of the representation in terms of vector/scalar fields.

Dealing with other cases would require to develop new algorithms. [J

1.5 The space of currents as a RKHS

1.5.1 Why the mass-norm is not adapted to measure shape dis-
similarity

In the previous section, we introduced the mass-norm of a current. However, the fol-

lowing proposition shows that this norm cannot be used in practice for measuring shape

dissimilarities. Indeed, this measure is insensitive to the relative distance between two

sub-manifolds, as long as they do not intersect.

Proposition 1.21. Let T and T’ be two smooth compact sub-manifolds with disjoint sup-
ports. Then
M(T —T')=M(T)+ M(T"). (1.5.1)

Let T and T' be two finite sums of Dirac delta currents located at different points. Then,
M(T —T')= M(T)+ M(T"). (1.5.2)

Proof. The proof is a generalization of the proofs of Proposition 1.6 and Proposi-
tion 1.12 and relies on the same idea. The triangle inequality states that M (T — T") =
supj_<11T(w) = T'(w)| < M(T)+M(T") in both cases. To show the equality, one finds a

particular w which enables to achieve the supremum. We focus on the case of sub-manifolds
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since the case of Dirac currents is direct consequence of Proposition 1.12. For any x in T and
T’, we choose the m-form w(z) such that w(z)(ur (@) A... Aup(x)) = [ur(z) Ao Ay ()]
and 0 in the directions orthogonal to u; (z)A. .. Aty (z) in A™R?, where u;(z) denotes a ba-
sis of the tangent plane of T" at point x. Since the sub-manifolds are smooth, we can choose
basis vectors u;(z) which varies continuously on each sub-manifold, thus making w(z) con-
tinuous on 1" and 7”. Now, since T and 1" are disjoint, we can interpolate continuously
the values of w(x) in-between T and 7. Since the sub-manifolds are compact, we can also
make w(x) tend to 0 at infinity. Therefore, this constructed w belongs to C°(R?, (A™R%)*)

and achieves the supremum in the definition of the norm. |

Remark 1.22. There is no contradiction between this proposition and Proposition 1.11
since the support of the discretized current T is included into the support of the original
current 7. [

Remark 1.23 (support of a current). This Proposition can be expressed in a more general
form for any currents 7' and 7” with disjoint supports. However, for the sake of simplicity, we
do not define the support of a current and focus on two particular cases: sub-manifolds and
Dirac delta currents. However, the definition of the support of a distribution [Schwartz 1966]

extends straightforwardly to currents. [J

Let us take two Dirac currents 63 and d; which model two small mesh cells (infinitesimal
surface for instance) with the same orientation but located at two distinct points z and y.
The dissimilarity between these two currents is equal to M (dg — d;) = 2 |a|, thus meaning
that the distance between both structures is constant as long as x # y. But once z = y,
then M (63 — 6;f) = 0. This shows that the metric M is blind to shape dissimilarities until
the two shapes are perfectly aligned! As a consequence, it is not possible to use this metric
to drive the registration of one shape onto another. Moreover, the discontinuous behavior
of the metric with respect to the positions = and y prevents us from using the mass-norm
from a numerical point of view.

The main problem is that the mass-norm is the dual norm for the supremum norm for
continuous differential m-form. The key argument in the proofs of Propositions 1.6, 1.12
and 1.21 is that we can always find a differential m-form w which continuously interpolates
between w(x) = a and w(y) = —a for two distinct points z and y. If we impose some
constraints on the variations of w, then it may not be possible to interpolate with bounded
variations between arbitrary points z and y. Then the norm M (T — T') would start to
decrease smoothly to zero as T is approaching T”. This point is illustrated in Fig. 1.4.

This analysis justifies to change the test space of differential m-forms for a test space
in which the differential m-forms are more regular (i.e. whose variations are bounded).
Until now we have considered the space of continuous differential forms which tend to zero
at infinity (i.e. such that ||w||,, < 0o0). We would like to consider now differential forms
which are differentiable and such that the derivatives are controlled: |lw|| + [|[Vw]|,, < oc.
This leads naturally to define our test space as Sobolev spaces. Most of these spaces are
Reproducible Kernel Hilbert Space (RKHS) as shown in Appendix B. Let W denote this new
test space of differential forms. The associated space of currents is denoted W*: the space
of continuous mapping from W to R. Then the mass-norm (M(T') = supy, _<; [T'(w)]) is
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replaced by the dual norm: |[T'|lyy.. = supy, <1 |T(w)]. The kernel of the RKHS acts as
a low-pass filter on the space of square integrable differential forms: this excludes from W
the differential forms with too high frequencies (i.e. whose variations are not bounded).
Using RKHS as test space of differential m-forms have compelling advantages. First, the
choice of the kernel determines how smooth the differential forms are. In particular, we can
set a scale parameter which determines the rate of decay of the RKHS norm (|7 — T"||}.)
to zero when T is “converging” to T”. See Figure 3.16 for instance. If this scale tends to zero,
then the RKHS norm tends to the mass-norm. For a larger parameter, shape dissimilarities
are captured up to this scale. Second, in the framework of RKHS, the space of currents
is provided with an inner-product and the norm, which is defined by a supremum, has a
closed form. This makes the overall framework particularly well suited from a computational
point of view. Third, the RKHS norm in the space of currents allows us to define random
Gaussian variables. This will allow us to define statistical models of currents to measure

the variability of shapes.

Remark 1.24 (Flat norm). To workaround the bad behavior of the mass-norm, one intro-
duces often the flat-norm defined as:

F(T) = sup |T(w)], (1.5.3)

lwll o <1 lldw]l o <1
where dw denotes the exterior derivative of the differential m-form w (see [Federer 1969,
Cohen-Steiner 2003al, for instance). This norm introduces explicitly a control on the vari-
ations of the differential forms. However, by contrast to RKHS norm, this norm does not
derive from an inner-product and has no closed form. This norm is therefore difficult to

use from a computational point of view. [

1.5.2 The space of currents as the dual space of a RKHS

In this section, we adapt the construction of currents in Section 1.3 to a test space of
differential forms which is a RKHS. We will show also how this framework enables to have
a norm which derives from an inner-product and for which we have a closed-form.

For the sake of simplicity, we suppose, from now on, that we deal only with the practical
cases of Section 1.4: sub-manifolds of dimension 0,1,2 and 3 in R? and sub-manifold of
dimension 0,1 and 2 in R2. In all these cases, the differential m-forms can be seen as a
scalar or vector field: a continuous mapping from R¢ (d = 2 or d = 3) to R? (p = 0 or
p =d). The case p = 0 is for the scalar fields, the case p = d is for the vector fields.

Note that the following construction could be made also for general differential m-forms
(see Remark 1.28). However, this would involve more sophisticated notations without any

benefits for the targeted applications.

1.5.2.1 A new space of currents

Let W be a Hilbert space of vector fields in which the vector fields are continuous and
verifies:
[wWlleo < Cw llwllyy (1.5.4)



46 Chapter 1. Curves and surfaces embedded in a metric space

As shown in Appendix B, this condition makes W a RKHS (see Proposition B.4). From a
numerical point of view, this condition implies that numerical error measured in the space
W are numerically small.

We denote W* the dual space of W, now our space of currents. The following proposi-
tion shows that the previous space of currents (i.e. the dual space of CO(RY, (A™R%)*)) is

continuously embedded into W*.

Proposition 1.25. If T is a continuous linear form on CO(R%, (A™R%)*) then it is a con-

tinuous linear form on W and
ITlhy- < CowM(T). (1.5.5)

Proof. By definition of a continuous linear map, we have that there is a constant Cp such
that:
T(w)] < Cr|lwl| - (1.5.6)

which leads according to Eq. (1.5.4)

T (w)] < CrCw [lwlly - (1.5.7)

This shows that the T can be considered as current in W*.
Moreover, we have:
1Ty = sup |T(w)|=

w
w7 (1)
eollyy <1 lollwzo | \llwlly

TQQL)‘ (1.58)

T( d )‘:OWM(T)

@l

<Cw sup
llwlly#0

< Cw sup
lwll o #0

This proposition shows that the RKHS norm on the space of currents is more precise
than the mass-norm. It shows also that the currents introduced in the previous sections can
be considered as currents in W*. In particular, the Dirac delta currents as introduced in
Definition 1.9 are currents in W*. Proposition 1.4 which shows that a sub-manifold of R?
defines a current is still valid in this framework: under the same conditions sub-manifolds
define a current in W*. Indeed the inequality in Eq. (1.5.5) shows that a linear form on
W which is continuous with respect to the |.|| ., norm is also continuous with respect to
the W-norm. Proposition 1.11, which enables to approximate m-meshes 7" with finite sum
of Dirac delta currents T, is also valid in W*. Indeed, the proof relies on the inequality:
‘T(w) - T(w)‘ < ellw|, for all w € CO(R?, (A™R?)*). This implies that for all w € W,

‘T(w) - T(w)‘ < eCw ||wly, and therefore that HT - THW < eCy which tends to zero
under the same conditions as in Proposition 1.11.

Eventually, the pull-back action on continuous differential m-forms (Definition A.11)
extends straightforwardly to differential m-form in W under the same condition as in

Definition A.11. Indeed, if ¢ is a diffecomorphism such that sup |d,¢| < oo, then
Tz€ERC
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|p*w(z)| < [[w]l o ldedlls £ Cryg llw|lyy which proves that the pullback vector field ¢*w
belong to W. Therefore, we can define the push-forward action on currents as in Defini-

tion 1.15, which is now an action on the space of currents W*.

1.5.2.2 Norm and inner-product in the RKHS

It is shown in Appendix B that there is an isometric mapping between the test space
of vector/scalar field W and the space of current W*. This mapping is denoted Ly, and
the kernel of the RKHS W is denoted K. This provides the space of currents W* with a
Hilbert structure. In this section, we show how this inner-product allows us to give a closed
form to the norm |.||;;,. in practical cases.

Proposition B.9 shows that the map Ly is isometric. Therefore the norm of a current
T € W* satisfies:

Ty = sup |T(w)| = [[L3 (D) - (1.5.9)
lwllw <
and that the supremum is achieved for the vector field w = L£;;}(T'), which implies that
IT 5 = T(Ly! (1))-

Now, we will show how to compute £y; (T') and the norm of 7" when 7 is a sub-manifold
or a finite set of Dirac delta currents. Assume first that 7" is a sub-manifold of R? which can
be seen as a current under the assumptions of Proposition 1.4 (assuming that the attribute
map I = 1). We focus on the vectorial case (T is dimension 1 or 2) but the computations
can be very easily adapted in the scalar case (T of dimension 0 or 3). Let w € W be a
vector field, then by definition of T'(w) in Prop. 1.4 and thanks to the reproducing property
in W (see Eq. (B.2.5)), we have:

T(w):/Tw(x)ta(x)d)\(x)

_ /T (w, K% (2, )a(x))y, dA() (1.5.10)

_ </TKW(33, .)a(a:)d)\(z),w>w

where a(x) denotes the unit tangent of 7" at  if T is of dimension 1 or the unit normal of
T at z if T is of dimension 2.
In section B.3 (Eq. (B.3.5)), it is shown that:

T(w) = (T, Loy (w)) - (1.5.11)

The combination of this equation with Eq. (1.5.10) shows that the mapping E;Vl can be

computed explicitly in this case as:

£ T)@) = [ K @ )at)any) (1.5.12)

The representation of the sub-manifold in the space of vector fields W is given as the

convolution between the kernel K" and the dense field of its tangents or normals.
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The application of the isometric mapping Ly (see Eq. (1.5.9)) leads to the norm of T
as:

||T€V*=<£;&<T>7£;&<T>>W=< [ K s, [ K @ e
= [ [ @) K (0 al)y dX@aw)
/ / VKW (2, y)aly)dA(@)dA(y),

w

(1.5.13)

by linearity of the integration and thanks to the reproducing property of the kernel (see
Eq (B.2.5)).

Therefore, the Hilbert norm of the sub-manifold seen as a current is given by the double
integration of the kernel on the manifold. Similar computations show that the inner-product

between two sub-manifolds of the same dimension, T and 1", is given by:

// VKW (y, x)a(x)dA(y)dA(z), (1.5.14)

where a(x) (resp. o/(x)) denotes the tangent or normal of T' (resp. T”) at point z.
If the sub-manifold T is given as a m-mesh, it can be approximated, in the sense of
Prop051t10n 1.11 by a finite set of Dirac Delta currents: T'= Y, 057 In this case, using

q. (B.3.9), we have also explicit formulation for the representation of the current as a
vector field:

LM D)) = S Lat 60 (@) = S KW (@, 2)a, (L5.15)
. 2

also for the norm of this current:

n

T3y = T(LyH (D) = 629 (Ly,) ZZ& KW (2, )0 (1.5.16)

Jj=1 =1 j5=1

and the inner-product between 7' and 7" = 377" 55;

n

m
(T, Ty = ZZB;KW(yj,xi)ai. (1.5.17)
i=1 j=1

The comparison of these last two equations with Equations (1.5.13) and (1.5.14) shows
that the approximation of Proposition 1.11 consists in replacing the continuous integrals
by their Riemann sums. In other words, the continuous current 7' is decomposed into
its infinite set of tangents or normals, whereas its discretization in the space of currents
consists in sampling this field of tangents/normals. When the sampling becomes finer, the
approximation converges in the space of currents. This shows that using RKHS enables to
compare continuous objects with their discrete representation. This is a direct consequence
of the construction of the RKHS as the completion of a pre-Hilbert space in the proof
of Theorem B.6. This guarantees that the metric on currents is weakly sensitive to the
sampling of the geometrical data, since each sampling is an approximation of the same
continuous quantity. This ensures the robustness and numerical stability of this metric

used in practical algorithms.

Table 1.2 summarizes these operations on currents for any m-currents in 3D.
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Remark 1.26. In this section we omit the scalar function I which can model attributes
attached on the sub-manifold 7. Taking into account such map induces only very slight
changes in Egs. (1.5.10) to (1.5.17). O

Remark 1.27 (Computational cost of the distance between currents). In practice, we
need mainly to compute the distance |7 — T"||;,. between two set of Dirac Delta currents:

T= Zfil 0g¢ (with N terms) and 7" = Z;\;ll (5;2; (with N’ terms). For this purpose, one
can use the equality: || T — T’||€V* = HT||?,V* + ||T’H3V —2(T,T") ;. Or one can form the
current S = ZEN/ 60t where (y; = x4, 8; = o) if i = 1... N and (y; = 2,3 = —o) if
t=N+1,...,N+N’ (i.e. the concatenation of the list of points (x,x’) and the list of vectors
(a,—a’)) and compute directly ||S|y;-.. The first solution requires to sum N2+ (N')?+NN’
terms, whereas the second solution requires to sum (N + N’)?2 = N2 + (N')?2 + 2NN’
terms. The first solution is computationally less expensive than the second one. However,
in chapter 2 we will present a computational framework which enables to compute these
double sums at almost a constant cost, independently of the number of terms. This will
make eventually the second solution about 3 times faster than the first one (3 double sums

to be computed versus 1). O

1.5.2.3 Three norms on the space of currents

We can define 3 norms in the space of currents W*. We introduced previously the

mMass-norm:
M(T)= sup |T(w)] (1.5.18)
llwll <1
and the W*-norm:
1Ty« = sup [T(w)], (1.5.19)
Hw‘lwfl

where T denotes a generic current in W* and w a generic scalar /vector field in W.

We saw that the mass norm generalizes the notion of volume of a m-dimensional sub-
manifold and that this norm is not adapted to measure shape dissimilarity. The W*-norm
is a regularized version of the mass-norm which will allow us to drive the registration of
shapes and define statistical models on shapes. Moreover, this norm is easily computable
in practical cases.

In addition to these two norms, we can define the L°°-norm of currents as:

T = £ (D) (1.5.20)

oo’

where the norm on the right-hand side is the supremum norm of the scalar/vector field
associated to the current T (this scalar/vector field belongs to W and therefore is continuous
and tend to zero at infinity).

This last norm raises naturally when one considers the current 7" via the inner-products
(T, 5% )y for any points z € R? (e, denotes the canonical basis of R? for vector fields and

R for scalar field). Since (T, 82y = Ly (T)(z)ta, we have the following property:

1Tl = sup [T’ 05)y-

|a|=1,z€R4

(1.5.21)
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Norm on
Norm on currents Comments
vector fields

If T is a submanifold, M(T) is

w = sup |w(x M(T)= su T(w
lee xeug)ff (@)l @) Hw”mpgl ()l the length, area, volume of T’
w (regularized derives from an
Il (regul ITlhy = sup [T(w) )
L*-metric) llwllw <1 inner-product

1Tl =L (Do

= sup |(T,0%) i«
\0451 (T 03 by weak-topology on W*

z€R3

corresponds to the

Relations between norms: |w||, < Cw |w|ly
1Ty < CwM(T)

7o < (sup [ @] ) 1T
T€R3
Table 1.1: The norms on currents and vector fields

Since the span of the Dirac delta currents is dense in W*, this equation shows that
a sequence of currents 7, converges to 0 with respect to the L*°-norm (||75,||,, — 0) if
and only if (T,,,T7")y,. — 0 for every currents 7" € W*. This shows that the L*-norm is
associated to the weak topology of the RKHS.

As a consequence, we can control the L°°- by the W*-norm. Indeed, we have:

.82 | < [Ty 152 (15.22)
Moreover, H(S%H%/V = o'KW(z,2)a < sup |KW(z,2)| la)® where ‘Kw(m,x)‘ de-
zER3
notes the spectral norm of the matrix K" (z,z). Therefore, sup|q|=1 (T, 05) | <
sup |KW (x, :v)|1/2 |||+, which leads to:
zER3
W 1/2
1T, < suﬂgg\K (z, )| (1T |l (1.5.23)
e

Both L*°- and W*-norm will be used in the next chapters, for instance to control the

convergence of the matching pursuit in Chapter 3.

Remark 1.28 (RKHS of differential forms). In this section, we provide the space of cur-
rents with a norm in the case of currents which can be represented by scalar or vector
fields. This has been done for the sake of simplicity. We could have built also a RKHS
of differential m-forms. The reproducing property would have been: w(z)(u1,...,um) =
(w, K(x,.)(u1,...,um))y and the kernel K would have been a m-covariant, m-contravariant

tensor. The construction would have been very similar to the one presented here. [

Remark 1.29 (Units). The physical objects defined in this chapter (differential form,
vector fields, currents, etc.) have dimension and therefore their measure depends on the
choice of the unit of the ambient Euclidean space R? or R?. The action of a m-form on a set
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of m vectors leads to a real number which has no dimension and which is invariant under a
change of coordinate. Since the vectors have the dimension of a length, denoted here L, a
m-form is of dimension L~™. A current integrates a m forms to give an adimensional real
number: it is of dimension L™. Therefore, it has the same dimension that the geometric
object, which it models. The norm of the current ||T'||y;,. = sup,o|7(w)|lw|| has the
dimension L™, namely the dimension of a length for a 1-current and the dimension of a
area for a 2-current. The map Ly from W to W* depends also on the choice of units: it
is of dimension L™ /L~™ = L?>™. The inverse map is implemented by the matrix K" (z, )
whose elements is of dimension L~2™.

In Section 1.2 and 1.5 as well as in Appendix A, we identify differential 1-forms and vec-
tor fields, whereas the former is of dimension L~! and the later of dimension L. Therefore,
this identification depends on the choice of the units in the ambient Euclidean space: if
the units change, the vector field associated to the 1-form also changes. This is well-known
in differential geometry: the form is a covariant tensor, the vector field a contravariant
tensor. One transforms the former into the later by applying the metric tensor, which is of
dimension L?. Therefore, these kind of identification can be made only once the units are

fixed. In our applications, units are given by the imaging device. [J

1.5.3 Random Gaussian Currents

Defining the test space W as a RKHS has another advantage: it allows us to define ran-
dom Gaussian currents. Indeed, there is a standard way to define random Gaussian variables
in infinite-dimensional Hibert spaces, so that their projection on any finite-dimensional sub-
space is a usual multi-variate Gaussian variable. In this setting, the kernel of a RKHS gives
the covariance of the random variables. In this section, we show how such variables can
be defined. In Section 2.3.3, we will show that the projection of the Gaussian currents on
finite-dimensional spaces are usual Gaussian vectors.

First, we will show how the finite-dimensional case can be generalized to define infinite-
dimensional random variables. Let I" be a zero-mean Gaussian vector in R™ with covariance
K. By definition, for any n-dimensional vector w, w'I is a zero-mean Gaussian real variable
with variance w!Kw. This shows that the covariance matrix K can be seen as a metric
on R™. Actually, one can consider that the Gaussian variable I' maps every eigenvectors

(€i)i=1,...n of K to an independent Gaussian real variables v; with variance given by the
n
eigenvalues \?. Therefore, any vector w is mapped into w!'T' = Y w'e;;. This shows that

a given metric K determines a Gaussian vector I'. This idea ofrirllapping each eigenvector
of the metric to an independent Gaussian variable can be generalized in infinite-dimension
as follows.

A current 7T is a linear mapping from a test space of vector field W (with metric K™')
to the space of real numbers R. A random Gaussian current is a linear mapping from the

test space W to a Gauss space G2. This means that a random Gaussian current maps

2a Gauss space is a set of random Gaussian variables. The typical example of a Gauss space is the linear
span of N independent Gaussian variables.
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every vector field w to a real random Gaussian variable X*(w), whereas a deterministic
current maps the test vector field w to a real number T'(w). We define this mapping such
that the random current X* tested on two orthogonal vector fields w and w’ leads to two
independent Gaussian variables. X™* can be seen as the Gaussian variable associated to the
RKHS W with kernel K. However, since it is infinite-dimensional, it has no probability
density function.

To give a precise definition, we assume that the test space W is separable. As such,
W can be provided with an orthogonal basis w,. We define the linear mapping X*
from W to G via its value on the orthogonal basis (wn)n=0,...c0: We set X*(w,) = Yn,
where ~, is an infinite sequence of independent normal variables (zero mean and unit
variance). Since every vector field w can be decomposed into w = > % (w, Wy )y Wy
such that ||o.)||?,V =3, |<w,wn>W\2 < oo, we have by linearity of the mapping X*:
X*(w) =307 o (w, wn )y Yn- Therefore for all w € W

E(X*(w)) =0
il (1.5.24)
E(X*@)?) =Y lw,wa)wl® = lwliy
n=0
Moreover, given two vector fields w and w’, we have:
E(X"(w)X"(w)) =E <<Z (W, wn) %) (Z (W, W)y m))
=0 m=0 (1.5.25)

00
= Z <w’ wn>W <w/7wn>w = <w,w’>W .
n=0

These intrinsic definitions of the variance and covariance of real variables X*(w) in
Equations (1.5.24) and (1.5.25) shows that the definition of the random Gaussian current
does not depend on the choice of the basis on W. This leads to the following definition:

Definition 1.30. Let W be a separable Hilbert space of vector fields and G a Gaussian
space. Let X* be the isometric mapping between W and G:

X*: W
— ¢ (1.5.26)
w X*(w)
such that for all w,w’ € W:

E(X*(w)) =0

E(X*(w)X*(w)) = <w7w/>W (1.5.27)

If the test space W is a RKHS, then we can test the Gaussian current on the basis
vector KW (x,.)a.. This leads to:

E(X* (K" (2,.)) X* (K" (y,.)8)) = «'K" (z,y)B. (1.5.28)

This shows that the kernel determines the covariance of the random Gaussian currents. If
the kernel is diagonal, in the sense K (x,y) = 0 if z # y, then the vectors K (z,.)a build an
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orthogonal basis of the RKHS W. This is not the case in general but we can always build
an orthogonal basis from these vectors via the Gram-Schmidt process.

This definition constructs theoretically a random Gaussian current with zero mean and
a covariance structure determined by the kernel. However, in absence of probability func-
tion, there is no simple way to simulate some instances of this random current. In the next
chapter, we will introduce finite-dimensional spaces to approximate the space of currents.
The projections of this random current on these subspaces have a probability density func-
tion (pdf) as we will show in Section 2.3.3 and can be simulated numerically as we shall

show and discuss in Section 3.5.

1.6 Conclusion

In this chapter, we gave a rather general presentation of currents. We discussed the
ability of this framework to model a large range of geometrical objects, some with local
orientation such as curves or surfaces, other without local orientation like point sets or
volumes, some defined in the continuous domain, other defined as discrete structures, pos-
sibly provided with scalar attributes. Eventually, we provided the space of currents with a
RKHS norm and inner-product. This offers a way to adapt the metric on currents to every
particular anatomical data.

However, dealing with discrete currents, such as the ones resulting from the approxima-
tion in Proposition 1.11, may be computationally expensive, especially when the number
of mesh cells increases, as mentioned in Remark 1.27. The following chapters are precisely
dedicated to the design of an efficient numerical framework for currents.

From now on, we focus on the cases of curves and surfaces modeled as 1- and 2-currents,
as the most interesting cases for our applications. For the sake of simplicity, we will use also
O-currents in some synthetic examples. We will use the scalar attributes to weight different
parts of the currents as in Chapter 7, but we will not use such attributes for modeling

non-geometrical properties of the shapes, according to Remark 1.14.
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Dimension m

O-current

1-current

2-current

3-current

Differential m-form

a€R — aw(z)

a— w(r)ta

(a, 8) = w(@)( x B)

(o, B,7) =
det (e, B, 7)w()

x — w(x) scalar field vector field vector field
scalar field
Sub-manifolds as set of points param. curve param. surface
. Volume
continuous currents {z1,..., 2N} t— L(t) (u,v) = S(u,v)
a; a; . MU %WM
Example of MU Ozt MU 03 MU 0 X i
: ) ! ! i = det(ag, Bi, vi):
discrete currents a;: scalars o, vectors o; X fB;: vectors v et(ev, B, %)
scalars
Action on diff. forms T(w) = T(w) MNQV %AEW,M Py T(w) =
(sub-manifolds) MEEA&L \E (L(t))" == 2dt \E (S(u, )" [ == x = | dudv \ w(z)dx
i L dt S ou ov \%
Action on diff. forms . .
W\ i) O i i X P W (T
(discrete currents) MU aieo(@:) ME@ Ja MEAH G - vieo(@:)
1 = w1 = w1 = 1 =
Push-forward action () ¢ AMQV ¢ AEV\H . T(w)
T (wo ) T (deg'w o ¢) T (|deo|dep™ w0 ) T (|dzg|w o §)
Push-forward ¢x (05) = 04 b4 (09) = §zd(e) ¢« (0777) = %MMMEY&%AE ¢« (63)
(discrete currents) ) e/ Ug(a) — mﬁwﬁg%\:gxmv = Q_MA%_@

Inner-product

\ \ FO'K (L), L ()7 (u)dtdu

\ \ n(2) K (S(z), 8' ()’ (y)dedy
Sx S’

_98@)  9S()

\\ K(z,y)dzdy

btw sub-manifolds | 2 (@0 T | Ex ALt ar n(z)

1,3 7(t) = k 7'(u) = E m\& QR\N 2%

dt du n'(y) = E % E
di Oy

Inner-product btw
diserete currents MU a;K(x;,xj)a; MU T K (24,y;)7; MU niK (z;, y;)n; MU vi K (x4, ;)05

(2% 4 (2% 4

Table 1.2: Summary of the operations on m-currents in 3D, for m =0,...,3
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The purpose of this chapter is to define an efficient computational framework to deal
with currents and vector fields. The main idea is to introduce linearly spaced grids to define
finite-dimensional sub-spaces of the RKHS of vector fields W and of the space of currents
W*. The usual operations on vector fields and currents in these discrete spaces can be
performed efficiently via FFT and standard linear algebra operations. Then, we introduce
a stable numerical scheme to project arbitrary currents on these approximation spaces. The
resulting approximation error is shown to converge to zero as the step of the grid tends to
zero. We provide an estimation of the speed of convergence. This offers a way to determine
the step of the grid which guarantees a fixed approximation error, independently of the
data to be processed.

This framework is the core tool for the implementation of the algorithms presented in
this thesis. It serves in particular to define the discrete version of the matching pursuit
algorithm in Chapter 3, to optimize the registration of currents in Chapter 4, to implement

the atlas estimation in Chapter 5 and its 4D-extension in Chapter 9.
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For instance, registration of anatomical data would not possible with real data without
such an optimization framework. The original implementation in [Glaunés 2005] uses Fast
Gauss Transform (FGT). We will show that the framework we proposed here is more ro-
bust and more generic, especially because the approximation error does not depend on the
position of the points to be matched. More importantly, this framework is not application-
dependent and can be used in different contexts to derive fast and robust algorithms based

on currents and vector fields.

2.1 Introduction of lattices in the framework of currents

vector field current

Figure 2.1: Principle of grid approximation: on the right hand side, the momenta of the
currents are defined in continuous coordinates, whereas its associated vector field on the
left hand side is computed only at the nodes of a fixed grid. In the framework of RKHS,
this can be seen as the projection of the dense vector field on finite-dimensional spaces. On
these spaces, usual operations on currents can be efficiently computed using FFT. We show
in particular that these approximated operations converge to their true value as the grid

step tends to zero.

In the previous chapter, we showed that a current, which models polygonal lines or
N

surface meshes, is given by a finite combination of Dirac delta currents: T = }_ 0.
i=1

Computing the norm of this current (and hence the inner-product with another current of

N N

the same form) can be done very easily via a double sum: ||T||%,V = > 3 K (xi,z5)a;
i=1j=1

(see Eq. (1.5.16) and Eq. (1.5.17)) which can be written in matrix form as a'Ka. This

offers a way to efficiently compute the metric on currents via matrix multiplication when the
number of momenta in the decomposition of currents is finite. However, the main problem
is that the matrix K depends on the positions of the points x; and therefore on the current
T. This means that we need to compute and store a different matrix K for each current.
By contrast, the purpose of this chapter is to define a discretization framework of currents,
in which the momenta can be located only at some fixed positions. Therefore, the matrix K
can be pre-computed and stored once for all, thus allowing for a fast parallelization of the
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computation on currents. Moreover, if the discretization points build a regular lattice, it is
possible to use FFT to compute this matrix multiplication, which reduces the complexity
of the computations from O(N?) to O(N log(N)), where N is the number of momenta in
the input current.

To define such a discretization framework, we get inspired by the Hamiltonian particle-
mesh method [Frank 2002, Frank 2003] which were further developed to give the variational
particle-mesh methods proposed in [Cotter 2008, Cotter 2009]. These methods propose a
semi-Lagrangian and semi-Eulerian numerical scheme for integrating partial differential
equations. The discretization is given by as set of moving particles in continuous coordi-
nates, whereas the velocity field which drives the evolution of the particle is computed on
a fixed lattice. An interpolation scheme enables to extend the velocity at the grid nodes to
the particle positions.

In this chapter, we adapt this idea to give efficient numerical scheme to compute with
currents. The positions of the momenta of an arbitrary current correspond to the moving
particles of the variational-particle mesh method. They are given in continuous coordinates.
Normally, the vector field associated to this current is dense. Here, we restrict this vector
field to be in a discrete space, so that it is entirely characterized by its samples at the grid
nodes. When needed, an interpolation scheme enables to reconstruct a dense vector field
from these samples.

In our framework based on RKHS, the introduction of grids can be considered as an
approximation of the infinite-dimensional RKHS by finite-dimensional sub-spaces. As the
grid step tends to zero, the finite-dimensional sub-spaces tend to the original RKHS, thus
making the result of the operations performed in the discrete framework to converge to their
true value. A complete computational framework should include not only the operations in
the discrete spaces but also a way to project the data given in the continuous spaces to the
discrete spaces.

The chapter is organized as follows. In Section 2.2, we introduce the discrete approx-
imation spaces and show how operations on currents can be performed efficiently in this
setting. In Section 2.3, we use orthogonal projections to map continuous currents to dis-
crete spaces. This operation, unfortunately, is ill-posed from a numerical point of view.
Therefore, in Section 2.4, we propose to use closest neighbors strategies to compute this
projection, which converges at a polynomial speed with respect to the grid step. Eventually,

Section 2.5 shows how this framework can be used in practice.

2.2 Finite-dimensional approximations of RKHS

2.2.1 Construction of sub-RKHS

The key idea for approximating currents is to define sub-spaces of the general space of
currents W in which momenta are constrained to be located in a particular set of points A.
We show then that when the set A becomes dense in R?, the approximation space converges

to the original space.

Definition 2.1. Let W be a RKHS of mappings from R? to RP with kernel K. Let A be a
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subset of R, We define the vector space Wy as:
Wa = Span{K(z,.)o; x € A, € R} (2.2.1)
(Span means the closure of the set spanned by the vectors K(x,.)a)
The following properties are deduced directly from the definition:
e W, is included in (possibly equal to) W.

e If A has N < oo points, then W)y is of dimension N. Otherwise, W, is of infinite

dimension.

Proposition 2.2. Wy as defined in Definition 2.1 is a RKHS. The norm of this RKHS

coincides with the norm of W on Wi'.

Proof. Since W)y is a closed subspace of the Hilbert space W, it is a Hilbert space when
provided with the restriction of the norm on W to Wj. The evaluation functionals < :
W — R are continuous on W, so they are also continuous on the subspace Wy. According
to definition B.2, W), is therefore a RKHS.

For all x € A, K(z,.)a € Wy. Therefore, for all w € Wy:

w(@)fa = (w, K(z,.)a)y, = (w, K(z, D)y,

This shows that the restriction of the inner-product on W to Wy satisfies the reproducing
property on Wy. It is therefore the norm on the RKHS Wjy. |

Definition 2.3. We define Ly, : Wp — W™, the restriction of Ly : W — W* to Why.
We denote Wy the image of Wy wvia the mapping Ly :

Wi = Lw(Wa)
We deduce from these definitions the following properties:
e Wy isincluded in W*: we provide W with the restriction of the norm on W* to Wjy.
e This makes Ly, an isometric mapping between W, and Wy

The currents in W} are like general current in W* except that we restrict the momenta
(x5, ;) to be located in A (i.e. x; € A). If A is a discrete set, W} is a discretization of the
general space of currents W*. If A is finite, all the usual operations on currents may be

computed with vectors and matrices, as we shall see in the next section.

Remark 2.4. We want to make clear that W} is not the dual space of W} (i.e. the space
of continuous linear forms on W, ), contrary to what the notation suggests. Let W§ be the
dual space of Wy. The restriction of the current §& € W* (seen as a map from W to R) to
Wi belongs to W§ for any z, whereas it belongs to W only if 2 € A (provided that A is
a discrete set). However, one can show that there is an isomorphic mapping between Wl‘{

and Wy. In the following, we will use only the space W5. O

1 This is the reason why we will not use the notations (.,.)y,

 and [|.[ly, , but (., )y, and |||l instead.
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2.2.2 Linear algebra in finite-dimensional RKHS

From now on, we suppose that A is a finite set of points of R%: A = {z};cA (note that
A denotes the set of points as well at the set of indices).

In this case, W), is finite-dimensional and a basis of this vector space is given by the
vectors K (z,.)ey, for € A and ¢, and orthonormal basis of RP. Indeed, by definition, these
vectors span W, and they are linearly independent since the kernel K is supposed to be
positive definite. Therefore, the dimension of W, is Np and a vector field v in W, has a
unique decomposition of the form:

y(z) = Z K(x,z;)o (2.2.2)

iEA
This last equation suggests to use matrix notations. This was not possible in the general
space of currents: if the position of the momenta are arbitrary, the vectors should be infinite
dimensional. But once momenta are constrained to be in a finite set A, the operations on

W* can be performed using linear algebra in RV?.

Definition 2.5. Let T =), , 637 a current in W5. We define o and =y, two vectors of

dimension Np such that:
e o is the concatenation of the N vectors of dimension p: (o;)1<i<n
e 7 is the concatenation of the N wectors of dimension p: (L (T)(2:))1<i<N-

We define the Np-by-Np block matriz Ka such that the block (i, j) is given by the p-by-p
matriz K(x;,x;) for 1 <i,5 < N. Since the kernel K is symmetric and positive definite,

so0 is the matriz Ka (this is a direct deduction from Definition B.5).

Let v = L£;;}(T) be the vector field associated to a generic current T in Wj. ~(z) has
the general form given in Eq. (2.2.2). ~ is the sampling of v on the grid nodes. Applying
Eq. (2.2.2) to every x; € A leads to the fundamental equality:

¥ =Kja. (2.2.3)

On the contrary, let v be a generic vector field in Wy and T = Ly (). T is therefore of
the form ) ;.\ 627, Then, applying the equality <T, 5§§>W* for a given grid nodes x; and
€r the canonical basis of R? leads to: 37, \ K(z;,xj)a; = vy(z;). Therefore, the vectors

(a;) are solution of a linear set of Np equations whose solution is given in matrix form as:
a=K 'y (2.2.4)

The Equations (2.2.3) and (2.2.4) show first that the mapping £;;/ on the space W
is implemented by the multiplication by the matrix le and, second, that the mapping
Lyw on the space W) is implemented by the multiplication by the matrix K. Since all
the usual operations with currents are computed via the mapping Ly, all these operations
have a translation in matrix form using the matrix K,, when dealing with the discrete
space Wj.
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Continuous form Matrix form
current in W* T = Z 6;)‘; o
iEA
vector field in W y(z),r € R? ~ (sampling of v on A)
mapping Ly T=Lw (’y) o = KK1‘7
mapping ﬁ;vl v = ﬁ;Vl (T) v =Kra
action on vector fields T(’y) eR at'y
inner-product in Wy , 7/>W ’)/tKXI’)’
inner-product in Wy <T7 T/>W* atKAa
_ _ [
o 1w = Lw()() YKy = (Ki) Y
identities in W , 1\t 1,
= (Lw (1), Lw (7 )y = (Ki'v) Ka (K3'Y)
T, Ty =T(Ly (T’ ‘K =a! (Ko
identities in W < ’ >W (,}/V ( )),1 , o ° ( Ata )—1 /

Table 2.1: The central column shows the usual operations on currents and vector fields
written as for a general space of currents. When the space of current is a finite-dimensional
RKHS W, (the momenta are constrained to be located at a finite set of points A), then
the quantities of the central column can be written using matrices and vectors as shown in
the right column.

Table 2.1 summarizes the translation in matrix form of the usual operations on currents.
Let’s take the action (i.e. dual bracket) of a current on a vector field as an example. If

is a vector field in Wy and T' =) @i

ien 0z, then the action of T on v is given by:

T(y)=> 05y =Y (@) o =7 (2.2.5)

icA =
Similarly, the inner-product in W* between T = Y- 6% and T’ = )" &;¢ (two currents in
ieA ieA
W) is given by:
(T, T") e = Z ZafK(wi,xj)aj =a'Kyo'. (2.2.6)
i€A jEA

The other equalities in the table 2.1 can be proven in the same way.
The expression of the inner-product in Eq. (2.2.6) shows in particular that the metric
on the space W} of dimension RV? is given by the matrix K. Similarly, the metric on the

finite-dimensional space Wy is given by the matrix KKl.

2.2.3 Discretization of RKHS with linearly spaced grids

The matrix form of the usual operations on currents introduced in the previous section
has the advantage to be simple and easily computable. However, from a computational
point of view, these operations have the complexity of p? N2 (the cost of a multiplication
by a Np-by-Np matrix). This may be a clear bottleneck when the number of nodes of A
increases (and, as we shall see below, the number of points has to increase for Wy to be a
good approximation of W*). In this section, we show how we can compute these operations
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at a cost of Np?log(N) provided that the grid is linearly spaced with periodic boundary
conditions.

Definition 2.6 (Identification vectors in RPY and image of vectors). Let A be a linearly
spaced grid of size ny x ny (in 2D d =2 and N = nyny) or of size ngy X ny X n, (in 3D
d =3 and N = nynyn.). Then, a Np dimensional vector v can be seen as an “image
of vectors”. We call here “image of vectors” an ng-by-n, (or ng-by-n,-by-n,) array whose
elements ~(i,5) (or v(i,j,k)) is a p-dimensional vector. Such images of vectors may be
stored as p matrices of size Ny X Ny (g X y X n;), one for each coordinate. We denote
these p matrices v, for 1 < k < p. And the elements of these matrices are denoted i(7)
fori=1,... N.

In the sequel, we identify the Np dimensional vectors and the n;-by-n, (ng-by-n,-by-n.)

images of vectors.

