
HAL Id: tel-00662789
https://theses.hal.science/tel-00662789v1

Submitted on 25 Jan 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Visualisation of Overlapping Sets and Clusters with
Euler Diagrams

Paolo Simonetto

To cite this version:
Paolo Simonetto. Visualisation of Overlapping Sets and Clusters with Euler Diagrams. Other [cs.OH].
Université Sciences et Technologies - Bordeaux I, 2011. English. �NNT : �. �tel-00662789�

https://theses.hal.science/tel-00662789v1
https://hal.archives-ouvertes.fr

Université Bordeaux 1

École doctorale de mathématiques et informatique

Doctorat en informatique

Visualisation of Overlapping Sets and Clusters

with Euler Diagrams

Candidate: Thesis Directors:
Paolo Simonetto David Auber

Guy Melançon

December 2011

In the loving memory of John,
Giovanna and Sante.

Abstract

In this thesis, we propose a method for the visualisation of overlapping sets and of
fuzzy graph clusterings based on Euler diagrams.

Euler diagrams are probably the most intuitive and most used method to depict
sets in which elements can be shared. Such a powerful visualisation metaphor could
be an invaluable visualisation tool, but the automatic generation of Euler diagrams
still presents many challenging problems. First, not all instances can be drawn using
standard Euler diagrams. Second, most existing algorithms focus on diagrams of
modest dimensions while real-world applications typically features much larger data.
Third, the generation process must be reliable and reasonably fast.

In this thesis, we describe an extended version of Euler diagrams that can be pro-
duced for every input instance. We then propose an automatic procedure for the
generation of such diagrams that specifically target large input instances. Finally,
we present a software implementation of this method and we describe some output
examples generated on real-world data.

Résumé

Dans cette thèse, nous proposons une méthode pour la visualisation d’ensembles che-
vauchant et de basé sur les diagrammes d’Euler.

Les diagrammes d’Euler sont probablement les plus intuitifs pour représenter de
manière schématique les ensembles qui partagent des éléments. Cette métaphore vi-
suelle est ainsi un outil puissant en termes de visualisation d’information. Cependant,
la génération automatique de ces diagrammes présente encore de nombreux problèmes
difficiles. Premièrement, tous les clustering chevauchants ne peuvent pas être dessinées
avec les diagrammes d’Euler classiques. Deuxièmement, la plupart des algorithmes
existants permettent uniquement de représenter les diagrammes de dimensions mo-
destes. Troisièmement, les besoins des applications réelles requièrent un processus
plus fiable et plus rapide.

Dans cette thèse, nous décrivons une version étendue des diagrammes d’Euler.
Cette extension permet de modéliser l’ensemble des instances de la classe des clustering
chevauchants. Nous proposons ensuite un algorithme automatique de génération de
cette extension des diagrammes d’Euler. Enfin, nous présentons une implémentation
logicielle et des expérimentations de ce nouvel algorithme.

v

Acknowledgements

I am very grateful to the members of the examination panel of my thesis for their
comments and questions. In particular, I would like to thank Stephen Kobourov and
Jarke van Wijk, the reviewers, for their invaluable corrections and suggestions, and
David Auber and Guy Melançon, my supervisors, for supporting and helping me in
many ways, even outside the research environment.

I would like to express my gratitude to two good friends and major co-authors of
my articles: Romain Bourqui and Daniel Archambault. I thank Daniel particularly
for the invaluable tutoring he provided me on scientific writing and on the English
language, that deeply influenced the clarity of my publications.

I would also like to thank the friends who reviewed part of my thesis. Among
these, a special thanks to Andrew Collins and Frank Hopfgartner.

Finally, the greatest thanks goes to my girlfriend, Karen Jespersen, for the dedica-
tion she put in reviewing and correcting my writing. For this reason, she would really
have deserved to be mentioned as an author in every single publication, including this
thesis.

Thanks a lot!

vii

Contents

1 Introduction 1

2 Visualisation and Euler Diagrams 3
2.1 Visualisation . 3

2.1.1 The Human Eye and Perception 5
2.1.2 Evolution of Visualisation . 8
2.1.3 Visualisation and Computer Science 9
2.1.4 Reasons and Goals of Visualisation 11
2.1.5 Disciplines of Visualisation . 13

2.2 Euler Diagrams . 15
2.2.1 The Original Diagrams . 17
2.2.2 Modern Euler and Venn Diagrams 18

2.3 Data Visualisation with Euler Diagrams 21
2.3.1 Euler Diagrams and Perception 21
2.3.2 An Example of Data Exploration with Euler Diagrams 22
2.3.3 Limitations of Euler and Venn Diagrams 24

3 Graph and Euler Diagram Theory 27
3.1 Graph Theory . 27

3.1.1 Sets, Multiset and Tuples . 29
3.1.2 Graphs and Their Classification 30
3.1.3 Subgraphs . 31
3.1.4 Relations Between Nodes and Edges 31
3.1.5 Walks, Paths, Cycles and Distance 32
3.1.6 Connectivity . 34
3.1.7 Trees and Forests . 34
3.1.8 Complete, Bipartite Graphs and Subdivisions 35
3.1.9 Planar Graphs . 36
3.1.10 Dual Graphs . 39
3.1.11 Clustered Graphs . 40

3.2 Graph Drawing . 41
3.2.1 Foundations of Algorithmics . 41
3.2.2 Aesthetics of a Graph Drawing 42
3.2.3 Graph Drawing Algorithms . 44

3.3 Euler Diagram Theory . 49
3.3.1 Clusters and Zones . 49
3.3.2 Euler Diagrams and Regions 51
3.3.3 Properties of Euler Diagrams 53

ix

x Contents

3.3.4 Validity of an Euler Diagram 55
3.3.5 Drawability of an Euler diagram 57

4 Algorithms for the Generation of Euler Diagrams 59
4.1 Related Work . 59

4.1.1 Well-Formed Euler Diagrams 59
4.1.2 Standard Euler Diagrams . 63
4.1.3 Extended Euler Diagrams . 64
4.1.4 Relaxed Euler Diagrams . 65
4.1.5 Specialities . 66
4.1.6 Methods with Analogies to Euler Diagrams 71

4.2 Euler Representations . 72
4.2.1 The Generation Process . 73
4.2.2 Comparison with Methods in the Literature 74

5 Automatic Generation of Euler Representations 77
5.1 Generation and Embedding of the Zone Graph 78

5.1.1 Indentification of the Expressed Zones 78
5.1.2 Insertion of the Zone Graph Edges 78
5.1.3 Embedding of the Zone Graph 84

5.2 Generation and Improvement of the Grid Graph 86
5.2.1 Grid Graph Generation . 88
5.2.2 Grid Graph Improvement . 92

5.3 Depiction of the Cluster Regions . 94
5.3.1 Smooth Cluster Curves . 94
5.3.2 Assignment of the Cluster Colours 99
5.3.3 Application of Textures . 99

6 Improvement of a Graph Layout 101
6.1 PrEd . 101

6.1.1 Input Parameters . 102
6.1.2 The Algorithm . 102
6.1.3 Force Computation . 102
6.1.4 Maximal Movement Computation 105
6.1.5 Displacement of the Nodes . 108
6.1.6 Advantages and Disadvantages 109

6.2 ImPrEd . 110
6.2.1 Input Parameters . 111
6.2.2 The Algorithm . 112
6.2.3 Force and Movement Cooling 114
6.2.4 Surrounding Edges Computation 117
6.2.5 QuadTrees . 125
6.2.6 New Maximal Movement Rules 125
6.2.7 Crossable and Flexible Edges 129
6.2.8 Weight of Nodes and Edges . 132

6.3 Results . 133
6.3.1 Complexity . 134
6.3.2 Execution Time . 134
6.3.3 Drawing Quality and Parameter Reliability 137

Contents xi

7 Software Implementation and Output Examples 145
7.1 EulerView . 145

7.1.1 Cluster and Zone Selection . 146
7.1.2 Tooltips . 150
7.1.3 Path-Preserving Meta-Nodes 150

7.2 Examples of Euler Representations . 153
7.2.1 IMDb . 153
7.2.2 Platelet . 155
7.2.3 Gene Interaction . 155
7.2.4 Carsonella . 156

8 Conclusions 161
8.1 Aims and Realisation . 161
8.2 Contributions . 162
8.3 Results . 164
8.4 Future Work . 165

A Biographies 169

Bibliography 171

Index 179

List of Figures

2.1 French army diagram (Charles J. Minard) 5
2.2 Optical illusions (Hermann Ebbinghaus and Edward H. Adelson) . . . 6
2.3 Phenomena studied by the Gestalt psychology 7
2.4 Examples of logos featuring Gestalt effects (IBM and Apple Corp.) . . 7
2.5 Cave paintings . 8
2.6 Early statistical graphics (William Playfair) 9
2.7 Movable type (Willi Heidelbach) . 10
2.8 Gutenberg Bible (Kevin Eng) . 10
2.9 Egyptian hieroglyphs . 11
2.10 The Pioneer plaque . 11
2.11 Model of a nuclear fusion process . 12
2.12 Model of the Marina Bay, Singapore (Calvin Teo) 12
2.13 Beetle volume rendering (Bruckner et al. [8]) 14
2.14 X-rays analysis of a bag (Ian Duke) . 14
2.15 CO2 concentration (Forrest Hoffman and Jamison Daniel) 14
2.16 Map of the Internet (OPTE project, www.opte.org) 14
2.17 Software structure visualisation (Holten [60]) 14
2.18 Genomic data visualisation (Meyer et al. [71]) 14
2.19 Visual analysis with Tulip (Auber [3]) 15
2.20 Euler diagram derived from the process of ordering elements 16
2.21 Original Euler circles representing propositions 18
2.22 Original Euler circles representing syllogisms 18
2.23 Comparison between Euler and Venn circles 19
2.24 Euler diagrams and depiction of the set elements 20
2.25 Graphical improvements of modern Euler diagrams 21
2.26 Euler diagram of the G20 countries and their statistics 23
2.27 Venn diagrams for four and five sets 25

3.1 Examples of graphs and relative node-link diagrams 28
3.2 The problem of the Seven Bridges of Königsberg 29
3.3 Examples of undirected and directed graphs and their notation 30
3.4 Examples of graph walks, paths and cycles 33
3.5 Examples of graphs with different connectivity 33
3.6 Examples of trees and forests . 35
3.7 Examples of complete, bipartite graphs and subdivisions 36
3.8 Examples of graph faces and embeddings 37
3.9 Examples of combinatorial embeddings and planar maps 37
3.10 Example of a dual graph . 39

xiii

xiv List of Figures

3.11 Example of a clustered graph . 40
3.12 Examples of drawings that do and do not respect the aesthetics rules . 43
3.13 Output comparison of planar drawing algorithms 45
3.14 Typical forces considered in a force-directed algorithm 47
3.15 Example of layout improvement with PrEd 48
3.16 Identification of a cluster region . 51
3.17 Identification of zone regions . 53
3.18 Examples of patterns considered by the Euler diagram properties . . . 54
3.19 Example of an undrawable standard Euler diagram 57

4.1 Generation of well-formed Euler diagrams 60
4.2 Removing edges of a super-dual graph to meet the conditions 61
4.3 Routing the cluster curves in well-formed Euler diagrams 62
4.4 Generation of area-proportional Euler diagrams 64
4.5 Extensions that allow to draw standard Euler diagrams 65
4.6 Inductive generation of Euler diagrams 67
4.7 Problems related to enforcing circular shapes in Euler diagrams 69
4.8 Examples of untangled Euler diagrams (Riche and Dwyer [83]) 70
4.9 Solutions suggested to improve the readability of complex diagrams . . 70
4.10 Example of a Gmap (Gansner, Hu and Kobourov [48]) 72
4.11 Example of Bubble sets (Collins, Penn and Carpendale [15]) 72
4.12 Comparison between Euler diagrams and Euler representations 73
4.13 Procedure for the generation of Euler representations 75
4.14 Last step of the generation procedure and results 76

5.1 Enforcement of the zone graph conditions 80
5.2 Results produced by different sets of zone graph edges 82
5.3 Functioning of the connection metric and its update 83
5.4 Effects of the metrics that demote low aesthetics configurations 85
5.5 Generation of non-equivalent embeddings for a zone graph 87
5.6 Problems related to the choice of the embedding 87
5.7 Construction of the grid graph around the zone graph nodes 89
5.8 Construction of the grid graph around the zone graph edges 92
5.9 Modifications of the grid graph pre-optimisation 93
5.10 Identification of the cluster curves . 94
5.11 Examples of Bézier curves . 95
5.12 Depiction of the cluster curves, distinguished by the type of junction . 96
5.13 Different configurations of convex hulls and control polygons 97
5.14 Analogies with the maximal node movement of PrEd and ImPrEd . . . 98

6.1 Forces considered in PrEd . 104
6.2 Maximal movement and movement region in PrEd 106
6.3 Restriction of the node movement in PrEd 107
6.4 Node displacement in PrEd . 108
6.5 Magnitude of cooled forces in ImPrEd 115
6.6 Examples of surrounding edges of a node 117
6.7 Computation of the surrounding edges 120
6.8 Identification of the face boundary in plane connected graphs 120
6.9 Determination of the faces in disconnected plane graphs 122
6.10 Determination of the faces in non-plane graphs 123

List of Figures xv

6.11 Surrounding edges in the presence of flexible edges 124
6.12 QuadTree illustration . 126
6.13 Restriction of the node movement in ImPrEd 128
6.14 Plane division and collision vectors in the node movement restriction . 129
6.15 Node and edge polytopes in the node movement restriction 130
6.16 Contraction and expansion of flexible edges 132
6.17 Plot of the average running time per iteration on random graphs . . . 136
6.18 Graphical comparison of the execution times for the Euler graphs . . . 136
6.19 Plot of the running time as a function of the computation progress . . 136
6.20 Example of contraction and expansion of flexible edges 138
6.21 Comparison of the reliability of the parameters δ and γ 138
6.22 Comparison of the drawing quality on PrEd’s original example 139
6.23 Comparison of the drawing quality on a random planar graph 140
6.24 Comparison of the drawing quality on zGraphA 141
6.25 Comparison of the drawing quality on gGraphA 142
6.26 Application of ImPrEd (F) to gGraphB 143

7.1 A screen shot of EulerView . 146
7.2 An example of list selection . 147
7.3 An example of simple selection . 148
7.4 An example of multiple selection . 148
7.5 An example of spin selection . 149
7.6 Examples of position tooltips . 151
7.7 Generic meta-nodes and path-preserving meta-nodes 152
7.8 Euler representation of the IMDb 60 data set 154
7.9 Euler representation of the Platelet data set (Kevin O’Brian) 156
7.10 Euler representation of the gene interaction data set 157
7.11 Euler representation of the Carsonella data set 159
7.12 Details of the Euler representation of Carsonella 160

A.1 Leonhard Euler . 169
A.2 John Venn . 170

List of Tables

3.1 Properties associated with different definitions of Euler diagrams . . . 56

6.1 Running times of PrEd and ImPrEd over the random graphs 135
6.2 Running times of PrEd and ImPrEd over the Euler diagram graphs . . 137

7.1 Statistics and computation time for the Euler representations reported 153

List of Algorithms

5.1 Indentification of the expressed zones 81
5.2 Insertion of the zone graph edges . 81
5.3 Grid graph construction around zone graph nodes 91
5.4 Grid graph construction around zone graph edges 91
6.1 PrEd . 103
6.2 ImPrEd . 113

xvii

Mathematical Notation

G A generic graph. 30
V The set of nodes of a graph. 30
E The set of edges of a graph. 30
u, v, ui Generic nodes of a graph. 30
e, ei Generic edges of a graph. 30
(u, v) A directed edge between the nodes u and v. 30
[u, v] An undirected edge between the nodes u and v. 30
s(e) The source node of the edge e. 32
t(e) The target node of the edge e. 32
deg out(u) The out degree of the node u. 32
deg in(u) The in degree of the node u. 32
deg(u) The degree of the node u. 32
dist(u, v) The graph distance between the nodes u and v. 32
C The set of the connected components of a graph. 34
c, ci A generic connected component of a graph. 34
lev(u) The level of node u in a forest. 34
V i The set of nodes at level i in a forest. 34
κ(G) The connectivity of the graph G. 34
Ki The complete graph with i nodes. 35
Ki,j The complete bipartite graph with partitions of i and j nodes. 35
F The set of the faces of a plane graph. 38
f, fi A generic face of a plane graph. 38
f0 The external (unbounded) face of a component. 121
f+, f1, f2 . . . An internal (bounded) face of a component. 121
B(f) The nodes and edges constituting the boundary of face f . 38
Bn(f) The set of nodes in the boundary of face f . 38
Be(f) The set of edges in the boundary of face f . 38
O(·) The asymptotic notation. 42
S The clustering of a clustered graph or Euler diagram. 40
s, si Generic clusters of a clustered graph or Euler diagram. 40, 50
Q = P(S) The power set of a clustering S. 50
q A generic set of clusters, that is a generic element of Q. 50
Z∗ The set of all zones of an Euler diagram. 50
Z The set of the non-empty zones of an Euler diagram. 50
z, zi Generic zones of an Euler diagram. 50
A,B . . . Clusters of an Euler diagram. 50
abd, de . . . Zones of an Euler diagram. 50
Z(q) The zone identified by the set of clusters q. 50

xix

xx Mathematical Notation

A(s),A(z) The associated zones of s or the associated clusters of z. 50
D A generic Euler diagram. 51
T The set of curves of an Euler diagram. 51
Ts The cluster curves of cluster s. 51
t, ti Generic curves of an Euler diagram. 51
int(t) The internal region of t. 51
ext(t) The external region of t. 51
sR, zR The region associated to a cluster s or a zone z. 51
Go = (V o, Eo, S) The original graph in Euler representations. 77
Gz = (V z, Ez) The zone graph in Euler representations. 77
Go = (V g, Eg) The grid graph in Euler representations. 77
Gz

s The subgraph of Gz induced by the zones of s. 82
mc(e) Connection metric for the zone graph edge e. 83
mb(e) Brushing metric for the zone graph edge e. 84
mi(e) Coincidence metric for the zone graph edge e. 84
mg(e) Global metric for the zone graph edge e. 84
r Radius of the circles in the grid graph generation. 89
p Projection of a node into the line of an edge. 89, 106
px Position on the plane of a point, node or edge x. 89, 105
C A Bézier curve. 95
P0, P1, P2, P3 Control points of a cubic Bézier curve. 95
δ Optimal edge length of PrEd and ImPrEd. 102, 111
γ Optimal node-edge distance of PrEd and ImPrEd. 102, 111
Cr Set of crossable edges in ImPrEd. 111
Fl Set of flexible edges in ImPrEd. 111
W The weight of nodes and edges in ImPrEd. 111
F r(u, v) Repulsive force between node u and node v. 105
F a(e) Attractive force exerted by edge e. 105
F e(u, e) Repulsive force between node u and edge e. 105
F g(u) Gravity attraction force acting on node u. 116
F (u) Resulting force acting on node u. 105
A A partitioning of an angle into eight intervals Ai. 106
Mu Maximal movement for the node u according to A. 106
Se(u) The surrounding edges of a node u. 117
N e(u) The nearby edges of a node u. 125
Nn(u) The nearby nodes of a node u. 125

Chapter 1

Introduction

During my master thesis, we worked on a method in which overlapping communities
were detected in biological networks. Once the communities were detected, our soft-
ware would assign a different colour to each of them, and fill the network elements with
the colour of the community they belonged to. This visualisation technique clearly
presented several critical problems: not only did the user have to identify the com-
munities by distinguishing dozens of colours, but it was also impossible to detect the
elements belonging to multiple communities, since these would only have the colour
of the larger community.

It is not a surprise if the question “Have you thought of other visualisation meth-
ods?” arrived even before the end of my first presentation at the LaBRI. This question
was the trigger to the work in this thesis: to provide a visual method for analysing
overlapping sets of elements. With such a task, it was inevitable to consider Euler
diagrams.

Euler Diagrams. Euler diagrams are probably the most used and intuitive repres-
entations for depicting sets and their elements. In Euler diagrams, sets are depicted
as regions of the plane. The element inclusion is then encoded by placing the set ele-
ments inside the corresponding set regions, and intersection and disjunction between
sets are depicted by the presence or absence of overlaps between the corresponding
set regions.

Such a common and comprehensible visual metaphor is extremely valuable in in-
formation visualisation. An increasing number of data involves overlapping sets. Bio-
logical networks, social networks and many others naturally contain classes where ele-
ments are shared by two or more of them. Recent clustering algorithms are designed to
detect this overlapping structure, rather than providing a classical partitioning where
every element belongs to only one class [86].

Euler Diagrams in Visual Data Analysis. The application of Euler diagrams
to the visual analysis of data opens a number of non-trivial problems. First, the
automatic generation of Euler diagrams is a relatively new field, and the methods
proposed so far still present large margins of improvement. Second, Euler diagrams
are generally used to depict a small number of sets with few overlaps between them,
while real application requirements are typically different. Third, the visual analysis
of the data requires the visualisation to be interactively adapted to the needs of the
user.

1

2 Introduction

We tried to solve these issues by developing a visual encoding, the Euler Repres-
entation, and a software that produces it: EulerView. Euler representations are
diagrams similar to the classical Euler ones, but characterised by a less restrictive
set of rules, and by the addition of graphical techniques such as textures and colour
transparency. EulerView is a plug-in for the graph visualisation framework Tulip
that allows the interactive visualisation and exploration of overlapping sets.

The Thesis

This document presents the work related to the main topic of my doctoral studies.
The topics discussed here are organised as follows:

Chapter two introduces the visualisation science and the first notions of Euler dia-
grams. It also discusses how these fields are related to each other, and in par-
ticular how and why Euler diagrams can be an extremely powerful visualisation
instrument.

Chapter three introduces the graph drawing and Euler diagram theory that is
essential to discuss the automatic generation of such diagrams. Graphs and
graph drawing are in fact crucial components of all Euler diagram generation
algorithms.

Chapter four presents the most important algorithms in the literature for the gen-
eration of Euler diagrams. In order to compare our methods with existing ones,
we will also outline our generation procedure and discuss the major differences
and innovations.

Chapter five details the procedure we developed to generate Euler representations.
The procedure is divided in five stages, and for each of them, we describe the
results we aim to obtain and we provide the technical details necessary to re-
implement the method.

Chapter six describes a graph drawing algorithm that we designed to improve the
quality and the computation time of the Euler representation generation al-
gorithm. Despite the reasons for its development, the application of this al-
gorithm is not limited to Euler diagrams.

Chapter seven presents the implementation of the Euler representation generation
method we produced, EulerView. The software also features some basic in-
teraction techniques, that can further improve the usefulness of Euler represent-
ations as an analysis tool.

Chapter eight contains conclusions and discussion of future work.

Appendix A includes the biographies of the two mathematicians that developed the
kind of diagrams used in this thesis: Leonhard Euler and John Venn.

Chapter 2

Visualisation and Euler
Diagrams

This chapter presents some background information on the two main topics of this
thesis: the field of visualisation and Euler diagrams. By not going too deep into
technical details, we hope to both provide a smoother introduction to the readers who
are not familiar with these topics, and to allow expert readers to skip this chapter
without much harm.

First, we will introduce the science of visualisation. We will start by providing
some rudiments of perception and of earlier stages of the visualisation science. Then,
we will discuss the present visualisation, its goals and its disciplines.

Second, we will present the graphical representations called Euler diagrams. Again,
we will discuss their original form and aim, the evolution into their current state, and
the properties and techniques applied to the modern diagrams. Here, we will also
present the closely related Venn diagrams.

Third, we will show how the previous topics are related to each other. In particular,
we will discuss how and why Euler diagrams can be important tools in visualisation.
We will approach this topic both from a technical point of view by discussing their
theoretical strengths, and from a practical point of view, by providing a case study
example.

Finally, we will state the theoretical limits that hinder the applicability of Euler
diagrams in visualisation.

2.1 Visualisation

The use of tools has been considered one of the biggest achievements of mankind and
the reason for further development of the human mind. We develop tools to perform
tasks that would be difficult or impossible to achieve with our natural abilities: bows
allowed us to kill from a distance, musical instruments to produce sounds outside our
vocal range, and cars to move faster and farther than we can do by running. In other
words, we develop tools to overcome the limitations of the human body.

However, our constraints are not only of a physical nature. Our ability to analyse
and understand complex problems with our bare minds is also limited, and can be
greatly improved by the use of appropriate tools:

3

4 Visualisation and Euler Diagrams

The power of the unaided mind is highly overrated. Without external aids,
memory, thought, and reasoning are all constrained. But human intelligence is
highly flexible and adaptive, superb at inventing procedures and objects that
overcome its own limits. The real powers come from devising external aids
that enhance cognitive abilities. How have we increased memory, thought, and
reasoning? By the invention of external aids: It is things that make us smart.

Norman [76, p. 43]

Tasks like studying, decision making or calculation are in fact much more difficult if one
cannot scratch or report partial results on paper [10], and can be close to impossible
if the problem is not trivial. In these cases, simple tools like pencil and paper allow
us to greatly extend our mental abilities.

Not surprisingly, most of the tools that help reasoning come in graphical form,
such as drawings, diagrams, pictures, maps and writing. Sight is a very developed
sense in humans and is the one most used to interact with the surrounding world:

All men by nature desire to know. An indication of this is the delight we take
in our senses; for even apart from their usefulness they are loved for themselves;
and above all others the sense of sight. For not only with a view to action, but
even when we are not going to do anything, we prefer sight to almost everything
else. The reason is that this, most of all the senses, makes us know and brings
to light many differences between things.

Aristotle, Metaphysics

The same tools that help us with reasoning provide even greater help when com-
municating. In fact, communication does not only require both parties to reason on
the actual topic, but also to channel the information in the form more convenient to
express that idea.

Visualisation might be seen as the study of graphical tools that help reasoning
and communication. Visualisation aims to develop efficient methods to imprint and
transfer information via graphical means, so that we can benefit from the enormous
potentials offered by the human eye (see figure 2.1). It is the purpose of visualisation to
design or improve charts and drawings, to investigate their usefulness and to develop
systems that help a user to visually investigate and extract information from them.
More formal definitions describe the subject as

Visualisation: The use of computer-supported, interactive, visual represent-
ations of data to amplify cognition.

Card, Mackinlay and Shneiderman [10, p. 6]

In the next sections we will present the field of visualisation in greater detail. First,
we will introduce some concepts of perception, to understand how the human sight
works and how to get the most out of it. Second, we will describe how visualisation
evolved from visual communication into its current state. Third, we will explain the
strong link between visualisation and computer science, mentioned already in the
previous definition. Finally, we will discuss the aims and branches of the current
discipline.

2.1 Visualisation 5

Figure 2.1: One of the most classic examples of a well realised diagram. The drawing, realised
by Charles Joseph Minard in 1869, shows the loss of men in the French army in the Russian
campaign. The diagram incorporates, in a very intuitive way, information as the army size,
the path taken, the retreats and the average temperatures.

2.1.1 The Human Eye and Perception

Sight plays a crucial role in the way humans acquire information. The centrality of
sight among other senses is due to the enormous amount of data that our nervous
system can process and to the efficiency with which we can extract information:

We acquire more information through vision than through all of the other
senses combined. The 20 billion or so neurons of the brain devoted to analysing
visual information provide a pattern-finding mechanism that is a fundamental
component in much of our cognitive activity.

Ware [111, p. 2]

A Perception Model. We can obtain more insights on weaknesses and strengths
of the sight by further investigating the mechanics of vision. Perception is the process
of interpreting the stimulus coming from our visual system, that is how our brain
understands an observed scene. According to the simplified model of human visual
perception described by Ware [111], it is possible to identify three stages in the per-
ception process.

In the first stage, the observed scene is processed by large arrays of neurons in the
primary visual cortex in the back of the brain. Here features of objects in the visual
field such as orientation, colour, texture and movement patterns are recognised and
transferred to the next stage. The processing of this information is very rapid as it is
accomplished by billions of neurons working in parallel.

In the second stage, the visual field is divided into regions sharing the same features
identified in the previous step, such as continuous regions or regions of the same colour.
In other words, we identify shapes and trace the object’s borders. This step involves
the use of memory and processes the information serially, resulting in a much slower
process than the previous.

6 Visualisation and Euler Diagrams

(a) (b)

Figure 2.2: Optical illusions. (a) The central circles have the same dimensions (Hermann
Ebbinghaus). (b) Squares A and B have the same shade of grey (Edward H. Adelson).

In the third stage, we hold the few objects of our current attention in the visual
working memory. The characteristics of these elements are then sequentially acquired
through visual search strategies.

Gestalt Psychology and Laws. It is not only important to know how we acquire
visual information, but also to understand how we interpret it. As explained above,
in the second stage of the visual perception model we recognise regions and shapes.
Unfortunately, it is not always the case that what is drawn is what we see, or that
what we perceive is acceptable to our mind. Optical illusions are clear examples of
these misinterpretations (see figure 2.2).

Gestalt psychology1 [20, 66] is one of the theories that studies perception and learn-
ing. With particular reference to sight, this theory describes the ability of the mind
to identify more than what is present in a drawing. For example, certain drawings
induce our mind to recognise patterns and shapes that are not physically present (see
figure 2.3a). Also, ambiguous pictures might propose two or more valid interpreta-
tions, incompatible if considered together but acceptable when considered individually,
forcing us to continuously switch between them (see figure 2.3b).

Moreover, Gestalt psychology states that we apply the same criteria to our visual
perception as we use when reasoning. Our brain is more comfortable with concepts and
memories that are simple, ordered and regular. As a result, we unconsciously perceive
relationships between elements based on their similarity, continuity, symmetry and
proximity (see figure 2.3c). These tendencies are collected and described by rules
named Gestalt laws.

Getting the Most Out of Human Perception. Thanks to this knowledge on
perception, we can develop visual communication methods that are more natural and
intuitive for the user. The mechanics of our visual system suggests to encode inform-
ation with orientation, colour, texture and other features that our eyes can easily and
rapidly recognise. It also suggests to limit both the number of elements that needs to
be simultaneously analysed, and in general the use of memory, as we are not able to
store a lot of information over a short time.

1In German, Gestalt means “essence or shape of an entity’s complete form”.

2.1 Visualisation 7

(a)

(b) (c)

Figure 2.3: Phenomena studied by the Gestalt psychology. (a) We perceive shapes not
actually drawn, such as the triangle in the first figure, the sphere in the second and the plane
in the third. (b) The drawing at the left can be interpreted as a cube observed from the
bottom-left or from the top-right, as reported in the two smaller pictures. (c) In this picture,
we tend to unconsciously group the circles in rows due to their common colours, or in couples
of columns due to the different vertical spacing between them.

(a) (b)

Figure 2.4: Examples of logos featuring effects studied by the Gestalt psychology. (a) The
IBM® logo, composed of letters not drawn completely (Property of International Business
Machines Corporation). (b) The MacOS® logo, designed to offer the alternative interpreta-
tions of a single face or of two faces facing each other (Property of Apple Corporation).

8 Visualisation and Euler Diagrams

Figure 2.5: Cave paintings in Lascaux, France.

Gestalt laws are taken into account when creating user interfaces for computer
programs, so that options and elements that are logically linked also are perceived
as related. Several symbols and logos are also designed according to these findings,
featuring letters composed in non-standard ways (see figure 2.4a) or a drawing with
multiple interpretations (see figure 2.4b) [93].

However, perception might sometimes conflict with established conventions, so that
what is widely used is preferred to alternatives that are better from a perception point
of view. Letters, numbers and many of the symbols we use are arbitrary, and they are
not necessarily optimal in terms of perception. Even associations such as red/wrong
or green/correct strongly depend on the culture, and might not be true for all people.
Therefore, the importance of these perception discoveries and of their application to
visual communication change with the degree of influence of established conventions:

This model [p. 5] works well for early-stage sensory processing, where, for
example, scientific colour theory has provided the basis for the display devices
that are ubiquitous. It works less well at the higher levels of perception, where
socially constructed codes are at least as important as innate neural mechanism.

Ware [110]

2.1.2 Evolution of Visualisation

The definition in section 2.1 suggests that visualisation studies the forms of graphical
communications that more efficiently transfer information to the user. The techniques
used in current visualisation evolved from earlier forms of graphical communication,
in the research of better ways to perform this task. We can identify several stages in
this evolution.

Visual Arts. The first attempts of communication or expression via graphical rep-
resentation that still exists are cave paintings (see figure 2.5). The exact purpose of
these drawings is still unknown, and it is possible that sharing knowledge and feelings
was not their main aim. However, later forms of visual arts developed expression and
communication as their main purpose. Art aims to inspire and spread sensations, and
visual art obtains this by depicting or representing concrete and abstract objects.

Modern visualisation aims to communicate a different kind of information than art,
as it generally represents and expresses measures and values rather than emotions and

2.1 Visualisation 9

Figure 2.6: Diagrams realised by William Playfair at the end of the 18th century. Playfair
introduced visualisation methods such as bar charts, line charts and pie charts, widely used
even nowadays.

feelings. Its relationship with this old ancestor is however still evident: In visualisation
there is a research of the aesthetics that is generally higher than in other scientific
disciplines.

Maps and Diagrams. The first development of the visualisation science is often
placed in the modern era, when diagrams and maps started being consistently used
for reasoning:

In the 16th century, techniques and instruments for precise observation and
measurement of physical quantities were well-developed. As well, we see ini-
tial ideas for capturing images directly, and recording mathematical functions in
tables. These early steps comprise the beginnings of the husbandry of visualisa-
tion.

Friendly and Denis [44]

Maps and diagrams are forms of graphical communication intentionally developed
to show quantities. Although present even before, they start to be used more regularly
and efficiently in the modern era. Maps start to become precise enough to be used as
reliable navigation instruments. Diagrams start to appear to illustrate mathematical
proofs and functions, to support engineering and to describe natural phenomena [43].
A surprisingly high number of visualisation methods and conventions used nowadays
have been developed in modern era drawings (see figure 2.6).

Computer Science. During the last decades, visualisation has been increasingly
linked to computer science. Computers provided such large benefits in terms of qual-
ity, distribution, usability and efficiency of the visualisation methods, that current
visualisation has its basis in computer science. The exact nature of the contribution
of computers will be discussed more in depth in the next section.

2.1.3 Visualisation and Computer Science

Today’s visualisation appears to be inseparable from computer science. The reason for
such a close linking of disciplines not necessarily related, becomes clear after briefly
investigating the evolution of one form of visual communication: writing.

10 Visualisation and Euler Diagrams

Figure 2.7: Movable type. Figure 2.8: Gutenberg Bible, NYPL.

Writing and the Printing Press. Writing allows us to encode information into a
graphical form, so that it can be preserved and transferred to anyone able to see and
interpret those signs. Writing has been a ground-breaking revolution for mankind:
as the information recorded cannot be altered or misreported, they can reach people
distant both in terms of space and time.

Printing drastically changed the world of written communication. Although initial
printing methods had been developed much earlier in China, the real success of printing
came with the independent invention of printing press and metal movable type (see
figure 2.7) by Johannes Gutenberg, around 1450 A.D. These printing techniques
allowed to replicate documents with very high output quality (see figure 2.8) and
many times faster than handwriting, allowing to reach a much wider audience.

The introduction of the European printing press and movable type represents an
enormous progress for mankind and one of the most influential inventions of the second
millennium:

What gunpowder has done for war, the printing press has done for the mind.
Wendell Phillips

The Contribution of Computers to Visualisation. Computer graphics have
the same innovative effect on visualisation as the printing press had on writing. In
fact, even though drawings and diagrams were already replicable through woodblock
printing or lithography, the greatest improvements in terms of distribution, re-use and
quality of images came with the introduction of computers. This is probably the main,
but not the only, contribution that computers give to visualisation.

First, the constant improvements of computers induces the recording and produc-
tion of data at drastically increasing rates. This enormous amount of data continually
requires new visualisation methods and constantly provides new challenges to solve.

Second, computers supply a much greater computational power than what is
provided by the human mind. Therefore, computers can assist the user in the genera-
tion and interpretation of the drawing, for instance by aggregating and processing the
raw data or by animating the changes in the visualisation.

Finally, computers introduced the possibility of interacting with the given visual-
isation, opening much greater opportunities than the ones offered by a static drawing.
Interaction allows more sophisticated exploration and navigation of the data encoded,
it greatly extends the quantity of data that can be represented and allows to generate
less cluttered visualisations.

2.1 Visualisation 11

Figure 2.9: Egyptian hieroglyphs. Figure 2.10: The Pioneer plaque.

2.1.4 Reasons and Goals of Visualisation
We already introduced visualisation as the science of presenting information through
graphical, computer-based means. We also saw how the main concepts of this defin-
ition — visual elements and computers — greatly contribute to the expression of
information. However, the concept of information has not been clarified yet. Is visu-
alisation the answer to all kinds of communication? Should information always be
presented visually?

Writing Systems. Let us again consider the case of writing. There exist several
writing systems, among others logographic and alphabetic systems. In logographic
systems, each symbol (logogram) represents or depicts an object or an idea, as in
the case of initial Egyptian hieroglyphs (see figure 2.9) and Chinese characters. In
alphabetic systems, symbols encode sounds and the writing is the direct conversion of
the oral language, as it happens for Greek, Latin and languages derived of those.

Strengths and weaknesses of both writing systems provide very interesting insights
into the encoding of information into visual forms. Alphabetic systems are more
flexible, since they do not require us to add new symbols when the vocabulary extends,
and require less time to be learnt once one knows the corresponding oral language. This
happens because alphabetic writing systems strongly re-use consolidated knowledge
and existing conventions coming from the spoken language.

On the other hand, logograms (and pictorial symbols in general) are more likely to
be understood by people that are not familiar with those conventions (see figure 2.10)
and are considered more efficient once mastered. In fact, modern logograms such
as the telephone symbol & or male/female restroom symbols x/y often replace the
corresponding words when indicating these facilities.

General Versus Specific. This might suggest that there is information that is
better expressed in a more explicit and pictorial way, and information that is better
expressed in a more implicit way. For example, the telephone symbol is easier to
understand than the word ‘telephone’, but the word ‘nightingale’ is more direct and
efficient than a bird symbol that would probably look like that of many other birds.
As a general rule, the more general the concept is, the more helpful becomes a pictorial
symbol; the more specific the concept is, the more a precise and concise representation
is preferred.

This idea is confirmed by the opinion of other researchers in visualisation. Telea
[101] explains how visualisation should and should not be applied when getting insights

12 Visualisation and Euler Diagrams

p

p

p

n

ν
e
+

Figure 2.11: Conceptual model of a
nuclear fusion process.

Figure 2.12: Physical model of Marina Bay, a newly
developed area of Singapore.

on a mathematical function. If the user is interested in knowing the value of the
function in a specific point, a text-based answer better achieves the result. If the user
is interested in knowing the values of the function in an interval, then a plot of the
function works better than a text-based answer:

There are, indeed, many cases when [. . .] simple tools such as a text-based
query-and-answer system work the best. However, there are also many cases
when visualisation works better for answering concrete, quantitative questions.
In these cases, the answer to the question is not a single number but typically a
set of numbers.

Telea [101, p. 5]

The concept of ‘generality’ also applies to the knowledge of the user. If the user is
not familiar with the case of study, he might not be able to formulate precise questions.
For example, a user that is not familiar with the tangent function might wonder why
there is not a returned value for π/2. However, if a plot of the function is provided, he
might understand why such a number does not exist and develop a better awareness
of the whole function. This additional knowledge might then trigger more precise and
meaningful queries.

Visualisation and Modelling. One of the most important reasons for using visual-
isation is to provide an overview of the case under analysis. To some extent, visualisa-
tion differs very little from creating models. Mathematicians, architects and engineers
develop conceptual models (see figure 2.11) of their work to acquire a general idea of
how it is structured. The latter two also produce physical models (see figure 2.12) to
present their work, highlight the strong points and spot eventual parts to be improved.

The main benefit of models is to facilitate the acquisition of new, unsuspected
insights. Moreover, models allow to perform top-down analysis, where the attention
moves from a general overview of the problem to very specific details.

Most visualisation techniques focus on providing a computer model of the data
under analysis. Exactly as it happens with the physical and conceptual models, the
nature of the data influences the characteristics of the model. When dealing with

2.1 Visualisation 13

concrete objects, the computer model generally reflects our perception of the reality.
When the data refers to abstract objects, the computer model will have a more schem-
atic and structured composition, such as charts or diagrams. The top-down approach
mentioned before is also very present in visualisation, as confirmed by the mantra well
known by researchers in this field:

Overview first, zoom and filter, then details-on-demand.
Shneiderman [88]

2.1.5 Disciplines of Visualisation
It is common to subdivide the visualisation field into several disciplines. The two main
branches, scientific visualisation and information visualisation, split the visualisation
field according to the data used [10] and consequently the output produced. A third
branch, visual analytics, is lately evolving from information visualisation because of
its different approach to the data analysis. Being relatively new, the boundaries of
information visualisation and visual analytics are still not well defined.

Scientific Visualisation. Scientific visualisation [101] is the branch of visualisation
that deals with scientific and physically based data, coming from fields such as medi-
cine, geography, physics and astronomy. As this data mainly consists of measures and
attributes of concrete objects, the visualisation proposed is typically based on shape
and structures of these objects, while colours and other techniques helps to detect
the relevant information in the data. Scientific visualisation can be associated with
physical modelling, according to the considerations made in the previous section.

Examples of scientific visualisation include the visualisation of 3D objects (see
figure 2.13), the identification of objects scanned at security checks (see figure 2.14),
and the depiction of atmospheric conditions (see figure 2.15). Active areas of research
of scientific visualisation include vector visualisation, flow visualisation and volume
rendering.

Information Visualisation. Information visualisation [10, 11, 36] deals with data
not related to concrete objects or phenomena. For instance, this data might consist
of economical indexes, software metrics, texts and telephone traffic data. The visual-
isation proposed is therefore more abstract, as was the case of conceptual models.

Examples of information visualisation include the representation of computer net-
works (see figure 2.16), the study of the relationships between libraries in software
projects (see figure 2.17), and the analysis of biological data (see figure 2.18). The
fields of information visualisation are, among others, graph and network visualisation,
software visualisation and multivariate data visualisation.

Visual Analytics. Visual analytics [56, 65, 102] is characterised by a more general
approach to data analysis. In visual analytics scenarios, it is required to analyse a vast
amount of non-heterogeneous, dynamic and often conflicting data. Typically, the data
is used for a single investigation and the analysis needs to be done in a very short time.
For these reasons, visual analytics does not only consider the visual representation of
the data, but a broader process that integrates previous and successive steps such
as data acquisition and decision making. Thus, visual analytics aims to combine
visualisation, human factors and data analysis in a unified process [65].

