
HAL Id: tel-00766983
https://theses.hal.science/tel-00766983v1

Submitted on 19 Dec 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimisation de la performance des applications de
mémoire transactionnelle sur des plates-formes

multicoeurs : une approche basée sur l’apprentissage
automatique

Márcio Bastos Castro Castro

To cite this version:
Márcio Bastos Castro Castro. Optimisation de la performance des applications de mémoire trans-
actionnelle sur des plates-formes multicoeurs : une approche basée sur l’apprentissage automatique.
Autre [cs.OH]. Université de Grenoble, 2012. Français. �NNT : 2012GRENM074�. �tel-00766983�

https://theses.hal.science/tel-00766983v1
https://hal.archives-ouvertes.fr

THÈSE
Pour obtenir le grade de

DOCTEUR DE L’UNIVERSITÉ DE GRENOBLE
Spécialité : Mathématiques-informatique

Arrêté ministérial : 7 août 2006

Présentée par

Márcio BASTOS CASTRO

Thèse dirigée par Jean-François MÉHAUT

préparée au sein du Laboratoire d’Informatique de Grenoble
et de l’École Doctorale Mathématiques, Sciences et Technologies de
l’Information, Informatique

Improving the Performance of Transactio-
nal Memory Applications on Multicores :
A Machine Learning-based Approach

Thèse soutenue publiquement le 3 décembre 2012,
devant le jury composé de :

M. Philippe O. A. NAVAUX
Professeur, Universidade Federal do Rio Grande do Sul (UFRGS), Président

M. Pascal FELBER
Professeur, Université de Neuchâtel, Rapporteur

M. Raymond NAMYST
Professeur, Université de Bordeaux 1, Rapporteur

M. Miguel SANTANA
Directeur du centre IDTEC, STMicroelectronics, Crolles, Examinateur

M. Jean-François MÉHAUT
Professeur, Université de Grenoble - CEA, Directeur de thèse

M. Luiz Gustavo L. FERNANDES
Professeur, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Co-

Encadrant de thèse

Acknowledgements

“When we least expect it, life sets us a challenge to test our courage and willingness

to change; at such a moment, there is no point in pretending that nothing has

happened or in saying that we are not yet ready. The challenge will not wait. Life

does not look back. A week is more than enough time for us to decide whether or

not to accept our destiny.” — Paulo Coelho, The Devil and Miss Prym, 2000.

This extract from a book written by Paulo Coelho (a Brazilian novelist and one
of the most widely read authors in the world) summarizes what happened in my
life in early 2009. I had the opportunity to meet Jean-François Méhaut in Porto
Alegre, Brazil. After a short presentation of the research I’d done during my Master’s,
Jean-François asked me if I would be interested in doing a Ph.D. in France. Deciding
whether to do a Ph.D. in a foreign country is tough. It’s a huge investment in terms
of time and effort. It puts several technical and personal skills to the test such as the
ability to: do good quality research, absorb a new culture, learn a foreign language
and live far away from home. I accepted the challenge and it is with great happiness
that I write these words to thank many people involved in that.

Firstly, I would like to thank my advisor Jean-François Méhaut, for accepting me
as his Ph.D. student and for giving me the opportunity to prepare and write this thesis
in France. You were always present to discuss about my research and to motivate
me during all this time. I really appreciate your efforts to make collaborations with
Brazilian universities. This is very important, since most of us (Brazilians) come back
to Brazil after finishing the thesis. Thank you for giving me all the support I needed
to participate and present my work in different conferences and also for putting me
in contact with many people from the HPC community in France and abroad.

Secondly, I would like to thank all my friends and colleagues from Brazil (PUCRS,
UFRGS, PUC Minas and USP) and France (LIG). Special thanks to my big friend
Pedro Velho, who helped me a lot when I arrived in France as well as the people
from Nanosim, Mescal and Moais research teams for the technical and personal
discussions during these years. I really appreciated to share these moments with you!

Finally, I would like to thank my family for supporting me during all my life. A
very special thank to my love, Evanaska, who always encouraged me and helped me
in all possible ways to achieve this goal. I dedicate this achievement to you all.

Muito obrigado!

Contents

List of Figures v

List of Tables vii

List of Abbreviations ix

1 Introduction 1
1.1 Research issues . 4

1.1.1 Understanding the performance of TM applications 4
1.1.2 Improving the performance of TM applications 5

1.2 Contributions . 7
1.3 Scientific context of the thesis . 10
1.4 Thesis outline . 11

2 Background 13
2.1 Multicore platforms . 13

2.1.1 Architectural concept . 14
2.1.2 Performance of multicores . 14
2.1.3 Impacts of the memory hierarchy 16
2.1.4 Synchronization of shared data 18

2.2 Transactional memory . 21
2.2.1 General concepts . 21
2.2.2 Design choices . 25
2.2.3 Implementation approaches . 27
2.2.4 Software transactional memory systems 29

2.3 Benchmarks for evaluating transactional memory systems 34
2.3.1 Data structure-based microbenchmarks 34
2.3.2 Realistic benchmarks . 34
2.3.3 Highly configurable workload generators 39

2.4 Concluding remarks . 42

i

ii CONTENTS

3 Understanding the Performance of TM Applications 45
3.1 STM vs. traditional synchronization . 46
3.2 Performance impact of STM systems . 48
3.3 Tracing TM applications . 50

3.3.1 Goals . 51
3.3.2 Which events to trace? . 52

3.4 A tracing mechanism adapted for TM applications 53
3.4.1 Function interceptions . 56
3.4.2 Timestamps . 59
3.4.3 Intrusiveness . 60

3.5 Case studies: STAMP applications . 62
3.5.1 Intruder . 63
3.5.2 Genome . 65
3.5.3 Labyrinth . 66

3.6 Concluding remarks . 68

4 Improving the Performance of TM Applications on Multicores 71
4.1 Impact of thread mapping on TM applications 71
4.2 A machine learning-based approach for thread mapping 75

4.2.1 Overview of the ML-based approach 75
4.2.2 Application profiling . 76
4.2.3 Data pre-processing . 77
4.2.4 Learning process . 79
4.2.5 Prediction . 81

4.3 Static thread mapping . 82
4.3.1 Gathering input data to feed the learning process 82
4.3.2 Generating the decision trees . 84
4.3.3 Predicting and applying thread mapping strategies 86

4.4 Dynamic thread mapping . 87
4.4.1 From static to dynamic thread mapping 88
4.4.2 Implementation on TinySTM . 89

4.5 Concluding remarks . 91

5 Experimental Evaluation 95
5.1 Experimental setup . 95

5.1.1 Multicore platforms . 95
5.1.2 Performance metrics . 96

5.2 Static thread mapping analysis . 97
5.2.1 Varying concurrency . 99
5.2.2 Modifying the STM parameters 101
5.2.3 Overall results . 102

CONTENTS iii

5.3 Dynamic thread mapping analysis . 104
5.3.1 Workloads . 105
5.3.2 Dynamic thread mapping vs. static thread mapping 106
5.3.3 Varying concurrency . 108
5.3.4 Modifying the STM parameters 110
5.3.5 Varying the number of phases . 112
5.3.6 Dynamic thread mapping in action 113

5.4 Concluding remarks . 114

6 Related Work 117
6.1 Evaluation of TM systems and applications 117

6.1.1 Performance evaluation of TM systems 117
6.1.2 Post-mortem analysis of TM applications 118

6.2 Thread and process mapping . 120
6.3 Machine learning . 122

7 Conclusion and Perspectives 125
7.1 Contributions . 126
7.2 Future works . 128

A Static Thread Mapping Results 131

B Extended Abstract in French 135

Bibliography 179

List of Figures

1.1 Software Transactional Memory (STM) systems, TM applications and
multicore platforms. 3

2.1 Example of a multicore platform with two levels of shared caches. 14
2.2 Example of the scalability potential of multicore processors. 15
2.3 Example of the impacts of memory hierarchy on the performance of a

synthetic parallel application. 17
2.4 Snippets of the strict (left) and relaxed (right) versions of TSP. 19
2.5 Execution times of the two variations of TSP (strict vs. relaxed). 20
2.6 Transactional Memory basic concepts. 23
2.7 Example of conflicting and non-conflicting scenarios. 23
2.8 STM integration with programming languages. 30
2.9 Pseudo-code description of EigenBench extracted from [Hon+10]. 40

3.1 Snippets of the lock-strict (left) and STM (right) versions of TSP. 46
3.2 Execution times of the three variations of TSP (locks vs. STM). 47
3.3 Speedups off all STAMP applications with four state-of-the-art STM systems. 49
3.4 Overview of the tracing mechanism. 54
3.5 Merge sort of individual trace files. 55
3.6 File diagram of the main source files of libTraceSTM. 56
3.7 Snippets of the function wrappers to register the events StmIni t and

StmExit for TinySTM. 57
3.8 Snippets of the function wrappers to register the events T x End (left) and

T xAbor t (right) for TinySTM. 59
3.9 Instantaneous commit rates of intruder with TinySTM and SwissTM. . . 64
3.10 Instantaneous commit rates of genome with TinySTM and SwissTM. . . 65
3.11 Cumulative number of T x End/T xAbor t in labyrinth with 16 threads. . 67

4.1 Thread mapping strategies. 73
4.2 Overview of our ML-based approach. 75
4.3 Hypothetical example of a decision tree. 79

v

vi LIST OF FIGURES

4.4 Impact of thread mapping strategies on the performance of TM applica-
tions with different STM configurations. 83

4.5 Decision trees generated by the ID3 learning algorithm on both platforms. 85
4.6 Application execution with dynamic thread mapping. 88
4.7 Implementation of our dynamic thread mapping in TinySTM. 89
4.8 Transaction profiler pseudo-codes. 91

5.1 Speedups of the best and worst thread mappings in comparison to the
ML when varying concurrency. 99

5.2 Speedups of the best and worst thread mappings in comparison to the
ML when varying the STM parameters. 101

5.3 The average speedup of all benchmarks considering the fixed thread
mapping strategies, our ML approach and the oracle on both platforms. 103

5.4 Relative gains of the dynamic thread mapping compared to the best and
worst static mappings on applications composed of 3 phases (A1 to A56). 107

5.5 Execution times when varying the number of threads. 108
5.6 Execution times when varying the STM parameters. 110
5.7 Performance of individual thread mapping strategies and the dynamic

approach when varying the number of phases. 112
5.8 Profiled metrics during the execution of an application with 8 phases. . . 113

A.1 Speedups of the best and worst thread mappings in comparison to the
ML when varying concurrency on the SMP-24. 131

A.2 Speedups of the best and worst thread mappings in comparison to the
ML when varying concurrency on the SMP-16. 132

A.3 Speedups of the best and worst thread mappings in comparison to the
ML when varying the STM parameters on the SMP-24. 133

A.4 Speedups of the best and worst thread mappings in comparison to the
ML when varying the STM parameters on the SMP-16. 134

List of Tables

3.1 The most common STM operations. 52
3.2 Intrusiveness of the tracing mechanism on all STAMP applications. 61

4.1 Impact of thread mapping strategies on TM applications. 74
4.2 TM application, STM system features and the target variable. 76

5.1 Overview of the multicore platforms and softwares. 96
5.2 TM characteristics used to compose our set of workloads. 105
5.3 Transactional workloads. 106

vii

List of Abbreviations

DBMS Transactional Database Management Systems

DRAM Dynamic Random Access Memory

GCC GNU Compiler Collection

GFlops Billions of floating-point operations per second

HTM Hardware Transactional Memory

hwloc Hardware Locality

HyTM Hybrid Transactional Memory

ID3 Iterative Dichotomiser 3

LLC Last Level Cache

ML Machine Learning

MPI Message Passing Interface

NUMA Non-Uniform Memory Access

PAPI Performance Application Programming Interface

STAMP Stanford Transactional Applications for Multi-Processing

STM Software Transactional Memory

TAU Tuning and Analysis Utilities

TM Transactional Memory

TSC Time Stamp Counter

TSP Traveling Salesman Problem

UMA Uniform Memory Access

ix

CHAPTER 1
Introduction

THERE WAS A 30-YEAR PERIOD in which the advances in semiconductor technology

and computer architectures improved the performance of a single processor at

a high annual rate of 40% to 50% [LK08]. However, some issues such as dissipating

heat from increasingly densely packed transistors begun to limit the rate at which

processor frequencies could be increased. This was one of the reasons why most

semiconductor industries are now investing in multicore processors.

Indeed, multicore processors are a mainstream approach to deliver higher per-

formance to parallel applications [Asa+09].Unfortunately, the growing disparity

between how fast a processor can operate on data and how fast it can get the data it

needs leads to the so-called “memory wall problem” [McK04]. Consequently, these

platforms usually feature complex memory hierarchies composed of different levels

of cache to alleviate the penalties of accessing the main memory.

Considering the fact that the semiconductor technology is still capable of doubling

the transistors on a chip every two years, it is clear that the number of cores on a

chip will continue to increase. For instance, the Intel Tera-scale Computing Research

Program has recently created a prototype chip containing 80 cores. In this context of

many-core architectures, researchers are also exploring the use of 3D chip stacking

to provide large, low-latency, last-level caches stacked on top of processors. This

reduces power consumption and also improves bandwidth [HBK06].

Consequently, applications must evolve to efficiently exploit the potential of

1

2 CHAPTER 1. INTRODUCTION

multicore platforms. Old sequential applications must now be split into pieces (e.g.,

tasks) that can be executed in parallel by threads, each one running on a specific

core. The side effect is that the application data, which were accessed by a single

thread on a sequential application, is now shared among several concurrent threads.

Since usually applications are not embarrassingly parallel, it is necessary to use

synchronization mechanisms to coordinate concurrent accesses to these shared data.

Traditional synchronization mechanisms such as locks, mutexes and semaphores

have been extensively used to synchronize threads on multicore platforms and

systems. They are simple to implement in hardware and they are safe mechanisms

to deal with concurrent accesses to shared data. However, such simplicity comes

with significant drawbacks. Firstly, they are considered as “low-level” mechanisms,

since one must explicitly control the access of shared variables. Secondly, they cause

blocking, so threads always have to wait until a lock (or a set of locks) is released.

Thirdly, the careless use of such mechanisms can easily result in deadlocks or livelocks

[Tai94]. Finally, blocking considerably limits scalability and adds complexity to the

source code.

Due to the previously discussed issues, researchers have been looking for alter-

native mechanisms. One of such alternative mechanisms that has been subject of

intense research in the last years is Transactional Memory (TM). The TM program-

ming model allows programmers to write parallel portions of the code as transactions,

which are guaranteed to execute atomically and in isolation regardless of eventual

data races [Dal+10; HLR10]. At runtime, transactions are executed speculatively and

the TM runtime system continuously keeps track of concurrent accesses and detects

conflicts. Conflicts are then solved by re-executing conflicting transactions. Therefore,

it removes from the programmer the burden of correct synchronization of threads

and provides an efficient model for extracting parallelism from the applications.

Different implementations of TM systems make tradeoffs that impact both perfor-

mance and programmability. The most common design choices are STM, Hardware

Transactional Memory (HTM) and Hybrid Transactional Memory (HyTM). STM im-

plements everything in software, so there is no need for a specific hardware [DGK09;

DSS06; FFR08]. On the contrary, HTM implements all functionalities in hardware

[McD+05; Moo+06]. The HyTM is a hybrid approach in which the hardware simply

serves to optimize the performance of transactions that are controlled fundamentally

3

by software [Kum+06; Shr+06].

STM has some advantages over the other two approaches. It offers flexibility in

implementing different mechanisms and conflict detection/resolution policies. It

is easier to be modified or extended, it is not limited by small fixed-size hardware

structures (such as cache memories) and it does not require specific hardware (thus

it can be used on current platforms). Additionally, hardware and hybrid solutions are

still in a premature stage and their implementation on commercial processors has

just get started. The disadvantage is that STM performs worse than HTM and HyTM.

In general, the efficiency of parallel applications relies upon matching the behavior

of the application with the underlying system and platform characteristics. This

issue becomes much more complex in STM basically due to two reasons: (i) the

TM model uses speculation, hence TM applications present an irregular behavior

(data dependencies between threads are only known at runtime); and (ii) each STM

system implements its own mechanisms to detect and solve conflicts and thus the

same TM application can behave differently when the underlying STM system is

changed.

Micro-
Benchmarks

STAMP
Applications

Lee-TM STMBench7

TM Applications

Multicore Platforms

STM Systems

TL2

SwissTM

RSTM

TinySTM

P
riv
at
e

C
ac
he
s

S
ha
re
d

C
ac
he
s

P
riv
at
e+
S
ha
re
d

C
ac
he
s

Figure 1.1: STM systems, TM applications and multicore platforms.

Figure 1.1 illustrates this scenario. On the STM system-axis, we included some

of the STM systems currently available. Each one has its peculiarities such as the

aforementioned mechanisms to detect and solve conflicts. On the TM applications-

axis, we included the most known applications and benchmarks that are used to

4 CHAPTER 1. INTRODUCTION

evaluate STM systems. Some benchmarks such as the Stanford Transactional Applica-

tions for Multi-Processing (STAMP) are composed of several applications [Min+08].

TM applications may differ in several aspects such as the level of concurrency, the

probability of conflicts, the size and the time spent inside transactions. Finally, on

the multicore platforms-axis, we represented the differences in terms of memory

hierarchy of multicore platforms: only private caches, only shared caches or mixes

of both. All those aspects can have an important impact on the performance of

applications.

In this thesis, we plan to understand and improve the performance of TM

applications on multicore platforms. However, this is not trivial due to the several

possible combinations of the previously cited aspects. We intend to analyze the

performance and propose improvements to TM applications by using low-intrusive

techniques to both TM applications and STM systems.

1.1 Research issues

As previously mentioned, the contributions of this thesis are situated around

the analysis and improvement of the performance of TM applications on multicore

platforms. In this section, we present some possible ways of exploring these issues

and we define our main focus on each issue.

1.1.1 Understanding the performance of TM applications

The increased complexity in the development of parallel programs can be eased

up by a good understanding of the effective application behavior in its specific

hardware and software execution contexts [Lou+09]. Such information can be

useful to understand and improve the performance of parallel applications. There

are basically two main approaches to achieve this goal, i.e., runtime analysis and

post-mortem analysis.

… Runtime analysis: collects runtime information about the application behav-

ior and uses such information to perform some action at runtime. Runtime

analysis usually requires a small amount of storage and frequently relies on

1.1. RESEARCH ISSUES 5

sampling techniques to reduce the overhead [SBS11]. As an example, we can

cite the work presented in [SH11], in which the authors use runtime analy-

sis to characterize the workloads and adapt processor frequencies based on

performance counter measures at runtime.

… Post-mortem analysis: the collected runtime information is recorded in a

detailed log (trace file) for later analysis. The trace file is usually composed of

timestamped events and their attributes [She99]. An event is typically repre-

sented by an ordered tuple that consists of the event identifier, the timestamp

when the event occurred, where it occurred (e.g., a thread identifier) and

optional fields for specific information. The trace file can then be analyzed

with a visualization tool such as Vampir [Knu+08].

In this thesis we explore both techniques to understand and improve the perfor-

mance of TM applications. More precisely, we focus on techniques that do not add

considerable intrusiveness to both TM applications and STM systems. This subject is

further discussed in Chapters 3 and 4.

1.1.2 Improving the performance of TM applications

The performance of TM applications can be improved in several ways. In this

section, our main objective is not to present an exhaustive list of works that aim at

improving the performance of TM applications. Instead, we intend to show that the

performance can be improved at different levels, ranging from the application to the

platform levels. Then, we situate our approach proposed in this thesis.

… TM application: There are several ways of improving the performance at the

TM application level. One possible approach is to change the TM application

source code in such a way that the probability of having conflicts is reduced.

One of such techniques is called privatization, which temporarily privatizes a

shared data during a computation to reduce conflicts [MSS08]. When conflicts

are reduced, there will be less transactions being re-executed due to conflicts.

Consequently, the application will take less time to execute.

6 CHAPTER 1. INTRODUCTION

… STM system: Another alternative to improve the overall performance of a

TM application is modifying the STM system algorithms to fit the application

workload. For instance, some STM systems present better performance with

read-dominant workloads whereas others are more suitable for write-dominant

workloads. In [MIS05], the authors proposed an Adaptive STM system (ASTM)

that automatically adapts its behavior to the application workload, allowing

it to closely approximate the performance of the best existing system for that

workload.

… Operating system: Current mainstream operating systems do not have any

integration with Transactional Memory. The performance of TM applications

can be enhanced if operating systems offer special integration with HTM as

proposed in [Ros+07]. Another example of optimizations at the operating

system level is proposed in [Mal+11]. In this work, the authors extended the

Linux scheduler to support deadlines for reactive TM applications.

… Platform: At the platform level, we can consider two possible types of opti-

mizations. On the one hand, it is possible to construct a specific platform that

implements TM in hardware to accelerate the execution of TM applications. As

an example, we can cite the Intel’s next generation processor microarchitec-

ture named Haswell1, which will provide instruction set extensions that allow

programmers to specify regions of code for transactional synchronization. On

the other hand, TM applications can better exploit the full potential of current

multicore platforms by taking into consideration the platform characteristics

such as the memory hierarchy [WL10]. In this case, the performance gains can

be obtained by matching the characteristics of the TM application to those of

the underlying platform.

We believe that the performance of TM applications can be improved if we match

its characteristics (along with the characteristics of the STM system) to the underlying

multicore platform. More precisely, we propose to gather these characteristics from

the TM applications and STM systems and then use such information to better exploit

the memory hierarchy of modern multicore platforms.
1More information available at http://software.intel.com/en-us/blogs/2012/02/07/transactional-

synchronization-in-haswell/

1.2. CONTRIBUTIONS 7

One technique to deal with that is called thread or processes mapping, which

aims at mapping threads or processes to specific cores to improve the use of resources

such as interconnections and cache memories. Although the impacts of applying

thread mapping on TM applications has not been explored yet, we believe that it

could be beneficial due to some intuitions. For instance, consider a TM application

in which transactions constantly access the same amount of shared data. In this

case, placing threads on sibling cores may reduce the latency because the data will

probably be stored into the cache shared by these threads. This may be the case

of high-conflicting TM applications. Now, consider an opposite case where a TM

application is composed of several transactions that usually access a large amount of

disjoint data, thus rarely conflicting. In this case, distributing threads across different

processors (thus avoid cache sharing) may reduce the contention on the same cache,

making more cache available for each thread.

In this thesis we want to confirm these intuitions and propose an approach

capable of predicting suitable thread mappings for TM applications to improve their

performances. This subject is discussed in more details in Chapter 4.

1.2 Contributions

The first contribution of this thesis concerns the comprehension of the perfor-

mance of TM on multicore platforms. In order to do that, we first take a deeper look

on the impacts of STM systems on the performance of TM applications. We show that

the performances of applications using TM-based synchronization solutions depend

on both the applications themselves and the STM system specifics. We support this

fact by demonstrating that the use of TM may result in worse or better performance

for the application, depending on these specifics. In order to gain some insight on

these issues, helping developers to understand and improve their performance, we

propose a generic approach for collecting and tracing relevant information about

transactions. Our solution can be applied to different STM systems and applications

as it does not modify neither the target application nor the STM system source codes.

We then show that the collected information can be helpful in order to comprehend

the performance of TM applications.

This joint work with Kiril Georgiev (Ph.D. student at Université de Grenoble),

8 CHAPTER 1. INTRODUCTION

Vania Marangozova-Martin (assistant professor at Université de Grenoble) and Miguel

Santana (head of the Embedded Software Development Tools department in STMi-

croelectronics Central R&D group) resulted in a publication in the proceedings of

the Euromicro International Conference on Parallel, Distributed and Network-Based

Computing (PDP) in 2011:

… Márcio Castro, Kiril Georgiev, Vania Marangonzova-Martin, Jean-François

Méhaut, Luiz Gustavo Fernandes, and Miguel Santana. “Analysis and Tracing

of Applications Based on Software Transactional Memory on Multicore Archi-

tectures”. In: Euromicro International Conference on Parallel, Distributed and

Network-Based Computing (PDP). Aya Napa, Cyprus: IEEE Computer Society,

2011, pp. 199–206. ISBN: 978-0-7695-4328-4. DOI: 10.1109/PDP.2011.27

The second contribution of this thesis concerns the proposal of an approach to

improve the performance of TM applications through the exploitation of the memory

hierarchy of modern multicore platforms. We evaluate and demonstrate that the

use of thread mapping strategies allows us to make better use of the underlying

multicore platform and thus improve the performance of TM applications. However,

the efficiency of such approach relies upon matching the application behavior with

system characteristics. Particularly, STM systems make this task even more difficult

due to its runtime system. Existing STM systems implement several conflict detection

and resolution mechanisms, which leads TM applications to behave differently for

each combination of these mechanisms. Thus, the prediction of a suitable thread

mapping strategy for a specific application/STM system becomes a daunting task. We

tackle this problem by using Machine Learning (ML) to automatically infer a suitable

thread mapping strategy for TM applications. Our approach takes into account

not only the characteristics of the TM application but also the STM system and the

underlying multicore platform.

This joint work with Luís Fabrício Góes (Ph.D. student at University of Edinburgh),

Prof. Murray Cole and Prof. Marcelo Cintra (both from the University of Edinburgh)

resulted in the following publication in the proceedings of the High Performance

Computing Conference (HiPC) in 2011:

http://dx.doi.org/10.1109/PDP.2011.27

1.2. CONTRIBUTIONS 9

… Márcio Castro, Luís Fabricio Wanderley Góes, Christiane Pousa Ribeiro, Murray

Cole, Marcelo Cintra, and Jean-François Méhaut. “A Machine Learning-Based

Approach for Thread Mapping on Transactional Memory Applications”. In: High

Performance Computing Conference (HiPC). Bangalore, India: IEEE Computer

Society, 2011, pp. 1–10. ISBN: 978-1-4577-1949-3. DOI: 10.1109/HiPC.

2011.6152736

Finally, our third contribution extends the aforementioned approach to predict

and apply suitable thread mapping strategies for TM applications in a dynamic

fashion. We argue that more complex applications will make use of TM in a near

future. Those applications can be composed of multiple execution phases with a

potentially different transactional behavior in each phase. Thus, instead of predicting

and applying a single static thread mapping strategy, we use profiling techniques to

gather useful information during the execution of TM applications, switching the

thread mapping strategy to a more adequate one at runtime when necessary. We

implemented this approach in a state-of-the-art STM system, making it transparent

to the user.

The preliminary results of our third contribution were presented and discussed in

the Euro-TM Workshop on Transactional Memory (WTM) in 2012 (co-located with

EuroSys 2012). The workshop consisted of short presentations and did not have any

published proceedings to facilitate later submission to other venues. The submissions

were evaluated by members of the Euro-TM Management Committee.

… Márcio Castro, Luís Fabrício Góes, Luiz Gustavo Fernandes, and Jean-François

Méhaut. “Dynamic Thread Mapping Based on Machine Learning for Transac-

tional Memory Applications”. In: Euro-TM Workshop on Transactional Memory

(WTM). Extended abstract. Apr. 2012

An extended version of this work was accepted for inclusion in the technical

program and the proceedings of the International European Conference on Parallel

and Distributed Computing (Euro-Par) in 2012. This was a joint work with Luís

Fabrício Góes (Ph.D. student at University of Edinburgh).

… Márcio Castro, Luís Fabrício Góes, Luiz Gustavo Fernandes, and Jean-François

Méhaut. “Dynamic Thread Mapping Based on Machine Learning for Transac-

http://dx.doi.org/10.1109/HiPC.2011.6152736
http://dx.doi.org/10.1109/HiPC.2011.6152736

10 CHAPTER 1. INTRODUCTION

tional Memory Applications”. In: International European Conference on Parallel

and Distributed Computing (Euro-Par). Vol. 7484. Lecture Notes in Computer

Science (LNCS). Rhodes Island, Greece: Springer-Verlag, 2012, pp. 465–476.