Proposition 2.7. Let A be linearly spaced grid with periodic boundary conditions® and K
a translation-invariant isotropic kernel (K (x,y) = K(|x —y|)). In this case the matriz Ka
is block-circulant. Let (k[i])1<i<p be the first p rows of Kx (k[i] is a vector of dimension
Np). If we identify Np-dimensional vectors with image of vectors, the image of vectors K|i]
may decomposed into p vectors of size N: k[i];. Then, the following equality holds for all
a € RVP:

P
(Kaa)i = Y Kli]; * o, (2.2.7)

j=1
fori=1,... p, where x denotes the usual 2D (or 3D) discrete convolutions between matri-

CESs.

Proof. First, we show that the matrix K, is block-circulant. Indeed the block (i, j) of the
matrix K, (denoted here Ky (i, j)) verifies:

Ka(i,j) = K(|2) — a}]) = K(|af — 2 ,]) = Ka(0,5 — i), (2.2.8)

since A is linearly spaced with boundary conditions.

This means that the matrix Ky is entirely determined by its first p rows k[i], each row
being a vector of dimension Np. k[i] is seen as an image of vectors: p matrices ki]; whose
element are denoted k[i];(n) forn=1,..., N.

By definition, we have:

N N
(Kaa)(j) = > K(xj,79) = > Kalj — g)ex(q) (2.2.9)

q=1

The ith coordinate of the p-by-p matrix multiplication Ka(j — ¢)a(q) is given by:
P Kk[i]s(j — @)as(q). Therefore,

p N P
(Kpa)i(j) = > > klila(j — q)as(q) = > (klils * o) () (2.2.10)
which is Eq. (2.2.7) written with coordinates. ]

2This means that the grid has the geometry of a torus: points at two opposite borders are at a distance
0 one from each other.
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This proves that Ky may be computed via p? discrete convolution of matrices with
N elements. Each discrete convolution between matrices can be computed via FFTs at a
cost O(Nlog(N)): yxv = FFT Y(FFT(y).FFT (7)) (where . denotes the element-wise
multiplication of matrices). Therefore, the total cost of the convolution between images of
vectors is O(p?N log(N)).

If the kernel is scalar and translation-invariant (i.e. K(z,y) = K(|z — y|)Id), then the
computations are even simpler. Indeed, in this case the block-circulant matrix K, (N?2p?
elements) can be reduced to a circulant matrix with N2 elements. This matrix is completely
determined by its first row k of size N which can be seen as a matrix (image of vector with
a single coordinate). Therefore,

(Kpra); =k *x oy (2.2.11)

In this case, the matrix multiplication requires only p discrete convolutions. Its com-
plexity is of O(pN log(N)), to be compared to the complexity of the direct computation
O(N?p?). Typical grids have N = (102?)3 = 10° nodes.

Besides the improvement in terms of time complexity, linearly spaced grids allow us
also to save memory. Indeed, there is no need to store the matrix K, which has p?N?2 =
2,22

znyn; elements. The computational framework depends only on the discrete Fourier

p°n
transforms of the p? matrices k of size n, xn, xn,. Due to the periodic boundary conditions,
each matrix k is symmetric. Its Fourier transform is therefore real and symmetric. It can
be stored in a matrix of size (n;/2+1) x (n,/2+1) x (n,/2) for even dimensions. Therefore
the total memory space needed to store the metric is of order p>?/N/8, to be compared to
the initial memory space of p? N2. For scalar kernel, only one matrix k needs to be stored,
thus leading to a memory space of order N/8 instead of N? for the storage of the whole

matrix Kj.

Remark 2.8. Note that due to the boundary conditions the result of the matrix com-
putation (v = Kxa) is not strictly equal to the result of the discrete convolutions, since
momenta close to a border of the grid may impact the result of v at a point close to the
opposite border. However, this has little impact on the computation as soon as the grid
borders are located at a distance much further than Ay (or the rate of decay of the kernel)
from the momenta (z;, ;). In the following, we suppose that we deal with current in Wy
which have non-zero momenta only at a distance much further than Ay from the border
of the grid. This is always possible, provided that we choose a large enough grid. O

2.2.4 The ill-posed nature of the metric on discrete currents

The purpose of introducing the spaces Wy is twofold: (1) computations in these spaces
are particularly easy and efficient, as we saw in the previous section and (2) these spaces
can be used to approximate the original continuous space W as the grid step tends to zero,
as we shall see in the next sections. However, we must be aware that the matrix K, used as
the metric in the space W, may have a bad conditioning. Here, we prove precisely that the
conditioning of this matrix becomes worse as the grid step tend to zero, thus meaning that
the inversion of the matrix K, (or, equivalently, that the deconvolution via the inversion
of the FFT of matrix k) is not possible in practice for fine grids.
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This is not surprising since the low-pass filter K, implements the regularizing opera-
tor £;V1 (which is intrinsically a convolution operator), whereas the high-pass filter KXl
implements the irregular differential operator Ly .

This ill-posed nature of the metric has two consequences. First, it explains why the
orthogonal projection of currents on the approximation space W, can not be computed in
practice (see next section). Second, it justifies the need for a robust deconvolution scheme
to implement the inversion of the matrix Ky, like the one we will introduce in Chapter 3

via matching pursuit.

Proposition 2.9. Let A be a linearly spaced grid of size ny,ny,n, (with N = ngnyn,),
with step A and with periodic boundary conditions. Let K be a scalar translation-invariant
kernel: K(z,y) = G(x —y)I, for a scalar function G and Ka the Np-by-Np matriz as in
Definition 2.5. Let k be the ng-by-n,-byn. matriz defined by:

k = {G(iA, jA, kA)}, (2.2.12)

for —(np/2) < i < ng/2, —(n,/2) < j < ny/2 and —(n./2) < k < n./2. k denotes its
discrete Fourier transform.
Then, the spectrum of the matriz K is given by the N eigenvalues l;(i,j, k), each with

multiplicity p. In particular, we have:

i3,k
Moreover, at the limit A — 0 and V = NA® — oo (the volume covered by the grid tends
to infinity), we have:
- VN . (27ri omj 27rk:)

k(i,j, k) ~ B TN (2.2.14)

where G denotes the Fourier transform of the function G.

Proof. The assumptions on the grid makes the matrix K5 a block-circulant matrix and as
such, is diagonal in a Fourier basis.
First, we notice that, since the kernel is scalar, each block (i,j) of Ky may be re-

duced to a single scalar G(x; — x;). This transforms the Np-by-Np matrix K, to

a N-by-N matrix K. If (v1,...,vx) is an eigenvector of K,, then the p vectors
(vl, 0,...,0,...,un,0,...,0), ..., (0,...,v1,...,0,... ,UN> are linearly independent eigen-
—— ——.
p elements p elements p elements p elements

vectors of K, associated with the same eigenvalue. This proves, in particular, that
i

Then, we need to solve the equation Kyv = uv for v € RN, This equation might be
written as k x v = uv provided that we identify the N = n;nyn,-dimensional vectors with
the ng-by-n,-by-n. matrices. As in Section 2.2.3, k denotes the first row of the IN{A and
is seen as a ng-by-n,-by-n, matrix. This convolution is equivalent in the Fourier domain
to kv = uv where ‘.7 denotes the element-wise multiplication of matrices. The canonical
basis of the n,-by-n,-by-n, matrices (d; ;) is solution of this equation with p = k; j

(0<i<ng, 0<l<ny, 0<k<n,). Since the Fourier transform is an isometric mapping,
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the inverse Fourier transform of the canonical basis (i.e. the Fourier basis itself) is an
orthonormal basis of eigenvectors of I~{A. Eventually, the spectrum of Ky is the N values
k(i, j, k) each one with multiplicity p. In particular, K| = (H”k k(i, ], k))p

Now, we want to give an approximation of these eigenvalues as the grid step tends to
zero and the domain covered by the grid tends to infinity. First, we notice that the first
row of the matrix I~{A is the sampling of the function G as written in Eq. (2.2.12). In one
dimension, one would have:

. 1 2in
k(n)=—= > GpA)exp(——rpn).
_N/2<p<N/2

This last expression may be seen, in the limit when A tends to zero, as the Riemann sum of
fNA/z G(t)exp(—24x =rnt/A)dt. If we suppose that the size of the grid L = N A is much

A\F NA/2
larger than Ay, then thls integral is approximately: X \F f_ G(t) exp(— ant/ A)dt =
ﬁG (2””) for NA = L. This results can be extended directly in 3D, which leads to:
- VN . [ 2ri 2nj 2nk
k(i,j, k) ~ —G . 2.2.15
(3., k) (nxA nyA’ nZA) ( )
|

If we apply this result with G the zero-mean Gaussian function with variance Ay 13, we

get:
R(z k) ~ @é 2mi 27w 2wk
" 1% ny A’ ny A n A (2.2.16)
/\3 A3/2 l/\W 2 j2 k2 o
C’—Vl/Qexp CA2 ?+n§+n7§ ,

with V' = NA3 the volume covered by the grid and C, C’ two positive numerical constants.
This shows that the conditioning number of the matrix K, (i.e. the ratio between its
largest and smallest eigenvalue) is given by:

k(0,0,0) ,/\W
~ 2.2.1
k(ny —1,ny —1,n, —1) P (C A2 ( 7

This number growths exponentially as the ratio between the grid step and the standard
deviation (A/Aw)? tends to zero, thus showing the bad conditioning of the matrix K, for
small grid steps. This prevents us from computing the inverse of K, or equivalently to
compute 1 /ﬁ(z, J, k) (required to solve the inversion problem via deconvolution). See for
instance the experiments in Section. 3.5.1.

Of course, this behavior still holds for non-Gaussian kernel. In this case, 1/, must be

replaced by the typical rate of decay of the Fourier transform of the function G.

2.3 Orthogonal projections on discrete spaces

2.3.1 What we need

In the previous section, we show how the map E;Vl can be computed efficiently on

discrete spaces of currents, using the multiplication by the matrix K, or the convolutions
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by FFT for linearly-spaced grid with periodic boundary conditions. This operation is
represented in Fig. 2.2 by an arrow between the space of discrete currents Wy and the

space of discrete vector fields Wjy.

Now, the question is to know how to use these discrete spaces of currents to approximate
the usual operations on currents. By usual operations on currents, we mean for instance the
action of a current on a vector field T'(w), the norm of a current ||T||%,V, the inner-product

between two currents (T',7'),,.. Let us take the norm of the current as the prototype
N

example of such operations. Let 7' = }_ 097 be a generic current in W* with a finite
i=1

number of momenta given in continuous coordinates (this current is in the upper-right

corner in Fig. 2.2).

The exact computation of the norm requires to compute the vector field associated to

N
T: y(z) = Ly} (T)(z) = 3 K(,2;)ey (which is on the upper-left corner in Fig. 2.2) at the
]
? , N
arbitrary positions z;. Then, the norm is given as: || T = Y v(z;) .
i=1

To take advantage of the fast computations in the discrete spaces, we project the current
T € W* into a finite-dimensional space W (from the upper-right to the bottom-right corner
in Fig. 2.2). This leads to a Np-dimensional vector acy. Then we compute the associated
vector field in W via FFT (from the bottom-right to the bottom-left corner of Fig. 2.2):
~a = Kap. A this point, two options are possible: (1) we compute the norm directly in the
discrete spaces as iy, or (2) we interpolate the samples on grid nodes v, at the initial

positions z; (from the bottom-left to the upper-left corner in Fig. 2.2). This leads to 5(z;)

and we compute the norm as: g: () ;.
i=1

At the first glance, the first solution seems much simpler. However, a precise discussion
of these two options in Section 2.5.1 will reveal that this is not always the case. Anyway,
this shows that for defining a complete computational framework, we need to define first
a projection from the continuous space of currents to the discrete space of currents and,
second, an interpolation scheme which can reconstruct a dense vector field from samples on
grid nodes. One remarks that the vector field in the RKHS W are intrinsically band-limited.
Therefore, Shannon theorem shows that such a reconstruction scheme can be defined for

fine enough grids.

In this section, we investigate the orthogonal projections from continuous to discrete
spaces. We will show that, theoretically, the projected currents converge to their initial
value as the grid step tends to zero, thus showing the potential of discrete spaces to be used
as approximation spaces. However, this operation is ill-posed from a numerical point of
view. This will require to investigate alternative strategies in the forthcoming section. We
will also show the orthogonal projection of random Gaussian currents on discrete spaces
have a probability density function, a key feature for defining statistics on currents in the

next chapters.
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Figure 2.2: Global picture of the computational framework for approximating operations
on currents. This framework is based on projections from continuous to discrete spaces:
IT5 for vector field and II} for currents, as well as reconstruction formula to define a dense
vector field from samples on grid nodes (‘7" arrow). Using the orthogonal projections is
possible theoretically but suffer from the ill-posed nature of the matrix K, from a numerical
point of view. Indeed, whereas the orthogonal projection for vector fields (I1,) is simply
the sampling of the dense vector field on grid nodes, the orthogonal projection for currents
IT} is equal to le oIl O£17Vl which is ill-posed because of K—!. Other projection methods

need to be investigated. (dashed lines correspond to ill-posed or non-defined operations)

2.3.2 Projection of currents and vector fields

Let T be a generic current in W*. Our purpose is to give an approximation of 7" by a
current 7* in W} whose momenta are located at the grid nodes (i.e. which is characterized
by a Np-dimensional vector ). By isometry, this give an approximation of a generic vector
field v in W by a vector field v* in W, which is completely determined by its samples at
the grid nodes: v = {v(x;) }iea.

Since W is a closed subspace of W, the best approximation (in the sense of the norm
in W) is given by the orthogonal projection of v on Wy (and the orthogonal projection of

T on W}). First, we give a characterization of the orthogonal space Wj-.
1
Proposition 2.10. Let Wi be the orthogonal space of Wa in W: W = Wy @& Wi-. Then,
Wi ={yeW; VzecA () =0} (2.3.1)

Proof. 1f v € Wi, then it is orthogonal to every vector field of the form K (x,.)a. There-
fore, for all x € A and all a € R?,

(7, K (2, )y = y(x)'a =0, (23.2)
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and then y(z) = 0.

Conversely, if y(z) = 0 for all € A, then the same equation shows that 7 is orthogonal
to every K(z,.)a (x € A). Since W} is the closed span of such vectors, we get the result
by density. [ |

Corollary 2.11. Let v be dense vector field in W, ¥» its orthogonal projection on W and
~ its sampling at the points of A (i.e. v = {y(x;)}ica a vector of dimension Np). Then,
A is equal to:
FAMz) = ZK(x,xi)ozi, (2.3.3)
€A

where the concatenation of the vectors a; form a Np-dimensional vector o which satisfies:
a=K 'y (2.3.4)
In particular, for all x; € A, () = v(x;).

Proof. By construction, the dense vector field v verifies ¥ (x) = ~(x) for every point
x in A. Therefore v — 4" vanishes on A and then belongs to Wi-. We get the result by
uniqueness of the decomposition on two orthogonal spaces. |

This corollary shows that computing 7*(z) at the grid nodes is very easy: one needs
to sample v at the grid nodes (this is the implementation of the projection II5 in Fig. 2.2)
and that computing 7™ (z) at an arbitrary point requires to compute the momenta a by
inverting the matrix K: this computation is not possible numerically (this would be the

implementation of the ‘?’ arrow in Fig. 2.2).

Corollary 2.12. Let T be a current in W* and T? its orthogonal projection on Wx. Let
v = 617[,1 (T) be a dense vector field in W and - its sampling on the points in A. Then,

T = 62, (2.3.5)

icA
where the concatenation of the vectors ay; form a Np-dimensional vector o which satisfies:

a=K'y (2.3.6)

Proof. Since Ly is an isometric mapping, E;VI(TA) € Wy is the orthogonal projection of
E;[,l (T') € W on Wy. Then, we apply the previous result. [ ]

This corollary shows that the orthogonal projection in the space of currents (denotes
IT} in Fig. 2.2) is equal to KXl ollpo [,I},l and therefore is ill-posed numerically due to the
bad-conditioning of the matrix K, (although the computation of the vector - can be done
via discrete convolution).

These results show that we need to find alternative numerical scheme both to estimate
the momenta of T* and to reconstruct a dense vector field from its samples at the points
of A. Beforehand, we will show that the orthogonal projections converge to the original
object in W or W* when the sampling of the grid tends to zero. This will prove that the
discrete spaces W can be used to approximate the currents and the vector fields at any
desired accuracy. We will use two norms: the norm W and the L*°-norm.
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Definition 2.13. Let (A,)n>0 be a sequence of finite sets of points of RY. We say that such
a sequence is an acceptable sequence if for every point x € R?, there is a sequence x, € A,
such that |x — 2] —— 0

n—00

This definition establishes the conditions under which we can say that the points of the
sets A,, become dense in R%. It is possible to build such an acceptable sequence: let A,
be linearly spaced grid whose step tends to zero (A, = A/2") and whose borders tend to

infinity in every direction.

Proposition 2.14. Let A,, be an acceptable sequence of finite sets of points of R% in the
sense of Definition 2.183.

Let W be a RKHS of continuous mappings from R? to RP which tends to zero at infinity
and such that |||l < Cw |[Vlly- We assume also that the kernel K is continuous on
R? x R?. Let v € W and v, the orthogonal projection of v on A,,. Then:

1y =l =0
(2.3.7)
Iy =l 7520

Proof. First, we show that 7, (z) converge to v(x) for all . Let z,, € A, be a sequence
converging to x. By definition of the orthogonal projection on Wy, , v (2n) = v(2,). This
implies:

(@) = ()] < V(@) = v(@n)] + [yn(@n) — 0 (2)]
Since vy is continuous, the first term tends to zeros as n tends to infinity. The second
term satisfies:

(@) = ()| < sup [(yn, K(, @) = K(, 2n) )y |

lal=1

< vllw sup [[K(,2)e = K(, zn)elly (2.3.8)

|a]=1
1/2
< Il (1 (@ 20) = K, 2)]5 + 1K (20, 20) = K @n, o))

where we used the fact that ||y, |y < ||v]l, (orthogonal projection) and we denoted |[.|,
the spectral norm of matrices. Since K is continuous on R? x R¢ this last expression tends
also to 0 when n — co. This shows the point-wise convergence.

Now, if «y is of the form v = Zle K(.,z;)a;, then

Iy =l = (7 = o) = Zai(v(m) — Yu (1))

which tends to zero thanks to the point-wise convergence. Let + be arbitrary in W, by

density there is a sequence of 4P € W which are finite linear combinations of vector fields

of the form K(.,z%)a? such that ||y —~P|l;; —— 0. Let P, denotes the orthogonal
p—00

K2

projection on Wh, :

17 = llw < v =" llw + 177 = Pa(3P)llw + 1P (¥7) = Pa(W)llw

(2.3.9)
<2y =Pl + 17" = P ()l
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Let’s choose p such that ||y —~P||y;, < e/4. Then, we choose n such that |77 — P, (v7)]|};, <
€/2 (thanks to the previous result, P,(y?) tend to 7P for all p). This proves that
I = Ynllyy < € and therefore the convergence for the norm W.

Eventually, since ||y —vnll.. < Cw |7 — Ynllyy, the convergence still holds for the L

norm. |

This proof is rather general since it does not make any assumptions on the form of the
vector field v € W. This makes also difficult the estimation of a speed of convergence. By
contrast, if we assume that 7 is parameterized by a finite number of momenta (as the most
common case in practice), then we will show in the next section that the speed of conver-
gence is at least polynomial. Indeed, we will show a polynomial speed of convergence for a
suboptimal projection on discrete spaces in Prop. 2.19 and 2.20 (the orthogonal projection

being the projection which minimizes the projection error).

2.3.3 Trace of random Gaussian currents on discrete spaces

In Section 1.5.3, we defined random Gaussian currents via a mapping X* between the
space of vector field W to a Gauss space G. This function maps a vector field to a real
random Gaussian variable instead of a real number like for a deterministic current. These
random Gaussian currents have no probability density functions in infinite dimension. It
is therefore particularly difficult to simulate such currents and to use it in a statistical
framework, which usually requires the use of the likelihood of a random variable.

In this section, we use the orthogonal projections to show that the restriction of the
map X* to our discrete spaces Wy converge to the initial random variable as the grid A
becomes finer and finer. Moreover, we show that this projected random variables are of
finite-dimension and, as such, admit a probability density function.

First, we define X} by the restriction of X* to Wjy.

Definition 2.15. Let X* be the mapping as in Definition 1.30. Let X be the mapping
from W to the Gauss space G defined by:

YweW, Xiw)=X"Ilw,(w)), (2.3.10)
where Iy, denotes the orthogonal projection on Wh.

Thanks to this definition, X} coincides with X™* on W, and is equal to 0 almost surely

on W/{- We can now prove the following convergence result:

Proposition 2.16. Let A,, be an acceptable sequence of finite sets of points of R as in
Definition 2.13. Let W* a Gaussian random current as in Definition 1.30 and W} as in
Definition 2.15. Then, for all w € W:

E ((X*(w) — X} (w))*) —— 0. (2.3.11)

n—-oQ

Proof. By definition of X} , we have:

E((X*(w) - X} (@))?) =E (X* (e (w))z) — s (W)va* (2.3.12)
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This last expression tends to zero as n tends to infinity by application of Proposition 2.14.
|

Moreover, we state now that the random Gaussian current X3 is a finite dimensional

random Gaussian process which admits a probability density function.

Proposition 2.17. Let A be a finite set of points of RY and X} the random Gaussian

current as in Definition 2.15. Then,
Xi=) o, (2.3.13)
icA
where the concatenation of the vectors a; (denoted o) is a Np-dimensional Gaussian vector:

a~N(0,K;"). (2.3.14)

Proof. We denote (ex)k=1,...p the canonical basis of RP. Let w € W be parametrized by

the momenta a: w =Y, K(x;,.)a;. Then, by linearity of X}, we verify that:

Xi(w) = X} (Z K (z;, .)ozi)
€A

=33 Xi (K (@i, Jen)al

€A k=1

i€EA

(2.3.15)

_ Lt
=X o,

where x is a Np-dimensional random vectors which results of the concatenation of the
Gaussian variables: X3 (K (x;,.)er). To make explicit the linear dependency of this last
expression with respect to w, we introduce v = Kpa which is such that v; = w(x;) for all
i € A. We have therefore:

Xi(w) =x'a= (Ki'x)'~

= Ki! t.wsci
ieZA( &)l (2.3.16)

=)

HISHN
This last equality still holds for w € Wi (both terms equal 0). We have:
K71
Xi = Zaﬁi A1), (2.3.17)
1€EN
Moreover, thanks to the definition of X*, the random vector x is zero-mean and has
K as covariance matrix. Indeed,

E(GXG") = B(X* (K (i, )en) X (K (25, )em)) = K (@i, %) nm- (2.3.18)

Therefore, lex has the covariance matrix leKAle = le. However, since the
components of the vector lex are not independent, this does not prove that it is a

Gaussian vector. To show this fact, we shall prove that x = K/_\l/ 2x is vector of independent
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normal variables. This will imply that KXIX = le/ 25’( follows a Gaussian distribution
as a linear combination of independent Gaussian variables. Indeed, by linearity of X*, we
have:

N N

Xt =D K = X DO K (g e | (2:3.19)
j=1 j=1

This proves that every component of x is a Gaussian variable. Moreover, a simple compu-
tation shows that:

—1/2_ \n/g—1/2_ \m —1/2\nn' (ge—1/2ymm’ n' . m’
E (K 200K00) = Y0 K L R X )
i3t mt,m! (2.3.20)

(K2 PKaKM?) =66 = )d(n —m).

)

This shows that the Gaussian variables X are independent. As a consequence, KXlx

follows the multivariate Gaussian distribution with zero mean and covariance le. |

This proposition shows that the random Gaussian current X can be identified with
a random Gaussian vector of momenta a. We can therefore define the likelihood of the
current X x, p(Xy) as the likelihood of the momenta o:

tK X* 2 .
p(X}3) = pla) x exp (—(12/\(1) = exp (—HA2”W) , (2.3.21)

where ‘o<’ means “proportional to”. As expected, the log-likelihood of a Gaussian random
current is proportional to the squared norm of the current (up to a fixed constant). This
likelihood is of great interest to estimate statistics on currents as we will show in Chapter 5.

We notice that the direct simulation of such random currents is not possible due to
the bad conditioning of the matrix K, for fine grids. However, the robust implementation
of the map Ly introduced in the next chapter (Chapter 3) will enable the simulation of
Gaussian currents, as we will show in Section 3.5).

Remark 2.18. As mentioned already in Section 1.5.3, the variance of the Gaussian currents
are completely determined by the kernel KW. In particular, scaling the kernel K" into
J%,VK W enables to adjust the magnitude to the variance of the Gaussian currents. In the

discrete space, this allows us to write the likelihood of the discrete Gaussian currents as:
(BN

- zgng

statistical models on currents. [

exp ( ) This general form of the likelihood will be used in Chapter 5 to estimate

2.4 Discrete approximation of currents and vector fields
In this section, we propose first an alternative way to compute the projection from the

continuous space of currents W* to the discrete space Wy for a grid A and, second, an
interpolation scheme which reconstruct a dense vector field from its sample on grid nodes.
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2.4.1 Closest neighbors projections of currents

In this section, we propose to project a current T into Wy, in a way which does not
require to inverse the matrix K, contrary to the orthogonal projection. This approach is
sub-optimal since the orthogonal projection is the best approximation of T by a current in
Wy in the sense of the W-norm. However, we will show in the sequel that the approximation
error still converges to zero as the grid becomes finer and finer. We also provide the speed
of convergence.

In this section, we suppose that T" has a finite number of momenta and therefore of the
form T = Zle 65)5 This is the case if T is the approximation of a mesh or a polygonal
lines in the sense of proposition 1.11. We denote M(T') = 3", |5x| the mass norm of T as
shown in Proposition 1.12. We denote A a linearly spaced grid, so that all points y; are at
a distance much further than Ay, from the grid borders.

We propose two numerical schemes: a closest neighbor approach which project every
momentum at the closest node of the grid and a partial volume projection (PVP) which

project the momentum at every surrounding nodes.

2.4.1.1 Closest neighbor projection

We denote 7 (yx) the grid node which is the closest to the point y,. Then we define
T = Dok 55 i ()" The following proposition suggests that the convergence of T to T as the
grid step tends to zero has the speed at least of order A/Ay,, where Ay is the “rate of
decay” of the kernel (the standard deviation of a Gaussian kernel, for instance). The more

“flat” the kernel at 0, the faster the convergence.

Proposition 2.19. Let K be a translation-invariant scalar kernel (K(x,y) = g (%) 1d)
and p the smallest integer such that the pth derivative of g at zero (a p-covariant tensor
denoted d(()p)g) is non null. Then in the limit A — 0,

B 1/2 A P/2
HT—TH < CM(T) ‘dff’)g‘ <) AP/, (2.4.1)
W= >\W

and this upper-bound is optimal.

Proof. We have in the limit A — 0:
-7
— <
-7l < Sl -

szkjwu?a‘g(())_g(?m(yk)—yk)‘

Aw

B B
5B — g

2
A (Yk) ‘

2 @ ((7aYr) — Yk A (Yr) — yk) ‘
< E 2C' |d, ey 2.4.2
- |/8k?| 0 g( )\W )\W ( )
_ P
<[ag] 7rA(y)l\cv)v Yi

< OM(1)?|df'g| (ﬁv)p,
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where the norm of the tensor is defined as ‘dép)g‘ = sup ‘d(()p)g(ul, ceUp)l
Jui|<1
If T has only one momenta located at point y. We can choose the grid such that

y is at the center of a mesh of the grid, so that |y —xz| = A/2. Let T = 55. Then,
. 112

T = 62 and HT - THW = 218)° |g(0) — g(x — y)| which is asymptotically equivalent to
2/p!M(T)? |k®)(0)| AP. [ |

For a Gaussian kernel, we have g(z) = exp(— |z|*) and p = 2 (i.e. only the first derivative

at zero is null), therefore,

fr-l,,. <coum2

2.4.1.2 Partial Volume Projection (PVP)

Instead of a closest neighbor approach, we can project the momenta (yx,Sx) at the
surrounding nodes (8 nodes in dimension 3) so that the partial volume interpolation (PVT)
of these momenta retrieves the value B; at point y;. We call this inverse operation of the
PPI, the partial volume projection (PVP). We recall that if f; is the sampling of a function
f on the grid nodes, then the partial volume interpolation inside this voxel has the form?:

fle)y="Y_ pi@)fi,
i€V (x)
where V(z) denotes the set of surrounding nodes of point z. The interpolating functions

pi(x) satisfies two important properties:
* DicvimPilr) =1
¢ ZiEV(m) pi(z)(z —x;) =0
The partial volume projection of the momentum (yy, Sx) consists in adding the momenta

(7% (yx), pi(yx) Br) at each nodes 7 (yx) € V(yx) around the point yi. Therefore, the new

approximation of T is written as:
7 _ pi(Yr)Br
PeY Y e
k7wt (yk) €V (yx)
The following proposition shows that the speed of convergence is the same than for the

closest neighbor procedure. However, we will show below than the error measured with the

L*>°-norm (i.e. the numerical error) is smaller for the PVP.

Proposition 2.20. Let K be a translation-invariant scalar kernel (K(x,y) =g (ﬁ\—;vy) 1d)
and p the smallest integer such that the pth derivative of g at zero (a p-covariant tensor
denoted d(()p)g) is non null. Then in the limit A — 0,

_ 1/2 A p/2
I7 =7l < cpeas] " () (243)

and this upper-bound is optimal.

3In 1D, a point z have two neighbors: z4 and x_ and we have the interpolating formula: f(z) =

xi_z”c_i fr 4+ 2= f so that py(z) = (z — xz_)/A and p_(z) = (x4 — x)/A. This formula can be

ry —x_

extended easily in 3D: the point x divides the cube delimited by the 8 neighboring nodes into 8 sub-volumes
and p;(x) is equal to the sub-volume opposite to the node i divided by A3
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Proof. Since ), pi(x) = 1, we have:

1T =Tl <D0 D o —gn
* = T (YK
k| )V () *

< Zk: S i) 1] \/2 (9(0) g (WA(W)) (2.4.4)

)
i (yr)EV (yk) W

1/2 AP/2

2
W

<CY 18|y
k

Similar arguments than for the closest neighbor approach show that we cannot expect a
speed of convergence better than |k(1’)(0)|1/2 AP/2 in a general setting. |

For a Gaussian kernel, we have:

_ A
IT—T|,. < C’M(T)E (2.4.5)

2.4.1.3 Convergence in L{-norm

Once the momenta have been projected on the grid nodes, the resulting currents T and
T belong to W}. We can use then discrete convolution to compute the images of vectors 7
and 4 which correspond to the sampling of the dense vector fields £y (T) and Ly} (T) at
the grid nodes.

In this section, we want measure the numerical precision of the vectors v and 4 compared
to the true value v = {L;;} (T)(z;) }ica. For this purpose, we introduce the L3-norm defined
by:

HT—T*HM = sup | L1 (T - T)(2)|, (2.4.6)

zEA
which correspond to the infinity norm between the Np-dimensional vectors ~.
In particular, we show that both approximations converges for the L{°-norm. However,
the speed of convergence is one order better for the PVP approach than for the closest
neighbor approach.

Proposition 2.21. Let K be a translation-invariant scalar kernel K(z,y) = g((z —
y)/Aw)Id with g a scalar function such that the pth derivative dBg (seen as a p-covariant
tensor) is uniformly bounded* (sup sup dép)g(ul, cee up)‘ < Cte).

z€RY |u;|<1

We have then,

T A
o] zemms

o |[T7-T|_, < CM(T)%

where C is a numerical constant independent of T', Ay and the grid. This upper-bounds

are optimal.

4Notice that the Gaussian kernel for which g(z) = exp(— |¢|®) satisfies these conditions.
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Lemma 2.22. Let f, , ./ (t) be the function:

r—y y—y
T /t: _— ti’
f,yﬂ/() 9()\ + b\ )

fort €[0,1]. Then, in the limit |y —y'| — 0:

£ 0] = ekl

z,y,y’

® SUD,cRa

® SUPzeRr4 te(0,1] |Jz,y,y V| = DY

f,(P) (t)‘ < C|y7y"P

where C' denotes a generic constant which does not depend either on x,y,y’, or on A\ .

Proof of Lemma 2.22. The pth derivative of the function f is given by:

y—vy y—y

Y h\
W v , (2.4.7)
_ Y-y (p) y—y Y-y
=|=—= d&g Ty ik
Aw ly — /| ly — o]

where & = % +t%. Since the differential of g is supposed to be uniformly bounded we

have:
») Y — /|P
Faryy (0)’ < ‘ - suﬂsd |s1‘1p1 ‘d;p)g(u, e ,u)‘
e ul=
- (2.4.8)
<[] |57
- o | Aw

Similarly, since only & depends on ¢ in the upper-bound in Eq. (2.4.7), we also have:

/|P

sup
te0,1]

(2.4.9)

) <o, |152
Fowy O] < ||d7g|| py

Proof of Proposition 2.21. Now, we can prove the proposition 2.21. We recall that
=3, 55;’ and T = > 5ﬁi(yp) where 74 (y,) is the closest node to y,. We have then:

|r =7, < 18l swp 1K) — K, ma o) (2.4.10)
oo, P x

With the notations of the lemma 2.22: | K (z,yp) — K(z, 7ma(Yp))] =
f%0)+-ﬂ;f”(ﬂ(l——ﬂdtw<Andth61nnﬁmn1boundsof

|fI77TA (Yp)syp (1) - fmﬁ"/\(yp)ﬂp (0)| =
the lemma 2.22 imply that:

_ _ 2 2
sup | K (z,,) — K (z, 75 (y,))| = wa w < CA—kO <A2>
TEA AW /\W AW AW

(2.4.11)
This leads to:

[r-1_ semmvo (fw)
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and HT — TH R is asymptotically equivalent to this upper-bound when T has a single
o0,
momentum.

Using tri-linear interpolation instead of closest neighbor projection leads to:

T=3 X amumr

p ﬂ—j\(yp)ev(yp)

Since >, pi(yp) = 1, we have:

HT - T“oo,A < Z |6p| :gg Z pi(yp)(K(xayp) - K(xvﬂjx(yp)))

i€V (yp)

< Z |8y SIGII/)\ Zpi(yp)f;yp,ﬂj\(yp)(o)Jr
P v i

1
5 Zpi(yp)f;/’ypm/i\(yp) Z pi yp / ;Hyp “A(yp)( )(1 N t>2dt
(2.4.12)

However, by linearity of the differential,

Yo 0y O = dowg | D pilyp) (e — Th(vp)) | =0,

eV (yp) W i€V (yp)

=0

so that the first term of the upper-bound of Eq. (2.4.12) is null. This allows us to have a
better precision than the closest neighbor projection. More precisely, thanks to the uniform

upper-bounds proved in lemma 2.22, we get that the next two terms are bounded by:

A3 A? A3
2, Zp’yp o =) +O< ><CA2 +O<A3>

and eventually:

- A? A3
|7 =T < OO +0 (57 )

2.4.2 Reconstruction of dense vector fields

In the previous section, we showed how grids can be used to project a current 7 on
a finite-dimensional approximation space Wj. On such a space, the usual operations on
currents can be performed efficiently via discrete convolutions and FFTs.

In particular, we saw how to approximate the samples of the vector field E;VI(T) at the
grid nodes (i.e. approximating the Np dimensional vectors v by 4 or 7). We still need to
propose an interpolation scheme to reconstruct a dense vector field from the samples 5 or
4 and to show that the reconstructed dense vector field is a good approximation of the true
vector field Ly} (T).
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Here, we propose two interpolation schemes: () is a piecewise constant interpolation
of the samples 4 and 7(z) a partial volume interpolation of the samples 4. The following
property determines the speed of convergence of such reconstructed vector fields to the true
v = Ly (T) for the L>®-norm.

Definition 2.23. For any point x in the convex hull of the grid A, we denote mp(x) the
grid node closest to x and V(z) = {w}‘\(x)}i:h_gd the set of nodes surrounding point x.

Let T = 255;’ be a generic current in T, we denote T = Z(SB‘” ) and T =

S>> 5’” yyp)ﬂ” the approximations of T by the closest neighbor appmach and the PVP
P i€V (yp) malvr)
approach respectively (as defined in the previous section).

Let y be a point in the conver hull of the grid, then we define ¥ and 7y by:

F(y) = 3(ma(y)),
Yy = Y e@AE W), (2.4.13)

where the values of 4 at grid nodes has been computed as {¥(x;)}ien = = KAB where
B is Np-dimensional vectors corresponding the momenta of T and the values of ¥ as:
{7(xi) }ien = 7 = KaB where B is Np-dimensional vectors corresponding the momenta

of T (involving the coefficients p;).

Remark 2.24. These formula define 4 and ¥ only inside the domain delimited by the grid.
At this point, we can consider either that the grid is an infinite 3D lattice, or that these
vectors fields are equal to 0 outside the domain delimited by the grid. In this last case, we
assume that the grid borders are far enough from the momenta of T' so that v = £‘7V1 (T)
is smaller than any positive constant outside the domain delimited by the grid. Therefore
the values of v(x) outside the grid do not impact the speed of convergence proved in the

following proposition. [

Remark 2.25. The construction of the dense vector field can be written also as:

= Z f{(xa Yp)Bp
V(x) = Z K(2,y,)Bp

(2.4.14)

where K and K are two approximations of the kernel K defined by:

K(z,y) = K(ma(2), m(y))
Kay) =3 3 p@KE(@),m )y (2.4.15)

1€V(z) jeV (y)

for any point z, y. Kisa piecewise constant approximation of K and K a piecewise linear
approximation of the kernel.

Compared to the exact formula ~v(z) = Zp K(z,yp)Bp, these expressions show that
the approximated kernels implement an approximation of the mapping E;Vl. This can be
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written:

(2.4.16)

We can now prove that the partial volume approach converges at a faster rate than the

closest neighbor strategy:

Proposition 2.26. With the notations of the definition 2.23 and under the same assump-

tions as in Proposition 2.21,

- A
sup  |y(2) = ¥(2)| < CM(T)
z€Conv(A) w
A (2.4.17)
s fy(w) = 3()| < CM(T) 51,
z€Conv(A) w
where Conv(A) denotes the convex hull of the grid A (see Remark 2.24).
Proof. The proof uses the bounds of lemma 2.22. More precisely, one has:
() = 3@ < D 1Bl 1K (9, yp) = K(waly), malyp)] (2.4.18)
p
We  bound the absolute value by: K (y,yp) — K(ma(y),yp)| +
|K(7TA( ) Yp) — K(ﬂ-/\(y)vrzﬂ-/\(yp)”' Thanks to lemma 2.22, [K(y,yp) — K(7a(y),yp)| =
clyi=mal “ vl 4o w , and since sup,cga [y — mA(y)| ~ A inside the convex hull of

the grld this shows that the first term is asymptotlcally equivalent to A/Ay. The second
term is bounded by C ly”_;ré‘v(yp o) ‘U’“_;’%V(y”)l ) This upper bound is independent of y

and is equivalent to A/Ay. Then, similar computations as in the proof of Proposition 2.21

achieve the proof.

For the partial volume interpolation, one has:

W) =3I <D 18I D D pilw) (K(y,yp) - K(WR(@/)mi(yp))) p;(yp)

1€V (y) €V (yp)
(2.4.19)

However,

Zpi(y) (K(ywp) — K (i (y), ™ (up) ) P (Up) sz K(y,yp) — K(7y (1), p)) £ (yp)

sz ( ), yp) — K(WR(y)mi(yp)))pj(yp) (2.4.20)

Since Y pi(y)(y - Th(1)) = 0 (resp. 3 p;(u)(yp — h(yp)) = 0) the first term of
i€V (y) JEV (yp)
the Taylor expansion of the first (resp. second) absolute value is null. Therefore, the

first absolute value is of order |y — W}\(y)|2 /A%,. The supremum with respect to y is
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then of order A%/A%,. The second absolute value does not depend on y and is of order

, 2
yp — A (Yp)| /A% ~ A%/X4.. We conclude with the same arguments as in the proof of

Proposition 2.21. |

Remark 2.27. Note that the reconstructed dense vector fields 4 and 4 do not belong to
W. Therefore, it does not make sense to compare these approximations with the norm W.
O

Remark 2.28 (Higher-order interpolation). In this section, we used piecewise constant
and piecewise linear interpolation method, as well as an inverse method to distribute the
momentum at the grid nodes. The first one uses B-splines of order 0 and lead to an
approximation error of A/Ay. The second one uses B-splines of order 1 and lead to
an approximation error of A%/)\?%,. Using other interpolating functions of greater order
must lead to smaller approximation errors, namely of order A™/A™ for n greater than 2.
See [Thévenaz 2000, Meijering 2002] for surveys of interpolation methods and approxima-
tion theory. [

2.5 Approximation spaces in practice

Figure 2.3 summarizes what we have done so far. In Section 2.2, we introduced approx-
imation spaces of vector fields W, (bottom-left corner in Fig. 2.3) and their corresponding
approximation spaces of currents W3 (bottom-right corner in Fig. 2.3). We showed in
particular that the mapping Eavl can be computed in such spaces thanks to discrete con-
volutions. In Section 2.3, we showed that the orthogonal projection from the continuous
space of vector fields (W) to the discrete space of vector fields (W) consists simply in the
sampling of the vector field. The orthogonal projection in the spaces of currents, however, is
not stable numerically. Then, in Section 2.4.1, we proposed instead to use a partial volume
projection (PVP) to project any general currents in W* to the approximation space Wy
and prove the convergence to this projection when the grid step tends to zero. Eventually,
in Section 2.4.2 we introduced an interpolation scheme which allows us to reconstruct a
dense vector field from their samples on the grid nodes (inverse operation of the sampling).
We showed that the succession of the projection, the convolution and the interpolation is
an approximation of the map /.:;VI which implies a numerical error of order A?/\%,, where
A is the step of the grid and Ay the “rate of decay” of the kernel.