14 Visualisation and Euler Diagrams

Figure 2.13: Volume rendering of a CT scan
of a beetle (courtesy of Bruckner et al. [8]).

Figure 2.14: X-rays analysis of a bag (courtesy
of Duke).

Figure 2.15: CO2 concentration in the air (cour-
tesy of Hoffman and Daniel).

Figure 2.16: Partial map of the Internet
(from OPTE project, www.opte.org).

Figure 2.17: Visualisation of soft-
ware structures using hierarchical edge
bundles (courtesy of Holten [60]).

Figure 2.18: Pathline, an interactive tool for the
visualisation of comparative functional genom-
ics data (courtesy of Meyer et al. [71]).

www.opte.org

2.2 Euler Diagrams 15

Figure 2.19: Visual analysis of poker player statistics with Tulip (courtesy of Auber [3]).

Examples of application fields of visual analytics are crime investigation and na-
tional security, analysis of financial or economical data and visual data mining (see
figure 2.19).

2.2 Euler Diagrams

Consider the problem of reordering a box full of buttons. You spread the buttons over
a table and you notice that the task is not trivial: the buttons have different colours,
shapes, dimension and material (see figure 2.20a). At this point, you would probably
proceed by taking the buttons one by one and by collecting them into piles of identical
ones.

If the number of piles grows fast, it is a good idea to keep the piles of buttons of
the same colour in the same corner of the table, so that finding the right pile for new
buttons becomes easier (see figure 2.20b). Also, piles of buttons of the same shape
should be closer, so that when you have to allocate a round button, you only need to
search the right pile in the “round button” region. Ideally, the same should happen
even for size and material (see figure 2.20c).

Considering the problem in more formal terms, we have a collection of elements
(buttons) that are grouped into several sets (red buttons, blue buttons, round buttons,
metal buttons) possibly overlapping (red round buttons, blue metal buttons). Our
actions allowed us to identify regions of a plane (table) that correspond to these sets
(red buttons corner, round buttons region).

The idea of dividing a surface into regions collecting homogeneous elements is the
base of Euler diagrams. Euler diagrams are graphical representations widely used
to depict sets and their intersections. In Euler diagrams, elements are represented
by glyphs (usually dots) and sets are represented by the internal region of closed
curves. Elements are placed inside the region of each of the sets they belong to. Set

16 Visualisation and Euler Diagrams

(a)

Blue

Red

Green

(b)

Squared

Round

Big

(c) (d)

Figure 2.20: An example of an Euler diagram derived from the process of ordering a box of
buttons. (a) The buttons to be ordered. (b) Displacement of the buttons according to their
colour. (c) Further organisation of the space according to size and shape of the buttons.
(d) The Euler diagram that can be extracted from the process.

intersections are therefore depicted by overlapping set regions identified by crossing
curves.

Figure 2.20d shows an Euler diagram built over the button example described
above. In this case, we chose to collect the elements in six sets: red buttons, blue
buttons, green buttons, big buttons, round buttons and squared buttons. The diagram
provides a very efficient overview of the set relationships. For example, we can clearly
see that the set of big buttons is included in the set of squared buttons, meaning that
the only big buttons we possess are squared. Also, we can see that the sets of squared
and of round buttons do not overlap, as we obviously do not possess buttons that
are round and squared at the same time. Finally, we can note how the intersection
between the sets of green and of squared buttons is fully included in the set of big
buttons, meaning that we do not possess green squared buttons that are not big.

2.2 Euler Diagrams 17

2.2.1 The Original Diagrams

Modern Euler diagrams derive from diagrams developed in the 18th century to reason
on syllogisms. These diagrams, called Euler circles, take their name from the Swiss
mathematician Leonhard Euler (see bibliography in appendix A), who is commonly
considered their inventor.2 In the 19th century, these diagrams have been formal-
ised and re-elaborated by the English statistician John Venn (see bibliography in
appendix A).

Euler Circles. While living in Berlin, Euler was asked by Frederick the Great of
Prussia to tutor his niece, the Princess of Anhalt-Dessau. Since they were not able to
meet in person for the lessons, Euler wrote over 200 letters to her between 1760 and
1762, covering a very broad spectrum of mathematical and physical disciplines. The
letters were collected and published in several languages [7, 16, 33] and became very
popular due to the competence of the author and the clarity of the explanation.

In some of these letters [7, vol. 1, letters 102–105], Euler treats the topic of pro-
positions and syllogisms. A proposition is described as a judgement, such as “all men
are mortal” or “no man is righteous”. Propositions link two concepts, such as men/-
mortality and men/rightness, through the judging process: in those sentences, it is
stated where or where not mortality or rightness is applicable to men. Propositions
can be universal and particular, and can be affirmative or negative:

• “every A is B” is affirmative universal (e.g. “all men are mortal”),

• “no A is B” is negative universal (e.g. “no men are righteous”),

• “some A is B” is affirmative particular (e.g. “some men are learnt”),

• “some A is not B” is negative particular (e.g. “some men are not wise”).

Euler proposed the graphical representations shown in figure 2.21 to better under-
stand the relationship between the concepts involved. The diagrams were also used for
syllogisms, that is drawing conclusions from certain given propositions. For instance,
given the prepositions “all oaks are trees” (“every A is B”) and “all trees have roots”
(“every B is C”), we can conclude that “all oaks have roots” (“every A is C”), as shown
by the diagram in figure 2.22a. If we are instead given the propositions “every A is
B” and “some C is A”, we can conclude that “some C is B”. In this case we cannot
fully characterise the relationship between C and B, as C could be totally or partially
included in the notion B. Again, the diagrams help to draw the correct conclusions,
as shown in figure 2.22b.

Venn Circles. About one century later, John Venn [104, 106] surveyed the existing
graphical methods to depict propositions and syllogisms. Some of the main criticisms
he raised on Euler circles include the lack of formality and of an algorithmic procedure
to produce them.

Venn formalised Euler’s representation by linking it to the Boolean logic. Even in
Venn circles each of the concepts involved in a syllogism is associated with a circle, but
the circles always intersect each other in order to depict all their possible intersections.

2The authorship of these diagrams actually dates further back. As mentioned by Hamilton [57,
vol. 2, p. 180], the diagrams already appeared in a work by Weise [113], that was published in 1712
some years after his death.

18 Visualisation and Euler Diagrams

A

B

(a)

A B

(b)

A B

(c)

A B

(d)

Figure 2.21: Original Euler circles representing the four proposition cases. (a) Affirmative
universal case. (b) Negative universal case. (c) Affirmative particular case. (d) Negative
particular case.

A

B

C

(a)

CA

B

CA

B

(b)

Figure 2.22: Original Euler circles representing two syllogisms. (a) The case of two affirmative
universal propositions. (b) The case of an affirmative universal proposition and an affirmative
particular proposition. Since C is not completely defined, there exist two possible scenarios.

These intersections are labelled with Boolean algebra minterms3 that depend on the
circles they belong to. For example, given that a indicates that the intersection is
included in circle A and ā that it is not, we have

• for one circle, A, two intersections, a and ā,

• for two circles, A, B, four intersections, ab, āb, ab̄ and āb̄,

• for three circles, A, B, C, eight intersections, abc, abc̄, ab̄c, ab̄c̄, ābc, ābc̄, āb̄c
and āb̄c̄.

Intersections that are excluded by the proposition or syllogism are eventually
shaded out. For example, the proposition “every A is B” implies that there is not
an instance of A that is not in B, thus excluding the intersection ab̄. The proposition
“no A is B” instead excludes the intersection ab. Figure 2.23 shows a comparison of
the representations proposed by Euler and Venn on these cases.

2.2.2 Modern Euler and Venn Diagrams
In the last decades, the representations developed by Venn and Euler have been in-
tensively used to depict sets rather than propositions and syllogisms. Although the

3A minterm is a product of boolean variables in which each variable appears only once, either in
complemented or uncomplemented form.

2.2 Euler Diagrams 19

A

B

(a)

A B

(b)

A

B

C

(c)

A B

(d)

A B

(e)

A B

C
(f)

Figure 2.23: Comparison between Euler and Venn circles. (a-c) Euler circles of the proposi-
tions in figure 2.21 and syllogism in figure 2.22a. (d-f) The corresponding Venn circles.

main structure and idea of the initial diagrams have been preserved, the different ap-
plication field and the usage of computer graphics have introduced some variations in
these drawings.

Depiction of the Set Elements. Even when using Euler and Venn diagrams for
set representation, set elements may or may not be present in the drawing. When
elements are not inserted, the diagrams only show how sets overlap with each other, or
in other words, which sets share elements between them and which do not. Thus, Euler
diagrams must only depict set intersections that are not empty, and Venn diagrams
must shade all set intersections that are empty.

In the case that elements are actually depicted, the previous constraints are some-
times slightly relaxed. Euler diagrams might include set intersections that are empty,
because the lack of elements clarify this. The same happens for Venn diagrams, as
the diagram does not become equivocal if the empty intersections are not shaded.

The choice of using either the first, strict approach or the second, more relaxed one
changes the drawings significantly. Drawing diagrams according to the more rigorous
approach is much harder, as it is strictly necessary to avoid undesired overlaps. The
rigorous approach also causes higher concurrency and less regular shapes of the set
boundaries. On the other hand, the strict approach is necessary when the focus is not
on the set elements or when the set elements are not defined (see figure 2.24).

Graphical Improvements. Initial diagrams only relied on closed lines to distin-
guish the regions of the plane associated with sets or concepts. Modern diagrams are
drawn using graphical techniques that aim to improve their clarity:

20 Visualisation and Euler Diagrams

A B

C
(a)

A B

C
(b)

C

A B

C

(c)

C

A B

C

(d)

Figure 2.24: Euler diagrams, with and without the depiction of the set elements, generated
according to a rigorous and a relaxed approach. (a-b) Using a relaxed approach. In the
second diagram, it is impossible to realise that the central region of set C is empty. In
the first diagram, the depiction of set elements solves the ambiguity. (c-d) Using a strict
approach. Neither of the diagrams are ambiguous, but it was necessary to modify the set
boundaries A and B introducing concurrency and less regular shapes.

• Colours. By using different colours for the set boundaries, the identification
of the region associated with a set is made easier (see figure 2.25b). Colours
become particularly important when the shape of the sets is not regular, when
sets intersect in intricate ways and in the case of concurrency between the set
boundaries.

• Shaded Regions. The clarity of the diagram is further improved by colouring
the regions identified by the set boundaries (see figure 2.25c). By using semi-
transparent colours, the overlapping regions will assume a colour that is a blend
of the original ones, helping to retrieve the sets involved. Shaded regions are
particularly important when very irregular boundary shapes make it difficult to
identify the region associated with the set.

• Area-proportionality. When depicting sets, it is important to provide information
such as the number of elements contained inside each zone. In some modern
Euler and Venn diagrams, we tend to associate regions with a high number
of elements to a larger area of the drawing, and regions with low number of
elements to a smaller area (see figure 2.25d). This is generally desired in all the
cases where the number of elements contained in each region is available, since
this kind of drawing provides interesting information even when the focus is not
on the set elements. Unfortunately, area-proportional drawings are difficult to
obtain and might require less regularly shaped sets.

2.3 Data Visualisation with Euler Diagrams 21

A B

C
(a)

A B

C
(b)C

A B

C
(c)

C

A B
C

(d)

Figure 2.25: Graphical improvements present in modern Euler diagrams. (a) A plain Euler
diagram. (b) Adding coloured set boundaries. (c) Adding semi-transparent coloured set
regions. (d) Adding area-proportionality.

2.3 Data Visualisation with Euler Diagrams
Euler diagrams are extremely valuable tools in information visualisation and visual
analytics: not only do they make good use of our perception system, but they can
also be used to easily retrieve non-trivial information from complex data.

In this section, we first detail the technical reasons that motivate the previous
statement. Then, we provide an example of visual data analysis that benefits from
this kind of diagrams. Finally, we state some of the limitations of Euler and Venn
diagrams.

2.3.1 Euler Diagrams and Perception
By analysing Euler diagrams from a perception point of view (see section 2.1.1), we
can detect their theoretical benefits and drawbacks:

• Gestalt Laws. The concepts at the base of Euler diagrams is the division of the
plane into continuous regions that contain similar objects. When the shape of
the boundaries are relatively simple and regular, we will respect the Gestalt laws
of continuity of the set boundaries and proximity of the set elements.

• Use of Memory. Compared to an alternative visualisation where sets are drawn
individually and placed apart from each other, Euler diagrams require a much
lower use of the memory. In fact, independently drawn sets would require to
replicate the shared elements, increasing the amount of information to elaborate.
Euler diagrams represent a lower bound in terms of objects represented, using a
single graphic for each set and for each set element.

22 Visualisation and Euler Diagrams

More importantly, in independently drawn sets the identification of intersections,
inclusions and exclusions requires to continuously switching sight between the
set representations. Euler diagrams instead provide all this information locally,
limiting the need to observe different scenes at once.

• Established Conventions. Euler diagrams are so widely spread that they are the
universal de facto standard for the visual representation of sets. This virtually
eliminates the problems related to the presence of multiple standards and the
need of explaining how to interpret the visualisation.

• Region Identification. A possible drawback of Euler diagrams is in the iden-
tification of the set regions. According to the perception model presented in
section 2.1.1, the reconstruction of objects (sets) by merging the regions that
compose them is a slow and serial process. There is not a lot that we can do
from this point of view, other than further discriminate related from unrelated
regions with colours and other graphical techniques (see section 2.2.2). As this
represents a main limitation of Euler diagrams, we will discuss the problem in
greater detail in section 2.3.3.

As long as the diagram is not too complicated, the last point is negligible and
the benefits stated at the first two points make Euler diagrams highly intuitive. The
third point is an advantage of Euler diagrams, but needs to be taken into serious
consideration when proposing extensions that significantly change their concept or
functioning.

2.3.2 An Example of Data Exploration with Euler Diagrams
Most of the diagrams shown so far depicted a very limited number of sets and elements.
This might legitimise the idea that Euler diagrams can only show trivial information,
making them unhelpful when it is necessary to acquire insight from more complex
data. In this section, we provide an example of how visual data investigation can be
greatly supported by Euler diagrams.

Case Study. The Group of Six (G6) is a forum created in 1975 by some of the
most industrialised democracies of the world: France, West Germany, Italy, Japan,
United Kingdom, and United States. The forum later expanded by including Canada
(1976, becoming G7) and Russia (1997, becoming G8). The Group of Twenty (G20)
is instead the forum of the twenty more developed economies of the world: Argentina,
Australia, Brazil, China, European Union, India, Indonesia, Mexico, Saudi Arabia,
South Africa, South Korea, Turkey and all the G8 countries.

We built an Euler diagram that shows the behaviour of these countries with respect
to several important aspects of developed countries and democracies (see figure 2.26).
The diagram contains the set of the G8 countries, the set of the G20 countries and
sets containing the best performing countries for each of the following indicators:4

• Research and development. We considered the percentage of GDP invested in
research and development in year 2008 [78], year 2010 [51] and the forecast of this
indicator for 2011 [51]. For each year, we collected the countries that performed
better than the G20 country average in a set. The three sets are equivalent and
are depicted in the diagram with the set labelled “R&D”.

4The European Union has been excluded as it includes some of the G20 countries and because the
aggregate indicator for the European Union is often missing in the considered surveys.

2.3 Data Visualisation with Euler Diagrams 23

G20

G8

R&D

PC

THE
08-09

THE
10

FoP
09

FoP
10

FoP
08

Figure 2.26: An Euler diagram showing the G20 countries and the best performing countries
in terms of research and development (R&S), education (THE), press freedom (FoP) and
corruption (PC) for years 2008–2010.

• Higher education. We considered the Times Higher Education’s university rank-
ing for years 2008–2010 [99]. For each year, the surveys include a list of the top
200 universities. By grouping the G20 countries that have at least one university
in the top 200 chart, we obtained the set “THE 08–09” (years 2008 and 2009)
and the set “THE 10” (year 2010).

• Freedom of the press. We considered Freedom House’s survey on press freedom
for years 2008–2010 [34]. In this survey, countries are marked either free, partially
free or not free according to the degree of press freedom. We collected the G20
press free countries in the sets “FoP 08” (year 2008), “FoP 09” (year 2009) and
“FoP 10” (year 2010).

• Perceived corruption. We considered Transparency International’s corruption
perception index for years 2008–2010 [100]. The index measures the level of pub-
lic sector corruption perceived by the citizens of the country. For each year, we
grouped the countries with an index lower than the G20 average. The resulting
sets are equal and correspond to set labelled “PC”.

Data Exploration. The diagram shows four indicators, each for three years, and
two sets showing the G8 and G20 countries, for a total of 14 classifications and 9 dis-
played sets (five sets coincide with others and are therefore merged). Despite the rel-
atively high volume of data, each set of the drawing can easily be identified. Moreover,
by using increasing transparency for older surveys we can depict the temporal evolu-
tion of the sets, while giving more emphasis on the recent data.

24 Visualisation and Euler Diagrams

The diagram allows to both confirm expected behaviours and to extract significant
and unexpected information. As expected, most of the G8 countries have excellent
results for all the chosen indicators, while less developed countries have lower perform-
ance for most of them. The most evident unexpected insights are regarding Italy and
Russia: contrarily to the rest of the G8 countries, they have poor performance for all
the indicators in year 2010. This is particularly surprising for Italy, that behaves very
differently from culturally and geographically close countries as France, Germany and
United Kingdom.

The set evolution over time also shows that the gap between the distinguished
countries (Japan, USA, Canada, UK, Germany, France, South Korea and Australia)
and the remaining ones is increasing for some of the indicators. This result could
either derive from better performances of the first countries or worse performances of
the second ones.

Euler Diagrams as an Information Visualisation Tool. In conclusion, the dia-
gram allowed to easily deduce significant insights by visual inspection. Complex and
very different information such as political relationships, country average behaviour
and the temporal evolution of statistical indicators is presented in a natural and intu-
itive way. The representation is compact, requires little memory usage and respects
the standard established conventions for set representation. Thanks to the generality
of Euler diagrams, these benefits are automatically extended to every application that
involves overlapping collections of elements.

2.3.3 Limitations of Euler and Venn Diagrams
Despite their high flexibility, Euler diagrams have limitations that are difficult to
overcome. The most significant one is related to the intrinsic complexity of the set
intersections to be represented.

When sets overlap in a very intricate way, the number of different regions to be
displayed tends to increase very rapidly. When all the possible intersections need to
be depicted, Euler diagrams correspond to Venn diagrams and the number of regions
is exponential with respect to the number of sets. As mentioned in section 2.3.1, the
region identification is also a perception bottleneck for Euler diagrams. Thus, as even
John Venn stated, Venn diagrams are helpful only when depicting very few sets:

Beyond five terms [sets] it hardly seems as if diagrams, of the particular kind
here described, offer much help, but we have seldom occasion to trouble ourselves
with problems which would introduce more than that number.

Venn [105, p. 117]

Therefore, when Euler diagrams are used to depict more than a few sets that
overlap in a very intricate way, the representation will necessarily be unintuitive and
confusing (see figure 2.27). Note that this is not necessarily related to the number of
sets or the number of elements to be represented: we might not be able to draw a nice
six sets Venn diagram, and still be able to draw clear and informative Euler diagrams
for hundreds of sets and thousands of elements.

2.3 Data Visualisation with Euler Diagrams 25

CA

B D

(a)

CA

B DE

(b)

Figure 2.27: Diagrams proposed by John Venn [105] to depict four and five sets. He discour-
aged the production of these diagrams for more than five sets. (a) The diagram for four sets.
(b) The diagram for five sets. In order to be drawn using simple shapes, set E contains a
hole in the region inside its main boundary.

Chapter 3

Graph and Euler Diagram
Theory

This chapter presents the background theory required to understand the work dis-
cussed in this thesis, the notation used, and references for further information.

First, we introduce the mathematical entities called graphs and the related theory.
We put particular emphasis on the concepts associated with planarity, as they are
strictly related to the generation of Euler diagrams.

Second, we introduce some rudiments of algorithmics and the field of graph draw-
ing. In particular, we focus on the the subfields of planar graph drawing and force-
directed drawing, presenting their evolution and their most known algorithms.

Finally, we continue the discussion on Euler diagrams, this time from a formal
point of view. After introducing the basic definitions, we investigate the relation
between mathematical sets and their representations in Euler diagrams, the diagram
properties and the issues that might occur when drawing them.

In the following, the concepts are first introduced in an informal way, in order
to provide the readers that are not familiar with the terms a smoother introduction.
Then, in the boxed paragraphs, the definitions and the notation are explained in a
more rigorous and formal way. Also, the mathematical notation is collected in the list
on page xx and the definitions are inserted in the index on page 179.

3.1 Graph Theory

In this section, we introduce the foundations of graph theory. Graphs are mathematical
tools used to represent relational data, that is, information on the relationship between
entities. Each graph is composed of two kinds of elements: the nodes, that represent
the entities, and the edges, that are associated with two nodes and express the presence
of a relation between the two entities.

For instance, a graph can be used to represent friendship relations between a
group of people. In this case, each node represents a person, and each edge indicate
the friendship between the two associated people. Therefore, people who do not know
each other will not have an edge between them, and a close group of friends might
have an edge connecting any two individuals in the group.

Graphs can also be used to represent the street map of a city. Here, nodes might
be used to indicate junctions or locations and edges might be used to represent streets.

27

28 Graph and Euler Diagram Theory

Bob

Carol

Dave

Alice

Eve Frank

(a)

Bach
Square

Vivaldi
Green

Chopin
Park

Mozart
Platz

Columbus
Boulevard

Vespucci
Drive

Polo
Road

Magellan
Crescent

Erik the Red
Street

De Gama
Avenue

(b)

Figure 3.1: Examples of graphs and relative node-link diagrams. (a) A graph depicting the
friendship relations in a group of people. (b) A graph showing the connections between
locations in a city.

Thanks to the high flexibility of these tools, there are no problems in taking particular
cases into consideration, such as multiple streets connecting the same two squares,
streets that start and leave from the same location and one-way streets.

Node-link Diagrams. When dealing with graphs, it is natural to work with one
of their diagrammatic representations. The most common representations, node-link
diagrams, depict the nodes with glyphs (usually circles) and the edges with arcs con-
necting the involved nodes. Using these conventions, we can depict the graph examples
mentioned above in a very direct and intuitive way (see figure 3.1).

In this thesis, we will also refer to a node-link diagram as the drawing of a graph.
Drawings are characterised by the drawing style chosen to represent the edges. In
particular, in a straight-line drawing the edges are straight segments connecting the
centre of the nodes, in a polyline drawing the edges are polygonal chains, and in a
Jordan drawing the edges are Jordan arcs.

The Origin of Graphs. Graphs are another of the many inventions attributed to
Leonhard Euler (see biography in appendix A). In 1735 he published a paper about the
problem of the Seven Bridges of Königsberg. The city of Königsberg in Prussia (now
Kaliningrad, Russia) was set on both sides of the Pregel river and in correspondence
with two major islands on the river. The four landmasses were connected by seven
bridges (see figure 3.2a).

It was speculated that there was a way to cross every bridge of the city without
crossing the same bridge twice. Euler proved this was wrong by abstracting the
configuration of the city into a graph-like structure. As the internal movement in
each of these land masses is irrelevant, each land mass can be thought of as a single
entity. As the bridges connect two different land masses, they can be thought of
as links between these entities. Nowadays, we would abstract the land masses into

3.1 Graph Theory 29

(a) (b)

Figure 3.2: The problem of the Seven Bridges of Königsberg. (a) A map of Königsberg as
it was in 1651 (by Merian-Erben), with highlights on the seven bridges. (b) The graph that
abstracts the connections between the land masses of the city.

graph nodes, the bridges into graph edges, and we would depict the problem using the
node-link diagram in figure 3.2b.

Euler realised that whenever you cross a bridge to reach a land mass, you also need
to cross a bridge to leave it. Therefore, except at most for two land masses (the one
where you start your walk and the one where you finish it), all the landmasses need
to have an even number of bridges to be able to cross them all. As Königsberg had
four land masses, all connected by an odd number of bridges, the problem does not
have a solution. In modern graph theory, a path that uses once and only once all the
edges of a graph is still named after Euler.

Theoretical Foundations. In the remaining part of this section, the graph theory
concepts used in the thesis will be presented and discussed in greater detail. Due to
this focus, we refer to dedicated graph theory textbooks [25, 63] for a more complete
survey on the matter.

3.1.1 Sets, Multiset and Tuples

A collection of elements can be ordered and unordered, and can allow or forbid element
repetitions. The sequence in which the elements are listed is irrelevant in unordered
collections, while it is typifying in ordered collections. At the same time, element
repetition can be forbidden, so that each element can be listed only once, or allowed,
so that the same element can be listed several times in the collection.

Sets, multiset and tuples are collections of elements that mainly differ from each
other for their behaviours regarding these aspects:

• sets: unordered, forbid repetitions. Identified by curly brackets, e.g. {a, b, c}.

• multisets: unordered, allow repetitions. Identified by squared brackets, e.g. [a, b, b].

• tuples: ordered, allow repetitions. Identified by round brackets, e.g. (b, c, a, b).

30 Graph and Euler Diagram Theory

(a) (b)

Figure 3.3: Examples of undirected and directed graphs and their notation. (a) An undirected
graph. The edge e1 is a loop, and e5 e e6 are multiple edges. The graph is therefore a
multigraph. (b) An example of a directed graph. As it does not contain loops or multiple
edges, the graph is said to be simple.

3.1.2 Graphs and Their Classification

Graphs are mathematical entities that extend the concept of sets to allow the expres-
sion of relationships between the set elements. To obtain this aim, a mathematical set
is augmented by additional information on eventual relations between its elements.
In standard graphs, the nature of these relationships is binary and only involves two
elements at a time: it is then possible to express the presence or the absence of a
relation between any two elements of the original set.

Graphs can either be directed or undirected. In directed graphs, all the edges have
an orientation: each edge implies a relationship between the first element and the
second, but not between the second and the first. In undirected graphs, each edge
express a reciprocal relationship between the nodes involved.

Graphs can also differ for the kind of edges they contain. Multiple edges are edges
that appear more than once in a graph. Loops are edges that depict a relationship
between a node and itself. Graphs that do not contain these kinds of edges are said
to be simple, while graphs that allow them are called multigraphs. Examples of these
kinds of graphs are shown in figure 3.3.

Graphs. A graph is a tuple G = (V,E) composed of a set V of nodes or vertices
and a multiset E of edges or links, where the graph edges are either multisets or
tuples of size two containing graph nodes.

Nodes and edges of a graph are said to be the elements of the graph. We
indicate with u, v, or with ui, i ∈ N, generic nodes of a given graph (u, v, ui ∈ V)
and with e, or with ei, i ∈ N, generic edges of the same graph (e, ei ∈ E).

3.1 Graph Theory 31

Directed and Undirected Graphs. A graph can be directed or undirected.
In a directed graph, each edge is a tuple of two nodes, e = (u, v). In an undirected
graph, each edge is a multiset, e = [u, v], where the order of the nodes does not
matter. Therefore, (u, v) 6= (v, u) and [u, v] = [v, u]. In this thesis, when not
specified, graphs should be considered undirected.

Simple Graphs and Multigraphs. When a graph contains two or more equal
edges, these are called multiple edges. An edge (u, u) or [u, u] is instead called a
loop. Graphs with no loops and no multiple edges are called simple graphs. Graphs
where loops and multiple edges are explicitly allowed are called multigraphs.

Graph Dimension. The dimension of a graph is a measure related to the
number of elements of the graph. In this thesis, we associate the dimension of
a graph with the number of nodes it contains, indicating as small a graph with
less than approximately one hundred nodes, medium a graph with a hundred to
a thousand nodes, and large a graph with more than a thousand nodes.

Indications on the number of edges will be expressed as a function of the
number of nodes. We call sparse a graph where |E| is approximately equal to or
smaller than |V |, and dense a graph where |E| is in the order of |V |2.

3.1.3 Subgraphs

Subgraphs are graphs formed by a portion of the elements contained in another graph.
Subgraphs are generally obtained by deleting some of the nodes and edges of an original
graph. As the new collection of nodes and edges must still be a graph, it is not possible
to keep the original graph edges whose extremities have been discarded.

A particular kind of subgraphs are induced subgraphs. These graphs are formed
by a subset of the original graph nodes and by all the original edges that join these
nodes.

Subgraphs. A subgraph of a graph G = (V,E) is a graph G′ = (V ′, E′) where
V ′ ⊆ V and E′ ⊆ E. An induced subgraph of an undirected graph G is a subgraph
G′ where E′ = {e = [u, v] ∈ E : u ∈ V ′∧v ∈ V ′}. The induced graph of a directed
graph is defined similarly.

3.1.4 Relations Between Nodes and Edges

We can refer to nodes and edges with terms that indicate a particular relationship
with other graph elements. For instance, nodes can be the extremities of an edge and
adjacent to or neighbours of other nodes. We also introduce the concept of source and
target of an edge, that better suits directed edges but that can be used even in the
case of undirected graphs.

The degree of a node indicates the number of edges that are related to that node.
In directed graphs, it is possible to obtain different degree measures by considering
incoming and outgoing edges, while for undirected graphs there exists a single measure
for the node degree.

32 Graph and Euler Diagram Theory

Appellations of Nodes and Edges. Given a directed edge e = (u, v) or an
undirected edge e = [u, v], we call u and v extremities of e and we say that e is
incident to u and v. In a graph G, two nodes incident to the same edge, as well as
two edges incident to the same node, are said to be adjacent. The nodes adjacent
to u in G are called neighbours of u.

Given a directed edge e = (u, v), the first node is called the source of e and
it is identified by s(e) = u. The second node is called the target of e and it is
identified by t(e) = v. In the case of undirected edges, source and target can still
be used to refer to one and to the other of the two nodes, but neither term refers
to a particular extremity.

The Degree of a Node. Given a directed graph G, the out degree of a node u
indicates the number of times u is a source in the graph, thus deg out(u) = |{e ∈
E : u = s(e)}|. The in degree is instead the number of times a node is a target,
thus deg in(u) = |{e ∈ E : u = t(e)}|.

For both directed and undirected graphs, the degree of a node u is the number
of edges having u as extremity, counting loops twice. In directed graphs it corres-
ponds to the sum of the out degree and in degree, deg(u) = deg out(u) + deg in(u).

A node with degree zero is identified as isolated.

3.1.5 Walks, Paths, Cycles and Distance
We can consider the edges of a graph as links that allow us to move from one node to
another. Directed edges can be considered as one-way links, that only allow to move
from the source to the target of the edge. Instead, undirected edges can be considered
as links that allow movement in both directions. It is then possible to define the
concepts of walks, paths and cycles as particular sequences of movements in the given
graph.

Conceptually, a walk is a sequence of movements that leads from one node of the
graph to another. A path is a walk where you never pass the same node twice, except
in the case where your final movement brings you to the initial node. A cycle is a
path where this latter condition occurs, or in other words, a path that brings you
back to the initial node. A chain is a maximal path in which there is no possibility to
decide the movement, since all nodes except the extremities only have two edges: one
to access them, and one to leave them. Examples of walks, paths, cycles and chains
are shown in fig. 3.4.

Walks. A walk is an alternating sequence of nodes and edges u0e1u1 . . . elul of a
graph G, beginning and ending with nodes, in which each edge has the previous
node in the sequence as source and the following node as target. The length of
the walk is l, and corresponds to the number of edges in the sequence. When
not ambiguous, a walk can be indicated by listing only the nodes u0u1 . . . ul or
only the edges e1 . . . el of the sequence. When the first and the last node coincide,
u0 = ul, the walk is said to be closed.

Paths, Cycles and Distance. A path is a walk where all the nodes of the
sequence are distinct, except possibly u0 and ul. A closed path is a cycle. In

3.1 Graph Theory 33

(a) (b)

Figure 3.4: Examples of walks, paths and cycles in directed and undirected graphs. The
direction of the walks is rendered with decreasing values of luminosity on the coloured graph
edges. (a) An example of a walk in a directed graph, coloured blue. The walk is not a path,
since it passes through the node u7 twice. (b) Examples of paths and chains in an undirected
graph. Since the red path starts and ends with the same node, it is a cycle. The red path is
also a chain, since deg(u7) 6= 2 and deg(u4) = deg(u6) = 2.

(a) (b)

Figure 3.5: Examples of graphs with different connectivity. The original graph from which
these graphs are derived (figure 3.3a) is disconnected. (a) The graph is made connected by
adding the edge e11. The graph can still be disconnected by removing only one node (u1,
u3 or u4 for example), therefore its connectivity is one. (b) The graph is made 2-connected
by adding edges e12 and e13. The connectivity of the graph is two, since the graph can be
disconnected by removing, for instance, the pair u3, u8.

34 Graph and Euler Diagram Theory

a graph G, the distance dist(u, v) between two nodes u and v is defined as the
length of the shortest path between u and v in G.

Chains. A chain is a path in which the nodes u0 and ul have degree different
from two, and all the other nodes have degree two.

3.1.6 Connectivity

The connectivity of a graph is a property that expresses how strongly connected its
nodes are. A graph is connected if every node can be reached from any other by
moving over the edges. When this does not happen, the graph is disconnected and
the connected portions of the graph are called connected components.

A graph is k-connected when it is necessary to remove at least k nodes to disconnect
the graph. A k-connected graph can be thought of as a graph where each node is
simultaneously connected to the others in k or more different ways. Examples of
graphs with different connectivity are shown in figure 3.5.

Connectivity. A graph G is connected if there is a path for any two distinct
graph nodes u and v. A graph that is not connected is disconnected. When
a graph is disconnected, its maximal connected subgraphs are called connected
components. The set of the connected components of a graph is indicated with
C, and a generic connected component is indicated with c, or with ci, i ∈ N.

The connectivity κ(G) of a graph G is the minimum number of nodes that
needs to be removed to make G disconnected. A graph is k-connected when
κ(G) ≥ k.

3.1.7 Trees and Forests

Trees and forests are particular kinds of undirected graphs that have several important
applications. Trees are connected graphs without cycles. When a node of a tree is
selected as root, the graph nodes are automatically organised into a hierarchy domin-
ated by the chosen node. Forests, an extension of trees, are simply graphs composed
of one or more independent trees.

Since hierarchical organisations are quite common, these graphs developed specific
appellations for their elements. The root is the top node of a tree. A node that
is controlled by another node, higher in the hierarchy, is called descendant. The
controlling node is instead called ancestor. When this relationship is direct, that
means there are no intermediate nodes between ancestor and descendant, the two
nodes are called parent and child. Examples of forests, trees and of the related notions
are shown in figure 3.6.

Trees and Forests. A forest is an undirected graph without cycles. A tree is a
connected forest. A rooted tree is a tree where one of the nodes is distinguished
from the others.

3.1 Graph Theory 35

(a)

Root

Children

Ancestor

Descendants

LeavesInternal
Node

Parent

(b)

Figure 3.6: Examples of trees and forests. (a) A forest composed of two trees. (b) The biggest
tree of the previous picture rooted on the node u7. In purple, the hierarchical notions with
respect to the highlighted node. In black, the notions that do not depend on the choice of a
node.

Appellations of Tree Nodes. The root is the distinguished node of a rooted
tree. Every node v that appears after a node u in a path that starts from the
root is a descendant of u, while u is an ancestor of v. When two of such nodes are
consecutive in the paths, then u is the parent of v and v a child of u.

A node with no children is called a leaf. A node with children is instead called
an internal node.

Levels. The level lev(u) of a node u is its distance from the root. When G =
(V,E) is a forest, we identify with V i the set of nodes that have level i.

3.1.8 Complete, Bipartite Graphs and Subdivisions
Complete and bipartite graphs are other particular and important kinds of graphs.
Complete graphs are simple graphs where all the nodes are directly connected to each
other. Bipartite graphs are instead graphs where the nodes can be divided into two
groups, such that all the edges only connect a node of a group with a node of the
other group.

Subdivisions are operations that substitute an edge of a graph with a new sequence
of nodes and edges. Subdivisions of complete and bipartite graphs will be used in a
further characterisation of graphs. Examples of these graphs and of subdivisions are
presented in figure 3.7.

Complete and Bipartite Graphs. A complete graph is a graph where every
two different nodes are adjacent. A complete graph with i nodes will be identified

36 Graph and Euler Diagram Theory

(a) (b) (c)

Figure 3.7: Examples of complete graphs, complete bipartite graphs and of the subdivision
operation. (a) The complete graph with five nodes, K5. (b) The complete bipartite graph
K3,3. (c) The application of subdivisions on the first graph: the shaded edges have been
replaced by sequences of new nodes and edges.

with Ki. A bipartite graph G = (V,E) is a graph where the nodes can be grouped
in two disjoint sets V ′, V ′′ ⊆ V so that every graph edge is incident to a node in
V ′ and a node in V ′′. A complete bipartite graph is a bipartite graph where every
two nodes u, v, with u ∈ V ′ and v ∈ V ′′, are adjacent. The complete bipartite
graph with i = |V ′| and j = |V ′′| will be identified with Ki,j .

Subdivisions. A subdivision is the operation of removing a graph edge (u, v) or
[u, v] and adding new nodes u1 . . . ul and edges e0 . . . el so that all the new nodes
have degree two, and so that they create the path u, e0, u1 . . . ul, el, v.

3.1.9 Planar Graphs

For some graphs, called planar, it is possible to provide drawings where the graph edges
do not cross each other. An embedding of a graph on the plane, or planar drawing,
defines these drawings by listing the position of nodes and edges on the plane.

For non-planar graphs, instead, it is not possible to obtain these drawings as the
graphs contain some critical structures that cannot be represented without crossings.
The two basic critical structures, that are also the smallest non-planar graphs, are
K5 and K3,3 (see figures 3.7a and 3.7b). Non-planar graphs are all linked to these
structures, as all of them and only they contain a subdivision of K5 or K3,3.

A planar drawing of a graph divides the plane into regions bounded by nodes
and edges. These regions, called faces, allow us to define the concepts of equivalent
embeddings and planar maps. Equivalent embeddings are drawings that are theoret-
ically different, but substantially similar. For instance, a drawing where all the nodes
and edges are shifted right for the same distance is only theoretically different, as it
is practically equivalent to the original. We will then say that two embeddings are
equivalent if they produce faces with the same boundaries. The classes of equivalent
embeddings, that are the groups that collect all the embeddings equivalent between
them, are called planar maps. Examples of faces and of equivalent and non-equivalent
embeddings are reported in figure 3.8.

3.1 Graph Theory 37

(a) (b) (c)

Figure 3.8: Examples of graph faces and embeddings, both equivalent and non-equivalent.
(a) A planar drawing of a graph with faces highlighted in different colours. The sequences at
the bottom of the drawings indicate the boundary edges of each face. (b) A non-equivalent
embedding of the same graph. The yellow face of the first drawing is preserved, but the other
two do not correspond. (c) An equivalent embedding of the first graph. All the faces of the
first drawing correspond to the current faces.

(a) (b) (c)

Figure 3.9: Examples of combinatorial embeddings and planar maps. (a) The combinatorial
embeddings of the first and third drawings of figure 3.8. All the nodes have been scanned
in clockwise order in the first case, and anticlockwise in the second case. As the graph is
connected and the embeddings are equivalent, the combinatorial embeddings of the drawings
correspond. (b) A planar drawing of a disconnected graph. In this case, one of the faces
is identified by two separated sequences of edges. (c) A non-equivalent embedding of the
same graph. The faces in the two drawings do not correspond even though the combinatorial
embedding has not changed.

38 Graph and Euler Diagram Theory

When a planar graph is connected, it is possible to characterise a planar map by
providing a combinatorial embedding. A combinatorial embedding is a data structure
that collects the ordering of the incident edges of each graph node, all clockwise or all
anticlockwise.

When a graph is instead disconnected, this one-to-one correspondence is missing,
as the same combinatorial embedding might correspond to different planar maps. Dis-
connected graphs contain two or more connected components, and these components
can be moved to different faces of other components. This operation changes the
boundary of the faces, but leaves the combinatorial embedding unaltered. Examples
of combinatorial embeddings and of their relationships with planar maps are shown
in figure 3.9.

Planar and Plane Graphs. An embedding of a graph G on a surface Σ is a
representation of G where the nodes are associated with points of Σ, the edges
with arcs that start and end at the coordinate of the relative nodes, and where
the arcs do not cross with other arcs or nodes except that at their endpoints. In
this thesis, we will always consider Σ to be a plane and we will call an embedding
on such a surface a planar drawing.

A graph that admits a planar drawing is called planar graph. A graph is not
planar if and only if it contains subgraphs that are subdivisions of K5 or K3,3

(Kuratowski’s Theorem, 1930). A planar graph where a planar drawing has been
fixed is called plane graph.

Faces. A planar drawing of a graph divides the plane in topological connected
regions called faces. We indicate with f , or with fi, i ∈ N, a face of a plane graph
and with F the set of all the faces in the drawing. Each face is enclosed by a
boundary B(f) of nodes and edges. We denote the set of the boundary nodes of
f with Bn(f) and the set of boundary edges with Be(f).

Equivalent Embeddings and Planar Maps. Two embeddings of G are equi-
valent if the boundary of each face in an embedding corresponds to the boundary
of a face in the other. The planar maps of G are classes of equivalence of the
planar embeddings of G.

Combinatorial Embeddings. A combinatorial embedding of G is a data struc-
ture that lists in order the edges incident to the graph nodes. When G is con-
nected, its planar maps correspond to its combinatorial embeddings. When G is
disconnected, the same combinatorial embedding might correspond to different
planar maps.

Properties of Planar and Plane Graphs. In a connected plane graph, we
have that |V | − |E|+ |F | = 2 (Euler’s Formula, 1750). A maximal planar graph,
or triangulated graph, is a connected graph where no other edge can be added
without breaking the planarity. Any embedding of these graphs have each face
bounded by exactly three edges. As a consequence of the Euler’s formula, in any
planar graph with more than three nodes, we have that |E| < 3|V | − 6.

3.1 Graph Theory 39

(a) (b)

Figure 3.10: Example of a dual graph. (a) Positioning of the dual nodes and of two dual
edges. As e8 belongs only to one face, its dual e′8 is a loop. (b) The dual graph.

3.1.10 Dual Graphs
The dual graph is a connected plane graph built over another connected plane graph.
Let G be the original graph. The dual graph G′ have a node for each face of G, and an
edge for each edge of G. The edges of G′ connect the faces whose boundaries contain
the corresponding edge in G. For example, if the edge e appears in the boundaries of
the faces f1 and f2 of G, then the dual edge e′ will connect the dual nodes u′1 and u′2
associated with those faces. When e appears only in the boundary of one face of G,
then e′ will be a loop on the node related to that face. Each node u′i is placed inside
the corresponding face fi, and each edge e′j is routed to cross once the corresponding
edge ej and only that.