ISBN: 978-3-642-32819-0. DOI: 10.1007/978-3-642-32820-6_47

1.3 Scientific context of the thesis

This thesis was funded by a subproject of Nano 2012 program called OPM2:

Analysis and Observation of Multithreaded Applications on Multicore Processors. In

the context of this thesis, one of our main contributions to this project was to evaluate

and analyze the performance of Transactional Memory on multicore platforms [CD10;

Cas10; Cas+10].

The research that led to the published papers cited in the previous section as well

as all the contents of this thesis was carried out in the Nanosim team. Nanosim stands

for Nanosimulations and Embedded Applications for Hybrid Multi-core Architectures and

it is one of the research teams of the Grenoble Informatics Laboratory (Laboratoire

d’Informatique de Grenoble - LIG). The main research fields of Nanosim are High

Performance Computing (HPC) and Embedded Systems. More precisely, in the field

of HPC, the Nanosim team is interested in providing environments to better exploit

multiprocessor architectures. Nanosim members have also straight collaborations

with Brazilian universities such as the Universidade Federal do Rio Grande do Sul

(UFRGS), the Universidade Federal de São Paulo (USP), the Pontifícia Universidade

Católica do Rio Grande do Sul (PUCRS) and the Pontifícia Universidade Católica de

Minas Gerais (PUC Minas).

During this thesis, I have developed other scientific works in collaboration with

members from Nanosim and other research teams. Some of these collaborations

are closely related to this thesis whereas others are related to high performance

computing on parallel platforms in general. These collaborations began when I

was a master’s student in Brazil under the direction of Prof. Luiz Gustavo Fernan-

des. My master’s thesis was about the parallelization of a Geophysics application

that exploited memory affinity strategies for Non-Uniform Memory Access (NUMA)

platforms. This work was closely related to the thesis of Christiane Pousa Ribeiro

(Nanosim, Université de Grenoble). At that time, Christiane was under the direction

http://dx.doi.org/10.1007/978-3-642-32820-6_47

1.4. THESIS OUTLINE 11

of Jean-François Méhaut (Université de Grenoble) and her main research topic was

memory affinity for NUMA platforms [Rib11]. Such common research topic allowed

us to collaborate during my thesis and resulted in several publications in national

and international conferences [Cas+09; Rib+10; Rib+09b; Rib+09a]. All these

works aimed at using memory affinity strategies to improve the performance of high

performance scientific applications.

More recently, I also collaborated with Prof. Henrique Cota de Freitas and Carlos

Augusto Paiva da Silva Martins, both professors at Pontifícia Universidade Católica

de Minas Gerais (PUC Minas), Brazil. These works concerned the analysis and

evaluation of parallel workloads on multicore platforms and also led to publications

in international conferences [Oli+11; Rib+11].

1.4 Thesis outline

The remaining chapters of this thesis are organized as follows:

… Chapter 2 reviews the basic concepts and topics that are relevant throughout

this thesis. We briefly discuss the evolution of multicore platforms as well

as their impacts on the performance of parallel applications, we present an

overview of Transactional Memory along with some important design criteria

that impact its performance and we describe the most known applications and

benchmarks used to evaluate Transactional Memory systems.

… Chapter 3 concerns the comprehension of the performance of TM applications

on multicore platforms. We analyze the impacts of both applications and

STM systems on the overall performance and propose a generic approach

for collecting relevant information from TM applications. We then use such

approach to gain some insights about the performance of TM applications.

… Chapter 4 proposes the use of Machine Learning to improve the performance of

TM applications through the exploitation of the memory hierarchy of multicore

platforms. Our approach considers the characteristics of the TM application,

STM system and platform to infer an efficient thread mapping adapted to the

underlying environment.

12 CHAPTER 1. INTRODUCTION

… Chapter 5 presents an experimental evaluation of our ML-based approach for

thread mapping on TM applications on two multicore platforms.

… Chapter 6 discusses several related works concerning the performance evalu-

ation of TM systems and applications, the use of thread mapping to improve

the performance of applications and the use of machine learning to construct

heuristics for improving the performance of parallel applications.

… Chapter 7 presents our conclusions and perspectives.

CHAPTER 2
Background

THIS chapter aims at reviewing the basic concepts and topics that are relevant

throughout this thesis. More precisely, in Section 2.1, we briefly discuss the evo-

lution of multicore platforms as well as their impacts on the performance of parallel

applications. In Section 2.2, we present an overview of Transactional Memory along

with some important design criteria that impact its performance. In Section 2.3, we

describe the most known applications and benchmarks used to evaluate Transactional

Memory systems. We then conclude this chapter in Section 2.4.

2.1 Multicore platforms

Historically, processor manufacturers have responded to the demand for more

processing power by delivering faster processor speeds. However, the need to achieve

higher performance without driving up power consumption and heat has become

a critical concern. The solution for this problem is based on the fact that a good

overall processing performance can be achieved by reducing individual core clock

speeds while increasing the number of cores. Consequently, this can lower the heat

of individual cores and increase the overall performance.

13

14 CHAPTER 2. BACKGROUND

2.1.1 Architectural concept

Although the organization of a multicore platform can vary depending on manu-

facturer and product development over time, they share some basic features: pro-

cessors have two or more processing units (cores) and cache modules. These cache

modules are arranged hierarchically and can either be shared or independent. Usu-

ally, cache memories closer to the cores tend to be private whereas higher level

caches tend to be shared.

C C C C

L2 L2

L3

MEMORY

C C C C

L2 L2

L3

C C C C

L2 L2

L3

C C C C

L2

L3

L2

Figure 2.1: Example of a multicore platform with two levels of shared caches.

Figure 2.1 illustrates a multicore platform composed of four quad-core processors.

In this example, there are two levels of cache memories (L2 and L3) and a shared

main memory. Since the main memory is connected to all processors through a

single bus, the time spent to access a data on the main memory is uniform. This

design is known as Uniform Memory Access (UMA). Another possible design is to

use multiple memory banks physically distributed through the platform. In this case,

the main memory still has a unique address space but the time spent to access data

is conditioned by the distance between the processor and the memory bank in which

the data is physically allocated. This design is called Non-Uniform Memory Access

(NUMA).

2.1.2 Performance of multicores

It is well known that the rate of improvement in processor speed exceeds the rate

of improvement in Dynamic Random Access Memory (DRAM) speed. Indeed, the

performance of processors and DRAMs are improving exponentially, but the exponent

for processors is substantially larger than that for DRAMs. This growing disparity

leads to the so-called “memory wall problem” [McK04]. Obviously, the effective

2.1. MULTICORE PLATFORMS 15

performance that can be obtained from a multicore platform also depends on several

other factors such as memory hierarchy, application, operating system and compiler

optimizations.

Figure 2.2 illustrates this problem. In this example, we consider a multicore plat-

form composed of two dual-core processors. According to the processor specification,

each core has a theoretical performance of 10.6 GFlops1 as shown in Figure 2.2a.

This means that, in theory, this multicore platform would be capable of executing

42.4 GFlops. However, real world performance may not come very close to the theo-

retical value. To evaluate how far is the effective performance from the theoretical

one, we performed a series of experiments with the parallel version of the LINPACK

benchmark2. LINPACK is benchmark that solves a dense system of linear equations.

Multicore platform

(a)Theoretical performance

core core

Dual-core processor Dual-core processor

core core

(b) Core peak performance

(c) Processor peak performance

10.6 GFlops 10.6 GFlops

9.2 GFlops 9.2 GFlops

17.4 GFlops

10.6 GFlops 10.6 GFlops

9.2 GFlops 9.2 GFlops

17.4 GFlops

32.1 GFlops(d) Platform peak performance

Figure 2.2: Example of the scalability potential of multicore processors.

We executed this benchmark with a single thread and obtained a peak per-

formance of 9.2 GFlops (Figure 2.2b), which is lower then the theoretical core

performance. Secondly, we executed the benchmark with two threads in the same

processor, obtaining a peak performance of 17.4 GFlops (Figure 2.2c), which is infe-

rior to what would be expected (i.e., 2× 9.2 GFlops). A similar behavior happened

when we executed the benchmark with four threads. In this case, we obtained a

peak effective performance of 32.1 GFlops (Figure 2.2d), which is inferior to 2×17.4

1GFlops stands for “billions of floating-point operations per second”.
2LINPACK can be download at http://www.netlib.org/linpack/

16 CHAPTER 2. BACKGROUND

GFlops and far away from the theoretical performance of the platform (i.e., 42.4

GFlops).

This example must be considered for demonstration purposes only. Since LIN-

PACK is cpu-bound and solves a very regular problem, the performance achieved

is quite high and gives a good estimation of the peak performance of the platform.

However, the effective performance depends on several factors. One of such factors

is the memory hierarchy, which can considerably impact the overall performance of

applications that make intensive use of memory (memory-bound applications).

2.1.3 Impacts of the memory hierarchy

In the context of memory hierarchy, as the distance between the core and the

memory increases, the time needed to access a data physically stored on such memory

also increases. This means that cores have a fast access to lower cache levels such as

L1 and L2 than higher memory levels such as the main physical memory. Considering

this fact, one can realize that it is always better to place threads on sibling cores. This

can reduce the memory access latency by sharing all levels of the cache hierarchy,

allowing threads to reuse the data that is already on cache. Indeed, this strategy can

be used to improve the performance of some applications but it is not suitable for

all applications. For instance, consider a memory-bound multithreaded application

where threads usually access disjoint data. In this case, it may be better to distribute

threads across different processors in such a way that they will not share caches to

alleviate contention.

We demonstrate this scenario with a synthetic parallel application. As its core,

the application is very simple: each thread executes a for loop with a fixed number

of iterations and then exits. Each iteration consists of a fixed number of read and

write operations on a one-dimension array of integers. Although the order of read

and write operations as well as the array indexes to be accessed are chosen randomly,

the algorithm guarantees the number of read and write operations as specified in the

input parameters. The number of iterations, threads and the size of the array can

also be specified.

We made two variations of this synthetic parallel application. The first one,

named shared array, has a single shared array that is accessed by all threads. Since

2.1. MULTICORE PLATFORMS 17

we are only interested on the impact of the memory hierarchy, we do not use any

synchronization mechanism to guarantee consistent results. The second one, named

private arrays, has t private arrays, where t corresponds to the number of threads.

In this case, each thread accesses only its private array.

In order to perform our experiments, we fixed the input parameters of the

synthetic application as follows: the number of threads was fixed to 8, each thread

executes 100,000 iterations and each iteration performs 1024 reads and 1024 writes.

In the shared array variation, we used a single shared array of size 65,536. In the

private arrays variation, on the other hand, each thread has a private array of size

65,536.

We then carried out several experiments with both variations of the synthetic

application using the previously described input values. The target machine was a

multicore NUMA platform composed of four 8-core Intel Xeon X7560 at 2.27GHz.

Each core has private L1 (32KB) and L2 (256KB) caches and each processors has a

shared L3 cache (24MB). During the experiments, we fixed the threads to the cores

following two distinct strategies: one that pins all threads on the same processor and

other that spreads threads among different processors. The goal is to observe the

impact of the cache hierarchy on the performance of the synthetic application. The

results are shown in Figure 2.3.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

Shared Array Private Arrays

E
x
e
c
u
ti
o
n
 t

im
e
 (

m
s
)

Close cores
Distant cores

Figure 2.3: Example of the impacts of memory hierarchy on the performance of a
synthetic parallel application.

As it can be noticed, the performance of the synthetic application changes when

we change the way threads use the cache hierarchy. The shared array variation

18 CHAPTER 2. BACKGROUND

has better performance when threads are placed on sibling cores, since most of the

shared data is on cache, reducing the latency. On the contrary, the use of different

caches improved the performance of the private arrays variation, since this scheme

reduces cache pollution and contention.

2.1.4 Synchronization of shared data

To efficiently exploit the full potential of multicore platforms, applications must

evolve. Old sequential applications are now parallel: they are split into pieces that

are executed in parallel by threads, each one running on a specific core. The side

effect is that the application data, which were accessed by a single thread on a

sequential application, is now shared among several concurrent threads.

In a multithreaded environment, if multiple threads access the same resource for

read and write, the value may not be the correct value. For instance, consider an

application that contains two threads, one thread for reading the content from a file

and another thread writing the content to the file. If the write thread tries to write

and the read thread tries to read the same data, the data might become corrupted.

One possible solution for this problem is to lock the file when the writer thread is

modifying the file content. This means that the read thread will have to wait until

the lock is released to proceed.

Indeed, the correct synchronization of multiple accesses to shared data is chal-

lenging. Depending on the complexity of problem that is parallelized, more or less

mechanisms must be used to guarantee the correct execution of a parallel application

without decreasing its scalability.

Among all possible synchronization mechanisms, locks are the most commonly

used. A mutually exclusive (or mutex) lock is used to protect a critical section,

which is a segment of code that only one thread at a time is allowed access. Differently,

a semaphore can grant access to one or a limited number of threads. Some languages

have a slightly higher level construct, a monitor, to prevent concurrent accesses.

The above mechanisms are considered as “low-level” mechanisms, since one

must explicitly control the access of shared variables. They cause blocking, so

threads always have to wait until a lock (or a set of locks) is released. This may add

considerable overhead even when the chances for collision are very rare. In some

2.1. MULTICORE PLATFORMS 19

cases, although the chances for collision are very rare, the accesses to shared data

must be protected if we want to avoid race conditions, thus limiting the scalability of

the application [HLR10; HX98].

We demonstrate how locks can limit the scalability by using the well-known

Traveling Salesman Problem (TSP) [App+07], which finds the shortest possible path

between two nodes in a graph by visiting each node exactly once. In our parallel

implementation, the graph exploration is done by multiple threads. Concurrent

threads access different shared data, such as the current shortest path and the pool of

paths to explore. To avoid race conditions, we used mutex locks to protect concurrent

accesses to shared variables. This was the case of the shared variable minimum, which

stores the current shortest distance.

We implemented two variations of TSP. Our first approach is based on the fact that

all global shared variables that are accessed concurrently should be protected with

mutex locks (named strict). For the second approach, after a carefully analysis of the

source code, we removed some of the mutex locks without creating data races (named

relaxed). That was the case of some read-only accesses to the variable minimum, which

can be relaxed without breaking the application correctness. Figure 2.4 shows an

example of portions of the source code from the strict and relaxed versions, where

the synchronization has been removed.

lock (lock_minimum);
if length ≥ minimum then

(*cuts)++;
unlock (lock_minimum);
return 1;

end
unlock (lock_minimum);

if length ≥ minimum then
(*cuts)++;
return 1;

end

(a) strict (b) relaxed

Figure 2.4: Snippets of the strict (left) and relaxed (right) versions of TSP.

This specific portion of code is executed at the beginning of the main recursive

function of TSP and avoids the successive recursive calls to the main function when

a thread finds a path that is larger than the global shortest path. The reason for

20 CHAPTER 2. BACKGROUND

allowing the mutex lock to be removed in this portion of code without creating data

races is twofold. Firstly, concurrent threads only access this variable for read-only

operations in this portion of code. Secondly, this variable can also be updated by

concurrent threads (and those accesses are still protected by mutex locks) if a shorter

path is found. However, when this occurs, the new value to be written will be

inevitably lower than before. Thus, it does not invalidate previous results, since those

previous paths continue to be greater or equal to this new value.

The execution times (in log scale) of these two approaches are shown in Fig-

ure 2.5. Results represent arithmetic means of 30 executions on the SMP-24: an

SMP multicore platform based on four six-core Intel Xeon X7460 (we present a more

detailed description of this platform in Section 5.1.1). In all experiments, we used

the same seed for the pseudorandom number generator and a graph composed of 16

nodes.

 1

 5

 25

 125

 625

 2 3 4 5 6 7 8

E
x
e
c
u
ti
o
n
 t

im
e
 (

s
)

Number of cores

Strict
Relaxed

Figure 2.5: Execution times of the two variations of TSP (strict vs. relaxed).

Considering the first approach, the results show high execution times and poor

scalability. This occurs due to the large number of accesses to the shared variable

minimum, causing threads to be blocked continuously. When we relaxed some syn-

chronization on read-only accesses to this variable the performance was considerably

increased. This is a simple example but it can be very hard to be sure that removing

a lock to increase the application scalability will not break data consistency.

2.2. TRANSACTIONAL MEMORY 21

Due to all these issues concerning those traditional mechanisms, researchers are

looking for alternative synchronization mechanisms. One of those that is attracting

considerable attention of researchers is Transactional Memory.

2.2 Transactional memory

The Transactional Memory programming model offers a new attractive way of

developing parallel applications using a higher abstraction level. It shifts the problem

of correct synchronization to the TM system, which is responsible for making sure

that deadlocks will not occur, race conditions are correctly handled and locks are

performed at a granularity which allows to indeed exploit the inherent parallelism of

the application.

The original idea dates back to 1977, when D. Lomet realized that an abstraction

similar to a database transaction might make a good programming language mech-

anism to ensure the consistency of data shared among several processes [Lom77].

Sixteen years later, in 1993, M. Herlih and J. Moss proposed a hardware-supported

Transactional Memory as a mechanism for building lock-free data structures [HM93].

Since then, there has been a growing interest of researches on Transactional Memory.

This section aims at bringing up some important aspects of Transactional Memory.

First, we present its general concepts. Then, we discuss the different design choices

and approaches for implementing Transactional Memory. Finally, since we are

interested in Software Transactional Memory in this thesis, we present a more

detailed description of its peculiarities and we briefly describe the most known

state-of-the-art STM systems.

2.2.1 General concepts

The basic idea behind Transaction Memory comes from Transactional Database

Management Systems (DBMS), in which a transaction is a sequence of actions that

appears indivisible and instantaneous to an outside observer [GUW08]. In these

systems, two or more queries conflict when different transactions perform read and

write instructions over a database in such a way that the result could not arise from

a sequential execution of the queries. In this context, transactions ensure that all

22 CHAPTER 2. BACKGROUND

queries produce the same result as if they executed serially. A database transaction

enforces some properties called ACID: atomicity, consistency, isolation and durability.

Atomicity refers to the ability of the DBMS to guarantee that either all tasks

of a transaction are performed or none of them is performed. It is not acceptable

for a constituent action to fail and for the transaction to finish successfully nor it

is acceptable for a failed action to leave behind evidence that it executed [HLR10].

Thus, there are two possibilities for an executing transaction: it can be either

committed (if it completes successfully) or aborted (if it fails).

Another important property is the isolation, which refers to the requirement that

other operations cannot access (or see) the data in an intermediate state during

a given transaction. Because of that, transactions must produce a correct result,

regardless of which other transactions are executing concurrently.

The next property of a transaction is consistency. This property ensures that

the database remains in a consistent state before starting a transaction and after

finishing it (whether successful or not). Any data written to the database must

be valid according to all defined rules, such as integrity constraints, cascades and

triggers.

The final property is durability, which requires that once a transaction commits,

its result must be permanent and available to subsequent transactions even in case

of system failures. Many databases implement durability by writing all transactions

into a transaction log that can be played back to recreate the system state right after

a system failure.

It is important to mention that TM systems usually do not provide durability

and consistency properties [LK08]. In general, TM systems assume that changes in

memory need not be durable (mainly if the underlying system is not a persistent one)

and they do not consider the previously mentioned consistency rules while modifying

data inside transactions.

The basic concepts of Transactional Memory are illustrated in Figure 2.6. Trans-

actions are sequences of steps (delimited by a blocks of code) executed by threads

[HS08]. The way a transaction is defined inside the source code depends on the

implementation. However, most compilers that support TM provide a simple atomic

statement, which is responsible for executing the inner block of code (and the

routines it invokes) as a transaction.

2.2. TRANSACTIONAL MEMORY 23

no conflict

conflict

rollback

commitabort

atomic {

...

 }

Figure 2.6: Transactional Memory basic concepts.

The portion of code written inside the atomic block is guaranteed to be executed

atomically and in isolation regardless of eventual data races [Dal+10; HLR10].

At runtime, transactions are executed speculatively and the Transactional Memory

continuously keeps track of concurrent accesses and detects conflicts. When a conflict

arises, only one transaction involved in the conflict will commit whereas the others

will be aborted and then re-executed (this action is also called rollback). When there

is no conflict, all transactions are allowed to commit simultaneously.

1 2 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

data structure

thread 1 thread 2 thread 3 thread 4 thread 5

atomic {

...

 }

atomic {

...

 }

atomic {

...

 }

atomic {

...

 }

atomic {

...

 }

object

3

1 2

Figure 2.7: Example of conflicting and non-conflicting scenarios.

Figure 2.7 illustrates the use of Transactional Memory for guaranteeing atomicity

while accessing shared data structures. In this example, there are five threads that

read/write values from/to the objects of four shared structures (memory accesses

are represented by arrows). In order to guarantee “atomic” accesses, each thread

encapsulates all of its operations inside transactions (represented by the atomic

24 CHAPTER 2. BACKGROUND

blocks). To simplify the example, we consider an object-based TM system, which can

detect conflicts between transactions at object granularity. This means that conflicts

may only occur when two or more transactions are accessing the same object at the

same time and at least one transaction is modifying this object. We discuss other

designs in more detail in Section 2.2.2.

As it can be noticed, there are some threads that access the same object. These

accesses are represented by dashed arrows. More precisely, threads 1 and 2 access

object 3 simultaneously (Scenario 1) whereas threads 4 and 5 access object 18 (Sce-

nario 2). Let us consider these two different scenarios as read and write operations

chronologically represented as follows:

… Scenario 1: no conflict (read-only transactions)

1. thread 1 reads the objects [1, 3] and performs some computation;

2. thread 2 reads the objects [3, 5, 6, 8] and performs some computation;

3. thread 2 commits;

4. thread 1 commits.

… Scenario 2: read-write conflict

1. thread 4 reads the objects [13, 16, 18] and performs some computation;

2. thread 5 reads the objects [18, 19, 20] and performs some computation;

3. thread 5 updates the object 18 (write operation);

4. thread 4 aborts and rollbacks;

5. thread 5 commits.

In scenario 1, there are two read-only transactions accessing the same shared

object 3 at the same time. In this case, the Transactional Memory mechanism can

commit both transactions since they do not conflict.

On the contrary, a different situation arises in scenario 2. In this case, there is

a conflict due to the fact that thread 4 reads object 18 which is further updated

by the transaction executed in thread 5. This conflict is solved automatically by

the Transactional Memory, so the developer does not need to take care of it. One

possible solution to solve such conflict is shown in steps 4 and 5. In this example,

2.2. TRANSACTIONAL MEMORY 25

the write transaction in thread 5 was committed and read-only transaction in thread

4 was aborted. Thus, the transaction in thread 4 will be re-executed and will

then use the new value updated by thread 5. The decision on what transaction to

abort/commit can be different depending on the TM implementation. There exist

different mechanisms to solve conflicts between transactions and each one has its

pros and cons. We discuss some of the most used mechanisms later on.

It is important to notice in this example that some transactions also access disjoint

elements of the shared structures without blocking on the shared structures. If locks

were used to protect those concurrent accesses, it would be necessary to use one lock

per shared element to obtain such fine granularity. Additionally, one would have to

be very careful to not create deadlocks or livelocks. For instance, consider that two

threads are trying to acquire two locks (e.g., l1 and l2) to modify two elements of the

shared structure atomically. A deadlock will happen if thread 1 acquires l1 and blocks

on l2 due to the fact that thread 2 has already acquired l2 and is still blocked on l1.

This problem can be solved by imposing a total order to acquire the locks. However,

the problem is that it could limit the program scalability and will add complexity to

the source code. These kind of problems are avoided by the Transactional Memory.

Although the Transactional Memory promises to simplify the development of

parallel applications, it has also some limitations. For instance, transactions by

themselves cannot replace all synchronization mechanisms in parallel programs

[ML06]. Beyond mutual exclusion, synchronization is often used to coordinate

independent tasks. In this context, Transactional Memory provides little assistance in

coordinating independent tasks [LK08]. Forcing a thread to wait until a specific task

is finished or limiting the number of threads performing a specific task are examples

of such coordination mechanisms that are not implemented by the TM model.

2.2.2 Design choices

Basically, there are four important criteria that must be taken into account

while designing Transactional Memory systems: transaction granularity, version

management, conflict detection and conflict resolution.

Transaction granularity is the unit of storage in which a TM system detects con-

flicts [HLR10]. For object-based languages, it is common to use object granularity,

26 CHAPTER 2. BACKGROUND

which detects conflicts when threads modify the state of objects. There are also other

alternatives such as word granularity and block granularity. The former uses a

memory word as the unit of conflict detection whereas the latter uses a group (block)

of words. The chosen granularity can obviously impact the TM performance and it

also influences the way it will be implemented by software and/or hardware.

The second important mechanism is version management. Since a transaction

typically modifies data in memory, it is important to control how these modifications

are managed. In general, TM systems use one of these two possible approaches:

direct update (also known as eager version management) and deferred update (also

known as lazy version management). If direct update is applied, the transaction

directly modifies the data and the system uses some sort of concurrency control to

prevent other transactions from concurrently modifying the object or committing

after reading an old value. Direct update requires that the system record the original

value, so it can be restored in case of transaction abortion. On the other hand, if

deferred update is used, the data is modified in a private location and also read

from there. This mechanism allows other transactions to modify their private data

concurrently. When a transaction commits, it updates the data using the private copy.

In case of abort, the transaction just discards this private copy.

The third important mechanism is conflict detection. Basically, a conflict can be

detected as soon as it happens or postponed until a transaction commits. In the first

approach, called eager conflict detection, read/write conflicts are detected as they

occur during the transaction execution. In contrast, if lazy conflict detection is used,

conflicts are only detected at commit-time. This reduces the overhead during the

transaction execution at the cost of increasing the overhead on a commit operation.

As soon as a conflict is detected, a conflict resolution mechanism is invoked.

There are many different algorithms that are used to select which transactions must

be aborted in order to guarantee forward progress of the program. This task is usually

addressed by the contention manager, which implements one or more contention

resolution policies which determine whether conflicting transactions should abort,

wait or proceed. Two common alternatives are to abort one of the conflicting trans-

actions immediately (called suicide) or wait for a random, exponentially increasing,

delay before restarting (called backoff). Obviously, the choice of which transaction

must be aborted can also affect the performance of the system.

2.2. TRANSACTIONAL MEMORY 27

2.2.3 Implementation approaches

The aforementioned design choices are the core of Transactional Memory. How-

ever, they can be implemented in three different ways: only in software, only in

hardware or both. In the next sections, we discuss this subject, evaluating the pros

and cons of each approach.

Software Transactional Memory

A Software Transactional Memory (STM) system implements all the transactional

semantics in software. The advantage of STM for system programmers is that it

offers flexibility in implementing different mechanisms and policies at the software

level. Moreover, software is easier to modify and has fewer intrinsic limitations

imposed by fixed-size hardware structures (e.g., caches). There is also an important

advantage for end users, since they can port their applications for Transactional

Memory without needing extra specific hardware [HLR10].

However, STM has also some drawbacks, mainly with respect to performance.

Since everything is implemented in software, STM usually presents higher overheads

than traditional synchronization mechanisms. More precisely, this overhead is more

evident when the application is running with low thread counts [Wam+12].

The performance of STM systems also depends on the workload. In general,

STM systems present more expensive overheads than locks when a small number of

processors is used. However, as the number of processors increases, the contention

for a lock and the cost of locking also increase. When this occurs and conflicts

are rare, STM systems have been showing comparable or even better results when

compared to traditional locks [LK08]. We discuss this subject in more detail in

Section 3.1.

In this thesis, we are interested in STM since it does not imply any specific

hardware. We give a brief description of the most known state-of-the-art STM

systems later on.

Hardware Transactional Memory

Contrary to the STM solution, Hardware Transactional Memory (HTM) imple-

ments all transactional functionalities in hardware (it manages data versions and

28 CHAPTER 2. BACKGROUND

tracks conflicts transparently). The basic idea behind HTM is to modify the modern

cache-coherence protocols in order to implement transactions (in fact, they already

detect and resolve synchronization conflicts between writers as well as between

readers and writers).