In this section, we show how this numerical framework can used to implement efficiently

usual operations on currents.

2.5.1 How to compute usual operations on currents

We illustrate the use of the discrete approximations for the computation of the inner-
product between two currents. This operation is the core of many algorithms, such as the
computation of a fidelity-to-data term in the context of registration or the computation of

the correlations between principal modes of a set of currents and each instance, for instance.
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vector fields currents
w*

Jl?._

continuous
spaces

h Y
+-
sampling interpolation pI'OlJ:(\a”(itlon
(= orthogonal (PVI) (PVP)
projection)

deconvolution

discrete
spaces

convolution - i
k %
W ) Wi

Figure 2.3: Global picture of the numerical framework proposed in this chapter. On the

top row, continuous space of currents and vectors fields correspond via the map Ly and
E‘jvl. On the bottom row, linearly spaced grids define discrete approximation spaces of
currents and vector field. The implementation of the map E;Vl in this discrete setting can
be reduced to a convolution problem. The inversion of this map in the discrete like in the
continuous domain is ill-posed numerically. To map the continuous space to the discrete
space, we use the orthogonal projection from W to Wy (which is equivalent to the sampling
of the vector field) and a partial volume procedure to map the continuous space of currents
to its discrete counterpart (Partial Volume Projection) and to map the discrete space of
vector field to its continuous counterpart (Partial Volume Interpolation).

Given two currents T' = vajl dyi and U = Z;‘V:B1 65; , there are least three ways to

compute the inner-product (T, U).:
1. the exact computation with the double summation,

2. approximating T and U by T and U respectively and approximating (T,U Y by
(7,0,

3. approximating the vector field associated to T" by 7(x) and approximating (U, T) ;. =
Ng
ULy (T) by UMW) = X 7(w;)'B;-
]:

In the following, we compare the advantages and drawbacks of each method. In particular,
we compare the approximation error, the time complexity and the space complexity (i.e.
the memory needed to store the data) of each approach. Note that we use always the partial
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volume projection instead of the closest neighbor approach since it enables to achieve the
highest speed of convergence.
2.5.1.1 Solution #1: exact computation

We can use the analytical formula:

N, Ng

(T U)o =D BIK(y;, wi)cu (2.5.1)

i=1 j=1

The time complexity of this computation is equal to N,Ng. It requires to store only
the list of momenta of both currents. The space complexity is of No + Ng.

2.5.1.2 Solution #2: approximating both currents

We set a grid A such that the grid borders are much further than Ay from the data
points (z;) and (y;) and such that A/Ay is small (typically 0.2). Then, we follow the steps:

1. project the momenta (x;, ;) on the grid to give T stored as the image of vectors &,
2. project the momenta (y;, 5;) on the grid to give U, stored as the image of vectors 3,
3. compute the convolution k x & to give the image of vectors 4,

4. compute 4'3 (as vectors of dimension Np).

The result is BtKAd = <U, T>W* which is an approximation of (U, Ty,

The speed of convergence of this approximation is given by:

U, T) . —(U.Thy.| < |(U-UT),,.|+{UT-T),, (2.5.2)
The first term is bounded by:
— — NO(
(T, U-T),.|= > Lyt U = O)(rh () i)
i=1 keV (z;)
(2.5.3)
Y e ol sup | £ (U = D) (e)
i=1 keV(x;)
=MD ||[U = 0| 5

Moreover, the mass-norm satisfies M (T) < M(T). Indeed,

M(T)= ), > Pr(Ti)o

zheA {i; Elk:,ﬂ'X(Ii)::E%}

2 ) pr(wi) |ovi] (2.5.4)

zheA {i; Hk,ﬂ'ﬁ(zi):zﬁ}

=3 > el sl = 2(1)

zi keV(x;)

IN
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Therefore the first term of the upper-bound in Eq. (2.5.2) is bounded by:
M(T) ||U - UHOC - Thanks to Proposition 2.21, this term is of order O(A? /A, ).
Similarly, the second term of the upper-bound in Eq. (2.5.2) is bounded by:

Ng
(UT =T)yp| = D L (T = T)(y)' 55
j=1
N, (2.5.5)
<> 18l sup Lo (T = T)(2)| = M(U) | T - T
=1

For the eight-neighbor interpolation scheme, Proposition 2.26 shows that HT — THOO is of
order O (AATQ)
w

Eventually, the speed of convergence is given by:

(U, T) . — (U T)y-

< (M) 0 =0 + M) |7~ T)..)
A2 (2.5.6)

< C(M(T) + M(U) 55

Remark 2.29. We bound the inner-product between two currents T and T” by:

| <Ta T/>W*

< M(T) | T » (2.5.7)

instead of
(T, T )yl < NT Ny 1T Mgy - (2.5.8)

The first inequality (which is true only if the current T has a finite number of momenta)
is more precise than the second inequality. Indeed, we have for generic currents |77 <
C 1Ty

Actually, measuring the approximation error with the W-norm instead of the L>°-norm
leads to a speed of convergence of A/Ay only (instead of A%/\%,). O

2.5.1.3 Solution £3: approximating the dual representation of one current

As the computations of the speed of convergence of the previous case suggest, projecting
both currents on grids is not the most natural idea. A much simpler idea in the framework

of currents is to write:
Npg
(T,U)yy = ULy (1) =D Biv(yy) (2.5.9)
j=1

_ N,
where v(y;) = Ly (T)(y;) = 302 K (yj, 25) i
In this expression, the vector field v could be approximated thanks to the scheme intro-

duced in Section 2.4.2. This leads to the following computations:
1. project the momenta of T: (x;, ;) on the grid nodes to give the image of vector &,
2. compute ¥ =k * &,

3. interpolate the values of 4 at points y; to give ¥(y;),
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Juti numerical space time
solution
error complexity complexity
1: E
bi: Exact 0 N+ Nj NoNj
computation
#2: Approx. (M(T) + M(U))ATQ ON, iy Ngria log(Ngria)
two currents Aw e +Ngria + No + Ng
#3: Using rep. 2
vector field M(U)AATW Neria Nerialog(Ngria) + No + Na
d d
t4: FQT epends on Na + Nj Na + Nj
point distrib.

Table 2.2: Comparison of numerical solution to compute the inner-product between a cur-
rent with N, momenta and another with Ng momenta. In solution {2, Ngiq is the number
of point of a grid which covers the momenta of both currents. In solution £3, the grid needs
only to cover the points of one current. Note that these number is an order of magnitude
of the space and time complexity. In particular, it does not account for multiplicative
constants. These constants do not depend much on the number of momenta for the imple-
mentation with grids, by contrast to the FGT implementation. Grid-based optimizations,
however, are more sensitive to the spreading of the points in space.

Ne pt=
4. compute ijl 5;7(%)

The speed of convergence of this approximation is given by (denoting the reconstructed
vector field 7 as £;;}(T)):

Ng
U (£ m) - U (D) = |3 (£ @) - £34D)) (w3)'85
i=1 (2.5.10)

2

< M) |77, < OMU) S

thanks to Proposition 2.26.

Remark 2.30. This approach is not symmetric with respect of U and T', although switching
the two currents leads to exactly the same result with the same approximation error. From
a numerical point of view, however, only the current 7" needs to be projected and convoluted
with the kernel. If one has a fixed current 7" and one needs to perform a bench of inner-
product with several currents U;, then it is of course much faster to perform only one
convolution. If one needs to perform only one inner-product, then projecting 7" or U is
equivalent. [

We can now compare the solution #2 and #3. In terms of speed of convergence, the two
approaches are of the same order, whereas the solution #3 has a smaller constant M (U)
versus M(U) + M(T).

In terms of time complexity, the solution #2 requires (1) to project both momenta on
the grid (complexity N + Ng), (2) compute one convolution (complexity Ngrid log(Ngrid))
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and (3) to compute an inner-product between images of vectors (complexity Ngiq). The
solution #3 requires (1) to project one momenta on the grid (complexity N, ), (2) to compute
one convolution (complexity Ngriqlog(Ngria)) and (3) to interpolate the image of vectors
at the locations of the momenta of U (complexity Ng). In both cases, the limiting factor
is the same, namely the convolution of cost N log(NN). However, once this cost has been
discounted, the solution #2 has an extra cost of order Ngiq compared with solution §3. This
extra cost may be not negligible in case of repetition of such computations.

In terms of space complexity, the solution #2 requires to store 2 grids (one for the
projection of each currents), whereas the solution #1 needs to store only 1 grid. Moreover,
in case of solution #2, the grid must cover the points of both currents, whereas in solution #3
the grid must cover only the points of a single current (and we can choose the current whose
momenta are contained in the smaller domain in space). Therefore, if the two currents are
far one from the other, or if one current is spread over a much larger domain than the other,
then using solution #3 has a significant advantage toward solution #2 in terms of memory
storage.

Moreover, suppose that we would like to compute a bench of inner-product of the form
(T, U;) -« for a fixed current 7" and several currents U;. Then, using the solution §2 would
require to compute as many convolutions as the number of currents U;. By contrast, in case
of solution #3, only one convolution has to be computed as a preprocessing (the computation
of the image of vectors associated to T') and only interpolation at different location has to
be computed for each U;. In this case, the solution {3 definitely outperforms the solution
2.

We can compare now these approximation with the direct approach which implements
the analytical sum. The approximations with grids are faster if Ngyiq log(Ngrid) < NoNg.
The typical values are Ngiq = 10% and N,, Nz > 103. In practical cases, the grid approxi-
mation method is almost always faster. Note that the number of grid nodes is determined
by the spreading of the point set in space and the approximation parameter A/Ay,. The
most favorable case is when points are concentrated locally in a small domain of space.
The least favorable case is when few points are spread in a large domain (typically a long
straight line). In this case, a multi-grid approach could be investigated: several small grids
cover the point set and the combination of the local convolutions leads to an approximation

of the convolution with a unique grid.

2.5.2 Comparison with fast multipole approximations

There are other numerical schemes to optimize the implementation of the map E‘jvl,
Na
namely the computation of sums of the form: ) K(y;,x;)a; at Ng points y; for a given
i=1
set of momenta (x;, a;)i=1,... N, -
In [Glaunés 2005, Glaunes 2008], J. Glaunés proposed to use the Improved Fast Gauss
Transform [Greengard 1991, Yang 2003] as a fast multipole approximation of these sums.
The principle is to gather the point set (x;) into clusters and to use the Taylor expansion
of the kernel at every center of the clusters. The sum over all the points becomes a sum

over all centers of cluster weighted by some coefficients which are computed for each cluster
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independently of the point y (i.e. which can be computed once for all for a given distribution
of points ;).

This method depends on two parameters: the number of clusters (or equivalently the
maximum radius of the clusters) and the number of terms used in the truncation of the
Taylor expansion. The resulting approximation error does not depend only on the values of
these parameters but also on the distribution of the points ;. This means that the values
of the parameters does not determine a fixed approximation error. For a desired numerical
precision, the user has to adapt the number of clusters to the particular distribution of the
points on which he wants to apply the FGT.

There is simple empirical rule to determine automatically the parameters for a given
approximation error. To set them, we usually compare the result of the approximation
with the exact computation and determine the parameters for this particular distribution of
points. Setting the parameters cannot be done automatically and is time-consuming. More
importantly, this prevents us from using this method routinely to process arbitrary current.
By contrast, the framework based on grid guarantees a fixed numerical precision, once the
step of the grid and the kernel is fixed, independently of the current to be approximated.

It has been shown in [Glaunés 2005], that this approximation decreases the time com-
plexity from O(N,Ng) to O(N, + Ng). This time-complexity may overcome the one of the
grid-based approximations. This is the case when there are few momenta spread in a large
domain of space (like a long curve compared to a volume or a concentrated set of points).
An empirical comparison between both methods will be performed in Chapter 4 in the case
of registration (see Section 4.4.4.2). Moreover, the FGT approximation does not require
more memory space than the one needed to store the original currents (N, + Ng). By con-
trast, grid-based approximations require to store image of vectors which usually requires
much more memory space.

The Fast Gauss Transform is less generic than the grid-based approximations, since it
is dedicated to the Gaussian kernel. For general kernels, other multipole approximations

could be derived, though, provided that we have an explicit Taylor expansion of the kernel.

2.5.3 Toward a complete computational framework

In this chapter, we provided a computational framework to compute any operations
on currents which involves the mapping E;Vl, such as the computation of norm and inner-
product as we have shown above. Given a current T on the continuous domain, we per-
formed the map E;Vl by following the 3 steps: first projection of the current on the grid,
second discrete convolution and third interpolation. One of the main advantage of this
framework is that the approximation error depends only on the ratio between the grid step
A and the rate of decay of the kernel Ay . In particular, it does not depend on the input
data. This makes the overall framework very stable, generic and easy to set up. Once the
grid and the kernel are fixed, we can perform any operations on currents while guaranteeing
a fixed numerical precision.

This numerical framework will be used in Chapter 4 to give a new optimization scheme
for the registration of currents. The purpose is to compute efficiently the dense vector

field (the vector field driving the deformation, for instance) associated to current given as
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a finite set of momenta in the continuous coordinates (the parameterization of the vector
field). Using the discrete spaces based on linearly spaced grids allows us to approximate
this operation. We proved in this chapter that the numerical error of this approximation is
of order A?/A\%, where A is the grid step and A}, the typical rate of decay of the kernel.
This reconstruction error is constant even if the momenta are moving in space. This makes
a great difference compared to the optimization scheme based on Fast Gauss Transform
proposed in the original implementation of the registration algorithm in [Glaunes 2005]
(See Section 4.4.4).

However, this computational framework is not yet complete. Indeed, we do not pro-
vide any robust implementation of the map Ly, or equivalently in the discrete case, the
implementation of the multiplication with the matrix le. As a consequence, there is no
way to map vector fields (on the left-hand side of Fig. 2.3) to currents (on the right-hand
side of Fig. 2.3). Such an operation is not needed to compute the most usual operations in
the space of currents (as we have shown in the example above). However, more complex
operations on currents are only defined on their representation in terms of vector fields,
like the adjoint push-forward action which will be defined in Chapter 5 (See Section 5.3.3).
In this case, a robust deconvolution scheme is required. This problem will be addressed
by the matching pursuit introduced in the next chapter (See Section 3.3 and Fig. 3.1). In
addition to its ability to give a sparse representation of any currents, this algorithm enables
to complete the computational framework presented in this chapter and to compute any
operations from currents to vector spaces, from continuous space to discrete spaces and vice

versa.
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Sparse representation of currents

This chapter has been partly published in [Durrleman 2008b, Durrleman 2009¢c]
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3.1 The need for optimal decomposition of currents

In Chapter 1, we showed that discrete geometrical data could be approximated in the
space of currents as a finite sum of Dirac delta currents. In the next chapters, we will use this
representation to compute group-wise statistics. Such statistics result from a combination
of all input currents. As such, they are still given as a sum of Dirac delta currents which has
as many terms as the total number of Dirac delta currents in the database. For instance,
linear statistics like mean and principal modes results from a linear combination of the
input currents. The estimation of an atlas in Chapter 5 results also from a combination
of the input currents, but in a non-linear way. The number of terms in the representation
of such statistics increases linearly as the sampling of the input shape becomes finer (i.e.
as the number of Dirac delta currents increases). This number of terms increases also as
the number of subjects increases. In both cases, however, the estimated statistics converge
to their true values in the space of currents. This representation of the statistics, which
results from the standard operations on currents, is not stable from a computational point
of view.

This instability is due to the fact that a representation of a current in terms of Dirac

delta currents may be very redundant at the scale of analysis. This scale of analysis is
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determined by the rate of decay of the kernel (Ay ), which is given for a Gaussian kernel
as its standard deviation. If two Dirac delta currents in the decomposition of a current
point in the same direction a and are located at two points  and y much closer than Ay
(|lx — y| < Aw), then they contribute to the same mode of the corresponding vector field in
W: K(.,z)a+ K(.,y)a. This mode may be approximated by a single Dirac delta current
located at (z + y)/2 with a doubled magnitude: K(.,z)a + K(.,y)a ~ 2K (., (z +y)/2)c.
This approximation is controlled by the ratio | — y| /A\w. Using such approximations, it
would be possible to compress the representation of currents, which is highly redundant at
the scale Ay, with much fewer terms.

For this purpose, we take advantage of the fact that the set of Dirac delta currents is not
a Hilbert basis of the space of currents. Admittedly, the Dirac delta currents are linearly

independent and span the space of currents, but they are not orthogonal®: (52,07 >W* =
a'K(z,y)B # 0. This means that the decomposition of a current T" as a (possibly infinite)
linear combination of Dirac delta currents is not unique. Note that this is not surprising: we
proved that the approximation of a surface mesh as a finite sum converges to the continuous

limit when the sampling of the mesh becomes finer. Two different sampling converge to the
o0

same continuous limit. Now, if the decomposition of a current T' = ) 637 is redundant,
i=1

&) /
we would like to re-write this current on a new series of Dirac delta currents: T = 3" 4.,

i=1 '
Among all the possible decompositions, a “good” decomposition satisfies two properties:
w~ ~ 0 which
implies in particular that | —y| > Ay and (2) the Dirac currents should be chosen so

(1) Dirac currents should be almost orthogonal to avoid redundancy: (6, d,)

that they are adapted to the signal, namely so that they have a strong correlation with

the original current T' (i.e. so that they maximize (T',0%),;.). Consider the N first terms

. N
of this series 7' = ) dg7. The first condition implies that for a fixed approximation error

(HT — THW)7 the number of terms N is minimized. The second condition implies that
for a fixed number of terms N, the momenta are chosen to minimize the approximation
error. FEventually, the first terms of this new decomposition allows us to give a sparse
representation of the current at any desired accuracy.

The purpose of this chapter is precisely to propose a matching pursuit algorithm, which
is a greedy approach to estimate such an optimal decomposition of currents. We show that
the optimal Dirac delta currents are given as the main “modes” of the dense vector field
associated to the current T: v = Ly} (T). Indeed, this vector field which results from a
convolution of every momentum, already integrates the redundancy of the decomposition at
the scale Ay . We show that this iterative procedure leads to an approximation of the initial
current which converges to the initial current. This offers a way to control the precision of
the approximation.

The possible applications of the matching pursuit are threefold:

1By contrast to finite dimensional spaces, a set of linearly independent vectors which spans an infinite
dimensional vector space is not necessarily a basis of this vector space, in the sense that every vector has
a unique decomposition on this set of vectors. In infinite dimension, an extra condition is required like the
orthonormality condition in Hilbert spaces for instance (which leads, up to a change of the metric, to the
general Riesz bases).
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e Compression: The raw anatomical data may be given with a huge number of points,
like fiber bundles (see Fig. 3.10) which may contain up to 10° segments concentrated
in a small domain of space. This geometrical information is often highly redundant
at the relevant scale of analysis. The matching pursuit could be used to give a sparse
representation of these data with much fewer points without altering the geometrical
information contained in the data at the determined scale. This is of uttermost
importance to store and handle the data efficiently. For instance, this may divide

drastically the time needed to register the data.

e Interpretation: The representation of a current which results from standard com-
putations in the space of currents may be particularly difficult to interpret. The
representation of a mean surface as a collection of weighted normals does not give
a precise idea of the common anatomical features that this mean captures. By con-
trast, the dense vector field associated to this mean surface averages the contribution
of each surface and therefore highlights the areas where the information is “concen-
trated”. The sparse representation of the mean shows precisely the main “modes” of

this distribution which leads to much more interpretable results.

e Deconvolution: Some operations on currents are defined via computations on the
space of vector fields W. This is the case for the adjoint push-forward action on
currents, which will be introduced in Chapter 5. The simulation of a Gaussian noise
is only possible numerically in the space W. In such cases, the parameterization of the
vector field in terms of momenta is not given beforehand. The direct deconvolution
of the vector field (i.e. the computation of the mapping Ly ) is ill-posed numerically.
The matching pursuit precisely gives an approximation of the solution of the equation
v = Lw(T) (when one knows v and looks for T') at any desired accuracy. In this
context, the matching pursuit is seen as a robust deconvolution scheme.

3.2 Orthogonal matching pursuit for currents

The matching pursuit algorithm is quite a natural idea which has emerged independently
in different communities. In [Friedman 1981, Huber 1985, Jones 1987], projection pursuit
regression was introduced for statistical purposes: the goal was to find an estimation of
the conditional expectation of a random variable Y with respect to a very large number
of variables X1,...,X,. One finds the best linear combination of the variables X; that
makes the conditional expectation the highest possible, and one iterates on the residual
expectation. Eventually, one ends up with a much smaller set of variables which gives a
good approximation of the conditional expectation. In some sense, the estimated variables
best explain the variable Y. In [Mallat 1993, Pati 1993], matching pursuit was proposed in
the signal processing community to find the best decomposition of a signal on a redundant
dictionary of time-frequency atoms and later to find adapted wavelets bases for image
decomposition. Further improvements of the algorithm have been proposed, especially in
the field of compressed sensing [Donoho 2006, Needell 2008]. The underlying idea remains

the same: one find iteratively the atom which best correlates with the residual signal. In



90 Chapter 3. Sparse representation of currents

this section, we introduce an adaptation of this algorithm for currents. To the best of our
knowledge, this is the first time that this idea is introduced in the framework of currents

for geometrical data compression and as a robust deconvolution scheme.

3.2.1 The continuous case

Let v € W be a vector field and T its associated current (y = £;;}(T)). Our goal is
to write T' as an infinite series with fast decreasing terms, so that the first n terms of this
series will provide the best approximation of the current. So, if we fix n, we want to find a
set of n points (x;) and n vectors (a;) such that the current IT,(T') = Y7, 657 is as close
as possible to T

If one knows the set of optimal point positions X, = {x;}1<i<n, we can define the

n-dimensional sub-space of currents as in Section 2.2:
Wy =Span(6; k=1,...,p,i=1,...,n),

where (eg)r=1,..p is the canonical basis of R? (in the following the index k always takes
values k = 1,...,p, where p = 0 for point sets and volumes, p = 2 for planar curves,
p = 3 for curves and surfaces in 3D). Therefore, the current II, (7)) in W3 which is
the closest to T' is given as the orthogonal projection of 7" onto W3 . This orthogonal
projection is given in Corollary 2.12. We can write also directly the orthogonality conditions:
(T, (T), 65

>W* = <T, 5;’§>W*, which leads to, applying the isometric mapping E;I}:

ZajtKW(S%CCj)Ek = <EV_I}(T)»KW(~7Ii)€k>W

j=1
Thanks to the reproducing property in Eq. (1.2.4), this last expression is equal to
Ly} (T)(z:)ter, = y(;)x. Finally, this gives the set of pn linear equations:

n

Z (KW(xi,xj)aj)k =y(zi)x (3.2.1)

j=1
Solving this linear system leads to the optimal vectors (a;)1<i<n, once one knows the
optimal positions (z;)1<i<pn. Finding the optimal points (z;) has been proved to be NP-
hard in general [Davis 1997]. The orthogonal matching pursuit algorithm is a suboptimal
greedy approach to this problem: the first point x; is the one for which the projection of
T on W3 = Span(dg*) is maximal. d,, is the basis vector which enables to explain the

largest part of the signal. Since

(T, 5;k>W* = <’Y7KW("$)€/€>W = (@)

Yy (w1).

Then we remove from + its orthogonal projection on E;l,l((?;’;) (i.e. the first basis vector in
the space W): this gives the first residual vector field: v, (z) = y(x) — KW (z,21)al. And
we iterate the procedure on this residual.

71 is a point where |y(z)| is maximal. Solving Eq. (3.2.1) gives ai = KW (z1,21)~

Eventually, at step n of the algorithm, ,_; stores the residual vector field, z,, is de-

termined as the point which achieves the maximum of v,,_; and the vectors af,..., o] are
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such that II,(T) = Y 6§‘n is the orthogonal projection of 7" on W3 . This leads to the
i=1

K3

equations:
X, = arg max |y,—1(z)] (find the next position)
zeR3
a” = K;(i'y" (compute associated momenta)

)
n

Yo (x) = Z K(x,z)al, forallz € RY (compute residual vector field)
i=1
where we denote as in Chapter 2: a” (resp. ™) the concatenation of vectors (o] )i<i<n
(resp. (y(z:))i<i<n) and Ky, the np-by-np block matrix whose block (7,j) is given as
KW (z, x;j). About the possible bad conditioning of this matrix, see Remark 3.9.

Eventually, the algorithm is summarized in Algorithm 1.

Algorithm 1 Orthogonal Matching Pursuit for Currents (continuous version)

1: Input: a vector field v, a threshold n > 0

29 =7n=0

3: while ||v,]|,, > n do

4 Tpgr = argmax,cps |Yn ()]

5. Find (o] ™) 1<i<nsa by solving S0 (KW (25, 20)al ™), = (i)
6 1 =7 — Sy KV a)a) !

7 n+<n+1

8: end while

9

: Output: list of (z;,a%)i=1..n

After n steps, the algorithm gives an approximation of T' = Ly () with n delta Dirac
currents: IL,(T) = > 1, (5,(;??). The theorem 3.1 shows that IL,(T) converges to T as n
tends to infinity (e.g. ||TI,(T) — T|yy. — 0). The auxiliary variable v, = v — Ly (IT,,)
stores the residual vector field that remains to be explained. We prove also in theorem 3.1
that the L*°-norm of this residue tends towards zeros as n tends towards infinity (e.g.
7]l o = SupPgers [vn ()| = 0). This means, in particular, that the norm of the residue is
below any positive threshold in finite time, thus proving that the algorithm actually finishes.

The threshold 7 has to be specified for every application. If T is a linear combination of p
currents 11, ..., T, (such as mean current, principal mode, difference between two currents,
etc.), we can choose 7 as a fixed ratio of the standard deviation of the set of currents: n = 70
where 02 = p—il S || T - TH; and T = % P_, T (for sake of simplicity, ||T'||, denotes
||£‘7V1 (T) HOC) This means that the algorithm finishes when the maximum approximation’s
error is smaller than 7% of the standard deviation. In our applications, we usually fix this
sparsity parameter at 7 = 5%.

Theorem 3.1. Let v be a vector field in W and T = Lw (7). Let I, = > 1, 527 be the

1= i

current constructed after n steps of the algorithm 1. Then,

o [n(T) = Tlly. —0
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o |[IL(T) =T, = [|£3 (a(T)) = Ly (T)|| . ——0

X n—oco

Proof. For the sake of simplicity, we denote by E, = W3 the finite-dimensional space
of currents spanned by the iteratively estimated points (z;). The estimated current IT,
is defined as the W-orthogonal projection onto E,. We denote R, the residue so that
Lw(v) =10, + R,. The corresponding residual error in W is denoted by ~,, = E;Vl (Ry).
K denotes here a generic kernel, such that u'K (z,z)u > c|u|? for a given constant ¢ > 0
and for any € R3 and u € RP. This includes the translation-invariant definite positive
kernels, since then K(z,z) = K(0) > 0.

Convergence for the L>° norm

At every iteration, the point x,; is chosen so that: |v,(zn+1)| = ||7nll- For any
a € RP, since I1,, + §§n+l € E,+1, we have:
2 a 2
1Rz |2 < HH" +or - THW* (3.2.2)

The right-hand side of this equation is equal to: ||Rn||12/v + ' K(Tpi1, Tnt1)a —
29, (Tpn+1)'a.  Minimizing the right-hand side of Eq.(3.2.2) with respect to a leads to
ax = K(2pi1,%ns1) 90 (2n41) for which

2 2
||Rn+1||W* < ”Rnllw* - 'Yn(anrl)tK(anrbxn+1)'7n($n+1)

(3.2.3)
2 2
< Rl = ¢ llmll

Therefore the sequence ||R,||} . is monotonically decreasing and hence converges. We
deduce also from this equation that ¢y, _, el < ||T||$,V - ||Rn+1||%,v* < ||T||?,V This
series is therefore convergent and ||v, ||, converges to 0 as n tends to infinity.

Convergence for the W-norm

1
We introduce F,, such that F,, 11 = E,, & F,, and p,, the W-orthogonal projection of T" on
F,,. As a consequence, each pair of distinct currents py are orthogonal and II,, = ZZ;S Pk
Therefore HHHH%/V = Zz;é |pk||$,V* < ||T||?,V* This shows that the series converges. Now,
we can show that the sequence R, satisfies the Cauchy condition. Indeed, for n > m, we

have:
n—1 o)
2 2 2 2
Ry = Rl = Ty = Mol = > llpellie < Y Iolliy
k=m k=m

This Cauchy sequence in the Hilbert space W* converges therefore to a current R for the
W*-norm.

For all points x and vectors «, we have:

(R, 68 | < [(R— Ry 00 )y | + (R, 65 ) |
< Cte||R = Ryl + |'yn(x)ta|

(3.2.4)

Since we proved that ||, converge to zero as n tends to infinity, so does the right-hand
side of this equation. This shows that R is orthogonal to every <, a dense family of vectors
in W*. This proves that R = 0. ]

Remark 3.2. Equation (3.2.3) states that: HR,LHH%,V* < HR,LH%,V* —c? ||7n\|io and therefore

tells us how much the residue decays at each step. This must be useful to characterize
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the speed of convergence of the algorithm. Assume that there is a constant S such that
Ynlla = B 17llyy- Then, Eq. (3.2.3) would give ||Rpii1|[3y. < (1 —¢252) |Rn|l3,. and:

[Rullye < (1 =282 Ty (3.2.5)

which would prove the convergence of the algorithm at least at an exponential speed.
Unfortunately, the inequality ||v|/,, > B/v|ly is not satisfied for all v € W. Since
W is a RKHS, one already has: |v||,, < Cw 7|l (see Eq. (1.5.4)). The equivalence
between both norm is false in general. However, it becomes true for finite-dimensional
spaces. In the next section, we will give precisely a discrete version of the algorithm using
grids to define finite-dimensional approximations of the space of currents. In this case, we
will prove the exponential speed of convergence of the algorithm (see Proposition 3.6) and
discuss the behavior of this convergence speed when the approximation space tend to the

infinite-dimensional space of currents. [

Remark 3.3. For computational reasons, one would like to find the point z,1 such that
[YnTnt1| = Coo ||7n || o for some constant Cx < 1, instead of the point that reaches exactly
the maximum. In this case, Eq. (3.2.3) becomes ||Rni1liy. < [|Rnliy- — C2 [7nll
and the same proof shows the convergence of the algorithm. This may help, for instance,
to speed up the search for the maximum by limiting this search on a finite set of finely
distributed points. [J

Remark 3.4. In this algorithm, we control the approximation error with the infinity norm.
However, by definition of the RKHS, there is a constant Cy, such that for all v € W,
7o < Cw ||7lly- This shows that the speed of convergence is faster with the infinity
norm than with the W-norm. Therefore, controlling the error with the W-norm would result
in approximation with a larger number of estimated momenta. However, as mentioned in
Section 1.5.2.3, a current 7" tends to zero with respect to the L> norm if (T,U), . tends
to zero for any test current U. More precisely, given a test current U with a finite number
of momenta, the numerical error between (T, U) ;. and <T, U >W* is given by:

‘<T_T’ U>W*

where M (U) is the mass-norm of U.

ngﬂﬁ—ﬂL, (3.2.6)

As it appears from Section 2.5.1 and especially Remark 2.29, it seems that L°°-norm is

the good norm to measure the approximation of currents. [J

3.2.2 Fast computations in a discrete setting

From a computational point of view, the two most expensive steps of the algorithm are
the search of the maximum of the residual vector field v, over the entire space (on line 4 of
Algorithm 1) and the computation of this residual vector field at every point of the space
(on line 6 of Algorithm 1). To give a more efficient version of this algorithm, we use the
approximation spaces introduced in Chapter 2 via linearly spaced grids. First, we impose
the estimated momenta to be located at the grid nodes. Second, we sample the dense vector
fields on the grid. This allows us to use discrete convolution and FFT to compute efficiently

the sampling of the residual vector field on the grid nodes.



94 Chapter 3. Sparse representation of currents

3.2.2.1 Discrete algorithm

In this section, we suppose that the kernel K is translation-invariant. The input vector
field v belongs to W and, as such, tends to zero at infinity and is band-limited (this band
being determined by the typical decay rate of the Fourier transform of the kernel, Ay for
the Gaussian kernels). Then, we set a grid A with periodic boundaries conditions, which
is large enough so that the norm of «(x) outside the grid is negligible compared to the
required precision of the approximation and whose step A is small compared to the spatial
period of the kernel: A < Ay (in practice, we choose A/Ay, = 1/5). Then, we sample the
input vector field v on the grid nodes and store it as an image of vectors 4. As seen in
Chapter 2, ~ parametrizes v*: the orthogonal projection of v on the approximation space
Wa.

In the discrete version of the matching pursuit, we will impose that the estimated
momenta are located at the grid nodes (i.e. x; € A). This means that the estimated current
is forced to belong to discrete set of currents Wy (defined as Ly (W) as in Chapter 2).
The residual vector field is the difference between 4 and the vector field associated to the
estimated current: this residual still belongs to W, and therefore can be stored as an image
of vectors. Therefore the residual remains in the space Wy along the iterations and can be
stored and handled as an image of vectors.

Eventually, we will show that this algorithm build a current in W, which tends to
Ly (¥™): the orthogonal projection of Ly () on Wy,

Computations in this framework are particularly easy and efficient. The estimated
point x,1 is the grid node where the the residual ~,, has the largest magnitude: z,,41 =

arg max |y, ()| (we denote ||v,| . » this supremum). This is done by searching the maxi-
zEA ’

mum magnitude in the image of vectors 7y,,. The coefficients o] are solution of the same
set of 3n linear equations as in Algorithm 1. Once these coefficients have been computed,
we build the image of vectors e which contains the momenta (x;,al)1<i<n. Then, the
residual vector field +, is computed as the image of vectors «,, = Kaax. Along the lines
of Section 2.2.3, this matrix multiplication can be performed as a cost Ngid log(Ngria) us-
ing discrete convolutions and FFTs. Eventually, the algorithm may be written using only

images of vectors and basic linear algebra, as summarized in Algorithm 2.

3.2.2.2 Speed of convergence

By construction, v,(z;) = 0 for all estimated points (x;);<n (i.e. the residue R, is
orthogonal to the W3 ). This shows that the estimated points are all distinct, as long as
v, # 0. Therefore, the algorithm finishes at most when the total number of points in the
grid is reached. However, in the cases of practical interest, much fewer points are needed
to achieved a good approximation of the current. Indeed, the following proposition shows

that the convergence of the residuals has an exponential speed.

Lemma 3.5. Let A be a finite subset of R? and Wy be the finite-dimensional subspace of
the RKHS W as defined in Chapter 2. We assume that the kernel KW is symmetric and
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Algorithm 2 Orthogonal Matching Pursuit for Currents (discrete version)

1: Input: an image of vectors =, a threshold n > 0, a linearly-spaced grid A
2: Store the image of vectors k (k(i) = KW (x{,z}) for all i € A) and its FFT.
3 Y=7n=0
4: while max;en |v,,(7)] > n do
5 dpy1 < argmax;en |, (9)], Zni1 = acg\"+1
Find (a/*')1<j<ps1 by solving Y ( KW (2l al )a;H)k = (iq)k
Image of vectors a =0
for k=1ton+1do

a(iy) « a(iy) + o™
10:  end for

6
7
8:
9

111 Y,41 = — kxa (computed by FFT’s)
122 n<+<n+1

13: end while

14: Output: list of (z;,a%)i=1..n

7

positive definite. Let dp be the constant:

)\min
dpy = N (3.2.7)
where \pin is the smallest eigenvalue of the block-matriz Ky whose block (i,j) is given by
Kw(xi,xj) forziy,x; € AL
Then, for all v € Wy we have the control:

Moo,a = da IVl (3.2.8)

Proof. Due to the conditions on the kernel, K, is a finite positive real matrix. In particular
it is invertible and it is diagonal in an orthonormal basis with positive eigenvalues.

Let v be a vector field in Wy . As shown in Section 2.2, « is characterized by N momenta
(xZA, «;) located at the grid nodes, encoded as a Np-dimensional vector: a (N denotes the
number of points of A). In particular, ||7]|%, = a'Kea = |K1/2a|; and [|7]l, o = [Ka.

Then, standard computations of the matrix norms show that:

_ N
K\a| <[K"?  [Kial, < Kaal.,, (3.2.9)
2 2 N—— >\min
_\-1/2 <VN|Kpal,,
where Apin > 0 denotes the smallest eigenvalues of the matrix Kj. |

Proposition 3.6. Let A be a finite subset of R? with N points and v € Wy. Let v, be
the residual vector field (in Wy ) after n < N steps of the algorithm 2 applied to the image
of vectors 7y, the sampling of v on the grid. We assume that the kernel K" is symmetric,

definite positive and translation invariant. Then there is a constant C such that

Il < C™2 1w (3.2.10)
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Proof. We follow the sketch of the proof of the convergence of the continuous version of
the algorithm. The (n+1)th estimated point z,11 is such that |vn(zni1)] = [l
We denote E,, = Wy, = Span{K(z;,.)o51 < i < n,a € RP}. For any a € RP,
Yo + KW (241, .)a € Epyq and therefore ||’yn+1||‘2/v < H’yn + KW (zp 1, )a — 7”;, The
minimization of the right-hand side of this equation with respect to « leads to:

2 2 2
a1l < lmllyy = K (0)? [l l5 (3.2.11)
Thanks to the lemma 3.5, ||7n||iOA > d3 ||7n||?,v This shows that: ||7n+1||$/v < (1-

KW (0)%d3%) H'yn||%,[, Eventually,
n/2
ally < (1= K™ (0)%d3)" 17l (3.2.12)
|

Remark 3.7. If A is a linearly spaced grid with periodic boundary conditions, then the
matrix K is circulant and their eigenvalues can be found easily as the Fourier coefficient of
its first row k. As we showed in Section 2.2.4 for a Gaussian kernel with standard deviation

Aw, the smallest eigenvalue of this matrix Ay, decays exponentially, such that:

3 A3/2 2 N 2/3

v vie ™ AN

where A is the grid step, C,C’ a two numerical constants and V' = NA3 is the volume
delimited by the convex hull of the grid.

This shows that d3 tend to zero as the grid step tend to zero (A — 0 with V = NA3
constant). As long as Wy converges to W, the speed of convergence decreases: (1 —
KW (0)2d3) — 1. At the limit, we end up with |[,]l;r < [|7]ly which does not give
any information about the speed of convergence. In this case, however, we proved that
the algorithm still converges (see Theorem 3.1). It is likely that the convergence speed in
infinite dimension would be less than exponential.