Non-equivalent embeddings of the same graphs leads to different dual graphs. How-
ever, we obtain the original graph by applying the dual transformation twice, so the
dual of G′ is G. Also, the dual graph is generally a multigraph, even when the original
graph is simple. An example of dual graph is shown in figure 3.10.

Dual Graph. The dual graph of a connected plane graph G = (V,E), with set
of faces F , is a plane graph G′ = (V ′, E′) so that

• for each fi ∈ F , there is a node u′i ∈ V ′ (V ′ = F),

• for each ei ∈ E, where ei ∈ Be(fj),Be(fk), there is an edge e′i = [uj , uk],

• each u′i lies in the region of fi,

• each e′i crosses once ei and only that edge.

Properties of Dual graphs. If G′ is the dual of G, then G is the dual of G′.
Also, for a plane graph G and its dual G′, we have that |V ′| = |F |, |E′| = |E| and
|F ′| = |V |.

40 Graph and Euler Diagram Theory

(a) (b)

Figure 3.11: Example of a clustered graph, with different clusterings. The clusters are iden-
tified by coloured crowns around the nodes. (a) A strict clustering of the graph, where all
nodes belong to exactly one cluster. (b) An overlapping clustering, where u4 belongs to two
clusters and u9 to zero clusters.

3.1.11 Clustered Graphs
In clustered graphs, the nodes are assigned to sets that collect similar elements. Each of
these sets is called a cluster and might collect, for example, nodes that share the same
property or nodes that are tightly connected by graph edges. We call clustering the
set of all the clusters identified in a graph, so that we can refer to different clusterings
when two or more attempts of grouping the graph nodes generates non-corresponding
clusters.

Traditionally, the clustering is a partitioning of the graph nodes, where each graph
node is assigned to exactly one cluster. In recent years, this strict classification of
the graph nodes has been considered too limiting, because some nodes might not
naturally belong to any cluster or might fit into multiple ones. We refer to strict
clustering in the first case, and to clustering or overlapping clustering in the second
case (see figure 3.11).

Clusters and Clustered Graphs. A cluster is a set of nodes s ⊆ S of a graph
G = (V,E). A clustered graph is a graph G = (V,E, S) where S = {s1, s2 . . .}
contains one or more clusters.

Strict and Overlapping Clustering. The set S of clusters of G = (V,E, S)
is called clustering. A strict clustering is a partitioning of V , or in other words a
clustering where

• si ∩ sj = ∅ for all si, sj ∈ S and i 6= j,

•
⋃
si∈S

si = V .

3.2 Graph Drawing 41

A clustering where these conditions are not enforced, and in particular where the
graph nodes can belong to multiple clusters, is called an overlapping clustering or
a fuzzy clustering.

3.2 Graph Drawing

Having a good drawing is essential to easily understand the structure of a graph. The
difference between a clear and an unclear drawing mostly resides in the choice of the
drawing style and in the positioning of the nodes and edges. It is in fact very difficult
to understand the structure of a graph, even when small and simple, if these aspects
are not chosen carefully.

The determination of a good drawing becomes increasingly challenging when con-
sidering larger and more complex graphs. Moreover, when dealing with graphs of
hundreds or thousands of elements, the manual placement of the graph elements is no
more an option. For these reasons, a very broad and active branch of graph theory,
called graph drawing, is dedicated to the automatic generation of visual representa-
tions of graphs.

In this section, we will first introduce some rudiments of algorithmics. Then, we
will present a few graph drawing algorithms and concepts that are relevant to the work
presented in this thesis. For a broader and more complete overview of this discipline,
we suggest some dedicated textbooks [25, 75] or literature reviews on the subject [24,
31, 59].

3.2.1 Foundations of Algorithmics

When finding a solution to a problem, humans use, to various extents, intuition,
judgement and common sense instead of a strict mathematical approach. However,
there are situations in which having a well defined sequence of operations to execute,
called an algorithm, is helpful if not necessary: we are not likely to follow a strict
procedure when ordering a coffee, but we do follow a well defined sequence of steps
when multiplying two large numbers on a piece of paper. Computers, that are not
provided with the talents mentioned above, only rely on algorithms to solve problems.

Not all the problems have or will have an algorithm that solves them. There are
problems, even common and very important, for which it is proven that an algorithm
cannot exist. Luckily, this is not true for the vast majority of the problems we are
asked to deal with.

Algorithms. An algorithm is a finite and well defined sequence of instructions
that solves a specific problem.

Complexity. It is generally possible to provide many different algorithms for a prob-
lem. These algorithms might be very different in the way they approach the problem
and, more importantly, in the computational effort required to provide the solution.
For example, efficient algorithms to evaluate the graph planarity generally use a frac-
tion of a second to compute the answer, while an algorithm based on the Kuratowski’s
Theorem, on the same graph, might require a computation time estimated in centuries.

42 Graph and Euler Diagram Theory

Since algorithms are independent from the particular input provided and the struc-
ture of the computer where they run, it is necessary to define some abstractions in
order to evaluate their efficiency. As a first abstraction, all the operations that require
a very limited and constant time, such as the numerical operations of sum and multi-
plication, are identified as basic and considered all alike. As a second abstraction, we
express the computation time with regard to the input provided. In fact, this measure
of efficiency should take into account that it takes ten times longer to retrieve the
greatest number in a set if we provide a set that is ten times bigger than the previous.

The reasons why there might be such a difference in the execution time as that
mentioned above are rarely related to how many basic operations are performed, but
instead to how many times a sequence of operations is repeated. For instance, in the
case of an algorithm based on the Kuratowski’s Theorem, we would need to control
whether or not a subgraph of the input graph is a subdivision ofK5 andK3,3. Here the
problem is not on the number of basic instructions required to perform this check, but
on the number of possible subgraphs to be controlled: there are in fact 2|E| possible
subgraphs, which is a huge number even for relatively small graphs.

The asymptotic notation O(·) takes into account all of these concepts, as it ignores
constant factors (such as the number of basic operations), it focuses on how many
times a computation is repeated and it expresses the complexity with respect to the
size of the input. This information is collected in the argument of the notation. For
instance, a graph algorithm with complexity O(|V |) is likely to execute some basic
operation for each node present in the graph, while an algorithm with complexity
O(|V |2 + |V | · |E|) probably executes basic operations for each node-node and node-
edge pair of the graph. Note that in the second case, an eventual term |V | would not
appear in the notation as it is dominated by the other terms.

Asymptotic Notation. For a pair of real positive functions f(n), g(n), with
n ∈ N, we will use the asymptotic notation f(n) ∈ O

(
g(n)

)
if there are two

positive constants c1, c2 such that f(n) ≤ c1g(n) + c2 for every n.

Complexity. The complexity, or more specifically time complexity, of an al-
gorithm is the number of basic operations required by the algorithm to provide
the solution, expressed as a function of the size of the input, and reported in
asymptotic notation.

Letting n be the size of the input, we will say that the complexity of an
algorithm, or simply that an algorithm itself, is logarithmic if the complexity is
O(log n), linear if it is O(n), quadratic if it is O(n2), polynomial if it is O(ni),
i ∈ N, and exponential if it is O(an), a ∈ R, a > 1.

The previous definitions apply similarly to quantities other than the number
of basic instructions, when these are explicitly indicated.

3.2.2 Aesthetics of a Graph Drawing

It is very difficult to define or measure the quality of a drawing. An aspect of a
drawing that might help the comprehension of a particular drawing might actually be
undesired in other cases. For instance, even the choice of the drawing style, among
those stated at page 28, is not trivial: there are cases where polyline drawings are
preferable to Jordan drawings, and cases where the opposite is preferable.

3.2 Graph Drawing 43

(a) (b) (c)

Figure 3.12: Examples of drawings that do and do not respect the aesthetics rules. At the
top, drawings that do not present some aesthetic properties. At the bottom, drawings of the
same graphs that do respect them. (a) Area, aspect ratio and edge length. (b) Bends and
crossings. (c) Shape of the faces, symmetry and angular resolution.

However, there are properties that are widely recognised to be increasing the clarity
of the graph:

• Area: a graph drawing should make good use of the space, avoiding too cluttered
and too empty portions of the drawing. This allows to obtain a compact drawing
without using excessively high zoom values.

• Aspect ratio: a drawing should have little difference between the vertical and
the horizontal dimension. This discourage unevenly compressed drawings.

• Edge length: the length of the edges should present little variation with respect
to the average edge length.

• Bends: in a polyline drawing, both the total number of bends and the number
of bends for a single edge should be kept as low as possible to make edges easier
to follow.

• Crossings: crossings between the edges should be reduced as much as possible,
as they can generate confusion and disturb the identification of the edges.

• Shape of faces: the faces of the drawing should be as close as possible to regular
polygons or other simple shapes.

• Symmetry: the presence of symmetries in the structure of the graph should be
shown as much as possible in the graph drawing.

• Angular resolution: the angle between the edges incident to a graph node should
be as high and as regular as possible, to reduce possible confusion between the
edges in proximity to the graph nodes.

Examples of drawings that do and do not respect these properties are shown in fig-
ure 3.12.

44 Graph and Euler Diagram Theory

Several authors have investigated the understanding of graph drawings in relation
to these aesthetics properties. Some studies confirmed the Gestalt laws (see sec-
tion 2.1.1) in terms of perceived importance and the relationship between the graph
nodes due to their position or symmetry in the drawing [19, 69]. Other studies ana-
lysed the importance of some of these properties in the correct comprehension of the
drawing [79, 80]. The results prove the importance of crossings reduction, which was
the most important factor, and of bends reduction and symmetry exposing, that were
also decisive. The other factors were either not taken into account or were found not
statistically significant.

3.2.3 Graph Drawing Algorithms

Despite having standard rules that characterise the aesthetics of a graph drawing,
the generation of these visual representations is a problem that cannot be considered
uniformly. The problem changes drastically with the nature of the input graph and
the expected output. In fact, a general algorithm might not enforce a planar drawing
for a planar graph or a hierarchical drawing for a rooted tree. As a consequence, the
graph drawing literature contains a very high number of algorithms that differ in the
approach chosen or for the specific case they aim to deal with.

Planar Drawing Algorithms

The class of planar drawing algorithms collects the algorithms that draw planar graphs
without edge crossings. Due to the vast field of applications of planar graphs (among
others electronic circuit design, vehicle routing or service planning), there exist many
subcategories of this class [75]. Here, we will only discuss straight-line and polyline
drawings, that are the most general class of drawings and the most significant from
an information visualisation point of view.

The entire field of planar graph drawing, however, seems to be of little interest in
information visualisation:

In information visualisation applications, it only makes sense to check for
planarity when dealing with a small and sparse graph [. . .]. In general, we can
safely say that planarity is not a central issue in information visualisation.

Herman, Melançon and Marshall [59]

The reason for this lack of interest is probably related to the high specificity of the
problem. Huge graphs are likely not to be planar, and small and sparse graphs might
be understandable even when there are a few crossings in their drawings. As a res-
ult, most algorithms neglect comprehensibility aspects and focus more on theoretical
issues, such as complexity or space used, or are developed to solve application specific
problems. There are however a few exceptions, as shown by some of the algorithms
below.

Straight-Line Planar Drawings. The proof of the existence of a planar straight-
line drawing for every planar graph, that can lead to efficient algorithms to draw them,
dates back to before the 1950s [35, 98, 108]. In the following years, new algorithms
were developed to reduce the complexity and the area necessary to draw the graph.
At the current state, two approaches [18, 87] are mainly used to obtain straight-line

3.2 Graph Drawing 45

(a)

(b)

Figure 3.13: Output comparison of the presented planar drawing algorithms. (a) Drawing
generated by FPP. (b) The same graph drawn by Mixed-Model.

planar drawings. The approaches are distinct but actually related to each other [74],
and both obtain compact graph drawings in linear time.

In this thesis we will use the approach of De Fraysseix, Pach and Pollack [18],
and in particular its linear implementation [13], whenever we need to obtain a first
straight-line, planar drawing of a graph. We will refer to the algorithm as FPP.

The algorithm focuses more on theoretical results rather than on graph aesthet-
ics. The drawings produced are affected by a very low angular resolution and very
inhomogeneous edge length, as shown in figure 3.13a. In the general case, it is pos-
sible to produce straight-line drawings that present much higher aesthetics than those
generated with FPP. However, when dealing with very complex graphs, the margin of
improvement is drastically reduced and the drawings produced are close to the best
obtainable.

46 Graph and Euler Diagram Theory

Polyline Planar Drawings. To overcome the low aesthetics of complex straight-
line drawings, there is no choice but moving to a different drawing style. Gutwenger
and Mutzel [53] use the polyline drawing style to achieve high aesthetics in planar
graph drawings. The algorithm proposed Mixed-Model produces drawings character-
ised by very high angular resolution, a very limited number of bends and of space
used, and runs in linear time with respect to the graph nodes.

As shown in figure 3.13b, the typical drawings generated by this algorithms are
much clearer than those produced by FPP. This is particularly evident on difficult
input instances, where a higher degree of freedom on the edge shape is essential to
produce readable graphs.

Force-Directed Algorithms

The class of force-directed algorithms collects the algorithms that generate a graph
drawing by simulating the evolution of a physical system. According to Di Battista
et al. [25], the first algorithm that belongs to this family has been developed by Tutte
[103] in 1963. The algorithm computes a planar layout with only convex faces for any
planar, 3-connected graph. The result is obtained by selecting an opportune position
for a first set of nodes, and by driving the positioning of the remaining nodes by forcing
them to the barycentre of their neighbours. However, as the author does not provide
a physical interpretation of the layout process, other methods are generally considered
the progenitors of the force-directed algorithm class.

Classical Force-Directed Algorithms. Eades [30] developed the first algorithm
that interprets the graph layout as the evolution of a physical system. In this method,
the graph edges are thought of as springs, and the graph nodes as rings to which
the springs are connected. Starting from a non-optimal initial state, the system will
evolve under the effect of tensed or compressed springs to a stable position, where
each spring is as close as possible to its optimal length.

In the work of Kamada and Kawai [64], the spring model is extended to consider
all the other nodes of the graph, rather than only a node’s neighbours. The force
system aims to place any pair u, v of nodes at at distance l ·dist(u, v) from every other
node, where l is the optimal distance between neighbour nodes. In other words, the
algorithm links the theoretical graph distance to the Euclidean distance in the graph
layout. The authors also explain how to compute the optimal displacement of a node,
when only one node is moved at each iteration.

Fruchterman and Reingold [45] also improved the work of Eades [30], proposing
a more sophisticated force system. The algorithm, was also inspired by the use of
simulated annealing in graph drawing [17], and it models the graph nodes as charges
that repel each other, and the edges as zero-length springs that attract the linked
charges. In this case, there exist two kinds of forces rather than one: a first, that
is always repulsive (see figure 3.14a), and a second, that is always attractive (see
figure 3.14b). The stable state is therefore reached once these forces are balanced for
all the nodes in the graph (see figure 3.14c).

Newer Force-Directed Algorithms. These methods inspired a long series of al-
gorithms based on the same principles. In newer algorithms, the structure and the
force system of the original works are generally much preserved, and the contribu-
tion is typically oriented towards overcoming or mitigating the weaknesses of the
force-directed approach. In Gem [42], the focus is on improving the efficiency of the

3.2 Graph Drawing 47

(a) (b) (c)

Figure 3.14: Typical forces considered in a force-directed algorithm. Thicker field lines and
vectors indicate higher force magnitudes. (a) The repulsive force between nodes. (b) The
attraction force between adjacent nodes. (c) Attractive and repulsive forces balance at the
optimal edge length δ.

algorithm by spending more computational effort on nodes that present higher stress
and higher chances of reducing it.

Cohen [14] and Hadany and Harel [55] introduced the concept of multilevel layout,
that consists of computing the layout by stages, starting from very few nodes and
gradually increasing the number of nodes taken into consideration. This approach is
used in many force-directed algorithms that aim to layout very large graphs, such as
GRIP [46, 47], LGL [1], and that of Walshaw [109] and of Harel and Koren [58].

A different approach to reduce the computational time and to scale to larger graphs
has been proposed by Fruchterman and Reingold [45] and by the authors of FADE [81].
The algorithms decompose the plane in cells, generating groups of geometrically close
nodes. The nodes inside each cell are then represented with a pseudo-node, a single
entity that approximates the position and the effect of the cell’s nodes when computing
the forces. With this system, the number of forces to be computed is greatly reduced
without changing significantly the resulting forces on the nodes. FM3 [54] further
improves these methods by combining it with a multilevel approach.

Constrained Force-Directed Algorithms. Standard force-directed algorithms
use forces to drive the positioning of the nodes to a desired configuration. How-
ever, the force system itself cannot enforce the presence of any particular structure
or property in the final layout. For this reason, force-directed algorithms that aim at
particular configurations of the graph layout implement additional constrains on the
node movement.

PrEd [6] extends the method of Fruchterman and Reingold [45] to grant that no
new edge crossings will be created and no existing edge crossings will be undone at
any stage of the layout computation. This means that the algorithm can be used
to optimise a planar layout while preserving its planarity and its embedding (see
figure 3.15), or to improve a graph that has a meaningful initial set of edge crossings.
To achieve this result, PrEd adds a phase where the maximal movement of each node
is computed, and adds a repulsive force between nodes and edges. Since PrEd is used
in our method for the generation of Euler diagrams, the algorithm will be explained
in greater detail in section 6.1.

Dwyer et al. [26–29] developed a series of algorithms that enforce several different

48 Graph and Euler Diagram Theory

(a)

(b)

Figure 3.15: Example of layout improvement with PrEd. (a) A sub-optimal planar drawing
(see figure 3.13a). (b) The drawing improved by PrEd.

characteristics on the final layout of a graph. In these algorithms, a method that
improves the computation of the optimal position proposed by Kamada and Kawai
[64], called stress majorisation [49], is used to transform the computation of a graph
layout into a problem of mathematical programming. It is then possible to provide ad-
ditional constrains to the problem to exclude drawings that do not present the desired
characteristics, such as a particular orientation of directed edges, the displacement of
nodes according to a hierarchy or their positioning into particular shapes.

Advantages and Disadvantages. The algorithms that implement a force-directed
approach typically present the same common advantages and disadvantages:

• Simple and intuitive. Force-directed algorithms are generally very simple to
understand and implement.

3.3 Euler Diagram Theory 49

• High aesthetics for small graphs. For graphs up to some hundred nodes, the
layout produced generally has a good distribution of the nodes, uniform edge
length and high angular resolution. Also, symmetries in the graph structure are
shown in the final layout.

• Preserving the mental map. Force-directed algorithms can be used to improve
an initial, sub-optimal, layout of a graph. When the initial configuration is
sufficiently stable, the resulting layout will retain the general graph structure and
the reciprocal positions of the nodes, partially preserving the insight acquired
by the user in the previous drawing [32, 73].

• Lower aesthetics for bigger graphs. The aesthetics of the graph typically de-
creases with the increase of the graph size, since the computation is more likely
to reach configurations of local optima. When this happens, the evolution of
the system converges to a final layout that may be much worse than the best
obtainable.

• High computational cost. Early force-directed algorithms were typically char-
acterised by a high algorithm complexity, which limited their applicability for
large graphs. Newer algorithm overcome this limitation.

3.3 Euler Diagram Theory
In this section, we complete the introduction to Euler diagrams started in the previous
chapter by approaching the topic from a more formal point of view. We start by
presenting the basic terminology, such as clusters, zones and regions, along with their
notation.

Towards the end of the section, the discussion shifts to properties of Euler diagrams,
to the different conventions used and to the drawability issues that they present.

3.3.1 Clusters and Zones
Due to the aim of this thesis, we assume that behind every Euler diagram there exist
a set of all elements V and a set system S to be represented. Each set s ∈ S of the
set system collects a certain number of elements of V , so that different sets s might
share some of their elements. For instance, in the example in figure 2.20 on page 16,
V is the set of all buttons and S is the set system to be depicted that is formed by
the overlapping sets: green buttons, blue buttons, round buttons, etc.

In section 3.1.11 on page 40, we already described a situation in which there existed
mathematical entities V and S, having the same properties described above: the case
of overlapping clustered graphs. In clustered graphs, V is the set of nodes of the
graph and S a collection of sets that groups some of them. Since graphs extend sets,
and since we can always consider the case E = ∅ if we are not interested in relations
between elements, we will assume that the set of all elements V is actually the set of
the nodes of a graph.

This assumption allows us to unify the formalisation of Euler diagrams into a single
case, making it independent from the set system being an overlapping collection of
elements or a fuzzy graph clustering. Therefore, even when the elements in an Euler
diagram are not part of an explicitly defined graph, the set system will be called a
clustering, and the sets to be represented will be called clusters. To refer to different
clusters s ∈ S, we will use upper case letters in sans-serif font, such as A, B, C.

50 Graph and Euler Diagram Theory

In section 2.2.1 on page 17, we saw how the clusters generate a number of different
intersections. For instance, in the case of three clusters S = {A,B,C}, we used the
minterm abc̄ to indicate the intersection A ∪ B ∪ C̄. We now call those intersections
zones and we indicate them with a sequence of lower case letters in sans-serif font, that
omits all the complemented clusters. For example, abd and de are the zones included
respectively in the clusters {A,B,D} and {D,E}, and external to all the other clusters
of S.

Since a zone can be either included or excluded in each cluster, there are a total
of 2|S| possible combinations. In fact each zone corresponds to an element p of the
power set of S, and in particular to that zone that is included in all the clusters in
p, and excluded by all the others. The zones identified in this way are all the zones
that can possibly exist in a diagram with such S, and are collected in the set Z∗.
However, since some zones cannot exist due to some particular cluster configurations
(for instance, the zone āb cannot exist if A ⊃ B), we usually consider the set of the
non-null zones Z, that is the set of the zones actually expressed in the diagram.

We also define the concept of associated zones and clusters, that allow us to switch
from clusters to their related zones, and vice versa. The associated zones A(s) of
a cluster s are all the non-empty zones contained in the cluster, or in other words,
all the non-empty zones that contain the cluster letter in their label. For instance,
A(A) = {a, ab, ac}. The associated clusters A(z) of a zone z are the clusters that
contain the zone, or in other words, the cluster whose letter is in the zone’s label. For
instance A(abd) = {A,B,D}.

Finally, we introduce the concept of wildcard characters to easily refer to the set of
zones whose labels share the same group of letters. For instance, with ab∗ we indicate
the set of the zones that contain the letters a and b in their label. Clearly, we have
that a∗ = A(A).

Clusters. For uniformity of notation, we always assume that an Euler diagram
is associated with an overlapping clustering S of a clustered graph G = (V,E, S).
Therefore, we define a cluster si ∈ S as a set to be represented in an Euler diagram,
and we indicate it with an upper case letter in sans-serif font, such as A, B, C. As
a consequence, the set system of the diagram corresponds to the clustering S.

Zones. Let Q = P(S), where P(S) denotes the power set of S. A zone z is a
set defined by a certain q ∈ Q as

z = Z(q) =
⋂
si∈q

si ∩
⋂

si∈S, si /∈q

s̄i =
⋂
si∈q

si \
⋃

si∈S, si /∈q

si

A zone is indicated with a sequence of lower case letters in sans-serif font, such
as ab and c, corresponding to the labels of the clusters in q. With Z∗ we indicate
the set of all possible zones of a diagram, Z∗ = {Z(q) : q ∈ Q}, and with Z the
set of non-empty zones, Z = {z ∈ Z∗ : z 6= ∅}.

Associated Zones and Clusters. The associated clusters of a zone z are the
clusters that fully contain z:

A(z) = {s ∈ S : z ⊆ s}

3.3 Euler Diagram Theory 51

(a) (b) (c)

Figure 3.16: Identification of a cluster region. (a) A set of cluster curves. (b) The inclusion
hierarchy depicted as a forest. The levels of the forest are marked alternating as positive and
negative regions. (c) The coloured surface is the resulting cluster region.

When z = Z(q), A(z) correspond to q. The associated zones of a cluster s are
the non-empty zones that are fully contained in s:

A(s) = {z ∈ Z : z ⊆ s}

Wildcards. When using the zone labels, we use Greek letters, such as α and
β, to indicate a sequence of lower case Latin letters. For instance, α = abd or
α = ce. With the notation α∗ we indicate the set of zones

α∗ = A(s1) ∩ A(s2) . . . where α = s1s2 . . .

3.3.2 Euler Diagrams and Regions

In Euler diagrams, the portion of the plane assigned to each cluster is called a cluster
region and it is typically identified as the area enclosed by a simple closed curve,
such as a circle or an ellipse. The area assigned to each zone z is then automatically
identified as the portion of the plane included in the cluster regions of the clusters in
A(z), and excluded from those of all the remaining clusters.

Here, we present a more general definition of the cluster regions. Each cluster is
associated with one or more simple, closed curves (Jordan curves), that do not intersect
between them, but that can intersect with those of other clusters. For cluster s, we
indicate the set of these cluster curves with Ts. When a curve contains other curves
of the same cluster, these are intended alternating as positive or negative regions
according to the order of inclusion.

For instance, if we have only two cluster curves t1 and t2, and t1 includes t2, then
t2 acts as a negative region (a hole) and its internal area is removed from the cluster
region. If a third cluster curve t3 is contained in t2, that is a hole, then the internal
area of t3 acts as a positive region and it is added to the resulting cluster region, that
is now composed of the portion of the plane between t1 and t2 and by the internal
region of t3 (see figure 3.16).

52 Graph and Euler Diagram Theory

Euler Diagrams. An Euler diagram D is a pair (T, T), where T is a set of
Jordan curves, T : T → S is a function that associates a curve with a cluster
and where all the curves associated with the same cluster, called cluster curves,
Ts = {t ∈ T : T (t) = s}, do not intersect between them:

t1, t2 ∈ Ts, t1 6= t2 ⇒ t1 ∩ t2 = ∅

Relations Between the Cluster Curves. A Jordan curve t divides the plane
into two regions: one enclosed by the curve, int(t), and one external to the curve,
ext(t) (Jordan Curve Theorem). Since two different cluster curves t1, t2 ∈ Ts do
not intersect, t2 lies either completely in int(t1) or completely in ext(t1):

t2 ⊂ int(t1) or t2 ⊂ ext(t1)

The inclusion relationship is a partial ordering on the cluster curves in Ts,
where t1 > t2 if t2 ⊂ int(t1). We can therefore organise them into a hierarchy,
that assumes the shape of a forest. The roots of the forest are the cluster curves
that are not contained in the internal region of any other curve. The children of
each curve t are the curves directly contained in the internal region of t, and the
leaves are the curves with no other curves in their internal region.

Cluster Regions. A cluster region sR is a portion of the plane associated with
a cluster s. In Euler diagrams, it is identified by the cluster curves Ts. Let
G = (V,E) be the forest that represents their inclusion hierarchy, and imax be
its maximum level. The cluster region corresponds to sRimax

, with sRi inductively
defined as

sRi =

⋃
t∈V 0

int(t) if i = 0

sRi−1 \
⋃
t∈V i

int(t) if i > 0, i ≡ 1 mod 2

sRi−1 ∪
⋃
t∈V i

int(t) if i > 0, i ≡ 0 mod 2

Zone Regions. A zone region zR is a portion of the plane associated with a
zone z. It is identified as

zR =
⋂

si∈A(z)

sRi ∩
⋂

si∈S, si /∈A(z)

sRi =
⋂

si∈A(z)

sRi \
⋃

si∈S, si /∈A(z)

sRi

Other Definitions of Euler Diagrams in the Literature. The above cluster
region definition allow us to obtain a much broader range of configurations, introducing
concepts already used by the creators of these diagrams, such as holes or disconnected
cluster regions (see figure 2.27b on page 25, that depicts a Venn diagram with a hole).
This definition is also coherent with most definitions already proposed in the literature.

Stapleton et al. [97] propose the same notation, but use the concept of winding
numbers to determine the actual cluster region from the cluster curves. Since we con-

3.3 Euler Diagram Theory 53

A
B

C
(a)

b

c

a abc

ac

ab

(b)

A
B

C

a

b

c

abac abc

(c)

Figure 3.17: Identification of zone regions. (a) A diagram with three clusters. (b) The zones
of the previous diagram have been labelled and split. (c) Labelling of the zones of another
diagram, containing a hole.

sider only simple and not intersecting cluster curves, the two definitions are equivalent.
Verroust and Viaud [107] propose a notation that marks explicitly each curve as pos-
itive or negative, and the cluster region is identified as the intersection of the internal
area of positive curves and the external area of negative curves. This definition is less
general than the one proposed in this thesis, since it cannot represent a configuration
with a positive region inside a hole (see figure 3.16).

The definition proposed in this thesis is also compatible with those that admit a
single curve for each cluster, such as the definitions of Chow [12] and Flower, Fish and
Howse [39]. In this case, it is sufficient to restrict the cardinality of Ts to one for each
cluster s ∈ S.

Although our definition could be further generalised by considering non-simple
curves, they are not strictly necessary to enlarge the number of clusterings that can
be depicted and may lead to ambiguities that can be difficult to untangle [37, 38].
Therefore, we chose to consider only simple curves in our definition.

The definition of zone regions is similar in all papers, although their identification
is influenced by the actual formulation of the cluster regions (see figure 3.17).

3.3.3 Properties of Euler Diagrams

An Euler diagram can be characterised by patterns that typically decrease its read-
ability. Stapleton et al. [97] identified several patterns, such as multiple crossing
points, concurrent curves, disconnected zones and clusters (see figure 3.18). Benoy
and Rodgers [5] evaluated the effect on the diagram comprehension of different cri-
teria, finding evidence that diagrams with more regular shapes, evenly spaced curves
and zones with adequate area can be more easily understood.

The presence or absence of these patterns has been defined as a diagram property
by Stapleton et al. [97]. A diagram can therefore be characterised by the property of
having only one curve per cluster, or not having points where more than two curves
intersect. These properties are not only mere aesthetics aspects: even the definition
of an Euler diagram, given by different authors, differs depending on these properties.
Moreover, several generation methods only work with diagrams that have a specific
set of properties, and might not be able to draw clusterings that do not admit this
kind of diagram.

54 Graph and Euler Diagram Theory

A
a

a

(a)

A

B

C

B

a

ab

b

bc

c

(b)

A B

a

a

ab

b

b

(c)

a

ab
abc

bc
c

b

B

A

C

(d)

a

B

A

ab

(e)

A

C B

a

b

ac

c

(f)

Figure 3.18: Examples of patterns considered by the Euler diagram properties. (a) A cluster
bounded by a non-simple curve. (b) A cluster region, BR, is not connected. All zone regions
are instead connected. (c) The zone regions aR and bR are disconnected. The cluster regions
are instead connected. (d) A multiple crossing point in correspondence with the intersection
of the three cluster curves. (e) Concurrency between the cluster curves. (f) Brushing point
between the curves of cluster A and B.

Properties of Euler Diagrams. We define the following properties that might
be associated with an Euler diagram:

• Simple curves: all the curves of the Euler diagram are simple (assured by
the above definition of an Euler diagram):

∀t ∈ T, t is a simple curve

• Only expressed zones: the zones present in the diagram are all and only the
non-null zones expressed by the clustering:

zR 6= ∅ ⇔ z ∈ Z

• Single cluster curve: all the clusters in the diagram have exactly one asso-
ciated curve:

∀s ∈ S, |Ts| = 1

3.3 Euler Diagram Theory 55

• No disconnected clusters: all the clusters in the diagram have a connected
cluster region:

∀s ∈ S, sR is a connected region

• No disconnected zones: all the zones in the diagram have a connected zone
region:

∀z ∈ Z, zR is a connected region

• No multiple crossings: there are no points where more than two curves cross,
that means no points belong to three or more curves:

t1, t2, t3 ∈ T, t1, t2, t3 different ⇒ t1 ∩ t2 ∩ t3 = ∅

• No concurrent curves: there are no curves that share a portion of their lines,
that means no curves share an interval of points:

t1, t2 ∈ T, t1 6= t2 ⇒ @ p1, p2 ∈ t1, p1 6= p2 : [p1, p2] ∈ t2

• No brushing points: there are no tangent points between the curves, that
means no curve t1 share a point or an interval with another curve t2 without
moving from int(t2) to ext(t2), or vice versa:

t1, t2 ∈ T, t1 6= t2, [p1, p2] ∈ t1 ∩ t2 ⇒
@ε ∈ R, ε > 0 : (p1 − ε, p1) ∈ int(t2) ⊕ (p2, p2 + ε) ∈ ext(t2)

• Convex clusters: all the clusters in the diagram have a convex cluster region:

∀s ∈ S, sR is a convex region

• Given cluster shape: all the clusters in the diagram have a cluster region of
a given shape, such as a circle or an ellipse:

∀s ∈ S, sR is of the given shape

3.3.4 Validity of an Euler Diagram

The properties of Euler diagrams are used to discriminate between correct and in-
correct representations of a given clustering. Only when an Euler diagram respects
the chosen set of properties, it is possible to say that the diagram is a valid repres-
entation of that set system. Two of these properties are considered necessary by the
vast majority of the authors, and will therefore be taken as granted: simple curves,
since the inclusion relationship is much clearer under this condition, and depicting
only expressed zones, to avoid ambiguity of the diagram (see section 2.2.2).

Euler himself [33] did not introduce the diagrams in a formal way, characterising
which properties a diagram should have. His examples, however, never present mul-
tiple cluster curves, disconnected zones or clusters. Therefore, most authors [12, 84,
90] depict a valid standard Euler diagram using these properties.

56 Graph and Euler Diagram Theory

Type Definition Properties

Restricted Well-formed Euler diagrams • Simple curves
• Only expressed zones
• No disconnected zones
• No disconnected clusters
• Single cluster curve
• No multiple crossings
• No concurrent curves
• No brushing points

Standard Standard Euler diagrams • Simple curves
• Only expressed zones
• No disconnected zones
• No disconnected clusters
• Single cluster curve

Generalised Extended Euler diagrams • Simple curves
• Only expressed zones
• No disconnected zones
• No disconnected clusters

Relaxed Euler diagrams • Simple curves
• Only expressed zones
• No disconnected zones

Table 3.1: Properties associated with different definitions of Euler diagrams. We marked the
properties shared by all definitions with a yellow bullet, the properties shared by standard
and restricted Euler diagrams with an orange bullet, and the additional properties enforced
by well-formed diagrams with a red bullet.

Flower, Fish and Howse [39] worked on a further restricted class of diagrams, called
well-formed Euler diagrams, that aim for the maximal clarity of the representation.
These diagrams must avoid multiple crossings, concurrent curves and brushing points,
in addition to the properties of standard Euler diagrams.

Other authors [12, 84, 91, 107] proposed representations that are less restrictive
than standard Euler diagrams. Typically, these diagrams are characterised by non-
disconnected zones, but accept multiple curves per cluster (holes and disconnected
clusters). We will call these diagrams generalised Euler diagrams.

Table 3.1 summarises the properties associated with the different kinds of diagrams
proposed in the literature.

Validity. An Euler diagram is a valid representation of the clustering S if each
zone z ∈ Z has a corresponding region zR and if the diagram respects a given set
of properties.

In this thesis, we use the set of properties of relaxed Euler diagrams, that com-
prises the properties: simple curves, only expressed zones, and no disconnected
zones.

3.3 Euler Diagram Theory 57

(a) (b)

Figure 3.19: Example of an undrawable Euler diagram, according to the standard set of
properties, derived from the graph K5. All cluster regions relative to the graph edges have
been filled in dark blue, but are all to be considered distinct. (a) A first attempt to draw
the graph fails as we cannot avoid overlaps between the dashed cluster region and other edge
cluster regions. (b) Shaping the node cluster regions, an advantage that we have compared
to the case of graphs, does not solve the problem. We cannot avoid overlaps between the
dashed portion of the region and other unrelated ones.

3.3.5 Drawability of an Euler diagram

The choice of a set of properties deeply influences the existence of a valid Euler diagram
for a given clustering, as respecting all the selected properties at the same time might
be impossible. Thus, the drawability of a clustering is related to the existence of a
valid Euler diagram for that clustering.

Well-formed Euler diagrams are the most limited class. These diagrams have a high
number of undrawable instances, even between very common clusterings. For instance,
the case of a clustering containing two identical clusters, S = {s1, s2}, s1 = s2, is not
drawable, as it is both needed to represent all and only the expressed zones and to
have not concurrent cluster curves. Figure 3.18d shows other example of diagram that
cannot be drawn under the well-formedness conditions.

Standard Euler diagrams can depict a much larger class of inputs, but it is still
possible to generate clusterings that do not have a valid representation. Let us consider
a diagram built over a non planar graph, so that each node and edge of the graph is
associated with a different cluster, and two clusters overlap only if one is associated
with an edge and the other with its source or target. To draw the diagram we would
need either to have a disconnected cluster or to extend a cluster region over a non
related one. Both actions are forbidden, since disconnected clusters are not allowed
and we can only depict expressed zones (see figure 3.19).

Extended Euler diagrams, proposed by Verroust and Viaud [107], are character-
ised by non-disconnected zones, non-disconnected clusters and multiple cluster curves
(holes). In their article they propose a generation method and prove that clusterings
up to eight sets are all drawable, but they show an instance of undrawable clustering
composed of nine sets.

58 Graph and Euler Diagram Theory

Rodgers, Zhang and Fish [84] and Simonetto, Auber and Archambault [91] dis-
cussed how disconnected cluster regions are necessary to remedy the planarity issues
described above. Therefore, a class of generalised diagrams that aim to draw all input
instances must allow them. Trivially, disconnected clusters are also a sufficient con-
dition, since we would be able to place each zone in its own isolated region and still
obtain a valid representation.

Drawability. A clustering is drawable if it has a valid Euler diagram. Every
clustering is drawable according to the conditions specified in this thesis for a
valid Euler diagram.

Chapter 4

Algorithms for the Generation
of Euler Diagrams

This chapter presents the methods and the algorithms proposed for the automatic
generation of Euler diagrams.

First, we describe and review the generation algorithms currently proposed in the
literature. For each method, we discuss the kind of diagram that the authors aim to
generate, the benefits and drawbacks of the choices that have been taken, and the
technical implementation of the approach.

Then, we introduce the generation method we have developed. The method will
be presented very briefly, since in this chapter we only aim to compare the approach
with that of other methods in the literature. A detailed explanation of the method
will be presented in the following chapter.

4.1 Related Work

During the last decade, several algorithms for the automatic generation of Euler dia-
grams have been proposed. These algorithms present significant differences on the
technical aspects and the generated output, but all share the same general approach
to the Euler diagrams generation: first, generate and draw a plane graph that repres-
ents the backbone of the final diagram, then, use it to draw the cluster curves.

The generation of Euler diagrams is therefore seen as a graph drawing problem
that involves, among others, graph planarity, layout aesthetics and optimisation, and
routing of curved edges.

The algorithms presented in this section are grouped on the basis of the diagram
they generate, according to the definitions reported in table 3.1. Then, we describe
a number of algorithms having special characteristics, or that focus on very specific
tasks in the diagram generation. The section is finally closed by a few InfoVis methods
that do not produce Euler diagrams as defined in this thesis, but a visualisation with
clear analogies to this kind of diagrams.

4.1.1 Well-Formed Euler Diagrams

The first method for the automatic generation of Euler diagrams was sketched by
Flower and Howse in a paper [40] that dates back to the year 2002, and was fully

59

60 Algorithms for the Generation of Euler Diagrams

(a) (b) (c)

Figure 4.1: Generation of well-formed Euler diagrams. (a) Generation and drawing of the
super-dual graph. (b) Routing of the cluster curves. The algorithm detects the points were
the curves must pass. (c) The resulting diagram.

formalised some years later [39]. The method uses the procedure mentioned above,
and is able to generate well-formed Euler diagrams only.

The backbone graph is called super-dual Gd, and is composed as follows. The
graph nodes are inserted according to the zones of the diagram to be built, since there
must be a one-to-one correspondence between the nodes of Gd and the elements of
Z. The edges are inserted between nodes whose zone labels differ from each other for
the presence/absence of only one letter. For instance, the node ab would be directly
linked to the node abd, since only the letter d is present in one label and absent in
the other. However, the same node would not be directly connected with ace, as the
labels differ for multiple letters (see figure 4.1a).

Since a valid graph Gd must be plane, it might be necessary to remove edges
from its initial configuration until the graph becomes planar. At the same time, it is
necessary to observe a second condition, called connectivity condition: for each cluster
s ∈ S, both the subgraph induced by nodes associated with the zones A(s) (the set of
zones whose label contains the letter of s) and the subgraph induced by the remaining
nodes, Ā(s), must be connected (see figure 4.2).

Once the edges of Gd have been decided, the graph is embedded on the plane.
Here some additional conditions, called face conditions, are verified to ensure that no
unwanted zones are created when routing the cluster curves. In the case that some of
the conditions fail, it is necessary to produce an alternative planar drawing of Gd and
reiterate the control of the face conditions, until they are all respected.

Starting from a correctly drawn super-dual graph, the cluster curves are depicted
so that each cluster s ∈ S has a single curve t that includes all the nodes associated
with the zones A(s) and none of the remaining nodes. To correctly route the curves,
the algorithm detects some points that the curve must cross and, in the case of finite
faces, traces the curves trough the middle of the face (see figure 4.1b). By eliminating
the graph and considering only the cluster curves, we obtain the final diagram (see
figure 4.1c).

Remarks. The authors have the merit of presenting a procedure that has been
largely used in the automatic generation of Euler diagrams. All following algorithms,
in fact, compute the cluster curves only once the general shape of the diagram is
defined by drawing a planar graph. Furthermore, the authors presented a large number
of theoretical results and definitions that have also been adopted by other authors.

Unfortunately, since the paper is mostly theoretical, there is not a lot of detailed
information on the choice of the edges to be removed and on the routing of the cluster

4.1 Related Work 61

(a) (b) (c)

Figure 4.2: Removing edges of a super-dual graph to meet the planarity and connectivity
conditions. The figures show only a portion of the super-dual and simulate on it the removal
procedure and the relative checks. Clearly, these controls are done on the whole graph
and at a topological level, therefore before drawing the graph. (a) A portion of the initial
configuration of the graph Gd. (b) After deciding to remove the edge [abc, ac], we check if the
subgraph induced by the nodes associated with the zones A(s), for each s ∈ S, is connected.
Here we check the nodes for s = C, that are connected. (c) Also the subgraph induced by the
nodes of Ā(s), for each s ∈ S, must be connected. Again, we check s = C and the subgraph
is connected.

curves. Since the specific implementation of these tasks deeply influences the aesthetics
of the final diagram, it is not possible to discuss the quality of the resulting diagrams.

Furthermore, the method is designed to produce only well-formed Euler diagrams.
Although these diagrams present higher readability than general ones, a large number
of very common configurations are undrawable under these conditions (see section
3.3.5).