Since the mechanisms are implemented in hardware, HTM systems intend to

have a better performance when compared to STM systems. However, HTM faces

several system challenges that are not an issue for STM implementations. The caches

used to track the read set, write set and data versions have finite capacity and may

overflow during a long transaction. Thus, many HTM systems make assumptions on

hardware, such as maximum transactions size and Operational System support.

The interest in full hardware implementation of TM dates to the initial two papers

on TM by T. Knight [Kni86] and M. Herlihy and J. Moss [HM93]. HTM systems usually

do not require software instrumentation of memory references within transaction

code.

A more recent example of HTM is the Log-based Transactional Memory (LogTM).

It is a HTM system that makes commits fast by storing old values to a per-thread log

in cacheable virtual memory and storing new values in place [Moo+06]. It extends

the directory-based MOESI cache coherence protocol to enable both fast conflict

detection and fast commit. The coherence protocol tracks addresses accessed inside

transactions and participates in conflict detection. An improvement of LogTM called

LogTM-SE was proposed in [Yen+07] to support thread suspension and migration.

Hybrid Transactional Memory

Even though recent STM systems scale considerably well, the overhead of the

software systems can be significant [LK08]. On the contrary, HTM systems present

better performance than STM systems but they have several limitations imposed by

hardware. In this context, it emerges the Hybrid Transactional Memory (HyTM),

which intends to tackle these issues.

The primary source of overhead for an STM system is the maintenance and

validation of read sets. In few words, a transaction T can commit (or continue to

execute) successfully if it meets two conditions: (i) no other concurrently executing

transaction has modified some data that has been read by T and (ii) transaction

2.2. TRANSACTIONAL MEMORY 29

T is not modifying some data that another transaction is also modifying. To do

so, the STM system tracks the data that has been read/written inside transactions

and validates it at commit-time. This operations may have a high cost when many

transactions modify a large amount of data.

In order to address the limitation of hardware resources (e.g., cache capacity),

a transaction can start in the HTM mode using hardware mechanisms for conflict

detection and version management. If HTM resources are exceeded, the transaction

is rolled back and restarted in STM mode with additional instrumentation. However,

the main challenge in such hybrid systems is to detect conflicts between transactions

started in HTM mode and transactions started in STM mode.

In [Kum+06], the authors describe a HyTM solution that uses a hardware mecha-

nism as long as transactions do not exceed resource limits and falls back to a software

mechanism when those limits are exceeded. This approach combines the perfor-

mance benefits of a pure hardware scheme with the flexibility of a pure software

scheme. The hardware mechanism tracks transactionally accessed data at the cache

line granularity, while the software scheme tracks it at the object granularity. It uses

a simple strategy to choose between HTM and STM: if the transaction fails to commit

successfully within three attempts in HTM mode, it falls back into STM mode and

retries until it succeeds.

Differently, in [Shr+06], the authors present a HyTM that is fundamentally con-

trolled by software where the hardware is simply used to optimize the performance

of transactions. This system embodies this software-centric hybrid strategy which

comprises a new coherence protocol proposed by them, which is called Transactional

MESI (TMESI) as well as an STM system.

2.2.4 Software transactional memory systems

Usually, STM systems can be either implemented in a library or directly into a

compiler. The library-based solution requires the programmer to add explicit calls to

the STM library for every access to the memory inside a transaction. This approach is

applicable in every system but requires significant changes to the application source

code when compared to the sequential code. In order to address this issue, a compiler

or preprocessor can be used to automatically convert all accesses to shared memory

30 CHAPTER 2. BACKGROUND

executed within transactions (e.g., delimited by atomic blocks) into proper function

calls of an STM library.

The second approach is to use a compiler which includes all STM functionalities.

In this case, the compiler includes the support to STM for a specific programming

language. The scope of software support includes language extensions to specify and

define transaction regions (atomic blocks).

There exist a large variety of programming languages that can make use of STM

(Figure 2.8). Some languages have STM support implemented in their compilers.

This is the case of the GNU Compiler Collection (GCC) 4.7 [GCC12] (C/C++), the

Intel C++ STM Compiler Prototype Edition [Int09] (C++) and the Glasgow Haskell

Compiler [GHC12] (Haskell). In other cases, STM is available as a library without

having any specific integration with the compiler.

C/C++

Haskell

Java Python

Perl

C#

...

Software
Transactional Memory

Scala

Figure 2.8: STM integration with programming languages.

In this thesis, we are interested in STM systems implemented in C/C++ as

software libraries as well as TM applications that explicitly call STM functions

in the source code. Implementations such as TL2 [DSS06], TinySTM [FFR08],

SwissTM [DGK09] and RSTM [Mar+06] use the library approach. The analysis of

the influences of preprocessors that convert atomic blocks into STM system calls was

done in [Fel+07] and is out of the scope of this thesis.

2.2. TRANSACTIONAL MEMORY 31

TL2

The Transactional Locking II (TL2) algorithm is the second version of the original

Transactional Locking (TL) algorithm developed by D. Dice and N. Shavit [DS06].

Based on a global versioning approach, and in contrast with prior local versioning ap-

proaches, the authors were able to eliminate several key safety issues afflicting other

lock-based STM systems and simplify the process of mechanical code transformation

[DSS06].

The basic idea of TL2 algorithm is to use a global version-clock counter in order

to handle conflicts between transactions. The counter is incremented using an

increment-and-fetch function implemented with a compare-and-swap (CAS) operation.

This global variable will be read and incremented by each writing transaction and

will just be read by every read-only transaction.

A similar idea of the global version-clock variable is used to implement a data

structure responsible for storing a collection of special versioned write-locks used for

every memory location accessed inside transactions. In this case, a single bit is used

to indicate whether the lock is taken. The rest of the lock word is used to store a

version number. This version number is incremented by every successful release of

the respective lock. It is also possible to associate locks and shared data in different

ways such as per object (a lock is assigned per shared object) or per stripe (the shared

memory is partitioned using some hash function to map a striped location to a lock).

The sequence of operations that are performed by the TL2 when a transaction

begins depends on the type of the transaction. One of the goals of the TL2 algorithm

is to offer an efficient execution of read-only transactions. In this case, few steps

are executed allowing low-cost read-only transactions. On the other hand, write

transactions (i.e., transactions that performs writes to the shared memory) need more

steps and may have a significant cost depending on the operations that are executed

inside them.

TinySTM

TinySTM is another well-known STM implementation that also uses a global

versioning approach (shared counter as clock) to control the conflicts between

transactions and locks to protect shared memory locations [FFR08]. It also uses a

32 CHAPTER 2. BACKGROUND

shared array of locks to manage concurrent accesses to memory. Each lock covers a

portion of the address space and the addresses are mapped to locks based on a hash

function. Since write-transactions must verify that all the addresses they have read

are still valid at commit-time (i.e., they are not locked by another transaction and

still have the same version number), depending on the number of read and write

operations, this verification may be costly. In order to address this issue, the authors

propose a hierarchical locking strategy. In this strategy, the leaves of the tree (last

level on the hierarchy) correspond to elements of the shared array of locks while

upper levels aggregate information about lower levels. Thus, when there is no lock

acquired for any element of a given sub-tree, is not necessary to validate its elements.

TinySTM implements different designs that mainly differ in the moment that locks

are acquired (encounter-time or commit-time) and in the way updates are written

to memory (write-through and write-back). With encounter-time locking, locks are

acquired when the transaction encounters write operations. Differently, commit-time

locking delays the acquisition of locks to the commit phase. With write-through

access, updates are written directly to memory and old values are stored in an undo

log to be restored upon abort. With write-back access, updates are buffered during

the transaction execution. Then, they are written to the memory upon commit.

Each strategy has its advantages and limitations. Write-through has lower commit-

time overhead, faster read-after-write/write-after-write handling and enables many

interesting compiler optimizations. On the other hand, write-back has lower abort

overhead and does not require extra techniques to guarantee consistent reads. These

configurations can be set during the compilation, but TinySTM uses write-back with

encounter-time locking as its default configuration. It is also possible to use different

contention management strategies implemented in TinySTM. The following are the

most used ones:

… suicide: immediately aborts the transaction that detects the conflict (this is

the default strategy);

… delay: is similar to suicide but waits until the lock that caused the abort has

been released before aborting the transaction;

… backoff: is similar to suicide but waits for a random delay before aborting the

transaction (the delay increases exponentially with every abort).

2.2. TRANSACTIONAL MEMORY 33

SwissTM

SwissTM [DGK09] is a very recent STM implementation which has some similar

characteristics when compared to TL2 and TinySTM. It is a lock-based STM, which

means that it uses a lock table to manage concurrent accesses to memory. SwissTM is

also word-based as it enables transactional access to arbitrary memory words (word

granularity).

However, SwissTM presents some new features when compared to TL2 and

TinySTM. One of its innovations is the hybrid conflict detection scheme: it detects

write/write conflicts eagerly, which prevents transactions that will probably abort

from running and wasting resources, and read/write conflicts lazily, allowing more

parallelism between transactions. In read/write conflicts, a time-based scheme

(similar to the TL2 global version-clock) is applied to handle conflicts.

Another distinctive feature of SwissTM is its two-phase contention manager.

Short or read-only transactions use the simple but inexpensive timid contention

management scheme, aborting transactions when the first conflict is encountered. On

the other hand, more complex transactions are switched dynamically to a mechanism

that involves more overhead but favors theses transactions, preventing starvation.

More precisely, the mechanism that is applied for such complex transactions is called

Greedy [GHP05].

RSTM

Rochester Software Transactional Memory (RSTM) is one of the oldest open-

source Software Transactional Memory systems [Mar+06]. Differently to the previ-

ous discussed STM systems, RSTM is a C++ library for object-oriented transactional

programming. Since its first release in 2006, it has grown to include several STM

algorithms, allowing the system to be customized to a given workload. All algorithms

are blocking and all operate at the granularity of individual words. It also supports

several architectures and operating systems such as x86 / SPARC, Linux, Solaris and

MacOS.

Since RSTM implements several STM algorithms, it can be configured to behave

similar to other STM systems such as TL2, TinySTM and SwissTM. This means that

RSTM can use the core algorithms of other STM systems but their implementations

34 CHAPTER 2. BACKGROUND

can differ on several aspects: how logging is performed, the write set implementation

for redo-log algorithms and how memory management is done. One optimization

implemented in RSTM concerns the cache accesses. RSTM reduces cache misses by

employing one single level of indirection to access shared objects. It means that each

object has a unique metadata structure during its lifetime, avoiding the creation of a

new locator whenever a object is acquired by a transaction.

2.3 Benchmarks for evaluating transactional

memory systems

Since the appearance of the first TM proposal, we have seen several efforts to

develop TM microbenchmarks and benchmarks to evaluate TM implementations.

In this section, we discuss the most known microbenchmarks, realistic benchmarks

suites and useful tools to generate synthetic TM applications.

2.3.1 Data structure-based microbenchmarks

These microbenchmarks are based on single data structures to evaluate TM

implementations. They are useful for constructing basic-level insights of TM designs

and can be parameterized to conform with the user needs. Examples of common

parameters are the percentage of insertions, deletions and lookups inside the data

structure. However, they do not exhibit a wide range of TM characteristics [Kes+09]

and do not represent realistic workloads.

As examples of such data structure-based microbenchmarks we can cite the red-

black tree [DSS06], hash table [Dic+09], linked list [FFR08], skip list [Dra+11] and

rand-array [Dam+06].

2.3.2 Realistic benchmarks

Since microbenchmarks are limited their simplicity, it emerged the necessity of

having realistic benchmarks to evaluate TM implementations in real-life workloads.

In this section, we discuss the most known realistic benchmarks to evaluate TM.

2.3. BENCHMARKS FOR EVALUATING TRANSACTIONAL MEMORY SYSTEMS 35

STAMP benchmark suite

Stanford Transactional Applications for Multi-Processing (STAMP) [Min+08] is a

benchmark which includes 8 applications and 30 variants of input parameters and

data sets. The set of applications consists of a variety of algorithms and different

application domains. These applications are composed of a wide range of trans-

actional behaviors such as the size of transactions, amount of contention, sizes of

read and write sets, coarse-grain and fine-grain transactions. Additionally, it offers

a good portability, since it is possible to run many classes of TM systems, including

HTM, STM and HyTM designs. The summary of the STAMP applications is presented

below:

… bayes implements an algorithm for learning the structure of Bayesian networks

from observed data. It uses different data structures such as adtrees and a

directed acyclic graph. On each iteration, each thread is given a variable to

analyze and as more dependencies are added to the network, connect sub-

graphs of dependent variables are formed. Transactions are used to protect the

calculation and inclusion of new dependencies in the graph. This application

is characterized by its high contention and most of its execution time is spent

inside long transactions.

… ssca2 is composed by four graph kernels that operate on a large, directed,

weighted multi-graph. However, only Kernel 1 is well suited for TM and was

then parallelized. This kernel constructs an efficient graph data structure using

adjacency arrays and auxiliary arrays. The parallel transactional version of such

kernel is composed of threads that add nodes to the graph in parallel. In this

context, transactions are used to protect accesses to the adjacency arrays. The

main characteristics of the parallel transactional implementation are: low time

spent in transactions, small size of transactions and read and write sets and

relatively low contention (infrequent concurrent updates of the same adjacency

list).

… genome takes a large number of DNA segments as its input parameter and

tries to mach them to reconstruct the original source genome. This process is

composed by two phases. The first phase of the algorithm uses a hash set to

36 CHAPTER 2. BACKGROUND

create a set of unique segments, excluding all duplicates. After that, the second

phase is executed by many threads where each one tries to remove a segment

from a global pool of unmatched segments and add it to its partition of currently

matched segments. Additions to the set of unique segment and accesses to

the global pool of unmatched segments are enclosed by transactions to allow

concurrent accesses. The main characteristics of the parallel transactional

implementation are: transactions with moderate length, moderate read and

write set sizes and almost all of the execution time is transactional with low

contention.

… intruder emulates Design 5 of the Signature-based network intrusion detection

system, which scans network packets in order to detect a known set of intrusion

signatures. It is composed by three phases: capture, reassembly and detection.

Different shared data structures are used depending on the phase: a FIFO

queue is used in capture whereas a dictionary implemented by a self-balancing

tree is used in reassembly phase. Both capture and reassembly phases are

enclosed by transactions. This application is composed of short transactions

but presents high contention.

… kmeans is a clustering algorithm that tries to group similar elements into K

clusters. It iterates over a set of elements and calculates the distance between

these elements and their centroids. Transactions are used to protect the update

of the cluster center that occurs during each iteration. Since threads only

occasionally update the same centroid concurrently, this algorithm is well

suited for TM. It has short transactions and presents low contention.

… labyrinth is a variant of Lee’s routing algorithm [JK81] implemented with

transactions. The calculation of the path is enclosed by a single transaction

and a conflict occurs when two or more threads pick paths that overlap. Trans-

actions are beneficial for implementing this solution since deadlock avoidance

techniques are required when implementing it with locks. It has a very high

number of short transactions (few instructions inside transactions) as its main

characteristic.

2.3. BENCHMARKS FOR EVALUATING TRANSACTIONAL MEMORY SYSTEMS 37

… vacation emulates an on-line travel reservation system. Each client has a fixed

number of requests generated randomly in a distributed fashion. Each request

is enclosed in a single transaction that performs the accesses to the database

server. The system keeps track of customer reservations through a set of shared

trees. This application spends a lot of time inside transactions and has medium

length transactions.

… yada implements Ruppert’s algorithm for Delaunay mesh refinement [KCP06].

It consists of a shared graph structure (mesh) where each node is a triangle, a

set of segments that delimits the mesh boundary and a shared queue of bad

triangles (i.e., triangles that do not satisfy a quality criteria). The refinement

is an iterative process. In each iteration, a bad triangle is removed from the

queue, its retriangulation is performed on the mesh and new bad triangles

that result from the retriangulation are added to the queue. The computation

finishes when there is no more bad triangles in queue. Transactions protect the

queue as well as the entire refinement of a bad triangle. It has long transactions

and most of its execution time is spent in transactions.

Lee-TM

Lee-TM [Ans+08] is another implementation of the Lee’s routing algorithm used

in circuit routing [JK81]. Differently from the STAMP’s labyrinth, Lee-TM also

provides different lock-based (coarse-grain and medium-grain) and transactional

(non-optimized and optimized) implementations. This enables direct performance

comparisons between lock-based and transactional versions.

RMS-TM

The RMS-TM benchmark [Kes+09] is composed of applications from the Recog-

nition, Mining and Synthesis (RMS) domain. More precisely, this benchmark

includes some RMS applications from the benchmarks BioBench [Alb+05] and

MineBench [Nar+06] that can benefit from using TM. The applications can be

executed with different data set sizes. Differently from the previous presented

benchmarks, it also includes I/O operations inside transactions.

38 CHAPTER 2. BACKGROUND

To transactify the selected applications, the authors replaced locks used to protect

the accesses to shared variables with transactions using a prototype of the Intel

C/C++ compiler with STM support [Int09]. As we previously mentioned in this

chapter, the Intel STM compiler includes language extensions to specify and define

transaction regions. The summary of the RSM-TM applications is presented below.

Hmmsearch is from BioBench whereas the others are from MineBench.

… Hmmsearch searches for homologous protein or nucleotide sequences. More

precisely, this application reads a Hidden Markov Model (HMM) and searches

a sequence database for significantly similar sequence matches. In the trans-

actional version, threads read from an input list of sequences in parallel and

use transactions to protect the accesses to this input list. Additionally, trans-

actions are used to protect the accesses to two score lists and a histogram of

the whole sequence. This application presents a very low abort ratio and short

transactions.

… Apriori is a iterative mining algorithm for learning association rules. In each

iteration, only the itemsets that meet a minimum support criterion in the

previous iteration generate a new candidate set. Then, it checks whether all

the subsets of the itemset have a required support value before inserting an

itemset into a new candidate set. It uses a breadth-first search and a hash

tree structure to count candidate item sets efficiently. Transactions are used to

protect the calculation of support values as well as the accesses to the hash.

This application has short transactions and a high abort ratio.

… Utility-Mine is another mining algorithm for learning association rules. How-

ever, it tries to identify itemsets with high utilities. The utility of an itemset is

defined as how useful the itemset is. It consists of two phases: it first generates

candidate itemsets on the search space and then defines the high utility item-

sets by scanning the transaction database. Transactions protect the update of

the utility of itemsets and insertions of candidates into the shared hash tree.

This application has long transactions and a very low abort ratio.

… ScalParcC is a parallel formulation of a decision tree classification. The goal of

this algorithm is to create a model that predicts the value of a target variable

2.3. BENCHMARKS FOR EVALUATING TRANSACTIONAL MEMORY SYSTEMS 39

based on several input variables. To do so, the algorithm uses a hash table as

its main data structure. Transactions protect the accesses to the hash as well

as some other shared counters. This application has short transactions and

medium abort ratio.

2.3.3 Highly configurable workload generators

Another set of benchmarks aim at exploring a wide range of transactional behav-

iors or stress particular aspects of TM. We call these benchmarks as “high configurable

workload generators”, since they usually several configuration parameters that can

be easily changed to produce workloads for evaluating TM systems. They also have

the ability to mimic the behavior of real TM applications. In the following sections

we describe the most used ones.

EigenBench

EigenBench [Hon+10] is a lightweight microbenchmark that allows users to

perform a thorough exploitation of the orthogonal space of TM applications charac-

teristics. Due to its several parameters, it can be easily configured to mimic a wide

variety of workloads.

The core of EigenBench is very simple: each thread performs a pre-defined

number of transactions then exits (Figure 2.9). A transaction consists of a set number

of transactional read and write operations (Figure 2.9, lines 12-18), with some

non-transactional (i.e., local) operations inbetween (Figure 2.9, line 20). Additional

local operations can be performed between transactions (Figure 2.9, line 24). Those

operations are performed on three separate array structures during the execution.

The hot array (A1) is shared between all concurrent threads and it is accessed

transactionally. The mild array (A2) is also accessed transactionally but each thread

accesses its own partition (i.e., there is no conflicts). Finally, the cold array is

partitioned like the mild array but it is used for non-transactional accesses. The

use of those distinct arrays allows the user to control the contention between the

transactions as well as the amount of influence of the non-transactional code on the

workload.

40 CHAPTER 2. BACKGROUND

1 void test_core(tid, loops, pesist, lct, R1, W1, R2, W2

2 R3_i, W3_i, Nop_i, k_i, R3_o, W3_o, Nop_o, k_o) {

3 long val=0;

4 long total = W1 + W2 + R1 + R2;

5 for (i=0; i<loops; i++) {

6 Save_Random_Seed;

7 BEGIN_TM();

8 if (persist) Restore_Random_Seed;

9 (r1,r2,w1,w2) = (R1,R2,W1,W2);

10 Reset_History_Buffers;

11

12 for (j=0; j<total ; j++) {

13 (action, array) = rand_action(r1, w2, r2, w2);

14 index = rand_index(tid, lct, array);

15 if (action == READ)

16 val += TM_READ(array[index]);

17 else

18 TM_WRITE(array[index], val);

19 if ((j%k_i)==0)

20 val += local_ops(R3_i, W3_i, Nop_i, val, tid);

21 }

22 END_TM();

23 if ((i%k_o)==0)

24 val += local_ops(R3_o, W3_o, Nop_o, val, tid);

25 } }

Figure 2.9: Pseudo-code description of EigenBench extracted from [Hon+10].

The rand_action() function is used to decide from a read or write operation and

whether to access the hot array or mild array. It also guarantees a precise number of

reads and writes to each array, according to the specified parameter values. However,

the order in which they are accessed is randomized. The local_ops() performs a

given number of read or write operations on the cold array. The number of local

operations can be either more (if k_i and/or k_o are equal to 1) or less (if k_i

and/or k_o are greater than 1) frequent than shared operations. The rand_index()

is responsible for determining the index of the selected array that must be accessed.

This function can also be parametrized to use random indexes or to control the

probability of using previously accessed indexes to simulate temporal locality.

Due to the wide range of parameters, this benchmark allows users to create

several different workloads. Additionally, it is possible to configure EigenBench to

mimic the behavior of real TM applications as shown in [Hon+10].

2.3. BENCHMARKS FOR EVALUATING TRANSACTIONAL MEMORY SYSTEMS 41

STMBench7

STMBench7 [GKV07] is an adaptation of the OO7 benchmark [CDN93] imple-

mented with transactions. The OO7 benchmark has been originally designed to

compare object-oriented database systems. Although it is not specific to any partic-

ular application, it represents a wide variety of commercial applications including

Computer-Aided Design (CAD) and Computer-Aided Manufacturing (CAM) systems.

Like OO7, this benchmark operates over a rich object-graph with millions of

objects and many interconnections among them. The graph consists of several

modules, each containing a tree of assemblies. The benchmark uses more than 40

distinct operations over the graph, each one having a different scope and complexity.

Because of that, it can simulates many different real-world scenarios. However,

STMBench7 differs from OO7 in two important aspects: (i) it considers various

concurrency patterns and workloads whereas OO7 was developed to evaluate the

performance of isolated transactions; and (ii) the graph in STMBench7 is highly

dynamic.

Overall, the operations performed by STMBench7 can be divided into four main

categories: long traversals (go through all assemblies), short traversals (traverse

the structure via a randomly chosen path), short operations (choose few objects

and perform an operation on the objects) and structure modification operations

(create or delete elements). The user describes a target workload by providing the

workload type (read-dominated, read-write or write-dominated), the types of allowed

operations (i.e., whether long traversals and/or structure modification operations

are enabled) and the number of threads.

The STMBench7 is implemented in Java and C++ and also includes implementa-

tions with coarse- and fine-grain locks. This allows the users to compare the results

obtained with a specific TM implementation against locks.

WormBench

WormBench [Zyu+08] is a configurable TM workload written in C#. The goal of

this benchmark is to help TM researchers easily create transactional workloads that

can be used for evaluating and verifying the correctness of TM systems.

The idea is inspired from the Snake game. The application has two main data

42 CHAPTER 2. BACKGROUND

structures: the BenchWorld and the Worm. During the execution of the application,

Worms move in the BenchWorld and execute some operations from an user specified

stream. Worms are active objects meaning that every Worm object is associated with

one thread. They can move in different speeds and they can have different sizes.

The size of the BenchWorld can also be specified by the user. Since the BenchWorld

is shared, depending on its size and the movements and attributes of the Worms

conflicts can happen less or more frequently. For instance, reducing the size of the

BenchWorld and increasing the number for Worms will also increase the probability

of conflicts. Since all these parameters can be chosen, it is possible to create several

different workloads.

2.4 Concluding remarks

In this chapter, we reviewed the basic concepts and topics that are relevant to the

context of this thesis. First, we discussed that multicore platforms are the mainstream

approach to deliver high performance. However, achieving the maximum possible

performance from those platforms is a daunting task. This is due to the fact that

each multicore platform has its peculiarities such as the way computing units are

distributed throughout the platform and the memory hierarchy. In addition to that,

synchronizing accesses to shared data is challenging and can limit the scalability of

parallel applications.

Second, we showed that Transactional Memory appears as an alternative syn-

chronization mechanism adapted for multicores. In contrast with the low-level

mechanisms such as locks and semaphores, the Transactional Memory programming

model offers a higher abstraction level to deal with concurrency. It shifts the problem

of correct synchronization to the Transactional Memory system, which is responsible

for making sure that deadlocks will not occur and locks are performed at a gran-

ularity which allows to indeed exploit the inherent parallelism of the applications.

We also discussed that different implementations of Transactional Memory systems

make dissimilar design choices, which can have an impact on the performance of

applications. More precisely, in this thesis we are interested in Software Transactional

Memory because hardware support is still in the premature stage.

Finally, we gave a brief overview of some of the most used benchmarks for

2.4. CONCLUDING REMARKS 43

evaluating Transactional Memory systems. Since there is still a limited number of

real-world applications that make use of Transactional Memory, these benchmarks

are essential to implement, test and evolve Transactional Memory systems.

The most used benchmark suite in the literature is STAMP. We believe that this

is due to the fact that it has several real-world applications from different domains

and it is also highly configurable. We agree with that point and we also decided

to use STAMP throughout this thesis due to the same reasons. Among the highly

configurable workload generators, we believe that EigenBench is the most interesting

one due to its simplicity and its potential to explore several different parameters that

are relevant in the context of TM. This is the reason why we also use EigenBench in

this thesis.

CHAPTER 3
Understanding the Performance of

TM Applications

ALTHOUGH TM promises to substantially simplify the development of correct

concurrent programs, programmers still need to debug code and study ways

to optimize TM applications. In this chapter, we discuss some important topics

concerning the performance of TM applications. We begin by showing that it is

not trivial to understand the performance of TM applications. We demonstrate

that, depending on the characteristics of the parallel application, the use of STM

may present in some cases similar performance than traditional synchronization

mechanisms or, in other cases, it can incur in higher overhead (Section 3.1).

In Section 3.2, we show that the performances of applications using TM-based

synchronization also depend on the STM system specifics. In order to gain some

insight on these issues, helping developers to understand and improve the perfor-

mance of TM applications, we propose to trace transactions and we discuss what

events are relevant and thus must be collected (Section 3.3). Then, in Section 3.4,

we discuss the details about the implementation of the tracing mechanism. We show

that our solution can be applied to different STM systems and applications as it does

not modify neither the target application nor the STM system source codes. Finally,

we discuss how our approach can be used to analyze and better comprehend the

performance of TM applications through three case studies (Section 3.5). Finally, we

45

46 CHAPTER 3. UNDERSTANDING THE PERFORMANCE OF TM APPLICATIONS

conclude this chapter in Section 3.6.