This remark is valid for any kernels whose Fourier transform tends to zero at infinity.
In this case, da tends to zero faster than the speed of decay of the Fourier transform of the

kernel. OJ

Remark 3.8. The previous remark is counterintuitive. One expects that, with more basis
elements, it would possible to find a basis vector which has a larger correlation with the
residual. This would increase the decay of the residual and make the convergence faster.
This argument is true. The problem is that the the convergence speed in Eq. (3.2.10)
is an upper-bound which applies uniformly for all n. This uniform upper-bound does
not reflect what really happens in practice. During the first steps of the algorithm, the
estimated momenta reveals the major patterns of the signal: the correlation between the
Dirac delta current and the current is very high. Since each Dirac delta current is the best
explanation of the signal in a neighborhood of size Ay, the first estimated momenta are
at a distance roughly of Ay one from the others. This process goes on until the current is
covered by patches of size A\yy. This convergence is very fast and in practice much faster
than the exponential decay of Eq. 3.2.10. During these first steps, the more basis vectors
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(i.e. the finer the grid), the faster the decay of the residual. The problem appears once
the current is covered by patches of size A\yy. Then, the residual contains very small and
local variations which, in some sense, can be considered as noise (this local errors could be
compared to the errors introduced by the sampling for instance). To correct for these local
errors, the algorithm starts estimating some momenta in-between the patches. This re-
introduces redundancy in the signal decomposition, something we precisely want to avoid!
And the the finer the grid, the more redundancy the algorithm can re-introduce, the slower
the convergence. This second convergence speed is the limiting factor which makes the
upper-bound in Eq. 3.2.10 to degenerate at the limit A — 0.

These two different behaviors of the algorithm are clearly visible in the graph of fig-
ure 3.9. The left-hand part of the graph corresponds to the first steps of the algorithm with
a very fast rate of decay of the residual (the curves are drawn from right to left as long as
the algorithm runs). The upper part of the graph corresponds to the second behavior when
the algorithm starts re-introducing redundancy in the signal decomposition. Our empirical
value of 7 = 5% seems to be a good cut-off to keep only the most salient patterns of the

current. [J

Remark 3.9. During the iterations, we compute the momenta a; by computing the or-
thogonal projection of v on the finite-dimensional space spanned by the functions K (., x;)eg
for the set of estimated positions X,, = {x;}1<i<n. This requires to solve a linear system
by inverting at step n, the np-by-np block matrix whose block (i, j) is K" (2, z;), namely
inverting the matrix Ky, with the notations of Chapter 2. As we saw in Section 2.2.4,
this matrix has a bad conditioning as soon as two estimated points are at a distance much
smaller than Ayy. As discussed in the previous remark, this cannot occur during the first
iterations since estimated points tend first to move apart one from the others. In practice,
a bad-conditioning of this matrix has never been observed, even if we run the algorithm
far below the threshold 7 = 5%, like for plotting the curves of figure 3.9. As we shall see
in the Section 3.5, even random Gaussian currents can be efficiently approximated by the
matching pursuit algorithm without facing bad conditioning issues. If a bad conditioning
of the matrix Ky, occurs anyway, this would mean that the matching pursuit fails for such
a signal, the purpose of the matching pursuit being precisely to give a robust estimation
of lefy for a fine grid A by computing K}i for a good choice of point set &,,. In case of

failure, alternative approaches may be investigated like conjugate gradient for instance. O

3.3 A new tool for processing currents

3.3.1 A robust implementation of the deconvolution problem

In this section, we consider the matching pursuit in the perspective of the computational
framework set up in Chapter 2. In Section 2.5, we showed that any standard operations
on currents can be approximated efficiently using discrete spaces based on linearly-spaced
grids. We also outlined that the implementation of a robust deconvolution scheme were
missing in this framework. Indeed, there was no (numerically stable) way to map vector
fields either in discrete or in continuous spaces back into the spaces of currents. The
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matching pursuit introduced in this chapter can be seen as this missing robust deconvolution
scheme, as illustrated in Fig. 3.1. Indeed, the matching pursuit estimates a solution of the
deconvolution problem with an increasing number of momenta. Using a infinite number of
momenta will completely solve the deconvolution problem, whereas the first momenta gives
only an approximation of this solution, which is far enough in practice as we shall see in
the next section.

The continuous version of the matching pursuit implements the map Ly . The discrete
version of the matching pursuit implements the multiplication by the matrix KXI or equiv-
alently the inverse of the convolution by the matrix k with the notations of Chapter 2.
Thanks to these two algorithms, there is now a numerically stable way to map any of con-
tinuous or discrete spaces of currents or vector fields to any other of these spaces. These
new possibilities will be used in Chapter 5 for the estimation of a template from a collection
of shape. To implement this estimation, we will introduce the adjoint push-forward action
which is defined only in the space of vector fields. Then, we will need to map the result of

this operation back to the space of currents.

3.3.2 Three representations of a current

This completed computational framework offers a new representation for currents. The
natural representation of a current is given as a list of oriented points called momenta
resulting usually from the approximation of meshes or polygonal lines as a finite sum of
Dirac delta currents. Therefore, a current is naturally encoded as a list of momenta in
continuous coordinates. The usual operations in the space of currents: addition, scaling,
subtraction or diffeomorphic deformations of currents preserve this structure of list. We
denote Np the total number of momenta in the decomposition of T. As discussed in
Section 3.1, this representation of the current may be very redundant at the scale Ay .
This may cause a problem of memory space to store the current, of computational time to
process the current or to interpret the current, especially when the current is the empirical
mean or modes of a set of currents.

The computational framework illustrated in Fig. 3.1 leads to three solutions to this

problem:

e We can project the current into a linearly spaced grid, as explained in Chapter 2. As
the grid step tend to zero, this defines a collection of approximations which converges
to the true current. This representation has Ngiq terms and is stored as an image of

vectors.

e We can compute the vector field associated to the current and apply the continuous
version of the matching pursuit to give a sparse representation of the current in
continuous coordinates. This sparse representation converges to the true current as
the number of momenta increases. However, this representation is difficult to compute
in practice. Indeed, there is no simple way to deal with a dense vector field and the
implementation of the continuous version of the matching pursuit raises computational

issues as discussed in the previous section.
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Figure 3.1: The matching pursuit implements a robust approximation of the deconvolution
problem to map the spaces of vector fields to the space of currents (in the continuous or
discrete domain). This completes the computational framework of Chapter 2 and leads to
4 representation of currents (right column). However, only the 3 representations at the

bottom are used in practice.

e To workaround the previous issue, we can project the current on a linearly spaced
grid, compute the vector field associated to the projected current via a convolution

in the discrete spaces and use the discrete version of the matching pursuit to give a
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sparse representation of the current in the discrete space. This sparse representation
does not converge to the initial current but to the projection of the initial current on
the discrete space of currents. It is stored as a list of momenta (the locations of the

momenta can be stored as indices of grid nodes)

In addition to the original representation, this leads to four different representations of
a current, whereas only three have a practical interest. Depending on the initial number
of momenta, their redundancy at a given scale Ay and their spreading in space, these
three representations may vary drastically in size. The representation with grids has the
advantage to have the right form to perform operations on currents in the discrete approx-
imation spaces. One can apply directly convolution and matrix multiplication to compute
the standard operations on currents. It is adapted for being used routinely in intensive
computations. Usually, the sparse representation has fewer momenta than the number of
grid nodes, which is a good representation when memory allocation for large grids makes
the algorithm to slow down eventually. Moreover, the desired numerical precision com-
pletely determines the grid step and therefore the size of the grid-based representation. By
contrast, there is no simple way to predict the size of the sparse representation for a fixed
numerical precision.

Note that the sparse representation converges to the projection of the initial current
on the discrete space of currents determined by the grid. The difference between the ini-
tial projection and its projection is of order A2?/\?, using the partial volume projection of
Chapter 2. The total approximation error between the sparse representation computed by
matching pursuit and the initial current is therefore the sum of the error of the matching
pursuit (set as 5% of the variance of the set of currents) and the projection error of order
A2/ )\%V. The first error is usually much greater than the second one. Therefore, the appli-
cation of the discrete version of the matching pursuit algorithm leads to an approximation
of the same order as 5% of the variance of the set of currents. The following experiments

show that this approximation is a good trade-off between precision and compactness.

3.3.3 In which case using the matching pursuit?

In Chapter 2, we discussed how the approximation spaces could be used to implement
standard operations on currents like the norm of a current for instance. We compared three
different methods in Section 2.5.1: the exact computation, the projection of every currents
in the approximation space or using an approximation of the vector field associated to a
current. Now, one could imagine to use the matching pursuit to give a new implementation
of such operations.

The sparse approximation of a current minimizes the number of momenta of its repre-
sentation for a fixed numerical precision. Therefore, using this sparse representation instead
of the original ones speeds up the projection of the current on the approximation spaces,
as well as the interpolation of the image of vectors (in the discrete space of vector fields)
at the location of the momenta (in approach #3 in Section 2.5.1). If the currents have a
large number of momenta concentrated in a small domain of the space, then the space and
time complexity of the computations can be determined by this number of momenta (see

Table 2.5.1.3). In this case precisely, one can expect that the matching pursuit enables to
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achieved a very high compression ratio of the currents (usually above 90% in the practi-
cal cases, as we will show in the next section). Therefore, using the sparse representation
instead of the original representation of the currents can make a real difference.

This conclusion, however, has to be discussed carefully. First, if the number of momenta
decreases drastically in the sparse representation, it is likely that the exact computation
with the double sums may the fastest solution, since no convolution will be required at a
cost Ngyia 1og(Ngria) which may be larger than the complexity of the exact computation of
order Ny omz. Second, one must be aware that the computation of the sparse approximation
takes much more time than any convolution. Using it routinely does not means necessarily
an improvement in terms of processing time. By contrast, using it as a pre-processing can
help to increase to computation time of the algorithms.

For instance, there are three cases where the computation of the matching pursuit leads
to computational improvements. First, if we plan to perform intensive computations with a
given set of currents, we may compute their sparse representation once for all before running
the computations, like running a bench of statistical tests for instance. Second, if we want
to register two sets of shapes which have a fine spatial resolution compared to the precision
of the matching we are looking for, computing the sparse representation as a preprocessing
enables to increase drastically the speed of the registration. Third, the currents may be
given directly in a sparse form. This is the case for the template computed in Chapter 5
which has necessarily a sparse representation as a result of the estimation algorithm. In
the other cases, one must be aware that the primary goal of the sparse representation is
not to perform routinely operations on currents but rather to implement the deconvolution
problem robustly and to compress currents for statistical purposes and for registration. In
general, the matching pursuit should be used as a pre-processing to speed up the algorithms

or as a post-processing to store and interpret the results.

3.4 Application to shape compression and interpretation

of statistics

3.4.1 Matching Pursuit on a simulated example

We show here how the matching pursuit algorithm helps to approximate statistics on
currents, and to give an interpretable representation of such statistics. We choose the mean
of two 2D curves as a simulated example. In Fig. 3.2, we show the initial mean in the space
of currents and the first and third iterations of the algorithm, which builds iteratively an
approximation of the mean. The approximation error tends to zero as the algorithm goes
on. In Fig. 3.3 we show how the number of momenta needed to represent the mean of the
two curves varies with respect to the standard deviation of the kernel (Ay) for the a fixed
approximation error. The greater Ay, the closer the two curves in the space of currents
(i.e. their differences become small perturbations at the scale Ay, the smaller the number
of Delta Dirac currents needed to represent the mean for the same accuracy (i.e. the faster

the terms of the series decrease).
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Estimated Current
1 momentum

Field 19 Initial Momenta

/

(a) Initial Configuration (b) iteration 1 (||R:||,, = 0.510)

. . . Estimated Current ° i
Residual Vector Field mated Sun Residual Vector Field Estimated Sument

(c) iteration 3 (|| Rs||, = 0.110) (d) iteration 5 (|| Rs||,, = 0.060)
Figure 3.2: A sparse deconvolution scheme for currents: (a) the initial configuration. right:
two curves in blue and their mean in red: the collection of all tangents scaled by 0.5, seen
as momenta in the space of currents W*. left: the Gaussian convolution (L;;') of the
initial momenta gives the dual representation of the mean as a dense vector field in W
(Aw = 15). (b) (resp. (c) and (d)): first (resp. third and fifth) iteration of the matching
pursuit algorithm: estimated momenta on the right panel, residual vector field on the left
panel (what remains to be explained by the forthcoming momenta). The momenta converge

to the true solution while the residual vector field tends to zero. ||R,|,, denotes the norm
of the residual vector field at step n and o the standard deviation: ||[L — L'|| /v/2

We compute also the difference between both lines (L; — L) and use the matching

pursuit to approximate this difference. The result is shown in Fig. 3.4.

3.4.2 Compressed mean and modes of anatomical data

The matching pursuit enables to approximate easily statistics of currents like mean and
principal modes, since such statistics are naturally defined as linear combinations of the
input currents.

We assume that we have a collection of N discrete shapes (set of curves or surfaces):
Ti,... Ty which are modeled as currents. As shown in Chapter 1, such currents can be

i
aP

approximated by the union of their tangents or normals: T; = Zpé where x;) is the

i
mP
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19 momenta ) 15 momenta . 10 momenta

(a) Initial mean current

7 momenta . 5 momenta

(d) )\W =15 (e) )\W =20

Figure 3.3: Impact of Ady. (a)- Two curves in blue and their mean in the space of currents
in red. (b) to (d) the approximation of the mean of two curves for an increasing size of the
kernel Ay and a fixed precision 7 = 5% (defined as the ratio between the residual norm
and the standard deviation ||[L — L[| /v/2). The greater Ay, the closer the two curves in
the space of currents, the more redundant the initial momenta at the scale Ay, the sparser
the estimated decomposition.

13 momenta

/ Figure 3.4: Difference between two lines computed in
: / il the space W and then approximated by a matching
/ / pursuit algorithm (Ay = 10 and 7 = 5%)

center of each segment (resp. mesh cell) of the curve (resp. surface) T;, and a;, its segments
(resp. its normals). Since the space of currents W* is a vector space, one may compute

. o = L/N e .
directly the empirical mean as T'= 3, T; /N = >, > 535/ . This is simply the union of
all the tangents (resp. normals) in the database, scaled by 1/N.

Since the space of currents is provided with an inner-product, one may compute the
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N-by-N empirical covariance matrix I': T';; = <Ti - T, T; — T>W* (computed in prac-
tice thanks to the inner-product between two Dirac delta currents in Eq. (1.2.8)). Let
V1 ..., V¥ be the eigenvectors of I'. The nth principal mode of the population of currents
is therefore given by: T+ >, V/*(T; — T). Expanding this expression leads to a double sum

of the form: 37, > 6:5)7104; for some weights w’™. Section 5.4.1 will detail the computations
of statistics of currents.

These expressions of the empirical mean and modes are exact and can be used directly to
give quantitative measures of the variability of the population. However, they are all given
as a weighted sum of all the input Dirac delta currents. They have as many terms as the total
number of tangents and normals within the database. This number increases as the number
of subjects in the database increase, while at the same time the estimated mean and modes
converge to their true values. This number increases also as the sampling of the shapes
becomes finer, while the discrete shapes converge in the space of currents to continuous
geometrical objects. This representation is therefore not stable from a computational point
of view. If one wants to deform the mean to a new subject (like for an atlas to subject
registration for instance), this representation may cause dramatic computational issues.
Moreover, from a visualization point of view, the representation of the mean and principal
modes as the union of scaled tangents and normals is particularly difficult to interpret.

Although the representation of the mean and principal modes is exact, it is often far from
being optimal. It may be highly redundant at the scale Ay, especially if the shapes are at
a distance of order Ay one from the others. This is particularly visible in its representation
in terms of vector field v = £y, (T). The vector field ~y results from the convolution of every
tangent or normal with the Gaussian kernel K" with standard deviation A\y-. Two tangents
or normals closer than Ay contribute to the same “mode” of the Gaussian distribution ~.
This vector field « integrates precisely the redundancy of the mean current (or principal
modes) at the scale Ay (See Fig. 3.2-a).

Using the matching pursuit algorithm as explained in 3.3 allows us to give a sparse
representation of the mean and modes at any desired accuracy. We illustrate this approach

on a set of sulcal lines and a set of meshes of subcortical structures of the brain.

3.4.2.1 Statistics on sulcal lines

The sulci are the fissures on the brain surface and they are often used to measure
anatomical differences between subjects [Thompson 1996a]. We perform here statistics on
a set of 70 sulci delineated in Ny,s = 34 subjects. These data were provided by Paul
Thompson (Laboratory of Neurolmaging, University of California, Los Angeles) as part of
the collaborative project Brain-Atlas. Before computing statistics, the set of curves of
each subject were aligned together using affine transformation.

For each sulcal line, we approximate the mean current L = ﬁ Zfi“f L; for the scale
of kernel Ay = 12mm and sparsity parameter 7 = 5%. Results are shown in Fig. 3.5 for the
Sylvian Fissure of the right hemisphere and for all 70 sulci. The initial number of momenta
for the mean fissure was Ny = 899 (i.e. the number of segments of all lines) whereas the

final approximation needs only N,,,, = 54 momenta. In this case, the compression ratio
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Sylvian Fissure (right hemisphere) All 70 sulci (top view of the brain)

Figure 3.5: Statistics for 70 sulci in 34 subjects (Aw = 12mm, 7 = 5%). Left: The Sylvian
fissure of the 34 subjects (black) with the sample mean (red) and first eigenmode at +o
(green) of this set of curves. The first mode shows mostly the spreading of the set of lines.
Right: Mean currents (red) compared to the mean lines (blue) computed from B-spline

parameterization of curves [Fillard 2007c|. Results are visually in good agreement.

is of 94%. Considering all sulci, the compression rate is on average: 94.8% =4 0.02. The
grid has a step A = 2mm and typically N, = 10° points. Our mean is visually in good
agreement with other mean curves computing from B-spline representation [Fillard 2007¢].

Then, we compute the eigenmodes of the lines sets. We find the eigenvectors (V) of the
Nops X Nops matrix 3 = (<LZ — L, L; _E>W*)i,j=1...N0b5
the linear combination of input currents: my = L+, (Vy)i(L; — L) (see Section 5.4.1 and

. The k" eigenmode is given by

Remark 5.9 for more details on PCA in the space of currents). We approximate the first
eigenmode at +o of the Sylvian Fissure of the right hemisphere (Fig. 3.5-top): this mode
captures mainly the spreading of the lines set around its mean.

3.4.2.2 Statistics on surfaces of brain structures

Ten deep brain structures were segmented in a population of 50 autistics patients and
7 controls (Caudate, Putamen, Globus Pallidus, Amygdala and Hippocampus for each
hemisphere) [Hazlett 2005]. As a result, we have 57 sets of 10 meshes. These meshes have
been registered rigidly. For each structure, we approximate the mean of the autistic and
the control shapes via the matching pursuit algorithm (see Fig. 3.6 and 3.7). Note that
for surfaces, we represent the estimated momenta (normal of an infinitesimal mesh cell) as
equilateral triangles whose normals is the momenta. The difference between the mean of
autistic shapes and the mean of control shapes is still a current that we approximate: the
arrows of Fig. 3.8 are the 10 first estimated momenta of this difference, suggesting that the
autistic mean is more curved at the Hippocampus’ extremity and thicker in the middle.

Even if the approximations do not look like a surface, they can be more easily inter-
preted than the collection of all normals of the 50 (or 7) instances. In some sense, this
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representation of the estimated means are “optimal” since they try to minimize the number
of momenta for a fixed approximation error. The compression ratio between the total num-
ber of normals in the database Nt and the number of estimated momenta N, .., for the 10
structures is on average of 99.96%=+10"* in the autistic group. The grid has a step A = Imm
and for one structure we have the following typical values: Ny = 50 x 3000 = 1.5  10°,
Ngrig = 3% 10° and Nymom = 100. Fig. 3.9 shows that the quality of approximation remains
good until very high compression ratio.

This sparse representation of the mean current is particularly useful for further com-
putations like the registration of this mean to the set of structures of one subject or the
comparison with the mean of a population of control subjects. For instance, the deforma-
tion of a mean obtained from 3 shapes as in Fig .3.6a, which was previously taking 10 hours,
is now taking about 5 minutes (using the same code as in [Vaillant 2005, Durrleman 2007]).
For the full set of 50 instances, representing the mean requires 1.2 Kb in our framework,
versus 8 Mb originally. Deforming the former still requires 5 minutes while it is not feasible
to deform the latter without high performance computing.

(a) Structures of 2 autistics (b) Mean of 50 autistics (¢) Mean of 7 controls

Figure 3.6: Sparse approximation of the mean current for 10 meshes segmented in 50
autistics patients (b) and 7 control subjects (c) with Ay = 5mm, 7 = 5% (the diameter of
the data is 60mm).

Figure 3.7: The matching pursuit applied on surfaces
essentially divides the space into patches of size A3,
and approximate the surface enclosed in the patch by

one momentum. The magnitude of the momentum en-

codes the total surface area within the patch (taking
orientation into account: two pieces of surfaces with
opposite orientation would cancel out). These esti-
mated momenta are represented by equilateral trian-
gles in Fig. 3.6.
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Figure 3.8: The arrows represent the differ-
ence between the mean of autistics and the
mean of controls (shown in Fig. 3.6. They
are superimposed with the Hippocampus of a
control. This shows that the mean from autis-

tics is more curved at hippocampus’ extremity

(area 1) and thicker in area 2.

Figure 3.9: This graph shows the evolution of the

approximation error when the number of momenta

100 = =
W is increasing during the application of matching
sob \ \ pursuit to approximate the mean of the 50 autis-

tics meshes (see Fig. 3.6). Very high compression

o0

60 rate can be achieved while the approximation error

/17

remains small. Red points correspond to the ap-

401
proximation error equal to 7 = 5% of the variance

of the structures. This empirical value seems to be
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a good threshold under which some significant pat-

terns of the signal have been left aside and above

which the addition of new momenta does not help
to give a better approximation of the signal (see
remark 3.8).

3.4.2.3 Compression of white matter fiber bundles

The extraction and analysis of the white matter fiber bundles which connect two different
functional area of the cortex is of great interest in Computational Anatomy (see Chapter 7
for more details). Each extracted fiber bundle consists of several pieces of curves. As shown
in Fig. 3.10, the density of the fibers within the bundle may be very high.

We can model each bundle as a single current, which adds the contribution of every single
fibers, provided that the fibers have been consistently oriented (otherwise the contribution
of a fiber with inverse orientation will be removed from the bundle). The size of the Gaussian
kernel Ay determines the spatial scale under which geometrical variations are considered
as noise. Since the density of the fibers in a section of size Ay of the bundle is very high,
the bundle modeled as current may be efficiently approximated using the matching pursuit
algorithm. All fibers that go through a local section of size Ay contribute to the same
mode of the dual vector field associated to the bundle. They can be replaced efficiently by
a single momenta whose length account for the local redundancy of the fibers in the section
(see Fig. 3.11). The sparse approximation of the bundle is shown in Fig.3.10.

In case of fiber bundles, the structure of vector space has a simple interpretation. Addi-

tion or subtraction of Delta Dirac currents means increasing or decreasing the local density
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of fibers (by adding or removing infinitesimal element of fibers). Decreasing the local density
is achieved by adding some momenta with the direction opposite to the one of the bundle.
During the application of the matching pursuit algorithm, the subtraction is integrated into
the computation of the vector field and the sparse representation of the current really looks
like a bundle with smaller density. This gives eventually an interpretable interpretation of
the statistics on such fiber bundles. This will be also illustrated in Chapter 7 (in particular
in Fig. 7.8)

Figure 3.10: A white matter fiber bundle (top) made of several individual pieces of curves.
Its sparse representation (bottom) integrates the local redundancy of the information at
a scale Ayy = 3mm (the diameter of the data is 100mm). The length of the estimated
momenta encodes precisely this local redundancy. For visualization purpose, these momenta

are scaled by 0.1.

)\W i Figure 3.11: The matching pursuit applied on set of
“I curves (like the fiber bundles in Fig 3.10) essentially

approximates the curves which go through a patch of
size Ay by one momentum. The momentum encodes
the sum the tangents (taking orientation into account:
e two curves which go through the patch in opposite di-
rection would cancel out). If the curves represent wires

which send information at a constant rate, the mo-

mentum represents the total information which goes

through the patch.
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3.5 Application to deconvolution: simulation of noise of

currents

3.5.1 Discrete Approximations with grids of increasing resolution

In Chapter 2, we introduced grids A to approximate the infinite dimensional space of
currents W* with finite dimensional subspaces Wj. In Section 1.5.3, we showed that the
projections of general random Gaussian currents on such subspaces admit a probability
density function. More precisely, on a linearly spaced grid A, a random Gaussian currents

have the form: T'= 3 637, which is parametrized by the Np-dimensional vector c (i.e.

z;EA
the concatenation of every «;). In order to reproduce the Gaussian law on currents, this
vector must be simulated according to a Gaussian distribution in R™P proportional to
exp(— ||T||‘2/V* /2) = exp(—a'K a/2), where the Np-by-Np matrix K, is the metric on

RM? induced by the kernel K" (see Section 2.2.2). This leads to:

1 o'Kpya
= - 3.5.1
Ple) = e (-2322) (35.1)

In Section 2.2.4, we computed the spectrum of the matrix K. This helps us to better
understand what the noise en currents really is. The covariance matrix of the momenta in
Eq. (3.5.1) is given by K/_\l. Proposition 2.9 shows that this matrix is diagonal in a Fourier
basis with eigenvalues (we suppose here the kernel is Gaussian, but any kernel with light

tails would lead to similar results) which behave like:

Vv D S L
A3 OXP <C’A2 (n?v + o) + 712)) ; (3.5.2)

for C' > 0 a positive numerical constant. le is therefore a high-pass filter. This is
not surprising since multiplying with this matrix is equivalent to applying the differential
operator Ly on these finite dimensional subspaces of currents. This shows that the smaller
A (A3 < V and A < Ay), the closer the finite dimensional approximation to the “true”
Gaussian current, the more concentrated the spectrum at the highest frequencies. As
illustrated by the simulations in Fig. 3.12, the smaller A, the more oscillatory patterns in
the simulations of the current.

From a numerical point of view, these simulations are ill-posed. This prevents us from vi-
sualizing the “true” Gaussian current by projecting it on grids with finer and finer resolution.
Indeed, the conditioning number of the matrix K, is the ratio between its largest and small-
est eigenvalue. This number is equal to k(0, 0, 0)/k(n, —1, ny—1,n,—1) ~ exp(C' A, /A?).
This number growths exponentially as the ratio (A/Aw)? tends to zero, making impossible
numerical simulations of the noise directly in the space of currents. Actually, with Ay = 10
as in Fig. 3.12, the value A = 6 is close to the limit under which the inversion of the

spectrum of K, is not more possible numerically.
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Figure 3.12: The oscillatory nature of the noise in the space of currents. We simulate here a
Gaussian noise directly in the space of currents W* (momenta « simulated via Eq. (3.5.1)),
while the resolution of the grid is increasing (i.e. while the finite dimensional sub-space
gets closer to the space of currents). This simulation shows that the momenta oscillate at
higher and higher frequencies while the points get closer and closer. The size of the kernel

used in this experiment is Ay = 10

3.5.1.1 Using Matching Pursuit as a robust deconvolution scheme

Simulated directly in the space of currents, the Gaussian noise looks like a distribution
with oscillatory patterns at a possibly infinite frequency. This approach does not help to
interpret the nature of this Gaussian noise. By contrast, the dual representation of this
noise in the space of vector field W, which integrates (by a convolution) every oscillatory
patterns, presents a clearly interpretable structure. This structure was also present, but
invisible, in the direct simulation of the currents.

Indeed, we can simulate the variables v = K a instead of the momenta . A change of

variable within Eq. (3.5.1) shows that Gaussian image of vectors - follows the distribution:

IKa|Y? YKy
_ _YBAY 3.5.3
() (2m) 7T exp 5 (3.5.3)

Now, the covariance matrix of < is K, which is a good conditioned low-pass filter. The
spectrum of the covariance matrix decreases like a Gaussian function with variance 1/)%,.
Two vectors at a distance smaller than Ay, are correlated. The greater Ay, the fewer high
frequencies, the more regular the vector field . Now, it is possible to approximate the true
underlying Gaussian vector field by simulating its sampling « on a grid with a decreasing
step.

Once the noise is simulated in the space of vector fields W, one has to find a way to get
back this noise in the space of currents. Of course, the linear equation v = Ky« cannot
be solved by inverting the badly conditioned matrix K. Instead, we apply the matching
pursuit to the simulated vector field. This gives an approximation of the solution of the
linear equation at any desired accuracy. The result is therefore an approximation of the noise
in the space of currents which corresponds to the simulated vector field. In Fig. 3.13, one
sees that the sparse representation of the noise highlights clearly the underlying structure
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Figure 3.13: Simulation of random Gaussian vector field (top row) and their approximation
at 95% (bottom row). The matching pursuit is used here as a deconvolution tool to visualize
currents when only their representation in terms of vector fields (in W) can be simulated.
Whereas the noise in the space of currents is a very irregular and oscillatory object by
nature (See Fig. 3.12), its analysis via the matching pursuit (which exhibits an adapted

basis on which to decompose the current) reveals a much more intuitive structure.

of the Gaussian noise in the space of currents: momenta are drawn at a distance of roughly
Aw with arbitrary directions.

Remark 3.10. To simulate random Gaussian image of vectors in practice, we do not need
to factorize the N-by-N matrix K, (for a scalar kernel, otherwise K, is Np-by-Np), with
N > 103. We use the fact that for linearly spaced grids with periodic boundary conditions,
the multiplication with K, is equivalent to a discrete convolution with k. Therefore, we
simulate the stationary Gaussian noise by computing the convolution between a transfer
function p and an image of white noise (both of size N). More precisely, let g be a n,-
by-n,-by-n, matrix of independent zero-mean Gaussian variables with unit variance. We

look for a matrix p, such that the covariance of the image p x g is given by k. Since g is
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second-order stationary random process, so is p x g. Then p must satisfy:

Cov(pxg(i,j, k), pxg(0,0,0))

=B > pli—ii—i k=KW@, i k) Y pl=p,—d, =g, q ")
i/’j/’k/ pI’q/7,rI
= > pli—i,j—jk—K)p@ k)
i/,j/7k/
= p*p(i,j, k) = k(i, j, k)
(3.5.4)

where p; ik = pPn,—in,—jn.—k- A p which satisfies the last equation exists. Indeed, in
the Fourier domain, this condition becomes: k = |[)|2. Since k is symmetric (due to
the boundary conditions: k = k), k is a real matrix. Moreover, since KW is a positive
kernel, then for any finite set of momenta (o;) and points x;: >, ; Al KW (zi,2)a; > 0
(See definition B.5). Using the grid nodes as points z;, this proves that >, ; , a(i, j, k)k x
(i, j, k) > 0. Applying this equation with a the eigenvectors of K, associated to the
cigenvalues k(i, j, k) (see Section 3.5.1) leads to: ki ;x > 0. Eventually, the FFT of the
kernel k is real and non-negative. The inverse FFT of its square root satisfies the required

conditions for the transfer function p. O

3.5.2 Discussion: currents versus shapes

The usual geometrical objects like curves or surfaces are embedded in the space of cur-
rents, thus meaning that the space of currents contains these objects but also objects of
a very different kind, like a combination of Dirac delta currents which do not approxi-
mate a curve or a surface for instance. In this section, we discuss the structure of a set of

“acceptable shapes” (still to be defined!) in the space of currents.

3.5.2.1 Currents are not shapes

The geometrical objects, once modeled as currents, differ from our intuitive idea of a
geometrical shape. The modeling based on currents is blind to the topology of the shapes,
such as the connectivity between consecutive points on curves or the meshing of a surface,
for instance. A shape modeled as currents is divided into a set of unconnected momenta
(oriented points). This may be an advantage for some applications like for the fiber bundles
in Chapter 7 for instance, for which the only reliable information is the local orientation of
the fibers and not the long-range interactions between points.

However, this lack of topological modeling can make the interpretation of currents in
terms of surfaces or curves more difficult. In Fig. 3.6, a mean current is presented as a set of
small triangles. There is no guarantee that this set of small triangles is the representation
of a smooth surface in the space of currents. In other words, there is no guarantee that
we can build a mesh which “interpolate” the triangles. If such a mesh exists, there is no
obvious way to compute it. The difference between two surfaces also belong to the space
of currents and can still be represented as a set of momenta (visualized as small triangles).

In this case, there is no reason that this current comes from a mesh. Similarly, statistics
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on currents like modes of variations can be represented as set of momenta thanks to the
matching pursuit algorithm but may not be represented as curves or meshes. This lack
of meshing information could be limitation to use statistics on currents to constrain the
segmentation of anatomical structures in new images.

Furthermore, a current is a global object. Once oriented points have been gathered
as a single current (as explained in Section 1.2.4), there is no way to make a point to
play a particular role. This is precisely a feature that motivates this modeling: we want
to avoid to introduce arbitrary point correspondences. The counterpart is that currents
cannot be used to assess local properties of shapes. For instance, the norm on currents is
a global dissimilarity measure which does not highlight where locally the differences occur.
Nevertheless, the matching pursuit applied to the vector field of the difference between two
currents can be used to highlight such local effects, as illustrated in Fig. 3.4 and Fig. 3.8
for instance.

3.5.2.2 The space of shapes is curved in the space of currents

As an embedding space, the space of currents is much larger than a set of “acceptable
shapes”. The previous experiments suggest that the space of “acceptable shapes” is curved in
the space of currents. Indeed, when we performed linear combination of geometrical shapes
in the space of currents, as in Section 3.4.2 for the mean and principal modes, we end up
with currents which do not look like geometrical shapes. This is particularly visible for the
mean meshes computed in Fig. 3.6. This tends to prove that the curvature of the space of
“acceptable shapes” in the space of currents is not negligible. Mean and principal modes
belong to the convex hull of the input shapes in the linear space of currents, which seems
not to include (part of) the space of “acceptable shapes”. This problem arises each time a
curved manifold is embedded into a vector space. Intrinsic statistics, like in [Pennec 2006a]
for instance, could be performed only if we manage to have a precise (and tractable!)
definition of the space of “acceptable shapes”. This curvature effect can be minimized by
performing such linear computations on shapes which are close one to the others in the space
of currents, for instance after shapes have been registered as in Chapter 5. In this case,
the convex hull approximates the tangent-space of the space of “acceptable shapes”’, and
the linear combination of shapes in the space of currents do not deviate too much from the
space of “acceptable shapes”. Nevertheless, we will show in our applications, and especially
in Chapter 7, that statistics performed directly in the embedding space of currents may

lead to relevant anatomical findings.

3.5.2.3 The space of shapes is of negligible measure

The simulations of noise in Section 3.5 tend to prove that the space of “acceptable shapes”
has a negligible measure (in the sense of the Gaussian measure) in the space of currents.
None of the simulated random currents look like a random curve of random surface. This
is even more visible when we try to simulate noisy shapes in the space of currents. In
Fig. 3.14, we add a Gaussian noise to a line L, with a very high signal to noise ratio. As
a result, the noisy curve (in the space of current) is close to the initial line. However, the

result does not look like a noisy curve: random Dirac delta currents were spread over the
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entire domain whereas one expects that a noise added to the curve would move randomly
the points of the curve. In this experiment, we explored the unit ball centered at the line
L by simulating random currents in this ball (more precisely, in a ball of radius 1/SNR).
This shows obviously that a reasonable set of curves (here we can think of all possible sets
of 7 connected points with bounded angles for instance) is of null measure in the space of
currents. In other words, the simulation of a Gaussian variation around the line L has no

chance to look like the sampling of a real curve.

L L L L L L L L L
50 60 20 10 [ 10 20 30 40 50 60 70 80

Figure 3.14: Noise ¢ with variance 1 added to a curve L: L = L + oe. First, the noise is
simulated in the space W as a dense vector field which is added to the vector field £y (L).
Then, the matching pursuit gives the set of segments shown here. The dissimilarity measure
is equal to Hf/ - LH2 / HLH%, = 0.001. This noisy current is about 10 times closer than
the noisy curves shoV\[;J; in Fig. 3.15. However, this does not look like an expected random
variation of a curve due to the non-localized nature of the noise of currents. Random
variations around this line is unlikely to stay on the space of “acceptable shape”. (In this

experiment Ay = 10)

3.5.2.4 The currents metric induced in the space of shapes

The space of “acceptable shapes” seems to be a curved manifold with null measure in the
space of currents. This does not mean, however, that the norm of currents (which defines
both the metric on the space of currents and the likelihood of random Gaussian current) is
not adapted to measure shape variations. Actually, if we deal only with geometrical data,
we use only the metric on the space of “acceptable shapes” which is induced from the metric
in the space of currents. In the following experiments, we show that the restriction of the
norm of currents to the space of real curves has good properties.

In Fig. 3.15, we move randomly the points of the curve L and measure the distance
between the noisy curve and the original one in the space of currents. The graph of this
figure shows that for a small level of noise, the metric on currents does not capture shape
difference, thus highlighting its robustness to noise. This effects is due mostly to the
smoothing effect of the kernel. The metric starts to be sensitive to the shape variations
from a SNR of 0.02.
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Figure 3.15: We build noisy curves L from the curve L by moving the points of the line
according to a Gaussian displacement (zero-mean, standard deviation o) for o/ ||L| . =
0,...,0.06 (Left panel). On the right panel, we measure the discrepancy in the space of
currents between noisy curves and the original one: ‘f/ - LH _/ILllyy+: all these lines
belong to a ball of center L and radius 0.44 ||L||y;,., whereas a‘fandom Gaussian variation
in the space of currents is unlikely to produce such noisy curves. The flat aspect of the
curve for high signal-to-noise ratio shows the robustness to noise of the metric between
currents. (In this experiment Ay = 10)

In Fig. 3.16, we translate the curve L along the x-axis and measure the distance between
the translated curve and the original one in the space of currents. This graph emphasizes a
typical range of sensitivity of the metric determined by the scale A\y,. Far below the scale
Aw , shape variations are considered as noise. When the lines are at a distance much greater
than Ay, they are orthogonal in the space of currents ((L, 7..L)y. ~ 0since KW (z,z+7) ~
0 when |7| > Aw) and the distance between them becomes constant. More discussion on
the effects of the size of the kernel Ay to measure dissimilarity between lines can be found
in Chapter 6.

These experiments show that metric on the space of currents is adapted to measure
shape variations, even if these variations are unlikely to result from random variations in
the space of currents. This metric can be used therefore ‘as is’ as long as we constrain
the shapes to stay on the subspace of “acceptable shapes”. This is the case for measuring
the discrepancy between a diffeomorphic deformation of a curve and another curve as in
Chapter 4. The deformation is driven by the discrepancy measure in the space of currents
but moves the points without changing the topological structure of the curves (or surfaces).
Therefore, it minimized the distance between source and target in the space of current,

while enforcing the deformed curve not to deviate from the space of “acceptable curves”.

3.5.2.5 Currents: a set of sensors to probe the geometry

The previous geometrical considerations help to better understand how shapes are mod-
eled as currents. By contrast, they give few insights about what currents really are, espe-
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Figure 3.16: We translate the curve of

Fig. 3.15 along the x-axis and measure the
o o dissimilarity between translated curve and
” the original one. This dissimilarity metric is
weakly sensitive to small variations with re-
y spect to Aw (Aw = 10 in this experiment).
i This is due to the smoothing effect of the ker-
/ nel, which sets a typical “level of noise” on
geometrical objects. For large variations with

e respect to Ay, the two lines become orthogo-

Dissimilarity Measure (i=..- i /1253

. . " " " nal and the metric does not capture variations
Norm of the Translation - anymore. The band-width of the kernel Ay
determines a typical range of variations which

are captured by the metric on currents.

cially when they are not modeling a particular shape.

One can imagine a current as a set of sensors (like a CCD captor) which patches the
entire space, each sensor having a typical diameter of Ay,. Each local sensor averages the
geometrical information in the neighborhood of size Ay and the current combine nicely
the information of every sensor. This combination of local measures explains why currents
are insensitive to the topology of shapes and long-range interaction between points. The
distance in the space of currents compares the response between each possible pair of sensors.

In this context, a noise on currents is interpreted as a noise on each sensor. This is
particularly visible in Fig. 3.14: the noise adds a small segment in arbitrary direction in
every patches of size Ay, as if the response of each sensor has been corrupted by a random
geometrical information.

This helps also to understand why the analysis based on currents cannot retrieve any
geometrical details at a smaller scale than Ay. For instance, the matching pursuit leads
roughly to one momenta in each patch of size Ay : it tries to estimate the response of each
sensor which, once combined, retrieves the actual data. Estimating details beyond the scale
of the sensor is impossible: numerically this leads to an ill-posed deconvolution problem.

This explains also why we need to set up grids whose steps are smaller than the scale
Aw and also why setting finer and finer grids does not help to really increase the precision

of the sparse representation of a current.