Routing the Cluster Curves in Well-Formed Euler Diagrams

Rodgers et al. [85] presented an algorithm for routing the cluster curves in a diagram
generated with the previous method.

In order to obtain reference points for drawing the curves, the algorithm triangu-
lates the graph, meaning that additional edges are inserted to obtain only triangular
faces. The unbounded face is clamped by a frame and is also triangulated. Unlike
the standard edges of the super-dual, the newly inserted edges might connect nodes
that differ for more than one letter. For example, in order to triangulate the graph,
we might insert an edge between a and abc, that differ for two letters (see figures 4.3a
and 4.3b).

Since the edges are crossed only by the cluster curves that differ in the label of
their extremities, the newly inserted edges might be crossed by zero or multiple curves.
When more than one curve cross an edge, a greedy policy assigns the ordering of the
edge-curve crossings so that the final diagram does not contain undesired overlaps and
all the zones are correctly represented (see figures 4.3c and 4.3d).

The authors provided other methods to further improve the quality of the resulting
diagram, such as inserting additional elements for a finer triangulation, optimising the
layout of the triangulated graph with a force-directed algorithm and smoothing the
cluster curves by shifting the crossing points along the graph edges.

62 Algorithms for the Generation of Euler Diagrams

(a) (b)

(c) (d)

Figure 4.3: Routing the cluster curves in well-formed Euler diagrams. (a) The original super-
dual graph. (b) The graph is triangulated by adding the additional dashed edges and by
considering additional 16 points in a frame around the graph. The edges have been labelled
with the letters that differ in the label of their extremities. (c) Since some edges are labelled
with multiple letters, it is necessary to assign the order in which the cluster curves cross
each edge. (d) The resulting diagram. This drawing can be further improved through a
force-directed optimisation of the triangulated graph.

4.1 Related Work 63

Remarks. This method provides very convincing results on small diagrams, espe-
cially once the mentioned optimisation procedures are applied to the triangulated
graph. The results on large diagrams present lower aesthetics, possibly due to the fact
that the super-dual quickly grows in complexity and leads to a triangulated graph
that is difficult to optimise.

We have a couple of minor observations on this method. First, general force-
directed algorithms cannot formally ensure that no crossings will be inserted, even
when starting from a very regular and stable initial configuration such as that of the
triangulated graph. To formally avoid incorrect layouts, it is possible to use specific
force-directed algorithms such that of Tutte [103] or of Bertault [6].

The second observation regards the choice of nesting portions of the diagram. The
algorithm independently draws and merges the portions of the diagram that have
no curve intersections. Since the merge operation consists of inserting a portion in
the correct face of another, there could be issues with the dimension of the nested
component, which might appear undersized compared to the rest of the diagram.

On the other hand, this choice presents a significant benefit. Splitting the diagram
generation into smaller sub-instances could greatly decrease the complexity of the
problem, and with that the computation time required. Also, it might be possible to
readjust the size of the cluster regions with post-generation optimisation algorithms,
that will be presented in section 4.1.5.

4.1.2 Standard Euler Diagrams

In his doctoral thesis, Chow [12] studied the generation of different kinds of Euler
diagrams in great detail. The approach chosen for the diagram drawing is similar
to that of Flower, Fish and Howse [39], since it is also based on the detection and
drawing of a backbone graph, called Euler dual, that drives the depiction of the cluster
curves. However, the author extensively studied the properties and characteristics of
the Euler dual, their effect on the final diagrams, the classes of drawable instances
and the complexity of several problems linked to the generation of Euler diagrams.

The real focus of Chow’s thesis is the generation of area-proportional Euler and
Venn diagrams. In area-proportional diagrams the area of the zones must be propor-
tional to a weight that each zone has assigned as for instance the number of elements
contained.

At first, he considered the problem of generating area-proportional Euler and
Venn diagrams of three clusters, using only circular, elliptical, or rectangular cluster
curves. Here, the author analysed which shapes always allow to obtain correct area-
proportional diagrams, and proposed approximations for those that cannot be cor-
rectly drawn.

Then, the author proposed an approach for generating or re-drawing a particular
sub-class of Euler diagrams to fit the area-proportionality constraints. In this method,
the diagram is drawn by adding one zone at a time, starting from the central ones
and moving towards the external ones in a spiral fashion. Since each zone is attached
to the outer part of the diagram drawn so far, the area of the zone can be regulated
by acting on its radial dimension (see figure 4.4).

Remarks. The thesis contains a large number of very interesting theoretical contri-
butions. Also, the author puts great effort into covering different definitions of Euler
diagrams, since the theoretical results highly depend on the Euler diagram properties
requested for the drawing.

64 Algorithms for the Generation of Euler Diagrams

(a) (b)

Figure 4.4: Generation of area-proportional Euler diagrams. The method requires to order
and iteratively add the zones to the current drawing, and works only for a particular class of
Euler diagrams. (a) The order in which the zones are added. At the stage i, only the zones
with an index lower than or equal to i are present in the drawing. The area of each zone can
be controlled through its thickness: compare, for example, zone 3 and zone 7. (b) The final
diagram generated with this method.

Also, the algorithms described seem to produce very pleasant diagrams, with the
additional benefit of the area-proportionality property. However, the method proposed
for diagrams with more than three clusters only works on a specific class of inputs, and
the document does not include diagrams featuring more than half a dozen of clusters.
Therefore, it is not possible to discuss the utility of the method for larger diagrams.

4.1.3 Extended Euler Diagrams

Verroust and Viaud [107] approached the Euler diagram generation problem from a
practical point of view. They were asked to produce a method for visualising the
relationships between categories of video and audio recordings, and decided to rely
on Euler diagrams. The only diagrams having a generation algorithm available at
that time, well-formed Euler diagrams [40], were unfortunately too restrictive, as they
precluded the generation of a diagram for many input instances.

Therefore, the authors defined the less constrained class of the extended Euler
diagrams, and developed a method to generate them. The construction of the diagram
is very similar to the other approaches. First, the backbone graph is identified and
drawn. Again, the graph must be planar and the subgraph induced by the nodes of
A(s), for each s ∈ S, must be connected. Then, the cluster curves are identified by
triangulating the graph and routing the curves through the resulting faces.

In the paper, it is proven that such a method works for every input clustering
having eight or less clusters, and undrawable instances that exceed this number are
provided.

4.1 Related Work 65

(a) (b) (c)

Figure 4.5: Extensions of the well-formed diagram method to draw standard Euler diagrams.
(a) Edge insertion for the concurrency enforcement. In this first example, the dashed edges,
that are not inserted by the original method, are inserted as the diagram requires concurrent
curves. (b) Edge insertion for the elimination of brushing points. In this second example, we
have an unnecessary contact between the clusters A and C. (c) The insertion of the dashed
multiple edge allows to remove the brushing point from the previous configuration.

Remarks. The most interesting aspect of the paper regards the drawability of Euler
diagrams. Even though the authors developed the method to overcome the drawability
issues of the previous method, and consequently extended the standard Euler diagram
definition, the possibility of generating a valid diagram was insured only up to eight
clusters. This shows the complexity of the Euler diagram generation problem, as well
as the necessity of violating the connected cluster region property to provide a drawing
for every input instance.

Also, the paper has the merit of sketching the first concrete method for the depic-
tion of the cluster curves, since the method of Rodgers et al. [85] was proposed a few
years later. However, this second method has the benefit of reducing the concurrency
of the cluster curves, that is largely used in the method of Verroust and Viaud.

4.1.4 Relaxed Euler Diagrams

The method for generating well-formed diagrams [39] has been extended by Rodgers,
Zhang and Fish [84] in order to draw relaxed Euler diagrams. The extended algorithm
differs from the previous for a number of features that adapt the generation of the
super-dual to the non-welformedness conditions, such as concurrent curves and dis-
connected clusters. It also differs for a slightly modified cluster curve routing.

Starting from the initial configuration of the super-dual graph, the algorithm pro-
ceeds with the edge removal phase to meet planarity and connectivity conditions, as
in the previous method. However, if the edge removal leads to a graph that respects
the planarity but not the connectivity condition, the graph is not discarded as an
undrawable input and the generation continues with the following steps.

When the graph is not well-formed, the algorithm inserts additional edges between
the super-dual nodes that differ for two or more letters. This is done to enforce the
concurrency on the cluster curves when the diagram requires it (see figure 4.5a). Then,
as in the previous method, the super-dual is embedded on the plane taking care of
placing the node associated with the null zone ∅ on the external face.

Once the graph is drawn, the algorithm proceeds with a second edge addition

66 Algorithms for the Generation of Euler Diagrams

phase, where some multiple edges are routed on the embedded graph to avoid the
generation of unnecessary brushing points (see figures 4.5b and 4.5c). Then, the
graph is triangulated and the cluster curves are drawn in a way similar to the previous
method [85].

Remarks. The algorithm presents most of the advantages and disadvantages of the
method it extends. In particular, relatively small diagrams are nicely drawn, as the
algorithm manages to assign the cluster regions so that the intersections are clear and
readable. The choice of independently drawing and merging portions of the diagram
is also preserved, along with the advantages and drawbacks it induces.

Unfortunately, as with previous methods, very large diagrams seem not to be the
target of the algorithm, as the ability to deal with large input instances is not discussed
in the paper.

4.1.5 Specialities

Significant efforts have been done to improve specific phases of the diagram generation,
or to produce diagrams with a different approach.

In this section, we first present some methods that improve the aesthetics of already
generated diagrams, in the attempt of making them more readable and comprehens-
ible.

Then, we present two methods that generate the diagrams by adding a cluster curve
at a time. This can be used both to modify an existing diagram, and to generate new
diagrams from scratch.

Finally, we describe a method that utilises very readable cluster curves, but at the
expense of a heavy use of disconnected cluster regions and/or duplicated elements.

Optimisation of the Cluster Curves

Flower, Rodgers and Mutton [41] proposed a method to optimise the shape of the
cluster curves, and with that the aesthetics of the diagram. The method requires to
interpret the cluster curves as a path of nodes and edges, and to evaluate a pool of
metrics. The metrics evaluate characteristics such as the area of the diagrams, cluster
regions and zone regions, the smoothness of the curves, and several others.

The values calculated for the metrics are optimised through a hill climbing ap-
proach. The nodes are therefore moved only in directions that improve the value of
the metrics, until no further progress is possible. The nodes are moved both individu-
ally and in groups, in order to accelerate the convergence to an optimal configuration.

Micallef and Rodgers [72] also proposed to interpret the cluster curves as paths,
but they used a force-directed algorithm to optimise them. In addition to the stand-
ard attraction and repulsive forces, other forces were inserted to ensure a correct
configuration of the resulting diagram.

Remarks. The optimisation of the cluster curves is, in our opinion, a very import-
ant step of the generation of Euler diagrams. We believe that it is not convenient to
overload the construction phase with non-structural aesthetics considerations. For ex-
ample, in the first phases it is better to focus on the general shape of the final diagram
rather than on the actual spacing between the curves or the cluster elements. The
latter aspects can then be optimised in a post-processing computation, as proposed
by the above methods.

4.1 Related Work 67

(a) (b) (c)

Figure 4.6: Inductive generation of Euler diagrams. (a) The initial configuration of the
diagram and its backbone graph. (b) In order to insert a new cluster curve, we insert
multiple edges to the backbone graph (drawn thinner). The cycle chosen to route the cluster
curve is highlighted in green. (c) The final diagram, containing the additional cluster D.

The results produced with the hill-climbing optimisation are very aesthetically
pleasing, especially when all the metrics are considered and are well balanced between
each other. Unfortunately, according to Micallef and Rodgers [72], the method is
computationally expensive and impractical for large diagrams.

The force-directed optimisation of the cluster curves, also used in our method,
seems to be able to scale to larger diagrams. Unfortunately, the control over the
diagram shape is much less reliable, since all the characteristics considered by the
hill-climbing optimisation need to be translated into appropriate forces on the graph
nodes.

Inductively Generated Diagrams

Some authors studied the problem of inserting new cluster curves, corresponding to
additional clusters, to an existing diagram. The technique can also be used to generate
new diagrams from scratch, if we start with an empty initial diagram and we insert
one curve at a time.

The first method proposed [94] requires to insert additional edges to the backbone
graph, and to use the graph elements to route the cluster curves to be inserted (see
figure 4.6). The new edges are inserted between nodes already adjacent, and are
therefore meant to provide new ways of routing the cluster curves.

The second method [95] extends the first by constructing and using a more complex
graph, called a hybrid graph. The authors also explain how to enforce the properties
that characterise the well-formed Euler diagrams, such as curve simplicity, absence of
concurrency and of multiple crossings.

In both cases, if s is the new cluster to be inserted and ts is its curve, the graph is
studied in order to find a cycle that crosses the intersecting clusters of s, and that splits
the zones in the desired way. If such a cycle exists, ts is routed over the nodes and
edges of the cycle and added to the current drawing. This operation clearly requires
the recomputation of the backbone graph at every iteration, since the insertion of
new curves generates new zones (and therefore new nodes in the backbone graph) and
alters their adjacency relations (the edges of the backbone graph).

Remarks. The insertion of new cluster curves in an existing diagram could be very
useful in a data investigation scenario, where the user interacts with the drawing in
order to discover new insight on the data. In fact, the technique greatly preserves the

68 Algorithms for the Generation of Euler Diagrams

mental map of the user (see page 49), that would be lost if the diagram was generated
from scratch at each modification.

However, not all diagrams can be generated with this method, since some diagrams
would require to pass through invalid configurations in order to obtain a valid final
drawing. The authors mention the case of a Venn diagram with five clusters: to be
drawn correctly, we would need to add the fifth cluster curve to an invalid four-clusters
Venn diagram, characterised by disconnected zones. Since a Venn diagram with four
clusters has a valid drawing, the algorithm would produce this configuration, making
the addition of the fifth curve impossible.

Inductive Pierced Diagrams

Stapleton et al. [96] studied the problem of inductively generated diagrams from an-
other point of view. They defined a single piercing curve as a curve that intersects
exactly one other curve, and a double piercing curve as a curve that intersects ex-
actly two other curves. They then considered diagrams that have only circular cluster
curves, and that can be generated by inductively adding one single or double piercing
curve at a time.

The generation of piercing diagrams requires to first identify whether the input
clustering can or cannot be generated with this method. Then, at each insertion, the
algorithm needs to identify the curves that contain or intersect the one to be inserted,
and to compute the position and dimension of the curves in order to respect these
relationships.

Since the algorithm can only draw a restricted class of diagrams, the authors aim
to combine this method with general inductive methods to be able to draw a larger
input class. They also plan to provide a method to re-adjust size and position of the
curves to increase the aesthetics of the final diagram.

Remarks. This method is very interesting for the properties that are enforced in the
final diagram. Circular shapes greatly help to identify the cluster regions, providing a
very clear representation of containment and overlap relationships. Also, the method
identifies the essential parameters for the positioning of the curves (the intersection
and containment relationships), allowing to design an eventual aesthetics optimisation
that has a more direct control on the diagram. Force-directed curve optimisation
methods, for example, are much more difficult to control, as there is a greater number
of variables that come into play (all the forces acting on each point of the cluster
curves).

On the other hand, these choices present significant drawbacks. Because of the
generation process and the circular shapes imposed, not all input instances can be
drawn. Also, the circular shapes might cause a considerable wasting of space and
inequality on the cluster dimensions when dealing with complex or large clusterings
(see figure 4.7). Finally, the extension of the method to higher levels of piercing, such
as triple or quadruple piercing curves, might cause an excessive increase of the problem
complexity.

However, considering that this approach is relatively new and that some of the
above problems might be corrected by combining it with other algorithms, the piercing
method can have an important impact on the future methods for the generation of
Euler diagrams.

4.1 Related Work 69

(a) (b)

Figure 4.7: Problems related to enforcing circular shapes in Euler diagrams. (a) The diagram
style forces an imbalance in the zone sizes. The problem worsens with the increase of the
diagram size and complexity. (b) A diagram drawn without enforcing circular shapes. The
diagram can be much more compact and can better utilise the space, without excessive
consequences for the comprehension of the cluster curves.

Untangled Euler Diagrams

Riche and Dwyer [83] proposed two methods to generate Euler diagrams with more
readable overlaps.

According to the authors, Euler diagram comprehensibility would greatly benefit
from simple and convex cluster regions. In order to enforce this property without
restricting the input class, the authors decided to make a large use of disconnected
cluster regions and to use only rectangular regions.

The first method, ComED (see figure 4.8a), splits the cluster intersections into a
strict hierarchy, so that the diagram can be depicted without partial overlap between
the rectangular regions. For instance, for a diagram with S = {A,B} and Z =
{a, ab, b}, we could build a hierarchy in which ab is child of a, and b is isolated,
which leads to a diagram in which a and b are associated with disjoint rectangular
regions, and ab is associated with a rectangular region fully contained in that of a.

The second method, DupED (see figure 4.8b), aims to avoid any kind of overlap
between the cluster regions by duplicating the original elements contained in a cluster.
The resulting diagram will feature a disjoint rectangular region for each cluster, con-
taining all the cluster elements. In both ComED and DupED, links are used to identify
the disconnected portions of a cluster region or the duplicated elements.

The authors present a software that allows to interact with such visualisations, that
also features the possibility of moving from ComED to DupEd. They also present the
results of a user study which evaluates the benefits of both styles and compare them
with hand-drawn Euler diagrams, and which provides some evidence of the validity of
the visualisation.

70 Algorithms for the Generation of Euler Diagrams

(a) (b)

Figure 4.8: Examples of untangled Euler diagrams (courtesy of Riche and Dwyer [83]).
(a) The diagram drawn according to the ComED style. (b) The diagram drawn accord-
ing to the DupED style.

(a) (b)

Figure 4.9: Solutions suggested to improve the readability of complex diagrams. (a) Linking
of disconnected portions of a cluster region. (b) Duplication of a shared zone region.

Remarks. This method is extremely interesting for its different approach to the dia-
gram generation, and for the quality of the resulting drawings. We already identified,
in a previous publication [90], the two strategies behind ComED and DupED (the
insertion of links between the disconnected components of the cluster regions and the
zone duplication) as potential ways of making an Euler diagram more readable (see
figure 4.9). However, the authors have the merit of including these strategies into a
well realised generation procedure, which is able to generate informative and readable
diagrams even for complex input.

The interaction implemented, as well as the possibility of switching from one style
to another by dragging the zone regions, are also very interesting and well designed.

4.1 Related Work 71

4.1.6 Methods with Analogies to Euler Diagrams

To conclude, we present a couple of information visualisation methods that have high
similarities with the generation of Euler diagrams, but that do not comply entirely
with this task. Both methods involve the identification of regions that encompass a
set of elements, as it happens with the cluster regions of Euler diagrams.

However, since the methods do not alter the initial positions of the cluster elements,
they can hardly be used to generate Euler diagrams as defined in this thesis. They
can instead provide meaningful ideas for the identification and the depiction of the
cluster curves and regions.

GMaps

Gansner, Hu and Kobourov [48] developed Gmap, a method for visualising a non-
overlapping clustering of a graph as a geographical-like map (see figure 4.10). To
generate Gmaps, a graph is drawn in the plane and clustered with an algorithm that
fits the characteristics of the drawing, so that the clusters detected collect elements
at a close geometrical distance. Then, the mapping algorithm identifies the borders
of the clusters and the map colouring algorithm assigns colours to the clusters so that
nearby clusters have colours that greatly differ from each other.

The mapping algorithm inserts a great number of dummy nodes at random pos-
itions in the drawing, with the only constraint of not being too close to an original
graph node. Then, the Voronoi diagram for the graph is computed, and the cells con-
taining nodes that belong to the same cluster are merged to form the cluster region.
The method also takes into consideration the glyph or the label associated with a
node, generating cluster regions that fully contain them as long as they do not overlap
with those of other nodes.

The colouring algorithm receives as input a number of colours equal to the number
of clusters, and assigns them to the cluster regions so that chromatically close colours
are preferably assigned to clusters at great distance in the drawing.

Remarks. From an Euler diagram point of view, the most interesting parts of the
method are the mapping and the colouring algorithms. The mapping algorithm could
be used to efficiently detect the cluster regions, but it would need to handle overlapping
clusters and to ensure that we would not generate non-desired zones in the diagram.

The colouring algorithm could instead be directly applied to the generation of
Euler diagrams, since we could compute distant colours for the overlapping clusters
as it is done in Gmaps for the clusters that share a boundary.

Bubble Sets

Collins, Penn and Carpendale [15] proposed a technique to display overlapping clusters
that collects elements with an assigned position. Since bubble sets do not alter the
current element placement, they can be used to enhance existing diagrams and visu-
alisations, such as, for instance, scatter plots (see figure 4.11).

With bubble sets, we dynamically create regions that aim to enclose all the elements
of a cluster and no other ones. To do so, edges might be inserted between the nodes
of one cluster and routed to avoid the nodes that are not contained in it. The area
around the nodes and edges is then modelled as an energy field, and the cluster
boundaries are computed as the points of the resulting energy field having the same
value (isocontours).

72 Algorithms for the Generation of Euler Diagrams

Figure 4.10: Gmap showing the co-authorship rela-
tions of the articles presented in 20 years of Graph
drawing conferences (courtesy of Gansner, Hu and
Kobourov [48]).

Figure 4.11: Bubble sets in a scatter
plot showing the fertility rate by life
expectancy by country (courtesy of
Collins, Penn and Carpendale [15]).

The cluster region computed in this way is connected, and since it is dynamic-
ally generated, it would adapt to an eventual node movement and respond to the
interaction of the user.

Remarks. The authors provide several case studies and applications that all prove
the very high aesthetics and usefulness of the method. The computation of bubble
sets is fast enough to be used in real-time applications, and the cluster regions readily
respond the user interaction.

However, the aim of bubble sets and Euler diagrams only partially correspond.
Bubble sets are characterised by connected cluster regions, but also for highly dis-
connected zone regions. Moreover, bubble sets might generate a high number of null
zones, that is generally forbidden in Euler diagrams but that is not problematic since
the depiction of the original elements removes the ambiguities (see section 2.2.2).

4.2 Euler Representations

As explained in chapter 1, the aim of our work is to develop a visual method for the
analysis of overlapping clusters based on Euler diagrams. This application field adds
a few constraints to the generation of Euler diagrams as considered by other authors.
First, a diagram must always be produced. Second, the method must be reasonably
fast even for large input instances. Third, the diagram must include the elements of
the clustered graph.

While with the standard Euler diagram generation we can only rely on the visual
encoding (the drawing style and conventions), a method inserted in a visualisation
framework can also make use of interaction techniques to mitigate problems that the
visual encoding cannot easily address.

For the reasons explained we devised a visual encoding, called Euler representation,
with the following characteristics:

4.2 Euler Representations 73

(a) (b)

Figure 4.12: Comparison between Euler diagrams and Euler representations. The diagrams
are composed of three sets: the set of the French things (blue), the set of Italian things
(green), and the set of monuments (red). The sets overlap on the Colosseum and on the
Eiffel Tower. (a) A classic Euler diagram. (b) An Euler representation. Compared to the
previous diagram, we can note the transparent textures and the introduction of concurrency
on portions of the cluster curves.

• Based on relaxed Euler diagrams. Since we cannot have undrawable instances, it
is necessary to work with the less restrictive class of Euler diagrams. Clearly, the
generation process should avoid as much as possible violating the Euler diagram
properties, in particular with respect to the connectivity of the cluster regions.

• Large level of cluster curve concurrency. As we might be required to draw dia-
grams having hundreds of sets, we chose to insert a large amount of concurrency
between the cluster curves. This will help reduce the running times both in the
generation phase and in the cluster curve optimisation phase, since the concur-
rency reduces the number of lines in the drawing.

• Textures, colours and transparency. Since the cluster curve concurrency ob-
structs the identification of the cluster regions, we insert some graphical tech-
niques to help discriminate the clusters that form the zones of the diagrams. We
fill the cluster regions with coloured, semi-transparent textures that permit the
identification of the patterns even in the presence of multiple overlaps.

A comparison between a standard diagram and the Euler representation of a sample
clustering is shown in figure 4.12.

4.2.1 The Generation Process
The generation process is composed of the following sequence of steps:

1. Zone graph construction. In the first step, a backbone graph, called zone graph,
is constructed. The nodes of the graph correspond to the expressed zones of the
diagram, that are identified by studying the inclusion relationships of the cluster

74 Algorithms for the Generation of Euler Diagrams

members. The edges of the graph are instead iteratively inserted in the graph,
following metrics that highlight the most important ones at the current stage of
the iteration. As in previous methods, the zone graph must be planar.

2. Zone graph drawing. Once the zone graph elements have been decided, the graph
is embedded on the plane using a planar graph drawing algorithm. Since the
layout is generally not very aesthetically pleasing, the graph layout is improved
with a different force-directed algorithm that preserves graph planarity.

3. Grid graph construction. Instead of routing the cluster curves in the zone graph,
as done in previous work, we obtain them by transforming the zone graph ele-
ments into regions. To do so, we construct a second graph, called grid graph,
that wraps the nodes and edges of the zone graph.

4. Grid graph drawing. Once the grid graph has been computed, the members
of each zone are inserted in the corresponding region. This is possible since
the zone graph has a node for each expressed zone, and since the grid graph
transforms the zone graph nodes into regions. The layout of the grid graph is
again optimised through a force-directed method.

5. Depiction of the cluster regions. Finally, we identify the polygonal contours of
the cluster regions and we smooth them by using Bézier curves. Also, we apply
coloured textures to help discern clusters that overlap in a certain region.

The result of the operations performed at each stage of the computation is shown
in figures 4.13 and 4.14.

4.2.2 Comparison with Methods in the Literature
The generation and drawing of the zone graph does not present substantial differences
with that of other methods. However, a precise description of how to choose the edges
to insert or delete, and of how to embed the graph on the plane is often missing,
limiting the possibility of comparing our method with that of others.

The generation and drawing of the grid graph substitutes the routing of the curves
in other methods. Our approach tends to be simpler and faster, but to penalise the
quality of the drawing with less regular shapes and high levels of concurrency. Since
these aesthetics issues are less evident with the increase of the diagram dimension,
and since the computation time is a serious problem only for large input instances,
this approach better suits the generation of large and complex diagrams than that of
small ones.

The graphical additions we propose to assist the user on the identification of the
cluster regions are typically not considered by the methods in the literature. These
features are particularly important for Euler representations due to their purposes
and characteristics, but could be applied to all existing methods. The cluster curves,
which are the classical way of detecting the cluster regions, are smoothed to make
them easier to follow. Coloured, semi-transparent patterns, that are easily identifiable
even when several clusters intersect, are then inserted to provide a new method to
detect the cluster regions.

In terms of the diagram generated, our method presents another major difference
with respect to all other methods in the literature: the elements contained in clusters
and zones are included the diagram. As the regions are now required to nicely fit their
content, the improvement of the cluster shape is no more an optional step, but an
integral part or the generation procedure.

4.2 Euler Representations 75

?

(a) (b)

(c) (d)

Figure 4.13: Procedure for the generation of Euler representations, up to the grid graph
drawing. (a) Zone graph construction. The nodes and edges of the zone graph are identified
at this stage. (b) Zone graph drawing. We identify a planar drawing for the zone graph.
(c) Grid graph construction. The graph elements are placed on the plane to wrap the zone
graph. (b) Grid graph drawing. The original elements are inserted in the relative zone
regions, and the layout is optimised.

76 Algorithms for the Generation of Euler Diagrams

Figure 4.14: Last step of the generation procedure and results. From the drawing in fig-
ure 4.13d, we identify and depict the cluster regions using smooth curves, colours and tex-
tures.

Chapter 5

Automatic Generation of Euler
Representations

In this chapter, we detail the generation process of Euler representations. As anticip-
ated at the end of the previous section, there are five main steps:

1. Zone graph construction: we generate the backbone graph, called zone graph,
by identifying its nodes and edges.

2. Zone graph drawing: we identify a planar layout for the zone graph that respects
the graph drawing aesthetics criteria.

3. Grid graph construction: we generate a second graph, called grid graph, that
wraps the elements of the zone graph.

4. Grid graph drawing: we place the original graph elements and we optimise the
grid graph layout to obtain a first approximation of the final diagram.

5. Depiction of the cluster regions: we depict the cluster regions using several
graphical techniques that improve the readability and the visual appeal of the
drawing.

The generation procedure therefore involves three main graphs:

• The original clustered graph. The clustered graph that is provided as the only
input of the procedure. The graph will be indicated with Go = (V o, Eo, S),
where S is the clustering (see section 3.1.11), and we will colour its nodes black.

• The zone graph. Shows the zones expressed by the diagram and their adjacency
relations. We will indicate the graph with Gz = (V z, Ez) and we will colour its
nodes red.

• The grid graph. Provides a first approximation of the final cluster regions. We
will indicate the graph with Gg = (V g, Eg) and we will colour its nodes green.

In the following sections, we explain each step of the generation procedure. The
first section details the construction and drawing of the zone graph. The second section
explains the generation and drawing of the grid graph. Finally, the last section details
the depiction of the cluster regions.

77

78 Automatic Generation of Euler Representations

5.1 Generation and Embedding of the Zone Graph
In the first two stages of the algorithm we generate and draw a backbone graph that,
in our method, we call zone graph.

To generate the zone graph we need to determine the nodes V z and edges Ez

that compose it. The determination of the nodes is simple since there is a one-
to-one correspondence between them and the expressed zones of the diagram. The
determination of the zone graph edges, however, is much more complex since we need
to consider planarity, connectivity and aesthetics issues.

In the following sections, we will first explain how to efficiently detect the expressed
zones of the diagram, and with that the set of nodes V z. Then, we present the heuristic
we developed to iteratively insert the zone graph edges, obtaining the final set of edges
Ez. Finally, we explain how to obtain a planar drawing that respects the aesthetics
criteria discussed in section 3.2.2.

5.1.1 Indentification of the Expressed Zones
The identification of the expressed zones can be performed by studying the inclusion
relationships of the nodes of the original graph.

Let Go = (V o, Eo, S) be the input clustered graph. We associate a list of clusters
to each node uo ∈ V o, initially empty, that will contain all and only the clusters that
contain uo. To fill the lists, for each cluster s ∈ S, we scan the nodes contained in the
cluster uo ∈ s and insert s on their cluster list. Once generated, the lists provide both
the set of the expressed zones Z of the diagram, and the partitioning of the original
nodes in zones (see algorithm 5.1 on page 81).

The process is explained for an example input instance having five original graph
nodes and three clusters:

uo1 ∈ A

A = {uo1, uo2, uo3} uo2 ∈ A,B,C z1 = a = {uo1, uo3}
B = {uo2, uo4, uo5} → uo3 ∈ A → z2 = b = {uo4, uo5}
C = {uo2} uo4 ∈ B z3 = abc = {uo2}

uo5 ∈ B

Since we obtained three different cluster lists, there are three expressed zones: a, b
and abc. The lists also provide the content of each zone, since an original graph node
uo is contained in the zone Z(q), where q is the list of clusters of uo. For example, the
list of uo2 is {A,B,C}, and therefore uo2 is contained by Z({A,B,C}) = abc.

Notation. Due to the one-to-one correspondence between zones and zone graph
nodes, in the following sections we might abuse mathematical terminology and nota-
tion. For instance, by saying that we will insert edges between the zones z1 and z2,
we mean that we will insert an edge between the zone graph nodes that correspond
to those zones. Also, by indicating A(u), u ∈ V z, we refer to the associated clusters
of the zone that corresponds to the zone graph node u.

5.1.2 Insertion of the Zone Graph Edges
Once the set of the zone graph nodes is detected we proceed with the insertion of the
zone graph edges. When doing so, we consider the following conditions:

5.1 Generation and Embedding of the Zone Graph 79

• Planarity. The zone graph must be planar, as edge crossings correspond to
undesired overlaps between the cluster regions that we will generate.

• Cluster connectivity. The subgraph induced by the zones A(s), for every s ∈ S,
should be connected. When this happens, we obtain connected cluster regions
(see figure 5.1a).

• Cluster intersection connectivity. The subgraph induced by the zones α∗, for
every possible α, should be connected. This generalises the previous point by
enforcing the connectivity of the regions where two or more clusters overlap (see
figure 5.1b).

The first condition is strictly necessary in the generation process, and must there-
fore always be respected. The second condition allows to control the Euler diagram
property “no disconnected clusters”, and we will try to respect it whenever possible.
The third condition does not actually refer to any Euler diagram property, but it
deeply influences the readability of large diagrams. In fact, a cluster overlap composed
of multiple disconnected regions can be difficult to spot, and can lead to misleading
conclusions on the elements shared by the clusters (see figure 5.2b).

No other Euler diagram properties are enforced at this point. The properties
required by relaxed Euler diagrams are in fact enforced by the whole process, rather
than only by the selection of the zone graph edges. Properties typical of well-formed
diagrams could be achieved by carefully inserting the zone graph edges, but we will not
take them into direct consideration. As explained at the end of the previous chapters,
concurrency and multiple crossing points are distinctive traits of Euler representations.

The Algorithm

Given a set of nodes V z, there are a very large number of sets of edges Ez that
strictly respect the first condition, and that partially respect the second and the third.
Unfortunately very few of them lead to aesthetically pleasant diagrams. Since the
edges of the zone graph deeply influence the shape and readability of the resulting
diagram (see figure 5.2), it is necessary to carefully select the edges that help us
optimise the second and the third conditions.

In the next section, we will define a few metrics that measure the contribution of
an edge in satisfying the properties. As these metrics are based on the connectivity of
portions of the zone graph, they must consider the edges that are already part of Ez.
For example, an edge that connects abc to a helps connecting the cluster A, but its
contributions is needed only if the nodes are not already connected through another
path. This also means that each time an edge is added to the graph, we need to
recompute or update the metrics of the edges that might be inserted in the future.

For these reasons, the algorithm that we propose for the edge insertion constructs
a pool of candidate edges, and at each iteration moves the edge with highest global
value to Ez. Whenever the insertion of the best edge would result in a zone graph
that is no longer planar, the edge is removed from the pool of candidate edges and the
next best edge is considered for insertion in Ez. The procedure is stopped when the
pool of candidate edges is depleted. The pseudo-code of the procedure is reported in
algorithm 5.2 on page 81.

80 Automatic Generation of Euler Representations

(a)

(b)

Figure 5.1: Enforcement of the zone graph conditions. We insert the edges in order to
satisfy planarity, cluster connectivity and cluster intersection connectivity. (a) Control of the
fulfilment of the cluster connectivity conditions. (b) Control of the fulfilment of the cluster
intersection connectivity conditions.

5.1 Generation and Embedding of the Zone Graph 81

Algorithm 5.1 Indentification of the expressed zones

. Cluster List Population
for all uo ∈ V o do

clusters(uo) ← empty list of clusters
for all s ∈ S do

for all u0 ∈ s do
insert s in clusters(uo)

. Expressed Zones Identification
for all uo ∈ V o do

if expZones does not contain clusters(uo) then
expZones(clusters(uo)) ← empty list of nodes

insert uo in expZones(clusters(uo))

return expZones

Algorithm 5.2 Insertion of the zone graph edges

. Candidate Edges Initialisation
for all u1, u2 ∈ V z do

if u1 6= u2 ∧ A(u1) ∩ A(u2) 6= ∅ then
globalMetric([u1, u2]) ← global metric for the edge [u1, u2]
add [u1, u2] to candidateEdges

. Edge Insertion
while candidateEdges 6= ∅ do

e← best candidate

if Gz = (V z, Ez ∪ {e}) is planar then
insert e in Ez

remove e from candidateEdges
for all e ∈ candidateEdges do

globalMetric([u1, u2]) ← global metric for the edge [u1, u2]

else
remove e from candidateEdges

return Ev

82 Automatic Generation of Euler Representations

(a) (b) (c)

Figure 5.2: Results produced by different sets of zone graph edges. (a) A clear representation.
(b) A less clear representation due to the disconnected overlap between cluster A and B. As
we can see, the two clusters share the zone regions abR and abcR, but these regions are
not adjacent to each other. This might cause the user to miss one of the regions, resulting
in wrong conclusions being drawn on the overlap between A and B. (c) Another unclear
configuration, since the placement of the zones makes the identification of the cluster regions
harder.

The Metrics

We developed a number of metrics to evaluate the contribution of candidate zone
graph edges. The metrics indicate how much the insertion of a candidate edge would
assist in respecting the conditions above, or in other words, in generating a clear and
readable Euler diagram.

The first metric promotes the connectivity of the cluster regions, and since this is
the most important property to enforce it will have the highest importance in weighting
the edges. Two other metrics are designed to penalise low aesthetic configurations,
so that a more readable configuration, whenever it exists, is preferred. Finally, a
global metric combines the contributions of the previous ones to provide the final edge
weight.

Before describing the metrics in details, we define the concept of a cluster subgraph
which corresponds to the subgraph of the current zone graph induced by the nodes
that contain the same cluster letter.

Cluster Subgraph. We define the cluster subgraph Gz
s of a cluster s ∈ S as the

subgraph of Gz induced by the nodes A(s).

Promoting the Connectivity of the Cluster Regions. In order to avoid dis-
connected cluster regions, we need to insert edges between all nodes that belong to the
same cluster subgraph. At the same time, reducing the number of edges is important
since the more edges we need to insert, the more likely it is that the graph violates
planarity. We will therefore favour edges that connect components in many cluster
subgraphs at the same time, rather than edges that connect only a few of them.

For this reason we define the connection metric mc(e
z). The function counts the

number of cluster subgraphs in which the insertion of ez would connect disconnected
components. It is worth noting that this function depends on the edges previously

5.1 Generation and Embedding of the Zone Graph 83

(a) (b) (c)

(d) (e) (f)

Figure 5.3: Functioning of the connection metric and its update. (a) The initial zone graph
composed only by nodes and no edges. Each possible edge is weighted with the connection
metric. (b) The edge with highest value is inserted in the graph. (c-e) Other edges are
inserted, and the weights influenced by the insertion (coloured in green) are updated. (d) The
resulting zone graph.

inserted. An example of what the metric mc means and how it works when updating
a graph, is shown in figure 5.3.

Connection Metric. Let G be the current zone graph, and Ge the current
graph in which the edge e has been inserted. Let Cs be the set of connection
components of the cluster subgraph Gs, and Ce

s be the analogous to Ge.
The connection metric mc(e) is computed as

mc(e) =
∑
s∈S

(
|Cs| − |Ce

s |
)

Demoting Low Aesthetic Configurations. In order to avoid unclear configura-
tions (such as those in figures 5.2b and 5.2c), we penalise the insertion of edges that
differ too much from each other. This is obtained by defining two other metrics.

The first function, the brushing metric, detects the number of unrelated clusters
that are forced to be adjacent through this edge. For instance, the edge [ab, ac] forces
clusters B and C to share a boundary, even when it is not necessary. This is not the

84 Automatic Generation of Euler Representations

case for the edge [a, abc], since no unwanted boundaries would overlap.
The second function penalises edges between nodes that differ for more than one

letter. For instance, the edge [a, abc] connects a zone to one contained in two more
clusters, B and C, other than the first. When choosing between the edges [a, abc] and
[ab, abc], the second is preferable, since the extremities differ for only one letter.

Brushing Metric. The brushing metric mb(e) for a zone graph edge e = [u1, u2]
is computed as

mb(e) = min
(
|A(u1)|, |A(u2)|

)
− |A(u1) ∩ A(u2)|

Coincidence Metric. The coincidence metric mi(e) for a zone graph edge
e = [u1, u2] is computed as

mi(e) = max
(
|A(u1)|, |A(u2)|

)
− |A(u1) ∩ A(u2)| − 1

The brushing metric returns one for the edge [ab, ac], and zero for the edge [a, abc].
The benefits of this penalisation are shown in an example in figure 5.4a.

The coincidence metric returns one for the edge [a, abc] and zero for the edge
[ab, abc]. Figure 5.4b shows why this penalisation is helpful.

The Global Metric. The global metric combines the previous metrics into one
value. Since the metrics have different importance, we weight their contribution on
the global metric. The factors used in the global metric formula have been empirically
determined.

Global Metric. The global metric mg(e) is computed as

mg(e) = mc(e)− 0.15 mb(e)− 0.05mi(e)

5.1.3 Embedding of the Zone Graph
Once the elements of the zone graph are decided, we embed it on the plane. The
drawing must be planar, and the aesthetics of the graph should be maximised to
facilitate the optimisation of the diagram at the next steps of the generation algorithm.
Particularly important are node spacing and angular resolution, as we will see in the
next section.

In order to produce a drawing with these characteristics, it is possible to apply two
algorithms presented in section 3.2.3. The first, FPP [18], allows us to identify a first
planar drawing of the graph. The second, PrEd [6], optimises this drawing to increase
its aesthetics.

Since the readability of the final diagram heavily depends on the optimisation
produced by PrEd, and since we use the algorithm to improve both the zone graph and
the grid graph, we spent a considerable effort on improving the method. The resulting
algorithm, that we called ImPrEd, improves PrEd in terms of drawing quality, running
time, and control over the optimisation process.

5.1 Generation and Embedding of the Zone Graph 85

(a)

(b)

Figure 5.4: Effects of the metrics that demote low aesthetics configurations. (a) As a con-
sequence of the brushing metric, the first configuration is chosen. The second zone graph
leads to a less clear diagram, as B and C have an unnecessary overlap of their boundaries.
(b) As a consequence of the coincidence metric, the first configuration is chosen. The second
zone graph leads to a less clear diagram, as the zone ab is more difficult to recognise.

86 Automatic Generation of Euler Representations

ImPrEd is explained in greater detail in chapter 6. For now, it is sufficient to
know that the general behaviour of PrEd is preserved: ImPrEd is still a force-directed
approach that impedes nodes from crossing edges, preserving all and only the crossings
present in the input graph.

Algorithm Parameters. The algorithm FPP requires no parameters. ImPrEd re-
quires the same parameters as PrEd, which are the optimal edge length (or minimal
desired node-node distance) δ, the minimal desired node-edge distance γ, and the
number of iterations.

Since the first two parameters influence the positioning of the zone graph nodes
that correspond to the spacing between the zones of the diagram, we decided to link
them to the number of zones and to the number of cluster elements that will be inserted
in the zones. The formulae used to compute the parameters passed to ImPrEd are

δ =

max

(
10,
|V o|
100

)
+ max

(
10,
|V z|

5

)
2

γ = 0.8 δ iter = 200

Results of Different Embeddings of the Graph

As explained in section 3.1.9, there might exist many planar maps for the same graphs.
In other words, we might be able to generate many non-equivalent drawings.

In our algorithm, the embedding of the zone graph is automatically decided by the
implementation of FPP that we use. However, the choice of the embedding produced
would be of crucial importance for the aesthetics of the diagram.