3.1 STM vs. traditional synchronization

The performance and benefits of using TM have been discussed since its first

proposal in 1993 [HM93]. This discussion has been strengthened after the appear-

ance of the first STM system. In terms of performance, the research community

tends to claim that the overall performance of STM is significantly worse at low

levels of parallelism when compared to traditional shared-memory programming

[Cas+08]. However, this statement is not always true and it is not easy to predict

the performance of a TM application.

Let us consider again the TSP application that we used to demonstrate how

locks can limit the scalability in Section 2.1.4. In addition to the two variations of

TSP using locks (strict and relaxed), we present a third variation using STM. This

variation was obtained from the lock-strict variation by replacing all mutex locks

that protected the accesses to shared variables by transactions. Figure 3.1 shows the

same portion of the source codes of both lock-strict and STM variations.

lock (lock_minimum);
if length ≥ minimum then

(*cuts)++;
unlock (lock_minimum);
return 1;

end
unlock (lock_minimum);

tm_begin ();
if length ≥ tm_read (&minimum) then

(*cuts)++;
tm_end ();
return 1;

end
tm_end ();

(a) lock-strict (b) STM

Figure 3.1: Snippets of the lock-strict (left) and STM (right) versions of TSP.

Since in this case we did not use a compiler that supports TM syntax, all mutex

locks were manually replaced by function calls to the underlying STM system. These

functions indicate the beginning (tm_begin) and the end (tm_end) of a transaction.

Additional function calls were inserted to inform the STM system that a shared

3.1. STM VS. TRADITIONAL SYNCHRONIZATION 47

variable is read (tm_read) or written (tm_write) inside a transaction and thus must

be consistent in regard to other concurrent transactions.

Figure 3.2 shows the mean execution times of 30 executions of these three

approaches for different thread counts. The underlying STM system used for this

experiment was TinySTM with its default configuration. In all experiments, we used

the same seed for the pseudorandom number generator and a graph composed of 16

nodes.

 1

 5

 25

 125

 625

 2 3 4 5 6 7 8

Number of cores

Lock!strict

Lock!relaxed

STM

 3

 4

 5

 6

 7

 8

E
x
e
c
u
ti
o
n
 t

im
e
 (

s
)

 4 5 6

Number of cores

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 2

 9

 10

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 2 3 4 5 6 7 8

Number of cores

Lock!relaxed

STM

 3 4 5 6

Number of cores

 5

 25

 125

E
x
e
c
u
ti
o
n
 t

im
e
 (

s
)

Figure 3.2: Execution times of the three variations of TSP (locks vs. STM).

Although the STM variation is very similar to the lock-strict (in the sense that

all shared accesses are protected), the results obtained with the STM variation

are very similar to those of the lock-relaxed variation. The STM did not add a

considerable overhead. We indeed observed a little overhead with low thread counts

but on average it was about 3.6% worse than the lock-relaxed variation. This shows

that, depending on the applications characteristics, STM can present comparable

performance to locks.

The high contention generated by the lock-strict variation is not present in the

STM variation due to two reasons: (i) the STM uses an optimistic approach to handle

multiple accesses to shared data, so threads are not blocked most of the time; and

(ii) most of the accesses do not conflict, which benefits such optimistic approach.

The TSP is an example of a good candidate for TM, since it can benefit from

the TM optimistic approach. However, for more complex applications it may not be

trivial to know if they will perform well with TM. Those applications include the

48 CHAPTER 3. UNDERSTANDING THE PERFORMANCE OF TM APPLICATIONS

ones that present transactions with higher probability of conflicts or transactions that

conflict several times before committing. For those cases, the STM system can also

play an important role. In the next section we analyze the impact of STM systems on

the performance of more complex TM applications.

3.2 Performance impact of STM systems

As previously mentioned, the performance of a TM application can also be

impacted by the underlying STM system. On the STM system side, this impact comes

from its design choices, such as the version management and conflict detection,

discussed in [Wan+11] and resolution mechanisms, which was recently discussed

in [HYH12]. Since STM systems implement different strategies, we expect that TM

applications will perform differently depending on the underlying STM system.

In order to investigate such impact, we have carried out experiments with all

non-trivial TM applications available from the STAMP benchmark suite. STAMP offers

some important advantages over other TM benchmarks: the applications use a variety

of algorithms and belong to different application domains and the applications can

be easily executed with different STM systems. In order to stress the STM systems,

we chose the largest input sizes as described in the STAMP’s original paper [Min+08].

To cover a wider range of transactional characteristics, we used the low contention

parameters for vacation and kmeans.

We executed the STAMP applications with four state-of-the-art STM systems,

namely TinySTM [FFR08] (version 1.0.3), TL2 [DSS06] (version 0.9.6), Swis-

sTM [DGK09] (version 2011-08-15) and RSTM [Mar+06] (version 7). They repre-

sent the most known STM systems implemented in C (TinySTM and TL2) and C++

(SwissTM and RSTM) available to date. Since some STM systems can be configured

to use different algorithms, we used in all experiments their default configurations.

Each experiment was executed at least 30 times and the speedups represent average

execution times obtained on the SMP-24 platform (a detailed information about

this platform is presented in Section 5.1.1). It is also important to mention that all

experiments were carried out with exclusive access to the multicore machine and

we used a static thread mapping to avoid thread migrations and possible different

thread placements applied by the Linux scheduler. The aforementioned static thread

3.2. PERFORMANCE IMPACT OF STM SYSTEMS 49

mapping fixes one thread per core and places threads as close as possible to profit

from cache sharing.

Figure 3.3 presents the speedups of all STAMP applications with the four STM

systems.1 As it can be noticed, the performance of the applications may be consider-

ably impacted depending on the STM system used. Overall, TinySTM and SwissTM

presented better results than other STM systems.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 2 4 8 16

number of threads

ssca2

 0

 1

 2

 3

 4

 5

 6

 2 4 8 16

number of threads

vacation

 0

 2

 4

 6

 8

 10

 12

 2 4 8 16

number of threads

labyrinth

 0.4

 0.8

 1.2

 1.6

 2

 2.4

 2.8

 2 4 8 16

number of threads

intruder

 6

 8

 10
TinySTM
SwissTM

TL2
RSTM

 0

 2

 4

 6

 8

 10

 12

 2 4 8 16

number of threads

genome

Legend

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 2 4 8 16

number of threads

bayes

Number of threads

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 2 4 8 16

yada

S
p

e
e
d
u
p

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 2 4 8 16

kmeans

Figure 3.3: Speedups off all STAMP applications with four state-of-the-art STM
systems.

Considering the two most performant STM systems (TinySTM and SwissTM),

we can draw some important conclusions. The application bayes presented an

1We did not include the results of bayes with TL2, since this configuration led to incorrect
executions of this application.

50 CHAPTER 3. UNDERSTANDING THE PERFORMANCE OF TM APPLICATIONS

unpredictable behavior. Mainly with TinySTM, the execution time varied considerably

which makes difficult the performance comparison with SwissTM. Vacation and ssca2

presented very similar performances.

Three interesting cases were intruder, labyrinth and genome. The performances

obtained with both STM systems on intruder were fairy the same with low thread

counts. However, with 8 and 16 threads, SwissTM performed better. On labyrinth,

we noticed a similar behavior considering low thread counts but TinySTM performed

better than SwissTM when the number of threads was 16. Finally, SwissTM presented

better performance for all thread counts on genome, increasing the gain as the

number of threads increases.

Unfortunately, it is not trivial to understand those performance impacts. We

believe that we can gain some insight on these issues by using tracing techniques.

In the next section, we propose to trace relevant runtime events derived from the

use of STM. Then, in Section 3.4, we present a generic approach to collect and trace

information from transactions and we discuss some of its implementation details.

Finally, in Section 3.5, we use such approach to better understand the performance

of those three interesting cases.

3.3 Tracing TM applications

STM systems intend to simplify the programming problems deriving from the use

of low-level synchronization mechanisms. However, such simplicity hides from the

developers several issues which impact the performance of the applications. Some

STM systems maintain some statistics about the number of commits and aborts

after the execution of the TM application. Although these statistics can be useful to

confirm if the TM application is high- or low-conflicting, they only show a global

view of the application behavior. For instance, it is not possible to know if the high

number of conflicts occurs during a specific execution phase or if conflicts are spread

across the whole execution.

One technique to get such temporal information from events generated by the

applications is tracing. Tracing applications basically consists in recording a chrono-

logical history of these events, representing the application behavior. An event is an

action during the execution of an application that changes its state.

3.3. TRACING TM APPLICATIONS 51

There exist some tools that help developers to collect and trace events during

the execution of parallel applications. As examples, we can cite strace, Linux Trace

Toolkit next generation (LTTng) [DD06], Tuning and Analysis Utilities (TAU) [SM06]

and Performance Application Programming Interface (PAPI) [Ter+10]. The strace

tool provides a primitive form of userspace tracing. However, it is limited to tracing

system calls and signals, both of which are nowadays obtainable at a much lower

cost through kernel tracing. LTTng is a well-known tool for tracing the Linux kernel.

Although it provides a highly efficient kernel tracer, it lacks an user-space tracer of

equal performance. TAU is a program and performance analysis tool framework. It

maintains performance data from parallel programs for each thread, context, and

node in use by an application. Finally, PAPI provides an interface that allows users to

easily collect hardware performance counters.

The previously cited tools are used in different contexts. The LTTng is useful for

tracing events from the kernel whereas TAU is convenient for gathering events from

the middleware such as the communication primitives in applications implemented

with Message Passing Interface (MPI). PAPI is useful when the user needs information

from events generated by the hardware (e.g., number of instructions and cache and

memory accesses).

In this thesis, we are specifically interested in events deriving from the use of

STM. This allows us to propose an approach to gather useful information with

low intrusiveness and independent of the TM application and STM system. In the

following sections, we first specify the desired characteristics of our approach. Then,

we explain the general functioning of STM systems and what events we intend to

trace. Finally, we discuss its implementation details.

3.3.1 Goals

We believe that a tracing mechanism adapted to TM must be generic enough to

deal with the high variety of STM systems and TM applications. In order to do so,

such mechanism has to tackle the following three requirements:

… STM system independency. There exist several distinct STM systems currently

available, each one having its peculiarities. We want a tracing solution that

52 CHAPTER 3. UNDERSTANDING THE PERFORMANCE OF TM APPLICATIONS

could be easily applied in different STM systems without any modification in

their original source codes.

… TM application independency. In theory, TM applications can use any STM

as their underlying system to implement all TM functionalities. We thus want a

tracing solution that could be used on TM applications without any modification

in their source codes.

… Low intrusiveness. The tracing mechanism should minimize intrusiveness,

meaning that it should not imply an important execution overhead on both TM

application and STM system. Indeed, when such an overhead is important, the

application behaves differently and traces may not represent the real behavior

of the application.

3.3.2 Which events to trace?

Another important question that must be addressed is which events are relevant

and thus should be traced. Since we target TM applications, we are interested in

events derived from the TM. As previously discussed in Section 2.2.2, STM systems

differ in many aspects. However, all of them rely in a small set of operations to

provide the basic TM functionalities. These operations are implemented as functions

in STM systems and they appear in the TM application source code as function calls

to the STM system.

Event Function (TinySTM) Action performed

StmIni t stm_init() Initialize the STM system.
StmExit stm_exit() Finalize the STM system.

T xBegin stm_start() Start a transaction.
T x End stm_commit() Commit the current transaction.
T xAbor t stm_rollback() Restart the current aborted transaction.

T xRead stm_load() Transaction executes a read operation.
T xW rite stm_store() Transaction executes a write operation.

Table 3.1: The most common STM operations.

3.4. A TRACING MECHANISM ADAPTED FOR TM APPLICATIONS 53

In Table 3.1, we define the most important events that can be generated from the

STM system. We also correlate these events with their corresponding functions in

TinySTM2.

Tracing the above TM events allows us to gather useful information from the TM

applications. Obviously, the information we need to obtain from the TM application

dictates the set of events that we must trace. Additionally, the intrusiveness on the

TM application also depends on the traced events.

For instance, if we intend to compute statistical information about the read/write

rates for each transaction in the application we register the events T xRead and

T xW rite. In this case, we may not be interested in registering the timestamp

of each event because we do not need temporal information. Instead, we may

simply implement counters to store the number of read and write operations for

each transaction, incrementing them each time a transaction performs read/write

operations.

However, if we intend to gather data to be visualized in time-based behavior

information charts, e.g., the commit rate3 during the execution of the application, we

do not need to register the events T xRead and T xW rite. Instead, we just register

the events T x End and T xAbor t with their respective timestamps. This allows us to

obtain the commit rate behavior along the execution time.

3.4 A tracing mechanism adapted for TM

applications

We implemented our tracing solution based on the Linux dynamic linking mech-

anism which provides a simple way to intercept function calls. Linux provides the

environment variable called LD_PRELOAD which is used to dynamically load a library

LIB when launching applications. During the execution, our tracer intercepts the

functions having the same signatures as the ones implemented in LIB, calling the

2There is no standard in terms of TM function names (API). Although the name of these functions
may differ depending on the STM system, all STM systems usually implement such functionalities.

3The commit rate of an interval [a; b] is given by the number of events T x End divided by the
number of events T x End + T xAbor t during the interval [a; b].

54 CHAPTER 3. UNDERSTANDING THE PERFORMANCE OF TM APPLICATIONS

corresponding LIB functions (wrappers). Wrapper functions allow users to easily

include additional code before and/or after calling the original functions.

We implemented a prototype shared library called libTraceSTM, which incapsu-

lates wrappers for the STM functions that should be intercepted. The TM application

is then executed along with the tracing mechanism as follows (where <app> is the

target TM application and <app parameters> are the application parameters):

LD_PRELOAD=libTraceSTM.so <app> <app parameters>

When executing the TM application with LD_PRELOAD, the original STM functions

are dynamically overridden by the wrapper functions implemented in libTraceSTM.

These wrappers are responsible for tracing and calling the corresponding original

functions. Figure 3.4 illustrates our tracing mechanism. In this example, we traced

the following events: T x End and T xAbor t.

TinySTM TL2 SwissTM ...

STM Application

STM

libTraceSTM

Th
1

Th
2

Th
n

0001 1 TxEnd
0009 1 TxAbort
0023 1 TxEnd

Th trace buffer
1

...
0003 2 TxEnd
0015 2 TxAbort
0027 2 TxAbort
0029 2 TxEnd

Th trace buffer
2

Th trace file
2

STM function call interception

STM function call

0002 n TxAbort
0004 n TxAbort
0005 n TxAbort

Th trace buffer
n

...

Th trace file
1

...

Th trace file n

...

Figure 3.4: Overview of the tracing mechanism.

When a thread is initialized by the TM application, the libTraceSTM automati-

cally creates an internal data structure to store information about this thread, creates

a trace file and instantiates a memory buffer to temporary store traced events derived

from this thread. For the subsequent intercepted STM function calls, the traced

events are written into the corresponding thread buffer. When the buffer becomes

full, its contents are flushed to the corresponding trace file.

Each traced event has the following attributes:

3.4. A TRACING MECHANISM ADAPTED FOR TM APPLICATIONS 55

… Timestamp: the time instant in which the event occurred;

… Thread id: the identifier of the thread that executed the operation;

… Event: the name of the event;

… Specific: additional user-defined information (if needed).

Since we obtain one trace file per thread, individual trace files may be merged

into a single file following a global order of events. We thus implemented a tool that

performs a merge sort of the individual trace files considering their timestamps. The

format of the merged trace file is the same of individual trace files. Figure 3.5 shows

the result of the merge sort considering individual trace files.

Merge
Sort

Output trace file

0001 1 TxEnd
0002 n TxAbort
0003 2 TxEnd
0004 n TxAbort
0005 n TxAbort
0009 1 TxAbort
0015 2 TxAbort
0023 1 TxEnd
0027 2 TxAbort
0029 2 TxEnd

0001 1 TxEnd
0009 1 TxAbort
0023 1 TxEnd

0003 2 TxEnd
0015 2 TxAbort
0027 2 TxAbort
0029 2 TxEnd

Th trace file
2

0002 n TxAbort
0004 n TxAbort
0005 n TxAbort

Th trace file
1

Th trace file n

Figure 3.5: Merge sort of individual trace files.

We believe that our approach to intercept STM function calls is very simple and it

can be easily extended if more functions should be traced. It is also generic enough,

since it can be used with all STM systems and it does not change neither the TM

application nor the STM system source codes.

Our prototype tracer is implemented in C and requires any Unix-like system with

the GNU Compiler Collection (GCC) installed. It targets STM systems implemented

either in C or C++. A mounted temporary file storage facility (tmpfs) for storing

temporary individual trace files is highly recommended to reduce the intrusiveness

but it is not a hard requirement.

56 CHAPTER 3. UNDERSTANDING THE PERFORMANCE OF TM APPLICATIONS

In order to be able to intercept the STM functions, the STM system must be

compiled as a dynamic library. By default, most of the state-of-the-art STM systems

are compiled as static libraries. However, compiling them as dynamic libraries is

straightforward. Once the target STM system is compiled as a dynamic library, TM

applications can use such dynamic library instead of the static version without any

source code modification.

3.4.1 Function interceptions

Figure 3.6 shows a file diagram of the libTraceSTM main source files. The

library is composed of a tracer, files implementing the function wrappers for specific

STM systems and a library to manage timestamps. The tracer includes functions to

initialize the tracer in the current thread (tracer_init_thread) as well as to add

events to the trace buffer (tracer_add_event) and flush the contents of the buffer

into the trace file (tracer_flush_buffer). The most important source file is the

one that describes the wrappers for a specific STM system. In this example, we show

two wrapper files, one for TinySTM and another one for SwissTM to intercept the

most common events, i.e., StmIni t, StmExit, T x End and T xAbor t. In addition to

these two, we also provide wrappers for TL2. Including function wrappers for other

STM systems is straightforward.

tracer_init_thread(void *args): void
tracer_finalize_thread(): void
tracer_execute_thread(void *args): void*
tracer_add_event(unsigned int event_type): int
tracer_flush_buffer(): void

«File»
tracer

get_timestamp_time(): double
get_timestamp_rdtsc(): uint64_t

«File»
timing

wrapper_load_stm_lib(char *lib): void

stm_init(): void
stm_exit(): void
stm_commit(struct stm_tx *tx): int
siglongjmp(sigjmp_buf env, int val): void

«File»
wrapper_tinystm

(*wrapper_StmInit)(): void
(*wrapper_StmExit)(): void
(*wrapper_TxEnd)(struct stm_tx *tx): int
(*wrapper_TxAbort)(sigjmp_buf env, int val): void

wrapper_load_stm_lib(char *lib): void

wlpdstm_global_init(): void
wlpdstm_global_shutdown(): void
wlpdstm_commit_tx(): void
siglongjmp(sigjmp_buf env, int val): void

«File»
wrapper_swisstm

(*wrapper_StmInit)(): void
(*wrapper_StmExit)(): void
(*wrapper_TxEnd)(): void
(*wrapper_TxAbort)(sigjmp_buf env, int val): void

<header_include> <header_include>

<header_include>

Figure 3.6: File diagram of the main source files of libTraceSTM.

3.4. A TRACING MECHANISM ADAPTED FOR TM APPLICATIONS 57

Users can add or remove function wrappers accordingly to their needs. However,

there is a set of functions that are intercepted by our tracing mechanism by default

and cannot be removed. The first function is pthread_create, which is the well

know function from POSIX threads to create a thread. We intercept this function to

perform some actions in the following order. Firstly, we initialize the tracer internal

structure of the this new thread. Secondly, we execute the real function that would

be executed by this new thread. Finally, we flush the remaining events stored in the

temporary trace buffer of every thread when threads are about to finish.

void wrapper_load_stm(char ∗lib) {
global_handle_pthread = dlopen ("/lib/x86_64−linux−gnu/libpthread.so.0", RTLD_LAZY);
global_handle_stm = dlopen (lib, RTLD_LAZY);

wrapper_pthread_create = dlsym(global_handle_pthread, "pthread_create");
wrapper_StmInit = dlsym(global_handle_stm, "stm_init");
wrapper_StmExit = dlsym(global_handle_stm, "stm_exit");
wrapper_TxEnd = dlsym(global_handle_stm, "stm_commit");
wrapper_TxAbort = dlsym(global_handle_stm, "siglongjmp");

}

(a)

void stm_init() {
...
wrapper_load_stm(tinystm_string_path);
tracer_init_thread(NULL);
tracer_add_event(EVENT_STM_INIT);
(∗wrapper_StmInit)();

}

void stm_exit() {
tracer_add_event(EVENT_STM_EXIT);
tracer_finalize_thread();
(∗wrapper_StmExit)();

}

(b) (c)

Figure 3.7: Snippets of the function wrappers to register the events StmIni t and
StmExit for TinySTM.

The two remaining functions are those responsible for initializing and finalizing

the STM system. Let us consider again TinySTM as an example. In TinySTM, these

functions are stm_init and stm_exit. We do the following actions in addition

to their original code in TinySTM (Figure 3.7b and Figure 3.7c). The function

stm_init is called by the main thread before executing any transactional code.

We intercept this function to load the pthread and the STM dynamic libraries and

function wrappers (Figure 3.7a, wrapper_load_stm), initialize the tracer’s internal

structure of the main thread (tracer_init_thread) and register the StmIni t event

(tracer_add_event).

58 CHAPTER 3. UNDERSTANDING THE PERFORMANCE OF TM APPLICATIONS

Analogously, the function stm_exit is called by the main thread before finish-

ing the application execution. We intercept this function to register the StmExit

event and flush the remaining events stored in the temporary trace buffer of the

main thread as well as to copy the contents of all individual trace files to the disk

(tracer_finalize_thread).

In theory, all functions implemented inside the STM system can be intercepted by

our tracing mechanism. This is due to the fact that most of them are available in the

STM interface to be called from outside, i.e., in the TM application source code. The

only exception may be T xAbor t: in some STM systems, the function that performs

the rollback operation in case of abort may be implemented in such a way that it

cannot be directly called from outside of the STM system (for instance, in C, this func-

tion can be declared as static). This stems from the fact that this is a function that

is used internally by the STM system to restart aborted transactions. However, some

STM systems such as TinySTM “exteriorize” this function, for instance by including

a function stm_abort in the STM interface. In these cases, the function stm_abort

calls stm_rollback but the same problem still remains: aborted transactions derived

from the conflict detection are restarted by the STM system, which internally calls

stm_rollback (not stm_abort).

Although this privatization issue, it is still possible to know when transactions are

restarted by the STM system. For instance, consider the set of functions implement in

TinySTM. The function stm_rollback is called when a conflict occurs to restart the

transaction. The system restarts the transaction by restoring the environment that

has been previously saved by stm_start. To manage contexts/environments, both

functions use the following system calls: sigsetjmp and siglongjmp. The system

call sigsetjmp used inside stm_start saves the stack context/environment of the

calling thread for later use. On the other hand, the system call siglongjmp restores

the previously save stack context/environment and is called inside stm_rollback

when the transaction is about to abort. The majority of STM systems implemented

in C/C++ use such mechanism to restart aborted transactions. This means that we

can capture aborts by intercepting calls to the function siglongjmp. This was the

strategy we used for TinySTM (Figure 3.7a).

Figure 3.8 shows the wrappers for TinySTM to register the events T x End and

T xAbor t. As it can be noticed, the event T x End is registered after calling the

3.4. A TRACING MECHANISM ADAPTED FOR TM APPLICATIONS 59

real function stm_commit (Figure 3.8a) whereas the event T xAbor t is registered

before calling the real function siglongjmp (Figure 3.8b). This is necessary be-

cause when stm_commit returns, it indicates that the transaction has committed

successfully. In case of aborts, stm_commit does not return, calling an internal func-

tion (stm_rollback) responsible for restarting the transaction. Then, the function

stm_rollback calls siglongjmp at the very end, which restores the context/envi-

ronment of the calling thread to the beginning of the last executed transaction.

int stm_commit(struct stm_tx ∗tx) {

int retval;
retval = (∗wrapper_TxEnd)(tx);
tracer_add_event(EVENT_TX_END);
return retval;

}

void siglongjmp(sigjmp_buf env, int val) {
tracer_add_event(EVENT_TX_ABORT);
(∗wrapper_TxAbort)(env, val);

}

(a) (b)

Figure 3.8: Snippets of the function wrappers to register the events T x End (left)
and T xAbor t (right) for TinySTM.

In these simple examples we showed how users can intercept STM system func-

tions to register STM events. Since wrapper functions are implemented by the users,

they can include any additional code to those functions when necessary. For instance,

consider that the user only wants to gather statistical information instead of time-

based behavior information. In this case, the user may replace the tracer calls to

register events (i.e., function calls to the tracer_add_event function) for counters,

which will store the number of occurrences of each event.

3.4.2 Timestamps

We provide two methods to manage timestamps. The first one uses the function

gettimeofday, which is accurate to microseconds and incurs some overhead. Alter-

natively, timestamps can be represented by the number of clock cycles since the last

system reset. Our second solution is to use the Time Stamp Counter (TSC), currently

available on all x86 processors and incurs a negligible overhead. The value given by

this register can be used to impose a global order to the events and can be accessed

by each thread individually without any synchronization. However, the value of the

TSC register in each processor may slightly drift from the others. This clock drifting

60 CHAPTER 3. UNDERSTANDING THE PERFORMANCE OF TM APPLICATIONS

causes the global ordering of the events to be error prone and thus the merged file is

not 100% accurate. By default, we use the TSC register to manage timestamps in

our tracer.

3.4.3 Intrusiveness

One of the most important aspects of our tracing mechanism is its low intrusive-

ness. If the overhead is important, the application may behave differently and the

traced data may not represent the real behavior of the application.

We measured the intrusiveness of our tracing mechanism considering two im-

portant metrics: the execution time and the number of aborts. If execution times

and number of aborts obtained by executing the TM applications with the tracing

mechanism are very distinct in comparison to the original ones, we can conclude that

our trace mechanism is very intrusive and it may change significantly the behavior of

the applications.

Table 3.2 shows such information, comparing these two metrics after executing

all applications with and without the tracing mechanism using SwissTM as the

underlying STM system. The execution times and the number of aborts were obtained

from executions of all applications with SwissTM on the SMP-24. We used 16 threads

for all runs and we pinned threads to cores to avoid thread migrations. During the

execution, we traced the following events: StmIni t, StmExit, T xBegin, T x End

and T xAbor t. Since the execution time and the number of aborts can vary from one

execution to another, we report average values obtained from at least 30 executions

of each experiment.

Overall, our tracing mechanism increased the execution time of all applications

by a little factor. Concerning the number of aborts, we can notice that the tracing

mechanism did not modify the overall behavior of the applications: the number of

aborts remains very close to the one obtained without the tracing mechanism. The

number of aborts was slightly reduced on all applications with the tracing mechanism.

Since we intercept T xAbor t events, there is an overhead added by the tracer every

time a transaction aborts, so aborted transactions do not restart immediately after

detecting a conflict. This may act as a “contention manager” with a fixed backoff and

thus can decrease the number of aborts on applications that have medium or high

3.4. A TRACING MECHANISM ADAPTED FOR TM APPLICATIONS 61

number of conflicts.

Application
Without libTraceSTM With libTraceSTM
time (s) #aborts time (s) #aborts

bayes 2.89 268 2.94 260
genome 1.33 19,831 1.41 19,722
intruder 16.39 14,401,540 16.49 14,151,069
kmeans 5.96 4,576,947 6.06 4,551,947

labyrinth 8.56 202 8.65 198
ssca2 7.01 12,305 7.20 12,284

vacation 5.04 2,491 5.09 2,434
yada 15.13 1,256,686 15.18 1,254,240

Table 3.2: Intrusiveness of the tracing mechanism on all STAMP applications.

Among all STAMP applications, genome was the most affected one in terms of

execution time (it ran approximately 5.6% slower than without the tracing mecha-

nism). This is mainly due to the fact that genome has a very short execution time

(approximately 1 second on the NUMA-24 platform with 16 threads). For all other

applications, we observed less than 3% of intrusiveness for both metrics. We per-

formed the same measurements using TinySTM, TL2 and RSTM. The results obtained

were very similar to those presented in Table 3.2.