CHAPTER 4
Flows of space deformations for
the registration and the temporal

regression of geometrical data

This chapter is based on the registration framework of currents of [Glaunes 2005,
Glaunés 2008]. The extension of this registration scheme for the temporal regression of
longitudinal data has been published in [Durrleman 2009d, Durrleman 2009b]. The appli-

cation of the registration in lung imaging has been published in [Gorbunova 2009].
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In the previous chapters, we introduced the currents for modeling shapes and defined
numerical tools for processing shape statistics. However, in the perspective of Grenander’s
approach [Grenander 1998, Mumford 2002|, we want to base the measure of shape dissimi-
larities also on the deformations which map one shape to another. One of the main purpose
of the thesis is precisely to combine the statistics on shapes with the statistics on defor-
mations. Before defining and estimating such statistical models, we need to define shape
deformations in a way which is compatible with the modeling of shapes as currents.

Several deformation frameworks have been proposed in the field of medical imaging,
mostly for the registration of images [Christensen 1996, Rueckert 1999, Ashburner 1999,
Shen 2002, Avants 2004, Ashburner 2007, Yeo 2009a, Vercauteren 2009]. To use the defor-
mations which result from registration in a statistical context, we would like that these

deformations:

e have a tangent-space representation: large deformations such as diffeomorphisms
usually do not build a vector space but a curved manifold instead. To compute
statistics on such objects, it would be beneficial to use their tangent-space repre-
sentation of the deformations in the perspective of [Vaillant 2004, Pennec 2006a] (as
outlined in [Mumford 2007]): statistics are performed on the tangent-space and log-
arithm/exponential map are used to compute the tangent-space representation from
the deformation and vice versa. For this purpose, the tangent-space should be pro-
vided with a metric which allows to easily compute statistics.

e are geodesic: the tangent-space representation can be used only if the deformations
which result from registration are geodesic on the “manifold of deformations”. There-
fore, one must have shown that the registration algorithm converges to a geodesic
deformation.

e can be processed independently of a particular registration algorithm: the deformation
which results from registration should be parameterized in way which allows the
composition or the inversion of deformations, even if these deformations result from
the registration of different shapes. For instance, one should be able to use a given
deformation to warp any shape in space. This excludes the registration frameworks
which result only on a correspondence field between the voxels of the source and the

target image.

e are dense: the anatomical curves and surfaces will be used to drive the registration of
two different anatomies. The resulting deformation should be a dense deformation of
the underlying biological material, which enables to align the anatomical landmarks.
This excludes the registration frameworks which provide only the deformation of each
shape individually without integrating these spatial constraints consistently into a

dense 3D deformation.

Among other possible choices, it seems that the Large Diffeomorphic Deformation
Metric Mapping (LDDMM) framework [Trouvé 1995, Trouvé 1998, Dupuis 1998] is par-

ticularly adapted for statistical purposes. First, is has been already shown that this
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deformation framework could be used for the registration of shapes modeled as cur-
rents [Vaillant 2005, Glaunés 2008]. Second, it has been used also to define tangent-space
statistics [Vaillant 2004], since the resulting deformations have been proved to be geodesic.
Third, the metric on the tangent-space uses the mechanism of RKHS. This offers a way to
use the computational framework defined for currents in Chapter 2 and 3 to deal efficiently
with statistics on deformations. Fourth, computing with such deformations is particularly
easy: the composition, the inversion and the application of the deformation to any shapes
are all computed at the cost of the integration of an ODE.

The purpose of this chapter is therefore to introduce the LDDMM framework for the
registration of currents in the perspective of [Vaillant 2005]. Applying this registration
framework on anatomical data with more that 10 points requires a particular optimization
scheme. The original implementation of J. Glaunés uses the Fast Gauss Transform. As
mentioned in Chapter 2, setting the parameters of this optimization scheme can be done only
manually. This prevents us from using this algorithm routinely to run many registrations,
like a bench of template-to-subject registrations for instance. In this chapter, we will show
how to use the computational framework defined in Chapter 2 to provide a more stable and
more robust implementation of the registration algorithm.

Moreover, the LDDMM framework is based on flows of diffeomorphisms. As we will
show in this chapter, this offers a natural way to extend the usual 3D registrations for
the temporal regression of time-indexed shapes, a key feature for defining statistical model
of shape evolution, as we shall see in Chapter 9. In this chapter, we will illustrate this
temporal regression method on a set of fossil endocasts of bonobos which are associated to
different dental ages.

Eventually, we will show how this registration framework integrates consistently different
anatomical landmarks into a single deformation of the underlying 3D domain. We will use
this algorithm to drive the registration of images of the lungs by the positions of the blood
vessels and the surface of the lungs. This will be compared with a registration driven by the
intensities of images. This integrative power of the method will be used also in Chapter 6
for the registration of a set of sulcal lines and in Chapter 7 for the registration of white
matter fiber bundles.

4.1 Flows of diffeomorphisms for registration and tem-

poral regression

4.1.1 Shape registration based on currents

The problem of shape registration may be formulated as the search of an “optimal”
deformation (in a sense to be defined) which enables to minimize the dissimilarity between
the deformed source shape and the target shape. In the previous chapters, we showed how
geometrical data can be modeled as currents. The norm between currents provides a metric
on the space of shapes. To take advantage of the properties of the currents, we need to
define a registration scheme, which is compatible with the framework based on currents.

This means that the deformation of geometrical data (such as curves or surfaces) modeled as
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currents should remain a current and that the registration should minimize the discrepancy
between the deformed source shape and the target measured in the space of currents.

The resulting registration framework will inherit therefore from the main properties of
currents: the registration can be performed even in absence of point correspondence between
structures. One can constrain the registration with correspondences at the anatomically
relevant level (correspondence between points, curves or set of curves for instance), as
emphasized in Section 1.2.4. This avoids to introduce arbitrary correspondence which may
bias the computation of the shape alignment. Moreover, the registration will be robust to

the change of topology of the shapes, such as curve interruption for instance.

4.1.2 Why diffeomorphisms?

Once the measure of dissimilarity has been given, we have to define the class of defor-
mations to be used for the registration. Several choices are possible. The deformations with
the fewest degrees of freedom are the rigid-body transformations (translation and rotation)
and scaling. In 3D, the group of rigid-body transformations is of dimension 6. If we add the
scaling, it becomes of dimension 7. These groups of linear transformations can be extended
to the more general affine deformation group with 12 degrees of freedom. In these cases,
optimizing a criterion over the whole space of possible transformations is particularly easy
due to the small number of parameters to be optimized. However, these deformations are
linear and, as such, may be unable to capture several local variations of shapes such as a
torque of one part of the shape and an elongation of another part. Such variations, though,
are likely to describe interesting anatomical features. Therefore, we must enlarge the space
of possible deformations to capture relevant anatomical variations.

The diffeomorphisms are the non-linear extension of the invertible linear transformations
(isomorphisms), which play a key role in differential geometry since they describe a local
change of coordinates. A diffeomorphism is a smooth mapping of the space into itself,
invertible with smooth inverse. As non-linear deformations, it is particularly well suited
to capture local smooth variations. The use of such one-to-one deformations for shape
registration assumes one-to-one correspondence between different anatomies. Of course,
this assumption is not completely realistic from an anatomical point of view. Indeed, the
inter-subject variability is likely to involve topological changes or matter creation/deletion
which cannot be captured by diffeomorphisms. However, the purpose of registration, here, is
not to find the true transformation (provided that this makes any sense!), but to fit a model
with its own limitations which best describes the data. In this setting, the registration is a
trade-off between the regularity of the deformation and the fidelity-to-data. If the difference
between the sets of shapes involves non-diffeomorphic variations, then they will be captured
by the residual shape that remains after registration (difference between the deformed source
and the target). In Chapter 5, we will set up a statistical framework which account for
both the diffeomorphic variations of shapes (captured by the registration) and the non-
diffeomorphic variations (captured by the residual), so that we will not leave aside any
information. If one does not want to use this registration framework for statistical purposes
but just for aligning shapes (for segmentation purposes via atlas to subject registration

for instance), then one may be aware that large misalignments may appear in area where



4.1. Flows of diffeomorphisms for registration and temporal regression 121

non-diffeomorphic variations occur.

Contrary to the linear transformations which have a finite dimensional parameterization,
diffeomorphisms have an infinite number of degrees of freedom. This raises computational
issues for dealing with such deformations. In particular, optimizing a registration criterion
over the whole group of diffeomorphisms might not be possible. By contrast, we can define
smaller group of diffeomorphisms, which still are of infinite dimension, but which allow to be
processed via discrete parameterizations. The LDDMM framework is based on the group of
diffeomorphisms set up in [Trouvé 1995, Dupuis 1998] which is constructed via integration
of time-varying vector fields which belong to RKHS. As we shall see in this chapter, the
registration of discrete structures (unstructured point sets, polygonal lines or surfaces) in
this setting leads to a finite parameterization of the diffeomorphisms, which depends on the
structure to be matched (see Section 4.2.2.2).

Affine transformations are particular cases of diffeomorphisms. In the framework pre-
sented here, we can adapt the regularity (i.e. the scale at which the motion of the points
are correlated) of the diffeomorphisms from an locally rigid transformation (spatial scale
tends to infinity) to irregular deformations which move every point almost independently
(spatial scale tends to zero). This gives a very flexible way to adapt the regularity of the

deformation to our needs.

4.1.3 Dense deformation for the integration of spatial constraints

Many shape registration frameworks look for a displacement field which is defined on
the points of shapes only. Each shape to be matched leads to a correspondence field,
without guaranteeing the spatial consistence of the different displacement fields if there are
several geometrical primitives to be matched. However, in Computational Anatomy, the
geometrical primitives to be matched have been extracted from images and are often some
geometrical landmarks of specific structures or organs. Therefore, one would like to find
the deformation of the underlying biological material which enables to align the extracted
geometrical landmarks. What we are looking for is a dense deformation of the space which
is constrained by the discrete shapes instead of the discrete deformation which cannot be
extrapolated to the whole image domain. In the deformation framework presented here,
one precisely looks for a diffeomorphism of the underlying 3D space which transports the
shapes from the coordinate system of the source to the coordinate system of the target.
The set of shapes to be registered are used as constraints to find the best diffeomorphism
which will best align the two sets of shapes. Even if there are several geometrical primitives
to be matched, the registration of two sets of geometrical data leads to a single deformation
of the space. This allows, for instance, to use the resulting deformation to deform other
geometrical structures or the underlying image itself.

However, it not always possible to find a diffeomorphic deformation which perfectly
align all the spatial constraints, since the two sets of shapes might not be diffeomorphic
(i.e. a different number of curves to be matched for instance) for instance. Therefore,
it is important to ensure that the estimated deformation (returned by the registration
algorithm) is really a diffeomorphism as the best fit of a diffeomorphic model to the data.

This will decompose in a robust way the difference between the two sets of shapes into a
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diffeomorphic variation and a non-diffeomorphic perturbation (in the residual which remain

after registration).

The regularity of the deformation is a parameter of the method which determines the
scale at which the diffeomorphism integrates the spatial constraints consistently. All pieces
of shapes located in a neighborhood of the size of this parameter will be deformed consis-
tently (i.e. locally an almost rigid deformation), whereas the pieces of shapes located at
a distance much further may be deformed independently, while ensuring the diffeomorphic
property though. This integrating property of the diffeomorphisms will be of great interest
in Chapter 6 for defining the registration of the cortex surface knowing only the position of
some sulcal constraints. In some sense, this is similar to the poly-affine framework proposed
in [Arsigny 2005] which defines piecewise affine transformations in a way which ensures the
resulting deformation to be a diffeomorphism. However, in the setting proposed here, we do
not need to specify the partitioning of the space into small regions beforehand. We specify

only the typical size of the regions on which the diffeomorphism is very regular.

4.1.4 Flows of diffeomorphisms: from registration to regression

In our framework, we build diffeomorphisms by integrating time-varying vector fields.
As a consequence, we do not only define a diffeomorphism ¢ but also a differentiable flow
of diffeomorphism ¢, where ¢ is a continuous parameter within the interval [0, 7]. The flow
starts at time ¢ = 0 with ¢g being the identity mapping. It finishes at time ¢ = T where
¢i—7 = ¢ the desired transformation. This means that for any point z of the space, ¢¢(x) is
the path of this point which leads to the final position ¢r(z) which is in correspondence with
x. This differs from other diffeomorphic frameworks which gives only the correspondence
field z — ¢(x). As we shall see below, knowing the whole trajectory ¢:(z) for any point x
allows us to easily compute operations on diffeomorphisms. To compute the inverse of the

deformation for instance, it suffices to follow the path backward!

Moreover, flows of diffeomorphisms allow us to deal in a single framework with both the
shape registration and the temporal shape regression. For the registration of a source shape
S to a target shape S’, we want to minimize the discrepancy between the deformed source
o7 (S) and the target S’. This is done by finding the flow of diffeomorphism (¢¢)o<¢<7 such
that the final diffeomorphism ¢ minimize the fidelity-to-data term and such that the flow
between ¢y = Id and ¢r is the shortest possible (i.e. geodesic in a sense to be defined).
This framework extends directly for shape regression, as emphasized in Fig. 4.1. Let S;
be a set of shapes associated to some time ¢; (or any other scalar parameter) and Sy an
initial shape. Then the regression of this data distributed over time can be expressed as a
continuous shape evolution S(t) = ¢:(Sp) where ¢, is a flow of diffeomorphism such that
the discrepancy between S(t;) = ¢¢,(So) and \S; is minimized for every time-points ¢;. The
regularity constraint on the flow of diffeomorphism leads to a flow which is geodesic within

each interval [t;, t;11].
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Australopithecus Homae Homo
africanus Homo habilis Homo erectus neandertalensis sapiens sapiens
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Figure 4.1: Example of shape regression: profiles of hominid skulls have been provided in
red. We choose the australopithecus profile as the baseline Sy. The temporal regression
computes a continuous flow of shapes S(t) (here in blue) such that the deforming shape
matches the observations at the corresponding time-points. The regression S(t) can be
computed by applying a flow of diffecomorphisms ¢; to the baseline Sp: S(t) = ¢¢(Sp). In
this framework, temporal regression is a natural extension of the registration between pairs

of shapes.

4.2 A diffeomorphic deformation framework

As discussed above, the group of diffeomorphisms set up in [Trouvé 1998] seems par-
ticularly adapted to our needs. We recall here the definition and the main properties of
this group of diffeomorphism which will be used in the next chapters. We refer the reader
to [Trouvé 1998, Dupuis 1998, Joshi 2000, Miller 2002, Miller 2006] for more details on the
theory.

4.2.1 A particular group of diffeomorphisms
4.2.1.1 Constructing diffeomorphisms by integrating time-varying vector fields

The concept of diffeomorphisms emerged naturally in the context of differential equa-
tions. Given an initial condition zg, the integration of a differential equation of the type
& = f(t,x) leads to a trajectory x(t). The solution of this differential equation may be
written in a general form as a mapping which maps every possible initial conditions x to
the position of this particle at time ¢, which is denoted ¢;(x). Under some conditions (sat-
isfied by usual mechanical system), the mapping z — ¢;(z) is a diffeomorphism. And the
mapping t — ¢, is called a flow of diffeomorphisms.

The main idea is therefore to construct 3D-diffeomorphisms via the integration of time-
varying vector fields. Given v; a vector field (i.e. a mapping from R3 to R?) for every time
t € [0,T], we define the following flow equation:

0¢i(x) _
5 = vi(de(2))
{ bolz) = (4.2.1)

or, equivalently, the integral equation:

e =2+ [ o(oua)ds (122)
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In these equations, v; plays the role of a speed vector field in the Eulerian coordinates: a
particle that goes through the position x at time ¢ has the velocity v;(z). A particle which
starts from position = at time ¢ = 0 is located therefore at ¢;(z) at time t. t — ¢;(z) is the
trajectory of the particle.

The question is to know under which conditions on the time-varying vector field this
equation admits a solution ¢; : R® — R? for all ¢ € [0,7] and under which condition this
solution is a diffeomorphism of the space R3. Sufficient condition is to impose firstly that
every mapping © — v¢(x) is differentiable (in space) and that both v; and its Jacobian
matrix tends to zero at infinity and, secondly, that the mapping ¢ — v; is L' (in time).
Note that the regularity constraint is much stronger in space than in time. This is not
surprising: even if the speed oscillates at a high frequency, the fact that two particles,
which are close one to the other, have a correlated speed guarantees the invertibility of the
flow (and enables to avoid tearing for instance). That’s why a strong control of the spatial
variations of the speed vector field is required.

More precisely, we define V' the space of vector-field as:

Definition 4.1. Let V be a Hilbert space of vector fields (mapping from R to R3) such
that for any v € V:

o v is C1(R3,R3) (differentiable with continuous differential)

Moreover, we suppose that there is a constant cy such that for any v € V:

sup (jo(@)] + |dav) < v [lully (4.2.3)
TER:-

This allows us to give some conditions under which the flow equation leads to diffeo-
morphisms of R3:

Theorem 4.2. Let V' be a Hilbert space of vector fields which satisfies the conditions of
Definition 4.1. Let v be a mapping from [0,T] to V such that:

T
/ o[} dt < oo. (4.2.4)
0

Then there is a flow ¢} which satisfies the integral equation:

ot =t [ v@@)ds (1.2.5)

0

for allt €10,T7.
Moreover, for allt € [0,T], x — ¢¢ is a C'-diffeomorphism of R3.

The proof of this theorem can be found in [Glaunés 2005] for instance.

Remark 4.3. In order to show the dependency of the resulting diffeomorphism on the
time-varying speed vector field v = (v¢)¢e[o,7], we write the flow as: ¢f. O
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Remark 4.4 (Acceptable vector fields can be L! as well). The theorem still holds if the
condition fOT [oe][3 dt < oo (i.e. v € L%) is replaced by fOT o]y, dt < oo (i.e. v € L}).

1/2
This last condition is weaker since we have fOT velly dt < T2 (fOT o3 dt) thanks
to the Cauchy-Schwarz inequality. However, the resulting group of diffeomorphism is the

same under both conditions. [

Let V be a vector space which satisfies the conditions of Definition 4.1. We denote by
Gy the set of all diffeomorphisms which results from the integration of a L?, time-varying
vector field at time ¢t = T"

Gv ={¢%; vely} (4.2.6)

By unicity of the solution of the flow equation (see [Glaunés 2005]), one can show that
¢V o ¢Y = ¢ where w € L% is defined by:

B if t €10,7/2]
YT v ifte[T)/2,T)

The speed vector field w is the succession of the two speed vector fields v and v’ which have
been accelerated twice, so that the trajectory of a particle during ¢ € [0, 7] driving by w is
the same than the succession of the two trajectories ¢¥(z) during ¢ € [0, 7] and then ¢? ()
during ¢ € [0, 7.

Moreover, the inverse of a diffeomorphism ¢ in Gy is still in Gy. To compute (¢%) !,

we just need to integrate the flow equation backwards:
(@)™ = o} with v} = —vr_,

This shows that Gy is a subgroup of the group of diffeomorphism.

We notice that these equations are of high practical interest. Computing the composition
and the inversion of diffeomorphisms can be done explicitly in this framework, simply by
integrating ODE. This differs from other frameworks in which diffeomorphisms are given as
correspondence fields x — ¢(x). Computing the inverse may be difficult and may require
to optimize a criterion of the form |¢ ot —Id||. Moreover, there is no guarantee that
the estimated inverse map v belong to the same group of deformation as ¢. By contrast,
diffeomorphisms in the LDDMM framework are always given with their parameterization
v which allows efficient computations within this group of diffeomorphisms.

Now, we introduce the notion of length of a path in the group of diffeomorphisms. The
following proposition shows that this length does not depend on the time-parameterization

of the flow of diffeomorphisms:

Proposition 4.5 (Length does not depend on time-parameterization). Let (vt)epo,r) € L%
be a time-varying vector-field. This vector field draws a path on Gy between Id and ¢r:
(#Y)tefo,1) via the flow equation in Eq. (4.2.2) and Theorem 4.2. The length of this path
defined as:

1
L((6%)ecro,m) :/0 [[ve]ly dt (4.2.7)

does not depend on the parameterization of the flow.
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Proof. First, we notice that the Cauchy-Schwartz inequality implies (as in Remark 4.4)
that the squared-integrable vector field (v;) is also integrable. Let ¢ be a change of param-
eterization of the flow (i.e. an increasing 1D-diffeomorphism such that ¢ ([0,7T]) = [0, T1).
Then x(t) = ¢¥ () becomes Z(t) = x(1p(t)). The velocity field oy which parameterizes this

new flow is given by:

z(t) _ =)

Bi(e) = 2 = T () = o (o @) (4238)

Therefore, 9y = 9’(t)vy ) and a change of variable u = v (t) in the following integral leads
to:
/ w*l(l):l‘ ) du T
fouly dt = | v@llealy = [ lulvd @29)
0,7 v %»=1(0)=0 v 9" (u)] 0 v
which proves the invariance of the length of the path in Gy with respect to a change of

parameterization. ]

4.2.1.2 Vector fields belong to a RKHS

In Definition 4.1, the condition in Eq. (4.2.3) is a control of the spatial regularity of the
vector field and of its derivative. In particular, this condition ensures also that:

ol < cv vy (4.2.10)

This proves that V is a RKHS, according to Proposition B.4. We denote KV its kernel.
Since the vector fields of the form KV (.,z)a belong to V, the kernel is C' and both the
kernel and its differential tend to zero at infinity.

Conversely, if V is a RKHS such that its kernel is C!, tend to zero at infinity as well as
its derivative and is twice differentiable with a bounded second differential, then one can
show that V satisfies the conditions of Definition 4.1 (see [Glaunés 2005 for instance). For
instance, the RKHS with a Gaussian kernel KV with any standard deviation Ay satisfies
Definition 4.1. This condition allows us to check easily which kernels can be used to generate

diffeomorphisms.

4.2.1.3 Metric and geodesic

For any diffeomorphism ¢V € G, the total kinetic energy required to deform the space
from its initial state ¢f = Id (Id denotes the identity mapping, no deformation) to ¢4 is
given by: fOT Hvt||%, dt. We can define a metric between ¢¥ and the identity mapping as the
minimum kinetic energy needed to map Id to ¢4

T
d(1d, $)* = min {/ oell3 dt; v e LY, ¢4 = (b} (4.2.11)
0

for all ¢ € Gy.
We can extend d on Gy x Gy by right-invariance: for all ¢,¢ € Gy,

d(¢, ) = d(1d, o ") (4.2.12)
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It is proven in [Trouvé 1995] that d is a distance on Gy. For any ¢ € Gy, there is a
unique v € L‘Q/ which achieves the minimum in the definition of d(Id, ¢). The associated
flow of diffeomorphisms ¢} is the geodesic path between Id and ¢ = ¢¥..

Moreover, in some particular cases, it is shown that the v which makes ¢y the geodesic
path between Id and ¢ follows Euler-Lagrange equations. By analogy with mechanics, the
minimization of the energy (min, ; E(x,)) leads to equations of motion (& = f(z,x)).
As a consequence, the evolution of the system under the principle of energy minimization
is entirely determined by its initial position and initial velocity. In our framework, the
initial position is always the identity map ¢g = Id. Therefore a geodesic starting at the
identity map is entirely determined by the initial speed vector field vg. This is called the
“tangent-space representation” of the diffeomorphism. In some sense, the integration of the
Euler-Lagrange equations plays the role of the exponential map in Riemannian geometry
and is called “geodesic shooting” in this context. Similarly, the initial vector fields vy, which
is called the tangent-space representation of the diffeomorphism, plays the role of the loga-
rithm in Riemannian geometry. This tangent-space representation of the diffeomorphisms
will be used to define tangent-PCA on the space of diffeomorphisms like in Chapter 5
and in [Vaillant 2004]. In the next section, we will write the Euler-Lagrange equations
in case of the momenta which parameterize the vector fields have a discrete support (in
Eq. (4.2.22)). See [Miller 2006] for the derivation of the Hamiltonian system in other cases.
We also refer the reader to [Mumford 2002, Michor 2007, Vialard 2009] for more details on

the Hamitonian approach.

Remark 4.6 (Minimizing length or energy?). Here, we define the geodesic distance as
the minimal kinetic energy needed to connect to diffeomorphisms. However, it seems more
natural to define the geodesic distance between Id and ¢ as the minimum length of every
paths connecting the two diffeomorphisms, with the length as introduced in 4.5. This leads
to the definition:

T
d(Id, ¢) = inf {/ lvelly dt; v € Lis, ¢4 = q/)} (4.2.13)
0

where compared to Eq. (4.2.11), the L?-metric has been replaced by the L!-metric in the
space of varying vector fields.

It is proven in [Glaunés 2005] that these two distances are equal: this change of the met-
ric in the space of vector fields does not change the metric on the space of diffeomorphisms.
However, the uniqueness of the minimizing vector field holds only for minimal path for
the kinetic energy (L? metric), namely the vector field which satisfies the Euler-Lagrange
equations. On the contrary, there is no uniqueness when using the L' metric. Indeed, it
has been shown in Proposition 4.5 that any re-parameterization of the vector field which
minimizes the length of the path between both diffeomorphisms leads to the same length
and therefore to the same distance. Contrary to the L? metric, the L' metric does not
favor any parameterization of the extremal path. This is very intuitive: independently of
the speed at which one goes along the path, one covers always the same distance. But if
one accelerates and slows down on the way, one would need more energy to cover the same
distance. As a consequence, to minimize the kinetic energy, one needs to cover the distance

at a constant speed. This is exactly what we will prove in Proposition 4.11.
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This difference between the L' and L? metric will play an important role in Chapter 9
(in particular Section 9.5.2) in which we will allow to re-parameterize the geodesic path

between diffeomorphisms. [

4.2.1.4 Diffeomorphisms and currents

Eventually, we still need to show that this group of diffeomorphisms is compatible with
the framework of currents, namely that the push-forward action of this group of diffeo-
morphisms on the space of currents can be defined. In this case, a sub-manifold, which is
modeled as a current, remains a current after being deformed by a diffeomorphism in Gy .
This is a key feature to use the metric on currents to drive the registration of geometrical
data.

According to Defn. 1.15, the push-forward action of a diffeomorphism ¢ on a cur-
rent T can be defined if sup,cps |dz¢| < co. The following proposition, which is proved
in [Trouvé 2005b| for instance, shows that any diffeomorphisms in Gy satisfies this condi-

tion.

Proposition 4.7. Let v € L?([0,1],V), such that fol ||vt||%/dt < 00, then the diffeomor-
phism (¢}) for any t € [0,1] (in the sense of Theorem 4.2) satisfies:

sup |dg 7| < oc. (4.2.14)
z€R3

4.2.2 Minimization of point-based matching criteria
4.2.2.1 Existence of the minimum

In this section, we show how this diffeomorphic deformation framework can be used to
solve efficiently some minimization problems like registration or temporal regression. The
minimization problems we are addressing are typically of the form of a trade-off between
a fidelity-to-data term and regularity term. For registration problem, one wants to find a
deformation ¢, such that the deformation of a source S; at the final time T matches the
target So. This means that the data-to-fidelity term (the distance between ¢ (S1) and Sz)
depends on ¢7 only, and not on the whole flow (¢¢):cj0,7). Therefore, it is of the form:
A(¢r), where A is a mapping from Gy to [0, +o00[. For regression problem, one wants that
the deformation of the source S; matches some targets S;, at several time-points ¢;. This
is done by minimizing a least-square criterion which is the sum of the distance between
¢1,;(S1) and S;,. The fidelity-to-data is therefore of the form ) . A;(¢¢,), where A; maps
Gy to the non-negative real numbers. In particular, this last form includes the registration
as a particular case.

We add a regularity term to these least-square criterion. The purpose is to find a
trade-off between the regularity of the deformation and the precision of the matching. As
regularity term, we use the total kinetic energy needed to deform the space from the identity
mapping to ¢r: d(Id, ¢7)2.

The typical minimization problem can be written therefore as:

min J(¢)  with J(9) = ;Ax@i) +d(id, ¢7)* (4.2.15)
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In [Glaunés 2005], it has been shown that this minimization problem is equivalent to

the minimization of the criterion over all possible time-varying vector fields v € L%,:
T
min J(v) with J(v) =Y Ai(¢}) +v / o3 dt (4.2.16)
- 0
K3

The existence of a minimum of this functional has been proven, provided that v > 0 and
the functions A; : Gy — [0, 00| are weakly continuous. This means that for all sequence v,

in L? which weakly converges' to v, then A;(¢"") converges to A4;(¢")>.

4.2.2.2 Parameterization of the minimizing diffeomorphisms

In practice, the fidelity-to-data terms measure the similarity between the moving source:
#¢,(S) and target shapes Sy,. Therefore, each A;(¢f,) can be written as A;(¢7,(S)). The
source can be curves, surfaces or volumes: in any case it is a subset of R3. Then, we
can prove that the time-varying vector field v which minimizes the criterion J(v) can be
parameterized by a set of momenta located at the points of S. When S is approximated
by a finite set of Dirac delta currents in the framework of Proposition 1.11, the minimizing
vector field is parameterized by a finite set of vectors. This is obviously of the uttermost

interest from a computational point of view.

Proposition 4.8. Let S C R® and v € L},. For any t € [0,1], we denote Vyy(s) the
sub-RKHS of V' spanned by the points of ¢7(S), in the sense of Definition 2.1.

We define v° € L% such that for every t € [0,T), v? is the orthogonal projection of vy
on Vyr(s)-

Then, the criterion J(v) = >, Ai(¢},(S)) + WfOT ||vt||%/ dt is such that:

J(*) < J(v) (4.2.17)
Proof. By definition of the orthogonal projection on Vyv(g), we have:

Vi (97 (25)) = ve (97 ()

for all points zs € S and all ¢ € [0,7] (see Section 2.3.2).
Therefore, the function f(t) = ¢} (x5) for any point x5 € S satisfies:

f1(t) = ve(@} (xs))

4.2.18
= vp (97 (x5)) = v (f(1)) e

with f(0) = zs.

By definition of qb,?s, the function fs(t) = gbfs(xs) satisfies the same ODE: f§(t) =
vZ(fs(t)) with the same initial condition: fg(0) = xg. By unicity of the solution of the
ODE, we have:

Vt € [0,T], 97 (zs) = ¢7° (x5) (4.2.19)

LFor a Hilbert space H, vy, € H weakly converges to v € H if and only if for all u € H, (v, u) — (v,u)
2Contrary to what the name suggests, the weak continuity is a stronger condition than the continuity.

Indeed, A; is continuous if for any sequence v, which simply converges to v, then A;(¢Y") converges to
A;(¢?). For the weak continuity, A;(¢Y") must converge to A;(¢") for any sequence v,, weakly convergent
to v. The property must be satisfied for a larger ensemble of sequences, since for sequences the convergence

implies the weak convergence.
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Therefore, we have that A;(¢},(S)) = Ai(qﬁ’f (9)).
Moreover, for all t € [0, T], foV < |Jve]ly, (v? is the orthogonal projection of v;). This
proves that fOT ||vtSH?/ dt < fOT [ ve][3 dt and therefore that J(vS) < J(v). [ ]

The consequence of this proposition is that we can limit the search for the minimum
of J over the time-varying vector fields which are such that vy € Vyv(s). If S is given as
finite set of points (polygonal lines or meshes): S = {z1,...,7p}, then Vs and V(s are

finite-dimensional and the minimizing vector-field is given as:

v(x) = Z KY(z,2;(t))ay(t)  where z;(t) = ¢? (x;) (4.2.20)

This equation shows that the minimizing diffeomorphism is completely determined by

dz; (t) _

the time-varying momenta (). Indeed, since =7~ = v;(x;), one has:

dCL‘Z(t) o
T ;wai(w,%(t))%(w, (4.2.21)

for all points x;. This gives a set of P differential equations. Once the time-varying momenta
«;(t) are given, the integration of this system of differential equations gives the trajectory of
every points x;: x;(t) = ¢f (x;) for all ¢ € [0,T]. Once these trajectories are computed, the
velocity field v; can be computed at any arbitrary point = via Eq. (4.2.20). Then, solving
the ODE dz(t)/dt = vi(x(t)) leads to the trajectory of any points z: x(t) = ¢} (x). As
a consequence, the minimizing diffeomorphism depends only on the discrete set of time-
varying momenta «;(¢) (L? functions). Once the time interval is discretized, we can derive
a gradient descent scheme to optimize the criterion J numerically. The computation of the
gradient will be done in the next section and the details of the numerical implementation
will be explained in Section 4.4.4.2.

Remark 4.9. Using the vocabulary and notations introduced in Appendix B, we denote
V* the dual space of the RKHS V and Ly the isometric mapping from V to V*. Then the

minimizing time-varying vector field is such that for every time ¢,
— -t ap(t)
e (S
P
where 531”((:)) are Dirac delta currents in the space V*. [J
P

4.2.2.3 Minimizing diffeomorphisms and geodesics

In the criterion (Eq. (4.2.16)), the fidelity-to-data term ), A;(¢7,(S)) depends on the
value of time-varying vector field v only at some time points ¢;. By contrast, the regularity
term depends on the time-varying vector field at every time ¢ € [0, T]. As a consequence, to
find the minimum of the criterion, we need first to optimize the positions of the moving shape
at the time-points ¢; so that they are close to the constraint S(¢;) (the closeness depending
on the trade-off v between fidelity-to-data and regularity) and, second, to optimize the flow
(¢7) in-between these time points.
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If we fix the points x(¢;) at the time-points ¢;, then the fidelity-to-data term is fixed and
the criterion will decrease if we choose the velocity fields in-between the time points ¢; which
minimize the integrals: f:“ ||vt|\3/ dt in every time-interval [t;,¢;11]. As a consequence,
the minimizing time-varying velocity field is geodesic in every time-interval [t;,¢;41]. For
registration, there is only one time point ¢ = 7" and the flow which minimize the criterion is
geodesic in the whole interval [0, T]. For general regression, the flow is piecewise geodesic.
Note that the criterion does not penalize discontinuities of the velocity field. The velocity
field may be discontinuous at the time points ¢;. By integration, this leads to trajectories
of points which are continuous and piecewise differentiable.

As a consequence, the velocity-field in the interval [¢;,¢,11] can be deduced from the
velocity-field at time ¢; via the Euler-Lagrange equations discussed in Section 4.2.1.3. In
the case of a finite number of points, the initial vector field v, is given in the form of
Eq. (4.2.20), i.e. parametrized by a finite number of momenta (x,(¢;), a,(t;)). In this case,
it is proven in [Miller 2006] that the geodesic evolution of v is such that v, has the form
o KV (., 2,(t))ay,(t) at every time ¢ for some time-varying momenta (z,(t), a,(t)) and such
that these momenta are solution of the Euler-Lagrange equations:

Lo — (2, (t))

Solving this coupled system of differential equations in the interval [¢;,¢;+1] leads to the

ap _ t
{ o = = (day y0r) " (1) (4.2.22)

geodesic momenta (z,(t), a,(t)) which completely parametrize the flow of diffeomorphism
in the interval [¢;,¢;41].

We will use these equations in Chapter 5 to compute statistics on the space of diffeo-
morphisms. Indeed, we can compute mean and principal modes of the vectors «;(0) (which
result from a template to subjects registration for instance). These statistics are given as
initial momentum (z,(0), ,(0)) located at the point of the template. They parametrize a
diffeomorphism in Gy which can be computed explicitly by integrating these Euler-Lagrange
equation in the interval [0,7]. The initial speed vector field vy (and its dual representa-
tion (z,(0),p(0))) is the representation of the diffeomorphism in the tangent space of
Gy at the identity mapping (the logarithm of the diffeomorphism if we use a Riemannian
terminology). Such PCA is called therefore tangent-PCA [Pennec 2006a, Vaillant 2004].

Remark 4.10. Since the solution of the minimization problem is piecewise geodesic, we
can theoretically parametrize the minimizing vector fields with the momenta at time-points
t; only. Then, we can use the Euler-Lagrange equations to compute the momenta at any
time ¢. This has the advantage to enforce the geodesic property during the optimization of
the criterion. In this work, following the lines of [Glaunés 2005], we choose to discretize the
time interval [0, T into several time steps kdt and to parametrize the minimizing momenta
as «;(kdt). The piecewise geodesic property of the minimizing diffeomorphism is not guar-
anteed during the minimization procedure but is satisfied at the minimum. In practice, we
checked that the momenta returned by the algorithm satisfy the geodesic property (i.e. are
solution of the Euler-Lagrange equations). From a computational point of view, this alter-
native minimization has the advantage to decrease the dimension of the parameter space

(initial momenta versus time-varying momenta) but it requires to integrate more differen-
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tial equations (two ODEs for the integration of the Euler-Lagrange equations versus one
ODE for the integration of the gradient). Moreover, this alternative approaches involves
second-order derivative of the kernel, whereas the approach proposed here involves only the
first derivative of the kernel. [J

From these equations, we can show easily that the norm of the velocity field is constant

along a geodesic paths. This can be seen as a conservation law along geodesics.

Proposition 4.11 (Conservation of the speed along geodesics). Let V' be a RKHS of kernel
KV Let the set of time-varying momenta (x,(t), a,(t)) satisfy the Euler-Lagrange equations
in Eq. (4.2.22) (i.e. follow a geodesic path) with:

2) =Y KY(z,2,(t))op(t). (4.2.23)

Then, the norm of vy: ||vi]]y, is constant over time.

Proof. According to Remark 4.9, the norm of the velocity field satisfies in the RKHS V:

Jol2 = Ly (v)(ve) 25%“

(4.2.24)
= Zozp bog(,(t))
Therefore, we have:
Ay < day ()’ da (1)
T = T v+ oyt o =
= > —ap(t)'da, e(vaap(£)) + ap(8)'d, 0y 02 (v (1)) (4.2.25)
=0
by application of Eqgs. (4.2.22). This achieves the proof. [ |

4.3 Registration and regression of currents

In Chapter 1 (Section 1.3.3), we introduced the action of a diffeomorphism on a current.
This action is compatible with the geometric transportation of shapes: the deformed shape
¢(.S) is modeled as the current #.S where S is the current associated to S. In the following,
we will write S instead of S.

This action allows us to write the dissimilarity metric between the deformed source
Sy at time t; and the target S; as [|(¢r,)«S1 — Sill;y-- In the sequel, we will deal with
discrete structures: S is represented as finite set of points {z1,...,zp} and therefore
the fidelity-to-data term depends on the variables (x1(T),...,zp(T)) for registration and
(x1(ts),...,xp(t;)) for several time points ¢; for temporal regression:

A= ZAz(xl(tz)y N 7.%‘p(ti)) where Ai(l'l(ti)7 PN ,xp(ti)) = ||(¢t1)*S — Sle/V* (431)
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Note that each A; may involve a sum of squared norm in the most general form of
Eq. (1.2.22) (to account to possible anatomical labels of the structures to be matched). In
this case, however, each fidelity-to-data term is still of the form A;(z1(¢;),...,zp(t;)) and
the following computation of the gradient still holds in this case.

4.3.1 Registration

For registration, the criterion has the general form:

T
J(v) :A(xl(T),...,xN(T))—i—fy/O o2 dt (4.3.2)

where A is a non-negative function and z;(t) = ¢} (x;). 7 is the usual trade-off between

regularity and fidelity-to-data.

4.3.1.1 Gradient of the registration criterion

We can apply the results of Section 4.2.2. The minimizing time-varying velocity field is

parametrized by momenta (z;(t), ;(t)).efo,7:
vi() =Y KY (2, 2:(t))ai(t) (4.3.3)

The criterion J depends therefore on the L? functions «;(t) (from [0,T] to R3). The
gradient of .J with respect to the variable a;(t) is therefore a L2-function of the time ¢. It

is denoted as V() (t). Its expression is given in the following proposition.

Proposition 4.12. Let J be the criterion:
T
J ((ei(t)h<i<p) = Alz1(T), ..., xp(T)) +V/ > i) KY (wi(t), (1)) (t)dt (4.3.4)
-

We suppose that the kernel is scalar and symmetric (i.e. there is a scalar function kY
such that K" (x,y) = kY (2,913 and kY (z,y) = kY (y, x)).
Then the gradient of J with respect to the L? functions «;(t) is given as a vector of P-L?