Let us consider a complex zone graph formed by a tree rooted on the vertex of a
small polygon. There are two major kinds of planar drawings that we can generate:
one in which the tree is contained in the polygon, and one in which it is not. The
second situation is clearly preferable over the first since a very large tree would force
the edges of the polygon to stretch considerably (see figure 5.5).

Although there are methods for identifying and generating all the possible planar
maps of a planar graph [21–23], their number can be exponential with the size of the
graph. Moreover, it seem that there are no trivial ways of identifying the best planar
map. In fact, the problem exemplified in figure 5.5 can subsist at every level of the
graph, and not only on the external face (see figure 5.6).

Due to the importance of the problem, which affects all the generation algorithms
that use a backbone graph to generate an Euler diagram, it should be investigated
further.

5.2 Generation and Improvement of the Grid Graph
In the third and fourth step of the algorithm we generate and improve a second graph,
called the grid graph, that will provide the borders of the zone and cluster regions.

Once the backbone graph is drawn, most methods in the literature trace the cluster
curves around the graph elements and eventually optimise them in a post-processing
phase. In our method, the optimisation of the curves is an integral part of the drawing
procedure, allowing to greatly simplify the curve tracing.

In fact, when generating the grid graph we will not make any effort to produce a
decent approximation of the final diagram, but we will only convert the zone graph
elements into regions of the plane. This is done for two reasons. First, a well devised

5.2 Generation and Improvement of the Grid Graph 87

(a) (b)

Figure 5.5: Generation of non-equivalent embeddings for a zone graph. We consider a zone
graph formed by a tree rooted on the vertex of a triangle. (a) The first kind of embedding
encloses the tree in the triangle. In this case, the tree assumes the shape of the triangle and
the triangle’s edges are very stretched. (b) The second kind of embedding places the tree on
the external face. As the previous constraints are absent, the spacing of the nodes and the
angular resolution are much improved.

(a) (b)

Figure 5.6: Problems related to the choice of the embedding. (a) Although it is rather simple
to force the face with higher number of edges to be on the outer face, this does not solve the
problem. A small polygon including a large portion of the graph could be present just inside
the outer face. (b) To choose the best planar graph, it would be necessary to investigate all
possible cycles and the portions A and B in which the graph would be decomposed.

88 Automatic Generation of Euler Representations

optimisation phase can produce layouts of high aesthetics even when starting from
a grid graph of this kind. Second, a more complex routing system would probably
present similar results in the case of complex and large diagrams.

In the following sections we will first detail the generation of the grid graph and of
its initial drawing. Then, we will discuss the optimisation phase, that consists of the
improvement of the initial grid graph layout.

5.2.1 Grid Graph Generation
The grid graph is built on the embedding of the zone graph, by placing nodes and
edges on the plane. For this reason, once the generation procedure is completed, we
obtain both the grid graph and its initial drawing.

There are two main aims in the construction of the gird graph:

• Transform the zone graph nodes in actual regions of the plane. Since we want
to include the original elements in the final drawing, and since the zone regions
should have a dimension sufficiently large to nicely fit their content, we insert
the original graph nodes in the drawing before the optimisation phase. To do
so, we need to reserve a portion of the plane for each zone, in correspondence to
its current position in the zone graph.

• Preserve the zone region adjacency. Since the zone graph edges indicate adja-
cency relations between the zone graph regions, we need to enforce these relations
in the portions of the plane reserved to each zone.

The easiest way to obtain these aims is to directly convert the nodes and edges of
the zone graph into portions of the plane.

Enclosing the Zone Graph Nodes

The grid graph nodes are placed on the plane both around the zone graph nodes, and
around the zone graph edges.

The grid graph nodes placed around the zone graph node uz lie on a circle centred
on the latter. We define a radius r that corresponds to a third of the minimal node-
node and node-edge distance in the zone graph. Such a measure for r ensures that
by placing a circle of radius r centred on each grid graph node, we do not have any
intersection between the circles.

The circle centred in the zone graph node uz is cut into circular arcs by the zone
graph edges incident to uz. We place the grid graph nodes on the arcs respecting the
following conditions:

• each arc has at least one grid graph node,

• the central angles between consecutive nodes in the whole circle are never greater
than 2π/3,

• the central angles between consecutive nodes in the same arc have constant
amplitude k, and the central angles between the external grid graph nodes and
the relative arc extremities are equal to half this measure (see figure 5.7b).

The grid graph edges are instead inserted between consecutive nodes in the same
arc, or in other words, we insert edges between consecutive nodes on the circle only
when they do not cross zone graph edges (see figure 5.7c).

5.2 Generation and Improvement of the Grid Graph 89

(a) (b) (c)

Figure 5.7: Construction of the grid graph around the zone graph nodes. (a) A circle of
radius r, centred on a zone graph node uz, is split into arcs by the edges incident to uz. The
arcs are identified by different colours. (b) Let us consider the red arc. The grid graph nodes
are placed so that the central angles respect the given proportions. (c) The grid graph edges
are added between the consecutive grid graph nodes on the same arc.

The pseudo-code of of this first step of the grid graph generation is reported in
algorithm 5.3 on page 91.

Circle Radius. We compute the circle radius r as

r = min

 min
u,v∈V z

u 6=v

‖pu − pv‖, min
u∈V z

e∈Ez

u6=s(e),t(e)

‖pu − pp‖

 / 3

where p is the projection of u in the line of e, and where px is the position of the
point x (node or projection) on the plane.

Positioning of the Grid Graph Nodes (Around Zone Graph Nodes).
Let us consider a zone graph node uz ∈ V z and the circle of radius r centred
on it. We split the circle into arcs according to the incident edges of uz (see
figure 5.7a).

Let a and b be the extremities of one of these arcs. In this arc, we insert a
number of grid graph nodes equal to

n =

⌈
∠ab
2π/3

⌉
where ∠ab is the measure of the central angle âuzb.

The grid graph nodes ug1 . . . u
g
n are inserted on the arc so that the node ugi has

a central angle from the beginning of the arc equal to

∠augi ←
∠ab
n
· (i− 0.5)

This gives constant amplitude between the grid graph nodes, and half of this
measure between a and the first node, and between the last node and b (see
figure 5.7b).

90 Automatic Generation of Euler Representations

The positioning of the grid graph nodes is computed for each arc of the circle
individually. In the case of isolated zone graph nodes, since there are no incident
zone graph edges to enforce the position of the grid graph nodes, we insert three
grid graph nodes on the circle with the only condition of placing them evenly
spaced.

Correctness. We verify that the formulae respect the previous conditions. We
insert at least one node per arc, since n ≥ 1 for every arc of positive amplitude. Let
k = ∠ab/n. Since ∠aa = 0 and ∠ab = nk, we obtain that ∠aug1 = ∠ugnb = k/2 and
that ∠ugi u

g
i+1 = k. Also, since k < 2π/3, the central angle between consecutive

nodes is smaller than 2π/3 both when the nodes belong to the same arc and when
they do not.

Insertion of the Grid Graph Edges (Around Zone Graph Nodes). We
insert a grid graph edge between each consecutive pair of grid graph nodes ugi u

g
i+1

that belong to the same arc. No edges are inserted between nodes on different
arcs (see figure 5.7c).

In the case of isolated zone graph nodes, the edges are inserted between each
pair of grid graph nodes, creating a triangle.

Enclosing the Zone Graph Edges

Let us consider a zone graph edge ez = [uz1u
z
2]. Since the edge ez splits the circles

of both the extremities into arcs, it is possible to detect the first clockwise and anti-
clockwise grid graph nodes from the edge in each circle. For node uz1, we denote the
first clockwise one with ug1c and the first anticlockwise with ug1a. For uz2, the two are
respectively ug2c and ug2a.

For each zone graph edge ez we insert two grid graph nodes and five grid graph
edges. Let us consider the segments ug1cu

g
2a and ug1av

g
2c. We insert the two grid graph

nodes vg1 and vg2 in the middle points of the first and second segment. The five grid
graph edges connect the extremities of the segments to their middle points, and the
middle points between them (see figure 5.8).

The insertion of these elements completes the determination of the zone regions,
since the boundary is well constructed and the zones do not overlap with each other.
The pseudo-code of this last step of the grid graph generation is reported in al-
gorithm 5.4.

Positioning of the Grid Graph Nodes (Around Zone Graph Edges).
Let ez = [uz1u

z
2] be a zone graph edge. In the circle of uz1, we identify with uz1c

the first grid graph node in clockwise order from the edge and with ug1a the first
anticlockwise one. Similarly for uz2.

We place the grid graph node vg1 in the middle point of the segment ug1cu
g
2a

and the grid graph node vg2 in the middle point of the segment ug1au
g
2c.

Insertion of the Grid Graph Edges (Around Zone Graph Edges). For
each zone graph edge ez, we insert the grid graph edges [ug1c, v

g
1], [vg1 , u

g
2a], [ug1a, v

g
2],

[vg2 , u
g
2c] and [vg1 , v

g
2].

5.2 Generation and Improvement of the Grid Graph 91

Algorithm 5.3 Grid graph construction around zone graph nodes

. Radius Computation
r ← +∞
for all u1, u2 ∈ V z, u1 6= u2 do

r ← min(r, ‖pu1
− pu2

‖/3)

for all u ∈ V z, e ∈ Ez, u 6= s(e), u 6= t(e) do
p← projection of u in e
if p ∈ e then

r ← min(r, ‖pu − pp‖/3)

for all uz ∈ V z do
. Edge List Creation

[e0 . . . ea]← incident edges of uz in order
if [e0 . . . ea] = ∅ then

e0 ← dummy edge
ea+1 ← e0

. Element Insertion
for i← 0 to a do

arcStart← angle of ei
arcAmpl← ∠eiei+1

n← d3 · arcAmpl/2πe
for j ← 1 to n do

ang← arcStart + (arcAmpl/n) · (i− 0.5)
insert the node ugj at distance r and the angle ang from uz

if j > 2 then
insert an edge between ugj−1 and ugj

Algorithm 5.4 Grid graph construction around zone graph edges

for all ez ∈ Ez do
. Node Insertion

uz1 ← s(ez) uz2 ← t(ez)
ug1c ← firstClockNode(uz1)
ug2c ← firstClockNode(uz2)
ug1a ← firstAnticlockNode(uz1)
ug2a ← firstAnticlockNode(uz2)
Insert node vg1 as midpoint of ug1c and ug2a
Insert node vg2 as midpoint of ug1a and ug2c

. Edge Insertion
Insert edge between vg1 and vg2
Insert edges between ug1c, u

g
1a, u

g
1c, u

g
1a and the relative midpoint

92 Automatic Generation of Euler Representations

(a) (b)

Figure 5.8: Construction of the grid graph around the zone graph edges. (a) For each zone
graph edge, we identify the first clockwise and anticlockwise nodes on the two circles. We
place two new grid graph nodes on the middle points of the segments ug

1cu
g
2a and ug

1av
g
2c, and

we insert five new grid graph edges. (b) At the end of this procedure, we obtain a face that
encloses the zone graph node. This is the initial drawing of the zone region associated with
the node.

Correctness. The area dedicated to a zone graph node uz corresponds to a face
bounded by the grid graph elements inserted around uz and around its incident
edges. Since this area is at a maximum distance of r from the zone graph elements,
and since such distance is determined as a third of the node-node and node-edge
distances in Gz, there are no overlaps between the zone regions in the drawing.

5.2.2 Grid Graph Improvement
In this stage, we perform a few modifications of the current grid graph and we optimise
its initial layout. The graph that results from this phase contains all the information
about the positioning of both the cluster elements and the cluster curves.

Grid Graph Modifications

As a first modification, we substitute all the chains (see section 3.1.5) of the grid graph
with polyline edges, so that the edge has the same extremities as the chain, and bends
corresponding to the positions of the internal nodes of the chain.

Then, we insert the original graph elements in the relative zone regions. To ensure
that the original graph nodes are placed inside the zone region boundaries detected
at the previous stage, we position them in a limited area around the position of the
zone graph node.

Since we place the grid graph nodes so that the maximal central angle between
consecutive ones is 2π/3, the minimal distance between the centre of the circle and
a grid graph edge is equal to the apothem of an equilateral triangle. Since smaller
central angles induce larger distances, and since the ratio between the circumradius
and the apothem of an equilateral triangle is cosπ/3 = 2, any points in a circle with
radius r/2, with r defined above, is surely inside the zone region (see figure 5.9).

Finally, before proceeding with the optimisation, we remove the zone graph from
the drawing.

5.2 Generation and Improvement of the Grid Graph 93

Figure 5.9: Modifications of the grid graph before the layout optimisation. First, the chains
are replaced by polyline edges having bends in correspondence to the chain nodes. Then, the
original graph nodes are placed in the respective zone regions by inserting them in random
positions inside a circle with radius r/2. Finally, the original graph edges are also inserted.

Conversion of the Grid Graph Chains into Polyline Edges. Each chain
u0e1u1 . . . elul in the grid graph is substituted by a polyline edge [u0, ul] that has
a bend in correspondence with each ui, with 0 < i < l.

Insertion of the Original Graph Elements. Let uz be a node of the zone
graph. We insert the original graph nodes of the zone uz by placing them at
random positions in the circle centred in uz and having radius r/2 (with r defined
in section 5.2.1).

Once the nodes are all inserted we also add the original graph edges.

Layout Improvement

The current drawing, formed by both the grid and the original graph, is improved by
applying ImPrEd a second time. This time, we use some additional features that we
introduced in ImPrEd to ensure a greater control over the generation of Euler diagrams.

The set of crossable edges Cr can be used to remove the non-crossing conditions
to some of the graph edges. The set of flexible edges Fl can be used to enable some
edges to be bent. The weight of the elements increases or decreases the importance of
the nodes or edges in the determination of the final drawing.

Algorithm Parameters. Since we want the grid graph elements to have higher
influence on the optimisation of the graph layout, we assign a higher weight to them.
We set the original graph edges as crossable, since we do not want them to obstruct
the movement of the nodes inside the zone regions, and we lower their weight. The
grid graph edges are instead marked as flexible, since we want them to assume shapes
that better fits the drawing.

The parameters passed to ImPrEd are

δ = 5 γ = 4 iter = 300 Cr = Eo Fl = Eg

W(V g) =W(Eg) = 2 W(Eo) = 0.1

94 Automatic Generation of Euler Representations

(a) (b) (c)

Figure 5.10: Identification of the cluster curves. (a) The drawing obtained with the grid
graph optimisation. The cells of the grid graph are associated with their zone labels. (b) To
identify the cluster curves of cluster B, we take into consideration the boundaries of the grid
graph cells associated with the zones A(B). (c) The edges dividing two of such cells (such as
the dashed edge) are removed. The remaining edges compose the cluster curves of B.

5.3 Depiction of the Cluster Regions

At this point, the cluster curves can easily be identified by merging the boundaries of
the zone regions associated with the same cluster. In the case of adjacent zones belong-
ing to the same cluster, the shared boundaries are not considered, so that the resulting
cluster curve contains the zone regions without dividing them (see figure 5.10).

In order to improve the aesthetics and the readability of the final diagrams, we
apply several graphical techniques to the depiction of the cluster regions.

First, we use smooth cluster curves. The current grid graph uses polyline edges
to bound the cluster and the zone regions. We need to convert these polyline bound-
aries into smooth curves, while ensuring that this transformation does not generate
unwanted overlaps.

Second, we compute a map of colours to assign to the clusters. This map aims
to minimise the colours used in the drawing, while not assigning the same colour to
overlapping sets.

Finally, we apply semi-transparent patterns to the cluster regions. The patterns
help distinguish the clusters involved in an intersection, since the blending of the
colour is often not sufficient to discern which and how many clusters overlap in the
same region.

5.3.1 Smooth Cluster Curves

To convert the current polyline edges into smooth boundaries, we transform each
straight-line edge, or each segment of a polyline edge, into a cubic Bézier curve.

In doing so, we need to consider a couple of important issues. First, since each
edge will be individually converted, we need to ensure that the curves merge smoothly.
Second, since the transformation modifies the shape of the current boundary, we need
to ensure that the diagram is not altered by this operation.

We can ensure that these conditions are respected by using the properties of cubic
Bézier curves.

5.3 Depiction of the Cluster Regions 95

(a) (b) (c)

Figure 5.11: Examples of Bézier curves. The control points are marked with circles. In
particular, P0 and P3, the extremities of the curves, are depicted by green circles, while P1

and P2, that are not generally crossed by the curves, are depicted by purple circles. The
shaded area is the convex hull of the control points, that fully contains the curve. (a) A
first example, in which the control polygon corresponds to the convex hull. (b) A second
example, in which there is no correspondence between the control polygon and the hull.
(c) A smooth connection between different curves can be obtained by overlapping P a

3 and
P b
0 , and by making them collinear to the control points P a

2 and P b
1 .

Cubic Bézier Curves. A Bézier curve C is a parametric curve described by
a tuple of points, called control points. Cubic Bézier curves have four control
points, P0, P1, P2 and P3.

Properties of Cubic Bézier Curves. Cubic Bézier curves have the following
properties:

1. The polygon formed by the edges P0P1, P1P2, P2P3, P3P0, is called a control
polygon. Its convex hull completely contains the curve.

2. The curve starts in P0 and ends in P3.

3. The beginning of the curve is tangent to P0P1. The end of the curve is
tangent to P2P3.

In particular, we will use the first property to ensure that the drawing will not be
altered, and the last two to obtain a smooth connection of different curves. Examples
of such properties are shown in figure 5.11.

Smooth Connection of Different Curves

For each curve, the start and the end points P0 and P3 are provided by the grid graph,
as they correspond to the extremities of the edge. Thus, we only need to compute the
points P1 and P2.

Let Ca and Cb be two cubic Bézier curves, and let P a
i and P b

i be their control
points. According to the third property, it is sufficient to enforce P a

3 = P b
0 to make

them join. However, to avoid sudden changes of direction in correspondence with the
joint, we must also ensure that the end of the first curve and the beginning of the

96 Automatic Generation of Euler Representations

(a) (b) (c)

Figure 5.12: Depiction of the cluster curves, distinguished by the type of junction. At this
stage of the computation, we only identify the line on which the control points are placed.
The distance from the junction, and with that the actual position of the control points, is
decided in the next step of the procedure. (a) Basic junction. The control points P 2

a and
P 1
b are placed along the perpendicular of the bisector of the angle formed by ea and eb,

passing through the junction. (b) Spring junction. If ea is the edge shared by all the cluster
boundaries passing through the junction, we place P a

2 along the edge. The remaining control
points are placed along the line of ea, on the opposite side of the junction. (c) Complex
junction. Since we cannot obtain smooth and consistent boundaries for all the clusters in the
junction, we place the control points along the respective edges.

second have the same tangent. Therefore, we need to place the control points P a
2 and

P b
1 so that the segments P a

2 P
a
3 and P b

0P
b
1 are collinear (see figure 5.11c).

The previous consideration implies that the position of the points P1 and P2 cannot
be computed individually for each curve, since P1 depends on the previous Bézier curve
and P2 depends on the next. For this reason, we will discuss how to compute P a

2 , P b
1

for adjacent curves, rather than P1 and P2 for the same one.
Since P a

2 , P b
1 and P a

3 = P b
0 must be collinear, we first need to pick a line passing

through the junction point P a
3 = P b

0 to detect the remaining control points. We
distinguish three cases, that differ in the way the cluster curves intersect in a junction
point.

Basic Junction. If the junction point is a grid graph node with degree two, meaning
that only two curves merge at this point, we have a basic junction. In this case, if
ea is the edge that corresponds to the first curve Ca and eb is the edge corresponding
to the second one Cb, we pick the line that passes though the junction, and that is
perpendicular to the bisector of the angle formed by ea and eb (see figure 5.12a).

Spring Junction. If the junction point is a grid graph node with degree greater
than two, and if there is an edge used by all the cluster curves passing through the
junction, we have a spring junction. In this case, for each cluster curve we pick the
line that passes through the junction and is collinear to the edge shared by all cluster
curves (see figure 5.12b).

Complex Junction. When the two previous cases do not apply, we have a complex
junction. In this case, it is not possible to obtain smooth and consistent cluster curves,
since we would break the concurrency of some cluster regions and generate undesired

5.3 Depiction of the Cluster Regions 97

(a) (b) (c)

Figure 5.13: Different configurations of convex hulls and control polygons. The red shaded
area is the convex hull, while the blue area is the control polygon. As the curve is fully
contained in the convex hull, we need to ensure that the convex hull of different edges do
not overlap. (a) Non simple control polygon. The convex hull is a quadrilateral that does
not correspond to the control polygon. (b) Simple but not convex control polygon. The
convex hull is a triangle that includes the edge. (c) Convex control polygon. The convex hull
corresponds to the control polygon.

new zones. Therefore, we place the control point of each curve directly on its edge
(see figure 5.12c).

Ensuring that the Diagram is Not Altered

At this point of the computation, we have only obtained the lines on which the control
points lie. We now proceed with the computation of the distances of the control points
from their junction, that allows us to fully identify their position on the plane.

The distance at which we place the control points is crucial for the correctness
and the appeal of the diagram. If the distance from the junction is too low, the
cluster curves will not appear smooth and regular, as we merely round the corners
of the current polygons. If the distance from the junction is too high, we might
generate overlaps between the cluster curves that were not originally in the drawing.
In addition, too high distances might also produce unnatural, bulging cluster shapes.

Binding the Maximal Distance to Enforce Correctness. Since assigning too
high distances risks altering the diagrams, we must compute the maximal values al-
lowed for each junction and for the given directions. These values must ensure that
the convex hull of the control points of each curve do not overlap with that of another
curve.

We enforce a first condition to prevent the generation of bulging curves and to
simplify the characterisation of the convex hulls. We bound the distance of P1 from
P0, and of P2 from P3 not to be greater than a third of the edge length.

Under this condition, the convex hull of the control points of an edge can assume
three configurations.

• If the control polygon is not simple, then its convex hull is a quadrilateral that
does not correspond to the control polygon. For the given restrictions on the
length of P0P1 and P2P3, it is necessarily formed by the edges P0P1, P2P3, P0P2

and P1P3 (see figure 5.13a).

98 Automatic Generation of Euler Representations

(a) (b) (c)

Figure 5.14: Analogies of the maximal node movement of PrEd and ImPrEd with the com-
putation of the maximal distance of the control points from their junction. The grey lines
are possible future positions for the edge considered. The region that contains any future
position of the edge exactly corresponds to the convex hull of the control points of a Bézier
curve (see figure 5.13). (a) First case. (b) Second case. (c) Third case.

• If the control polygon is simple but not convex, the convex hull will be a triangle.
This triangle necessarily has P0 and P3 as vertices, since triangles that include
such points and have the given restriction on the length of P0P1 and P2P3, would
not satisfy the triangle inequality (see figure 5.13b).

• If the control polygon is convex, and therefore simple, the convex hull corres-
ponds to it (see figure 5.13c).

Computation of the Maximal Distance. The problem of limiting the length of
the edges P0P1 and P2P3 to ensure the absence of overlaps between the convex hulls
of the Bézier curves is very similar to a problem addressed in PrEd and ImPrEd. In
the algorithms, we compute the maximal displacement of the extremities of an edge
to ensure that it will not cross another edge when moving.

This computation is performed for every direction in which the extremities of an
edge can move. However, for the current purposes we can restrict the reasoning to
only the movement of the edge extremities along a given direction. Let us indicate
the current position of the edge extremities with P0 and P3, and a candidate future
position for them with P1 and P2.

Since at the end of the computation each node is individually placed in a position
between the current and the candidate future one, the algorithm must ensure that the
region containing any possible future position of an edge does not overlap with that
of another edge. As figure 5.14 shows, this region is determined by the points P0, P1,
P2 and P3 and corresponds to the convex hulls of the Bézier curves described above.

For this reason, we can use ImPrEd’s computation of the maximal node move-
mentMP0

andMP3
to compute the maximal distance allowed for the control points

P1 and P2, along the direction computed at the previous step of the computation.
This procedure will be explained in detail in the next chapter, and in particular in
sections 6.1.4 and 6.2.6.

The final distances of P1 and P2 from their junction will be calculated as

P0P1 = min

(
P0P3

3
, MP0

)
P2P3 = min

(
P0P3

3
, MP3

)

5.3 Depiction of the Cluster Regions 99

5.3.2 Assignment of the Cluster Colours
Humans have trouble distinguishing more than about six to eight colours [111] in a
complex diagram. If we use transparency and allow colours to mix at each intersection,
we can see why minimising the number of colours used becomes a priority. On the
other hand, different colours should be used for different classes in the diagram.

To circumvent this problem, we generate another graph where each node is a cluster
s ∈ S and an edge indicates that two clusters overlap. We run the node colouring
heuristic of Welsh and Powell [114] on this graph, to obtain a small number of colours
to assign to the clusters. Assuming that the graph can be coloured with less than c
colours and we have c colours at our disposal, it is guaranteed that overlapping cluster
regions will have different colours assigned.

Currently, we use eight colours, c = 8. The colour chosen for a cluster s is (idx(s)
mod c), where idx(s) is the index provided by the colouring algorithm. Therefore, in
very complex diagrams, the same colour could be associated with overlapping clusters.
This should not be a problem, since we will also use textures to discriminate the cluster
regions.

5.3.3 Application of Textures
To help the user discerning and identifying the cluster regions, we also use textures
as previously done by Byelas and Telea [9]. This is especially helpful with complex
intersections, since the resulting blended colour usually provides little information
about the clusters that generate it.

Moreover, the use of textures also compensates the low number of colours we
decided to use. Let t be the number of textures, currently fixed to seven. The texture
assigned to the cluster s is (idx(s) mod t), where idx(s) is again the index provided
by the colouring algorithm. Since c and t are coprime, we can assign a different
combination texture/colour up to an index of 56, that is reachable only by extremely
complex clusterings.

Chapter 6

Improvement of a Graph Layout

This chapter introduces two algorithms that aim to improve the layout of an existing
graph drawing while preserving some of its characteristics.

The first algorithm is called PrEd, and has been developed by Bertault [6] in 2000.
The second algorithm, ImPrEd, is an improved version of the first. We developed it
to increase PrEd’s performance and functionality, in particular with respect to the
generation of Euler diagrams.

In the first section we will present the original algorithm, the details of its imple-
mentation and its advantages and disadvantages.

In the second section, we discuss ImPrEd. While presenting its new features, we
put particular attention on highlighting the conceptual and technical changes they
induce in PrEd and its behaviour.

Finally, in the closing section, we present the results of the comparative tests we
ran to evaluate performance, drawing quality and reliability of ImPrEd with respect
to PrEd.

6.1 PrEd

PrEd is a force-directed algorithm designed to improve an existing graph drawing while
preserving its edge crossing properties. Preserving the edge crossing properties implies
that two edges will cross in the final drawing if and only if they crossed in the original
one, or in other words, that no new crossings will occur and no existing crossings will
be undone.

To obtain this result, the algorithm verifies that the forces acting on a node do
not displace it in such a way that the current edge crossings are altered. When this
happens, the length of the node movement is restricted to a safe distance, eventually
very close to zero.

The preservation of the edge crossing properties makes PrEd the ideal algorithm
to optimise plane graphs, since we typically want to improve their layout without
introducing edge crossings. However, the technique used to enforce this characteristic
induces a slightly more restrictive behaviour: not only are edge crossings not added
or removed, but also nodes cannot cross edges when moving.

This leads to a couple of interesting side effects. First, PrEd does not only grant the
absence of crossings when improving a plane graph, but also preserves its embedding.
Second, and more important, PrEd can be used to improve Euler diagrams, since the
nodes enclosed by edges will not be able to escape that region.

101

102 Improvement of a Graph Layout

6.1.1 Input Parameters

PrEd has one implicit parameter, the initial graph drawing, and three explicit para-
meters to control the quality and the characteristics of the desired output:

• Initial graph drawing : the graph drawing that we aim to optimise. The graph
must be simple and the eventual direction of the edges is not taken into consider-
ation. The drawing must follow the straight-line drawing conventions and must
not contain any node-node or node-edge overlap. Although not explicitly stated
by the author, the algorithm is designed to deal only with connected graphs.

• Number of iterations: the number of times the improvement procedure is re-
peated. Higher values produce better results, but induce higher running times.
Typical values span from one to five hundred.

• The optimal edge length, δ: the distance at which repulsive and attractive forces
acting on adjacent nodes balance (see figure 3.14). This can also be interpreted
as the minimal desired distance between unrelated nodes.

• The optimal node-edge distance, γ: the minimal distance at which non-incident
nodes and edges do not repel each other. This can also be interpreted as the
minimal desired distance between nodes and unrelated edges.

6.1.2 The Algorithm

PrEd’s algorithm retains many of the characteristics of standard force-directed al-
gorithms (see section 3.2.3). The graph layout is iteratively optimised, meaning that
the algorithm has a procedure that produces a slight improvement of the graph layout
in a very short time, and that the final drawing is obtained by iterating this procedure
a high number of times. Also, the procedure includes the two standard phases of a
force-directed algorithm iteration: the computation of the forces acting on the nodes,
and the node displacement.

The distinctive characteristics of PrEd reside in an additional phase in the proced-
ure, the maximal movement computation, and on its effect in the node displacement.
In this step, the algorithm computes a safe distance for each of the graph nodes, ac-
cording to eight orientations of the maximal movement. In the node movement step,
whenever the forces acting on a node would push it over the safe distance computed
for a force with that orientation, the magnitude of the force is reduced to the value of
the safe distance.

Algorithm 6.1 presents a pseudo-code of the PrEd algorithm, with highlights on
the division into phases of the main cycle. The phases of the procedure, along with
the PrEd parameters, are detailed in the following sections.

6.1.3 Force Computation

PrEd drives the node positioning using the three classical types of forces: edge attrac-
tion, node-node repulsion and node-edge repulsion (see figure 6.1).

As in previous work, the repulsive forces are quadratic with the distance, and
the attractive forces are linear with the distance. This makes repulsive forces very
influential at a local scale, to well separate the graph elements, and less influential at
a larger scale, as the elements are already spaced enough. At the same time, attractive
forces are designed to be less important than repulsive forces at a local scale, not to

6.1 PrEd 103

Algorithm 6.1 PrEd. The algorithm consists of a cycle composed of three main
phases: force computation, maximal movement computation, and node displacement.

for numberOfIterations do

. Force Computation
for all u ∈ V do

force
(
u
)
← 0

for all {u, v} ⊆ V , u 6= v do
currentForce← node-node repulsion between u and v
force

(
u
)
← force

(
u
)

+ currentForce
force

(
v
)
← force

(
v
)
− currentForce

for all e ∈ E do
currentForce← edge attraction between s(e) and t(e)
force

(
s(e)

)
← force

(
s(e)

)
+ currentForce

force
(
t(e)

)
← force

(
t(e)

)
− currentForce

for all u ∈ V , e ∈ E, u 6= s(e) ∧ u 6= t(e) do
currentForce← edge-node repulsion between u and e
force

(
u
)
← force

(
u
)

+ currentForce
force

(
s(e)

)
← force

(
s(e)

)
− currentForce

force
(
t(e)

)
← force

(
t(e)

)
− currentForce

. Max Movement Computation
for all u ∈ V , i = 0 . . . 7 do

maxmove
(
u, i
)
← +∞

for all u ∈ V , e ∈ E, u 6= s(e) ∧ u 6= t(e) do
p← projection of u in e
if p ∈ e then

restrict the movement of u, s(e), t(e), case “projection inside”
else

restrict the movement of u, s(e), t(e), case “projection outside”

. Node Displacement
for all u ∈ V do

i← sector where force
(
u
)
lies

if ‖force
(
u
)
‖ > maxmove

(
u, i
)
then

force
(
u
)
← force

(
u
)
clamped to magnitude maxmove

(
u, i
)

position
(
u
)
← position

(
u
)

+ force
(
u
)

104 Improvement of a Graph Layout

(a) (b)

(c) (d)

Figure 6.1: Forces considered in PrEd. (a) Node-node repulsion. (b) Edge attraction.
(c) Node-edge repulsion. The force is null when the node projection is not on the edge or
when the node is farther than γ form the edge. (d) Node-node repulsion and edge attraction
balance each other at the optimal distance δ.

obstruct the element spacing, but still quite effective at high distances, making them
able to pull together the extremities of edges longer than δ.

The edge attraction is computed between the extremities of each edge in the graph.
The node-node repulsion is computed for every pair of different graph nodes, and the
node-edge repulsion between every pair node-edge, where the node is not an extremity
of the edge. In this last case, however, the force is null if the projection of the node is
not on the edge, and if the distance between node and edge is greater than γ.

6.1 PrEd 105

Position of Nodes and Edges. We indicate with p the position of the nodes
and edges in the graph drawing. In particular, pu is the vector containing the
coordinates of the node u on the plane, and pe is the segment, polyline or Jordan
arch that represents the edge e in the drawing.

Node-Node Repulsion. In PrEd, the node-node repulsion F r
u (u, v), acting on

u for a pair of distinct nodes u and v is the vector

F r
u (u, v) =

(
δ

‖pu − pv‖

)2

(pu − pv)

Since F r
u (u, v) = −F r

v (u, v), the force can be computed only once for each pair
of nodes and considered with opposite signs.

Edge Attraction. In PrEd, the edge attraction F a
u (e), acting on u for an e =

[u, v] is the vector

F a
u (e) =

(
‖pu − pv‖

δ

)
(pv − pu)

Since F a
u (e) = −F a

v (e), this force also can be computed only once for each pair
of nodes and considered with opposite signs.

Node-Edge Repulsion. In PrEd, the node-edge repulsion F e
u (u, e), acting on

a node u for a non-incident edge e, is the vector

F e
u (u, e) =

(
γ − ‖pu − pp‖

)2
‖pu − pp‖

(pu − pp) if p ∈ pe and ‖pu − pp‖ < γ

0 otherwise

where p is the projection of the node u onto the line defined by the edge e. For
e = [v1, v2], the forces acting on the edge extremities are

F e
v1(u, e) = F e

v2(u, e) = −F e
u (u, e)

Resulting Force. In PrEd, the resulting force Fu acting on node u is computed
as the sum of all forces acting on the node:

Fu =
∑
v∈V
v 6=u

F r
u (u, v) +

∑
[u,v]∈E

F a
u ([u, v]) +

∑
e∈E

u6=s(e)
u6=t(e)

F e
u (u, e) +

∑
v1∈V

[u,v2]∈E
v1 6=u
v1 6=v2

F e
u (v1, [u, v2])

6.1.4 Maximal Movement Computation

For each node, PrEd identifies a region where the node can move without crossing any
edge. Avoiding crossings between nodes and edges in the movement phase is, in fact,
a sufficient condition to preserve the edge crossing properties [6].

106 Improvement of a Graph Layout

(a) (b) (c)

Figure 6.2: Maximal movement and movement region in PrEd. (a) Subdivision of the plane
into angles, considering u as the angles’ vertex. (b) An example of a maximal movement
vector. (c) The movement region of u, according to the previous maximal movement vector.

The region of movement of a node u is computed considering eight orientations
that the force Fu might assume. The plane is divided into eight angles Ai of equal
amplitude having vertex in u. For each of these angles, PrEd identifies a radius Mi

u

that represents the maximal distance that u can cover when moving inside Ai. As a
result, the movement region will be composed of eight sectors with central angle of
π/4, typically with different radius, and with vertex in u (see figure 6.2).

To compute the movement region, PrEd takes into consideration every node-edge
pair (u, e), where the node is not an extremity of the edge. Based on the reciprocal
position, the sectors of both u and the extremities of e are reduced to a safe value.
Since this value grants that u will not cross e, and since this control is applied to all
possible node-edge pairs in the graph, the edge crossing properties are preserved in
the whole graph.

The formulae for the computation of the sector radii consider two different cases:
the case in which the projection of the node u on the line defined by the edge e is part
of e, and the case in which the projection is external to e.

Maximal Movement and Movement Region. Let A = (A0 . . .A7) be a
collection of angular intervals, where

Ai = [iπ/4, (i+ 1)π/4)

Let the vector of maximal movement Mu = (M0
u . . .M7

u), associated with the
node u, be a collection of eight real positive numbers. The movement region for
node u is a region composed of eight sectors, having each one vertex in u, an angle
that covers the interval Ai and radiusMi

u, for i = 0 . . . 7.

Maximal Movement Computation. At the beginning of the maximal move-
ment computation,Mu is set to ∞ for each node in the graph.

For each node-edge pair (u, e), where u is not an extremity of e, we perform
the movement restriction operation. Let p be the projection of u onto the line
described by e. We consider the case “projection inside” if p lies on the edge e,
and the case “projection outside” otherwise (see figure 6.3).

6.1 PrEd 107

(a) (b)

Figure 6.3: Restriction of the node movement in PrEd. (a) Case “projection inside”, as p lies
on the edge. The dashed sectors are not modified by the restriction operation. (b) Case
“projection outside”, as p lies outside the edge. In this case, all sectors are affected by the
restriction operation. In both cases, the movement region is restricted more than what would
be strictly necessary to preserve the edge crossing properties.

At the end of the maximal movement computation, the movement region of
each node contains only points that u can reach without crossing any edge while
moving.

Movement Restriction (Projection Inside). Let e = [v1, v2] be an edge and
u be a node that is not an extremity of e. Let p be the projection of u onto the
line described by e, and let us assume p ∈ pe. We identify with −→up the vector
connecting u to its projection p, and with i the index of the angular interval Ai

that contains it. The maximal movement of the nodes u, v1 and v2 is restricted
to

Mj
u ← min

(
Mj

u,
‖−→up‖

3

)
j = (i− 2 mod 8) . . . (i+ 2 mod 8)

Mj
v1 ← min

(
Mj

v1 ,
‖−→up‖

3

)
j = (i+ 2 mod 8) . . . (i+ 6 mod 8)

Mj
v2 ← min

(
Mj

v2 ,
‖−→up‖

3

)
j = (i+ 2 mod 8) . . . (i+ 6 mod 8)

Movement Restriction (Projection Outside). Let e = [v1, v2] be an edge
and u be a node that is not an extremity of e. Let p be the projection of u onto
the line described by e, and let us assume p /∈ pe. We identify with −→uv1 the vector
connecting u to v1, and with −→uv2 the vector connecting u to v2. The maximal

108 Improvement of a Graph Layout

(a) (b) (c)

Figure 6.4: Node displacement in PrEd. (a) The resulting force Fu on node u and the
computed movement region. (b) Since Fu has its angle on the interval A5, the length of the
vector is clamped to M5

u. (c) Finally, the node is displaced by the current Fu.

movement of the nodes u, v1 and v2 is restricted to

Mj
u ← min

(
Mj

u, min

(
‖−→uv1‖

3
,
‖−→uv2‖

3

))
j = 0 . . . 7

Mj
v1 ← min

(
Mj

v1 ,
‖−→uv1‖

3

)
j = 0 . . . 7

Mj
v2 ← min

(
Mj

v2 ,
‖−→uv2‖

3

)
j = 0 . . . 7

6.1.5 Displacement of the Nodes

At the end of each iteration, PrEd moves the nodes according to the resulting force of
each node. However, if the length of the resulting force vector exceeds the maximal
movement of the sector in which it lies, the vector is clamped to the sector radius (see
figure 6.4).

Node Displacement. Let Fu be the resulting force on the node u, and let i
be the index of the angular interval Ai that contains Fu. Before displacing each
node, if ‖Fu‖ >Mi

u, the force vector is reduced to

Fu ←
Fu

‖Fu‖
·Mi

u

Then, the new position of the node u is updated to

pu ← pu + Fu

6.1 PrEd 109

6.1.6 Advantages and Disadvantages

The advantages of PrEd reside on its main characteristic, the preservation of edge
crossing properties, and on the typical advantages of force-directed algorithms:

• Preservation of edge crossing properties. Even though this characteristic has
had a relatively small impact on the graph drawing field, the preservation of
edge crossing properties opens a number of new applications for force-directed
algorithms. Among those, the most important is the optimisation of planar
straight-line drawings.

Standard force-directed algorithms cannot guarantee that nodes will not cross
an edge when moving: this is due to the discrete nature of the computation, and
cannot be avoided by only relying on the force system (for instance by inserting
strong node-edge repulsive forces). To our knowledge, the optimisation of the
planar straight-line drawing of a graph with PrEd is the only way to obtain
aesthetically pleasant graphs of this kind.

• High aesthetics for certain kinds of graph. As it typically happens with force-
directed graphs, the output can present very high aesthetics, with good node
distribution and angular resolution, good aspect ratio and uniform edge lengths.

Unfortunately, these characteristics are generally only present in the layout of
relatively small graphs. Also, due to the preservation of the edge crossing prop-
erties, the initial crossings must be compatible with those of a good final layout.
This is particularly evident for the depiction of symmetries, since they will not
appear if the initial crossings are different from those of the optimal drawing.

• Intuitive and simple to implement. As for most force-directed algorithm, the
concepts behind PrEd are easily understandable and the algorithm is quite short
and simple to implement.

However, PrEd also has a number of drawbacks:

• High running time. Each iteration of the algorithm has complexity O(|V |2 +
|V ||E|), and the number of iterations should be set to higher values when drawing
larger graphs. As a result, the running time required to optimise the drawings
of large graphs can be very large.

High running times limit the use of the algorithm in applications that involve
interactions with the user, since waiting times of more than a few seconds are
reached already with graphs of a few hundreds nodes. Also, even when there
is no real-time interaction with the user, PrEd is hardly usable with graphs of
more than a few thousands nodes, since the computation for these graphs already
reaches running times in the order of hours.

• Over-restrictive node movement. PrEd restricts the movement of the nodes more
than what is strictly necessary to preserve the edge crossing properties. Fig-
ure 6.3 on page 107 shows how the restriction of the node movement is over-
restrictive if the only aim is to avoid the node from crossing the edge.

Even though the cautious approach of PrEd might increase the stability of the
algorithm, a less restrictive one might accelerate the convergence of the drawing
to its final configuration.

110 Improvement of a Graph Layout

• Low aesthetics of large and sparse graphs. In the computation of the resulting
force of a node, node-node repulsion forces typically have the greatest effect.
Even though repulsive forces are less influential than attractive forces for far
elements, their number is typically much higher. There are in fact |V | − 1 node-
node repulsive forces acting on a node u, and only deg(u) attractive ones. When
repulsive forces dominate the computation of the resulting force, the nodes are
pushed towards the outer area of the drawing, adversely affecting the aesthetics
criteria such as angular resolution, edge length uniformity and shape of the faces.

If the graph is not dense, the imbalance between attractive and repulsive forces
is worsened for larger graphs. If the graph is sparse, this problem is noticeable
even for very small graphs. For example, in the case of a graph composed only
of isolated nodes, G = {V, ∅}, there are no attractive forces and the nodes are
pushed indefinitely far from each other, preventing the convergence to a stable
configuration of the drawing.