Including the events T xRead and T xW rite considerably increased the intru-

siveness on most of the STAMP applications. In some cases, the intrusiveness was

increased up to approximately 12%. The reason for intercepting T xRead and

T xW rite events would be, for example, to detect on which data transactions conflict

the most. To reduce the intrusiveness, some modifications on the libTraceSTM can

be done to intercept those events only in certain periods during the execution. For

instance, one may only intercept those events for transactions executed by a specific

application function, where the user wants to obtain more detailed information.

We succeeded on developing a low-intrusive mechanism due to some key points.

First of all, our mechanism does not add any synchronization between threads: each

thread keeps its traces in a private buffer. Secondly, events are stored in a compact

binary format to reduce memory usage4.

Finally, our solution handles the storage of temporary events at different levels.

The first level is the trace buffer, whose size can be modified to conform with the user’s
4Although we use a specific binary format, we provide a tool that converts trace files in this format

into a text format for further use.

62 CHAPTER 3. UNDERSTANDING THE PERFORMANCE OF TM APPLICATIONS

needs. For instance, it can be big enough to store all events, thus avoid the necessity

of flushing its contents into its corresponding trace file on disk during the execution.

The second level is the temporary trace file, which is stored in a temporary file

storage facility (tmpfs) available on many Unix-like operating systems5. Everything

stored in tmpfs is temporary, i.e., in RAM, so there is no I/O operation on disk when

the buffer is flushed into the temporary trace file.

Our default approach is to store temporary trace files in /tmp until the end

of the execution. After that, they are copied on disk (third level) to avoid I/O

operations during the execution of the applications. However, the user can specify a

maximum number of flush operations on the trace temporary file. In this case, when

the maximum number of flush operations is achieved, the current thread forks a

subprocess that will be responsible for copying the temporary trace file to the hard

disk. This can be used to limit the amount of RAM memory used by the tracer.

3.5 Case studies: STAMP applications

In this section, we apply our tracing mechanism to gather useful information

from TM applications. The goal is to use simple visualization techniques to analyze

and understand the behavior of TM applications from traced data. Thus, it can help

us to understand the performances obtained in Section 3.2.

In this thesis we are interested in time-based behavior information graphs based

on committed and aborted transactions. Since we register the timestamp of each

event, we can know when each event occurred during the execution of the TM

application. This is helpful to find points of high contention during the execution or

to see if the contention is spread out over the whole execution.

To analyze the behavior of TM applications in terms of committed and aborted

transactions, we need to register the events T x End and T xAbor t. We believe

that this reduced set of events allows us to gather relevant information about TM

applications without increasing the degree of intrusiveness.

Since in this thesis we analyze the overall behavior of TM applications, we do

not need to obtain a 100% accurate global order of events. For that reason, we

5Many Unix distributions enable and use tmpfs by default for the /tmp directory.

3.5. CASE STUDIES: STAMP APPLICATIONS 63

used the TSC to manage timestamps due to its negligible overhead. However, to

reduce the chances of TSC drift during the experiments, we disabled the dynamic

frequency scaling (CPU throttling) of the multicore machine. All experiments were

executed on the SMP-24 (a detailed information about this multicore machine is

given in Section 5.1).

In the following sections, we discuss in more details the traced information ob-

tained from three STAMP applications: intruder, genome and labyrinth. We selected

these applications because they present different levels of contention, different perfor-

mances and distinct behaviors depending on the STM system used. Our analyses are

based on traced information using two state-of-the-art STM systems, i.e., TinySTM

and SwissTM. These STM systems presented the best performances among the four

STM systems evaluated in Section 3.2.

We implemented the function wrappers for TinySTM as we described in Sec-

tion 3.4.1. Function wrappers for SwissTM were implemented analogously.

3.5.1 Intruder

In our first case study, we want to understand the causes of the poor the perfor-

mance of intruder with high thread counts. In addition to that, we want to know

why SwissTM performed fairly better than TinySTM.

Figure 3.9 compares the commit rate of transactions in intruder with 2, 4, 8 and

16 threads on TinySTM and SwissTM. The commit rate of an interval [a; b] is given

by the Equation 3.1, where occur(e)a;b represents the number of occurrences of the

event e in the interval [a; b].

Commit ratea;b =
occur(T x End)a;b

occur(T x End)a;b + occur(T xAbor t)a;b
(3.1)

Intruder executes a very large number of transactions. If we consider both

committed and aborted transactions, intruder executes approximately 255 millions of

transactions with 16 threads, which weighs 4GB of traced data in our binary format.

In order to reduce the number of points in the graph, we set the intervals to 10

64 CHAPTER 3. UNDERSTANDING THE PERFORMANCE OF TM APPLICATIONS

millions of CPU cycles. Points represent commit rates for each interval from the first

to the last executed transaction.

 0

 20

 40

 60

 80

 100

time
Time

 C
o

m
m

it
 r

a
te

 (
%

)

Intruder - TinySTM Intruder - SwissTM

 0

 20

 40

 60

 80

 100

time

2 threads

4 threads

8 threads

16 threads

2 threads

4 threads
8 threads

16 threads

Figure 3.9: Instantaneous commit rates of intruder with TinySTM and SwissTM.

The first conclusion that can be extracted from Figure 3.9 is that the commit

rates considerably change during the execution and they are also strongly related

to the number of threads in both STM systems. For instance, the commit rate was

fairly close to 100% during half of its the execution time with 2 threads on both STM

systems. With high thread counts, the commit rate drops to 20% as the execution

comes close to end. This indicates a high contention near the end of its execution,

which is caused by the fact that there are many threads operating on much less nodes

inside the self-balancing tree during the reassembly phase on intruder. Because of

that, the probability of having transactions accessing the same nodes is very high.

The second point we observed is that SwissTM presented better commit rates

regardless of the number of threads when compared to the corresponding results

with TinySTM. With low thread counts, most of time the commit rates observed

with SwissTM were higher than 80% even near the end of the execution. Another

important observation is that with higher thread counts, SwissTM still have most of

the commit rates higher than 60%. An exception occurs with 16 threads, in which the

commit rate drops to 20%. However, this is still much better than TinySTM, whose

commit rates with 16 threads were never higher than 20%. Those observations

explain the fact that intruder presented better performance with SwissTM.

3.5. CASE STUDIES: STAMP APPLICATIONS 65

We believe that the reason why SwissTM outperformed TinySTM on intruder is

due to the fact that TinySTM uses encounter-time locking as its default scheme. This

scheme immediately aborts transactions that try to read a memory location locked

by another (writer) transaction. Thus, although read/write conflicts can often be

handled without aborts, with this scheme they are detected very early and resolved by

aborting readers. In addition to that, TinySTM uses suicide as its default contention

management strategy. Suicide performs well on low-contention workloads, which is

not the case of intruder. In high-contention workloads, those aborted transactions

are restarted right after the conflict is detected and are doomed to abort several times

before committing successfully. Contrary to TinySTM, SwissTM detects read/write

conflicts lazily, which can allow more parallelism between transactions.

3.5.2 Genome

In our second case study, we want to confirm if the good scalability of genome

comes from the fact that it has a constantly high commit rate during the whole

execution. In addition to that, we would like to gain some insight on why SwissTM

performed better than TinySTM.

 0.7

 0.8

 0.9

 1

2 threads

 0.7

 0.8

 0.9

 1

4 threads

 0.7

 0.8

 0.9

 1

8 threads

 0.7

 0.8

 0.9

 1

16 threads

time

 0.7

 0.8

 0.9

 1

2 threads

 0.7

 0.8

 0.9

 1

4 threads

 0.7

 0.8

 0.9

 1

8 threads

 0.7

 0.8

 0.9

 1

16 threads

time

//

//

//

//

//

//
//

//

//

//

//

//

//

//
//

//

Genome - TinySTM Genome - SwissTM

2/3 of time

2 threads

4 threads

8 threads

16 threads

100

90

80

70

100

90

80

70

100

90

80

70

100

90

80

70

100

90

80

70

100

90

80

70

100

90

80

70

100

90

80

70

 C
o

m
m

it
 r

a
te

 (
%

)

1/3 of time 2/3 of time 1/3 of time

Figure 3.10: Instantaneous commit rates of genome with TinySTM and SwissTM.

Figure 3.9 compares the commit rates of transactions in genome with 2, 4, 8 and

16 threads on TinySTM and SwissTM. Since genome executes much less transactions

than intruder (approximately 2 millions of transactions, which weights 140MB of

66 CHAPTER 3. UNDERSTANDING THE PERFORMANCE OF TM APPLICATIONS

traced data in our binary format), we use shorter intervals to compute the commit

rates (1 million of CPU cycles in this case). We connected the commit rate points with

lines to ease the visualization (the commit rates did not vary considerably during the

whole execution).

With both STM systems, the commit rate was fairly 100% during the first 2/3

of its execution time, which means that genome has constantly very few aborts.

However, we noticed that the commit rate changes at the last third of its execution

time. If we compare the commit rates with SwissTM and TinySTM in this period, we

can see that it is almost constant in SwissTM with a slightly degradation. In TinySTM,

on the other hand, the commit rate considerably varies in the same period. This

variation becomes higher as we increase the number of threads. Since genome has a

very short execution time (about a second with 16 threads), this variation reduces

the performance obtained with TinySTM.

In genome, more than half of all executed transactions are read-only transactions

(genome performs about 2.5 millions of commits where 1.5 millions are derived from

read-only transactions). We believe that the lower variation in the commit rate ob-

served in SwissTM is due to the fact that SwissTM has a special two-phase contention

manager. This contention manager incurs no overhead on read-only transactions and

short read-write transactions while favoring the progress of transactions that have

performed a significant number of updates. In addition to that, transactions aborted

due to write/write conflicts wait for a backoff period proportional to the number of

successive aborts, hence reducing the contention in the last third of the execution

time in genome. Contrary to SwissTM, TinySTM uses the suicide strategy, which

restarts aborted transactions immediately. This increases considerably the variation

in the commit rate on the higher-contention period.

3.5.3 Labyrinth

In our third case study, we intend to gain some insights about the performance of

labyrinth on TinySTM and SwissTM. As we observed in Figure 3.3, the performances

of labyrinth with TinySTM and SwissTM were quite equal for low thread counts.

However, labyrinth performed better with TinySTM with 16 threads.

In Figure 3.11, each curve represents the cumulative number of events (T x End or

3.5. CASE STUDIES: STAMP APPLICATIONS 67

T xAbor t) during the execution of labyrinth with 16 threads with both STM systems.

This metric is calculated as follows. We have two separate counters, one of each

event. We then traverse the merged trace file, searching for T x End and T xAbor t

events. Each time we find one of these events, we increment its corresponding

counter and we plot this new updated value in the y-axis, using its timestamp in the

x-axis. We perform this process to compute the cumulative number of T x End and

T xAbor t events for TinySTM and SwissTM.

 0

 200

 400

 600

 800

 1000

 1200

N
u
m

b
e
r

o
f

e
v
e
n
ts

 (
c
u
m

u
la

ti
v
e
)

Time

TinySTM: TxEnd

TinySTM: TxAbort

SwissTM: TxEnd

SwissTM: TxAbort

Figure 3.11: Cumulative number of T x End/T xAbor t in labyrinth with 16 threads.

This graph allows us to identify the growth rate of the events T x End and

T xAbor t during the execution time of the TM application. As it can be observed,

the growth rate of T x End is exponential and it is very similar on both STM systems.

Differently, the growth rate of T xAbor t is linear but also very similar on both STM

systems. This indicates that labyrinth takes advantage of the TM optimistic approach

and justifies its good performance and scalability showed in Figure 3.3.

Although the growth rates of those events are very similar in both STM systems,

TinySTM presented better performance than SwissTM. The reason for that stems from

the fact that the cumulative number of T x End grows faster in TinySTM, indicating a

higher throughput in TinySTM (number of committed transactions per unit of time)

than SwissTM. Although the T xAbor t grows a little faster in TinySTM, it does not

68 CHAPTER 3. UNDERSTANDING THE PERFORMANCE OF TM APPLICATIONS

impact too much on the overall performance. Moreover, there are very few read-only

transactions in labyrinth: most of the aborts are derived from write/write conflicts.

Since the contention is very low in labyrinth, it seems that the backoff period applied

by SwissTM on write/write conflicts causes a performance slowdown.

3.6 Concluding remarks

In this chapter, we intended to show that the performance of TM applications can

be impacted by several factors. We showed that the STM system plays an important

role on the performance of the applications. Since conflicts are transparently solved

by the underlying STM system, it may be not trivial to understand the performance

obtained from TM applications with a specific STM system.

Some STM systems maintain simple statistics about the number of commits and

aborts after the execution of the TM application. However, this only shows to users a

global view of the application behavior. In some cases, it is necessary to obtain more

detailed information to understand and improve the performance of TM applications

or STM systems.

We believe that users can gain some insight on these issues by recording a chrono-

logical history of events, representing the application behavior. We thus proposed a

tracing mechanism capable of collecting the most interesting events derived from TM

applications: T xBegin, T x End, T xAbor t, T xRead, T xW rite. Such mechanism

can be used with different TM applications and STM systems without any changes

in their original source codes. The traced data can then be visualized afterwards

using different techniques. In this thesis we were interested in time-based behavior

information graphs based on committed and aborted transactions. This is helpful

to find points of high contention (“hot spots”) during the execution or to see if the

contention is spread out over the whole execution. In the former case, developers

can try to focus on those hot spots and thus try to improve performance.

We also demonstrated the usefulness of our tracing mechanism with three TM

applications from STAMP. Our study was based on the comparison of the traced data

from those applications on two state-of-the-art STM systems. We showed that the

traced information could help us to better understand the performances obtained.

3.6. CONCLUDING REMARKS 69

The information collected during the execution of TM applications was only

processed and visualized in a post-mortem manner so far. Differently from that, we

can also collect runtime information about the application behavior and use such

information to perform some action at runtime. However, runtime analysis usually

requires a small amount of storage and frequently relies on sampling techniques to

reduce the overhead. This is discussed in the next chapter, in which we propose to

perform runtime analysis to increase the performance of TM applications.

CHAPTER 4
Improving the Performance of TM

Applications on Multicores

ALTHOUGH we have noticed several works that aim at improving the performance

of TM systems, none has given special attention to the performance improve-

ments that can be obtained by matching the characteristics of the TM application and

STM system to those of the underlying platform. In this chapter, we tackle this subject

through the exploitation of the memory hierarchy of modern multicore platforms.

We first demonstrate that the performance of TM applications and STM system can

be impacted by the way threads are mapped on cpu cores (Section 4.1) and then we

show that it can be complex to determine the best mapping. To tackle this problem,

we propose in Section 4.2 a machine learning-based approach to automatically infer

suitable thread mapping strategies for TM applications. Then, we show how this

approach can be used statically (Section 4.3) and dynamically (Section 4.4). Finally,

in Section 4.5, we conclude this chapter.

4.1 Impact of thread mapping on TM applications

In parallel applications, threads must cooperate in order to accomplish a required

computation. However, as discussed in Section 2.1, the latency or memory contention

observed from threads may be different depending on which cores they are executing

71

72
CHAPTER 4. IMPROVING THE PERFORMANCE OF TM APPLICATIONS ON

MULTICORES

and how the memory hierarchy and interconnection are used. One technique to deal

with that is called thread or processes mapping, which aims at mapping threads or

processes to specific cores to improve the use of resources such as interconnections,

main memory and cache memories.

Defining an efficient thread mapping strategy for parallel applications is challeng-

ing. It may be simpler on regular parallel applications such as the ones implemented

with OpenMP [Cas+09]. On those applications, the access pattern may be regular

and determined statically before the application execution. This facilitates the burden

of choosing an efficient thread mapping strategy. Indeed, finding patterns of regular

applications to map threads on cores has been studied in several contexts. However,

this has not been studied in the context of TM applications, which exhibit irregular

access patterns.

On TM applications, determining a suitable thread mapping strategy for a specific

TM application/STM system/platform configuration is even more challenging. This

stems from the fact that each STM system implements different mechanisms to detect

and solve conflicts between transactions. Those mechanisms modify the behavior of

the TM application, so the best thread mapping strategy is also affected.

To support this fact, we performed several experiments with all TM applications

available from STAMP. Again, we used the largest input sizes for all applications and

low contention parameters for kmeans and vacation as described in the STAMP’s

original paper [Min+08]. We ran all applications using 8 threads with four differ-

ent STM systems (TinySTM, SwissTM, TL2 and RSTM) and four thread mapping

strategies (compact, scatter, round-robin and linux). We illustrate these strategies in

Figure 4.1. Basically, these strategies can be characterized as follows:

… scatter: threads are distributed across different processors. This avoids cache

sharing between cores in order to reduce the contention on the same cache.

This strategy is beneficial to applications whose threads usually access disjoint

data.

… compact: threads are physically placed on sibling cores. This reduces memory

access latency, since threads share all levels of the cache hierarchy. This strategy

is beneficial to applications whose threads usually access the same amount of

data.

4.1. IMPACT OF THREAD MAPPING ON TM APPLICATIONS 73

… round-robin: it is an intermediate solution in which threads share higher

levels of cache (e.g., L3) but not the lower ones (e.g., L2). This strategy can

only be applied when the platform has more than one L3 shared caches.

… linux: it is the default Linux scheduling strategy. It is a dynamic priority-based

strategy that allows threads to migrate to idle cores to balance the run queues.

C0 C1 C2 C3

L2

Scatter

C4 C5 C6 C7

L2

L3

L2 L2

L3

C0 C1 C2 C3

L2

Compact

C4 C5 C6 C7

L2

L3

L2 L2

L3

C0 C1 C2 C3

L2

Round-Robin

C4 C5 C6 C7

L2

L3

L2 L2

L3

C0 C1 C2 C3

L2

C4 C5 C6 C7

L2

L3

L2 L2

L3

Linux

thread migrations

Figure 4.1: Thread mapping strategies.

Table 4.1 shows the results we obtained after executing all applications with

different STM systems and thread mapping strategies. We carried out these exper-

iments on the SMP-24 platform (Section 5.1 presents a detailed specification of

this multicore platform). We present the best and worst thread mapping strategies

for each pair of application and STM system along with their execution times (in

seconds). Results represent mean execution times of at least 30 executions with a

maximum standard variation of 2%.

As shown in Table 4.1, the difference between the best and worst thread mappings

execution times can be high depending on the application and STM system.1 For

instance, consider the application vacation executed with RSTM and SwissTM.

When vacation was executed with RSTM, the best strategy was compact, which

was approximately 1.4 times faster than linux (the worst strategy). Surprisingly,

compact was the worst strategy for the same application running with SwissTM,

which was approximately 1.2 times slower than scatter (the best strategy). This
1We did not include the results of bayes with TL2, since this configuration led to incorrect

executions of this application.

74
CHAPTER 4. IMPROVING THE PERFORMANCE OF TM APPLICATIONS ON

MULTICORES

stems from the fact that each STM system implements different mechanisms to detect

and solve conflicts between transactions. Those mechanisms modify the behavior of

the application, so the best thread mapping strategy is also affected.

Not surprisingly, we also observed variations in terms of best and worst thread

mapping strategies within the same STM system while executing different appli-

cations. As an example, we can cite the applications kmeans and labyrinth on

TinySTM. The best strategy for kmeans was compact (approximately 1.2 times faster

than scatter) whereas the best one for labyrinth was scatter (approximately 1.3

times faster than round-robin).

Application
TinySTM SwissTM

Best mapping Worst mapping Best mapping Worst mapping
name time (s) name time (s) name time (s) name time (s)

bayes compact 6.8 scatter 8.9 scatter 6.1 compact 9.6
genome compact 4.0 scatter 10.2 scatter 1.5 compact 1.9
intruder compact 44.9 linux 65.7 compact 15.7 scatter 16.9
kmeans compact 6.7 scatter 7.8 round-robin 5.7 compact 6.6

labyrinth scatter 15.6 round-robin 20.3 scatter 14.5 round-robin 15.7
ssca2 scatter 7.3 compact 9.6 scatter 7.5 compact 10.0

vacation round-robin 7.7 linux 10.7 scatter 8.0 compact 9.8
yada compact 13.1 scatter 17.1 compact 11.2 scatter 14.1

Application
TL2 RSTM

Best mapping Worst mapping Best mapping Worst mapping
name time (s) name time (s) name time (s) name time (s)

bayes − − − − compact 7.8 round-robin 8.8
genome scatter 2.2 compact 2.6 compact 2.5 linux 2.8
intruder compact 34.5 scatter 39.6 compact 25.5 scatter 34.9
kmeans round-robin 7.1 scatter 8.4 compact 11.8 scatter 17.2

labyrinth round-robin 22.9 scatter 25.7 scatter 17.6 compact 19.6
ssca2 compact 11.8 scatter 15.3 compact 20.7 scatter 35.6

vacation scatter 9.5 compact 10.4 compact 9.7 linux 13.3
yada compact 16.3 scatter 20.0 compact 36.9 scatter 45.8

Table 4.1: Impact of thread mapping strategies on TM applications.

We also executed all those experiments on another platform that has a different

memory hierarchy. We concluded that the platform also plays an important role. This

means that the best thread mapping strategy for same TM application/STM system

configuration may not be the same on all platforms. Thus, it is a hard problem

to determine a suitable thread mapping strategy for a TM application considering

both STM system and platform characteristics. In the next section, we present our

solution to tackle this problem. We propose a machine learning-based approach to

4.2. A MACHINE LEARNING-BASED APPROACH FOR THREAD MAPPING 75

predict thread mapping strategies based on the STM system, application and platform

characteristics.

4.2 A machine learning-based approach for thread

mapping

Machine Learning (ML) is a scientific discipline that is concerned with the design

and development of algorithms that allow computers to evolve behaviors based on

empirical data [Cza11; Mit97]. We believe that ML can be used in our context to deal

with the complex relations between TM applications, STM systems and platforms

and serve as an heuristic for predicting efficient thread mapping strategies while

taking into consideration the characteristics of the TM applications, STM systems

and platforms.

4.2.1 Overview of the ML-based approach

Our proposal stems from the fact that ML can be useful to model the behavior

of complex interactions between applications, systems and platforms. Then, it can

provide a portable solution to predict the behavior of new combinations of TM

applications and STM systems, also called instances, based on a priori profiled runs.

Application
Profiling

Pre-Processing
Learning
Process

Applications (1 to n)

Learning phase

Predictor

Application
Profiling

Application n+1

Thread Mapping Strategy

Figure 4.2: Overview of our ML-based approach.

The core of our ML-based approach is called the learning phase. The learning

phase is subdivided in the following three major steps: application profiling, data

76
CHAPTER 4. IMPROVING THE PERFORMANCE OF TM APPLICATIONS ON

MULTICORES

pre-processing and learning process. The overview of our ML-based approach is

illustrated in Figure 4.2.

In the application profiling step, each instance of TM application/STM system

has to be run and profiled. This profiling step involves gathering data of several

characteristics, also known as features, available in the STM system and platform.

Then, in the pre-processing step, a database of profiled instances is built up and

pre-processed in order to remove duplicated information, to normalize or to convert

values. In our approach, groups of instances that share the same feature values

are merged to a single input instance sample where the target variable is the most

suitable thread mapping strategy based on a ranking. Finally, in the learning process

step, we use a ML algorithm that outputs a predictor. Once the learning phase is

finished, new instances can be profiled and then the collected data is used as an

input to the predictor, which will be capable of inferring an efficient thread mapping

strategy (which is our target variable) for the new unknown instance.

In the following sections, we discuss each one of the three steps of our approach.

4.2.2 Application profiling

In the first step of the learning phase, we have to select which features are

relevant to be profiled. Table 4.2 presents the selected features classified into three

categories as well as the target variable.

Category Feature Values Description

A
Tx Time Ratio (0.0; 1.0) Tx time / Execution time
Tx Abort Ratio (0.0; 1.0) Tx aborts / Tx commits + Tx aborts

B
TM Conf. Detection eager, lazy STM conflict detection policies
TM Conf. Resolution suicide, backoff STM conflict resolution policies

C LLC Miss Ratio (0.0; 1.0) Cache misses / Total accesses

T Mapping Strategy
compact, scatter,

Thread mapping strategies
round-robin, linux

Table 4.2: TM application, STM system features and the target variable.

4.2. A MACHINE LEARNING-BASED APPROACH FOR THREAD MAPPING 77

Features from Category A summarize the interaction between the application

and the STM system. These selected features are commonly available across different

STM implementations. Both transaction time ratio and abort ratio can be extracted

and computed from execution time and STM statistics.

STM systems can implement more than one conflict detection and resolution

mechanisms to handle concurrent transactional executions. Because of that, we

also consider those mechanisms as input features. More precisely, we consider two

possibilities for the conflict detection (eager and lazy) and resolution (suicide and

backoff). The reason for that is that those mechanisms are frequently used and they

are usually available in most of STM systems. Category B resumes these features for

both conflict detection and resolution.

In Category C, we observe the Last Level Cache (LLC) miss ratio to represent the

interaction between the application and the platform. In order to measure the LLC

miss ratio, it is necessary to access hardware counters. Tools such as the Performance

Application Programming Interface (PAPI) [Ter+10] provide an interface to access

such information.

Last, Table 4.2 also presents the thread mapping strategies for our target variable

(T) which our ML-based approach aims to predict. The selected strategies are the

ones explained in Section 4.1.

4.2.3 Data pre-processing

The accuracy of a ML prediction model relies upon the quality of the input

data samples. Thus, raw profiled data has to be pre-processed before feeding a ML

algorithm. Our first step is to normalize or convert features according to the selected

ML algorithm. As we explain in the next section, our selected learning algorithm

works exclusively with categorical or discrete features. Since conflict detection and

resolution mechanisms are already discrete, they do not need to be converted. For

the other features, we apply a simple discretization technique to convert each ratio

value within a range (x; y) into one of the three following discrete values: i) low

(0.0;0.33); ii) medium (0.33;0.66); and iii) high (0.66;1.0). In order to reduce

ambiguity among input data samples, it is still possible to increase the number of

features and ranges. Although there exists more complex discretization techniques,

78
CHAPTER 4. IMPROVING THE PERFORMANCE OF TM APPLICATIONS ON

MULTICORES

we show in Section 5.2 that the selected features and ranges are enough to obtain

accurate predictions.

After data conversion, the second step is to determine the target variable value.

In our approach, we aim to predict the most efficient thread mapping strategy for

an application/STM/platform configuration. For this purpose, for each group of

input instances that shares the same feature values (i.e., same TM application/STM

system configuration) but with different thread mapping strategies, we select the

most suitable strategy based on the application execution time. Then, each group of

instances are merged and becomes a new single input instance in which the target

variable is the mapping strategy that presented the lowest execution time.

Frequently, the execution time of different mapping strategies for the same

application and STM configuration can be statistically equivalent. In that case, the

decision of which strategy is the most suitable becomes non-trivial. From the ML

algorithm perspective, ambiguous input instances should be avoided. For example,

if strategy A is 0.1% faster than strategy B in one case and the opposite in another

similar case, we should decide to elect just one strategy as the “fastest one” in both

cases. Otherwise, the ML algorithm is not able to identify a common pattern on

instances with similar behavior. Although the instances share similar feature values,

they use different thread mapping strategies.

In order to address this ambiguity in our data samples, we propose an algorithm

to rank the strategies before resolving these ties. This algorithm introduces an error

percentage threshold " to distinguish mapping strategies that achieve very similar

performance.