Junctions (V o, )J (t))i=1,...p, which satisfy:

.

t

d i L& )
%J(al(t),...,ai(t)+Tai(t),...,ap(t)) = / ZKV (zi(t), 2 (t)) Va0 (t) | au(t)dt
o \j=

(4.3.5)

where the gradient is given as®:
Va, ) (t) = 2va;(t) + ni(t) (4.3.6)

where n;(t) is the solution of the backward integral equation:

(4.3.7)

/t Z (ai (w)'n; (u) + o (w)n;(u) + 27ai(u)tozj(u)) VikY (2i(u), z;(u))du,

3In this expression of the gradient, we consider that the metric on the space of time-varying momenta
is given by the time-varying 3P-by-3P matrix K,,, with the notations of Definition 2.5 and for Ay =

{21(8),-..,zp(D)}.
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where we denote V; f the ith derivative of a scalar function f which depends on 3D-vectors

(i) (Vif is therefore a 3D vector).

Proof. A direct proof can be found in [Glaunés 2005]. However, this is a particular case

of Proposition 4.14 which is proved in the next section. |

A gradient descent starts from ¢, = Id for all ¢, which means «;(¢t) = 0 for all ¢ and
t. Then, the gradient is computed via Eq. (4.3.6) and (4.3.7). To compute n; we need to
compute the integral equation (4.3.7) backward in time (i.e. from ¢t =T to t = 0).

4.3.1.2 Differentiation of the fidelity-to-data term

We still need to compute the fidelity-to-data term when it is of the form
A((z:(T)1<i<p)) = [(¢%)S — S’||?,V*. By definition of the push-forward action on currents
(in Definition 1.15), the current (¢%).(S) corresponds to the sub-manifold S(7) embedded
in the space of currents, where S(T') results from the displacement of the points of S by
¢4 (i.e. the points z;(T)). The shape S(T') build faces (the mesh cells if S(T') is a set of
surfaces or the segments if S(T") is a set of polygonal lines) with center of mass ¢;. We
denote 7; the normal or the tangent of the ith face. Then, S(T') is approximated by ), 67
along the lines of Proposition 1.11. Note that the points ¢; and vectors 7; depends on the
points x; (T /). The target shape S’ is also approximated as a finite set of Dirac delta currents
S =3, 525.

The fidelity-to-data term is given as:

2
A= |Sam =36
i i e (4.3.8)

= ) K" (cirei)m; — 2 () KV (¢}, ¢5)m; + Cte,
i

.3

where Cte = ||S’||$,V is a constant with respect to the points z; (7).

The fidelity-to-data term A can now be differentiated with respect to the positions x;(T")
to give V; A in Eq. (4.3.7). In the sequel, we write simply z; instead of z;(T"). For curves,
centers and faces have the form ¢; = (2; + x;41)/2 and n; = (2,41 — x;)/2. For surfaces,
we have ¢; = (z; + i1 + Tit2)/3 and 1; = (41 — @) X (X442 — ;)/2 (where x denotes
the cross-product). The detail of the differentiation of A with respect to the points can be
found in [Vaillant 2005, Glaunés 2005] for the surfaces and [Glaunés 2008] for the curves.
The idea is to compute V() A the gradient of A with respect to the point x; which is
induced by a variation of a given face f = (¢,n) only. Then, V,, A is given as the sum of
the V(A for every face which has x; as vertex.

We suppose that K" is a scalar kernel of the form: KW (z,y) = k" (x,y)Id3 for a

positive scalar function k" (x, ) such that k" (z,y) = k" (y, z). Then, we have for surfaces:

vL(f)A :Zei X kW(CkaCf)Wk - Zei X kW(C;WCf)n;'
A -

! (4.3.9)

2 2
+3 > umeVik" (ex, cf) — 3 > 0 Vak (¢ ep),
P J
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where ¢y and 7y are the center and the normal of the face z;(f) and e; the edge of the face

f opposite to the vertex z;(f).

And for curves, we have:

Ve (nA :252 kY (e, cp)me — 252 kW(c;-, cr)n;
k .

! (4.3.10)

+ Zﬁ}nkvﬁw(%, cr) — Zn'}n}%kw(c;,cf),
- ,

J

where € = 1 if x;(f) is the ending point of the face (oriented tangent) f and € = —1 if x;(f)
is the starting point of the oriented tangent f.

Remark 4.13. In this section, we differentiated the fidelity-to-data term with respect to the
vertices of the m-mesh with a chain rule: a variation of the position of the vertices induces
a variation of the position of the center of mass of the mesh cell, which induces, in turn, a
variation of the current. In particular, this approach imposes that the m-mesh remains a m-
mesh during deformation. However, one could also consider that a m-mesh is decomposed
into a set of mesh cells and that the deformation can move each cell independently (in this
case we consider the fidelity-to-data term as a function of the position of the center of mass
of the cells). As a result, the m-mesh would not be a m-mesh after registration but a set

of disconnected cells.

The alternative approach suggested here has the advantage to be closer to the model-
ing of currents. It would move every mesh cell or every segment independently, without
preserving the topology of the shapes (i.e. the connectivity between points). This would
be particularly adapted for the registration of set of Dirac delta currents returned by the
Matching Pursuit Algorithm for instance which are not provided with any connectivity.
By contrast, for pairwise registration of surfaces, one would prefer to enforce the moving
shape to stay a mesh and use the norm on currents only to drive the deformation (see the
discussion in Section 3.5.2). From a computational point of view, the alternative method
is slightly more complex, since it requires to compute the Jacobian of the diffeomorphism

(to deform infinitesimal tangents or normals).

If we still want to use the proposed algorithm to register currents which result from the
application of the Matching Pursuit algorithm, we need to take care of the amplitude of the
Dirac delta currents to be matched. Indeed, instead of matching the Dirac delta current
7, the algorithm will match the segment [x — /2,2 + 7/2] in case of 1-current or a small
triangle whose normal is given by 7 in case of 2-currents. If the magnitude of 7 is large with
respect to Ay, then the deformation of the segment [¢p(z — 1/2), p(x + n/2)] will be a bad
approximation of the deformed Dirac delta current ¢,d7. To avoid this, we write: §) = 55;7/,
where ' = an and a a coeflicient such that || < Ay. Then, in the example of curves, the
input of the registration algorithm will be the segment [z — ' /2, z + 1’ /2] associated to the
weight 1/a. In this case, the deformation of the segment: (¢(z —n'/2) — ¢(x +1'/2))/a
would be good approximation of d,¢(n) = ad,$(n’). And the registration will be consistent
with the framework based on currents. [
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4.3.2 Regression of longitudinal data

For temporal regression, the criterion has the general form:
T 2
J() =Y Ai(w1(ts), ..., an(t:) + 7/ [ vel|3- dt (4.3.11)
t; 0

where A; is non-negative functions and z;(t) = ¢} (x;). <y is the usual trade-off between
regularity and fidelity-to-data.
The typical solution of this temporal regression problem is illustrated in Fig. 4.1, where
A; = H(¢Z)*SO — SiH?/V*’ So a baseline and (¢;, S;) a set of time-indexed shapes.
According to the results of Section 4.2.2, the minimizing velocity field is parameterized

via time-varying momenta (z;(t), a;(t)):
vy = ZKV(.,xi(t))ai(t) (4.3.12)

and the resulting flow of diffeomorphism is geodesic in every interval [t;,¢;11], as well as
the intervals [0,to] and [t,, T].
The gradient of the regression criterion J((ci(t))e[0,)) is given in Proposition 4.14. We

compute the derivatives of the A; as in Section 4.3.1.2.

Proposition 4.14. Let J be a regression criterion of the form:

J ((i(t))eepo,1),1<i<p) = Z&(%(E)» o xp(ty))

P (4.3.13)
1 [ 3 O K w0y 0)o 0
0 pe=1
where z;(t) = ¢¥(x;) = x; + f(f vs(z;(8))ds with
P
vi(w) =Y K (2,2,(t))ay(t) (4.3.14)

for (a,y(t)), P L? functions from [0,T] to R3.

We suppose moreover that the kernel KV is scalar and symmetric (i.e. there is a scalar
function kY such that KY (z,y) = kY (z,y)I3 and kY (z,y) = kY (y,z)).

Then the gradient of J with respect to the L? functions a,(t) is given as a vector of
P-L? functions (Va, ) (t))p=1,....p, which satisfy:

d 1 P t
T (@10 0y 0+ 7y 0. p) = [ (Z KV (1), (1)) vaqu)J(t)) G (1)t
qg=1
(4.3.15)
where the gradient is given as*:
Ve, ) J (1) = 2705(t) + 0, (1) (4.3.16)

4In this expression of the gradient, we consider that the metric on the space of time-varying momenta
is given by the time-varying 3P-by-3P matrix K,,, with the notations of Definition 2.5 and for A; =

{21(8),-..,zp(D)}.
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where n,(t) is the solution of the linear set of backward integral equations:

np(t) = Z(vai)l{tSti}+

tq

T (4.3.17)
/t D () ng(w) + ag(u)ny(u) + 2ya, (u) aq(w)) Vik(e,(u), z4(u))du

where 1<yy = 1 if t < t; and 0 otherwise and V; f the ith derivative of a scalar function
f which depends on 8D-vectors (x;) (V;f is therefore a 3D vector).

Proof. For the sake of simplicity, we introduce matrix notations®: x; (resp. o) de-
notes the 3P vector (x,(t))p=1..p (resp. (ap(t))p=1..p) and K,, the 3P-by-3P ma-
trix (K (x,(t),24(t)))pq- To make explicit the dependency of this matrix with respect
to the positions x;, we will write it as k(x¢,x;) in the following. The norm of the
speed vector v is written: ||vt||%/ = (ou)'k(xy,%x¢)ay. By extension, we denote also
k(z,x)ae = 37 K(x,zp)ap. For A, a function from R3 to R, we denote by d,A its Ja-
cobian matrix at point z, so that for any vector V: d, A(V) = (V,A)'V. In turn, VA
denotes the 3P vector (V,, A, ...,V A).

With these notations, the criterion to be minimized becomes:

T
T ((@i)icm) = X Axe) 47 [ o)kl o (43.18)
t;

We compute the variation of the criterion J with respect to a variation of the momenta:
a® = o + ca. These momenta yield to velocity fields v and points trajectory x;. We
denote & (resp. v and X) the variation with respect to € of the momenta (resp. the velocity
field and the positions): da/de (resp. dv°/0e and Ox°/0e).

Since v (x) = k(z, x¢)at, we have :
ﬁt(lL') = 81 (k(Xt, x)at)f{t + k(x, Xt)dt (4319)

where 01 denotes the derivative of the 3P-by-3P matrix with respect to the 3P-vector x.
Thanks to the flow equation (Eq. (4.2.2)), x; = x + fot vs(x5)ds. The variations Xy

satisfy therefore:
t
Ko = [ 00+ 02)(K(xe x5 + Kl x)uds (4.3.20)
0

The time-varying vectors X; are solution of an inhomogeneous ordinary differential equation,
which can be solved by the method of variation of parameters. Let R be the operator

which gives the solution of the homogeneous equation:

dRst
dt

= (01 + 92) (k(x¢, Xt )t ) Rt (4.3.21)

so that the variations x; are written as: X; = fot Rak(xs, xs)bsds.

5These are the same matrix notations as in Section 2.2.2, the set A now depends on t is given by the

point positions x; ().
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We can now write the variation of the criterion J in Eq. (4.3.18) with respect to the

variation af:

T T
GEJ(aE) = Z(vxfi Al>f)~(tb + 2’}// (&t)tk(Xt, xt)atdt + ’)// (at)ta&« (k(Xg, Xi)at)dt
i 0 0

(4.3.22)
Substituting X in this equation and permuting the two integrals (Fubini’s theorem ap-

plies since every functions are in L2([0, 7], R3)), the third term becomes:

t

T T
’Y/O </f Rts(al + 82)(k(X57Xs)as) Oésd$> k(Xt,Xt)atdt. (4.3.23)

The contribution of every A; to first term can be written as:
T
(vrzAl)tib = / (vxti Ai)tRstik(xs,Xs)dsl{sgti}dS (4324)
0

where 1<,y = 1if t <t; and 0 otherwise (as a function of t).
The variation of the criterion is therefore:

T
0.0 = [ Kixix) (@ + ) e (43.25)
0

where 7, = 7 [T (Rus) (91 + 02)k(xs, Xs )t )Perds + 3, (Rer, ) Vi, Ailgr<ry-

The gradient of J as a L2-function from ¢ € [0,7] to R3” can now be written as:
(VJ): = k(x¢,%¢)(2var + m,). Since we provided the space of time-varying momenta with
the metric t — k(x¢, x¢), the gradient is given by:

(VJ) = 2voy + 1, (4.3.26)

In order to compute the gradient, we still need to compute n,. For this purpose, we
write the homogeneous equation (Eq. (4.3.21)) in its integral form: Ry = Id + f; R+ (01 +
32)(k(x,, %)t )dr. This allows us to write 7, in the form (once the two integrals have

been permuted thanks to Fubini’s theorem):

M= 2V, A Lgeey + [ (01 + 02) (k(%u, Xu )y )

T
('yau + Z(RUti)thtiAil{tSti}1{Ugti} + 'y/ (Rus) (01 + 02) (k(xs, xs)as)tasds) du

()
(4.3.27)

Now, we notice that { < u within the integral, which implies that 1< 111u<s;) =
1iu<t,3- Hence, (x) is precisely equal to n,. Therefore, 7, is the solution of the integral

equation (integrated upstream in time):
g t
n, = ZvXtiAil{tSti} +/ ((01 + O2)k(xy, xu)ty) (Yotu +m,,)du (4.3.28)
Z ¢

Unsurprisingly, if there is only one time point t; = T = 1, we retrieve the same gradient

as in [Vaillant 2005, Glaunes 2008] for a pairwise 3D registration. For several time-points,
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we solve this equation from ¢ = T to ¢t = 0. The successive contributions (Vx, 4;) are
added as long as t reaches 0.

To retrieve Eq. (4.3.17), we rewrite this last equation with coordinates (here we use
block-matrix and consider the coordinate as 3D-vectors). The 3P vector thiAi is equal
to Vo, (t)Ais- -+ Vap,)Ai- The kth coordinate of the 3P-vector k(x,y)a is given as:
(k(x,y)a)r = >_, k(2k, yp)ap (and this for generic 3P-vectors x,y, a). We have therefore:

0,, (K(x.y)a), = 3 ap (Vik(ws,) 3 — J)

p= (4.3.29)
0y, (k(x,y)@); = a; (Vak(zi,y,))’
Therefore, for a generic 3P-vector 3, we have:
P
((31 + ) (k(x, y)e)" g)k =3 b BVik(zr, yp) + akBpVak(ap, yi) (4.3.30)
p=1

Now, we can apply this equation with y = x and 8 = v + n and combine it with
Equation (4.3.28). Noticing that for a symmetric kernel, we have Vik(z,y) = Vak(y, ),
we get eventually Eq. (4.3.17). |

We start the gradient descent by setting o, (¢t) = 0 for all ¢ and p (¢, = Id, for all
t € [0,7]). Then, the gradient is computed via Equations (4.3.16) and (4.3.17). The
integration of Eq. (4.3.17) is performed upstream in time. The initial conditions at t = T
is given by V. (r)Ar (which may be equal to 0 if there is no target at time ¢ = T'). Then
the ODE is integrated for decreasing time ¢. As soon as a new time point ¢; is reached,
a new contribution V, «yA; is added to 7,. As a consequence, (V.J),(t) (and therefore
the momenta «,(t) and the vector field v;) at time ¢ depend on all the data which appear
later than ¢. Once the vector field is computed, the positions x,(t) are computed by the
integration of the flow equation (z,(t) = x, + f(f vs(zp(s))ds) downstream in time (the
initial condition is given at time ¢ = 0 by z,(0) = z,,). These positions at time ¢ depend on
the vector field v, for all time earlier than t. As a result, the positions z,(t) depend on all
the data in past and future. This regression fits the best trajectory (¢:(Sp)) to all the data
globally, namely by taking into account all the matching constraints simultaneously. This
differs, for instance, from pairwise registrations between consecutive time-points, although
both techniques result in a piecewise geodesic flow.

The flow of diffeomorphisms (¢}) can be extended at all times by assuming v; = 0
(and hence ¢} constant) outside the time interval [0,77]. This property will be used for

spatiotemporal registration in Chapter 9.

Remark 4.15 (boundary conditions). In Definition 4.1, we imposed that the vector fields
in V tend to zero at infinity. This defines the boundary conditions of the deformation. In
areas which are located much further than Ay from the data, the deformations resulting
from a registration or a regression are locally similar to the identity mapping (i.e. no
deformation). O

Remark 4.16 (Unit of the trade-off 7). In the registration and regression criterion, we
introduce the trade-off v between the fidelity-to-data and regularity. The fidelity-to-data
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term is the squared norm of the current. It is of dimension L? (L denotes length here)
of curves and (L?)? = L* for surfaces. The regularity term ( fOT lve||? dt) is the integral
over time of a squared speed. It has the dimension (LT~1)2T = L?T~! (where T denotes
time). For registration, the time interval is normalized 7' = 1 and we can suppose that
the regularity term is of dimension L? (time is no physical sense here: it is an artificial
variable). For regression, by contrast, the unit of time is given by the data, namely the
age at which the subjects have been scanned. As a consequence the dimension of «, which
is the ration between the dimension of the fidelity-to-data and the one of the regularity

term is given by the following table:

registration regression
curves surfaces curves | surfaces
No dim. L? T LT

O

4.4 Numerical implementation

4.4.1 A gradient descent scheme on the time-varying momenta

We recapitulate here the different steps which lead to the computation of the gradient
of the criterion and therefore to the implementation of the algorithm. In this section, we
suppose that the kernel is of the form: K" (z,y) = k (%) for a scalar function k (k'
denotes its derivative).

Let the source data be the set of points (z;);=1,.. p. The variables of the criterion in
Eq. (4.3.13) are the P L2-functions «;(t). Once these momenta are given, we can compute
the path of the points x; through time via the set of P differential equations:

1 P r;\u) —xr;(u 2
zi(t) = z; + i Zk(W) o (u)du (4.4.1)

Once these positions have been computed, we can compute the auxiliary variables »;(t)

by integrating this set of differential equations upstream in time (from ¢t =T to t = 0):

2 (T
(0= 3 Vit + 5 [ 30 (i) —250P)
t, 14 j=1

(4.4.2)
(cvi(u)'ny () + o (w) i (u) + 2vai(u) a;(u)) (z:(u) — z;(u)) du,
and then compute the gradient via:
Va, i = 2yai(t) + mi(t) (4.4.3)

For computational purposes, we divide the time interval [0,7T] into Nijme time-steps
(denoted t, = kT/Ntime). The criterion becomes then a function of the P Nijme 3D-vectors:
a; ; = ao;(tx), which can be stored as a 3-by-P-by-Niime matrix. Then we use a centered
Euler method with prediction/correction scheme first to integrate Eq. (4.4.1) to give the
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positions of points along time z; ;; = x;(tx) and then to integrate Eq. (4.4.2) to compute
the auxiliary variables n; = 7;(t;). Eventually, the gradient of J at time t;, (V;J(tx)) is a
set of PNyime of 3D-vectors which is computed via Eq. (4.4.3). Both the auxiliary variable
and the gradient can be stored as 3-by-P-by-Nime matrices. The matrix of the gradient
V;J(tr) is used to update the current values of the momenta c; .

We initialize the algorithm by setting all the momenta to zero: «;j, = 0, which
means there is no deformation. We used then a gradient descent with adaptive time
step [Nocedal 2000]. We stop the algorithm when (J* — J"+1)/(J° — J") is below some
positive threshold, where J" denotes the value of the criterion after n step of the gradient
descent. To evaluate the criterion, we only need to know the current positions of the moving
points z; ;, which are given by Eq. (4.4.1).

Note that a Runge-Kutta scheme for integrating equations (4.4.2) and (4.4.3) cannot
be used easily since it requires to interpolate the values of the momenta in-between the
time-points t;. Using Euler scheme instead allows us to store the momenta, the positions
and the gradient as matrices of the same size. The Euler method with prediction/correction
scheme is of order 2 whereas the usual Runge-Kutta method is of order 4 (and simple Euler

scheme of order 1).

Remark 4.17. This gradient descent use the time-varying momenta «;(t) as variables.
As a consequence, the constructed diffeomorphism is not necessarily geodesic (or piecewise
geodesic) at each step of the gradient descent. However, when the minimum is reached, the
diffeomorphism must be piecewise geodesic according to the discussion in Section 4.2.2.3. In
practice, we use the initial momenta returned by the algorithm and use the geodesic shooting
(see next section) to compute the geodesic time-varying momenta. Then we compare these
time-varying momenta with the those returned by the gradient descent. In our experiments,
this difference was numerically negligible (i.e. smaller than the approximation error induced

by the optimization scheme used (see Section 4.4.4)). O

4.4.2 Flow and geodesic shooting

The output of the registration algorithm is the time-varying momenta «;(t) sampled at
some time-points tj, for all points x; of the source shape. The algorithm returns also the
trajectory of the points of the source shape x;(t) (such that x;(0) = z;). These momenta
(xi(t), a;(t)) parameterize the resulting diffecomorphism. They allow us to perform any
operation involving the diffeomorphism.

Let S’ be another structure. This may be any set of points: another shape or a the set
of voxels of an underlying image for instance. To compute the deformation of this shape
according to the diffeomorphism (i.e. ¢¥(S’)), we compute the trajectory of any point y of

S’ by integrating the equation:

+ P
yt) =y + /0 ZKV (y, () a;j(u)du (4.4.4)

The parameterization of the inverse of the diffeomorphism is given by the time-varying
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momenta (Z;(t), &;(t)), such that:

Ti(t) = xi(T — t)

a;(t) = —oy(T — t) (4.4.5)

Therefore, if one like to compute ¢~1(S’) instead of ¢(S’), one needs to integrate
Eq. (4.4.4) with the time-varying momenta (Z;(t), &;(t)). We notice that the inversion of a
diffeomorphism in this framework is straightforward and has exactly the same complexity
as for computing the diffeomorphism itself.

If we want to compute the geodesic diffeomorphism which has (2;(0), «;(0)) as initial
momenta (which result from some statistics on the tangent-space for instance), we need
to integrate the Euler-Lagrange equations. These equations are a system of two coupled
differential equations:

t P
ai(t) :ai(0)+/ S i)y (w) V1 KV (), 25 ()
0 (4.4.6)
lt) = i)+ [ 37KV (i) s (w)a (w)d
0 i

The integration of these equations leads to the time-varying momenta (z;(t), a;(t)) of the
geodesic diffeomorphism. We notice that integrating these equations is only twice the cost
of the integration of the flow equation (4.4.4).

All these differential equations can be integrated with a centered Euler method with
prediction/correction scheme which requires to know the momenta (xz;(t), a;(t)) at the dis-
cretization time-points only. This method returns the sampling of the dense trajectories at
the same discretization points.

The computationally most expensive step when solving these partial differential equa-
tions is the computations of the sums over the P points. Compared to this cost, the cost of
the numerical scheme to integrate the ODEs is negligible. In the next section, we will pro-
vide some optimization routines which allow us to solve these equations in few seconds for
10° points. By comparison, the gradient descent requires to solve almost 10 of such ODEs.
Therefore, once the registrations have been computed, using the resulting deformations (to
apply it to other structures like in Chapter 6, to compute statistics in the tangent-space
like in Chapter 7 and 8 or to invert it) can be done at almost no additional costs.

4.4.3 Parameters

The whole framework depends mostly on 3 parameters to be set by the users: the
kernel of the deformation KV, the kernel of the currents K" and the trade-off between
regularity and fidelity-to-data . The kernels are usually chosen in a class of possible
kernels which implies setting few parameters. For instance, they are of the form K(z,y) =
f(lz —y? /A2)1ds for a fixed positive function f. The spatial scale Ay determines the scale
above which points move in an uncorrelated manner. The spatial scale Ay determines the
scale under which shapes variations are considered as noise.

Some parameters need also to be set. The optimization routines presented in the next
section require to set one or two parameters. The gradient descent with adaptive step size
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requires also some parameters like the initial step size and stopping criterion. However,
these parameters does not depend on the input data and may be fixed once for all (except
possibly the parameters of FGT optimization as explained below). The last parameter is the
number of discretization steps within the interval [0, 7] to solve numerically the differential

equations.

Remark 4.18. As discussed in Section 3.5.2 and in Fig. 3.16, the spatial scale on currents
Aw should not be too small with respect to the typical distance between the source and
the target data. Otherwise, the norm on currents will be insensitive to the shape variations
(source and target will be almost orthogonal). If this is not possible (one wants to compare
shapes at a scale Ay which is much smaller than the typical distance between parts of
shapes to be matched), then multi-scale registration should be investigated. We start by
registering shapes with a large Ay, then we decrease Ay and we initialize the registration
with the deformation obtained in the previous step. Note, however, that we will not need
to use such a strategy in our practical example. Surprisingly, even a large Ay enables a
matching with a great accuracy (i.e. the Gaussian function is not as flat at the origin as
we think!). O

Remark 4.19. A RKHS with Gaussian kernel of large variance, which contains locally rigid
deformations, is included into a RKHS with smaller variance, which contains deformations
with possible small-scale variations. Therefore, one would like to set the spatial scale Ay
as small as possible, so that the corresponding RKHS will contain all the deformations (the
ones with large-scale and small-scale variations). However, this strategy does not work,
since a rigid deformation requires much more energy in a RKHS with small variance than
in a RKHS with large variance. Therefore, if one looks for a large-scaled deformation with
a kernel of small variance, the registration algorithm will be very likely to be trapped in a

local minima. O

4.4.4 Optimization strategies
4.4.4.1 Kernel multiplication: the limiting factor

During the gradient descent, we need to compute both the criterion and the gradient.

Given a set of N time-varying momenta (x;(t), a;(t)), the computation of the criterion, at

N

each time point ¢, requires to compute N times a sum of the form 3 k <|y - (t)|2) a;(t)
j=1

for y = x1(t),...,zn(t) and then to integrate the flow equation. The computational time

of the integration scheme is negligible compared to the one of the computation of the sum.
This sum can be computed independently for each coordinate. This leads to 3 sums to be
computed N times. The complexity of the computation of the criterion is therefore of 3N?2.

To compute the gradient, one essentially needs to compute the auxiliary variables »;(t).
The limiting factor is the computation of N sums of the form:

N
S (e = 0,7 (@6 + a5) (2 — ), (a7
j=1

where §8; = yo; +m;, fort=1,... N.
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For computational purposes, we re-write this sum to be in the same form as the sum
for the computation of the criterion. Noticing that aff;z; can be written as (xjﬁ;»)ai, we

write:

N

Zk’ <|xi — xj|2) (B;) (i — zj) =

j=1

(4.4.8)
N N
o (DK (o — a8y | @i — [ DK (s — w85 | e
j=1

Jj=1

These sums involve the derivative of the kernel instead of the kernel itself. However, this
does not change the complexity of the computations and the same optimization methods
can be used®.

Computing the sums coordinates by coordinates, the first term of Eq. (4.4.8) has a
complexity of 3N? (the vector B; has 3 coordinates) and the second term has a complexity
of 9N? (the matrix 2% 3; has 9 coordinates). The complexity of this equation is therefore of
12N2. Since there are 2 terms like this one in Equation (4.4.7), the total complexity of the
computation of the gradient is eventually of 24N?2, namely eight times the computation of
the criterion.

The same arguments can be used for the computation of the fidelity-to-data term (given
in Eq. (4.3.8)) within the criterion and the derivative of the fidelity-to-data term (given in
Eq. (4.3.9) for surfaces and Eq. (4.3.10) for curves) within the derivative of the criterion.
These equations have the same form than the ones studied here, but the kernel in the space
of vector field V is replaced by the kernel on currents in W*. Therefore, the computation
the fidelity-to-data term has a complexity of 6 N Np and the computation of its derivative
has a complexity of 24N Ny, where N is the number of momenta of the moving source
(same as above) and Ny be the number of momenta of the target shape.

The complexity of the whole gradient descent scheme is determined by the computation
of these sums. Actually, the registration algorithm spends more than 90% of the time to
compute such sums. It is crucial therefore to propose fast computations of sums of the form
f: k(y,x;)a; for a given positive function k and N scalars a;, when N is typically between

j=1

10% and 10°.

4.4.4.2 Two optimization methods

In Chapter 2, we precisely introduced a numerical framework to compute such sums and
compared it with the multipole approximations used in the original implementation of the
algorithm in [Glaunes 2005].

Fast Gauss Transform

6Indeed, the theorem of Schoenberg [Schoenberg 1938] states that the function —k’(|z — y|?) defines a
positive symmetric scalar kernel (this is trivial for the Gaussian kernel for which &’(u) = —k(u)). Therefore,
any optimization scheme designed for a generic positive symmetric scalar kernel can be used both for the
criterion (involving k) and the gradient (involving —k’)
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As mentioned in Section 2.5.2, we can used the Fast Gauss Transform to compute the
sums. The idea is to gather points into clusters and to use the Taylor expansion of the kernel
at the center of the clusters. To set up this approximation framework, we need to specify
mostly the number of clusters and the order at which the Taylor expansion is truncated.
Empirically, a relative approximation error up to 5% in the computation of the sums is
acceptable. However, there is no simple way to find the parameters which will lead to an
approximation error smaller than 5%. Therefore we estimate the parameters by comparing

an approximated sum with the exact result before running the registration.

The problem with this approach is that the approximation error depends on the dis-
tribution of points. The parameters are estimated for the original distribution of points.
However, during the gradient descent, the positions of points change and there is no guaran-
tee that the approximation error remain below 5%. Since the parameters are set manually,
there is no simple way to re-estimate these parameters (the clustering of points especially)

during the iterations of the gradient descent.

The main advantage of this method is its low space complexity: O(N) (or O(N + Nr))
as shown in Section 2.5.2. Actually, this approximation does not require any additional
memory space than what is needed to store the data. The time complexity is also of
O(N) (or O(N + Nr)). As shown in [Vaillant 2005, Glaunés 2008], this implementation of
this approximation scheme has been applied successfully to register two sets of anatomical
data. However, due to the lack of automatic parameters estimation, this method is not well
adapted to perform routinely registrations on a large collection of shapes, like template-to-
subjects registration in a statistical context for instance.

Grid-based numerical scheme

In Chapter 2, we provide another approximation scheme based on linearly-spaced grids

to compute the sums. Using the notations of Remark 4.9, we need to compute the sums:

=
which embed the points ; and yi. Then, we project the momenta (z;, a;) on the grid points

Lyt (ZN 1 655) (yx), for N (or Nr) distinct points y,. First, we set a linearly spaced grid

using a partial volume projection, we compute the map E‘_/l via circular convolutions and

FFT and eventually interpolate the values of the image of vectors at the points ys.

The relative approximation error is entirely determined by the ratio A/Ay between the
grid step and the rate of decay of the kernel KV (the standard deviation of a Gaussian kernel
for instance) for the deformation term and A/Aw for the fidelity-to-data term. In contrast
to FGT, the approximation error is independent of the distribution of the points. This make
possible to set a “default value” which guarantees a fixed approximation error. Empirically,
we find that the value A/A = 0.2 (for Ay or Aw) corresponds to an approximation error
below 5%. This approximation error remains constant during the gradient descent and is

the same for any input data.

The complexity of the method is of O(Ngria log(Ngria)), where Ngyiq is the number of
points of the grid. This number depends on the spreading of the points in space. However,
it is insensitive to the local redundancy of the points in a neighborhood Ay (or Aw).

The main advantages of this method is the stability of the approximation error and the
fact that parameters can be set automatically. By contrast, its main drawback is the spatial

complexity of the method. The memory needed to store the grid is usually much larger
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than the memory space needed to compute the exact sum or the FGT approximation. This

is particularly critical when the points tends to spread in a large domain of space.

Remark 4.20. It would have been also possible to compute the sparse approximation of
the current ) j 03t in the space V*, as explained in Chapter 3. This would give a new
set of N momenta (Z;,d;) so that sum Z;V:l k(y,z;)a; by may approximated by the sum
Z;\/:l k(y,Z;)a; at any desired accuracy. If the distribution of the points z; (the points of
the source shape) is highly redundant at the scale Ay, the number of estimated momenta
N must be much smaller than N and a direct computation may be possible. However,
to run the matching pursuit algorithm (Algorithm 2), one needs to project the momenta
on a linearly spaced grid as a pre-processing. Therefore, this method would not solve the
spatial complexity problem of the grid-based numerical scheme. Moreover, it is not clear
whether the following steps: the projection of the momenta on the grid, the application
the matching pursuit and the computation the approximated sum need necessarily less
time than the steps of required by the grid-based numerical scheme: the projection of the
momenta on the grid, the computation of a circular convolution and the interpolation of
the values on the grid nodes at points yi. We must admit, though, that we do not test
it empirically. We think that the matching pursuit algorithm would be more adapted as
a post-processing, once the registrations have been performed. It can be used to give a
visual interpretation of the velocity fields which drive the deformation. It may help to
speed-up the computations of statistics on the initial speed vector fields as well as to give

more interpretable results of these statistics. [J

Remark 4.21. A way to accelerate the computations would be to decrease the number of
momenta of the source shape. This could be done by approximating the source current in
the space W* by running the matching pursuit in this space. This is what we will do for
registering the white fiber bundles in Chapter 7 which have a very redundant representation
both at scale Ay and Ay . In this case, we consider that the input data are the approximated
currents.

However, there is no guarantee that difference between the registration applied to the
approximated current and to the original current is small. In particular, the parameteri-
zation of the minimizing vector-field (one momentum at each point of the source shape) is
different. This is probably of little importance if the scale of currents Ay is much smaller
than the scale of deformation Ay . In this case, there will be enough points in every neigh-
borhood of size Ay so that any vector field in V' can be approximated by a vector field
parametrized on the estimated source points. However, further investigations are needed

in order to quantify this approximation error. [

4.5 Combined curve and surface registration of the lungs

The work presented here results from a collaboration with Viadlena Gorbunova (Uni-
versity of Copenhagen) and as been published in [Gorbunova 2009]. This section is a
reproduction of this article. We only re-write some parts to avoid redundancy and to use

consistent notations with the rest of the chapter.



4.5. Combined curve and surface registration of the lungs 147

The purpose of this section is to use the registration of currents to align 3D images of the
lung of the same subject at end inhale and end exhale phases. For this purpose, we extract
distinctive anatomical structures from images: the pulmonary vessel tree centerlines and
the lung surface. Since no point correspondence can be drawn between the structures, they
are modeled as currents. These features are then used to drive the registration between the
image at end inhale phase to the image at end exhale phase. The resulting deformation is
dense: it is applied afterwards to the underlying images. Finally, we compare this alignment
with the one obtained from a pure intensity-based registration.

We conducted experiments on five pairs of images. To evaluate the registration, we used
a set of 300 anatomical landmarks marked on every images. Using both vessel centerlines
curves and lung surfaces yields better alignment (median error of 1.85 mm) than using
only curves (2.37 mm) or surfaces (3.53 mm). The combined method achieves overall
registration accuracy comparable to that of intensity-based registration. Nevertheless, the
largest registration errors do not occur at the same locations for the two methods. This
suggests that low dimensional geometrical features capture sufficient information to drive a
reliable registration, while results can still be improved by combining intensity and feature

based registration approaches into one framework.

4.5.1 Feature-based registration in lung imaging

Registration of chest CT scans is an important subject within pulmonary image analysis.
The general task of registration is to establish a point-to-point correspondence between two
images. Registration of lung CT images can be used in various clinical applications, such
as lung cancer radiotherapy planning and quantitative analysis of disease progression.

Image registration methods can be separated into two general groups: intensity-based
and feature-based methods. Intensity-based methods integrate spatial information over
the entire image domain, whereas feature-based methods require a representation of the
image data in terms of distinctive geometrical structures. Feature-based methods offer more
robust registration when image intensity is changed because of pathology, image artifacts or
differences in scan protocol for instance. Generally, segmentation of geometrical structures
in lungs is less sensitive to intensity changes, since the method incorporates geometrical
regularity constraints or prior anatomical knowledge. Moreover, segmentation of distinctive
lung structures may be either corrected manually or delineated by a professional.

The most distinctive anatomical structures in lung CT images are vessels, airways, lobe
fissures and lung surfaces. Lungs surface and lobe fissures define large-scale deformations
of the lungs and provide an insight into the global motion of the lungs, while small-scale
deformations are influenced by vessels and airway tree motion.

Feature-based registration relies on various geometrical structures, e.g., points, curves or
surfaces. Thin-plate spline image registration [Rohr 2001, Johnson 2002, Bookstein 1991]
is the standard method for matching points under the assumption that deformations are
small. For large deformations, a diffeomorphic point matching approach was developed
in [Joshi 2000] and was later adapted for surface matching in [Vaillant 2005] and curve
matching [Glaunés 2008, Durrleman 2008c], as explained in the previous sections of this
chapter.
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Several surface-based registration methods were previously developed for lung CT im-
ages [Vik 2008, Li 2008, Betke 2003]. The outer surface of the lungs together with the
outer surface of vessels were used in an algorithm similar to iterative closest point methods
in [Vik 2008]. Lung surface was used to register CT lung images [Betke 2003| and to con-
strain intensity-based registration with a deformation field obtained from surface matching
procedure [Li 2008]. The two main advantages of using the currents to model the features
are: (1) no point correspondence is required between structures, thus making the registra-
tion less sensitive to the segmentation method used and the sampling noise and (2) the
unified representation of curves and surfaces in a single framework to drive the registration
with different kind of geometrical features.

The low dimensional geometrical features, such as curves and surfaces contain much
fewer points compared to dense intensity images. Feature-based registration can be there-
fore more efficient from a computational point of view. This dimension of the features can
be even more reduced using the sparse representation of currents introduced in Chapter 3.
Compared to intensity-based methods, the feature-based methods select and extract mean-
ingful information from the images. Some of the structures, like the tree-centerlines of the
lung, may be almost invisible in images. They are too thin to influence an intensity-based
registration using a L? metric between images. By contrast, the feature-based methods used
this anatomically relevant information as a much harder constraint to drive the registration.
As a consequence, we usually observe better alignment with feature-based registration in
areas which contain lots of reliable geometrical structures.

4.5.2 Segmentation of anatomical structures of the lung

In this study, we extract both the vessels and the surface of the lung from the images, as
shown in Fig 4.2(a). The lung fields and vessels are segmented with the algorithm described
in [Lo 2008]. A sparse triangulation of the lung surface was computed via the marching
cube algorithm [iso2mesh |. For each face, the corresponding normals were computed and
oriented to point outwards of the surface. We normalize the normal of each cell to 1. This
leads to a description of the surface as a finite sum of Dirac delta currents: S = 57,
where c¢; is the center of each face and n, the oriented normal of this face. Fig. 4.2(b) shows
an example of the constructed current for a lung surface.

Vessel tree was segmented as follows: lung image was thresholded with a fixed intensity
value t, = —600HU, then a local analysis of Hessian matrix was performed in order to
remove non-tube like structures. Large vessels segmented near the hilum area were omitted
from the vessel tree segmentation. For more details on vessels segmentation algorithm we
refer the reader to [Lo 2008]. Centerlines were extracted from the segmented vessel tree
using a 3D thinning algorithm [Wang 2007].

The tangential direction of a centerline was computed via local principal component
analysis. For each centerline point we extracted neighboring centerline points, applied PCA
to the point cloud, and assigned the first principal component to the tangential direction at
the centerline. For centerlines sufficiently far from vessel bifurcation and neighboring vessel,
the principal direction points to a tangential direction of the centerline. For centerlines close
to the bifurcation the principal direction points between the two splitting vessel centerlines.
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This is consistent with the framework of currents, were the addition of two Dirac delta
currents which point in each direction of the bifurcation results in a Dirac delta current
which point in-between the two directions. The orientation for the positive direction was
set to point outwards from the center of the image. Since the norm of the tangential
vectors results of a PCA, its norm is not a reliable geometrical information. To take into
account only the direction of the centerlines, we normalize each tangential vector to 1.

This construction leads to a description of the centerlines as L = ), 67, where ; is the

1
centerline points and 7; the unit tangential direction at x;. Since the trele—structure of the
centerlines is not consistent across the subjects, we handle all centerlines as a single current
L. Indeed, there is no anatomical reason to label the centerlines. Fig. 4.2(c) shows an
example of the constructed current for a segmented vessel tree and a zoom-in into a bottom

part of the image.

(a) Example of segmented lung sur- (b) Momenta corresponding to a lung surface.
face and lung vessel tree

(c) Momenta corresponding to a vessel tree centerlines.