• Low control of the desired output. The output obtained by the execution of PrEd
can be influenced by choosing the parameters described in section 6.1.1. Higher
values of δ will generate a more spaced layout, since it increases the magnitude of
repulsive forces and the balancing distance between the edge extremities. Higher
values of γ will instead induce higher distances between nodes and edges.

Due to their role in the force formulae, δ and γ assume a natural interpretation
that is fundamental for giving the user a way to select the parameter values. The
parameter δ can be thought of as the optimal distance between adjacent nodes
and as the minimal desired distance between unrelated nodes. The parameter
γ can instead be thought of as the minimal desired distance between nodes and
edges. Unfortunately, the results of PrEd are typically sub-optimal with respect
to these interpretations, as the node spacing disrespects the value of the para-
meters even when this is not strictly required by the topology of the graph.

Finally, there is an aspect that cannot be classified as a limitation of the method, but
that still reduces PrEd’s applicability:

• Necessity of a meaningful initial drawing. Most force-directed approaches can
either start from an initial graph drawing, or generate an initial drawing where
the nodes have random positions. In PrEd it is not possible to assign random ini-
tial positions to the nodes: the edge crossings obtained would not be meaningful,
and there would be no reason to preserve them.

Therefore, the algorithm can only be applied to graph drawings that have a
meaningful set of initial crossings and a sub-optimal node distribution. This
situation is not very common, as shown by the relatively low impact that PrEd
has had in the graph drawing community.

6.2 ImPrEd

We developed ImPrEd, an improved version of PrEd, to mitigate or overcome some of
the limitations of the original algorithm.

The main aims of ImPrEd are to significantly reduce the running time of PrEd,
achieve high aesthetics even for large and sparse graphs, and make the algorithm
more stable and reliable with respect to the input parameters. To achieve these results,

6.2 ImPrEd 111

we inserted two new features to reduce the amount of computation required by the
algorithm: one to improve the spacing of the graph elements and one to accelerate the
convergence of the drawing to its final configuration.

In addition, we added two other features that are more oriented to the generation of
Euler diagrams, but that still proved to be useful for the optimisation of general graphs.
The first feature gives the possibility to define each individual edge as uncrossable or
crossable, and as rigid or flexible. Thanks to this feature, the user can decide to
have edges acting as in PrEd or as in a standard force-directed algorithm, and to
decide whether an edge can insert or remove bends in order to respond to the stress
of the current drawing. The second feature lets the user assign a weight to each graph
element in order to increase or decrease their importance in the determination of the
final drawing.

As with PrEd, we will start by presenting the input and the parameters of the
algorithm. Then, we will present the modifications to the original algorithm, first
by providing an overview of the code, and then by detailing each of the six newly
introduced features.

6.2.1 Input Parameters
With the exception of the initial graph, the parameters of PrEd are substantially
unchanged in ImPrEd:

• Initial graph drawing : the class of input graph is extended to multigraphs, and as
in PrEd, the eventual direction of the edges is ignored. The drawing must follow
the polyline drawing conventions and there must not be any overlap between
nodes, bends and edges.

• Number of iterations: the number of times the improvement procedure is re-
peated. Higher values produce better results, but induce higher running times.
Typical values span from one to five hundred. Unchanged with respect to PrEd.

• The optimal edge length, δ: the distance at which repulsive and attractive forces
acting on adjacent nodes balance. Can also be interpreted as the minimal desired
distance between unrelated nodes. Unchanged with respect to PrEd.

• The optimal node-edge distance, γ: the minimal distance at which non-incident
nodes and edges do not repel each other. Can also be interpreted as the minimal
desired distance between nodes and unrelated edges. Unchanged with respect
to PrEd.

However, we added three optional parameters to steer the new features of ImPrEd that
provide greater control on the desired output:

• Set of crossable edges, Cr (optional): the set of crossable edges in the graph.
By default, according to PrEd behaviour, every edge is considered uncrossable.
Using this optional parameter, the user can provide the set of edges to be marked
as crossable, to have them acting as edges in a standard force-directed algorithm
rather than as standard PrEd edges.

• Set of flexible edges, Fl (optional): the set of flexible edges in the graph. By
default, all edges are considered rigid. Using this optional parameter, the user
can provide the set of edges to be marked as flexible to make them adapt their
number of bends according to the stress they are subjected to.

112 Improvement of a Graph Layout

• Element weight, W (optional): the weight of nodes and edges of the graph.
By default, each element of the graph has unit weight. Using this optional
parameter, the user can set different weights for some or all the nodes and edges
of the graph.

6.2.2 The Algorithm

ImPrEd differs from PrEd for the introduction of several new features that introduce a
few steps in the algorithm or slightly modify the existing ones. However, the structure
and the main phases of PrEd are mostly preserved.

The pseudo-code of ImPrEd is presented in algorithm 6.2. In the code we have used
colours to identify the new commands and how they relate to the features introduced:

• Force and movement cooling (•). We define a new variable, called temperat-
ure, which gradually decreases with the progress of the computation. The node
movement and the node ability to influence distant nodes are linked to the cur-
rent temperature, obtaining a cooling effect that progressively enforces smaller
movements and forces with local influence.

This feature aims to strongly increase the aesthetics of the drawings and the
ability of the user to control the characteristics of the output.

• Surrounding edges computation (•). In the maximal movement computation
phase, PrEd restricts the nodes’ movement by considering each node-edge pair.
Since this is typically highly redundant we compute, for each node, a subset of
edges, called the surrounding edges, that need to be considered at that stage.

This feature aims to considerably reduce the amount of computation required,
leading to lower running times.

• QuadTrees (•). We use a data structure called a QuadTree, that allows to ef-
ficiently retrieve the nodes and edges in a certain area of the drawing. Since
distant elements can be ignored without serious consequences in the force com-
putation, we use QuadTrees to detect the nearby elements of a node and we
compute the forces only for those elements.

This feature aims to reduce the amount of computation performed at each iter-
ation, decreasing the running time of the algorithm.

• New maximal movement rules (•). We devised new formulae for the maximal
movement computation in order to maximise the movement regions of the nodes.
Since nodes are able to move more freely, less iterations should be required to
reach the same position than with more restrictive rules.

This feature aims to accelerate the convergence of the drawing to a stable config-
uration. Therefore, the user can either decide to set a lower number of iterations,
obtaining a lower running time for the same drawing quality, or keep the number
of iterations unchanged, obtaining a higher drawing quality for the same running
time.

• Crossable and flexible edges (•). We extend the input class of the algorithm
to polyline multigraphs, and we allow the marking of each edge as crossable or
uncrossable, and as flexible or rigid. Edges marked as crossable are considered
as in standard force-directed algorithms, without the additional constraints of

6.2 ImPrEd 113

Algorithm 6.2 ImPrEd. The major modifications with respect to PrEd’s algorithm
are coloured according to newly introduced feature they belong to: force and move-
ment cooling, surrounding edges computation, QuadTrees, new maximal movement
rules, crossable and flexible edges, weight of nodes and edges.

. Pre-processing
g ← gravity centre
compute the surrounding edges Se for each node, using edges /∈ Cr

for currentIteration← 0 to numberOfIterations− 1 do
temp ← 1− currentIteration/numberOfIterations
compute the nearby nodes Nn and edges N e for each node

. Force Computation
for all u ∈ V do

force
(
u
)
← attraction to the gravity centre g

for all {u, v} ⊆ V , v ∈ Nn(u) do
currentForce← node-node repulsion according to temp and weights
force

(
u
)
← force

(
u
)

+ currentForce
force

(
v
)
← force

(
v
)
− currentForce

for all e ∈ E do
currentForce← edge attraction according to temp and weights
force

(
s(e)

)
← force

(
s(e)

)
+ currentForce

force
(
t(e)

)
← force

(
t(e)

)
− currentForce

for all u ∈ V , e ∈ Se(u) ∩N e(u) do
currentForce← edge-node repulsion according to temp and weights
force

(
u
)
← force

(
u
)

+ currentForce
force

(
s(e)

)
← force

(
s(e)

)
− currentForce

force
(
t(e)

)
← force

(
t(e)

)
− currentForce

. Max Movement Computation
for all u ∈ V , i = 0 . . . 7 do

maxmove
(
u, i
)
← 5 · δ · temp

for all u ∈ V , e ∈ Se(u) ∩N e(u) do
restrict the movement of u, s(e), t(e)

. Node Displacement
for all u ∈ V do

i← sector where force
(
u
)
lies

if ‖force
(
u
)
‖ > maxmove

(
u, i
)
then

force
(
u
)
← force

(
u
)
clamped to magnitude maxmove

(
u, i
)

position
(
u
)
← position

(
u
)

+ force
(
u
)
/ weight(u)

. Refresh
if currentIteration ≡ 0 mod 10 then

g ← gravity centre
for all e ∈ E do

expand stretched edge segments
contract compressed edge segments

114 Improvement of a Graph Layout

PrEd. Edges marked as flexible are allowed to change their number of bends
according to the stress exerted on them. Edges marked as uncrossable and rigid
do not benefit from these additional features, and behave as normal edges in
PrEd.

Crossable and flexible edges are inserted to extend the range of possible applic-
ations and of possible outputs of the algorithm.

• Weight of nodes and edges (•). By default all nodes and edges have the same
influence on the other elements of the graph. However, there are cases where
some of the graph elements have different roles or different logical importance.
For instance, in a graph depicting the transport network of a country, the nodes
relative to bigger hubs have higher importance than locations carrying little
traffic. Element weight is designed to make important elements exert forces of
higher magnitude and have higher reluctance to move, so that elements with
higher weight contribute more significantly to the final graph structure.

The element weight increases the ability of the user to control the shape of the
final drawing.

Each of these features will be explained in greater details in the following sections.

6.2.3 Force and Movement Cooling

The force system and the movement in PrEd present a couple of problems that obstruct
the determination of drawings with high aesthetics:

• Force magnitude. In our opinion, both repulsive and attractive forces should
have lower magnitude when acting on distant elements. Repulsive forces, as
described in section 6.1.6, are in great number and dominate the computation
of the resulting force, leading to low aesthetics.

Attractive forces are instead designed to pull together the extremities of an edge
in order to obtain an uniform edge length, and are therefore of high magnitude
in the case of long edges. Although this behaviour might fit a standard force-
directed algorithm, we believe it is contradictory with the aims of PrEd and
ImPrEd. Since nodes cannot cross edges, the extremities of a long edge may
be tightly constrained, the edge may not be able to assume the desired length
resulting in large, irreducible forces that delay convergence.

On the other hand, we desire higher repulsion forces for nodes at a closer distance
than δ, so that we can obtain an adequate spacing between them.

• Difficult convergence of the nodes to a stable position. The discrete nature of the
computation might be an obstacle to the convergence of the nodes to a stable
position. Let us consider two adjacent nodes at a distance significantly different
than δ. Ideally, the sequence of the distances at each iteration should converge
to an interval reasonably close to δ before the end of the computation.

However, it might happen that nodes in such a configuration keep jumping
between being too close and being too far so that they cannot reach the optimal
distance within a reasonable number of iterations. It also might happen that
the force system overreacts, generating forces of increasingly higher magnitude
that impede the reaching of a stable configuration.

6.2 ImPrEd 115

0.0

1.0

2.0

3.0

4.0

5.0

δ/2 δ 3δ/2

Fo
rc

e
 m

a
g

n
it

u
d

e

Distance

Attractive (0%)
Attractive (50%)

Attractive (100%)
Repulsive (0%)

Repulsive (50%)
Repulsive (100%)

Figure 6.5: Magnitude of cooled forces in ImPrEd, with respect to the distance between the
graph elements. In green, the node-node repulsive force. In blue, the edge attraction force.
Lines with smaller dashes indicate later stages of the computation. The forces always balance
at distance δ.

Ideally, the problems could be solved by lowering the magnitude of distant forces
and by making nodes move a really small distance at each iteration. Unfortunately,
this would considerably slow down the optimisation process, since forces acting on
distant elements and high node mobility are essential at the early stages of the com-
putation to quickly reach the rough shape of the final diagram. We therefore chose to
lower these values along with the progress of the computation.

Temperature. The concept of temperature has been largely used in graph drawing
[17, 42] to describe abstract behaviours that recall the physical phenomenon. Also in
this case, we introduce the temperature as a measure of how much the graph nodes
are able to displace and to influence other nodes, in analogy with the interpretation
of temperature as a measure of the kinetic energy of atoms and molecules.

In ImPrEd, the temperature is a global variable that assumes rational values in the
interval (0, 1]. The temperature starts at value one and gradually decreases towards
zero with the progress of the computation. We control the mobility of the nodes by
linearly decreasing their initial value with the cooling of the temperature.

The exponents of repulsive and attractive forces are also linearly increased and
decreased according to the value of the temperature. As shown in figure 6.5, the forces
always balance at the optimal distance δ, but the magnitude of the forces on distant
elements decreases and the magnitude of the repulsive forces between close elements
increases with the progress of the computation. This generates a shift between the
influence of the forces from a global scale to a local scale.

Finally, in order to obtain a good aspect ratio and a compact drawing even in
the case of disconnected graphs, we included a gravity force similar to that of Frick,
Ludwig and Mehldau [42].

116 Improvement of a Graph Layout

Temperature. We introduce a variable representing the global temperature of
the graph, computed at each iteration as

temp = 1− currentIteration
numberOfIterations

where currentIteration assumes the values from 0 to numberOfIterations− 1.

Force Exponents. In ImPrEd, we use variable exponents for the formulae of
the forces:

x = xf − (xf − xi) · temp

where xi is the initial exponent, and xf is the final exponent. The exponent for
the repulsive forces, xr, is computed considering xi = 2 and xf = 4, while the
exponent of the attraction forces, xa, is computed considering xi = 1 and xf = 0.4.

In the following formulae, we will highlight in colour the differences with the
relative formulae of PrEd:

F r
u (u, v) =

(
δ

‖pu − pv‖

)xr

(pu − pv)

F a
u (e) =

(
‖pu − pv‖

δ

)xa

(pv − pu)

F e
u (u, e) =

(
γ − ‖pu − pp‖
‖pu − pp‖

)xr

(pu − pp) if p ∈ pe and ‖pu − pp‖ < γ

0 otherwise

Gravity Force. In ImPrEd, all nodes are attracted to a centre of gravity with
position

g =

∑
u∈V

pu

|V |
The position of the gravity centre is updated only in the refresh phase, therefore
once every ten iterations. The gravity attraction F g(u) acting on a node u is the
vector

F g(u) =

(
δ

‖pu − g‖

)
(pu − g)

Node Movement. In ImPrEd, at each iteration we initialise the maximal move-
ment vector of each node u to

Mi
u ← 6δ · temp for i = 0 . . . 7

6.2 ImPrEd 117

(a) (b)

Figure 6.6: Examples of surrounding edges of a node. The surrounding edges are in blue. The
grey edges are either incident to the node, and therefore ignored, or can be crossed only after
crossing a surrounding edge. (a) Generally, the surrounding edges of a node are significantly
fewer than |E|. (b) In a tree, all the nodes have every non-incident edge as a surrounding
edge.

6.2.4 Surrounding Edges Computation

In PrEd, when restricting the maximal node movement, we check all the node-edge
pairs to verify that a crossing will not occur. However, there are cases where many
of these checks are redundant. Let us consider a large planar graph where an isolated
node is contained in a small face. Since the node must cross the boundary of the face
to cross any other edge in the graph, the checks performed for the non-boundary edges
are unnecessary (see figure 6.6a).

We call the surrounding edges of a node the minimal set of edges that we need
to check in order to enforce the non-crossing condition to all the edges of a graph.
In the general case, the number of surrounding edges is much lower than the number
of edges of a graph, providing a significant reduction in the necessary computation.
Unfortunately, this highly depends on the kind of graph: in a tree, for example, all
non-incident edges are surrounding edges of each node (see figure 6.6b).

In a graph drawing without crossings, the surrounding edges are identified by
studying the boundary edges of the graph faces. In a drawing with crossings, the
same method can be used, but only after extending the concept of a face, that is
normally defined only for plane graphs. Finally, the newly introduced flexible edges
can expand and contract by adding new bends. Since each bend is modelled as a node,
it is necessary to provide the surrounding edges for these potential new nodes.

Surrounding Edges. The surrounding edges of a node u in a graph G = (V,E)
are a minimal subset of edges Se(u) ⊆ E so that, for every edge e ∈ E,

• either u is an extremity of e,

118 Improvement of a Graph Layout

• or e ∈ Se(u),

• or e can be crossed by u only after crossing an edge in Se(u).

Surrounding Edges in Plane Graphs. Let us consider a plane graph G =
(V,E) and the node u ∈ V . Let G′ = (V,E′) be a subgraph of G in which the
incident edges of u have been removed:

E′ = {e ∈ E : u 6= s(e) ∧ u 6= t(e)}

In G′, u is an isolated node inside a face f . The edges Be(f) that bound f are the
boundary edges of u, as they are not incident to it, and as all remaining edges can
be crossed only if u moves out of the face. Also, the set is minimal, since every
node in Be(f) is directly reachable by u when moving.

The surrounding edges can also be identified directly in G as the union of the
boundary edges Be(f) for each face f that contains u, with the exclusion of its
incident edges:

Se(u) =

 ⋃
f∈F : u∈Bn(f)

Be(f)

 \ {e ∈ E : e is incident to u}

Since flexible edges can introduce bends, that will be treated as new nodes,
we compute the surrounding edges Se(e) associated with a flexible edge e. The
set Se(e) represents the surrounding edges Se(u) of each bend that might be
introduced in e during the layout optimisation. The surrounding edges of a flexible
edge are computed as

Se(e) =

 ⋃
f∈F : e∈Be(f)

Be(f)

 \ {e}
Figure 6.7a shows how to compute the surrounding edges of a node in a plane

graph, while figure 6.7b shows the computation of the surrounding edges of a
flexible edge.

Since in a plane graph the non crossing conditions produce drawings with
equivalent embedding, the faces are not modified by the node movement and the
surrounding edges do not change during the layout improvement.

Surrounding Edges in Non-Plane Graphs. Let us extend the concept of a
face to non-planar drawings. As for plane graphs, a face is each of the connected
regions in the plane. For the faces in non-plane graphs we have that

• only a portion of an edge might form the boundary of a face, while in plane
graphs the whole edge contributes to the face,

• each edge can (partially) belong to more than two faces, while in plane
graphs the edges belong only to one or two faces,

• it might not be possible to identify a closed walk on the boundary of a face,
while in plane graphs the boundary is composed of the elements of one or
more closed walks.

6.2 ImPrEd 119

By extending the definition of a face, the formulae above hold in the case
of non-plane graphs. Figure 6.7c shows the previous properties, as well as an
example of surrounding edge computation for a node in a non-plane graph.

The determination of the surrounding edges requires that we identify the faces
in the drawing. This task requires increasing effort with respect to the following
conditions: plane connected graphs, plane disconnected graphs, and non-plane graphs.
However, since the algorithm prevents edge crossings, the surrounding edges of a node
do not change with the layout improvement performed at each iteration. Therefore,
we can compute them before the main cycle, and we do not need to recompute or
update them.

Face Identification in Plane Connected Graphs

If the graph is plane and connected, the boundaries of a face can be identified with a
walk along the graph elements in the combinatorial embedding.

Since the combinatiorial embedding contains the ordering of the edges incident to
a node, we can use this information to select the next edge in the boundary. If we start
moving along one edge to one of its extremities, we can identify a walk on the boundary
of a face by exiting the nodes using the first clockwise or the first anticlockwise edge
from the one we used to enter.

By detecting a collection of different walks of this kind, so that each edge is used
exactly twice, we obtain the boundaries of all the faces present in the drawing. An
example of face identification in plane connected graph is shown in figure 6.8.

Face Identification in Plane Connected Graphs. In plane connected
graphs, the following conditions hold:

• each edge belongs completely to the boundary of one or two faces,

• for each face, there is a closed walk that includes all the elements of the
boundary of a face,

• if an edge belongs to a single face, the walk along the face boundary must
include the edge twice.

Under these conditions, the boundary of the faces in the graph can be identified
as a collection of walks computed as follows.

Let us select an edge, e1, one of its extremities, u0, and an orientation, either
clockwise or anticlockwise. Using the combinatorial embedding of the graph, we
perform the walk u0e1u1 . . . elul where the edge ei+1 is the following element of
ei in the edge ordering of the node ui, according to the chosen orientation. This
will grant that the walk only considers the elements in the boundary of a face.

When the walks reaches u0 again, and becomes therefore closed, all the ele-
ments considered form the boundary of a face. To identify all the face boundaries
in the graph, we perform another walk with different starting conditions until all
edges have been considered twice.

120 Improvement of a Graph Layout

(a) (b) (c)

Figure 6.7: Computation of the surrounding edges. The surrounding edges are marked in
blue. (a) The surrounding edges for u6 are in the boundaries of the faces that contain the
node (turquoise face and purple face), excluding the incident edges of u6. (b) Let e3 be a
flexible edge. The surrounding edges for the eventual bends v of e3 are in the boundaries of
the faces that contain the edge (the turquoise face and purple face), excluding the edge itself.
Note that this is consistent with the previous case. (c) In the case of crossing edges, the
concept of a face needs to be extended. Note that edges such as e4 and e8 now only partially
belong to the boundary of a face, and belong to more than two faces at the same time. Also,
the elements on the boundary of the faces can no longer be visited in a single walk.

(a) (b) (c)

Figure 6.8: Identification of the face boundary in plane connected graphs. (a) A plane connec-
ted graph. (b) The combinatiorial embedding for the previous graph. (c) The identification
of a face boundary starts with the choice of an edge, e3, one of its extremities, u3, and
an orientation, clockwise, that corresponds to the right-hand direction in the lists provided.
From u3, the edge e3 leads to the node u1. Here, we select the element that is just right of
the current edge, e3, obtaining the edge e1. The process is repeated until we reach the initial
node, u3. Note that the right column of the visited edges corresponds to the boundaries of
the turquoise face in the initial graph.

6.2 ImPrEd 121

Face Identification in Plane Disconnected Graphs

When the graph is plane but disconnected, the identification of the boundary of a face
cannot be done only considering the combinatorial embedding, since disconnected face
boundaries cannot be reached through a walk. We propose a method based on the
determination of the inclusion relationships among the connected components of the
graph.

Each connected component is analysed separately as described above. Then we
study their inclusion relationships, since every connected component lies entirely in
one face of any other component. Finally, each face boundary is computed as the
inner face of one component, plus the external faces of all components lying in that
face.

External and Internal Faces. A connected graph divides the space into one
unbounded face and zero or more bounded faces. The unbounded face is also
called external face and is indicated with f0. The bounded faces are also called
internal faces and are indicated with an index greater than zero or with f+.

Relations Between the Components of a Disconnected Graph. Let C
be the set of the connected components of the graph. Each component ci ∈ C,
considered individually, is a connected graph and divides the plane into faces f ij .
Consistently with the above notation, we indicate with f i0 the external face of the
component ci and with f ij , j > 0, or with f i+, an internal face of the component
(see figures 6.9a and 6.9b).

In a plane disconnected graph, each connected component ci lies entirely in
one face f jk of a different component cj . Also, we have that

ci lies in an internal face of cj ⇒ cj lies in the external face of ci

The converse implication does not hold, since two components ci and cj can both
be on the external face of the other.

It is possible to establish a partial ordering between the components in C
where ci < cj if ci lies in an internal face of cj . It is also possible to describe the
hierarchical organisation of the components into a bipartite forest H, where each
component has its internal faces as children, and is child of the internal face that
directly contains it according to the partial ordering (see figure 6.9c).

Face Identification in Plane Disconnected Graphs. Each internal face of
a plane disconnected graph G is identified as the intersection between an internal
face of a component and the external face of all its children in H:

f+ = f ij ∩
⋂
k∈K

fk0 where j 6= 0 and K = {k ∈ N : ck is child of f ij in H}

The external face of G is instead the intersection between the external faces of
the roots of H:

f0 =
⋂
k∈K

fk0 where K = {k ∈ N : ck is a root in H}

122 Improvement of a Graph Layout

(a) (b)

(c) (d)

Figure 6.9: Determination of the faces in disconnected plane graphs. (a) An example of
disconnected plane graphs. (b) Decomposition of the graph into its connected components
and identification of their faces. (c) Organisation of connected components and internal faces
into a hierarchy. A face of the original graph can be identified starting from an internal face
and its children. (d) The face f is computed as the intersection of the internal face f3

2 and the
external faces f2

0 and f4
0 . The boundary of f can be identified as the union of the boundaries

of those faces, as shown by the non-shaded elements in the drawing.

6.2 ImPrEd 123

(a) (b) (c)

Figure 6.10: Determination of the faces in non-plane graphs. (a) An example of a non-plane
graph. (b) Through planar augmentation, we obtain a plane graph. The newly inserted
nodes and edges are coloured red, and the new segments are labelled with the identifiers
of the original edges. (c) The faces of the original graph are identified on the previous one,
ignoring the red nodes and using the identifiers of the original edges. The boundaries obtained
for the purple face are in non-shaded colours. Unlike the case of plane graphs, the boundaries
are not a collection of walks: often, the extremities of a boundary edge are not part of the
boundary.

The boundaries of each of these faces can be computed as the union of the
boundaries of the faces considered (see figure 6.9d), and therefore

B(f+) = B
(
f ij
)
∪
⋃
k∈K

B
(
fk0
)

B(f0) =
⋃
k∈K

B
(
fk0
)

where j and K have the same conditions as those in the above formulae.

Face Identification in Non-Plane Graphs

When the graph is not plane, we use a technique called planar augmentation to return
to the previous case. Planar augmentation substitutes any crossing edges with their
segments, connected to new nodes placed in correspondence to the crossing points.
Thus, the resulting graph is plane even when the initial drawing contains crossings.

To compute the surrounding edges, we apply planar augmentation to the initial
graph, assign the identifier of the initial edges to each of their segments, and compute
the faces as described above. Figure 6.10 shows an example of the application of this
procedure.

Planar Augmentation. Planar augmentation is a technique that transforms a
graph G = (V,E) with edge crossings into a plane graph G′ = (V ′, E′). The set
of nodes V ′ contains all the original nodes, but also a node for each edge crossing.
The set of edges E′ contains only the original edges without crossings, while the
edges with crossings are substituted by an edge for each of their segments.

124 Improvement of a Graph Layout

(a) (b)

Figure 6.11: Surrounding edges in the presence of flexible edges. (a) When moving the
bend v, it would not be necessary to control the edges in the boundary of f1 and f2, that
are surrounding edges of v. (b) This redundancy eliminates the need of recomputing the
surrounding edges if V is removed or if it is re-created along the borders of f1 and f2. Also,
the surrounding edges are consistent with the set that would be computed if the edge started
with no bends and if all the original bends were added during the computation.

Let e = [u1, u2] be an original edge with n crossings. In G′, each crossing is
associated with a node v ∈ V ′. Let v1 . . . vn be these nodes in the order obtained
when moving from u1 to u2 along the edge e. In G′, the edge e is substituted by
a sequence of edges e1 . . . en+1 where ei = [vi, vi+1].

Surrounding Edges in Non-Plane Graphs. To specify the concept of a face,
which is not defined for non-plane graphs, we transform the graph into a plane one
through planar augmentation. We label each edge of G′ with an identifier of the
corresponding edge in G (see figures 6.10a and 6.10b). Since G′ is a plane graph,
we identify the surrounding edges as specified above, using the labels assigned
(see figure 6.10c).

Let SeG′ be the surrounding edges computed in G′ as explained and SeG the
surrounding edges to be computed with respect to G. For the nodes u ∈ V ,
we have that SeG(u) = SeG′(u). The surrounding edges of a node u ∈ V ′ that
correspond to a crossing, u /∈ V , are not used and their computation can be
skipped. The surrounding edges SeG(e) of a flexible edge are instead computed as
the union of the flexible edges SeG′(ei) of each of its segments ei.

Note that the mechanism of flexible edges can result in a non-minimal set of sur-
rounding edges. However, by using the whole set of surrounding edges associated with
a flexible edge, we do not need to identify the faces in which the new bend is created
and to update the surrounding edges of each element according to the modifications
of a flexible edge (see figure 6.11).

6.2 ImPrEd 125

6.2.5 QuadTrees

We apply the technique of QuadTrees [45, 81] to efficiently retrieve nodes and edges
that lie in a certain area of the graph. The method is well known in the literature and
largely applied to reduce the computation time in force-directed algorithms.

QuadTrees progressively divide a given rectangle into four quadrants, starting from
the whole plane and iterating the procedure on the quadrants. These subdivisions are
then organised into a tree and associated with the set of elements they contain (see
figures 6.12a and 6.12b).

In force-directed algorithms, the forces exerted by distant elements have low mag-
nitude, especially when compared to that of nearby elements. Therefore, the effect of
distant elements can be approximated or even ignored without significantly influencing
the result of the computation. Using QuadTrees, we can obtain the elements at closer
distance than d from a node u by analysing the cells in the surroundings of u, and not
having to consider all the nodes and edges of a graph (see figures 6.12c and 6.12d).

The nearby elements detected with QuadTrees include all elements at a closer
distance than d, but might also include some element at a farther distance. Also,
it might include elements at a distance d1 > d and exclude elements at a distance
d2 > d, even when d1 > d2 > d. However, for the reasons explained above, we can
ignore these issues once we choose a distance d high enough to include the elements
that significantly influence the resulting force of a node.

QuadTrees in ImPrEd

In the algorithm, we compute the QuadTrees at the beginning of each iteration. For
each node u, we compute the set of nearby nodes Nn(u) at distance 3δ from u and
we use them in the computation of the node-node repulsive forces. A node at greater
distance than 3δ generates a force with magnitude lower than a ninth of that generated
by a node at distance δ, and can be ignored without great consequences on the resulting
force of u.

Also, we compute two sets of nearby edges N e(u) at distances γ and 12δ · temp
from u. We use the first set for the computation of the node-edge repulsive force, since
edges at a greater distance than γ from a node u do not contribute to the computation
of the resulting force.

The second set is instead used in the maximal movement computation. Since we
initialise the maximal movement to the value 6δ · temp (see section 6.2.3), and since
this value can only be decreased during the computation, no node can move farther.
For this reason, a node and an edge at a greater distance than 12δ · temp cannot cross
at this iteration, even if they move towards each other. They can therefore be ignored
in the computation of the maximal movement.

6.2.6 New Maximal Movement Rules

In ImPrEd, we decided to preserve the sector policy of PrEd. This is not strictly ne-
cessary, since it would be possible to compute first the resulting force, and then the
maximal movement for the orientation of the force only. In this way we obtain both a
reduction of the computation time and a more precise movement computation. How-
ever, the algorithm complexity would not change since the sectors only have a constant
effect, and the identification of a full movement region facilitates the transformation
of the grid graph edges into Bézier curves.

126 Improvement of a Graph Layout

(a) (b)

(c) (d)

Figure 6.12: QuadTree illustration. (a) The area of the drawing is divided into quadrants
and the graph elements are associated with the regions that contain them. The process is
repeated in each individual quadrant. (b) The choice of further subdividing a cell is generally
linked to the amount of graph elements contained in it. Therefore, denser regions might be
divided in smaller cells, obtaining a non uniform grid. (c) When we are looking for the graph
elements closer than a given distance d from a node u (the purple region in the figure), we
only consider the cell or the cells that might contain such elements (the light red region in
the figure). (d) Therefore, according to d and to the position of u in the cell, we might have
to consider other cells that are nearby that of the node.

6.2 ImPrEd 127

Nevertheless, the maximal movement computation in PrEd is improvable. In
ImPrEd, we designed a restriction policy that maximises the movement region of the
nodes to grant them higher mobility. This is particularly needed for the sectors that
are not in the collision direction between node and edge.

Figure 6.13a shows how the movement of the nodes is heavily bounded even when
moving along the perpendicular to −→up, which is perfectly safe. Moreover, when a node
is inside an acute angle or between two edges, its movement will be unnecessarily con-
strained in all directions. By allowing nodes to escape these high-stress configurations,
we are likely to obtain a stable configuration quickly, with additional positive effects
on drawing quality.

The main idea behind the new maximal movement rules is to divide the plane
into two half-planes, so that node u and edge e = [v1, v2] can move freely in the
respective half-plane without occurring into crossings. Once this division of the plane
is computed, it will be possible to extend the movement regions of u, v1 and v2, up to
the limits of their half-planes (see figure 6.13).

Division of the Plane in Halves. Let e = [v1, v2] be an edge and u be a node
that is not extremity of e. Let p be the projection of u onto the line defined by e.
We identify a line l as the line perpendicular to, and passing through the middle
point of, the segment

Case p ∈ e : up

Case p /∈ e : min(uv1, uv2)

where the minimum is intended as the shorter of the two segments. In both cases,
we defined the collision vectors cu, cv1 and cv2 as the vectors connecting the nodes
u, v1 and v2 to their projection on l (see figure 6.14).

Movement Restriction (Both Cases). To permit maximal movement, each
sector can be extended until it touches, but does not become collinear with, the
line l. This result can be achieved by multiplying the length of each collision
vector by σ, defined as the secant of the angle between cx and closest radius of
the sector:

Mj
x ← 0.9 · ‖cx‖ · σ(cx,Aj)

σ(~cx,Aj) =

1 i− j ≡ 0 mod 8

sec
(
∠~cx − (j + 1)π/4

)
i− j ≡ 1, 2 mod 8

sec
(
∠~cx − jπ/4

)
i− j ≡ 6, 7 mod 8

∞ i− j ≡ 3, 4, 5 mod 8

where ∠cx is the angle of the given vector and where i is the index of the angle
Ai in which cx lies.

In the first case, the vector lies on the sector and the closest radius coincides
with cx, thus sec(0) = 1. The second case considers the two sectors in clockwise
order from Ai, where the closest radius corresponds to the sector border of Aj

that has angle (j+ 1)π/4. The third case handles the two sectors in anticlockwise
order that have the closest border with angle jπ/4. The forth case handles the
sectors not facing l, that are unrestricted.

128 Improvement of a Graph Layout

(a) (b)

(c) (d)

Figure 6.13: Restriction of the node movement in ImPrEd and comparison with PrEd. The
dashed sectors are not reduced by the restriction operation. (a-b) Restriction in PrEd (see
figure 6.3). (c) Case “projection inside” in ImPrEd. (d) Case “projection outside” in ImPrEd.

Correctness of the New Rules. To prove the correctness of the algorithm, we
first prove that a node cannot cross an edge while moving. Given a node u and a
non-incident edge e, the line l divides the plane into two halves: the first, Ru(u, e),
contains u and the second, Re(u, e), contains e = [v1, v2] (see figure 6.14).

Let Ru be the intersection of all half-planes (polytope) computed for u and
any non-adjacent edge e ∈ E:

Ru =
⋂
e∈E

u6=s(e)
u6=t(e)

Ru(u, e)

6.2 ImPrEd 129

(a) (b)

Figure 6.14: Plane division and collision vectors in the node movement restriction. (a) Case
“projection inside”. (b) Case “projection outside”.

Similarly, let Re be the intersection of all half-planes computed for e and any
non-adjacent node u ∈ V :

Re =
⋂
u∈V

u6=s(e)
u 6=t(e)

Re(u, e)

The new formulae for the movement restriction bind the sectors around every
node u to be in Ru. At the same time, they bind the movement of the extremities
of an edge e to be in Re. Therefore, Ru contains any future position of any
node u and Re, being convex (as the intersection of convex polytopes is convex),
fully contains any final position of the edge e. Since for every node v and every
non-incident edge e we have that Ru ⊆ Ru(u, e), Re ⊆ Re(u, e), and Ru(u, e) ∩
Re(u, e) = ∅, no node can cross an edge when moving (see figure 6.15).

The property also guarantees that, given two edges, no crossings can be in-
curred or undone since both cases require a node to cross an edge. Finally, Ru(u, e)
and Re(u, e) can always be computed, so long as u and e are not initially collin-
ear, as we are working in a continuous space and nodes and edges cannot become
collinear during the computation.

6.2.7 Crossable and Flexible Edges
In ImPrEd, we added the possibility of labelling each edge of the input graph as
crossable or uncrossable, and as flexible or rigid. Furthermore, the class of input
drawings was extended to polyline multigraphs, allowing edges to have bends.

An edge labelled as crossable will be treated by ImPrEd as it would be in a standard
force-directed algorithm: it contributes to the computation of the resulting forces, but
it does not impede the movement of the nodes. In particular, this means that a

130 Improvement of a Graph Layout

(a) (b)

(c) (d)

Figure 6.15: Node and edge polytopes in the node movement restriction. (a) Determination
of a node polytope, Ru4 , in a sample graph. (b) Identification of an edge polytope, Re2 ,
in the same graph. The absence of crossings between nodes and edges is guaranteed by the
absence of overlaps between edge polytopes Re and node polytopes Ru, where u is not an
extremity of e. (c) Note that Ru does not necessarily correspond to the region where u can
move: the node is also bounded as an extremity of its adjacent edges. The shaded region
correspond to Re1 , the edge polytope of the only adjacent edge of u4. (d) The movement
region of u4 will be contained in the intersection between Ru4 and Re1 .

6.2 ImPrEd 131

crossable edge will not be considered in the computation of the maximal movement
and in the computation of the node-edge repulsion forces, as this would also obstruct
the node movement.

Uncrossable edges, instead, act like standard PrEd edges: they fully contribute to
the resulting forces and they restrict the node movement to prevent crossings during
the movement phase.

Edges labelled as flexible have the possibility of increasing or decreasing their
original number of bends in order to reduce the stress exerted on them. An edge
which is very stretched might decrease the magnitude of the forces acting on it by
having more freedom in the shape it can assume, and might therefore benefit from
the insertion of an additional bend. On the contrary, an edge with many bends that
is very contracted generally benefits from the removal of some of its bends.

Rigid edges are instead polyline edges that are not allowed to change their number
of bends during the computation. To replicate the behaviour of PrEd, it is therefore
sufficient to mark all edges as rigid.

Extension of the Input Class. In order to benefit the most from flexible and
rigid edges, the input class of ImPrEd is extended to multigraphs with polyline
drawing. At the beginning of the computation, the polyline edges are converted
into sequences of straight-line edges and nodes. The newly introduced nodes and
edges have the same effect on the computation as the original elements of the
graph.

At the end of the computation, the sequences of nodes and edges relative to a
polyline edge are re-converted into a bent edge.

Crossable and Uncrossable Edges. Crossable edges are removed during the
computation of the surrounding edges (see section 6.2.4). They will therefore not
be considered in the computation of the maximal movement and in the compu-
tation of the node-edge repulsive forces. Uncrossable edges are instead treated
normally.

Flexible and Rigid Edges. During the refresh phase, flexible edges are
scanned to verify whether they should be contracted, expanded, or left unchanged.

Let u0, e1, u1 . . . un be a sequence of nodes and edges corresponding to a flexible
edge. If two nodes ui, ui+2 are at a smaller distance than 2δ, and if no other node
is in the area enclosed in the triangle that has ui, ui+1, ui+2 as vertices, the flexible
edge is contracted. When this happens, ui+1 and the adjacent edges are removed
and the nodes ui and ui+2 are connected with a new edge (see figures 6.16a–6.16c).

If two nodes ui, ui+1 are at a distance greater than 3δ, the flexible edge is
expanded. When this happens, a new bend un+1 is inserted in the middle point
of ei, and the edge ei is substituted by the path ui, en+1, un+1, en+2, ui+1 that
includes two new edges (see figures 6.16d–6.16f).

If the previous conditions do not apply, the flexible edge is left unchanged.
Rigid edges are not considered during this phase.

Notes on Flexible Edges. To obtain the best results with flexible edges, we
remove the node repulsion force between consecutive nodes on a flexible edge path
with one or more bends. As a consequence, the edge attractive force exerted by

132 Improvement of a Graph Layout

(a) (b) (c)

(d) (e) (f)

Figure 6.16: Contraction and expansion of flexible edges. The flexible edge is coloured red.
(a) A case of a flexible edge with too many bends. Two nodes ui, ui+2 at a geometrical
distance lower than 2δ are potential extremities for the contraction of the edge. (b) The
contraction is executed only if no other node is inside the triangle formed by ui, ui+1, ui+2.
(c) The elements e1, e2 and u1 are replaced by the new edge e3. Note that the operation
cannot alter the edge crossing properties once the previous control is performed. (d) A case
of a stretched flexible edge. The expansion of the edge is executed if two consecutive nodes
are at a greater distance than 3δ. (e) The edge e1 is replaced by the elements e2, e3 and u2.
Note that the operation cannot alter the edge crossing properties since the shape of the edge
is not altered. (f) The new bend reduces the stress on the flexible edge increasing its optimal
length and allowing it to assume more complex shapes.

a flexible edge segment is not balanced and acts like a tension force that helps
remove unnecessary bends.

Also, because of the expansion mechanism, we advise not to use flexible edges
that cross each other. A new bend might be placed in a very close position to the
crossed edge, introducing great instability in the graph drawing and preventing
the convergence to a stable configuration. Therefore, two crossing edges or two
crossable edges that might end up overlapping should not be marked as flexible.

6.2.8 Weight of Nodes and Edges

In ImPrEd, it is possible to assign a weight to the nodes, so that the more important
ones have higher influence in the resulting forces and lower tendency to change their

6.3 Results 133

position. As a result, high weight nodes tend to determine the overall structure of the
graph, and low weight nodes tend to assume a position that fits this configuration.

This effect is obtained by further modifying the formulae for the force computa-
tion and the node movement. The following box reports the new formulae with the
modifications (with respect to those in section 6.2.3) highlighted in colour.

Modifications in the Force Formulae. The formulae that consider the weight
of the elements are

F r
u (u, v) =

(
δ ·
√
W(u)W(v)

‖pu − pv‖

)xr

(pu − pv)

F a
u (e) =

(
‖pu − pv‖
δ · W(e)

)xa

(pv − pu)

F e
u (u, e) =

(
γ − ‖pu − pp‖
‖pu − pp‖

·
√
W(u)W(e)

)xr

(pu − pp) if ‖pu − pp‖ < γ

0 otherwise

In the optimisation of Euler diagrams, we use this feature to ensure that the
elements of the grid graph have higher influence on the drawing than the elements of
the original graph. In fact, the latter should adapt and fit the shape of the diagram
more than radically change it.

Also, we might want to assign a weight to the grid graph edges that increases
with the size of the diagram. When the diagram is complex, a larger distance of the
elements from the borders of the zone regions might increase the aesthetics and the
readability of the drawing.