Firstly, for each group of instances that shares the same feature values except the

target variable value, a mapping strategy can only be claimed as the best one if its

execution time is at least " less than all the other ones. Secondly, for each thread

mapping strategy, our algorithm counts how many times it was classified as the best

one. This provides a ranking to distinguish all the other instances within a group that

presented statistically similar performance. Thus, thread mapping strategies with

higher counts have higher priority. Finally, we resolve all these ties by assigning to

the target variable within a group the most suitable thread mapping strategy based

on that ranking. This avoids having very similar input instances present different

outcomes. Once the input data samples are pre-processed, our approach moves onto

4.2. A MACHINE LEARNING-BASED APPROACH FOR THREAD MAPPING 79

the learning phase.

4.2.4 Learning process

There exist several machine learning algorithms, including Neural Networks

[Zha00], Support Vector Machines (SVMs) [CS00] and Decision Tree Learning

[Qui86]. Typically, a machine learning algorithm takes as input a data set S of

input instances containing values for each corresponding feature in F , including the

target variable. It applies an iterative process on S to adjust its internal modeling

parameters until it fits to the input data. This process is also known as the training

phase. Then, it outputs a predictor (e.g., a set of functions, rules, etc.) that infers the

target variable for a new unknown input instance.

Decision tree learning is one of the most widely used and practical methods for

inductive inference. It is a method for approximating discrete values, in which the

learned function is represented by a decision tree [PK01]. A decision tree classifies

instances by sorting them down the tree from the root to some leaf node, which

provides the classification of the instance (target variable).

Tx Abort
Ratio

medium

scatter

lowhigh

LLC Miss
Ratio

Tx Time
Ratio

compactscatter

low high

comapctround-robin

low high

Feature

Target

Variable

Feature

Value

Figure 4.3: Hypothetical example of a decision tree.

Figure 4.3 shows a hypothetical example of a decision tree that considers some

of the features presented in Section 4.2.2. Each internal node of the tree represents

an input feature. In this example, the input features considered are transaction abort

ratio, transaction time ratio and last-level cache miss ratio. Edges connecting one

internal node to its successors are labeled with one of its feature values (in this

example, low, medium and high). Successor nodes can be either a feature or a value

80
CHAPTER 4. IMPROVING THE PERFORMANCE OF TM APPLICATIONS ON

MULTICORES

of the target variable (thread mapping strategy). If the node contains the latter, it

means that it is a leaf node.

We decided to use decision tree learning as the learning algorithm to construct

the thread mapping predictor. The reason for that is fourfold: (i) STM features such

as conflict detection and resolution policies are inherently discrete; (ii) the profiled

data are usually continuous numerical values but they are more representative if

grouped into discrete values (in fact they can be easily converted to discrete values

using simple discretization techniques as we showed in the previous section); (iii)

decision trees are simple to understand and interpret; and (iv) the predicted model

can be easily integrated to any application/system with little overhead. For those

reasons, the decision tree learning becomes a suitable learning algorithm to address

our problem.

A well-known decision tree learning algorithm is the Iterative Dichotomiser 3

(ID3) [Qui86]. The ID3 learning algorithm outputs a decision tree as a predictor

based on categorical discrete input instances. Given a set S of input instances and a

set of F features, the ID3 learning process starts choosing the “best” feature to be

in the root node. By best, it means the feature that splits S in more homogenous

subsets, that is, subsets where the majority of input instances contains the same

target variable value. Homogeneity is measured by Ent rop y defined in Equation 4.1

where pi is the probability that a given instance is in a subset with the same target

variable value.

Ent rop y(S) =
X

pi log2(pi) (4.1)

Gain can be derived from Ent rop y by computing the subtraction between the

entropy of S and the sum of the entropies of its subsets Si as shown in Equation 4.2.

The feature with highest Gain is chosen to be the root node.

Gain(S, F) = Ent rop y(S)−
X

i∈ F

"

"Si

"

"

|S|
× Ent rop y(Si) (4.2)

This recursive process is repeated for each successor node until all leaf nodes

contain only input instances with the same target variable value. The ID3 main

algorithm is presented below.

4.2. A MACHINE LEARNING-BASED APPROACH FOR THREAD MAPPING 81

input : Input instances S, Features F

output : Decision tree T

begin
Fmax ←max(Gain(S, Fi));

Split S into subsets S j by each value Vj ∈ Fmax ;

Create a subtree U where the root node is Fmax ;

foreach Vj ∈ Fmax do
Add an edge labeled Vj to U;

Connect a successor node N j containing S j;

Add to T the subtree U;

if Entropy(N j) = 0 then
Set label of N j to target variable value;

Remove S j instances from S;

else ID3(S j, F);
end

end
Function ID3(S, F)

In order to verify the accuracy of the resulting decision tree, it is possible to use

the standard leave-one-out cross-validation method. To do so, for each input instance,

the learning algorithm is trained with the remaining instances and tested with the

unused instance. Thus, the result indicates how good is the the decision tree.

4.2.5 Prediction

Once the ID3 algorithm outputs a predictor and its accuracy is verified, it can

be used to determine a suitable thread mapping strategy to be applied to new

unobserved instances. It is important to notice that the learning phase is no longer

required for any new input instance. Instead, profiling is needed in order to gather

application and STM system information of the new input instance. The profiled

data is converted to conform with the decision tree input format. The decision tree is

then fed with the new input instance information and traversed, outputting a thread

mapping strategy. The predicted thread mapping strategy can be then applied.

82
CHAPTER 4. IMPROVING THE PERFORMANCE OF TM APPLICATIONS ON

MULTICORES

4.3 Static thread mapping

In this section, we show how our machine learning-based approach can be applied

to perform static thread mapping on TM applications. Firstly, in Section 4.3.1,

we discuss the input instances we used to feed the learning process. Then, in

Section 4.3.2, we show the decision trees obtained after applying the ID3 learning

algorithm on those input instances. Finally, in Section 4.3.3, we describe how these

decision trees can be used to perform static thread mapping on TM applications.

4.3.1 Gathering input data to feed the learning process

Once we defined our ML-based approach for thread mapping on TM applications,

it has now to be fed with input instances to construct the predictor for practical

usage. This is an important step since the predictor will learn from data collected

from the input instances. If the input instances do not represent good samples, the

predictor may make many incorrect predictions.

Because of that, we decided to use all applications from the STAMP benchmark

suite as our input instances. As previously discussed in Section 2.3.2, the applications

from STAMP consist of a variety of algorithms and different application domains.

Moreover, they are composed of a wide range of transactional workloads that differ

from each other in the size of transactions, the amount of contention and the time

spent inside transactions. We believe that those realistic applications can be useful to

construct a predictor capable of capturing the behavior of TM applications.

We proceeded as follows to perform the learning process. Firstly, we profiled

all STM applications from STAMP to gather the information (features) needed by

the ML such as transactional time ratio, transactional abort ratio and LLC miss

ratio of each TM application as explained in Section 4.2.2. Then, we measured the

execution time of each application while varying the thread mapping strategy (linux,

scatter, compact and round-robin) as well as the conflict detection (eager or lazy)

and resolution mechanisms (backoff or suicide). We used TinySTM as our target STM

system, since it can be configured with different conflict detection and resolution

mechanisms, we can have configurations that are similar to other STM systems and

even other different configurations.

4.3. STATIC THREAD MAPPING 83

Figure 4.4 shows the speedups of all possible combinations.1 We used two dif-

ferent platforms during our experiments. The SMP-16 has a single level of shared

caches whereas SMP-24 has two levels of shared caches. The speedups refer to the

parallel version of the applications with 8 threads in comparison to the correspond-

ing sequential version. The results represent the mean speedups obtained over a

minimum of 30 executions. For a more precise description of the platforms and the

speedup metric, please refer to Section 5.1.

 0

 1

 2

 3

 4

 5

 6

 7

 8

YadaVacationSsca2LabyrinthKmeansIntruderGenomeBayes

bayes genome intruder kmeans labyrinth ssca2 vacation yada

eager-backoff

eager-suicide

lazy-backoff

lazy-suicide

eager-backoff

eager-suicide
lazy-backoff

lazy-suicide

eager-backoff

eager-suicide

lazy-backoff

lazy-suicide

eager-backoff

eager-suicide

lazy-backoff

lazy-suicide

eager-backoff

eager-suicide

lazy-backoff

lazy-suicide

eager-backoff

eager-suicide

lazy-backoff

lazy-suicide

eager-backoff

eager-suicide

lazy-backoff

lazy-suicide

eager-backoff

eager-suicide

Linux
Scatter
Compact

Linux
Scatter
Compact

Scatter
Compact Round-RobinLinux Scatter Compact Round-Robin

S
p
e
e
d
u
p

Linux
Scatter
Compact

Linux
Scatter
Compact

Scatter
Compact Round-RobinLinux Scatter Compact Round-Robin

bayes genome intruder kmeans labyrinth ssca2 vacation yada

eager-backoff

eager-suicide

lazy-backoff

lazy-suicide

eager-backoff

eager-suicide

lazy-backoff

lazy-suicide

eager-backoff

eager-suicide

lazy-backoff

lazy-suicide

eager-backoff

eager-suicide

lazy-backoff

lazy-suicide

eager-backoff

eager-suicide

lazy-backoff

lazy-suicide

eager-backoff

eager-suicide

lazy-backoff

lazy-suicide

eager-backoff

eager-suicide

lazy-backoff

lazy-suicide

eager-backoff

eager-suicide

S
p
e
e
d
u
p

(a) SMP-24

(b) SMP-16

 0

 1

 2

 3

 4

 5

 6

 7

 8

YadaVacationSsca2LabyrinthKmeansIntruderGenomeBayes

Figure 4.4: Impact of thread mapping strategies on the performance of TM applica-
tions with different STM configurations.

As it can be observed, the SMP-24 is more sensitive to thread mapping than the
1We omitted the results of yada with lazy conflict detection, since this configuration led to

incorrect executions of this application.

84
CHAPTER 4. IMPROVING THE PERFORMANCE OF TM APPLICATIONS ON

MULTICORES

SMP-16. Most of the applications presented a more significant variance in terms

of speedup when different thread mapping strategies were applied. Specially, a

significant impact on the performance can be noticed on labyrinth and ssca2 on the

SMP-24 whereas in SMP-16 such impact is much less perceivable. This is explained

by the fact that SMP-24 has a more complex memory hierarchy (two levels of shared

caches). This leads to more complex performance tradeoffs in terms of memory

contention and latency if threads are not mapped appropriately.

We also noticed that some applications are insensitive to the STM system parame-

ters on both platforms. Modifying the conflict detection and resolution mechanisms

does not change the performance perceived by these applications. This can be ex-

plained by the fact that applications such as ssca2 do not spend much time within

transactions.

In contrast, other applications such as bayes and genome proved to be very

sensitive to both thread mapping strategies and STM system parameters. On these

applications, compact usually delivered less performance gains than other thread

mapping strategies. This occurs for two reasons. From one perspective, bayes

presents a high abort ratio. This means that transactions usually abort several times

before committing. Each time a transaction is aborted, all the accesses to the shared

data inside the transaction are re-executed. This fact increases the probability of

having many transactions being executed at the same time, increasing the contention

on cache memories. Since compact forces threads to share cache, such contention is

even higher.

From other perspective, genome is characterized by having a high transaction

time ratio and low contention. This means that this application executes transactions

most of the time and transactions usually access disjoint data. In this case compact

is not beneficial because the same cache will be used to hold disjoint data of several

threads. This increases the contention on the cache and reduces the amount of cache

available for each thread.

4.3.2 Generating the decision trees

As observed in the previous section, the target platform can influence the impact

of the thread mapping strategy perceived by an application/STM configuration.

4.3. STATIC THREAD MAPPING 85

Because of this, we trained our ML-based approach to predict a suitable thread

mapping strategy considering each platform separately.

The profiled information obtained for all possible feature combinations was pre-

processed as discussed in Section 4.2.3. The pre-processed data was then used to

feed the ID3 learning algorithm. Instead of implementing the ID3 algorithm, we

used a machine learning tool called Weka [Bou+10]. It implements several machine

learning algorithms including ID3. Weka also provides a cross-validation method to

verify the accuracy of the generated decision tree.

Tx Time
Ratio

Tx Abort
Ratio

high

TM Conflict
Resolution

compact

mediumlow

scatter compact

suicide backoff

compact scatter

medium low

LLC Miss
Ratio

high

scatter

low

TM Conflict
Resolution

medium / high

scatter round-robin

suicide backoff

Tx Abort
Ratio

LLC Miss
Ratio

high

compact

medium

round-robin

medium / high

TM Conflict
Detection

low

linux

lazy

TM Conflict
Resolution

eager

compact round-robin

backoff suicide

round-robin

low

(a) SMP-24 (b) SMP-16

Figure 4.5: Decision trees generated by the ID3 learning algorithm on both platforms.

Figure 4.5 shows two decision trees generated by the ID3 learning algorithm

on the SMP-24 (on the left side) and SMP-16 (on the right side). It is important

to mention that, due to the ranking algorithm in the pre-processing step, some

thread mapping strategies can be dropped from the decision tree even when they

are actually the best one for a given instance. This occurs when the thread mapping

strategy does not present significantly more performance gains than other strategies.

That was the case of the linux strategy in the decision tree for SMP-24.

The influence of the target platform is confirmed by the decision trees, which are

very different from each other. On the SMP-24, compact and scatter are the two

86
CHAPTER 4. IMPROVING THE PERFORMANCE OF TM APPLICATIONS ON

MULTICORES

most important thread mapping strategies whereas round-robin and compact are the

most important ones on the SMP-16. We can also observe that the decision tree of

the SMP-16 is much simpler than the SMP-24. This can be explained by the fact that

the SMP-24 has a more complex cache hierarchy.

Even though there are differences between the decision trees, we can derive some

overall conclusions. Firstly, there is a possible correlation between the abort ratio and

the LLC miss ratio. On both trees, when an application presents a high abort ratio,

the LLC miss ratio is taken into account to decide the thread mapping policy to be

applied. Secondly, when the abort ratio is low, the predictor tends to select a strategy

that places threads far from each other (e.g., scatter and round-robin strategies).

A low abort ratio means that transactions rarely access the same shared data at

the same time. Thus, the contention generated by several threads accessing the

same cache can be alleviated by applying such strategies. Finally, when the conflict

detection used is backoff, the decision tree tends to decide for the compact thread

mapping strategy. Backoff forces transactions to wait some time before re-executing

due to aborts. This reduces the amount of contention on the cache, making it possible

to place threads on sibling cores to amortize the access latency.

An exception is the Linux default strategy that appears only in one specific case.

It tends to distribute and migrate threads among cores in order to balance the

workload. Thus, the resulting distribution of threads is variable and unpredictable.

These characteristics thus benefit applications with low cache miss ratio and very

dynamic behavior. This is the case of bayes on SMP-16 in which the lazy detection

mechanism contributes to reduce the number of false aborts compared to the eager

mechanism.

4.3.3 Predicting and applying thread mapping strategies

Once the predictor has been constructed, it can now predict a suitable thread

mapping strategy for new unknown TM applications. We can use two different

strategies to apply the predicted thread mapping strategy statically:

… Prediction after a previously profiled execution: the unknown TM applica-

tion is executed once and profiled until it finishes to gather the information

needed by the ML. Then, the decision tree is then fed with the new input

4.4. DYNAMIC THREAD MAPPING 87

instance profiled information and traversed, outputting a thread mapping

strategy that is applied on subsequent executions of this TM application.

… Prediction at runtime after a warm-up profiling period: the unknown TM

application starts running with a default thread mapping strategy and during a

initial warm-up interval it is profiled. The profiled data is converted to conform

with the decision tree input format. The decision tree is then fed with the

new input instance information and traversed, outputting a thread mapping

strategy. The predicted thread mapping strategy is then applied at runtime.

Both strategies have pros and cons. The former has much more information about

the TM application, since it profiles the whole execution of the application, but it is

necessary to execute the application once before re-executing it with the predicted

thread mapping strategy. On the other hand, the latter has much less information

since the profiling is done during an warm-up interval, but the predicted thread

mapping strategy is applied at runtime. If the profiled interval does not correspond

to the overall behavior of the application, the prediction can be uncorrected. We

evaluate the accuracy of our static thread mapping later on (Section 5.2).

4.4 Dynamic thread mapping

In the previous section, we focused on the used of our ML-based approach to

statically infer a suitable thread mapping strategy for TM applications. This means

that the predicted thread mapping strategy is applied once at the beginning and

does not change during the execution of the application. Static thread mapping

can benefit from TM applications whose most of the transactions usually have very

similar behavior.

However, we have constantly seen efforts for a wider adoption of Transactional

Memory. For instance, the latest version of the GNU Compiler Collection (GCC

4.7) supports TM primitives. In terms of hardware support, we can cite the new

BlueGene/Q processors and the Intel Transactional Synchronization Extensions (TSX)

for the future multicore processor code-named “Haswell”. Thus, it is expected that

more complex applications will make use of TM in a near future. These applications

will probably have multiple execution phases with a different transactional behavior

88
CHAPTER 4. IMPROVING THE PERFORMANCE OF TM APPLICATIONS ON

MULTICORES

in each phase. In those cases, static thread mapping will no longer improve the

performance of those applications, emerging the necessity of a dynamic approach

able to identify these different phases and switch to a more adequate thread mapping

strategy during the execution.

In the following sections, we explain how our ML-based approach can be used

to perform dynamic thread mapping. We also present its implementation within a

state-of-the-art STM system.

4.4.1 From static to dynamic thread mapping

In order to adapt our ML-based approach to perform dynamic thread mapping,

we propose to extend the previous static prediction at runtime after a warm-up

profiling period. The idea is to perform the profiling and prediction several times

during the execution of the TM application, adapting the thread mapping strategy

to the current workload behavior whether necessary. Since most of the considered

characteristics can vary during the execution of applications composed of several

phases, it is important to define how and when the profiling will occur. We propose

to use sampling instead of profiling the whole execution of the application. This

reduces considerably the profiling overhead. The interactions between the profiler

and the application are illustrated in Figure 4.6.

Transactional Memory
Application

transactions

Dynamic Thread
Mapping

Application

Profiling
Prediction Deployment

t

w

e
x

e
c

u
ti

o
n

 l
in

e
s

Figure 4.6: Application execution with dynamic thread mapping.

During the TM application initialization, we set the default thread mapping

strategy to linux. Then, we profile t committed transactions at runtime to gather the

information needed by our ML-based predictor (represented in Figure 4.6 as blue

boxes). The profiled information is used by the ML-based predictor to select a thread

4.4. DYNAMIC THREAD MAPPING 89

mapping strategy that suits the current workload characteristics (represented in

Figure 4.6 as green boxes). Then, the predicted thread mapping strategy is deployed

(represented in Figure 4.6 as red boxes) and remains unchanged during w committed

transactions. This process is repeated until the TM application ends.

The parameters t and w are specified by the number of committed transactions

instead of time. This guarantees that our measures occur when transactions are being

executed. They can be fixed or can be adapted during the execution. To adapt these

parameters during the execution, we may use a hill-climbing strategy. In this strategy,

we start with short periods and we double them each time the predicted thread

mapping strategy was not changed. This is done until a maximum interval size is

reached. When the thread mapping strategy is changed due to a phase transition, we

reset them to their initial values and the hill-climbing strategy is restarted.

4.4.2 Implementation on TinySTM

For our solution to be transparent to users, we decided to implement it within an

STM system. We chose TinySTM among other STM systems because it is lightweight,

efficient and its implementation has a modular structure that can be easily extended

with new features. Figure 4.7 shows an overview of TinySTM.

STM core Modules

TinySTM

mod_mem

Dynamic Memory Management

mod_stats

Statistics of Transactions

mod_dtm

Dynamic Thread Mapping

.

.

.
Hardware Topology Analyzer

Thread Mapping Predictor

Transaction Profiler

Figure 4.7: Implementation of our dynamic thread mapping in TinySTM.

Basically, TinySTM is composed of an STM core, in which most of the STM code is

implemented, and some additional modules. These modules implement basic features

such as the dynamic memory management (mod_mem) and transaction statistics

(mod_stats). We added a new module called mod_dtm that extends TinySTM to

perform dynamic thread mapping transparently.

Our module combines the following tree main components:

90
CHAPTER 4. IMPROVING THE PERFORMANCE OF TM APPLICATIONS ON

MULTICORES

… Hardware topology analyzer is responsible for gathering useful information

from the underlying platform topology (i.e., the hierarchy of caches and how

they are shared among the cores). Such information is important to correctly

apply the thread mapping strategies. However, such information is usually

obtained from system-specific operations, such as reading the pseudo-filesystem

on Linux, or calling specific low-level libraries on other operating systems. In

order to avoid those system-specific operations, we decided to use the Hardware

Locality (hwloc) library [Bro+10]. This library exposes a portable abstracted

view of the hardware topology to the runtime systems and works on several

operating systems.

… Thread mapping predictor relies on the decision tree shown in Figure 4.5 to

predict the thread mapping strategy. During the prediction phase, the tree is

traversed using the profiled information from the transaction profiler and the

resulting thread mapping strategy is then deployed.

… Transaction profiler performs the application runtime profiling to gather

information from hardware counters and transactional basic statistics. Its

pseudo-code is depicted in Figure 4.8. The cache miss ratio is obtained through

PAPI [Ter+10] to access hardware counters. We maintain two counters to

calculate the abort ratio (named Aborts and Commits). The transactional time

ratio is an approximation obtained by measuring the time spent inside and

outside transactions.

TinySTM allows the inclusion of user-defined extensions. In our case, we instru-

mented three basic TM operations (Figure 4.8) that are called when transactions

start (start), when they are rollbacked in case of conflicts (abort) and when they

finish successfully (commit). Thus, every call to these operations is intercepted by

our module, which executes the transaction profiler during the profilling periods

and calls the thread mapping predictor to switch the thread mapping strategy when

necessary.

In order to reduce the intrusiveness on the overall system (i.e., to not change

the behavior of the application) and to avoid extra synchronization mechanisms to

guarantee reliable measures among concurrent threads, we assume that the workload

4.5. CONCLUDING REMARKS 91

// on transaction start
if is profiling period then

if first tx in this period then
StartPapi(LLCAccess,LLCMiss);
ProfileTime← GetClock();

end
TxTime← GetClock();

end

// on transaction abort
if is profiling period then

Aborts← Aborts+ 1;
end

// on transaction commit
if is profiling period then

TxTime← GetClock()−TxTime;
TotalTxTime← TotalTxTime+TxTime;
Commits← Commits+ 1;
if last tx in this period then

StopPapi(LLCAccess,LLCMiss);
ProfileTime← GetClock()−ProfileTime;
TotalNonTxTime← ProfileTime−TotalTxTime;
ThreadMapping← TMPredictor();
ResetAllCounters();

end
end

Figure 4.8: Transaction profiler pseudo-codes.

of TM applications is uniformly distributed among the threads. This means that

profiling a single thread during a certain period can give us a good approximation

of what would be captured if all threads were profiled during the same period.

This assumption simplifies the profiling process, since we can use only one thread

for profiling the TM application at a time. In our implementation, when a TM

application is executing, only one thread among all concurrent threads is chosen to

be the transaction profiler.

4.5 Concluding remarks

As we previously discussed in this thesis, the performance of TM applications can

be improved at different levels, ranging from the TM application to the underlying

platform levels. Diverging from several previous works that focused on improving

the performance on a single level, we showed in this chapter that the performance

of TM applications can be improved if we match their characteristics (along with

the characteristics of the STM system) to the underlying multicore platform. More

precisely, we were interested in gathering useful information from the TM applica-

tions and STM systems and then use such information to better exploit the memory

hierarchy of modern multicore platforms.

One technique to deal with that is called thread mapping, which aims at mapping

threads to specific cores of the underlying platform to improve the use of resources

92
CHAPTER 4. IMPROVING THE PERFORMANCE OF TM APPLICATIONS ON

MULTICORES

such as interconnections and cache memories. However, the impacts of applying

thread mapping on TM applications had not been explored before. In addition to

that, STM systems make this task even more difficult due to the runtime system. Ex-

isting STM systems implement several conflict detection and resolution mechanisms,

which leads TM applications to behave differently for each combination of these

mechanisms. The result is that it is not trivial to predict a suitable thread mapping

strategy for a specific TM application/STM system/platform.

We tackle this problem by using Machine Learning to automatically infer a

suitable thread mapping strategy for TM applications. Our proposal stems from the

fact that ML can be useful to model the behavior of complex interactions between

applications, systems and platforms. It is based on a prior learning phase, in which

we profile several TM applications running on different STM systems to know their

characteristics. Then, such information is used to feed a ML algorithm that outputs

a predictor. Once this learning phase is finished, new instances can be profiled at

runtime and the collected data can be used as an input to the predictor, which will

be capable of inferring an efficient thread mapping strategy for the new unknown

TM application.

The predictor confirmed our intuitions pointed out in Section 1.1.2. Placing

threads on sibling cores usually improves the performance of TM applications whose

transactions have a moderate to high conflict probability (i.e., they usually access the

same amount of shared data). In those cases, our predictor usually decides to apply

the compact strategy. In an opposite situation, distributing threads across different

processors (thus avoiding cache sharing) usually reduces the contention on the same

cache and is beneficial to TM applications whose transactions access a large amount

of disjoint data, thus rarely conflicting. In those cases, our predictor usually decides

to apply either scatter or round-robin strategies.

Once the predictor is constructed, it can be used to perform static and dynamic

thread mapping. In the static approach, we can either predict the thread mapping

after a previously profiled execution of the unknown TM application or during the

execution after a warm-up profiling period. In both strategies, the predicted thread

mapping is applied and remains unchanged during the whole execution. In the

dynamic approach, on the other hand, we used profiling techniques to gather useful

information during certain periods of the execution of TM applications, switching the

4.5. CONCLUDING REMARKS 93

thread mapping strategy to a more adequate one at runtime when necessary. Both

approaches were implemented in TinySTM, a state-of-the-art STM system, which

makes static/dynamic thread mapping transparent to the user.

CHAPTER 5
Experimental Evaluation

THIS chapter presents the experimental evaluation of the static and dynamic

thread mapping solutions proposed in this thesis. We start by describing our

experimental setup (Section 5.1). Then, we analyze the performance improvements

obtained with both static (Section 5.2) and dynamic (Section 5.3) approaches.

5.1 Experimental setup

In our experimental evaluation, we used two multicore platforms with distinct

characteristics and we adopted representative metrics to evaluate the results. We

give more details about the multicore platforms in Section 5.1.1 and metrics in

Section 5.1.2.

5.1.1 Multicore platforms

In order to conduct our experiments, we selected two distinct multicore platforms.

SMP-24: a multicore platform based on four six-core Intel Xeon X7460. Each group

of two cores shares a L2 cache (3MB) and each group of six cores shares a L3 cache

(16MB). SMP-16: a multicore platform based on four quad-core Intel Xeon E7320

with 2MB of L2 cache shared per pair of cores. All experiments were carried out

with exclusive access to these platforms. Table 5.1 summarizes the hardware and

software characteristics of both platforms.

95

96 CHAPTER 5. EXPERIMENTAL EVALUATION

H
ar

dw
ar

e
Characteristic SMP-24 SMP-16
Processor Intel Xeon X7460 Intel Xeon E7320
Number of cores 24 16
Number of sockets 4 4
Clock (GHz) 2.66 2.13
Last level cache (MB) 16 (L3) 2 (L2)
DRAM capacity (GB) 64 64

So
ft

w
ar

e

Name / version SMP-24 SMP-16
Linux kernel 3.2.0-2 2.6.18
GCC 4.6.3 4.1.2
TinySTM 1.0.3 1.0.3
STAMP benchmarks 0.9.10 0.9.10
Eigenbench 0.8.0 –

Table 5.1: Overview of the multicore platforms and softwares.

We selected TinySTM as the STM system for all the following experiments. As

we previously explained, TinySTM is lightweight, efficient and its implementation

has a modular structure that eased the inclusion of our thread mapping approach.

Additionally, it can be configured to use different conflict detection and resolution

policies.