Figure 4.2: Example of segmented lungs surface and vessel tree 4.2(a); triangulation of the
lungs surface (black mesh) with the corresponding momenta (red vectors) 4.2(b); momenta
corresponding to the vessel tree centerlines (red vectors) with a zoom-in 4.2(c).
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4.5.3 Current-based Registration

To define similarity metric for the centerlines and for the surfaces, we introduce two
RHKS of currents: W} for the centerlines whose kernel is Gaussian with variance A% and
W for the surfaces whose kernel is Gaussian with variance A\%. These parameters determine
the typical scales at which the metric is sensitive to shape variations. Much smaller than
this scale, shape variations are considered as noise. See Section 3.5.2 for more details on
these parameters.

The space of diffeomorphisms is generated by integrating velocity fields which belong to
the RKHS V whose kernel is Gaussian with variance A?,. This scale determines the typical
distance under which the points of the space move consistently.

The registration of the centerlines only from the source curves L; (considered as a
single current) and the target curves Lo (considered as a single current) is achieved via the

minimization of the criterion:

2 1
J (@) = 68,2y = Lo+ / el dt (45.1)
L 0

The registration of the surface only from the source surface S; to the target surface S,

is achieved via the minimization of the criterion:

2 1
T (@hieto) = 6481 = Saf| 0 [l (45.2)
S 0

The joint registration of both centerlines and surfaces from source data (L1, S7) to target

(La, S2) is defined by the minimization of the criterion:
(00 2 (00 2 L
J ((Ut)te[o,l]) = H¢1 ' L1 - LQH + Vst H¢1 i S — SzH +’Y¢/ ||Ut||v dt (4.5.3)
Wi Wg 0

4.5.4 Experiments

In order to quantify the accuracy of the proposed registration method with a ground
truth, we used images from a publicly available dataset [Castillo 2009]. For each image
pair, 300 manually placed corresponding landmarks were provided. Five pairs of images,
where each pair consists of images extracted at end exhale and end inhale phases of 4D
CT image, were used in our experiments. In-plane resolution of the images varied from
0.97 x 0.97 mm to 1.16 x 1.16 mm and slice thickness was 2.5 mm.

4.5.4.1 Parameter Settings

Vessel trees were segmented using the algorithm as in [Lo 2008] with the intensity thresh-
old —600 HU, ratio of Hessian eigenvalues was set to m; = 0.75, my = 0.5. For every
centerline point we extracted a neighboring centerline points from the cube neighborhood
of 7 x 7 x 7 voxels size and computed the principal direction of the centerlines. A reg-
ular surface triangulation was constructed with a marching cube algorithm with further
simplification of the mesh [iso2mesh |.

In our experiments, end inhale phase of 4D-CT image was registered to end exhale

phase. The following internal parameters of image registration were selected manually.
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The accuracy of feature alignment Ay was set to 5 mm for the curves and Ag = 10 mm for
surfaces. The spatial variability of deformation velocity field Ay was set to 25 mm for both
types of features. The weight coefficients in the cost functions (4.5.1), (4.5.2) and (4.5.3)
were set to 7, = 107 for the regularizer and vs;, = 0.0lmm™~2 for the trade-off between

surface and curve term.

4.5.4.2 Results

We evaluated four registration methods, as follows: combined curve- and surface-based
registration with cost function (4.5.3); curve-based registration with cost function (4.5.1);
surface-based registration with cost function (4.5.2); and a free-form B-Spline intensity-
based method as in [Gorbunova 2008]. We compared registration accuracy of the four
methods based on the alignment of 300 landmarks distributed uniformly in lung area,
Fig. 4.3(b) shows an example of the spatial distribution of landmarks within the lungs.

The overall accuracy of the image registration methods was defined as the mean Eu-
clidean distance between landmarks, target registration error (TRE), in millimeters. The
mean and the standard deviation of TRE for the four methods is reported in Table 1. We
performed Wilcoxon rank-sum test on TRE distribution to compare the combined curve-
and surface-based registration with the curve-based and surface-based methods individually.
Box-plots in Fig. 4.3(a) show the overall accuracy of the four image registration methods
on a complete set of landmarks over all five cases.

Correlation between TRE for the intensity-based and combined curve- and surface-based
registration was p = 0.5, varying from 0.17 — 0.59 for the five cases. Overall, for 35.5%
cases of landmarks the combined curve- and surface-based registration method performed
better than intensity-based method.

4.5.5 Discussion

Fig. 4.3(a) shows that the curve-based method alone provides good registration accuracy
for the majority of landmarks. However, there are many outliers present with errors of up
to 2.5 cm. Within our framework, points located much further than the typical scale of
deformations Ay are not affected by the deformations, which might cause landmarks distant
to the vessel centerlines to be misaligned.

Surface-based registration result in a slight overall improvement in TRE compare to the
initial configuration. By contrast, incorporating both surfaces and curves into feature-based
registration results in more accurate registration (1.85 mm) compared to both curve-based
(2.37 mm) and surface-based (3.53 mm) methods.

The median of TRE for the combined curve- and surface-based registration was 1.85
mm compared to 1.44 mm for the intensity-based method. Several reasons may lead to
larger TRE for the combined curve- and surface-based method, such as inconsistency in
segmentations of vessels in the two images. Ambiguous segmentation of lung surface near

the hilum may leads to large registration errors in this area. Fig. 4.4(b) shows a difficult
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Image Registration Accuracy in mm [m =+ std]
N Before Combined Surface Curve Intensity %
1 3.89 £2.78 1.47+£0.72 245 +£1.56* 2.24+1.41* 1.23+£0.61 37.7
2 4.34 £ 3.90 2.19+1.98 3.63 £2.94* 2.32+£2.06™ 1.26£0.67 39.0
3 6.94 +£4.05 3.30 £ 3.05 5.31 £3.26* 3.03£2.79* 1.8 +1.11 25.0
4 9.83 £ 4.86 3.34 £2.67 5.98 £3.74* 528 £4.52* 2.15+£1.48 36.0
) 7.48 £5.51 3.83£3.54 5.80 £4.37* 4.40£4.42* 2.32+£1.82 40.0
All 5 cases
6.50 +£4.83 2.83£2.72 4.63 +3.58° 345+3.48* 1.76+£1.31 355
median 5.13 1.85 3.53 2.37 1.44

Table 4.1: Registration error at the landmark positions in [mm] for the four registration
methods. The mean (m) and the standard deviation (std) are reported. Statistical com-
parison of combined curve- and surface-based registration method was performed against
the surface-based and curve-based methods. The notations of statistical significance level

*

are as follows: * corresponds to p < 0.05 and "™® to p > 0.05. The most right column in-
dicates percentage of landmarks where the combined curve- and surface-based registration

outperforms the intensity-based registration.
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(a) Box-plot of target registration errors

(b) Distribution of landmarks

Figure 4.3: Target registration errors (TRE) is shown in 4.3(a), as follows, before regis-
tration was applied (Initial), after surface-based (Surface), after curve-based (Curve), after
combined curve- and surface-based (Combined) and after intensity-based registration (In-
tensity). Example 4.3(b) shows the spatial distribution of landmarks in the lungs. The
landmarks, better aligned with the combined feature-based method are shown in red and
with the intensity-based method in blue.

case in the data with irregular centerlines in the back of the lungs. Our results show that
the proposed feature-based registration method is robust to inconsistent segmentation and
outliers in segmented features and capable of handling imperfect segmentations. Of course,
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(a) Deformation vectors for the combined curve- and(b) Example of segmentation with many outliers
surface-based (magenta) and intensity-based (green)
methods

Figure 4.4: (a) An example of discrepancy in deformation fields between the feature-based
and intensity-based registration methods. (b) An example of a misleading segmentation for
the back of the lung.

registration of lung images based on such geometrical structures like vessels centerlines and
lung surfaces can be naturally improved by including airways and lung fissures into the
presented framework.

In order to understand where are the main differences between the feature-based and
intensity-based method, we visualized discrepancy between the two deformation fields in
Fig. 4.4(a). For illustration purpose, we sparsely selected points where the orientation
between deformation vectors were above 60° and with the magnitude of discrepancy vectors
more than 3 mm and plotted inside the lung area. Interestingly, the discrepancy between
the feature- and intensity-based methods were localized.

We further investigate image slices located at the areas where the discrepancy between
the two methods was largest (blue cut planes in Fig. 4.4(a)). Fig. 4.5 shows the difference
image with the moving image subtracted from the fixed image for both registration methods.
Overall, lung surfaces and small vessels were aligned more accurately with the feature-based
registration method.

Another important feature of currents is the possibility to weight each segment of the
vessel centerlines. For the task of registration of repeated lung CT images, the current for
a small vessel could be given more weight than for a large vessel, leading to more accurate
registration of small vessels. This is an important advantage of current-based registration
over intensity-based method where small vessels with low contrast to surrounding lung
tissue have negligible impact on the overall cost function. In this paper we used equal
weights for all currents and normalized the length to 1. These weights might be adapted
according to some reliable anatomical knowledge.

On average, 35.5% of landmarks were aligned better with the curve- and surface-based
registration. The low correlation coefficient (0.5) suggests that the two registration methods

align landmarks differently and may be combined into a more robust registration method.
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Intensity—based IR Feature-based IR

Figure 4.5: Visual comparison of the combined feature-based and intensity-based registra-
tion methods. Slice cuts from the difference image between fixed and deformed image for
the intensity- and combined feature-based registration methods were extracted on the same
level as the plane cuts in Fig. 4.4(a). In general, the currents-based registration aligns the
vessels and lung surface better, as can be seen in the areas indicated with the red circles

and arrows.

4.6 Analysis of endocast growth of bonobos and chim-

panzees

In this section, we want to use the regression model to estimate a typical growth scenario
of the endocasts of two species of the genus Pan: bonobos (Pan paniscus) and chimpanzees
(Pan troglodytes), which are the two human closest living relatives. According to phyloge-
netic studies [Won 2005], these two species share a common ancestor, which used to live at
least one million years ago. By comparison, the common ancestor of humans, chimpanzees
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Bonobos | Chimpanzees

infant 4 2
child 8 6
child/ 3 4
young juvenile
young juvenile 11 10
old juvenile 7 13
sub-adult 9 10
adult 18 14
TOTAL 60 59

Table 4.2: Number of samples for each species and for each dental age.

and bonobos used to live at least ten million years ago.

From an evolutionary point of view, we expect that the analysis of the difference between
the skulls of chimpanzees and bonobos would give a better insight into the possible mor-
phological variations induced by two millions years of evolution. Focusing on skull growth
should also help to better understand the relationship between the morphological traits and
the behavioral differences between both species. Indeed, body growth is considered to be
retarded in bonobos compared to chimpanzees, a feature corresponding to their delay in
motor development during the first years of postnatal life [Kuroda 1989]. Bonobos appears
as ‘“‘juvenilized” versions of chimpanzees. The adult bonobo skull shows a decreased facial
prognathism and teeth with a reduced sexual dimorphism [Shea 1989]. Bonobos are also
characterized by a longer dependency of the child on the mother [de Waal 1995, Kano 1992].
Eventually, in evolutionary studies, the human traits are usually compared with the ones of
chimpanzees. Such comparisons could be strengthen by a comparison with bonobos traits,
provided that the difference between the two species would be better understood.

The main issue for such skull growth comparison is the lack of reliable data. Whereas
chimpanzees have been studied quite intensively, data on brain growth in bonobos are totally
inadequate. As part of the collaborative project ARC 3D-Morphine, we used a database of
endocast of 59 chimpanzees and 60 bonobos. The endocast is a mould of the endocranium.
The surface of this mould provides a replica of the inner surface of the skull. In this study,
CT-scans of dry skull representing wild-shot individuals with approximately equal numbers
of male and female have been acquired. The 3D-images have been segmented, so that the
endocasts are given as a surface meshes, as illustrated in Fig. 4.6 and 4.7.

The analysis of the teeth emergence of the skulls provide an estimate of the age of
the samples, which we call here “dental age”. It has been observed in [Kinzey 1984] that
the sequences teeth emergence in bonobos and chimpanzees are essentially identical. As a
consequence, each skull is associated to one the 6 dental ages defined in [Shea 1989]: infant,
child, young juvenile, old juvenile, sub-adult and adult. To refine the classification, some
skulls have been associated the intermediate class ‘child /young juvenile’ by the experts. The
number of samples within each class is detailed in Table 4.2. Our purpose is to perform a

temporal shape regression of the endocasts of each species with respect to the dental age.
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Infant Child Young Juvenile
Old Juvenile Sub-adult Adult

Figure 4.6: Endocasts of Bonobos associated with their respective dental age. 12 samples
among 60.

4.6.1 Temporal regression of endocasts

To apply the temporal regression framework introduced in this chapter, we assume that
each of the dental ages last the same amount of time. We divide each of the 6 ages into 5
time steps. As a consequence, the period between birth and adulthood has been divided
into 30 time-steps.

For each species, we have n; endocasts for each dental age ¢;. We denote these meshes
S’tki for t; = 5,10,15,20,25,30 and k = 1,...,n;. We choose the smallest endocast within
the child class as a baseline and associate it to the time point t = 2. We denote this baseline
So. We perform therefore a regression of the endocast with respect to the dental age by
minimizing the cost function:
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Infant Child Young Juvenile
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Old Juvenile Sub-adult Adult

Figure 4.7: Endocasts of Chimpanzees associated with their respective dental age. 12
samples among 59.

9 31
T (0)eep.sn) = 3 ‘xift’*so—sli W*—l—'yx/ w3, dt, (4.6.1)
2

t:=5,10,15,20,25,30
k=1,...,n,

where W* is the space of currents associated to the RKHS with Gaussian kernel of variance
A%, and V the RKHS of vector fields with Gaussian kernel of variance A?,. x? is the contin-
uous flow of diffeomorphism within time interval [2, 31] which results from the integration
of the time-varying vector field v; in the RKHS V.
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4.6.2 Experimental results

We set the typical spatial interaction between currents Ay = 20 mm, the spatial scale
of deformation consistency Ay = 50 mm and the trade-off between fidelity-to-data and
regularity v, = 10~* units of time. The diameter of the endocasts are typically between 60
and 70 mm. For the integration of the ODE, the time interval has been discretized into 31
time-steps.

In Figure 4.8, we show the result of the temporal regression for each species. This
growth scenario reveals that the endocast growth is anisotropic, with a main elongation in
the posterior/anterior part of the skull and a slight diminution in the superior /inferior part.
As a consequence the skull which has an almost spherical geometry at birth becomes more
and more elongated (ellipsoidal shape). These two typical growth scenarios seem to differ
a lot from infancy to childhood. This is mainly due the lack of data in infancy. We have
only two samples of infant chimpanzees which have a large skulls compared to the infant
bonobos and compared to child chimpanzees. To have a more precise idea of the endocast

growth of chimpanzees in infancy, we expect to scan more chimpanzees skulls in the future.

From this geometrical regression of shape, we can deduce an estimation of the evolution
of the endocranial volume during growth for each species. The result is shown also in
Figure 4.8. It reveals that this shape regression also performs a regression of the endocranial
volume. However, the regression proposed here is driven by the shape of the observations,
not only by their volume. One intriguing feature is the apparent decrease in endocranial
volume for bonobos at sub-adulthood. This feature is also visible when looking at the
endocranial volume distribution in the original data used to compute the regression (see
graph in Fig. 4.8): the mean of the volume at sub-adulthood is smaller than the one of old
juveniles. However, the Mann-Whitney U test gives a p-value of 0.47 when comparing the
volume distribution of old juveniles and sub-adults: the median of the two distributions
are not proved to be statistically different. The same conclusion applies when comparing
the distribution of sub-adults with the one of adults. Actually, the test run for every pair
of consecutive distributions shows a significant increase of volume only between infancy
and childhood for bonobos (p-value 9.1073) and between sub-adulthood and adulthood for
chimpanzees (p-value 0.02).

These experiments show how the proposed methodology can be used to address practical
questions. However, the results are still to be strengthen before being interpreted. We are
mostly wondering how far the estimated growth scenario is influenced by the inter-individual
variability due to the small amount of samples. Future work should focus on determining
confidence interval of the estimated scenario. Permutation testing should also help to detect
the presence of outliers and the robustness of the estimated scenario with respect to the

choice of the samples.

The impact of the choice of the baseline also must be investigated. Here, we choose the
smallest endocast within the group of children as baseline, since this endocast is likely to
be similar to the endocast of an early infant. This choice, however, is arbitrary. We need to
investigate whether another choice impact the whole growth scenario or only the scenario

at the earliest time-steps.
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Eventually, the assumption that each age lasts the same amount of time is arguable, espe-
cially for the adulthood which may last much more time than the childhood. This issue can
be addressed easily by re-parameterizing the time-interval. Such time re-parameterization
will be precisely introduced in Chapter 9. One must be aware, however, that changing
the duration of each ages will not affect the geometrical changes of the estimated growth
scenario but only the speed at which these geometrical changes occur. This point will be
explained with more details in Section 9.5.2.

Eventually, one would like to compare the two growth scenarios more quantitatively.
Chapter 9 will propose a spatiotemporal registration framework which will allow the com-

parison of two temporal shape evolution.

4.7 Conclusion

In this chapter, we showed how dense diffeomorphic deformations can be estimated from
geometrical data modeled as currents, either for the registration of two sets of data or for
the temporal regression of a collection of time-indexed shapes. We take advantage of the
numerical framework of Chapter 2, to give a fast and robust implementation of the estima-
tion of such deformations. The parameters of this implementation can be set automatically,
independently of the input data, while a fixed approximation error is guaranteed. This of-
fers a way to perform routinely registration or temporal regression on a large set of data,
like for template-to-subjects registration for instance.

Moreover, the resulting deformations belong to a particular group of diffeomorphisms
in which the usual operations like inversion, composition or application of the deformation
to another data are computed at the cost of an integration of an ODE. This makes this
deformation framework adapted to process a large set of diffeomorphisms. The estimated
diffeomorphisms are also geodesic or piecewise geodesic. This leads to a tangent-space rep-
resentation of the diffeomorphisms which is particularly well suited for computing statistics
on deformations. The metric on the tangent-space is the one of a RKHS, thus inheriting
of the computational tools introduced in Chapter 2 and 3 for processing, compressing and
visualizing statistics.

On the one hand, the deformation framework defined in this chapter allows us to process
routinely registration and to easily compute statistics on deformations. On the other hand,
the previous chapters propose a computational framework to process large collection of
shapes and to deal with shape statistics. This offers a way to the estimation of more
sophisticated statistical model of shapes which combines both the statistics on deformations
and the statistics on shapes. The definition and estimation of such a model is precisely the

purpose of the forthcoming chapters.
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Temporal regression of endocasts of bonobos

Infant Child Young Juvenile Old Juvenile Sub-adult Adult

Temporal regression of endocasts of chimpanzees

Infant Child Young Juvenile Old Juvenile Sub-adult Adult
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Figure 4.8: First two rows: temporal regression of endocast of Bonobos
R (top) and Chimpanzees (bottom) estimated from the endocasts as shown
- in Fig. 4.6 and 4.7. Side figure: Evolution of the volume of the endocast

=i _ according to the regression. Mean and standard deviation of the volume
of the original endocasts are superimposed. The intriguing decrease of
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CHAPTER 5
Atlas construction for the measure

of anatomical variability

This chapter has been partly published in [Durrleman 2008a, Durrleman 2009c]
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5.1 From shape statistics to atlas estimation

The primary goal of Computational Anatomy is to understand how anatomical struc-

tures vary in a population. This statistical analysis may be used to classify populations, to
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find discriminative features between subgroups (e.g. pathologic vs. control) or as a prior
to drive the segmentation of anatomical structures in new images, like in [Yeo 2008a] for
instance. Given a set of shapes, the question is to find a common prototype shape and to
describe how this prototype varies in the studied population.

In the previous chapters, we focused on the modeling of geometrical data based on
currents. The purpose of this chapter is to define generative statistical models which com-
bine the diffeomorphic deformations of Chapter 4 with the statistics on currents introduced
in Chapter 3. Such models will allow us to root the variability measures of anatomical
structures into rigorous statistical estimations.

Several frameworks have been already proposed in the medical imaging field to build
atlases, namely the estimation of a mean anatomy using registration like in [Joshi 2004,
Avants 2004, Marsland 2004a, Chui 2004, Zollei 2005] for instance. Most of these methods
deal with images and not with shapes. Moreover, they are not always based on a rigorous
statistical model. This makes the use of such templates in a statistical context particularly
difficult. In this chapter, we propose a generic method for constructing atlases which builds
on similar ideas but roots them into a consistent framework. The expected benefits are
twofold. First, we argue that statistics based on a rigorous model are much more likely
to highlight significant features, as this will be illustrated in Fig. 5.8 for instance. Second,
such an approach makes explicit the assumptions on which the model is based, thus making
much clearer the impact of each parameter and therefore the interpretation of the results.

5.1.1 A Gaussian shape model

As shown in Chapter 1, the space of currents is a Hilbert space: it is a vector space and is
provided with an inner-product. This allows us to define directly statistics of a set of shapes
such as mean and principal modes of variations. Indeed, given a set of N shapes (T;)1<i<n,
we can define the empirical mean as T = >-;Ti/N and the empirical covariance matrix
I' whose elements T';; are (T; —T,T; = T),,,..

compute the principal modes of variations as a linear combination of the input shapes:

The eigenvectors of this matrix enables to

m = Y, w;T; (for some weights w; given by the coordinates of the eigenvectors of the
sample covariance matrix I': see Remark 5.9 page 183 for more details). These statistics
(mean and modes) are defined in the space of currents. We can use the Matching Pursuit
Algorithm introduced in Chapter 3 to give a sparse representation of these statistics which
leads to interpretable results.

These computations rely on the assumption that the input observations T; are gener-
ated as random Gaussian perturbations of an unknown mean shape T. Mathematically
speaking, this statistical model is written as: T; = T + ¢; where ¢; are independent and
identically distributed zero-mean Gaussian random variables (introduced in Section 1.5.3
in the continuous setting and in 2.3.3 in a discrete setting). The sample mean and the
principal modes computed in the space of currents leads to an estimation of the true mean
shape T and of the covariance matrix of the underlying Gaussian law of the variables ;.

This statistical model is simple and its parameters (mean and covariance) can be inferred
directly from the actual observations using only the tools previously introduced (computa-

tion of linear combination of currents, inner-product between pair of currents and matching
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pursuit to have compact and interpretable representation of the statistics).

However, this model used ‘as is’ has little chance to highlight interesting geometrical
features. Indeed, the estimated statistics can be corrupted by some large-scale transfor-
mations, such as translation or rigid-body transformations between observations. These
large-scale variations bias the statistics and are very likely to hide the true anatomical
variability. This is the reason why one would like first to align the input observations
(so that non meaningful large-scale effects will be discarded) and then perform statistics
on what remains after registration. This is the strategy proposed in voxel-based mor-
phometry [Ashburner 2000, Ashburner 2001, Good 2001] and in the so-called “statistical
shape models” [Cootes 1995, Davies 2002, Davies 2008], in the vein of Kendall’s theory of
shapes [Kendall 1989].

Such a statistical analysis makes a strong assumption on the nature of the transforma-
tions which do not carry meaningful anatomical information and which should be discarded.
Whereas it is clear that translations is a pure artifact of the acquisition protocol and the
choice of the origin, the question of the size (which can be discounted by scaling) is much
more subtle. It is often very unclear whether the pathology which one wants to character-
ize does or does not affect the size the structures to be analyzed. In one case, the effects
of the pathology of the organ may disappear if we scale the input shapes. In the other
case, if we keep the original size of the shapes, the informative variations may be hidden
by the uninformative variations of the size. The question is even more trickier for affine
transformation or for general diffeomorphisms. As a consequence, it is not reasonable to
decide a priori whether the deformations does or does not contain meaningful anatomical
information. Computing statistics only on the residual that remain after registration relies

on arguable assumptions.

5.1.2 The importance of deformations for statistics

Conversely, Grenander’s approach, which inspired later the tensor-based morphome-
try [Toga 1999, Gaser 1999], proposes to characterize the differences between two shapes
with the deformation of one shape to the other [Thompson 1917, Grenander 1994]. Indeed,
it has been shown that the deformations of a common template to each input shapes is able
to capture significant information and give some insights about effects of pathologies on the
anatomy [Csernansky 1998, Thompson 2004, Marsland 2004b, Narr 2007]. However, the
statistics of shapes which rely on the deformations only is not satisfactory either, since such
statistical estimations depend also on the choice of the type of deformations. Deformations
with very few degrees of freedom, like rigid-body transformation for instance, will not be
able to capture some local variations of the anatomy. On the contrary, one can consider a
much larger set of deformations, like general diffeomorphisms with many more degrees of
freedom. With such deformations, one can expect to warp one shape onto the other with
a great accuracy, meaning that the residual which remain after registration becomes very
small: the deformation capture all the differences between the two shapes. However, in this
case, the deformations are likely to over-fit the observations and the analysis of the set of
deformations is likely to detect artifacts rather than common anatomical variations across

the population. There is therefore a trade-off to find between the accuracy of the matching
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and the regularity of the deformation. The accuracy should be great enough (resp. the
deformation should be irregular enough) to capture meaningful anatomical variations, but
small enough (resp. the deformation regular enough) to highlight common features in the
population and to prevent over-fitting.

Nevertheless, even if we are able to define an optimal trade-off between matching ac-
curacy and regularity of the deformation, the statistics should not be performed on the
deformations only. The optimal deformation has some regularity and, as such, has some
constraints. For instance, diffeomorphisms are not able to capture topological changes,
matter creation or deletion, etc. Some significant anatomical information may be contained

in the residuals which remain after registration.

5.1.3 A joint model: deformations and residuals

As a consequence, the optimal trade-off between matching accuracy and regularity of the
deformation should be considered as an optimal decomposition of the anatomical variability
into, first, a geometrical part which is captured by smooth deformations and contained vari-
ations like torque, stretching, shrinking, etc. and, second, a “texture” part which contains
everything that is not captured by the deformations: uninformative noise but also mean-
ingful change of topology for instance. The statistical analysis of the anatomical variability
should focus jointly and consistently on both the deformations and the residual shape.
This recalls the image decomposition into geometry (contours, homogeneous area, etc..)
and photometry (illumination, texture, etc..) in the field of image processing [Meyer 2001].

To combine the two different point of views, we propose in this chapter a new statistical
model for shapes: each observation T} is considered as an instance of a random deformation
of an unknown template plus a random perturbation (in the space of currents). A Maximum
A Posteriori (MAP) approach enables to estimate consistently the unknown template, the
deformations of this template to each observations and the residual perturbations. Statistics
may be performed via the tangent-space representation of the diffeomorphisms for the
deformation (see Chap. 4) and in the space of currents for the residues. In the sequel, we
call “atlas” the set of (1) the estimated template, (2) the deformations and (3) the residues
jointly inferred from a population of shapes.

This joint model contains the two previous models as extremal cases. Highly constrained
deformations leads to large residuals which contain almost all the variability. By contrast,
deformation with many degrees of freedom gather all the variability in the deformation part
and leave almost nothing in the residual. However, we believe that the best decomposition
(in a precise statistical sense to be defined) is a trade-off between these two extremal cases.
This chapter is precisely a first step toward the automatic estimation of such a trade-off.

It is clear that this decomposition in terms of geometry and texture depends on the
parameters of the statistical model, namely the maximum number of degrees of freedom
of the deformations, the trade-off between regularity and accuracy during registration and
the choice of the metric in the space of currents. In this work, the atlas is estimated once
these parameters are fixed. However, a more general MAP estimation would consist in
the estimation of these parameters along with the estimation of the atlas. This would be

a way to define the optimal decomposition into geometry and texture. We leave such an
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estimation for future work.

This joint model has the advantage to take all information into account. It does not
make strong assumptions on the nature of the variability one is looking for. The subsequent
statistical analysis of the deformations and the residues will determine where the most
significant differences occur. This model is generative: once the atlas is built, one can
generate new instances according the estimated variability model. This helps to better
interpret the variability that the model captured. This allows us also to compare new
observations with the estimated variability and, for instance, detect pathologies as large

deviations from the normal variability.

02 = ¢*Ol +e€

Figure 5.1: The registration tries to find the best smooth deformation (¢) which maps
the anatomical structures on the left (O1) to those on the right (Oz). This deformation
captures the geometrical differences between the anatomies (torque, elongation, shrinking,
etc.) whereas it cannot capture non-diffeomorphic differences such as a difference of the
density of fibers within each bundle, which are left in the residual shape (¢). Actually,
the registration decompose the variability into a geometrical part and a “texture” part.

Anatomical statistical models should account for both kind of variability.

5.2 Forward versus backward atlas construction

5.2.1 Lagrangian or Eulerian noise?

In this section, we want to give a precise mathematical definition of our statistical model.
According to the previous section, this model considers each input shapes (the observations
T;) as a random deformation of an unknown template plus a random perturbation. The
deformations capture the smooth geometrical variations of the template in the population.
The residual perturbation models everything that cannot be captured by smooth deforma-

tions like change of topology or change of matter density for instance, and also like physical
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or numerical noise.

However, there are at least two ways to define such a statistical model. A common
practice in the field of medical imaging is to co-register every observation into a common
reference frame, the unknown space of the template and then perform statistics in this com-
mon space. This leads to the definition of a backward model (see Fig. 5.2): the template is
equal to a deformation of the observation up to a random perturbation. In other words, the
observations result from a random deformation of the template which have been previously
perturbed by a random shape variation (in the space of currents). Mathematically, this
model can be written as:

0. Ti=T+e; < T,=¢;'T+¢;" e (5.2.1)

where T denotes the unknown template, ¢; the random deformations and ¢; i.i.d. random
variables in the shape space.

An alternative model, as pioneered in [Allassonniére 2007, Allassonniére 2008, Ma 2008],
considers that the observations result from a random deformation of an unknown template,
perturbed afterwards by a random shape variation (see Fig. 5.2). Mathematically, this
model, which is called forward model, can be written as:

Ty =¢;, T +¢; (5.2.2)

O+

@,%ﬁ ) o @Y
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o (92@ o 020

forward scheme backward scheme

Figure 5.2: In the forward scheme, the physical observations (O;) are seen as noisy defor-
mation (¢;) of unknown template (O). In the backward scheme, the template is an average
of deformed observations. In the forward scheme the noise is removed from the observations

whereas it is pulled back in the common frame with the backward scheme.

In the backward model, the perturbation ¢; is identically distributed in the Lagrangian
coordinates. It is added in the coordinate system of the template, which moves under the
action of the deformation. The perturbation is seen as an intrinsic property of the template.
Writing this model in the fixed Eulerian coordinate (the coordinate system in which every
observation is given), as in Eq. (5.2.1)-right, we see that the perturbations in this coordinate
system are written as ¢;,c; and therefore depend on the deformation ¢;: these variables
are no more identically distributed among the subjects but depend on the subject-specific
deformation. The backward model has been explicitly formalized in such a statistical way



5.2. Forward versus backward atlas construction 169

in [Glasbey 2001]. Several atlas construction methods rely implicitly on this model, like
in [Glaunés 2006, Sabuncu 2008] for instance.

By contrast, in the forward model, the perturbation ¢; is identically distributed in
the Eulerian coordinates. The noise is added in the image space (i.e. the space of the
acquisition), after applying the deformation which carries the shape from the template
space to the subject’s space. The perturbation is considered as an intrinsic property of the

subject itself.

In more concrete words, in the backward scheme, one needs to compute the dissimilarity
||¢i*T¢ — TH In the forward scheme, one needs to compute the dissimilarity ||T7 — qﬁi*TH.
The two approaches would be equivalent if the norm used were left-invariant with respect
to the action of diffeomorphism (i.e. ||¢.T|| = ||T|| for any T'). However, the usual norms on
images or geometrical data do not satisfy this invariance rule. Note that some methods try
to combine both approaches in a more symmetric way like in [Sabuncu 2009] for instance,

although such methods have not been given a precise statistical sense.

5.2.2 FEulerian perturbations are required to account for noise

There are several reasons which explain why a perturbation attached to the subject’s
space is required. From a physical point of view, the noise which is added by the sensors
is defined in the coordinate system of the subject and there is no reason for this noise to
depend on a deformation which have been introduced for modeling purposes and which has

nothing to do with the acquisition process.

In the proposed statistical models, the template T is supposed to be an “ideal” rep-
resentation of the continuous underlying biological material (a L? function defined in the
continuous domain as an ideal image for instance). The observations, by contrast, are
given intrinsically as discrete and sampled objects. The difference between the continuous
deformed template and the discrete observations is a perturbation, which can be called
“sampling noise”. Again, this sampling noise has the same law for every subject and has no
reason to depend from an unobserved deformation. In other words, in the backward model,
the sampled observations are deformed back to the template space: an extrinsic extrapola-
tion scheme is required to compare this sampled deformed observations to the continuous
template. By contrast, in the forward model, the continuous template is deformed (and
the deformations act naturally on continuous objects) and then needs only to be sampled

to compare the observations.

To summarize, in order to model the physical and the sampling noise of our data, we need
to account for an i.i.d. perturbation in the Eulerian coordinates as in the forward model.
By contrast, there is no consensus whether the possible anatomical variations, like a change
of density of white matter fiber bundles for instance (see Chap. 7), are better described as
i.i.d. perturbations in the template space or in the subject’s space. In practice, modeling
this variability by a unimodal Gaussian variable is probably a much stronger limitation for
an accurate estimation of the true underlying variability than the possible impact of the

deformation on the law of these perturbations.
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5.2.3 Toward a mixture model

The proponents of the backward model claim that the perturbations defined in the
template space may model some modes of variations which may be related to different
pathologies (or different subtypes of a pathology). For instance, a change of topology
may characterize a pathology with respect to a control case (one versus two connected
components for instance). In this case, it would be more natural to describe this effect as
an i.i.d. perturbation in the template space and not in the subject’s space where the change
of topology in the deformed configuration would be less accurately described by a single
ii.d. variable.

We can workaround this issue in two different ways. First, we can define a combined
statistical model as T; = ¢i*(T + 7;) + €; where two ii.d. perturbations, one in each
coordinate system, are taken into account: 7; and ;. The main problem of such a model
is to find a way to constraint the decomposition of the residual variability in the two terms
n; and ;. It is not clear, even intuitively, what this decomposition should be on some
simple examples. This idea would lead to the estimation of an atlas in the context of
the metamorphoses, where changes of photometry is allowed along with the geometrical
deformations [Trouvé 2005b].

A more direct way would consist in estimating not only one template but sev-
eral templates, each one modeling a different pathologies or subtypes of a pathology.
In [Allassonniére 2009], the estimation of an atlas with several components (the number
of components being not imposed a priori) is proposed in the forward setting for images
and small deformations (displacement fields instead of diffeomorphisms). Extending this
algorithm to account for large deformations and for currents should be investigated in the
future.

In [Hufnagel 2008], a model with two perturbations is proposed. Deformations are
supposed to be affine and only the perturbation in the Lagrangian coordinates is estimated.
The authors claim that the modes of variations in the template space enables to describe
the different types of variations which occur in a population. In this case, we believe
that these modes are needed because the affine transformation has not enough degrees
of freedom to describe all possible anatomical variations. By contrast, deformations with
many more degrees of freedom, like diffeomorphisms for instance, should be able to capture
the anatomical variations without introducing modes of variability of the template. In
this case, statistics on deformations would retrieve the different types of pathologies. In
Section 5.5, we will show on a simulated example how statistics on diffeomorphisms can
be used to classify two populations in a forward model (without introducing any modes of
variation in the template space). We believe that Lagrangian perturbations are justified
only if the difference between types cannot be captured by the deformations allowed in the

model.

5.2.4 Forward model is better adapted to statistical inference

In practice, we use a training set of several subjects to build an atlas and then we use
this atlas to compare new subjects with the estimated variability model. The training step

consists in estimating the template, the deformations of the template and the residuals. A
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model of variability (i.e. mean and modes for instance) is estimated for both the deforma-
tions and the residual perturbation. The test step consists in computing the likelihood of
any new subjects with respect to the estimated variability model, for diagnosis purpose for
instance. In this section, we assume that we can define probabilities on objects T' (images,
curves, surfaces, etc.) and on deformations ¢.

The construction of the atlas requires at least to compute the probability of having
the template given a training database of Tj: p(T|T;). Once the atlas is built, one would
like to know how a new observation Ty, is compared to the estimated variability model:
one needs to compute the likelihood of this observation given the template p(Thew|T)-
Because ¢; acts differently in the forward model (Eq. (5.2.2)) and in the backward model
(Eq. (5.2.1)), the computational cost of these two steps varies significantly. In the backward
scheme, computing p(7T|T;) is much simpler than computing p(Thew|T) which depends on
the Jacobian of the deformations ¢;. It is exactly the reverse for the forward scheme:
computing the atlas is more difficult than to compare a new observation to the estimated
variability. We argue that it is better to spend more time to build the atlas (which is done
once for all) and to keep simple the test of any new available data: the forward model seems
better suited even from a computational point of view. The backward scheme seems simpler
if we do not compute joint statistics on the deformation ¢ and the residual perturbation e.

From a theoretical point of view, the forward model is also better understood. For
instance, the consistency of the Maximum A Posteriori (MAP) template estimation, when
the number of available observations is growing, is proved for images and small deformations
in [Allassonniére 2007]|. Such proofs for the backward model seem currently out of reach.

For all these reasons, we base here our statistical estimations on the forward model.
In the sequel, we show how the atlas building step, which is the most critical step in this
paradigm, is possible in case of curves and surfaces. For this purpose, we take advantage
of the Matching Pursuit algorithm for currents, introduced previously in Chapter 3. Nu-
merical simulations on simulated examples will also show how the atlas may be used for
group classification in the context of supervised learning. The next chapters will show how
this atlas construction method can be used to describe the anatomical variability in real

applications.

5.3 Joint estimation of the template, the deformations

and the residues

From this section onwards, we focus on the atlas estimation in a forward setting when
the observations are given as geometrical data. We model these data as currents and derive
the equations for the construction of the atlas.

5.3.1 A Heuristic Maximum A Posteriori in infinite dimension

In Eq. (5.2.2) (T; = ¢;, T + ¢;), T; are the observations, T is unknown, ¢; are hidden
variables and ¢; are independent and identically distributed Gaussian variables with known
variance 0‘2,‘,. To define statistics on deformations, we take advantage of the tangent-space
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representation of the diffeomorphisms. In Chapter 4 (Section 4.2.2.3), we showed that the
geodesic diffeomorphisms are completely determined by their initial speed vector fields vg
in a RKHS V, in case of the dual representation of vy has a discrete support (then the
discrete momenta follow the Euler-Lagrange equations in Eq. (4.2.22)). Let us assume in
this section that this property holds for any initial vector field vy € V, namely that every
geodesic diffeomorphisms have a tangent-space representation.

Let us assume that we can define Gaussian probability density functions (pdf)
on the space of Currents W* and on the space of initial vector fields V: p.(e) =
C. exp(— HEH%/V /20%,) and py(v) = Cpexp(— Hv||%,/2o%,) In that case, a Maximum A
Posteriori (MAP) estimation for independent observations and uniform prior on T maxi-

N _ _
mizes [[ p(T;|T) over T. Formally,
i=1

p(T[T) = / pe (T[T, ) (v dvo
,, | (5.3.1)
= /ps(Ti — ¢, T)pg(vh)duvy.

Since the term within the integral depends on vy by a geodesic shooting of diffeomorphisms,
there are no closed forms for this likelihood. A usual approximation consists in replacing the
integral by the maximum of the distribution within the integral (i.e. its first mode). This

means that p(T;|T) is replaced by a Dirac measure located at arg max p. (T; — qb?é )pg (V).

7
1)0

This approximation, called Fast Approximation with Mode (FAM), leads to:

) ns) - {5
< ¢ 1§i§N) arg min {U%V;

T,(v§)1<i<N

vi 2 1 N in2
Ti—w*THWﬁUQV;HUOHV . (5.32)

However, the Gaussian variables have no pdf in infinite dimensional Hilbert spaces,
such as the space of currents W* and the space of initial vector fields V. In the next
section, we will give a rigorous sense of this heuristic MAP derivation, as the limit of the
likelihood derived in a finite-dimensional setting using the approximation spaces introduced
in Chapter 2.

Note also that the approximation with mode (FAM) could be avoided. For instance,
a sampling of the posterior can be estimated by Markov Chain Monte Carlo (MCMC)
approaches, as shown in [Allassonniére 2009] in case of images and small deformations.