6.3 Results
In this section, we conclude by evaluating the impact of the newly introduced feature
on the aspects we aimed to improve. In particular, we compare PrEd and ImPrEd
on the complexity, quality of the resulting drawing, running times, reliability of the
input parameters and control over the output. Since the introduction of flexible edges
significantly alters the behaviour of the algorithm, we run the benchmarks both con-
sidering all edges marked as rigid (standard behaviour of PrEd) and considering all
edges marked as flexible. We refer to the first case with ImPrEd (R), and to the second
case with ImPrEd (F).

The tests are executed on two data sets of different nature. The first data set is
composed of a large number of randomly generated graphs. We generated 10 random
plane graphs for each of the following dimensions: 50 nodes and 144 edges, 75 nodes
and 204 edges, 100 nodes and 294 edges, 150 nodes and 444 edges, 200 nodes and
594 edges. Then, we generated 10 additional non-plane graphs by randomly adding
20 crossing edges to the previous graphs. In all, we tested 100 randomly generated
graphs.

We also compared PrEd and ImPrEd on the generation of Euler representations,
for both graphs optimised in the procedure:

134 Improvement of a Graph Layout

• zGraph, the zone graph Gz, target of the first graph optimisation,

• gGraph, the graph formed by the grid graph Gg and the original graph Go, target
of the second graph optimisation.

The graphs are used to generate two diagrams that will be discussed in greater
detail in section 7.2. In particular, zGraphA and gGraphA are the graphs optimised
in the generation of the IMDb 60 diagram, that shows the intersections between the
casts of sixty films and features more than 2000 actors. The graphs zGraphB and
gGraphB are built in the generation of the gene interaction diagram, that shows an
interaction network of 170 genes grouped into ten clusters.

6.3.1 Complexity

The complexity of ImPrEd is mostly unchanged with respect to PrEd.
The complexity of an iteration of PrEd is dominated by the force computation,

that requires O(|V |2 + |E||V |) operations. The insertion of surrounding edges and
QuadTrees reduces the complexity of the general case, as the number of nearby ele-
ments and of surrounding edges is typically much smaller than |V | and |E|. However,
these features do not reduce the worst case complexity of an algorithm iteration.

The insertion of the pre-processing step might instead cause an increase of the
total complexity. The complexity of the surrounding edges computation depends on
the initial layout configuration. If G is a plane graph, each edge is considered twice.
Since the number of edges and faces is linear with respect to the number of nodes, the
overall complexity is O(|V |).

If G is not a plane graph, in the worst case, we have O(|E|2) crossings. As each
crossing produces at most one node and at most two segments and outputs a plane
graph, the overall worst case complexity is O(|V |+ |E|2). Here there appears a quad-
ratic term in the number of edges that was not present before. It is important to note,
however, that this is a pre-processing step and does not influence the main cycle of
the algorithm.

6.3.2 Execution Time

To test the algorithm’s performance, we executed PrEd, ImPrEd (R) and ImPrEd (F)
on the graphs of the two data sets. For each graph, we applied the algorithms with
100, 250 and 500 iterations of the main cycle. Also, for each combination of graph,
algorithm and number of iterations, we executed the algorithm ten times and com-
puted the average. The average running times for the randomly generated graphs are
collected in table 6.1, and those of the Euler diagram graphs are collected in table 6.2.

The data obtained for the randomly generated graphs show that ImPrEd (R) is
consistently faster than PrEd and that the speed-up is related to the size of the graph.
On the smallest graphs, 50 nodes, ImPrEd (R) is five times faster than PrEd. On the
largest graphs, 200 nodes, ImPrEd (R) is more than twenty times faster. On the other
hand, on the same graphs ImPrEd (F) is consistently twice as slow as PrEd for all
graph sizes, with only small variations. Figure 6.17 shows these results as plots of the
average running times per iteration.

Also on the Euler diagram graphs ImPrEd (R) performs up to twenty times faster
than PrEd. However, this time ImPrEd (F) outperforms ImPrEd (R) and is up to
thirty times faster than PrEd (see figure 6.18). This suggests that the performances
of ImPrEd (F) heavily rely on the characteristics of the input graph and on its initial

6.3 Results 135

Random Plane Graphs

Nodes 50 70 100 150 200
Edges 144 204 294 444 594

PrEd 100 6.68 14.34 31.11 72.67 132.16
250 16.71 35.85 77.59 181.91 330.40
500 33.38 71.73 155.21 363.40 661.39

ImPrEd (R) 100 1.20 1.84 2.93 4.69 6.87
250 2.97 4.50 7.07 11.07 16.14
500 5.94 8.97 12.95 21.79 31.59

ImPrEd (F) 100 11.79 23.16 52.54 103.06 177.66
250 34.61 73.29 172.59 350.47 631.05
500 78.34 157.64 380.02 792.97 1439.32

ImPrEd (PP) — 0.04 0.09 0.18 0.41 0.73

ImPrEd (R) Gain 5.60 7.92 11.19 16.20 20.21
ImPrEd (F) Gain 0.49 0.52 0.48 0.56 0.58

(a)

Random Non-Plane Graphs

Nodes 50 70 100 150 200
Edges 164 224 314 464 614

PrEd 100 7.66 15.83 33.98 76.40 137.72
250 19.13 39.57 84.85 191.08 344.90
500 38.30 79.20 169.83 382.42 689.24

ImPrEd (R) 100 1.33 1.86 3.54 4.95 6.76
250 3.21 4.47 8.49 11.65 15.59
500 6.35 8.87 16.74 22.79 30.31

ImPrEd (F) 100 — — — — —
250 — — — — —
500 — — — — —

ImPrEd (PP) — 0.09 0.14 0.26 0.52 0.87

ImPrEd (R) Gain 5.92 8.76 9.91 16.20 21.75
ImPrEd (F) Gain — — — — —

(b)

Table 6.1: Average running times of PrEd and ImPrEd for 100, 250 and 500 iterations of
the main algorithm cycle, over the randomly generated graphs. ImPrEd (PP) is the pre-
processing required before ImPrEd can execute. Green numbers indicate improvements, red
numbers indicate slower execution. (a) Random plane graphs. (a) Random non-plane graphs.
Here, ImPrEd (F) has not be applied as flexible edges should not cross.

136 Improvement of a Graph Layout

0.0

0.5

1.0

1.5

2.0

2.5

50 70 100 150 200

Ti
m

e
 (

s)

Graph dimension

Random Plane Graphs

PrEd
ImPrEd (R)
ImPrEd (F)

(a)

0.0

0.5

1.0

1.5

2.0

2.5

50 70 100 150 200

Ti
m

e
 (

s)

Graph dimension

Random Non-Plane Graphs

PrEd
ImPrEd (R)

(b)

Figure 6.17: Plot of the average running time per iteration on random graphs. (a) Plot for
random plane graphs. (b) Plot for random non-plane graphs. As explained above, ImPrEd (F)
is not present as flexible edges should not cross.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

zGraphB zGraphA gGraphA

Ti
m

e
 R

a
ti

o

Graph

Euler Diagram Graphs

PrEd
ImPrEd (R)
ImPrEd (F)

Figure 6.18: Graphical comparison of the ex-
ecution times for the Euler diagram graphs.
The average running time per iteration for
these graphs has been normalised to the run-
ning time of PrEd, and the graphs have been
ordered by dimension. Again, the perform-
ance of ImPrEd improves with the increase of
the graph dimension.

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

 0 50 100 150 200 250

Ti
m

e
 (

s)

Iteration

Execution Time Progression

ImPrEd (R)
ImPrEd (F)

Figure 6.19: Plot of the running time as a
function of the progress of the computation.
The times are relative to the execution of
ImPrEd on gGraphA with 250 iterations. The
plot shows how flexible edges can drastically
reduce the running time, starting from the
very first iterations, when the graph has an
oversized number of bends.

6.3 Results 137

Euler Diagram Graphs

Graph zGraphA gGraphA zGraphB gGraphB
Nodes 149 2601 23 220
Edges 169 507 22 362

PrEd 100 17.50 2721.79 0.51 —
250 40.91 6792.53 1.28 —
500 80.46 13 585.36 2.53 —

ImPrEd (R) 100 4.90 131.55 0.30 15.65
250 11.81 308.83 0.73 33.49
500 23.34 597.55 1.42 65.34

ImPrEd (F) 100 6.68 97.22 0.47 9.25
250 22.02 215.62 1.73 18.07
500 35.29 409.18 3.79 30.81

ImPrEd (PP) — 0.13 5.64 0.02 0.14

ImPrEd (R) Gain 3.49 21.81 1.75 —
ImPrEd (F) Gain 2.25 30.90 0.73 —

Table 6.2: Average running times of PrEd and ImPrEd for 100, 250 and 500 iterations, over
the graphs in the Euler diagram generation data set. ImPrEd (PP) is the pre-processing step.
To gGraphB, we only applied ImPrEd as the input includes edges marked as crossable, which
cannot be handled by PrEd. Green numbers indicate improvements, red numbers indicate
slower execution.

configuration. Since the randomly generated graphs have a high node-to-edge ratio,
ImPrEd (F) tends to insert a high number of bends, considerably slowing the execution.
On the other hand, on the Euler diagram graphs, ImPrEd (F) is able to reduce the
high number of initial bends, effectively reducing the size of the input (see figure 6.19).

On both the random and Euler diagram data sets, pre-processing time is, for the
most part, negligible. On the smallest graphs, it accounts for only 5% to 10% of the
total running time. On the larger graphs, it accounts for only 1% of the total running
time.

6.3.3 Drawing Quality and Parameter Reliability

At first, we illustrate the behaviour of flexible edges in cases of clear oversized and
undersized edges. According to the results shown in figure 6.20, the contraction and
expansion policies seem to be correctly devised, since flexible edges nicely respond to
the stress exerted by the other elements of the graph.

Figure 6.21 shows, in a second example, how ImPrEd generates a final diagram
with a better spacing and with higher reliability of the input parameters δ and γ.
The spacing is more uniform and corresponds better to the interpretation of δ as
the minimal desired node-node distance, and of γ as the minimal desired node-edge
distance. This is very important in the generation of Euler diagrams, since δ allows to
control the spacing between the elements, and γ the distance between elements and
cluster boundaries.

We now proceed to the comparison of the results obtained by PrEd and ImPrEd on
several graphs. Figure 6.22 shows the results of PrEd and ImPrEd (R) on an example
presented by Bertault [6, Figure 1]. ImPrEd seems to reach a more stable configuration

138 Improvement of a Graph Layout

(a) (b) (c) (d)

Figure 6.20: Example of contraction and expansion of flexible edges. The picture shows a
flexible loop containing isolated nodes. (a) The loop having an initial configuration with an
oversized number of bends. (b) The result of the application of ImPrEd. (c) The loop having
an initial configuration with an undersized number of bends. (d) The result of the application
of ImPrEd.

(a) (b) (c) (d)

Figure 6.21: Comparison of the reliability of the parameters δ and γ. It is possible to see
how ImPrEd generates results where the spacing better respects the interpretation of the
mentioned parameters. (a) The results of PrEd with parameters δ = 5, γ = 2. (b) The
results of ImPrEd with the same parameters. (c) The results of PrEd with parameters δ = 2,
γ = 5. (d) The results of ImPrEd with the same parameters.

with the same number of iterations, possibly because of the new movement rules. If the
convergence of the algorithm is accelerated as the image suggests, it is either possible
to reduce the number of iterations and obtain lower execution times, or maintain the
same number of iterations to obtain higher drawing quality.

Figure 6.23 shows the results produced by the algorithms on a planar graph of the
random data set. ImPrEd (R) can produce a better spacing than PrEd, but the high
density of the graph prevents it from obtaining a readable drawing. By marking all
edges as flexible, and therefore by moving from a straight-line to a polyline drawing
style, we can obtain a better spacing of the nodes and a better angular resolution.

Figure 6.24 shows the results of the algorithms on zGraphA and figure 6.25 on
gGraphA. PrEd produces drawings where the nodes seem forced far from the centre. In
particular, figure 6.25b illustrates that nodes are distributed along region boundaries,
probably because the graph induces few attractive and many repulsive forces acting
on disconnected nodes. This shows how the original forces of PrEd are hardly usable
for graphs with a large number of disconnected nodes. In fact, to obtain appreciable
results in the generation of Euler diagrams with PrEd [91], we had to carefully select
the algorithm parameters and increase the repulsive force exponent. However, despite
these efforts, the nodes tend to accumulate on the cluster borders.

6.3 Results 139

(a)

(b) (c)

Figure 6.22: Comparison of the drawing quality on an example of PrEd’s original article [6,
figure 1]. (a) The initial configuration of the graph. (b) The results of the application of
100 iterations of PrEd, as presented in the article. (c) The result or the application of 100
iterations of ImPrEd (R) on the initial configuration. Although both drawings have high
aesthetics, the configuration reached with ImPrEd seems to be closer to a stable one.

Figures 6.24c and 6.25c show how the force and movement cooling of ImPrEd
helps to obtain a more regular node distribution and an element spacing closer to
the chosen parameters. Finally, figures 6.24d and 6.25d show how the introduction of
flexible edges can help improve the aesthetics of the drawings. In the first figure, the
angular resolution of the graph is increased thanks to the insertion of bends in the
most stressed edges. In the second figure, the extension and contraction of the flexible
edges further improve the node distribution and lead to smoother cluster boundaries.

Figure 6.26 shows the result of the application of ImPrEd (F) to gGraphB. Here,
the edges of the original graph are defined as rigid and crossable, and the edges that
form the cluster boundaries are defined as flexible and uncrossable. This allows us to
take the original graph edges into consideration while keeping them straight-line and
preventing them from obstructing the node movement. At the same time, it allows us
to have uncrossable boundaries that can grow and shrink as needed.

Even though the drawing is mainly shaped by the boundary nodes and edges that
had higher weight assigned there is a clear contribution of the original graph edges.
First, the cluster elements with adjacent nodes in different regions are pulled towards
their neighbours, assuming a position that reduces the edge length and cluttering.
Second, the sets themselves seem to minimise the length of the edges connecting
nodes in different regions.

140 Improvement of a Graph Layout

(a) (b)

(c) (d)

Figure 6.23: Comparison of the drawing quality on a random planar graph. All algorithms
used the parameters δ = 10, γ = 10, 250 iterations. (a) The initial configuration of the
graph, provided by the generator of random graphs. (b) The results of the application of
PrEd. (c) The result or the application of ImPrEd (R). (d) The result or the application of
ImPrEd (F).

6.3 Results 141

(a) (b)

(c) (d)

Figure 6.24: Comparison of the drawing quality on zGraphA. All algorithms used the para-
meters δ = 27, γ = 21, 250 iterations. The node diameter is set to 10 to better show the
graph proportions. All figures have been rotated 90° anticlockwise to better fit the page.
(a) The initial configuration of the graph, provided by the Euler representation algorithm.
(b) The results of the application PrEd. (c) The result or the application of ImPrEd (R).
(d) The result or the application of ImPrEd (F).

142 Improvement of a Graph Layout

(a) (b)

(c) (d)

Figure 6.25: Comparison of the drawing quality on gGraphA. All algorithms used the para-
meters δ = 5, γ = 4, 250 iterations. All figures have been rotated 90° anticlockwise to better
fit the page. (a) The initial configuration of the graph, provided by the Euler representation
algorithm. (b) The results of the application of PrEd. (c) The result of the application of
ImPrEd (R). (d) The result of the application of ImPrEd (F).

6.3 Results 143

Figure 6.26: Application of ImPrEd (F) to gGraphB, that contains both flexible and crossable
edges. The black edges are associated with the cluster boundaries, and were therefore marked
as uncrossable and flexible. The grey edges are the edges of the clustered graph, and were
marked as crossable and rigid.

Chapter 7

Software Implementation and
Output Examples

In this chapter we present EulerView, a software tool that implements the generation
method described in this thesis and that permits some basic interaction with the
resulting diagram.

In the first section we introduce the software and the visualisation framework in
which it is inserted. We will in particular illustrate some interaction features we
decided to provide, as they allow to mitigate some of the limitations of Euler repres-
entations.

In the second section, we show some examples of Euler representations generated
with this software. Each diagram is built from real world data, that will be presented
along with the actual drawing.

7.1 EulerView

EulerView is a software tool that generates Euler representations according to the
generation procedure described in the previous chapters. It is an extension of a graph
drawing and data visualisation framework called Tulip [3, 4], which supports the
creation of plug-ins to expand its initial set of functions.

EulerView is a view plugin, meaning it provides an alternative visualisation of the
data under analysis. When the view is called on a clustered graph, a standard node-
link diagram view is augmented with the graphical entities representing the cluster
regions, and the graph layout is changed to reflect the position of the original elements
in the diagram. This way, we obtain a drawing such as that shown in figure 7.1.

Interaction. Since we inherit the functions of the standard node-link diagram view
of Tulip, the user will be able to perform all the classic operations available in a
graph visualisation software, except those involving the movement of the nodes. These
operations include, among others, the computation of metrics and characteristics of
the graph or the enquiry or modification of the element label, shape and dimension.

Furthermore, we devised a few basic interaction features specific for Euler rep-
resentations. Most features are oriented towards the shading of the portions of the
diagram that are not of current interest, through the mechanism of the cluster and
zone selection. We also insert tooltip panels that provide information on the clusters

145

146 Software Implementation and Output Examples

Figure 7.1: A screen shot of EulerView.

currently observed or selected. Finally, we provide the possibility of grouping the
original elements contained in a zone into path-preserving meta-nodes.

7.1.1 Cluster and Zone Selection

The current selection is the selection executed with a single input action, such as
a mouse click. The performed selection is instead the selection obtained as a result
of a sequence of current selections. Once we have chosen to show only some of the
diagram’s clusters or zones, we just need to select them. The software shows the
clusters or zones of the performed selection in full colours, and heavily shades the
remaining ones. The latter remain still visible, but they do not produce significant
distraction in the representation.

There are different ways of performing a current selection:

• Cluster list selection. The left panel of the software presents the list of the
clusters in the diagram, along with information such as the number of elements
contained and the number of intra-cluster edges. Once a cluster is selected, only
the original graph nodes and edges contained in the cluster are shown, while the
other elements are hidden (see figure 7.2).

This selection is particularly useful to spot the position of a cluster in the dia-
gram, and it is strongly recommended when the diagram contains more than
about a dozen clusters.

7.1 EulerView 147

Figure 7.2: An example of list selection, performed by clicking on the cluster list on the left.

• Cluster and zone simple selection. By clicking on an area of the drawing con-
taining a single cluster, we select that cluster (see figure 7.3). By double-clicking
on any of the zones of the graph, we select that zone. Zones and clusters cannot
be selected at the same time.

This selection shows the actual shape of the cluster region of the diagram, that
can be difficult to follow when the diagram presents complex cluster intersections.

• Cluster multiple selection. By clicking on an area of the diagram where multiple
clusters overlap, we select all the clusters in the intersection (see figure 7.4).

This selection is particularly useful when we want to identify the clusters involved
in an intersection.

• Spin cluster selection. When a multiple selection has just been done, the cursor
changes shape to indicate the possibility of performing a spin selection. By
acting on the mouse wheel, it is possible to scroll through the clusters involved
in the given intersection (see figure 7.5). The selection is confirmed by moving
the cursor from the clicked point.

This selection can be used to select a specific cluster in an overlapping region,
or to show the individual clusters that intersect at a given point.

• Cluster and zone global selection. By clicking on an empty area of the diagram,
we select all the clusters of the diagram. By double clicking on an empty area,
we select all the zones in the diagram.

This selection is particularly useful to reassign full colour to all clusters of the
diagram, showing the Euler representation as it appears after the generation.

148 Software Implementation and Output Examples

Figure 7.3: An example of simple selection, performed by clicking on a region that only
contains the red cluster.

Figure 7.4: An example of simple selection, performed by clicking on the overlap between the
highlighted clusters.

7.1 EulerView 149

(a)

(b)

Figure 7.5: An example of spin selection. These selections are performed by using the mouse
wheel on the multiple selection in figure 7.4. Each step of the mouse wheel moves the selection
to the next (or previous) cluster in the list. (a) One step down. (b) Two steps down.

150 Software Implementation and Output Examples

The way the current selection acts on the performed selection can be altered
through the following modifier keys:

• No modifier keys: the current selection replaces the performed selection.

• Shift key: the current selection is added to the performed selection.

• Control key: the current selection is removed from the performed selection.

7.1.2 Tooltips

EulerView shows tooltips that are meant to facilitate the analysis of the diagram
and of the information it contains. The tooltips contain information on the number of
elements and zones contained in a given cluster, and information on the clusters that
have inclusion or intersection relationships with it.

There are three types of tooltip:

• Selection tooltip. This tooltip is shown when a simple or multiple selection is
performed. The tooltip only contains the name of the selected clusters so as not
to obstruct the view of the diagram (see figures 7.3 and 7.4).

• Spin tooltip. When a spin selection is performed, the previous tooltip is expanded
with detailed information on the cluster currently selected. The list of clusters
reports only the selected cluster in bold, and the remaining ones in normal font
(see figure 7.5).

• Position tooltip. When the cursor is kept still over a single cluster, the tooltip
shows detailed information on that cluster (see figure 7.6a). When it is placed
over an intersection, the tooltip presents the information relative to each of the
clusters in a more condensed way (see figure 7.6b).

7.1.3 Path-Preserving Meta-Nodes

In order to reduce and condense the critical information of a complex graph, Archam-
bault, Munzner and Auber [2] introduced the decomposition in path-preserving meta-
nodes. A meta-node is a structure that encompasses a portion of the graph into a
graph node. Typically, the meta-nodes can be dynamically opened and closed to show
or hide their content.

When closed, a meta-node appears as a graph node, generally having different
colour or shape with respect to the standard nodes. The content of the meta-node is
collapsed in the meta-node position, so that the edges exiting the meta-node appear
incident to it. When the meta-node is opened, the content is re-positioned in the
graph and the meta-node glyph is partially hidden.

Path-preserving meta-nodes are devised to avoid misleading the user on the con-
nectivity of the meta-node content. For instance, a meta-node could contain two or
more components that are not connected. If two external nodes are linked to dis-
connected components, they will appear connected through it when the meta-node is
closed. Path-preserving meta-nodes avoid this behaviour by forbidding the creation
of meta-nodes that might induce fictional connections when they are collapsed (see
figure 7.7).

7.1 EulerView 151

(a)

(b)

Figure 7.6: Examples of position tooltips. (a) Single cluster position tooltip. (b) Multiple
cluster position tooltip.

152 Software Implementation and Output Examples

(a) (b)

(c) (d)

Figure 7.7: Generic meta-nodes and path-preserving meta-nodes. (a) Let us suppose that we
choose to collapse the nodes contained in the dashed lines into meta-nodes. (b) The resulting
diagram, with the meta-nodes closed, might induce the user to think that the nodes contained
in zone a and in zone b are connected, which is not correct. (c) The meta-nodes we generate
in Euler representations. (d) These meta-nodes do not mislead the user on the connectivity
between the graph elements.

7.2 Examples of Euler Representations 153

Diagram |S| |V o| |Eo| ImPrEd Z ImPrEd G Total ImPrEd R
(s) (s) (s) %

IMDb 7 7 322 0 0.40 13.87 15.22 93.8
IMDb 60 60 2236 0 8.20 201.49 253.85 82.6
Platelet 6 — — — — — —
Gene interaction 10 176 296 0.26 8.73 9.54 94.2
Carsonella 35 224 334 1.06 22.67 25.89 91.6

Table 7.1: Statistics and computation time for the Euler representations showed in this
chapter. The columns contain, in the order from left to right, the number of clusters, the
number of original graph nodes, the number of original graph edges, the execution time of
the first execution of ImPrEd, the execution time of the second execution of ImPrEd, the total
computation time, and the ratio between the time required by the two executions of ImPrEd
and the total computation time. Unfortunately, most statistics for Platelet are not available.

Path-Preserving Meta-Nodes in EulerView

We implemented path-preserving meta-nodes in EulerView. For each diagram zone,
we study the connected component of their induced subgraphs. The components
composed of more than one node are associated with new meta-nodes.

In the diagram, meta-nodes can be opened and closed by double-clicking on them.
Also, all the meta-nodes contained in the performed selection can be opened and closed
by pressing the keys “O” and “C”.

7.2 Examples of Euler Representations

In this section we show some examples of Euler representations generated by Euler-
View. All the diagrams come from real world-data and can be used to extract signi-
ficant information.

In the following, we present individually each diagram and the data used to gen-
erate them. Table 7.1 reports statistics such as the number of clusters, original nodes
and edges, and the computation time required to generate these diagrams. We also
report the time required by each graph optimisation, as well as the ratio between
the sum of the optimisation times over the total generation time, to clarify how the
computation time is mostly given by the executions of ImPrEd.

7.2.1 IMDb

The diagrams called IMDb are based on data extracted from the IMDb website [61].
IMDb provides a chart of the top 250 films voted by the website’s users and information
on a great number of films. In 2009, we extracted the chart and the full cast for the
films in the first 70 positions.

We constructed a few diagrams in which the films are the clusters, the actors are
the original graph nodes and the overlaps indicate that the movies shared part of their
cast.

The diagram IMDb 7 features seven films and 322 actors. We manually chose
the films to provide a relatively small and compact diagram to explain the generation
procedure and the interaction features. The diagram is shown in figure 4.14 on page 76
and in the figures at the beginning of this chapter.

154 Software Implementation and Output Examples

Figure 7.8: Euler representation of the IMDb 60 data set. The diagram has been rotated 90°
anticlockwise to better fit the page.

The diagram IMDb 60 features 60 films and a total of 2263 actors, and it is shown
in figure 7.8. The films depicted are all those of the top 70 list who intersected with
each other. In other words, the films that were excluded would all have appeared
isolated in the diagram. We generated the diagram to show the ability of the method
to scale to relatively large input instances.

The Diagrams. The diagram IMDb 7 is pleasant and readable, but it shows how
the cluster regions could benefit from more regular shapes (see figures 7.3 and 7.5).
Such irregular regions are necessary when drawing large and complex diagrams, but
are not required for small and simple ones.

7.2 Examples of Euler Representations 155

The diagram IMDb 60 also exhibits high aesthetics, especially when considering
the large number of clusters and original graph nodes it features. In particular, the
diagram appears to be well spaced and organised. The zones seem to be well sized,
since the area of the zones that are not stretched for connectivity issues look quite
proportional to the number of contained elements.

Clearly, such a pleasant result for a diagram of more than 60 clusters is also due
to the data set, that does not present very complex overlaps.

7.2.2 Platelet

The diagram called platelet is constructed using the results from proteomics experi-
ments obtained from several biological studies. Proteomics experiments can be used
to detect proteins which are present in a cell or a tissue. In this case they are used
to obtain a list of proteins which are present in blood platelets, which are a cell type
essential for hemostasis.

Platelet proteomics experiments detect only a subset of the total proteins. Also,
the proteins which are detected depend on the design of the experiment. Previous
experiments have been targeted at a specific class of proteins, such as membrane, low
abundance and peripheral membrane. Many of these experiments have expanded the
known platelet proteome though there is a large amount of redundancy between them.

The Diagram. The diagram in figure 7.9 shows the overlaps between five platelet
proteomics data sets [50, 52, 67, 68, 82] and one platelet specific RNA profile [112].
From this diagram, it is clear that each proteomics data set is contributing a large
amount of unique proteins. The RNA profile (purple) identifies proteins which are
specific to Megakaryocytes versus other blood cells. As platelets are derived from
Megakaryocytes, this is used to identify proteins which may be uniquely expressed in
blood platelets versus other cell types.

7.2.3 Gene Interaction

The diagram called gene interaction displays clusters over a gene interaction network.
Itoh et al. [62] presented a method for visualising overlapping graph clusters that does
not rely on Euler diagrams, but on the element positioning and colouring in a node-
link diagram. One of the examples they showed involved a protein-protein interaction
network featuring 6152 genes and 7564 interactions between them. Also, the genes
were characterised by their response to 173 types of stress conditions.

Over this huge network, ten overlapping clusters have been extracted, so that each
group contains genes with common expression or repression conditions. The clusters
contained a total of 176 genes, having 296 interactions between them.

The Diagram. The diagram in figure 7.10 shows the Euler representation built on
the ten clusters, and on the subgraph induced by the nodes they contain.

In this diagram, it is interesting to note how the edges of the original graph con-
tribute to the shape of the final diagram. Even though their reduced weight does
not allow them to drastically model the overall structure of the drawing, they tend
to move the nodes having edges that exit the zone along the zone borders. Also, the
zones seem to be distributed in a way that reduces the length of extra-zone edges.

It is also interesting to note how the meta-nodes can help extracting insight on
the connectivity of the nodes. For example, by closing the meta-nodes, the very low

156 Software Implementation and Output Examples

Figure 7.9: Euler representation of the Platelet data set (Courtesy of Kevin O’Brian).

inner connectivity of the yellow zone in the centre-left becomes much more evident.
Opening the meta-nodes, we can note how this is due to the presence of a hub node in
the zone just below. Even though this observation was possible without the presence
of meta-nodes, the reduced number of elements and edge cluttering they induce can
be helpful, especially when considering larger diagrams.

7.2.4 Carsonella

The diagram we call Carsonella is constructed on the metabolic network of the bac-
teria Candidatus Carsonella ruddii [70]. Metabolic networks represent the chemical
reactions of the metabolism of the organism. For this reason, the nodes can either
represent metabolites, that are the components of the chemical reactions, or enzymes,
that are the proteins that trigger such reactions.

Metabolic networks are usually clustered in pathways, that are groups of reactions

7.2 Examples of Euler Representations 157

(a)

(b)

Figure 7.10: Euler representation of the gene interaction data set. (a) The diagram with all
meta-nodes opened. (b) The diagram with all meta-nodes closed.

158 Software Implementation and Output Examples

finalised to a specific function. Since certain reactions and products are used in mul-
tiple pathways, the pathways overlap with each other. To reflect the different nature
of the network nodes, these have different colours. The red nodes are the metabolites,
and the green nodes are the enzymes.

The metabolic network of the bacteria contains 35 pathways, that groups a total
224 nodes and 335 edges of the original graph.

The Diagram. The diagram generated by EulerView is shown in figure 7.11.
The first figure shows the graph with all the meta-nodes opened, meaning that all the
elements of the original graph are currently displayed. In the second figure, all the
meta-nodes have been closed. Closing the meta-nodes allow to sensibly reduce the
cluttering of the diagram, while keeping all the connections between zones visible.

In the diagram, we can easily identify a zone shared by a very high number of
clusters, recognisable by a texture that presents many different patterns. If we in-
vestigate the zone and its content, we notice that the node is water and that this
component is used in 20 pathways (see figure 7.12a).

Also, the graph shows three red nodes having a very high degree. In figure 7.12b,
the node near the tooltip is ATP, while the two red nodes above it are AMP and
diphosphate, which are all very important molecules in the metabolism. As they do
not belong to the same zone, we can consult the tooltips to discover that the ATP is
in the same three pathways of the others, and in three other pathways.

7.2 Examples of Euler Representations 159

(a)

(b)

Figure 7.11: Euler representation of the Carsonella data set. (a) The diagram with all the
meta-nodes opened. (b) The diagram with all the meta-nodes closed.

160 Software Implementation and Output Examples

(a)

(b)

Figure 7.12: Details of the Euler representation of Carsonella. (a) A zone of high overlap that
contains a single reaction component: water. (b) Three nodes of high degree (the red node
near the tooltip, and the two red nodes above), corresponding to important components of
the metabolism.

Chapter 8

Conclusions

In this final chapter, we draw the conclusions on the work done, the results obtained
and on the directions for future work.

First, we summarise the work presented in this thesis. In particular, we remark
the problems we aimed to solve and the solutions we developed.

Second, we state our contributions to the field and present the papers we published
on the topic.

Third, we discuss the advantages and disadvantages of the visualisation we pro-
posed and of its generation method.

Finally, we close the thesis by proposing several ways of extending and improving
the work presented.

8.1 Aims and Realisation
In this thesis, we aimed to provide a method for the visual analysis of overlapping
sets and fuzzy graph clusterings. We chose to base the resulting visualisation on Euler
diagrams, due to their high intuitivity and their solid perception properties.

The solution we proposed consists of a form of diagrams, a procedure that generates
them, and interaction features that allow to increase the potentials of the visualisation
in the data analysis.

The Visualisation. The diagrams we construct, called Euler representations, show
high similarity with Euler diagrams as commonly intended, since both rely on the
same metaphors to express the set intersection and element containment.

The main difference between them is that Euler representations have the possib-
ility of depicting a set with disconnected portions of the plane. Such a difference is
motivated by the necessity of producing a diagram for every input, since there exist
cases for which standard Euler diagrams do not exist.

The Procedure. The procedure that generates Euler representations receives a
fuzzy clustered graph as input, and produces the final drawing through a sequence of
five main steps:

• Zone graph construction. We identify the regions that we must depict in the
final diagram (the nodes of the zone graph) and we enforce adjacency between
them (through edges of the zone graph).

161

162 Conclusions

• Zone graph drawing. We identify the general positions of the regions in the final
diagram by computing and optimising a planar drawing of the zone graph.

• Grid graph construction. We compute the boundaries of the regions in the final
diagram by enclosing the zone graph nodes and edges within another graph,
called grid graph.

• Grid graph drawing. We insert the original elements in the faces of the grid
graph, and we optimise the current drawing to obtain the positions of the ele-
ments and set boundaries.

• Cluster curve depiction. Finally, we depict the set boundaries and we apply
some graphical techniques to help the user discern the sets in correspondence to
the intersections.

Graph Layout Improvement. The procedure requires to optimise the aesthetics of
two graphs, while preserving the reciprocal positions of their elements. PrEd is a force-
directed graph drawing algorithm that allows to improve the layout of a graph without
altering these properties, or more precisely, while impeding nodes from crossing edges
when moving.

Due to the importance of the graph optimisation phases on the quality of the final
visualisation, and due to their weight in the total computation time of the diagram
generation procedure, we decided to develop an algorithm that improves PrEd. ImPrEd
preserves much of the original algorithm, but proved to be significantly faster, more
reliable on the input parameters, and able to produce better drawings.

ImPrEd also has a couple of additional features that are particularly useful for
generating Euler diagrams, but that can be used even on normal graphs. The most
noticeable is flexible edges, that makes edges able to adapt to the stress exerted on
them by inserting or removing bends.

Interaction. Once the visualisation is generated, a few interaction techniques are
provided to facilitate the data analysis. In particular, these techniques include the
possibility of identifying the sets that are present in a given intersection, visualise
their statistics and show or hide sets according to the portion of the diagram of current
interest.

Also, in order to reduce an eventual clutter caused by the input graph edges, the
algorithm computes meta-nodes that allow to encompass the connected components
inside a region into a single entity. The meta-nodes preserve the paths between ele-
ments in different regions, meaning that even when they are closed they do not lead
the user to wrong conclusions about the connectivity of the input graph.

8.2 Contributions
To accomplish the aim of the thesis, we had to address several issues that were only
partially covered in the literature. First, we needed to identify a class of diagrams that
had no undrawable instances. Second, we needed to provide a generation method suf-
ficiently fast, reliable and able to handle large diagrams. Third, we had to implement
the algorithm to verify its applicability and the quality of the diagrams produced.

The major contributions provided when solving these problems are explained in
the remaining part of the section. For each contribution, we will mention both the
published papers and the sections of this thesis in which the topic is treated.

8.2 Contributions 163

Drawability Issues. In order to always be able to produce a diagram, we stud-
ied which Euler diagram properties we had to violate and which solutions we could
use to mitigate the loss of readability that this would cause [90]. Although drawabil-
ity issues were already considered in previous work, there seems to be little concern
about undrawable instances, even if this precluded their application of Euler diagram
generation methods to visual data analysis.

The contents of this study are mainly present in section 3.3.

[90] Paolo Simonetto and David Auber. ‘Visualise Undrawable Euler Diagrams’.
In: International Conference on Information Visualisation (IV08). Ed. by Ebad
Banissi, Liz J. Stuart, Mikael Jern et al. IEEE Computer Society, 2008, pp. 594–
599.

Automatic Generation of Euler Representations. As a result of the previous
considerations, we designed a generation procedure that produces less restrictive Euler
diagrams, called Euler representations.

The generation procedure is divided into five phases. We provided an heuristic
[89] to solve the first step, that is the generation of the zone graph, and the details on
how to proceed on the following four steps [91]. The overall procedure is quite similar
to that of several other methods, but it substantially differs on the identification and
depiction of the set boundaries. Also, the construction of the backbone graph, called
zone graph in our method, is generally very scarcely detailed in the literature.

In this thesis, the contents of the two articles are sketched in section 4.2 and
detailed in chapter 5.

[89] Paolo Simonetto and David Auber. ‘An Heuristic for the Construction of
Intersection Graphs’. In: International Conference on Information Visualisation
(IV09). Ed. by Ebad Banissi, Liz J. Stuart, Theodor G. Wyeld et al. IEEE
Computer Society, 2009, pp. 673–678.

[91] Paolo Simonetto, David Auber and Daniel Archambault. ‘Fully Automatic
Visualisation of Overlapping Sets’. In: Computer Graphics Forum (EuroVis09)
28.3 (June 2009), pp. 967–974.

ImPrEd. Since our procedure for the generation of Euler representations relies heav-
ily on PrEd to produce the final drawing, we spent considerable effort in improving
it. ImPrEd [92] was developed to improve its execution time, drawing quality and the
reliability of the input parameters.

To obtain these results, we added several features to the original algorithm:

• Force and movement cooling. This feature is inspired by similar approaches
in other force-directed algorithms. However, the force system and the cooling
policy had to be adapted to the very different behaviour of PrEd and ImPrEd,
given the node movement restriction.

• Surrounding edges. The possibility of computing the surrounding edges had
already been suggested by PrEd’s author as future work. However, an algorithm
for this purpose had not been provided. The method we proposed for computing
the surrounding edges is sufficiently fast and generates a significant speed up in
terms of the computation time.

164 Conclusions

• Flexible and crossable edges. Crossable edges represent a natural addition to the
PrEd algorithm, and it did not require substantial efforts to integrate them into
the algorithm. On the other hand, flexible edges proved to be a very interesting
and quite innovative addition, that could prove to be useful even outside the
generation of Euler diagrams.

• QuadTrees, weights and new maximal movement rules. These features can be
considered minor contributions, either because they consist of the mere imple-
mentation of well known techniques, such as QuadTrees, or because they did not
require significant effort to be designed or implemented.

The content of this article is discussed in chapter 6.

[92] Paolo Simonetto et al. ‘ImPrEd: An Improved Force-Directed Algorithm
that Prevents Nodes from Crossing Edges’. In: Computer Graphics Forum (Euro-
Vis11) 30.3 (June 2011), pp. 1071–1080.

Software Implementation and Interaction. We developed a Tulip plug-in,
called EulerView, that can be used to generate and interact with Euler repres-
entations. The plug-in is freely available and will hopefully be integrated with Tulip
in a future version of the software.

Although the interaction features developed so far are quite basic, they already
allow to facilitate the analysis of the diagrams and the extraction of salient information.

These early results are contained in chapter 7.

Euler Diagram Theory and Visualisation. Finally, there are a last couple of
minor contribution in this thesis. The first consists of the investigation on the percep-
tual reasons that make Euler diagrams such a powerful tool in the visual analysis of
data. The conclusions we draw on these aspects are reported in section 2.3.1.

The second is related to the Euler theory presented in section 3.3. The con-
cepts presented in that section had been defined and explained by every authors that
proposed an algorithm for the generation of Euler diagrams. However, the use of dif-
ferent assumptions and terms contributed to make the actual differences between the
methods, the kind of diagram generated and the undrawable class of each algorithm,
unclear. In this thesis, we tried to clarify these concepts by reporting, with uniform
definitions, the characteristics of each approach and the class of diagrams they gener-
ate.

8.3 Results
In section 7.2 we showed some examples of the diagrams generated with the pro-
cedure and software we developed. The diagrams are generally comprehensible and
aesthetically pleasant. However, as expected, the readability of the final diagram is
very dependent on the way the sets intersect, which has an even greater effect than
the number of sets or elements. Already in section 2.3.3, we mentioned this problem:
we can generate readable Euler diagrams for hundreds of sets and thousands of ele-
ments, but we cannot generate very clear Euler diagrams that show all the 36 possible
intersections of six sets.

8.4 Future Work 165

Intersections Complexity. Diagrams characterised by relatively simple set inter-
sections, such as those shown in figures 4.14 on page 76 (IMDb 7) and 7.8 on page 154
(IMDb 60), are very informative and fairly easy to read. Also, in this case the graph
size has relatively little impact on the graph comprehensibility, which is quite well
preserved at the increase of the input size.

Diagrams characterised by complex set intersections, such as that in figure 7.11 on
page 159 (Carsonella), rely more heavily on interaction to compensate for the lower
readability. In fact, when dozens of sets overlap in the same region, even the textures
are very difficult to distinguish.

Computation Times. The computation times required for the generation of Euler
representations are reasonable, even when considering relatively large diagrams, if the
diagram needs to be generated only once.

Applications that require both high interaction with the user and the continuous
generation of diagrams can benefit from our method only if the number of sets and
elements is limited. In such a scenario, computation times inferior to ten seconds
required by a diagram with up to a dozen of sets and two hundred elements, would
be acceptable. Computation times of about four minutes, required by diagrams of the
size of IMDb 60, would not be acceptable in this scenario.

Concurrency and Shape of the Clusters. The addition of high levels of con-
currency significantly contributed to the reduction of the computation times, but at
the expense of the drawing quality. The concurrency of the curves is an obstacle to
the identification of the cluster regions, which also tends to be characterised by an
irregular shape.

The irregularity of the shapes is evident in particular on small and simple diagrams,
such as that in figure 7.3 on page 148, since it would be possible to find more readable
configurations. The problem is progressively less evident with the increase of the
diagram size and complexity, since the non-regular shapes generated by our method
are necessary to draw such diagrams.

The high cluster curve concurrency presents a similar pattern. On small and
simple diagrams, it is mostly unneeded and reduces the comprehension of the diagram.
However, with the increase of the complexity of the diagrams, the concurrency might
reduce an excessive amount of the information displayed. For example, twenty or more
non-concurrent curves are not necessarily more comprehensible than superimposed
ones, as shown by recent success of edge bundles [60].

8.4 Future Work

We conclude the thesis by providing several directions for future improvements to the
method. We classify them into three categories: the improvement of the diagram
readability, the reduction of the computation time, and extensions of the method.

Drawing Readability. The best way of improving the readability of the generated
diagrams would be to produce more regular cluster curves. There are several ways of
obtaining this result:

• We could enforce a higher connectivity of the zone graph nodes that belong
to the same cluster. This would generate cluster regions with a more compact

166 Conclusions

shape, rather than the current, stretched ones. Since this method would create
a large number of holes in the cluster regions, it would be necessary to remove
them without altering the current diagram.