Concerning the TM applications, we used STAMP benchmarks to evaluate the

static approach. The reason is two fold: (i) they are realistic applications; and (ii)

they can profit from static thread mapping, since most of the transactions within

each application has similar behavior. For all applications, we used the largest input

sizes available in the original implementation. Kmeans and vacation were configured

with the low contention parameters. To evaluate the dynamic thread mapping, we

used Eigenbench to create more diverse workloads.

5.1.2 Performance metrics

We use different metrics to characterize TM applications and evaluate perfor-

mance: execution time, speedup, transactional time ratio, abort ratio and cache

miss ratio. The speedup metric is calculated by dividing the execution time of the

sequential application (i.e., transactionless) by the execution time of the parallel

5.2. STATIC THREAD MAPPING ANALYSIS 97

TM application with n threads.1 Thus, the speedup of a parallel TM application

running with n threads is given by Equation 5.1. Particularly, the execution time

was measured by the gettimeofday() function. The execution times and speedups

presented in the results represent arithmetic means of at least 30 executions.

Speedup(n) =
Timesequential

Timeparal lel(n)

(5.1)

The two metrics that characterize TM applications are obtained as follows. The

transactional time ratio is the percentage of the total time an application spends

inside transactions. The abort ratio is calculated as presented in Equation 5.2,

where Transact ions issued means the number of executed transactions (aborted +

committed).

Abor t rat io =
Abor ted t ransact ions

Transact ions issued
(5.2)

Finally, Equation 5.3 shows how we compute the LLC miss ratio. Particularly,

LLC Misses and LLC Accesses mean the number of Last-Level Cache misses and

Last-Level Cache accesses. They are both obtained form hardware counters through

the PAPI interface [Ter+10].

LLC miss rat io =
LLC Misses

LLC Accesses
(5.3)

5.2 Static thread mapping analysis

We first evaluate the accuracy of our ML-based approach for performing static

thread mapping on TM applications. The evaluation is carried out as follows:

… Input instances for the ML: we used the STAMP applications as our input

instances and TinySTM as our target STM library as explained in Section 4.3.

We also varied the conflict detection (eager and lazy) and resolution (suicide

and backoff) strategies to feed the learning process.

1Since we assign one thread per core, the number of threads is always equal to the number of
cores used.

98 CHAPTER 5. EXPERIMENTAL EVALUATION

… Prediction: the prediction is performed at runtime after a warm-up profiling

period. We observed that most of the transactions within each STAMP ap-

plication have similar behavior during the whole execution. For that reason,

predictions were based on the profiling of a very small sample of the first 100

committed transactions of each application at runtime without adding any

important overhead. After profiling those transactions, the previously learned

decision tree is traversed using the profiled information and the predicted

thread mapping strategy is applied and remains unchanged during the whole

execution of the application.

… Evaluation: we evaluate the accuracy of our ML-based approach on all STAMP

applications. Since we also trained the decision trees using the STAMP applica-

tions, using the same set of applications to train and evaluate is unfair. Due

to that, the decision tree used to predict the thread mapping strategy of an

application is trained without the application itself. For instance, to evaluate

the ML-based approach on intruder, we use all STAMP applications other than

intruder as the input instances to feed the learning process. This leave-one-out

cross-validation shows that our ML-based solution is able to predict thread

mapping strategies for new unobserved instances.

The number of experiments is very large if we consider all possible combinations

of parameters: 8 applications (STAMP) × 2 platforms (SMP-16 and SMP-24) × 4

STM parameters (eager, lazy and suicide, backoff) × 4 thread counts (2, 4, 8 and 16

threads). Thus, we split the analysis into two subsections. In each subsection, we

consider a set of the STAMP applications and the two platforms, while fixing one of

the remaining parameters (STM parameters or thread count). The complete set of

results from all applications on both platforms can be found in Appendix A.

It is important to mention that our ML-based approach cannot present better

performance compared to the best thread mapping strategies. In the best cases, the

ML-based approach predicts a thread mapping strategy that is the best one for the

application, STM configuration and thread count. In those cases, the speedup of

the ML-based approach is very close to the one of best mapping. This is possible

since the prediction is based on the profiling of the first 100 committed transactions,

5.2. STATIC THREAD MAPPING ANALYSIS 99

which does not add any important overhead. On other cases, the speedup may vary

depending on the performance obtained from the predicted thread mapping strategy.

In Section 5.2.1, we evaluate the ML-based approach to perform static thread

mapping when varying the concurrency. Then, in Section 5.2.2, we evaluate it when

varying the STM parameters. Finally, in Section 5.2.3, we draw global conclusions

about the performance of the ML-based approach.

5.2.1 Varying concurrency

The first aspect we want to evaluate is how the static thread mapping based on

ML performs when facing different levels of concurrency. To do so, we executed

all applications from STAMP on both multicore platforms applying each one of the

thread mapping strategies and our ML-based approach. This was done for different

thread counts, i.e., 2, 4, 8 and 16 threads. For all those experiments, we used the

following STM parameters: eager conflict detection and suicide conflict resolution.

S
M

P
-2

4
S

M
P

-1
6

 0

 2

 4

 6

 8

 10

2 4 8 16

labyrinth

S
p

e
e

d
u

p

 0

 2

 4

 6

 8

 10

 12

2 4 8 16

genome

 0

 1

 2

 3

 4

 5

 6

2 4 8 16

vacation

Number of threads

 0

 2

 4

 6

 8

 10

2 4 8 16

genome

 0

 1

 2

 3

 4

 5

 6

 7

 8

2 4 8 16

labyrinth

 0

 1

 2

 3

 4

 5

 6

2 4 8 16

vacation

RRSCSC

LX SCSC

RR

CP

SC

SC

RR

SC

RRSCRR

RRCPRR

RR

CP

RR

RR RR
CP

Legend

Best mapping
Worst mapping

ML

Best mapping
Best mapping

Worst mapping
ML

Worst mapping
Worst mapping

ML ML

CP: Compact RR: Round-Robin SC: Scatter LX: Linux

SCCPSC

SC
LX

SC

SC
CP

SC

SC SC

RR

RR
CP

RR

RR
CP

RR

LX CPRR

LX RRCP

CP LX SC

CP LX SC

SC
CP

SC

LX

RR

SC

CPSC RR

SC
CP

RR

RR

CP

RR

RR LX RR

Figure 5.1: Speedups of the best and worst thread mappings in comparison to the
ML when varying concurrency.

100 CHAPTER 5. EXPERIMENTAL EVALUATION

Although the STAMP is composed of 8 applications, only few scale considerably

well. Because of that, we present the results of a subset of these applications that

have good scalability to carry out a deeper analysis. Figure 5.1 shows the results

obtained from 3 applications on both platforms. We compare the speedups obtained

when applying the best, the worst and the predicted thread mapping strategies.

As it can be observed, the ML-based approach usually predicted good thread

mapping strategies for these subset of applications on both platforms. We observed

more important impacts on the SMP-24. This is due to the fact that this platform has

a more complex cache hierarchy (two levels of shared caches). For the total of 24

different combinations of parameters in this subset of applications on two platforms

(3 applications × 4 thread counts × 2 platforms), the ML-based approach selected

the best thread mapping policy 14 times. For the remaining experiments, it selected

a thread mapping strategy that was better then the worst strategy 7 times and it

selected 3 times the worst strategy (genome with 2 and 4 threads and vacation with

2 threads). The results of all STAMP applications on both platforms are shown in

Appendix A.

Genome and vacation have similar characteristics. Most of their execution time is

spent inside transactions and although these transactions perform several concurrent

accesses to shared data structures on memory, they present low contention (abort

ratio). This indicates that transactions usually access disjoint data. These characteris-

tics explain the results we obtained. On the one hand, there is no significant impact

on changing the thread mapping strategy when the number of threads is low. On the

other hand, as the number of threads increases, the contention to access the data

on memory also increases. Such contention generated by several threads accessing

the same cache are alleviated when thread mapping strategies such as scatter and

round-robin are applied.

Labyrinth has a moderate abort ratio when it is executed with the STM parame-

ters eager-suicide. This increases the probability of having many transactions being

executed at the same time and intensifies the contention on cache memories. Com-

pact was usually the worst thread mapping for labyrinth because it forces threads

to share the same cache, increasing even more the contention. Scatter alleviates

the contention on labyrinth and presented the best performance among all thread

mapping strategies on SMP-24. On SMP-16, although linux was the best one for high

5.2. STATIC THREAD MAPPING ANALYSIS 101

thread counts, it was just slightly better than scatter.

5.2.2 Modifying the STM parameters

The second aspect we want to evaluate is how the static thread mapping based on

ML performs when facing different STM parameters (conflict detection and resolution

policies). Similarly to the previous experiments, we executed all applications from

STAMP on both multicore platforms applying each one of the thread mapping

strategies and our ML-based approach. This was done for all possible combinations

of STM parameters (eager-suicide, eager-backoff, lazy-suicide and lazy-backoff). For

all those experiments, we fixed the number of threads to 8.

Due to the high number of experiments, we restrict our analysis to a subset of 3

applications on both platforms. The complete set of results from all applications on

both platforms can be found in Appendix A. Figure 5.2 shows the results obtained

from bayes, labyrinth and kmeans.

 0

 0.5

 1

 1.5

 2

 2.5

 3

eager
backoff

eager
suicide

lazy
backoff

lazy
suicide

intruder

 0

 0.5

 1

 1.5

 2

 2.5

 3

eager
backoff

eager
suicide

lazy
backoff

lazy
suicide

intruder

S
M

P
-2

4
S

M
P

-1
6

STM parameters

 0

 1

 2

 3

 4

 5

 6

 7

 8

eager
backoff

eager
suicide

lazy
backoff

lazy
suicide

labyrinth

 0

 1

 2

 3

 4

 5

 6

 7

 8

eager
backoff

eager
suicide

lazy
backoff

lazy
suicide

labyrinth

RR

CP

RR

SC

CP

CP

CP
LX RR

SC SC

SC
CP CP

CP
CPLX

SC
RR RRRR

RR
RR

Legend

Best mapping
Worst mapping

ML

Best mapping
Best mapping

Worst mapping
ML

Worst mapping
Worst mapping

ML ML

CP: Compact RR: Round-Robin SC: Scatter LX: Linux

SC

CP

CP

CP

CP
LX

SC

SC

SC
CP

CP

CP

CP

SC

RR

LX

RR

CP

CP

CP

CPRR

RR

RR

RR

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

eager
backoff

eager
suicide

lazy
backoff

lazy
suicide

kmeans

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

eager
backoff

eager
suicide

lazy
backoff

lazy
suicide

kmeans

CP
LX

CP
LX

LX CP
LX CP

CP

CPSC
SC

RR
SC

SC RR
CP CP

CP CP

RR
RR

RR
RR

S
p

e
e

d
u

p

Figure 5.2: Speedups of the best and worst thread mappings in comparison to the
ML when varying the STM parameters.

102 CHAPTER 5. EXPERIMENTAL EVALUATION

Intruder presents high contention regardless of the STM parameters. It executes

several short transactions that usually conflict with each other. Compact can be

beneficial in these cases, since threads share all levels of the cache memory and the

conflicts of short transactions can be solved quickly. Our results show that compact

was always the best thread mapping strategy for intruder on the SMP-24. On the

contrary, although we observed very low variations on SMP-16, compact was usually

the worst thread mapping strategy. It seems that the L2 caches on this platform are

too small to guarantee good performances when two memory-intensive threads share

the same L2.

The abort ratio on labyrinth is reduced with lazy conflict detection and backoff

conflict resolution policies. In those cases, we usually observed even more perfor-

mance gains when applying thread mapping strategies that avoid cache sharing such

as scatter and round-robin in comparison to compact. As we previously pointed out,

compact usually increases the contention on the caches on labyrinth.

Kmeans has very low abort ratio and short transactions. We observed less

performance improvements with compact on the SMP-16 due to the contention on

the small caches. However, on the SMP-24 we observed a different situation. Compact

was the best thread mapping strategy with backoff conflict resolution. Backoff forces

aborted transactions to wait for random delay (which increases exponentially with

every abort) before restarting the transaction. This reduces the number of aborts as

well as the cache contention on kmeans. The contrary happens with suicide, where

compact presented the worst performance.

5.2.3 Overall results

In the previous sections, we show that our ML-based approach usually made

good predictions for the analyzed applications. In this section, we intend to show

that this approach also makes good predictions on average, when we consider all

thread counts and STM configurations.

Figure 5.3 shows how far the performance of each individual thread mapping

strategy and our ML-based approach are from the oracle performance. The average

performance of individual thread mapping strategies as well as the performance of

our ML-based approach are normalized to the average performance of the oracle.

5.2. STATIC THREAD MAPPING ANALYSIS 103

The oracle represents the maximum performance that can be obtained, since it

considers the best thread mapping strategy for each combination of parameters. A

combination of parameters is an instance of an application/STM configuration/thread

count/platform. In the last column, we also present the overall performance for each

strategy.

A
v
e

ra
g

e
 p

e
rf

o
rm

a
n

c
e

n
o

m
a

liz
e

d
 t
o

 t
h

e
 o

ra
c
le

 (
%

)

SMP-24

SMP-16

STAMP applications

 70

bayes genome intruder kmeans labyrinth ssca2 vacation yada AVG

 70

 75

 80

 85

 90

 95

 100

bayes genome intruder kmeans labyrinth ssca2 vacation yada AVG

 70

bayes genome intruder kmeans labyrinth ssca2 vacation yada AVG

 70

 75

 80

 85

 90

 95

 100

bayes genome intruder kmeans labyrinth ssca2 vacation yada AVG

Legend

MLLinux

Round-Robin

Linux

Round-Robin

Round-Robin
Scatter
Compact

Round-Robin
Scatter
Compact

Figure 5.3: The average speedup of all benchmarks considering the fixed thread
mapping strategies, our ML approach and the oracle on both platforms.

Overall, the ML-based approach presented fairly good predictions on both plat-

forms. On the SMP-24 and SMP-16, the average performance of the ML-based

approach was 97,44% and 97,04% of the oracle performance respectively. On the

SMP-24, linux was the worst thread mapping strategy on average, achieving 89,27%

of the oracle performance. Differently, compact was the worst one on the SMP-24,

104 CHAPTER 5. EXPERIMENTAL EVALUATION

achieving 93,14% of the oracle performance.

We also observed that some thread mapping strategies led to very poor per-

formance in some cases. For genome on SMP-16, the compact strategy achieved

87,34% of the oracle performance. On SMP-16, on the other hand, the scatter

strategy achieved 77,92% of the oracle performance. These examples confirm that

choosing the wrong thread mapping strategy can lead to high performance loss and

suggests that a flexible approach to select the most suitable thread mapping strategy

is required.

In cases in which a single thread mapping strategy is sensitive to application/STM

parameters, the ML-based approach achieves much higher average speedup compared

to these single strategies. This stems from the fact that the machine learning approach

considers the STM system and application features to choose a thread mapping

strategy. This reduces the variability and leads to better results, as we observe in

bayes on SMP-16 and ssca2 on SMP-24.

5.3 Dynamic thread mapping analysis

In this section, we present the performance evaluation of our dynamic thread

mapping approach. All the following experiments were carried out on the SMP-24.

This platform features a more complex memory hierarchy than SMP-16 and thus

allows us to perform more interesting analyses.

In Section 5.3.1, we first define the set of workloads that will be used to compose

applications with different phases. These workloads are then used throughout

the following sections to evaluate our dynamic thread mapping. Contrary to the

evaluation of the static thread mapping, we do not include the STAMP applications

in the analysis of the dynamic thread mapping. Because of that, we used all STAMP

applications during the learning phase.

The performance evaluation is carried out as follows. In Section 5.3.2, we

compare the dynamic thread mapping with the static approach. In the remaining

sections, we evaluate the dynamic approach in different scenarios while varying

the concurrency (Section 5.3.3), STM parameters (Section 5.3.4) and the number

of phases per application (Section 5.3.5). Finally, we take a closer look on how

5.3. DYNAMIC THREAD MAPPING ANALYSIS 105

our dynamic thread mapping reacts when it encounters several different phases

(Section 5.3.6).

5.3.1 Workloads

Since most of the transactions within each STAMP application usually have very

similar behavior, they are not suitable for the evaluation of our dynamic thread

mapping approach. For this reason, we used EigenBench [Hon+10] to create new

TM applications with different phases. EigenBench allows a thorough exploitation of

the orthogonal space of TM applications characteristics.

Varying all possible orthogonal TM characteristics involves a high-dimensional

search space [Hon+10]. Thus, we decided to vary 4 out of 8 orthogonal characteris-

tics that govern the behavior of TM applications (Table 5.2).

Characteristic Definition Values

Tx Length Number of shared accesses per transaction
↓ short (≤ 64)
↑ long (≥ 128)

Contention Probability of conflict
↓ low-conflicting (< 30%)
↑ contentious (≥ 30%)

Density
Fraction of the time spent inside transactions ↓ sparse (< 80%)
to the total execution time ↑ dense (≥ 80%)

Concurrency Number of concurrent threads/cores 2 – 16

Table 5.2: TM characteristics used to compose our set of workloads.

We used the first three characteristics presented in this table (i.e., transaction

length, contention and density) to create a set of workloads. Since we assume

two possible discrete values for each one, we can create a total of 23 distinct work-

loads (named W1, W2, . . . , W8) by combining those values. Table 5.3 describes these

workloads.

Each workload is composed of 1,000,000 transactions. For multithreaded ex-

ecutions of these workloads, the total amount of transactions is divided equally

among the concurrent threads. For instance, on a multithreaded execution of a work-

load with two threads, each thread will execute 500,000 transactions. The fourth

orthogonal characteristic is concurrency and it is further discussed in Section 5.3.3.

106 CHAPTER 5. EXPERIMENTAL EVALUATION

Characteristic
Workloads

W1 W2 W3 W4 W5 W6 W7 W8

Tx Length ↓ ↓ ↓ ↓ ↑ ↑ ↑ ↑

Contention ↓ ↓ ↑ ↑ ↓ ↓ ↑ ↑

Density ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑

Table 5.3: Transactional workloads.

5.3.2 Dynamic thread mapping vs. static thread mapping

Our first set of experiments explores the effectiveness of our dynamic thread

mapping in comparison to the thread mapping strategies individually. We derived

a set of applications from the 8 distinct workloads discussed in Section 5.3.1. We

fixed the number of phases to 3, thus each application will be composed of three

workloads. Therefore, all possible applications composed of three distinct workloads

is determined by the number of k-combinations from a given set of n elements, i.e.,

Cn
k
= C8

3 , which results in 56 applications (named A1, A2, . . . , A56). Thus, the set of

applications can be represented as follows: A1 = {W1, W2, W3}, A2 = {W1, W2, W4}, . . . ,

A56 = {W5, W6, W7}. Since each workload has 1,000,000 transactions, applications

composed of 3 phases will have 3,000,000 transactions. Phases (workloads) are

parallelized using Pthreads and there is no synchronization barrier between phases.

This means that threads may not be computing the same workload at the same time.

We ran all the applications with each one of the static thread mappings (compact,

scatter and round-robin), linux and our dynamic approach. Figure 5.4 presents the

relative gains of our dynamic thread mapping when compared to the best and worst

single thread mappings. The relative gain is given by 1− xd

x s

, where x d and x s are

mean execution times of at least 30 executions using the dynamic and the best/worst

single thread mapping, respectively. Thus, positive values mean performance gains

whereas negative values mean performance losses. All applications were executed

with 4 threads and TinySTM was configured with lazy conflict detection and backoff

conflict resolution.

5.3. DYNAMIC THREAD MAPPING ANALYSIS 107

Applications

R
e

la
ti
v
e

 g
a

in
 (

%
)

Dynamic / Best single thread mapping
Dynamic / Worst single thread mapping

Legend

-10

 0

 10

 20

 30

 40

 50

 60

 70

A
1

A
2

A
3

A
4

A
5

A
6

A
7

A
8

A
9

A
1
0

A
1
1

A
1
2

A
1
3

A
1
4

A
1
5

A
1
6

A
1
7

A
1
8

A
1
9

A
2
0

A
2
1

A
2
2

A
2
3

A
2
4

A
2
5

A
2
6

A
2
7

A
2
8

-10
 0

 10
 20
 30
 40
 50
 60
 70

A
2
9

A
3
0

A
3
1

A
3
2

A
3
3

A
3
4

A
3
5

A
3
6

A
3
7

A
3
8

A
3
9

A
4
0

A
4
1

A
4
2

A
4
3

A
4
4

A
4
5

A
4
6

A
4
7

A
4
8

A
4
9

A
5
0

A
5
1

A
5
2

A
5
3

A
5
4

A
5
5

A
5
6

R
e
la

ti
v
e
 g

a
in

 (
%

)

Figure 5.4: Relative gains of the dynamic thread mapping compared to the best and
worst static mappings on applications composed of 3 phases (A1 to A56).

We can draw at least two important conclusions from these results. Firstly, the

thread mapping strategy had an important impact on the performance. This can

be easily observed when comparing the relative gains between the best and worst

single thread mappings. Secondly, our dynamic thread mapping usually improved the

performance of the applications by switching to an adequate thread mapping strategy

in each phase. We achieved performance gains up to 31% and 62%, when comparing

to the best and worst single thread mappings respectively. However, our dynamic

thread mapping did not deliver performance improvements on 3 applications and

presented some performance losses in 8 applications when comparing with the best

single thread mapping strategy. In the case of A10, A11 and A46, a single thread

mapping strategy was best for all phases (compact in these specific cases), thus

we cannot expect performance improvements by using our dynamic approach. The

performance losses were due to wrong decisions of the predictor, which did not select

the best thread mapping strategy on all phases. The maximum performance loss was

about 8% (A43).

108 CHAPTER 5. EXPERIMENTAL EVALUATION

5.3.3 Varying concurrency

Our second set of experiments focuses on the performance impacts of the thread

mapping strategies when varying the number of threads. We selected 4 interesting

cases. Cases 1 and 2 are applications that presented a single best thread mapping

strategy for all thread counts. Cases 3 and 4 are applications whose the best single

thread mapping varied according to the number of threads. On all experiments,

TinySTM was configured with lazy-backoff.

Number of threads

Case 1 (A22) Case 2 (A16)

Case 3 (A53) Case 4 (A30)

E
x
e

c
u

ti
o

n
 t
im

e
 (

s
)

 10

 15

 20

 25

 30

 35

2 4 8 16

 5

 10

 15

 20

 25

2 4 8 16

 10

 15

 20

 25

 30

 35

2 4 8 16

 10

 15

 20

 25

 30

 35

 40

2 4 8 16

Legend

Compact
Round-Robin

Scatter

Compact
Compact

Round-Robin
Scatter
Linux

Round-Robin
Round-Robin

Scatter
Linux

Dynamic

Scatter
Scatter
Linux

Dynamic
Linux
Linux

Dynamic Dynamic

Figure 5.5: Execution times when varying the number of threads.

Figure 5.5 compares the execution times of the four single thread mapping strate-

gies with our dynamic thread mapping mechanism. We do not consider more than

16 threads for two reasons: (i) placing threads on different cores when all available

cores are used does not impact the overall performance because the applications

tend to communicate uniformly, and (ii) most of our workloads did not scale beyond

16 threads.

In Case 1 (W1, W2, W3), the best single thread mapping for all thread counts was

5.3. DYNAMIC THREAD MAPPING ANALYSIS 109

compact. The abort ratio observed in W1 and specially in W3 increases as the number

of threads increases. Differently, W2 presents very low abort ratio regardless of the

number of threads. Since W1 and W3 have very low LLC miss ratios, compact presents

better gains than other static thread mappings with 4 and 8 threads. In these cases,

the abort ratio is moderate and threads can share the same cache without adding

too much contention due to the low LLC miss ratio. Our dynamic approach selected

scatter on W2 and compact for the others when the abort ratio was low or moderate

(2 and 4 threads) and round-robin when the abort ratio was high (8 and 16 threads).

The use of round-robin when the abort ratio was too high reduced the contention on

the same cache and thus improved the performance.

Contrary to the Case 1, scatter was the best single thread mapping for all thread

counts on Case 2 (W4, W5, W6). In this application, W4 and W6 have very low abort

ratios and good scalability whereas W5 has poor scalability and moderate to high

abort ratios depending on the number of threads. The most important workload is

W6, since it is the most time-consuming. Regardless of the number of threads, scatter

reduces considerably the execution time of W4 and W6 and thus governs the overall

performance of Case 2. In most cases, our dynamic thread mapping applied scatter

on these workloads. On W5, it applied compact when the abort ratio was moderate

(2 threads) and round-robin when the abort ratio was high (4, 8 and 16 threads).

Case 3 (W4, W6, W7) represents a scenario in which the best single thread mapping

strategy relied on the number of threads (scatter, round-robin, compact and linux

with 2, 4, 8 and 16 threads respectively). Among all applications, this was the one

that presented the highest sensibility to the number of threads. As a consequence,

the abort ratio and LLC miss also change significantly as we change the number of

threads. Overall, our dynamic approach usually presented better results than other

static thread mapping strategies. We observed an exception with 16 threads, in which

linux was slightly better.

Finally, in case 4 (W1, W2, W8), we observed that compact was best for low thread

counts whereas linux was best for high thread counts. With low thread counts, the

abort ratio was moderate whereas with high thread counts, it was very high. Again,

the dynamic thread mapping usually presented equivalent or better results than

individual thread mapping strategies.

110 CHAPTER 5. EXPERIMENTAL EVALUATION

5.3.4 Modifying the STM parameters

Our third set of experiments focuses on the performance impacts of the thread

mapping strategies when varying the conflict detection and resolution policies. For

those experiments, we also selected 4 interesting cases to be analyzed in this section

while fixing the number of threads to 4. The results are shown in Figure 5.6.

The eager-suicide configuration led to high abort ratios on 2 out of 3 phases in

case 1 (W2, W4, W8). In those phases, there were many transactions that constantly

aborted, increasing the contention on the cache when the compact was used. With

lazy-backoff, the abort ratio was considerably reduced and then compact presented

better performance than other static thread mapping strategies. In all cases, the

dynamic approach presented better performance than individual thread mapping

strategies, applying compact when the abort ratio was moderate and scatter when

the abort ratio was low.

STM parameters

Case 1 (A33) Case 2 (A35)

Case 3 (A47) Case 4 (A49)

E
x
e

c
u

ti
o

n
 t
im

e
 (

s
)

Legend

Compact
Round-Robin

Scatter

Compact
Compact

Round-Robin
Scatter
Linux

Round-Robin
Round-Robin

Scatter
Linux

Dynamic

Scatter
Scatter
Linux

Dynamic
Linux
Linux

Dynamic Dynamic

 4

 6

 8

 10

 12

 14

 16

eager
suicide

eager
backoff

lazy
suicide

lazy
backoff

 4

 8

 12

 16

 20

 24

eager
suicide

eager
backoff

lazy
suicide

lazy
backoff

 8

 12

 16

 20

 24

 28

 32

eager
suicide

eager
backoff

lazy
suicide

lazy
backoff

 8

 12

 16

 20

 24

 28

eager
suicide

eager
backoff

lazy
suicide

lazy
backoff

Figure 5.6: Execution times when varying the STM parameters.

5.3. DYNAMIC THREAD MAPPING ANALYSIS 111

In case 2 (W2, W6, W8), we observed low influence of the conflict detection and

resolution policies on the performance of thread mapping statics. In this application,

there are two workloads with opposite characteristics: one has very low abort ratio

and moderate LLC miss ratio whereas the other has moderate abort ratio and low

LLC miss ratio. These two are the most time-consuming phases in this application.

For the former, scatter is better because low abort ratio usually indicates transactions

that access disjoint data and this strategy makes more cache available for each thread.

For the latter, on the contrary, compact is better because conflicts can be solved faster

without adding too much contention on the cache. Since scatter is better for one

phase and compact is better for the other, these two strategies present very similar

results as shown in the figure. Since our dynamic approach selected scatter for the

former and compact for the latter and the third phase has little impact on the overall

execution time of this application, the dynamic approach presented lower execution

times than them. The best static thread mapping was round-robin because it presents

a good tradeoff between these two extremes (compact and scatter).