Extending this work in case of diffeomorphisms and currents is left for future investigations.

5.3.2 A rigorous MAP derivation using approximation spaces
5.3.2.1 A finite-dimensional statistical model

In Chapter 2, we introduced finite-dimensional approximation spaces of currents. In
particular, we showed in Section 2.3.3 that the trace of the Gaussian currents in such
approximation spaces have probability density function. In this setting, we can therefore
derive rigorously a MAP estimation. This requires first to define a proper statistical model
in finite dimension.
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Let V be a RKHS of vector field and W* the space of currents as the dual space of the
RKHS W. Let Ag be a linearly spaced grid of points and Vi and Wy  the discrete spaces
associated to V* (i.e. the dual space of V) and W* in the sense given in Chapter 2.

We define the template T as a current in the discrete space Wy3,- We define n;, a
sequence of N ii.d. Gaussian variables in the discrete space Vi with variance o7, (see
Section 2.3.3). We denote v; = Ly, (7;) their associated vector fields.

Let ¢; a sequence of N i.i.d. Gaussian variables in the continuous space of currents
W* with variance 0%, as defined in Section 1.5.3. Then, we define the following statistical

model:
Ty = ¢", T +¢;. (5.3.3)

In this model the observations T}, the deformed template ¢V, T as well as the perturbations
e; belong the continuous space of currents W*, whereas the parameters T and (v;) belong
to discrete spaces induced by the fized grid Ay.

To infer this statistical model in a discrete setting, we introduce another linearly spaced
grid A with step A (which is supposed to tend to zero). Instead of maximizing the likelihood
of the observation T;, we want to maximize the likelihood of its orthogonal projection on
Wi (IIx(T;)) over the parameters T and v;:

“max p(IIx(T7)) .
TeW;,
v; €V,

As shown in Section 2.3.3, the probability density function of the vector fields v; is given

as:

12
py(vi) = p(n;) o< exp (—HZQHV> , (5.3.4)

\%4

since the norm on the approximation space Vj, coincide with the norm on V (where
means “proportional to”).

Similarly, the posterior is given by p.(IIx(7})|v;, T) where p. denotes the pdf of the
Gaussian currents in the discrete space Wy, as in Section 2.3.3. Therefore, we have:

pe (MA(T)|v;, T) = pe (s (T; — 6%, T)) o exp (HHA (T, — ¢, 1) /UEV) . (5.3.5)

To derive the MAP estimation, we still need to define a prior on the template shape T.
Let By~(R) be the ball in W* of center 0 and radius R and Bjo. (R) = Wi, N Bw-(R).
This space is the set of discrete currents in W whose norm is smaller than R. This space
is isometric to the set of momenta a (pN dimensional vector where N is the number of
grid nodes and p the dimension of the momenta (p =1 or p = 3)) such that 'Ky, < R.
This compact and discrete set of currents can be provided with the uniform measure. This
is the prior that we choose for T.

Now, we derive a rigorous MAP estimation of the atlas (T, v;), using the same Fast
Approximation with Modes as in the previous section. This leads to the minimization of
the log-likelihood:

N
L* ((vi)i=1,..n,T) = Z |Ta (T; — 6", T) Hiv +ylvilly (5.3.6)
i=1



174 Chapter 5. Atlas construction for the measure of anatomical variability

over the vector fields v; € Vj, and the template T’ € WJ, such that HT”W <R.

The application of Prop. 4.8 about the parameterization of minimizing diffeomorphisms
shows that the vector fields vy which minimize L* are parameterized by momenta in the
support of T which is included in Ag, since se supposed that T € Wy,- Therefore, the
fact that the vector field vy € Vi, needs to be parameterized by momenta in Ay is not a
constraint which we need to enforce: it is automatically satisfied at the minimum.

This discussion suggests to use the registration scheme of Chapter 4 to minimize L*
with respect to the vector fields vg. However, this minimization problem is not exactly a
registration problem as stated in Chapter 4 due to the presence of the projection operator
II, in the fidelity-to-data term. This minimization problem requires to adapt the registra-
tion scheme of Chapter 4 to take into account the projection of the fidelity-to-data term
on the grid A. Moreover, this projection II, makes also difficult the minimization of LA
with respect to the template T. Indeed we need to infer the momenta of T on the grid Ao,
knowing only the projection of the deformed template ¢.T on the grid A.

By contrast, the heuristic log-likelihood L derived in Eq. (5.3.2) looks similar to the
rigorously derived log-likelihood L*, except that it does not involve the projection on the

grid A:
N

L((W)ictonsT) = S_||Ts = 6% Ty + v Ilill% (5.3.7)
i=1

In this heuristic log-likelihood, we consider also that T € W3, We consider also that
v; € Vj,, which is, as discussed above, the parameterization of the vector fields which
enable to minimize L. Since L does not involve the discretization grid A, it seems much
easier to minimized. In particular, as we shall see in the next section, minimizing this
heuristic likelihood with respect to the initial vector field can be done using the registration
scheme of Chapter 4.

Intuitively, it seems that the rigorously derived likelihood L” tends to the heuristic
likelihood L, as the step of the discretization grid A tends to zero (i.e. the grid becomes
finer and finer). In the next section, we will precisely establish that the minima of the
rigorously derived likelihood LA tends to the minima of the heuristic likelihood L. This
will justify the minimization of the heuristic likelihood L instead of the rigorously derived

one.
Remark 5.1. In this section, we introduced two grids:

e A fized grid Ay, which define the finite-dimensional space to which the variables of

the model (template and momenta of the initial speed vector field) belong.
e A grid A, whose step tends to zero, on which we project the observations T;.

In the next section, we will study the convergence of the likelihood of the observations when
the step of the grid A tends to zero, namely when the projected observations tend to the
original ones.

It could be interesting to also study the convergence of the statistical estimation of the
template and the initial speed vector fields when the step of the grid Ay tends to zero.

At the limit, the template and initial vector field are not constrained to belong to finite
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dimensional spaces anymore: they could be any arbitrary currents and vector fields. The
main issue here is that these variables in infinite dimensional spaces do not admit probability
density function. To do statistics in such spaces, one cannot use likelihood ratios anymore
but probability measures on neighborhoods of the variables instead. Such an advanced
statistical analysis is out of the scope of this work but could be worth being investigated in
the future. O

Remark 5.2. In the previous chapters, we used approximations spaces to solve problems
which were not tractable in the continuous case. By contrast, it appears here that the con-
tinuous formulation is better suited from a computational point of view than the derivation
in the discrete setting. To justify this approach, we also need to prove that the heuristic
likelihood L is the limit of the likelihood L*, which has been derived rigorously in a discrete
setting, when the step of the grid A tends to zero. [

5.3.2.2 Heuristic MAP as the limit of finite-dimensional MAP

In the following lemma and proposition, we establish a uniform control of the heuristic
likelihood L by the discrete likelihood L.

Lemma 5.3. Let A be any finite set of points in R4, T € W} and v € V such that
lvlly, < R. Then, ¢* and d¢¥ are uniformly bounded and

M (¢°,T) < CM(T), (5.3.8)

where C' is a constant independent of v, T and the grid A. M(T) is the mass-norm of T
as in Defn. 1.3.
Proof. Since T'c€ Wy, T'= ) 63:. For each Dirac delta currents, we have ¢.dy = (52(5)
i€A

where we denote ¢.a = d,¢(«) if « is a 1-vector (tangent of a curve) and ¢, = d P(u) x
d;¢(v) if @« = u X v is a 2-vector (normal of a surface) with v and v orthogonal (see
Appendix A).

If o is a 1-vector, |p. | < ||do|| . |e]. If v is a 2-vector, |p.al < ||d<;5||i0 |a|. Therefore,
we have, denoting ¢ = ¢¥ and applying Prop. 1.12:

M (¢.T) = M (Z 63;?;5;3) = |¢eail

i€EA ieA
< max ([ldg] . ,1461% ) 3 e (5.3.9)
i€A
= max (||dg|l. , |dg %, ) M(T).
In [Trouvé 2005a| (Lemma 11), it is shown that there is a numerical constant C' such

that:
[6°loo < Cllvlly exp(Cv]]y) (5.3.10)

This result is essentially an application of the Gromwall lemma. This shows the result for
bounded vector fields (||v||,, < R). [ |
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Proposition 5.4 (Control of the heuristic MAP). Let L and L™ be as defined in Eq. (5.3.7)
and Eq. (5.3.6) respectively. Let W be a RKHS with translation-invariant scalar kernel
(K(z,y) = k((x — y)/Aw)Id) and A a linearly spaced grid with step A. Then, there is a
constant C' such that:

Vo' € Vi, |||, <R, YT eW;,, M(T)<R,

o o 1/2 P/2
|LA (v!,T) — L (v, T)| < C’ké{})(())’ ! (Q) (5.3.11)

where k®)(0) denote the first non-zero derivative of the function k at zero. C is a constant
independent of the v'’s and of T.

Proof. We denote U; = T; — ¢;, T, so that we have:

] =

LA (01, ) = L (0] < 30108 ) - = 103Gy

o
Il
N

(5.3.12)

M=

[(TIA(U;) + U, TIA(U;) — Uiy«

.
Il

<

-

©
Il
=

2(|Ui |y 1A (Us) = Ui |l

We have M(U;) < M(T;) + CM(T) by application of Lemma 5.3. Therefore, since
Uil < CwM(U;) (see Prop. 1.25) and since M(T) < R, then |U;||;. is bounded
independently of ¢ and T.

Since Iy denotes the orthogonal projection on W}, we have for all U; € W;,
|U; = A (Ud) |l < ||Us _UiHW*' Then, using for U; the partial volume projection of
U; on the grid A as defined in Chapter 2, we have according to Proposition 2.20:

12 [ A \P/?
10~ a0l < x| () (5.3.13)
w
Since we already proved that M (U;) < M(T;) + CR, this shows the result. |

Now, we can prove that minimization of the heuristic likelihood L is equivalent to the
minimization of the rigorously derived likelihood L* in the limit A — 0, where A denotes
the step of the grid A. The following proposition shows that the global minima of L*
converge to the global minima of L as the step of the grid A tends to zero.

Lemma 5.5. Assume that the kernel K of W is weakly continuous. Then, for allv € V} ,
such that |[vll,, < R and for all T € W, we have:

& [Ty < 167 Ty < Co[Tly. (5:3.14

where Cy,Cy are two positive constants independent of v and T.

Moreover, the function L ((vi)i:17,,,,N,T) is continuous over (V)N x Wi, -
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Proof. With the notations of the proof of Lemma 5.3, we have qu”*THiV* =

S (i) K(o(2), ¢(3;))puc; = a'K? «, where K? is a symmetric positive defi-
i,jEA
nitee Omatrices whose block (i,7) is given by dy,¢"K(p(x;i), #(x;))ds, ¢ for l-current and
|do, ¢| do, ¢ K (6(5), §(5)) |, | da, " for 2-currents.
It is proven in [Glaunés 2005] (Theorem 4) for instance, that the maps v — ¢¥ and
v — d¢V are weakly continuous (when we restrict ¢ and d¢ on a compact subset of R?, here
the convex hull of the grid Ag). Therefore the map v — K?" is also weakly continuous.
Since the vector fields v; are bounded, this proves that the set of K¢ for all possible v
such that [|v||;, < R is compact (in infinite dimension, the unit ball is compact for the weak

topology). Let fimin = min |K¢v‘ and fimax = max ’Kq’u | Therefore for all o and all
lvlly <R [lvlly <R

v (|lv]ly, £ R), we have:

uminata < 'K a < ,umaxata.

id id . it e . Id
Let A%, and MY, the smallest and largest eigenvalues of K'“. Then,
Hmin atKIda < atK¢Ua < Hmax atKIda
\d = = )

max min

which shows the first point for C1 = \/pimin /A, and Co = 1/ pimax /A% .
To prove the continuity of L, we essentially need to prove that the map: (v,T) —

||¢”*THW* is continuous. Let v,, T, a sequence in Vj, x Wy, which converges to v,T.
Then,

< [l67Tn = 6" Ty
= ||¢vn*7n o ¢UH*T”W* + H(bvn*?* ¢U*T||W* )

[l Tully. = l1¢°-Tllw-

Thanks to the first point we showed, the first term satisfies Hd)””*(TnfT)HW* <
Cy HTn — THW* which tends to 0 as n tends to infinity (since the v, converges to v, the
sequence is bounded). The second term tends also to zero since v — ¢¥ and v — d¢?
are continuous (see [Glaunes 2005] (Theorem 4) for instance) and since for T € W,
||¢*T||12/V = o!K®a depends continuously on ¢ and d¢. This shows the continuity of

L. ]

Proposition 5.6 (Convergence of the minima of L* to the minima of L). Let A" be a
sequence of linearly spaced grids whose step A,, tends to zero. Let ((vgn))i:1w7N7T(n)) be

a sequence of minima of L™". Then, this sequence is bounded in the space (Vi )N x W3, -

(™)

Therefore, we can find a subsequence ((v; )izl,‘_,’N,T(nk)) which converges to

((v?o)i:17,__,N,Too) in (Va,)V x WX, And this limit is one minimum of L.

Proof. First, we prove that the sequence of vector fields are bounded. By definition of the
minimum, LA" (vl("),T(n)) < ILA'(0,0) < Zfil | T; ||, which is a constant with respect

to v, T and A,. Since, Z7N:1 ‘ v

i

2 _
< I* (vgn),T(")), every sequence vz(") (for

t=1,...,N) is bounded: there is a constant R such that Hvﬁn) H <R.
v
Second, we prove that the sequence of template is bounded. Since the vector fields are
< C;l ‘ Qﬁvgn)*T(n) < LAn (’Ul(n),T(n))

bounded, we can applied Lemma 5.5: HT(H)

w= w
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This last term is bounded, like for the vector fields vi("), by LA7(0,0). Therefore, the
sequence T(n) is bounded.
Now, we can derive a subsequence ((vgn’“))izl N,T(nk)

.....

) which converges to

((0°)i=1...n, T ). Moreover,
£ (0, 7) = 12 (o, 77| <

2(o2.7) = £ (o, 7)1 (o, 7 = 2 (o,

(n) T(”))( (5.3.15)

The first term tends to 0 since L is continuous (thanks to Lemma 5.5). The second term
tends to 0 thanks to the uniform bound proven in Proposition 5.4.

Assume now that (v2°,T") does not minimize L. Then, there is (v;,T) such that
L(v®, T>®) — L(v;,T) = § > 0. Thanks to Eq. (5.3.15), we can find N such that for all n >
N, L, T) — LA (vgn),T(n)) < §/3. This means that L(v®,T>) < LA» (vﬁ),T(”)) +

d/3 and therefore that:

L(v:, T) < LM ™ Ty — 5+ 6/3 (5.3.16)
Thanks to the uniform bound of Prop. 5.4, we can choose N’ > N, such that for all
n> N, ’LAn (vi,T) — L(v;, T)| < §/3. Combined with Eq. (5.3.16), this result shows that:

LA (03, T) < L(v;, T) +6/3 < LA (o, T™) — §/3, (5.3.17)

which is contrary to the fact that (vl(n),T(n)) is one global minimum of L». Eventually,

this proves that the limit (v2°, T ) is one minimum of L. [ |

This proposition justifies to minimize the continuous likelihood L instead of L in the

following.

Remark 5.7 (Uniform prior on the template). In this MAP derivation, we assume a
uniform prior on the template in a ball in the space of currents. This prior is not realistic in
the sense that it does not favor currents which “look like” usual curves or surfaces. Indeed,
as mentioned in Section 3.5.2, the set of “acceptable shapes” is likely to be of negligible
measure in the space of currents. One way to end up with a template which is close to
usual curves or surfaces could be to change this prior and to penalize the template which

deviate too much from a given set of shapes (still to be defined). OJ

5.3.3 An alternated minimization procedure

We propose to minimize the likelihood L in Eq. (5.3.2) alternatively with respect to
the template and to the deformations. When the template T is fixed, each term of the
likelihood can be minimized separately: for a given observation T; and knowing the template
T, minimizing

1
|

— P 1 P2
T — qs;’o*THW* + E ||U0HV7 (5.3.18)

with respect to vj is a registration problem. The single difference with the registration
criterion of Chapter 4 is that the variable is here the initial vector field vy instead of the
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flow (v¢)¢ejo,1)- However, as we mentioned in Section 4.2.2.3, the minimizing flow of vector
field is geodesic and, at the minimum, fol ||vt||%/ dt = ||v0||%/. Therefore, the registration of T'
to T; in the framework of Chapter 4 leads also to a minimum of the criterion in Eq. (5.3.18).
As a consequence, the N registrations of the template T to each observation T; (which can be
computed in parallel) minimize the likelihood L with respect to the deformation parameters
vg.

When the deformations ¢; are fixed for every ¢ = 1... N, minimizing Eq. (5.3.2) with

respect to the template T leads to the minimization of the convex function:

_ 1 _
J(T) = §Z||¢i*T_TiHiV* (5.3.19)
=1

If ¢; = Id (i.e. no deformation) for all ¢, the minimum is reached at the empirical mean:
T = % Ziv T;. For arbitrary deformations, there is no closed form and we use a gradient
descent scheme. Let 6T be a variation of the template in the space of currents. Then, by

linearity of the push-forward action on currents (see Eq. (1.3.21)), we have

N
J(T +6T) = J(T) + > (66T, 65, T = Ti)yy. + 0 (|[0T )
i=1

Therefore the gradient of Eq. (5.3.19) is given by:

N
Vgl = Z il (63, T —T)) (5.3.20)

i=1

where (bi is the adjoint action of ¢, defined by:

(AIT,T") . = (T T )y (5.3.21)

for any currents T and 7”. This would be a matrix transpose if the deformation ¢ were a
linear operator on W* (like for an affine transformation of a set of points for instance). In
this non-linear setting, the computations are slightly more complex. From a computational
point of view, we must explicit qzﬁl and express it in terms of known operations on currents.

Applying the definition of ¢, and the isometric mapping Ly, we have for all currents
T and T":

(LT, T") . = (T, 0.T") . Def. of ¢!
= 0. T (L (T)) Def. of (., and Ly (Eq. (B.3.7))
=T ((b*ﬁ;[/l (T)) Def. of ¢. and ¢ (see Definition 1.15)

= (Lw ("L} (1)), T") . Def. of (.,.)y» and Ly (Eq. (B.3.7))

These equations show that:
OIT = L (¢ Ly (T)) (5.3.22)
The application of this formula to 6% as a 1-current (see Eq. (1.4.6)) shows that:

610% = Lw ((dz0) K" (6(),2)a) (5.3.23)
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Its application to d% as a 2-current (see Eq. (1.4.10)) shows that:
otoe = £W(|dw¢| dgcqb_lKW((ﬁ(.),m)a) (5.3.24)

Neither the dense vector field (d,¢)' KW (¢(.), z)a or |dy¢| ded ' KW (4(.),x)a can be
expressed simply as a linear combination of basis vector fields K" (., y)3 (because of ¢ inside
the kernel). Therefore, there is no simple closed form to compute the mapping Ly in these
cases. To implement this ill-posed deconvolution problem, one needs a robust numerical
scheme. In this thesis, we will use naturally the Matching Pursuit Algorithm introduced in
Chapter 3.

Now, we can make explicit the computation of the gradient in Eq. (5.3.19). The input
shapes T; are sampled objects which are approximated as finite set of Dirac currents. As it
will appear from this minimization procedure, the template will also always remain a finite
set of Dirac currents at every iteration. Therefore, the current ¢, T — T; is of the form
>k (555 which gives finally ¢} Lyt (0:, T—Ti) = >4 (dutvi) KW (64(x), yi,) Bi in case of curves.
For surfaces, d,¢! must be replaced by |d.¢;| dz¢;1. Finally, the dual representation of the
gradient in the space of vector field W is given at any point x by:

N

Ly} (Vo) (@) =D (dathi)! (Z KW<¢i<x>,y,i>6z;> : (5.3.25)
k

i=1

in case of curves and
N
Ly (V) (@) = |duti| daty " (Z K" (¢i(x), y%;)ﬁ;i) , (5.3.26)
i=1 k

in case of surfaces.

Thus, we see that we know how to compute the dual representation of the gradient
(a vector field) but not the gradient itself (a current). We use now the Matching Pursuit
algorithm of Chapter 3 to perform the deconvolution of the vector field E;Vl (T — 7V7J)
(where 7 is the adaptive step of the gradient descent) to give an approximation of the
updated template at any desired accuracy. This approximation is given as a finite set of
Dirac delta currents. As a consequence, the template remains a finite set of Dirac currents
at each iteration. Moreover, the number of Dirac currents tends to be minimized, thus
leading to a template in a sparse form.

We initialize the algorithm by setting ¢; = Id, T = % Zi\ilTl and by computing
the vector field v = £,/ (T) associated to T via a Gaussian convolution (computed with
FFT’s on images of vectors as explained in Chapter 2). The current T is encoded as a list of
momenta (couple (position, vectors)) that approximates small segments or small triangles.
The dense vector field v is discretized at a the points of a fixed grid: A = {z,} and is
therefore encoded as an image of vectors.

The alternate minimization procedure for the template estimation is written as in Al-

gorithm 3. The step which centers the template according to the new deformation via the

_ N _
minimization of J(T') = Y ||¢:,. T — Ti||,,. is detailed in Algorithm 4.
i=1
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Algorithm 3 Atlas Construction

: Input: N shapes T; (list of oriented points (tangents or normals): T; = (2%, al)).

. List T = (Ty, @) + concatenation of all (¥, a? /N) (encodes Y.~ | T;/N)
: T + sparse approximation of T using the Matching Pursuit (Algorithm 2)

for i =1...N do {Register Template to Subjects}
¢; < registration of T to T;.
end for{Re-center the template}
T « CenterTemplate(T, {¢;}, {T;}) (Algorithm 4)
10: until convergence
11:
12: Output: One template T, N deformations ¢;, N residues ¢;, T — T; (stored as a list

1
2
3
4
5: repeat
6
7
8
9

of momenta)

As a result, the algorithm returns an unbiased template T as well as the deformations
of this template to every observation T;. The residues are given in the space of currents by
T; — ¢;, T. The methodology developed in Section 5.4.1 can be used therefore to perform

statistics on such residual currents.

Remark 5.8. In the backward scheme, Eq. (5.3.19) would be:

— 1 N 2
i=1
whose minimum has the closed form

_ 1 N
Tzﬁg%n

This shows that the minimum is the empirical mean of the observations pulled back
into the current template configuration (¢;).T;. In particular, no gradient descent would
be required. By contrast, in our forward setting, the estimation of the template involves
the Jacobian matrix of the deformations (via (bi) and no closed form for the minimum
is provided. However, computing the likelihood of any new observations p(T;|T) will be
straightforward in the forward setting, whereas the computation of this likelihood in the

backward setting will require to account for the Jacobian of the deformations. O

5.4 Statistical analysis of deformations and residual cur-

rents

Once the atlas is constructed along the lines of the previous section, one would like to
analyze the variability of the population by performing PCA on the residual currents and

on the deformations.
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Algorithm 4 Template centering

_ N _
1: {Implement the gradient descent to minimize J(T) = 3 ||¢;,T — TiHW*}
i=1

Input: an initial template T, N deformations {¢; }1<i<n, N currents {T;}1<i<n

Set a grid A which covers the currents (7;) and ¢;,T.

Image of vectors yz < Ly (T): Vo, € A yp(zy) = S KW (2, Tr )@, computed via
convolution and FFT (see Section 2.2.3)

6: repeat {Gradient descent}

7. Image of vectors grad =0
8 fori=1...N do
9: Deform T with ¢;: ¢;, T = { ((m(%k),dﬂ@(ak)) —t— (curves)
(64(Th) | dy 6] s, 67 (k) (suntaces)
10: Concatenate the list (z¥,—al) with the previous one to give (yi, %) (encodes
¢, T —Ty).
11: Deform A with ¢;
12: for all z, € A do
13: Compute d;,¢; by a finite difference scheme
14: Compute G = Y, KW (¢i(zp), yi)B: (convolution via FFT (see Section 2.2.3))
15: grad(zp) < grad(zp) + 2(dar, 00)'G B (curves)
2 |da, (bi| (de,¢i)"'G  (surfaces)
16: end for

17:  end for

18: 3 < vy — Tgrad

19:  Deconvolution of vy to give the new T = (Tg, ) via Matching Pursuit in Algo-
rithm 2).

20: until convergence

21:

22: Output: the new T.

The residual currents are given as R; = ¢;, T — T;: a weighted sum of the momenta
of the template and each input shape. This representation may not be optimal and may
be difficult to interpret. Indeed, each residual has a different support: the union of the
support of ¢; * T and the support of T;. Moreover, these two supports are close one from
the other and this decomposition of the residual in terms of Dirac delta currents may be
highly redundant at the scale A\yy. The sparse representation of the currents introduced
in Chapter 3 is required to give a more compact and more interpretable representation of

mean and modes of the set of residuals.

By contrast, the initial speed vector field of the deformations have all the same support,
namely the points of the template. Note that this is a direct consequence of the forward
setting. Therefore, in the framework of Chapter 2, every initial vector field belong to
the same finite-dimensional RKHS (induced by the points of the template). A PCA can
be applied directly in this finite-dimensional RKHS, which leads naturally to a compact
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representation of the statistics on vector fields.

5.4.1 Mean and modes in the space of currents

After the construction of the atlas, each residue is given by: R; = ¢;, T — T; and written
as the sum of the deformed Dirac delta currents of the template T and the opposite of the
Dirac delta currents of the input shape Tj. Let’s write this sum: R; =), 5::

We take advantage of the fact that the space of currents W* is a vector space provided

with an inner-product to perform directly a PCA of the residues.

The empirical mean of the residual currents is given by: R =Y  R;/N = > > 5/
i i p

zi
which is the union of the momenta of every observation scaled by —1/N and of the momenta
of the every deformed template scaled by 1/N. Since the support the deformed template
¢:, T is close to the support of the observation Tj, by definition of the registration, this
representation of the empirical mean residual current has a very redundant representation
at the scale A\yy. We use therefore the matching pursuit algorithm introduced in Chapter 3
to give a more compact and more easily interpretable representation of this empirical mean.

The N-by-N empirical covariance matrix I' is given by: I';; = <Ri —R, R; —E>W*
(computed in practice thanks to the inner-product between two Dirac delta currents in
Eq. (1.2.8)). Let V! ..., V¥ be the eigenvectors of I'. The nth principal mode of the
residues is given by: R+ Y, V;"(R; — R). Expanding this expression leads to a double
sum of the form: )", Zp w%"éjﬁ’ for some weights w;’”. This support of this current is
still the union of the support of the deformed template and the observation. Therefore this
decomposition is still redundant at the scale Ay and can be simplified using the sparse
representation of Chapter 3.

These statistics can be used to interpret the anatomical variability captured by the
residual currents and therefore drive the search for new anatomical knowledge. Moreover,
since they have an adapted decomposition, they can be used easily to give more quantitative
measures of the variability. For instance, they can be used to compute the projection of each

observation to the first mode and analyze the correlation between modes and observations.

Remark 5.9. If Fy, ..., F, denote n feature vectors of dimension p, the usual PCA consists
in finding the eigenvectors and eigenvalues of the p-by-p matrix AA?, where A is the p-by-n
matrix (Fi|...|F,). The p-dimensional eigenvectors of this matrix are called the principal
modes. However, when the dimension of the space p is much greater than the number of
observations n, we use the property that the n-by-n matrix A4 has the same non-zero
eigenvalues than the matrix AA? (the p — n other eigenvalues of AA! are null). If v € R™
is an eigenvector of A'A associated to the eigenvalue A, then Av = Y v, F; € RP is an
eigenvector of AA? associated to the same eigenvalue (conversely if v € RP is an eigenvector
of AA!, then Alv is an eigenvector of A*A). This shows that the principal modes are always
given as linear combination of the input vectors Fj.

This shows also that we can perform PCA in infinite dimensional spaces: we can limit
the search for the modes in the finite dimensional subspace spanned by the input vectors.
In this case, only the second form A'A can be computed. The (4, )th term of this matrix

is given by this inner-product F}F};. This is what we compute here, except that we use the
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metric induced by the kernel K" instead of the Euclidean inner-product on the feature
vectors. This is equivalent to finding the eigenvectors and eigenvalues of the matrix A*K A
where K is the p-by-p matrix of the inner-product between every pair of Dirac delta currents

(and therefore equivalent to replacing the matrix A by K'/24). O

Remark 5.10. We compute the kth mode of currents as m* = R+, V;*(R; — R), whereas
one usually scales the sum with the eigenvalue A* which corresponds to the eigenvector V¥,
so that the norm of the mode is equal to the standard deviation of the mode. This normaliza-
tion is not required here, since we performed the PCA by finding the eigenvectors of a n-by-n
matrix of the form A A (see remark above). Since the eigenvectors V¥ € R™ are of unit norm
(S0, (VE)2 = 1), we verify that: [|mF — R[5, = 32,3, VFV} (Ri — R,R; — R),,. =
DD ViijkFij = (VF)ITV* = Ak, The squared norm of the principal mode (with respect
to the metric induced by the kernel K") already equals the variance of the mode. These

remarks holds also for the following principal modes of deformations. [J

5.4.2 Mean and modes of deformations

To compute statistics on deformations, we use the tangent-space representation of the
diffeomorphisms as in [Vaillant 2004]. As explained in Chapter 4, each deformation is
entirely determined by its initial speed vector field v§. All these vector fields belong to
a common RKHS V: the tangent space of the group of diffeomorphism at the identity
transformation. By computing mean and modes of deformations, we mean computing the
mean and mode of the initial vector fields in the common subspace V and then perform a

geodesic shooting of the mean and the modes.

Moreover, since each diffeomorphism is computed by registering the same template
to each observations, every initial speed vector field v} is such that Ly (v)) = (53,}
The dual representation of the vector fields share the same support: the set olef)iiTnt of
the template denoted Xr = {zg}r=1,. m. Using the notations of Chapter 2, these dual
representations belong to the same finite-dimensional RKHS Vy,.. Since the points of the
template results from the application of a matching pursuit (see Algorithm 4), they are
“optimally” distributed in some sense, and the metric Ky, on this RKHS has a good
conditioning. We remark however, that the template results from an application of the
matching pursuit in the space W*, thus limiting its redundancy at the scale A\yyy. This does
not mean that the representation is not redundant at the scale Ay if this scale is greater
than the scale A\yyy. In practice, nevertheless, this representation is sparse enough and we

do not need to perform a Matching Pursuit in the space V*.

The same computations as for the currents apply here, provided that the inner-product
in W* is replaced by the inner-product in V* and that we take advantage of the finite-
dimensional representation of the vector fields.

Let @’ be the 3M column vector (a})g—1,. m and Ky, the 3M-by-3M block matrix
whose block (i, j) is given by KV (x;,x;) as in Chapter 2 (K" denotes here the kernel of
the RKHS V). The mean momenta is given by: @ = ., a’/N, which leads to the mean
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speed vector field via:
0 =Lt (Z 5;‘;) =Y K" (,x) (Z a;;/N> .
k k i
To compute the principal modes, we build the N-by-N matrix I'V such that

I‘}g = (v} fﬁo,v? 760>V = (o' — @)Ky, (o —@).

Let V" be the eigenvectors of the matrix I'V'. The nth principal mode is given by

m®" :a_i_z‘/in(ai _a)’

which leads to the vector field: m""™ = >, KV (.,,x;)m"". A geodesic shooting of these

principal modes gives a diffeomorphism (bmv’" which is called the nth mode of deformations.

5.5 Atlas construction on simulated 2D-curves

We illustrate here the template estimation procedure on a simulated example of 2D

curves and show how this atlas can be used for group comparison.

5.5.1 Construction of a simulated database

We construct a database of random 2D-shapes, as illustrated in Fig. 5.3. From a tem-
plate shape S, we construct two mean shapes ¢ (S) and ¢~°(S) where ¢ is a small-scale
deformation which is parametrized by momenta «y whose support is close to the upper-
right part of the shape (green squares in Fig. 5.3). For this deformation, the spatial scale
of the Gaussian kernel is Aj™2!! = 0.12. Then, we simulate random large-scale deformations
¢*, where the support of the momenta « is spread over the space (yellow diamonds in
Fig. 5.3). The random momenta are simulated as random variables in the RKHS whose
kernel is Gaussian with standard deviation )\l{}nge = 0.4. This leads to two sets of shapes
(one set is “centered” around the shape ¢“°(S), the other around ¢~*°(S)) as shown in
Fig. 5.4. From a visual inspection of the shapes, it is difficult to know whether the two
classes are different and to guess the possible differences between them. To illustrate how
our statistical modeling can be used for such shape comparison, we divide the simulated

database into a set of 80 training data (40 per class) and 200 test data (100 per class).

5.5.2 Atlas estimation

We applied our atlas construction method (Algorithms 3 and 4) to construct an atlas
from the 80 samples of the set of training data. For this construction, we consider the
data as O-currents (tangents are not taken into account). The parameters used for this
estimation are the spatial scale of currents Ay = 0.05, the spatial scale for deformations
Av = 0.4, the trade-off between regularity and fidelity-to-data v = 10~* and the sparsity

number 7 = 5%.
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Figure 5.3: True templates used to create the data. From the mean template (black) we
simulate a small-scale diffeomorphism (parametrized by momenta at the green squares).
This diffeomorphism is applied to the black template to give the template of the red class
(right). The inverse of the diffeomorphism leads to the template of the blue class (left).
Finally, random large-scale diffeomorphisms (parametrized by momenta at the yellow dia-
mond) are applied to the blue and red template. This constructs a database. Some samples
are shown in Fig. 5.4

ns m 05 % 05 0s M 05

Figure 5.4: Five samples among the 40 samples for each class. Our goal is to show that
our atlas estimation allows us to find the geometrical discriminative features between both
classes.

The iterations of the algorithm are shown in Fig. 5.5. Two iterations only were needed
until the convergence criterion of the adaptive gradient descent was reached. As a result, we
end up with a template T (a set of unconnected weighted points) and deformations of this
template to each shape in the database. The deformations are parametrized by momenta
located at the points of the template.

Now, we can compare the estimated template T and the true template S used to con-
struct the database. Measured in the space of currents, the difference between the two

templates is equal to 0.24 times the standard deviation of the observations. With 80 sam-
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ples, the t-statistics is equal to v/80 % 0.24 = 2.15, which is below the usual 3¢ threshold to

decide statistical significance
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Figure 5.5: Atlas construction from 80 samples. At each iteration the algorithm register
the template (shown here) to each sample and update the template according to the de-
formations. The figures show the dual representation of the template in the space W. As
O-currents, the shapes are modeled as point sets (and not oriented points): the dual repre-
sentation is therefore a scalar field (shown here) instead of a vector field. Colors correspond
to the magnitude of this scalar field. The initial template is the empirical mean current
(a). The 2 iterations until convergence are shown in (b) and (c). Along with the iterations,
the bias is removed from the template. As a result, the template appear to be less and less
blurred.

5.5.3 Statistical Analysis of the deformations

In this section, we turn to the statistical analysis of the shapes. We observed that the
residual in the space of currents does not capture discriminative features between classes.
As a

consequence, we focus on the statistics on deformations. In our forward setting, the tangent-

This is expected since data differs one from the others by smooth deformations.

spaces of the all the diffeomorphisms coincide. This makes the statistics on the initial speed
vector particularly easy compared to the backward setting, for which initial speed vector
field must be transported from each subject’s space to the common template space before

comparison.

5.5.3.1 Dimensionality reduction

Each deformation is parametrized by momenta «; located at the points of the esti-
mated template, or equivalently the associated vector-field sampled at the same points ~;
(according to Chapter 2, the two representations are deduced one from the others via the
multiplication by the matrix Ky,, where X1 denotes the set of points of the template).
For each subject, the concatenation of the vectors ~; leads to a feature vector ~. For each

subject s, this feature vector is denoted ~°.

1Note that computing a rigorous Hotelling T2 test in this context is particularly difficult due to the

infinite number of degrees of freedom of the currents.
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The estimated template has 66 points. In 2D, this leads to feature vector of dimension
2 % 66 = 132, which is greater than the number of available observations: 80. This is a
standard situation in medical imaging. To reduce the dimension of the feature vectors, we
perform a non-centered Principal Component Analysis (PCA) and keep only the first 26
modes. This number of modes was chosen so that the classification results on the training
data (as explained in the next section) are optimal.

As a consequence, we project all the feature vectors on the common sub-space deter-

mined by these 26 first directions. Now, the feature vectors have 26 components.

5.5.3.2 Population separation

Let p;, and p, be the sample mean of the feature vectors for the blue class and the red
class respectively. An Hotelling 72 test is performed to decide whether the two populations
are distinct (null hypothesis: (@, = w,.)) and if the whole population is centered (null
hypothesis: ((, + p,.)/2 = 0)). The value of the Fisher-Snedecor statistics corresponding
the Hotelling statistics is 14.4 for the difference of both means and 1.80 for the total sample
mean. Statistics greater than 2.1 correspond to a probability of acceptance of the null hy-
pothesis less than 1%. As a consequence, these feature vectors separate the two populations
in two clusters with different means. Moreover, we cannot reject the hypothesis that the
global population is centered.

For each mean, we compute the diffeomorphism ¢¥¥r#s and ¢¥*r ¥+ via geodesic shoot-
ing of the vector fields K x,. i1, and ¢¥¥r ¥+ respectively (see Section 4.4.2). Then, we apply
these diffeomorphisms to the template, as illustrated in Fig. 5.6. Note that for visualization
purposes, we used here the true template (S) instead of the estimated one (T'). This figure
shows that the difference between the two population at the first order is a torque of the
upper-right part of the shape.

Now, we focus on three different methods to learn how to separate the two classes: a
method based on Mahalanobis distances, a linear discriminative analysis and a classifier
based on Support Vector Machines (SVM). This classification methods should determine
whether the discriminative features captured by our model are reproducible across the

populations.

Separation based on Mahalanobis distance On the common sub-space of dimension
26, we compute the sample mean p, and p,. and the sample covariance matrix ¥, and
3., for each class. Then, given any feature vector «, we can classify it according to the
maximum of likelihood principle for the estimated Gaussian laws (i.e. a Neyman-Pearson
test). The statistic is given by:

T(y) = (v — ) Sy (v — o) — (v — 1) 57 (v — ). (5.5.1)

If T(y) < n for a given threshold 7, then ~ is classified as “blue” (it is closer to the
blue population according to the Mahalanobis distance) and as “red” otherwise. For our
experiments, there is a value of the threshold 1 which perfectly discriminate between the
two populations. This means that there is a quadric surface which separates the two sets
of feature vectors.
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Mean of the blue class Mean of the red class

Figure 5.6: The true template (in black) and the means of the blue and the red class. This
shows that the difference between both classes is mainly a torque at the upper-part of the

shape (taking the blue class as a reference).

Fisher’s linear discriminant Similarly, we can use a Fisher’s linear discriminant rule to
find a hyper-plane to separate the two populations. The discriminative direction is chosen
so that the ratio between the inter-class variance and the intra-class variance is maximized.
This leads to the statistics:

(5.5.2)

T(y) = (1, — 1) (B + 5p) ! <., _ m-;u) |

If T(v) < n for a threshold 7, then « classified as “blue” and “red” otherwise. For this
classifier also, there is a value of the threshold n which enables to separate perfectly the two

classes. The hyper-plane which separate the two populations is orthogonal to the direction
(Zr + )~y — 1)

Support Vector Machine In addition, we train a Support Vector Machine on the feature
vectors. We used a linear kernel and a constant C' equals to infinity. These parameters

allows also to perfectly separate the two populations.

5.5.3.3 Classification of new data

Our statistical modeling does not only lead to descriptive measure of the variability, but
can be used also to predict the class of new observations. This is of the uttermost interest
in order to evaluate how well the estimated discriminative features can be generalized for
a whole population.

For this purpose, we decompose any test shape (we have 100 test data per class) on our
estimated atlas. The registration of the estimated template (T') to each test shape leads to
initial speed vectors at the points of the template. We project these feature vectors on the
common subspace of dimension 26 which was estimated in the previous section. Then we
classify these projected feature vectors according to our three classification methods: the
difference of Mahalanobis distances, the linear discriminant analysis and the SVM methods.

For the first two methods, we can compute the rate of false positive (red shapes classified
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as blue) and the rate of true negative (blue shapes classified as blue) for every possible
threshold 7. This leads to ROC curves as shown in Fig. 5.7 along with one result for the
SVM method.

The