• We could insert additional forces in ImPrEd to promote a more regular position-
ing of the grid graph nodes that belong to the same cluster curve, inducing them
to assume a round or elliptical shape. This method would require a very good
balance of the forces, that could be extremely difficult to reach for the many
conditions that need to be simultaneously enforced.

• We could smooth the boundaries immediately before the depiction of the cluster
curves, taking care not to alter the current diagram. This method would be
relatively fast and simple, but its applicability would be highly dependent on
the graph layout.

The method would also benefit from reducing the high level of concurrency cur-
rently imposed. This could also be obtained in several ways:

• We could replace the current method based on the grid graph with a contour
routing approach, such as that proposed by Rodgers et al. [85], and optimise the
results with ImPrEd. However, this method might cause a significant increase
in the running time of ImPrEd, since each curve is now considered individually.
Also, we would need to re-work the expansion mechanism for flexible edges, as
they would need to be applicable to crossing edges.

• We could split the concurrent curves after the application of ImPrEd. With a
high value of γ we can ensure enough space around the zone boundaries, and
draw the cluster curves sharing the same edge as parallel lines (similarly to
what is done in transit maps). This method would require computing the order
in which the lines must appear, and might not be as efficient as the previous in
terms of readability.

Running Time. Since the use of ImPrEd is responsible for about 80% to 95% of the
total running time, it is still important to focus on the efficiency of the graph layout
optimisation phase. We could approach the problem in the following ways:

• We could attempt to reduce the complexity of ImPrEd, which would therefore
be faster and able to scale to larger input. This approach would only present
benefits, but a complexity reduction might be difficult to achieve.

• We could reduce the input instance, using a multilevel approach typical of mod-
ern force-directed algorithms (see the related paragraph in section 3.2.3). For
instance, we could enclose all the original graph nodes contained in the same
zone into a single meta-node, and split the meta-node into smaller entities with
the progression of the computation. This would greatly speed up the process,
but it would require to specialise ImPrEd for the optimisation of Euler diagrams.

• We could rely on different kinds of algorithms, such as those of Dwyer et al.
[26–29], that seem to be more efficient and easier to tune to enforce a particular
constraint.

8.4 Future Work 167

Extensions. The method discussed in this thesis would also benefit from extensions
and new features, in particular for what regards the interaction with the user:

• We could give the possibility of redrawing a diagram using only a sub-set of
selected clusters. In order to preserve the mental map, we could start from
the diagram generated for the whole graph, re-optimise its layout and merge
eventual disconnected cluster regions whenever possible.

• We could also further extend the previous point by drawing the diagrams on-
demand. Instead of drawing a large diagram containing all clusters and elements,
we could give the possibility to the user to select the clusters of current interest
and produce a drawing for those clusters only. In order to preserve the mental
map and provide a rough overview of the cluster relationships, we could design
a visualisation based on the zone graph.

Appendix A

Biographies

This thesis is inspired by the work of major mathematicians, physicians and philosoph-
ers. In this section, we pay the right tribute to their talent by presenting a summary
of their life and scientific contributions.

We first present the biography of Leonhard Euler [33, 77]. Euler have been cited
as the inventor of the earlier form of diagrams, although some evidences proof their
earlier usage [57]. Then, we present a biography of John Venn [77], who formalised
and contributed to the diffusion of these diagrams.

Figure A.1: Leonhard Euler

Leonhard Euler. Leonhard Paul Euler
was born on the 15th of April 1707 in Basel,
Switzerland. He developed his extraordinary
talent in mathematics thanks to the teach-
ings of Johann Bernoulli, who was then re-
garded as Europe’s foremost mathematician.

In May 1727 Euler moved to Russia to
study and work at the Academy of Sciences
at St. Petersburg, recently established by
Peter I (also known as Peter the Great) to
promote Russian education and to close the
scientific gap between Russia and Europe.
Here, Euler swiftly rose through the ranks
in the academy until becoming head of the
mathematics department in 1733. How-
ever, the increasing hostility that foreign re-
searches had to face since the death of Cath-
erine I — who succeeded the husband Peter I
at the lead of the Russia empire and who
shared his will in developing Russian science
and art — eventually made Euler decide to
leave the country.

In June 1741 Euler took a place at Berlin
Academy offered by Frederick the Great of
Prussia. In the 25 years he spent in Berlin, he published 380 articles and some of his
most important works: Introductio in analysin infinitorum on mathematical functions,
Institutiones calculi differentialis on differential calculus and Vollständige Anleitung

169

170 Biographies

zur Algebra (Elements of Algebra) the first books to set out algebra in its current form.
He also accepted to tutor Frederick’s niece, the princess of Anhalt-Dessau, through
a long series or letters on different topics of physics and mathematics [33]. Some of
these letters contain the diagrams that are generally considered the ancestor of modern
Euler diagrams.

In 1766, the improvement of the Russian situation under Catherine II (also known
as Catherine the Great) and the deterioration of the relationship with Frederick of
Prussia made him decide to return to the Academy of St. Petersburg, where it stayed
and studied for the rest of his life. Euler died on the 18th of September 1783.

Figure A.2: John Venn

John Venn. John Venn was born on the
4th of August 1834 in Hull, Yorkshire, Eng-
land. His father Henry played a prominent
role in the evangelical Christian movement,
and educated his son into the Christian min-
istry. In October 1853 he entered Gonville
and Caius College, Cambridge, where he pur-
sues his mathematical studies. In the second
year, he was awarded a mathematics scholar-
ship and in 1857 he graduated with excellent
results.

In 1859 Venn was ordered priest and in
1862 he returned at Gonville and Caius Col-
lege as lecturer in moral sciences. There, he
primarily studied and taught logic and prob-
ability theory.

The results of his studies are collected in
three main texts. In The Logic of Chance
(1866) he introduced the frequency interpret-
ation of probability, that criticised the clas-
sical interpretation of probability proposed
by Pierre-Simon Laplace. In Symbolic Logic
(1881) [106] he presents diagrams that illus-
trate Boole’s mathematical logic. These dia-
grams were subsequently named after him,
and represent the contribution for which Venn is mostly known. Finally, in The Prin-
ciples of Empirical Logic (1889) he provides an overview of the field of logic and make
further use of these diagrams.

For his merits, in 1883 Venn was elected a fellow of the Royal Society and was
awarded a Sc.D. by Cambridge. John Venn died on the 4th of April 1923.

Bibliography

[1] Alex T. Adai, Shailesh V. Date, Shannon Wieland and Edward M. Marcotte.
‘LGL: Creating a Map of Protein Function with an Algorithm for Visualizing
Very Large Biological Networks’. In: Journal of Molecular Biology 340.1 (Jan.
2004), pp. 179–190 (cit. on p. 47).

[2] Daniel Archambault, Tamara Munzner and David Auber. ‘GrouseFlocks: Steer-
able Exploration of Graph Hierarchy Space’. In: IEEE Transactions on Visual-
ization and Computer Graphics 14.4 (July 2008), pp. 900–913 (cit. on p. 150).

[3] David Auber. ‘Tulip: a Huge Graph Visualisation Framework’. In: Graph Draw-
ing Softwares. Ed. by Petra Mutzel and Michael Jünger. Mathematics and
Visualization. Springer-Verlag, 2003, pp. 105–126 (cit. on pp. 15, 145).

[4] David Auber. ‘Tulip’. In: International Symposium on Graph Drawing (GD01).
Ed. by Petra Mutzel, Michael Jünger and Sebastian Leipert. Vol. 2265. Lecture
Notes in Computer Science. Springer, 2002, pp. 488–491 (cit. on pp. 15, 145).

[5] Florence Benoy and Peter Rodgers. ‘Evaluating the Comprehension of Euler
Diagrams’. In: International Conference on Information Visualisation (IV07).
Ed. by Ebad Banissi, Remo Aslak Burkhard, Georges Grinstein et al. IEEE
Computer Society, 2007, pp. 771–780 (cit. on p. 53).

[6] François Bertault. ‘A Force-Directed Algorithm that Preserves Edge Crossing
Properties’. In: Information Processing Letters 74.1–2 (Apr. 2000), pp. 7–13
(cit. on pp. 47, 63, 84, 101, 105, 137, 139).

[7] David Brewster and John Griscom. Letters of Euler on Different Subjects in
Natural Philosophy Addressed to a German Princess. New York: J. & J. Harper,
1837 (cit. on p. 17).

[8] Stefan Bruckner, Sören Grimm, Armin Kanitsar and Meister E. Gröller. ‘Il-
lustrative Context-Preserving Exploration of Volume Data’. In: IEEE Trans-
actions on Visualization and Computer Graphics 12.6 (Nov. 2006), pp. 1559–
1569 (cit. on p. 14).

[9] Heorhiy Byelas and Alexandru Telea. ‘Texture-based visualization of metrics
on software architectures’. In: ACM Symposium on Software Visualization
(SoftVis08). 2008, pp. 205–206 (cit. on p. 99).

[10] Stuart K. Card, Jock Mackinlay and Ben Shneiderman. Readings in Inform-
ation Visualization: Using Vision to Think. Morgan Kaufmann, 1999 (cit. on
pp. 4, 13).

[11] Chaomei Chen. ‘Information Visualization’. In: Wiley Interdisciplinary Re-
views: Computational Statistics 2.4 (2010), pp. 387–403 (cit. on p. 13).

171

172 Bibliography

[12] Stirling Christopher Chow. ‘Generating and drawing area-proportional Euler
and Venn diagrams’. PhD thesis. Greater Victoria, British Columbia, Canada:
University of Victoria, 2007 (cit. on pp. 53, 55, 56, 63).

[13] Marek Chrobak and Thomas H. Payne. ‘A Linear-time Algorithm for Drawing
a Planar Graph on a Grid’. In: Information Processing Letters 54.4 (1995),
pp. 241–246 (cit. on p. 45).

[14] Jonathan D. Cohen. ‘Drawing Graphs to Convey Proximity: An Incremental
Arrangement Method’. In: ACM Transactions on Computer-Human Interac-
tion (TOCHI) 4.3 (Sept. 1997), pp. 197–229 (cit. on p. 47).

[15] Christopher Collins, Gerald Penn and Sheelagh Carpendale. ‘Bubble sets: Re-
vealing Set Relations with Isocontours Over Existing Visualizations’. In: IEEE
Transactions on Visualization and Computer Graphics (InfoVis09) 15.6 (Nov.
2009), pp. 1009–1016 (cit. on pp. 71, 72).

[16] Nicolas de Condorcet and Sylvestre François Lacroix. Lettres de Euler à une
princesse d’Allemagne sur divers sujets de physique et de philosophie. Paris:
Royez, 1789 (cit. on p. 17).

[17] Ron Davidson and David Harel. ‘Drawing Graphs Nicely Using Simulated An-
nealing’. In: ACM Transactions on Graphics (TOG) 15.4 (1996), pp. 301–331
(cit. on pp. 46, 115).

[18] Hubert De Fraysseix, János Pach and Richard Pollack. ‘How to draw a planar
graph on a grid’. In: Combinatorica 10.1 (1990), pp. 41–51 (cit. on pp. 44, 45,
84).

[19] Edmund Dengler and William Cowan. ‘Human Perception of Laid-Out
Graphs’. In: International Symposium on Graph Drawing (GD98). Ed. by Sue
Whitesides. Vol. 1547. Lecture Notes in Computer Science. Springer, 1998,
pp. 441–443 (cit. on p. 44).

[20] Agnès Desolneux, Lionel Moisan and Jean-Michel Morel. ‘Gestalt Theory and
Computer Vision’. In: Seeing, Thinking and Knowing. Ed. by Arturo Carsetti.
Vol. 38. Theory and Decision Library. Springer, 2004, pp. 71–101 (cit. on p. 6).

[21] Giuseppe Di Battista and Roberto Tamassia. ‘Incremental Planarity Testing’.
In: Annual Symposium on Foundations of Computer Science. 1989, pp. 436–441
(cit. on p. 86).

[22] Giuseppe Di Battista and Roberto Tamassia. ‘On-line Graph Algorithms with
SPQR-Trees’. In: International Colloquium on Automata, Languages and Pro-
gramming. Ed. by Michael S. Paterson. Vol. 443. Lecture Notes in Computer
Science. Springer, 1990, pp. 598–611 (cit. on p. 86).

[23] Giuseppe Di Battista and Roberto Tamassia. ‘On-line Maintenance of Tricon-
nected Components with SPQR-Trees’. In: Algorithmica 15.4 (1996), pp. 302–
318 (cit. on p. 86).

[24] Giuseppe Di Battista, Peter Eades, Roberto Tamassia and Ioannis G. Tollis.
‘Algorithms for Drawing Graphs: an Annotated Bibliography’. In: Computa-
tional Geometry: Theory and Applications 4.5 (1994), pp. 235–282 (cit. on
p. 41).

[25] Giuseppe Di Battista, Peter Eades, Roberto Tamassia and Ioannis G. Tollis.
Graph Drawing; Algorithms for the Visualization of Graphs. Prentice Hall, July
1998 (cit. on pp. 29, 41, 46).

Bibliography 173

[26] Tim Dwyer. ‘Scalable, Versatile and Simple Constrained Graph Layout’. In:
Computer Graphics Forum (EuroVis09) 28.3 (June 2009), pp. 991–998 (cit. on
pp. 47, 166).

[27] Tim Dwyer and Yehuda Koren. ‘Dig-CoLa: Directed Graph Layout through
Constrained Energy Minimization’. In: IEEE Symposium on Information Visu-
alization (InfoVis05). Ed. by Matt Ward and John Stasko. IEEE Computer
Society, 2005, pp. 65–72 (cit. on pp. 47, 166).

[28] Tim Dwyer, Yehuda Koren and Kim Marriott. ‘IPSep-CoLa: An Incremental
Procedure for Separation Constraint Layout of Graphs’. In: IEEE Transac-
tions on Visualization and Computer Graphics (InfoVis06) 12.5 (Sept. 2006),
pp. 821–828 (cit. on pp. 47, 166).

[29] Tim Dwyer, Kim Marriott and Michael Wybrow. ‘Topology Preserving Con-
strained Graph Layout’. In: International Symposium on Graph Drawing
(GD08). Ed. by Ioannis G. Tollis and Maurizio Patrignani. Vol. 5417. Lec-
ture Notes in Computer Science. Springer, 2009, pp. 230–241 (cit. on pp. 47,
166).

[30] Peter Eades. ‘A Heuristic for Graph Drawing’. In: Congressus Numerantium
42 (1984), pp. 149–160 (cit. on p. 46).

[31] Peter Eades. ‘Graph Drawing Methods’. In: Conceptual Structures: Knowledge
Representation as Interlingua. Ed. by Peter W. Eklund, Gerard Ellis and Gra-
ham Mann. Lecture Notes in Computer Science. Springer, 1996, pp. 40–49 (cit.
on p. 41).

[32] Peter Eades, Wei Lai, Kazuo Misue and Kozo Sugiyama. ‘Preserving the Mental
Map of a Diagram’. In: International Conference on Computational Graphics
and Visualization Techniques (CompuGraphics91). Ed. by H. P. Santo. 1991,
pp. 24–33 (cit. on p. 49).

[33] Leonhard Paul Euler. Lettres à une princesse d’Allemagne sur divers sujets de
physique et de philosophie. St. Petersburg: Académie Imperiale des Sciences,
1768–1772 (cit. on pp. 17, 55, 169, 170).

[34] FH Freedom of the Press. Freedom House. 2010. url: http : / / www .
freedomhouse.org/template.cfm?page=16 (visited on 10/12/2010) (cit. on
p. 23).

[35] István Fáry. ‘On Straight Line Representation of Planar Graphs’. In: Acta
Scientiarum Mathematicarum 11.4 (1948), pp. 229–233 (cit. on p. 44).

[36] Jean-Daniel Fekete, Jarke J. van Wijk, John Stasko and Chris North. ‘The
Value of Information Visualization’. In: Information Visualization. Ed. by An-
dreas Kerren, John Stasko, Jean-Daniel Fekete and Chris North. Vol. 4950.
Lecture Notes in Computer Science. Springer, Sept. 2008, pp. 1–18 (cit. on
p. 13).

[37] Andrew Fish and Gem Stapleton. ‘Defining Euler Diagrams: Choices and Con-
sequences’. In: International Workshop on Euler Diagrams (Euler05). 2005,
pp. 34–37 (cit. on p. 53).

[38] Andrew Fish and Gem Stapleton. ‘Formal Issues in Languages Based on
Closed Curves’. In: International Conference on Distributed Multimedia Sys-
tems, Visual Languages and Computing. 2006, pp. 161–167 (cit. on p. 53).

http://www.freedomhouse.org/template.cfm?page=16
http://www.freedomhouse.org/template.cfm?page=16

174 Bibliography

[39] Jean Flower, Andrew Fish and John Howse. ‘Euler diagram generation’. In:
Journal of Visual Languages and Computing 19.6 (Dec. 2008), pp. 675–694
(cit. on pp. 53, 56, 60, 63, 65).

[40] Jean Flower and John Howse. ‘Generating Euler Diagrams’. In: International
Conference on Diagrams (Diag02). Ed. by Mary Hegarty, Bernd Meyer and
N. Hari Narayanan. Vol. 2317. Lecture Notes in Computer Science. Springer,
2002, pp. 285–299 (cit. on pp. 59, 64).

[41] Jean Flower, Peter Rodgers and Paul Mutton. ‘Layout Metrics for Euler Dia-
grams’. In: International Conference on Information Visualisation (IV03). Ed.
by Ebad Banissi, Katy Börner, Chaomei Chen et al. IEEE Computer Society,
2003, pp. 272–280 (cit. on p. 66).

[42] Arne Frick, Andreas Ludwig and Heiko Mehldau. ‘A Fast Adaptive Layout Al-
gorithm for Undirected Graphs’. In: International Symposium on Graph Draw-
ing (GD94). Ed. by Roberto Tamassia and Ioannis G. Tollis. Vol. 894. Lecture
Notes in Computer Science. Springer, 1995, pp. 388–403 (cit. on pp. 46, 115).

[43] Michael Friendly. ‘A Brief History of Data Visualization’. In: Handbook of Data
Visualization. Ed. by Chun-houh Chen, Wolfgang H ardle and Antony Unwin.
Vol. 2. Springer Handbooks of Computational Statistics. Springer, 2008, pp. 15–
56 (cit. on p. 9).

[44] Michael Friendly and Daniel J. Denis. Milestones in the History of Thematic
Cartography, Statistical Graphics, and Data Visualization. 2001. url: http:
//datavis.ca/milestones/ (visited on 11/2010) (cit. on p. 9).

[45] Thomas M.J. Fruchterman and Edward M. Reingold. ‘Graph Drawing by Force-
Directed Placement’. In: Software: Practice and Experience 21.11 (Nov. 1991),
pp. 1129–1164 (cit. on pp. 46, 47, 125).

[46] Pawel Gajer, Michael T. Goodrich and Stephen G. Kobourov. ‘A Multi-
dimensional Approach to Force-Directed Layouts of Large Graphs’. In: Compu-
tational Geometry: Theory and Applications 29.1 (Sept. 2004), pp. 3–18 (cit. on
p. 47).

[47] Pawel Gajer and Stephen G. Kobourov. ‘GRIP: Graph Dawing with Intelli-
gent Placement’. In: Journal of Graph Algorithms and Applications 6.3 (2002),
pp. 203–224 (cit. on p. 47).

[48] Emden R. Gansner, Yifan Hu and Stephen G. Kobourov. ‘GMap: Visualizing
Graphs and Clusters as Maps’. In: IEEE Pacific Visualization Symposium (Pa-
cificVis10). Ed. by Stephen C. North, Han-Wei Shen and Jarke J. van Wijk.
IEEE Computer Society, 2010, pp. 201–208 (cit. on pp. 71, 72).

[49] Emden Gansner, Yehuda Koren and Stephen C. North. ‘Graph Drawing by
Stress Majorization’. In: International Symposium on Graph Drawing (GD04).
Ed. by János Pach. Vol. 3383. Lecture Notes in Computer Science. Springer,
2004, pp. 239–250 (cit. on p. 48).

[50] Angel García et al. ‘Extensive Analysis of the Human Platelet Proteome by
Two-Dimensional Gel Electrophoresis and Mass Spectrometry’. In: Proteomics
4.3 (2004), pp. 656–668 (cit. on p. 155).

[51] Martin Grueber and Tim Studt. ‘2011 Global R&D Funding Forecast: Stability
Returns to R&D Funding’. In: R&D Magazine (Dec. 2010) (cit. on p. 22).

http://datavis.ca/milestones/
http://datavis.ca/milestones/

Bibliography 175

[52] Luc Guerrier et al. ‘Exploring the Platelet Proteome via Combinatorial,
Hexapeptide Ligand Libraries’. In: Journal of Proteome Research 6.11 (2007),
pp. 4290–4303 (cit. on p. 155).

[53] Carsten Gutwenger and Petra Mutzel. ‘Planar Polyline Drawings with Good
Angular Resolution’. In: International Symposium on Graph Drawing (GD98).
Ed. by Sue Whitesides. Vol. 1547. Lecture Notes in Computer Science. Springer,
1998, pp. 167–182 (cit. on p. 46).

[54] Stefan Hachul and Michael Jünger. ‘Drawing Large Graphs with a Potential-
Field-Based Multilevel Algorithm’. In: International Symposium on Graph
Drawing (GD04). Ed. by János Pach. Vol. 3383. Lecture Notes in Computer
Science. Springer, 2004, pp. 285–295 (cit. on p. 47).

[55] Ronny Hadany and David Harel. ‘A Multi-Scale Algorithm for Drawing Graphs
Nicely’. In: Discrete Applied Mathematics 113.1 (2001), pp. 3–21 (cit. on p. 47).

[56] Dong-Han Ham. ‘The State of the Art of Visual Analytics’. In: EU-Korea Con-
ference on Science and Technology (EKC09). Ed. by Joung Hwan Lee, Habin
Lee and Jung-Sik Kim. Vol. 135. Springer Proceedings Physics. Springer, 2010,
pp. 213–222 (cit. on p. 13).

[57] William R. Hamilton. Lectures on Metaphysics and Logic. Edited by Henry L.
Mansel and John Veitch. Gould and Lincoln, 1859 (cit. on pp. 17, 169).

[58] David Harel and Yehuda Koren. ‘A Fast Multi-scale Method for Drawing Large
Graphs’. In: Journal of Graph Algorithms and Applications 6.3 (2002), pp. 179–
202 (cit. on p. 47).

[59] Ivan Herman, Guy Melançon and M. Scott Marshall. ‘Graph Visualization and
Navigation in Information Visualization: A Survey’. In: IEEE Transactions on
Visualization and Computer Graphics 6.1 (2000), pp. 24–43 (cit. on pp. 41, 44).

[60] Danny Holten. ‘Hierarchical Edge Bundles: Visualization of Adjacency Rela-
tions in Hierarchical Data’. In: IEEE Transactions on Visualization and Com-
puter Graphics (InfoVis06) 12.5 (Sept. 2006), pp. 741–748 (cit. on pp. 14, 165).

[61] IMDb Top 250 Movies as Voted by Our Users. The Internet Movie Database.
2011. url: http://uk.imdb.com/chart/top (visited on 29/09/2011) (cit. on
p. 153).

[62] Takayuki Itoh, Chris Muelder, Kwan-Liu Ma and Jun Sese. ‘A Hybrid Space-
Filling and Force-Directed Layout Method for Visualizing Multiple-Category
Graphs’. In: IEEE Pacific Visualization Symposium (PacificVis09). Ed. by
Peter Eades, Thomas Ertl and Han-Wei Shen. IEEE Computer Society, 2009,
pp. 121–128 (cit. on p. 155).

[63] Dieter Jungnickel. Graphs, Networks and Algorithms. 3rd ed. Vol. 5. Algorithms
and Computation in Mathematics. Springer, Nov. 2007 (cit. on p. 29).

[64] Tomihisa Kamada and Satoru Kawai. ‘An Algorithm for Drawing General Un-
directed Graphs’. In: Information Processing Letters 31.1 (1989), pp. 7–15 (cit.
on pp. 46, 48).

[65] Daniel Keim et al. ‘Visual Analytics: Definition, Process, and Challenges’.
In: Information Visualization. Ed. by Andreas Kerren, John Stasko, Jean-
Daniel Fekete and Chris North. Vol. 4950. Lecture Notes in Computer Science.
Springer, Sept. 2008, pp. 154–175 (cit. on p. 13).

http://uk.imdb.com/chart/top

176 Bibliography

[66] Kurt Koffka. Principles of Gestalt Psychology. Harcourt, Brace & Co., 1935
(cit. on p. 6).

[67] Urs Lewandrowski et al. ‘Platelet Membrane Proteomics: A Novel Repository
for Functional Research’. In: Blood 114.1 (2009), e10–e19 (cit. on p. 155).

[68] Lennart Martens et al. ‘The Human Platelet Proteome Mapped by Peptide-
Centric Proteomics: A Functional Protein Profile’. In: Proteomics 5.12 (2005),
pp. 3193–3204 (cit. on p. 155).

[69] Cathleen McGrath, Jim Blythe and David Krackhardt. ‘The Effect of Spa-
tial Arrangement on Judgments and Errors in Interpreting Graphs’. In: Social
Networks 19.3 (1997), pp. 223–242 (cit. on p. 44).

[70] Metabolic Data of Endosymbiontic, Parasitic and Free Bacteria. Université
Claude Bernard Lyon 1. 2011. url: http://pbil.univ-lyon1.fr/software/
symbiocyc/index.php (visited on 29/09/2011) (cit. on p. 156).

[71] Miriah Meyer, Bang Wong, Mark Styczynski, Tamara Munzner and Hanspeter
Pfister. ‘Pathline: A Tool For Comparative Functional Genomics’. In: Computer
Graphics Forum (EuroVis10) 29.3 (June 2010), pp. 1043–1052 (cit. on p. 14).

[72] Luana Micallef and Peter Rodgers. ‘Force-Directed Layout for Euler Diagrams’.
In: Compendium of IEEE Information Visualization 2009 (InfoVis’09). Vol. 15.
IEEE Computer Society, Oct. 2009 (cit. on pp. 66, 67).

[73] Kazuo Misue, Peter Eades, Wei Lai and Kozo Sugiyama. ‘Layout Adjustment
and the Mental Map’. In: Journal of Visual Languages and Computing 6.2
(1995), pp. 183–210 (cit. on p. 49).

[74] Shin-ichi Nakano. ‘Planar Drawings of Plane Graphs’. In: IEICE Transactions
on Information and Systems E83-D.3 (Mar. 2000), pp. 384–391 (cit. on p. 45).

[75] Takao Nishizeki and Md. Saidur Rahman. Planar Graph Drawing. Vol. 12.
Lecture Notes Series on Computing. World Scientific, Sept. 2004 (cit. on pp. 41,
44).

[76] Donald A. Norman. Things that Make Us Smart. Addison-Wesley, 1994 (cit. on
p. 4).

[77] John J. O’Connor and Edmund F. Robertson. MacTutor History of Mathem-
atics archive. School of Mathematics and Statistics, University of St. Andrews,
Scotland. 1991. url: http://www-history.mcs.st-and.ac.uk/ (visited on
11/2010) (cit. on p. 169).

[78] OECD. Science, Technology and Industry Outlook 2008. OECD Publishing,
Oct. 2008 (cit. on p. 22).

[79] Helen C. Purchase. ‘Which Aesthetic has the Greatest Effect on Human Un-
derstanding?’ In: International Symposium on Graph Drawing (GD97). Ed. by
Giuseppe Di Battista. Vol. 1353. Lecture Notes in Computer Science. Springer,
1997, pp. 248–261 (cit. on p. 44).

[80] Helen C. Purchase, David A. Carrington and Jo-Anne Allder. ‘Empirical Eval-
uation of Aesthetics-based Graph Layout’. In: Empirical Software Engineering
7.3 (2002), pp. 233–255 (cit. on p. 44).

[81] Aaron Quigley and Peter Eades. ‘FADE: Graph Drawing, Clustering, and
Visual Abstraction’. In: International Symposium on Graph Drawing (GD00).
Ed. by Joe Marks. Vol. 1984. Lecture Notes in Computer Science. Springer,
2001, pp. 197–210 (cit. on pp. 47, 125).

http://pbil.univ-lyon1.fr/software/symbiocyc/index.php
http://pbil.univ-lyon1.fr/software/symbiocyc/index.php
http://www-history.mcs.st-and.ac.uk/

Bibliography 177

[82] Amir H. Qureshi et al. ‘Proteomic and Phospho-Proteomic Profile of Human
Platelets in Basal, Resting State: Insights into Integrin Signaling’. In: PLoS
ONE 4.10 (Oct. 2009), e7627–e7642 (cit. on p. 155).

[83] Nathalie H. Riche and Tim Dwyer. ‘Untangling Euler Diagrams’. In: IEEE
Transactions on Visualization and Computer Graphics (InfoVis10) 16.6 (Nov.
2010), pp. 1090–1099 (cit. on pp. 69, 70).

[84] Peter Rodgers, Leishi Zhang and Andrew Fish. ‘General Euler Diagram Gen-
eration’. In: International Conference on Diagrams (Diag08). Ed. by Gem
Stapleton, John Howse and John Lee. Vol. 5223. Lecture Notes in Computer
Science. Springer, 2008, pp. 13–27 (cit. on pp. 55, 56, 58, 65).

[85] Peter Rodgers, Leishi Zhang, Gem Stapleton and Andrew Fish. ‘Embedding
Wellformed Euler Diagrams’. In: International Conference on Information
Visualisation (IV08). Ed. by Ebad Banissi, Liz J. Stuart, Mikael Jern et al.
IEEE Computer Society, 2008, pp. 585–593 (cit. on pp. 61, 65, 66, 166).

[86] Satu Elisa Schaeffer. ‘Graph clustering’. In: Computer Science Review 1.1
(2007), pp. 27–64 (cit. on p. 1).

[87] Walter Schnyder. ‘Embedding Planar Graphs on the Grid’. In: SODA. 1990,
pp. 138–148 (cit. on p. 44).

[88] Ben Shneiderman. ‘The Eyes Have It: A Task by Data Type Taxonomy for
Information Visualizations’. In: IEEE Symposium on Visual Languages (VL96).
July 1996, pp. 336–343 (cit. on p. 13).

[89] Paolo Simonetto and David Auber. ‘An Heuristic for the Construction of In-
tersection Graphs’. In: International Conference on Information Visualisation
(IV09). Ed. by Ebad Banissi, Liz J. Stuart, Theodor G. Wyeld et al. IEEE
Computer Society, 2009, pp. 673–678 (cit. on p. 163).

[90] Paolo Simonetto and David Auber. ‘Visualise Undrawable Euler Diagrams’.
In: International Conference on Information Visualisation (IV08). Ed. by Ebad
Banissi, Liz J. Stuart, Mikael Jern et al. IEEE Computer Society, 2008, pp. 594–
599 (cit. on pp. 55, 70, 163).

[91] Paolo Simonetto, David Auber and Daniel Archambault. ‘Fully Automatic
Visualisation of Overlapping Sets’. In: Computer Graphics Forum (EuroVis09)
28.3 (June 2009), pp. 967–974 (cit. on pp. 56, 58, 138, 163).

[92] Paolo Simonetto, Daniel Archambault, David Auber and Romain Bourqui.
‘ImPrEd: An Improved Force-Directed Algorithm that Prevents Nodes from
Crossing Edges’. In: Computer Graphics Forum (EuroVis11) 30.3 (June 2011),
pp. 1071–1080 (cit. on pp. 163, 164).

[93] Mads Søgaard. Gestalt Principles of Form Perception. Interaction-Design.org.
2010. url: http://www.interaction-design.org/encyclopedia/gestalt_
principles_of_form_perception.html (visited on 11/2010) (cit. on p. 8).

[94] Gem Stapleton, John Howse, Peter Rodgers and Leishi Zhang. ‘Generating
Euler Diagrams from Existing Layouts’. In: Layout of Software Engineering
Diagrams (LED08). Ed. by Andrew Fish, Alexander Knapp and Harald Störrle.
Vol. 13. Electronic Communications of the EASST. The European Association
for the Study of Science and Technology, Sept. 2008, pp. 16–31 (cit. on p. 67).

[95] Gem Stapleton, Peter Rodgers, John Howse and Leishi Zhang. ‘Inductively
Generating Euler Diagrams’. In: IEEE Transactions on Visualization and Com-
puter Graphics 17.1 (Jan. 2011), pp. 88–100 (cit. on p. 67).

http://www.interaction-design.org/encyclopedia/gestalt_principles_of_form_perception.html
http://www.interaction-design.org/encyclopedia/gestalt_principles_of_form_perception.html

178 Bibliography

[96] Gem Stapleton, Leishi Zhang, John Howse and Peter Rodgers. ‘Inductively
Generating Euler Diagrams’. In: IEEE Transactions on Visualization and Com-
puter Graphics 17.7 (July 2011), pp. 1020–1032 (cit. on p. 68).

[97] Gem Stapleton, Peter Rodgers, John Howse and John Taylor. ‘Properties of
Euler diagrams’. In: Layout of Software Engineering Diagrams (LED07). Ed.
by Andrew Fish, Alexander Knapp and Harald Störrle. Vol. 7. Electronic Com-
munications of the EASST. The European Association for the Study of Science
and Technology, Sept. 2007, pp. 2–16 (cit. on pp. 52, 53).

[98] Sherman K. Stein. ‘Convex Maps’. In: Proceedings of the American Mathemat-
ical Society 2.3 (1951), pp. 464–466 (cit. on p. 44).

[99] THE World University Rankings. Times Higher Education. 2010. url: http:
//www.timeshighereducation.co.uk (visited on 10/12/2010) (cit. on p. 23).

[100] TI Corruption Perception Index. Transparency International. 2010. url: http:
//www.transparency.org/policy_research/surveys_indices/cpi (visited
on 10/12/2010) (cit. on p. 23).

[101] Alexandru C. Telea. Data Visualization: Principles and Practice. A.K. Peters,
2008 (cit. on pp. 11–13).

[102] James J. Thomas and Kristian A. Cook. Illuminating the Path: The Research
and Development Agenda for Visual Analytics. IEEE Computer Society Press,
2005 (cit. on p. 13).

[103] William T. Tutte. ‘How to Draw a Graph’. In: Proceedings of the London Math-
ematical Society 3.13 (1963), pp. 743–768 (cit. on pp. 46, 63).

[104] John Venn. ‘On the Diagrammatic and Mechanical Representation of Propos-
itions and Reasonings’. In: Dublin Philosophical Magazine and Journal of Sci-
ence 10.59 (1880), pp. 1–18 (cit. on p. 17).

[105] John Venn. Symbolic Logic: Revised and Rewritten. 2nd ed. AMS Chelsea Pub-
lishing, Sept. 2007 (cit. on pp. 24, 25).

[106] John Venn. Symbolic Logic. London: MacMillan & Co., 1881 (cit. on pp. 17,
170).

[107] Anne Verroust and Marie-Luce Viaud. ‘Ensuring the Drawability of Extended
Euler Diagrams for up to 8 Sets’. In: International Conference on Diagrams
(Diag04). Ed. by Alan F. Blackwell, Kim Marriott and Atsushi Shimojima.
Vol. 2980. Lecture Notes in Computer Science. Springer, 2004, pp. 128–141
(cit. on pp. 53, 56, 57, 64, 65).

[108] Kurt Wagner. ‘Bemerkungen zum Vierfarbenproblem’. In: Jahresbericht der
Deutschen Mathematiker-Vereinigung 46.1 (1936), pp. 26–32 (cit. on p. 44).

[109] Chris Walshaw. ‘A Multilevel Algorithm for Force-Directed Graph Drawing’.
In: Journal of Graph Algorithms and Applications 7.3 (2003), pp. 253–285 (cit.
on p. 47).

[110] Colin Ware. ‘Design as Applied Perception’. In: HCI Models, Theories, and
Frameworks: Toward a Multidisciplinary Science. Ed. by John M. Carroll. Mor-
gan Kaufmann, May 2003, pp. 11–26 (cit. on p. 8).

[111] Colin Ware. Information Visualization: Perception for Design. 2nd ed. Morgan
Kaufmann, 2004 (cit. on pp. 5, 99).

http://www.timeshighereducation.co.uk
http://www.timeshighereducation.co.uk
http://www.transparency.org/policy_research/surveys_indices/cpi
http://www.transparency.org/policy_research/surveys_indices/cpi

Bibliography 179

[112] Nicholas A. Watkins et al. ‘A HaemAtlas: characterizing gene expression in
differentiated human blood cells’. In: Blood 113.19 (2009), e1–e9 (cit. on p. 155).

[113] Christian Weise. Nucleus Logicœ Weisianœ. 1712 (cit. on p. 17).

[114] Dominic J.A. Welsh and Martin B. Powell. ‘An Upper Bound for the Chromatic
Number of a Graph and its Application to Timetabling Problems’. In: The
Computer Journal 10.1 (1967), pp. 85–86 (cit. on p. 99).

Index

Algorithm, 41
Asymptotic notation, 42
Complexity, 42

Bézier curve, 95
Control polygon, 95

Edge, 30
Adjacent edge, 32
Extremity, 32
Incident node, 32
Loop, 31
Multiple, 31
Source, 32
Target, 32

Euler diagram, 51
Cluster, 50
Cluster curve, 51
Cluster region, 52
Drawability, 57
Element depiction, 17
Generalised, 56
Graphical improvement, 17
Jordan Curve Theorem, 52
Limitations, 20
Origins, 15
Property, 54
Standard, 56
Validity, 56
Venn diagram, 16
Well-formed, 56
Zone, 50
Zone region, 52

Euler representation, 73
Cluster subgraph, 82
Grid graph, 77
Original graph, 77
Zone edge metric, 83, 84
Zone graph, 77

EulerView, 145
Path-preserving metanodes, 150
Selection features, 146
Tooltip features, 150

FPP, 45

Graph, 30
Bipartite, 36
Chain, 34
Cluster, 40
Combinatorial embedding, 38
Complete, 35
Component, 34
Connectivity, 34
Cycle, 32
Dense, 31
Dimension, 31
Directed, 31
Distance, 34
Drawing, 28
Dual, 39
Element, 30
Embedding, 38
Equivalent embedding, 38
Euler’s Formula, 38
Face, 38
Kuratowski’s Theorem, 38
Maximal planar, 38
Multigraph, 31
Node-link diagram, 28
Path, 32
Planar, 38
Planar drawing, 38
Planar map, 38
Plane, 38
Simple, 31
Sparse, 31
Style, 28

181

182 Index

Subgraph, 31
Undirected, 31
Walk, 32

Graph drawing, 41
Aesthetic criteria, 43
Force-directed algorithms, 45
Mental map, 49
Planar drawing algorithms, 44

ImPrEd
δ, optimal edge length, 111
γ, optimal node-edge distance, 111
Cr, set of crossable edges, 111
Fl, set of flexible edges, 111
W, weight of nodes and edges, 112
Crossable and flexible edges, 131
Elements weight, 133
Gravity attraction, 116
Maximal movement, 127
Nearby elements, 125
New features, 112
Surrounding edges, 117
Temperature, 116

Multiset, 29

Node, 30
Adjacent node, 32
Degree, 32
Incident edge, 32
Isolated, 32
Neighbour, 32

PrEd, 47
δ, optimal edge length, 102
γ, optimal node-edge distance, 102
Displacement, 108
Edge attraction, 105
Maximal movement, 106
Node-edge repulsion, 105
Node-node repulsion, 105

Set, 29

Tree, 34
Ancestor, 35
Child, 35
Descendant, 35
Forest, 34
Internal node, 35
Leaf, 35

Level, 35
Parent, 35
Root, 35

Tuple, 29

Visualisation, 4
Gestalt, 6
Information visualisation, 13
Perception model, 5
Scientific visualisation, 13
Visual analytics, 13

	Abstract / Résumé
	Contents
	Notation
	Introduction
	Visualisation and Euler Diagrams
	Visualisation
	The Human Eye and Perception
	Evolution of Visualisation
	Visualisation and Computer Science
	Reasons and Goals of Visualisation
	Disciplines of Visualisation

	Euler Diagrams
	The Original Diagrams
	Modern Euler and Venn Diagrams

	Data Visualisation with Euler Diagrams
	Euler Diagrams and Perception
	An Example of Data Exploration with Euler Diagrams
	Limitations of Euler and Venn Diagrams

	Graph and Euler Diagram Theory
	Graph Theory
	Sets, Multiset and Tuples
	Graphs and Their Classification
	Subgraphs
	Relations Between Nodes and Edges
	Walks, Paths, Cycles and Distance
	Connectivity
	Trees and Forests
	Complete, Bipartite Graphs and Subdivisions
	Planar Graphs
	Dual Graphs
	Clustered Graphs

	Graph Drawing
	Foundations of Algorithmics
	Aesthetics of a Graph Drawing
	Graph Drawing Algorithms

	Euler Diagram Theory
	Clusters and Zones
	Euler Diagrams and Regions
	Properties of Euler Diagrams
	Validity of an Euler Diagram
	Drawability of an Euler diagram

	Algorithms for the Generation of Euler Diagrams
	Related Work
	Well-Formed Euler Diagrams
	Standard Euler Diagrams
	Extended Euler Diagrams
	Relaxed Euler Diagrams
	Specialities
	Methods with Analogies to Euler Diagrams

	Euler Representations
	The Generation Process
	Comparison with Methods in the Literature

	Automatic Generation of Euler Representations
	Generation and Embedding of the Zone Graph
	Indentification of the Expressed Zones
	Insertion of the Zone Graph Edges
	Embedding of the Zone Graph

	Generation and Improvement of the Grid Graph
	Grid Graph Generation
	Grid Graph Improvement

	Depiction of the Cluster Regions
	Smooth Cluster Curves
	Assignment of the Cluster Colours
	Application of Textures

	Improvement of a Graph Layout
	PrEd
	Input Parameters
	The Algorithm
	Force Computation
	Maximal Movement Computation
	Displacement of the Nodes
	Advantages and Disadvantages

	ImPrEd
	Input Parameters
	The Algorithm
	Force and Movement Cooling
	Surrounding Edges Computation
	QuadTrees
	New Maximal Movement Rules
	Crossable and Flexible Edges
	Weight of Nodes and Edges

	Results
	Complexity
	Execution Time
	Drawing Quality and Parameter Reliability

	Software Implementation and Output Examples
	EulerView
	Cluster and Zone Selection
	Tooltips
	Path-Preserving Meta-Nodes

	Examples of Euler Representations
	IMDb
	Platelet
	Gene Interaction
	Carsonella

	Conclusions
	Aims and Realisation
	Contributions
	Results
	Future Work

	Biographies
	Bibliography
	Index