Static thread mappings seem to present low influence on the execution times

in case 3 (W1, W4, W6). However, we achieved significant performance gains in

comparison to the static mappings because this application has a mix of very distinct

workloads, with a different best thread mapping strategy for each workload. Compact

presented better performance than other static thread mappings because it reduces

considerably the execution time of the most time-consuming phase (W1). Our

dynamic approach selected compact in this case and scatter for the other two phases.

Finally, in case 4 (W1, W4, W8), we have an application that is very similar to

case 3. The difference is that the workload W6 is substituted by W8. The result is

that compact is now the best static thread mapping, since W1 and W8 are the most

time-consuming phases and the best thread mapping strategy for both is compact.

We observed better performance gains of our dynamic approach in comparison to

compact with lazy conflict detection. This is due to the fact that the number of false

conflicts was reduced, resulting in much lower abort ratios on two workloads (W4

and W8). In those cases, our dynamic approach selected scatter, which gave better

results than compact.

112 CHAPTER 5. EXPERIMENTAL EVALUATION

5.3.5 Varying the number of phases

So far, we have analyzed the performance of our dynamic thread mapping

approach on a set of applications composed of 3 phases. In this section, we intend

to analyze the performance of individual thread mapping strategies across the 8

workloads. To do so, we created 8 different applications by varying the number of

phases in each application.

The gains obtained with the dynamic approach over the static ones are in fact

directly related to the diversity of the application phases. The more distinct are the

phases, the higher will be the gain if the dynamic thread mapping correctly predicts

an efficiency thread mapping for each phase. The selection of the workloads to

be used to compose the applications was done as follows. Firstly, we picked one

of the 8 workloads to create the application with a single phase (in this case, the

workload was W5). Then, for the following applications (Phasesi+1), we added one

of the remaining workloads that was very distinct from the previous application

(Phasesi−1). This allows us to create applications with very distinct phases. Finally,

we executed the 8 applications with 4 threads and we configured TinySTM to use

lazy conflict detection and backoff conflict resolution.

Phases Workloads

1 W5

2 W5,W2

3 W5,W2,W3

4 W5,W2,W3,W1

5 W5,W2,W3,W1,W4

6 W5,W2,W3,W1,W4,W6

7 W5,W2,W3,W1,W4,W6,W7

8 W5,W2,W3,W1,W4,W6,W7,W8

 0

 10

 20

 30

 40

 50

 60

 70

 80

1 2 3 4 5 6 7 8

E
x
e
c
u
ti
o
n
 t

im
e
 (

s
)

Number of phases

Compact
Scatter

Round!Robin
Linux

Dynamic

Figure 5.7: Performance of individual thread mapping strategies and the dynamic
approach when varying the number of phases.

Figure 5.7 shows the results we obtained after varying the number of phases

(left) as well as the workloads we used in each application (right). Overall, compact

5.3. DYNAMIC THREAD MAPPING ANALYSIS 113

was the best among all static thread mappings. The reason for that is twofold: after

a deep analysis, we concluded that (i) compact was the best strategy for 4 out of 8

workloads and (ii) in some cases it was considerably better then the others. Due to

the variability criteria to selected the workloads, the dynamic approach presented

better performance than individual thread mappings. As we add more phases, we

increase the variability (i.e., there are more distinct workloads). This explains the

similar execution times of the dynamic thread mapping compared to compact with

few phases and also the more important gains with more phases.

5.3.6 Dynamic thread mapping in action

In order to observe how our dynamic thread mapping reacts when it encounters

several different phases, we executed the application composed of 8 phases described

in Figure 5.7 (that is, W5, W2, W3, W1, W4, W6, W7 and W8) with our dynamic thread

mapping while tracing the information obtained by the transaction profiler at the end

of each profiling period. Figure 5.8 shows the variation of the profiled metrics during

the whole execution of this application.

compact scatter compact scatter r-r compact scatter r-r compact scatterlinux

Abort Ratio

Tx Time Ratio

LLC Miss Ratio

LegendNumber of commited transactions

R
a

ti
o

 (
%

)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

0 1x10
5

2x10
5

3x10
5

4x10
5

5x10
5

6x10
5

7x10
5

8x10
5

Number of transactions

Figure 5.8: Profiled metrics during the execution of an application with 8 phases.

114 CHAPTER 5. EXPERIMENTAL EVALUATION

In this specific experiment, we executed the application with 4 threads and we set

the TinySTM parameters to use lazy conflict detection and backoff conflict resolution.

Vertical bars represent the intervals in which each thread mapping strategy was

applied.

At the beginning, our dynamic thread mapping mechanism applies linux as its

default strategy and profiles some transactions. After the first profiling period, the

predictor decided to apply compact and did not switch to another strategy until

it reached a different phase near 1× 105. At this point, the predictor switched to

scatter. Overall, the predictor detected more than 8 phases due to the variance

of some profiled metrics but it still detected correctly the 8 main phase changes,

reacting by applying a suitable thread mapping strategy for each phase. We can

also observe that the variance of the profiled metrics confirms the fact that the 8

workloads have distinct characteristics.

5.4 Concluding remarks

Predicting a suitable thread mapping strategy to be applied to TM applications

is not a trivial task. Due to several conflict detection and resolution mechanisms

implemented by STM systems, TM applications can behave very differently on the

same platform. Additionally, the target platform features have an important influence

on the right choice of a thread mapping strategy. In this chapter, we intended to

analyze the effectiveness of our ML-based approach in predicting suitable thread

mapping strategies for TM applications.

We first evaluated the accuracy of our ML-based approach to perform static

thread mapping on TM applications. For this purpose, we used all TM applications

from STAMP, varying the number of threads and STM system parameters. The

results showed that our ML-based approach can improve the performance of STAMP

applications by up to 18.46% compared to the worst case and up to 6.37% over the

Linux default thread mapping strategy. During the experiments, we applied a leave-

one-out cross-validation to estimate how accurately our predictive model will perform

over as-yet-unseen instances. On the SMP-24 and SMP-16, the average performance

of the static approach was approximately 97% of the oracle performance.

5.4. CONCLUDING REMARKS 115

Then, we focused on TM applications composed of more diverse workloads to

evaluate our ML-based dynamic thread mapping. These workloads may go through

different execution phases, each phase with potentially different transactional charac-

teristics. In order to do so, we used EigenBench to create new TM applications with

different phases. In our evaluation, we explored different configurations such as the

number of threads, STM system parameters and the number of phases. Our results

with dynamic thread mapping showed that there is not a single thread mapping

strategy adapted for all those complex applications. Instead, we could deliver a

solution capable of detecting phase changes during the execution of the applications

and then predicting a suitable thread mapping strategy adapted for each phase. We

achieved performance improvements up to 31% in comparison to the best static

strategy.

CHAPTER 6
Related Work

WE discuss in this chapter the most relevant related works concerning the main

topics explored in this thesis. We separate these works in three sections.

Section 6.1 presents works on the performance evaluation of TM systems and appli-

cations as well as the investigation of the behavior of TM applications. Section 6.2

presents works that make use of thread or process mapping mechanisms to improve

the performance of parallel applications. Finally, Section 6.3 discusses works that use

machine learning techniques to improve the performance of parallel applications.

6.1 Evaluation of TM systems and applications

Recently, some works have addressed the performance analysis of different TM

systems whereas others have investigated the performance of TM applications. In

this section, we highlight some of the most important works in both directions.

6.1.1 Performance evaluation of TM systems

R. Wang et al. [WLL09; Wan09] studied the performance of several STM imple-

mentations on multicore machines. Authors evaluated three STM implementations

using a single benchmark (STMBench7 [GKV07]) and the Simics simulator [VIR07].

Their results showed that depending on the design choice of an STM system, the

performance of STM applications can vary significantly. Although they evaluated the

117

118 CHAPTER 6. RELATED WORK

performance of different STM implementations, they only focused on the influence

of the memory access latencies.

C. Minh et al. [Min+08] provided descriptions and a detailed characterization of

the eight STAMP applications. In particular, they measured the transaction lengths,

the sizes of read and write sets, the amount of time spent in transactions and the

average number of retries per transactions of all applications. Then, they used STAMP

to evaluate six different TM systems. However, their performance analysis of TM

systems was based on experiments performed on an execution-driven simulator. This

means that the performance obtained may differ from real multicore platforms.

V. Marathe et al. [MM08], on the other hand, compared the performance of their

STM solution with other STM implementations on two multicore machines. However,

the performance analysis was based on four simple micro-benchmarks, which may

not represent the behavior of real applications.

J. Chung et al. [Chu+06] studied 35 benchmarks from different domains. In that

work, the authors translated the original synchronization mechanisms applied on all

benchmarks to TM. However, they neither studied the non-trivial TM applications

presented here nor they have analyzed aborts and commits, which are important

metrics.

The works described above analyzed the performance of TM systems either using

simulations or synthetic applications. In this thesis, we have tackled both subjects: a

performance analysis of non-trivial TM applications by performing experiments on a

real multicore platforms. We also analyzed the impacts of different state-of-the-art

STM systems on the performance of TM applications.

6.1.2 Post-mortem analysis of TM applications

Concerning the study of the behavior of TM applications through the use of

post-mortem analysis techniques, we can highlight four recent papers.

M. Ansari et al. [Ans+09] manually instrumented the Java DSTM2 STM library

[HLM06] to collect execution data from TM applications. They ported three appli-

cations from STAMP suite and the Lee-TM benchmark to DSTM2 and profiled their

execution. The collected information was analyzed with different metrics that bring

complementary information about the behavior of TM applications. All experiments

6.1. EVALUATION OF TM SYSTEMS AND APPLICATIONS 119

were executed on an 8-core NUMA platform.

J. Lourenço et al. [Lou+09] proposed a monitoring framework, which collects

the transactional events into a log file as well as a tool to visualize the results. Their

instrumentation mechanism is based on an API, so the user must insert the API

function calls within applications source codes. The API is composed of five functions

to register each one of the following events: start, commit and abort of a transaction,

read and write operations within transactions. Their experimental analysis was based

on simple tests, i.e., they used two simple data structure-based microbenchmarks (a

Sorted Single Linked List and a Red Back Tree). In addition, all tests were executed

with a homemade TM system derived from TL2.

F. Zyulkyarov et al. [Zyu+10] proposed a series of profiling techniques for TM

applications that help developers to discover performance bottlenecks. They focused

on performance problems caused by conflicting transactions, i.e., the wasted work

caused by aborted transactions. These techniques were implemented in a profiling

framework for a specific STM system (Bartok-STM). The proposed framework is used

to analyze the performance of applications from STAMP and the synthetic benchmark

WormBench. However, since Bartok is a C# compiler, those TM programs had to be

ported from C to C# to conform with its language-level support for TM. Indeed, this

changed the behavior of some STAMP applications and the results obtained from

their profilings may differ from the original STAMP applications.

D. Porter et al. [PW10] explored a different technique to characterize and tune the

performance of TM applications. They proposed a formal model of TM performance

and a tool based on the model called Syncchar. The Syncchar model samples the

sets of addresses read and written during critical sections of a lock-based parallel

application. This information is used to construct a model of the program execution

that can predict the performance of the application if it used transactions. In addition

to predicting the performance of a TM application, the model can be used to tune the

performance, since it provides two useful metrics: data independency and conflict

density. The data independency determines if transactions usually operate on disjoint

or same data. The conflict density is a measure of how long the serial schedule

resulting from a conflict is likely to be. Those metrics can give the developer an

indication of how much parallelism they can expect from the application.

Unlike the previously cited proposals, our solution used an interception approach

120 CHAPTER 6. RELATED WORK

based on the Linux dynamic linking mechanism. This allows us to develop a solution

that does not depend on the TM application specifics. Additionally, since we do not

need to change neither the TM application nor the STM library source codes, it can

be easily applied with different STM systems with very few modifications. It can also

be easily adapted to conform with the user needs.

6.2 Thread and process mapping

Thread or process mapping mechanisms have always the same objective, that

is, to improve performance. Although the focus may be different depending on

the programming model (e.g., OpenMP and MPI applications), they are relevant to

this thesis because they usually propose heuristics to map threads or processes on

multicore platforms.

H. Chen et al. [Che+06] proposed a profile-guided approach to automatically find

an optimized mapping for arbitrary message passing applications. Their approach

does not inquire users’ knowledge on either applications or target systems. It is

composed of two steps. Firstly, they collect the communication profile of the MPI

application and the network topology of the underlying cluster platform. Then,

such information is used as the input of a graph mapping algorithm, which maps

the communication graph of parallel applications to the system topology graph to

minimize the cost of point-to-point communications. They evaluated the performance

of this approach with the NASA Parallel Benchmarks (NPB) [Bai+95] and three

other applications in different cluster configurations. They show that the optimized

process placement generated by their algorithm can achieve significant performance

improvements in comparison to the MPI default placement.

J. Zhang et al. [Zha+09] extended the approach proposed in [Che+06] to

consider MPI collective communications. Basically, they proposed to transform

collective communications into a series of point-to-point communication operations

according to the implementation of collective communications in communication

libraries. Then, they used existing approaches to find optimized mapping schemes

which are optimized for both point-to-point and collective communications. The

authors evaluated the performance of this approach with microbenchmarks which

6.2. THREAD AND PROCESS MAPPING 121

include all MPI collective communications, NPB suite [Bai+95] and three other

applications.

S. Hong et al. [Hon+09] proposed a dynamic thread mapping strategy for regular

data parallel applications implemented with OpenMP. The applications considered

in this wok consist of loop based computations manipulating arrays. The proposed

strategy has two alternating phases, namely detection phase and stable phase that are

separated by a remapping step. In the detection phase, they compute the number of

processor cycles taken to execute each thread as well as the cache accesses. Threads

are then ranked in decreasing order of their load considering these two metrics.

Then, in the remapping step, threads are mapped in such a way that the load is

distributed among the processors. The new mapping remains unchanged during a

fixed number of iterations called the stable phase. The detection and stable phases

can be repeated multiple times for the same loop to accurately capture the loop

behavior at runtime, and to better adapt application execution. The efficiency of the

proposed thread mapping strategy was evaluated using the Simics [VIR07] simulator

and NPB suite [Bai+95] and average improvement obtained was about 13%.

M. Diener et al. [Die+10] examined data sharing patterns between threads in

different workloads and used those patterns to map processes. These algorithms

relied on memory traces extracted from benchmarks to find data sharing patterns

between threads. During the profiling phase, these patterns were extracted by using

Simics [VIR07] simulator, running the workloads in a simulated UltraSPARC machine.

The proposed approach was compared to compact, scatter and the operating system

process mapping strategies. The authors achieved moderate improvements in the

common case and considerable improvements in some cases, reducing execution

time by up to 45%.

Similarly, E. Cruz et al. [Cru+11] used memory traces to perform thread mapping

on OpenMP applications. They proposed and evaluated a technique of process

mapping that binds threads of a given application on cores and allocate their data

on DRAM memories, reducing the overhead of communication among the threads

that share data. This method used different metrics and an heuristic to obtain the

mapping. Their results showed performance gains of up to 75% compared to the

Linux scheduler and memory allocator.

In contrast to these works, we proposed a ML-based approach for deciding an

122 CHAPTER 6. RELATED WORK

appropriate thread mapping strategy considering both application and platform

features. We targeted TM applications, which tend to present a more dynamic

behavior than those suited to OpenMP. We do not rely on simulations to gather

information about the application, STM system and platform. Instead, we use

hardware counters and software libraries to gather information about the platform

and applications at runtime.

6.3 Machine learning

Machine Learning has been extensively used as a predictive mechanism to solve

a wide range of problems. In this section, we briefly describe some works that rely

on Machine Learning techniques to improve the performance of parallel programs.

D. Grewe et al. [GO11] proposed a ML-based compiler model that accurately

predicts the best partitioning of data-parallel OpenCL tasks. Static analysis is used

to extract code features from OpenCL programs. These features are used to feed

a ML algorithm which is responsible for predicting the best task partitioning. The

prediction is composed by two stages. In the first stage, the model predicts whether

tasks should be only mapped to GPUs or CPUs. If the first stage of prediction does

not lead to a conclusion, the program is then passed to the second stage which

is responsible for mapping tasks to both GPUs and CPUs. The number of tasks

to be mapped to GPUs and CPUs is determined by the predictor. The proposed

model achieved a speedup of 1.57 over a state-of-the-art dynamic runtime approach.

Additionally, it achieved speedups of 3.02 and 1.55 over a purely multicore and GPU

approaches respectively.

G. Tournavitis et al. [Tou+09] proposed a two-staged parallelization approach

combining profiling-driven parallelism detection and ML-based mapping to generate

OpenMP annotated parallel programs. In this method, first they used profiling data

to extract control and data dependencies to identify portions of code that can be

parallelized. Afterwards, they applied a previously trained ML-based prediction

mechanism to each parallel loop candidate in order to select a scheduling policy

from the four options implemented by OpenMP (cyclic, dynamic, guided or static).

They evaluated the proposed parallelization strategy against the NAS and SPEC OMP

benchmarks on two different multicore platforms. The results showed that their

6.3. MACHINE LEARNING 123

approach achieves 96% of the performance of the hand-tuned OpenMP NAS and

SPEC parallel benchmarks.

Z. Wang et al. [WO09] proposed a compiler-based approach to map OpenMP

programs to multicore processors. Particularly, it focuses on determining the best

number of threads for a parallel program and how the parallelism should be sched-

uled. They proposed a ML-based predictor that automatically builds a model of

the behavior of the machine based on prior training data. This model predicts the

performance of particular mappings and is used to select the best one. In order

to evaluate the performance of the proposed solution, the authors compared their

approach to the default OpenMP runtime on two different multicore platforms. The

results showed that the ML-based approach has better performance than the OpenMP

runtime scheme.

Q. Wang et al. [Wan+11] introduced predictive mechanisms based on Machine

Learning that can select an STM algorithm adapted to the TM application workload

at runtime. They used two datasets as input for the off-line training. The first

dataset is the result of the characterization obtained from runtime profiling: they

profiled several microbenchmarks in single-threaded mode to collect runtime infor-

mation such as read-only ratio, transactional and nontransacitonal work and shared

memory accesses. The second dataset comes from throughput measurements of the

microbenchmarks at many thread levels using each one of the 15 STM algorithms

available in the RSTM system. Both datasets are used to construct adaptive policies,

one based on Case-Based Reasoning (named CBS) and other based on Neural Net-

works (named NEAT). The authors tested both adaptive policies with all applications

from the STAMP suite. At runtime, some transactions are profiled and the profiled

data is used to feed the adaptive policy to choose the STM algorithm. Since most of

the transactions within each STAMP application have similar behavior, applications

can be profiled several times at runtime with a very low overhead (a profile of one

single transaction in each profiling interval sufficed). The results showed that the

proposed adaptive policies present performance improvements very close to the

oracle that always chooses the best algorithm.

In contrast to these works, we are interested on the impact of thread mapping

strategies on the performance of TM applications, which can be more sensitive

to thread mapping due to their complex memory access patterns. Our ML-based

124 CHAPTER 6. RELATED WORK

approach considers the TM application, STM system and platform features for pre-

dicting an appropriate thread mapping strategy. It does not require any modification

in the operating system or application and it does not rely on the user’s knowledge.

Additionally, it is portable across different operating systems and platforms.

Although our approach and the work presented in [Wan+11] share the idea of

using Machine Learning techniques to increase the performance of TM applications,

they differ in several aspects. Perhaps the main difference between them comes from

the use of Machine Learning for different goals: prediction of thread mapping strate-

gies vs. selection of STM algorithms. In this sense, our approach is complementary

to that work. In addition to that, they differ in terms of Machine Learning algorithms

used for prediction: we use Decision Tree Learning whereas they use Case-Based

Reasoning and Neural Networks. The collected information during the learning

phase and runtime profiling also differs: we do not need to collect information in

single-threaded mode. This would add a considerable overhead in more dynamic

applications, since it would be necessary to profile several transactions in single-

threaded mode to capture the workload behavior. Finally, they did not consider any

information from the platform, which in some cases may play an important role.

CHAPTER 7
Conclusion and Perspectives

PROCESSOR manufacturers have responded to the demand for more processing

power by delivering faster processor speeds. However, the need to achieve

higher performance without driving up power consumption and heat recently became

a critical concern. To respond to this problem, manufactures are now investing on

multicore platforms, based on the fact that a good overall processing performance

can be achieved by reducing individual core clock speeds while increasing the number

of cores.

In order to develop parallel applications for those platforms, developers rely on

high-level environments such as OpenMP, MPI [Qui08] and Charm [KB12]. Although

these environments aim at simplifying the development of correct parallel applica-

tions, they hide several issues which impact the performance of the applications.

Consequently, developers must also take care of several aspects, ranging from the

platform peculiarities to the application level, if they want to obtain efficient parallel

applications.

In this context, Software Transactional Memory (STM) appears as another pro-

grammer friendly alternative approach to leverage the development of parallel

applications on those modern multicore platforms. It allows programmers to write

parallel code as transactions, which are guaranteed to execute atomically and in

isolation regardless of eventual data races. At runtime, transactions are executed

speculatively and the STM runtime system continuously keeps track of concurrent

125

126 CHAPTER 7. CONCLUSION AND PERSPECTIVES

accesses and detects conflicts. Conflicts are then solved by re-executing conflicting

transactions. However, as the other previously mentioned high-level environments,

STM hides important aspects that may impact the performance of Transactional Mem-

ory (TM) applications. In addition to that, TM applications can behave differently

depending on the characteristics of the underlying STM system.

The contributions of this thesis were situated around the analysis and improve-

ment of the performance of TM applications on multicore platforms using low-

intrusive techniques to both TM applications and STM systems. This was done

without incurring any modifications to neither TM applications nor the core of the

STM systems.

7.1 Contributions

The first part was dedicated to the performance analysis of TM applications

(Chapter 3). First, we took a deeper look on the impacts of STM systems on the

performance of TM applications. We showed that the performance of applications that

use TM-based synchronization systems depend on both the applications themselves

and the STM system specifics. However, STM hides important aspects that may

impact the performance of TM applications and then understanding the performances

achieved is a daunting task. In addition to that, the high variability of TM applications

and STM systems makes it even more difficult to establish a simple yet generic

solution that allows developers to accomplish this task.

We argued that developers can better understand the performances obtained

from TM applications by tracing runtime events that are relevant in the context of

TM applications. Thus, we proposed and implemented a prototype library called

libTraceSTM, which can be used with different TM applications and STM systems

without any changes in their original source codes. The traced data can then be

used to perform runtime or post-mortem analyses. Since we store events along with

their corresponding timestamps, we can obtain temporal information from events

generated by TM applications. For instance, it is possible to discover if the TM

application presents points of high contention (“hot spots”) or if the contention is

spread out over the whole execution. Finally, we applied our tracing mechanism on

three TM applications from STAMP and analyzed the obtained results. Our study

7.1. CONTRIBUTIONS 127

was based on the comparison of the traced data from those applications on two

state-of-the-art STM systems. We showed that the traced information could help us

to better understand the obtained performances.

The second part addressed the performance improvement of TM applications

on multicores (Chapter 4). We observed that the performance of TM applications

can be improved if we match their characteristics (along with the characteristics

of the STM system) to the underlying multicore platform. More precisely, we were

interested in gathering useful information from the TM applications and STM systems

and then use such information to better exploit the memory hierarchy of modern

multicore platforms. To deal with the large diversity of TM applications, STM system

configurations and multicore platforms, we proposed to use Machine Learning to

automatically predict suitable thread mapping strategies for TM applications. Our

approach was based on a prior learning phase, in which we profiled several TM

applications running on different STM systems to know their characteristics. Then,

such information was used to feed a ML algorithm, outputting a predictor. Once

this learning phase was finished, we were able to use the predictor to infer suitable

thread mapping strategies to be applied to new unknown TM applications.

We implemented two approaches to perform thread mapping for TM applications

on TinySTM (one of the state-of-the-art STM systems). The first approach performs

static thread mapping, in which we profile TM applications during an initial warm-

up period and the predicted thread mapping strategy is applied once, remaining

unchanged during the whole execution. The second approach performs dynamic

thread mapping, in which we profile TM applications several times during the

execution, switching the thread mapping strategy to a more adequate one when

necessary.

We finally evaluated the performance of our Machine Learning-based approach

to perform static and dynamic thread mapping on TM applications (Chapter 5).

We concluded that the static approach was fairly accurate. Considering all STAMP

applications, different STM parameters and thread counts, and two different SMP

platforms, our solution had on average 97% of the optimal performance provided

by the oracle. Concerning the dynamic approach, we showed that it could detect

different phase changes during the execution of TM applications composed of more

diverse workloads, predicting a suitable thread mapping strategy adapted for each

128 CHAPTER 7. CONCLUSION AND PERSPECTIVES

phase. We achieved performance improvements up to 31% in comparison to the

best static strategy. Overall, the average performance improvement of the dynamic

approach compared to the best static strategy on each application was approximately

14% (48 out of 56 applications presented better performance with the dynamic

approach) whereas the average performance loss was approximately 4% (8 out of 56

applications presented worse performance with the dynamic approach).

7.2 Future works

This research can be extended in several directions. Below, we highlight some of

those possibilities:

… Explore new architectures, systems and TM applications. We have con-

stantly seen efforts for a wider adoption of Transactional Memory. Recent

efforts concern the addition of TM support on the latest version of the GNU

Compiler Collection (GCC 4.7) and the new processors that add hardware sup-

port for TM: BlueGene/Q from IBM and Intel Transactional Synchronization

Extensions (TSX) for the future multicore processor code-named “Haswell”.

We believe that those efforts will broaden the audience of TM and will also

significantly contribute to the appearance of new real-world TM applications.

In addition to that, it is expected that those new architectures will apply the

NUMA design. Thus, a medium- to long-term research possibility will be to

apply our ML-based predictor on those new architectures and applications.

We believe that it can be possible to extend our approach to be used with

NUMA platforms. However, the way data is allocated/distributed among the

memory banks also influences the overall performance of applications on those

platforms. For that reason, it would be necessary to consider not only the

thread mapping strategies but also memory allocation policies to make better

use of the NUMA memory banks. Our previous works on the impact of memory

allocation policies on NUMA paltforms [Cas+09; Rib+09b; Rib+12] can be

used as a good starting point.

… Create new predictors based on other ML algorithms. Our ML-based ap-

proach to perform thread mapping relied on a specific Decision Tree Learning

7.2. FUTURE WORKS 129

algorithm (ID3) to construct the predictor. In our approach, we used profiled

data from several TM applications and STM systems as an input for the ID3

learning algorithm. Once this previous training phase was finished, we used the

same predictor for all new unknown TM applications. This process is known as

off-line learning. Another direction for future works can be the use of online

learning algorithms. With online learning, the profiled information derived

from new TM applications can be used to automatically adapt the predictor. We

believe that such approach can be useful for improving the predictor accuracy

on a wider range of TM applications.

… Extend the ML-based predictor to consider other system metrics. In this

thesis, we used a set of metrics to be profiled, such as the abort ratio, LLC

miss ratio and conflict detection and resolution policies. Probably, the most

obvious improvement would be to consider a broader range of STM conflict

detection and resolution policies. Another interesting metric that could be

added is energy consumption. Energy is increasingly becoming one of the

most expensive resources and the most important cost item for running a

large supercomputing facility. Thus, we could imagine a situation in which

we would want to use energy consumption instead of execution time as our

performance metric in the ML-based predictor. In this case, the predictor would

select a thread mapping strategy that consumes less energy for a certain TM

application/STM system/platform configuration.

APPENDIX A
Static Thread Mapping Results

Best mapping
Worst mapping

ML

Legend

S
p
e
e
d
u
p

S
p
e
e
d
u
p

S
p
e
e
d
u
p

 0

 1

 2

 3

 4

 5

 6

2 4 8 16

bayes

 0

 2

 4

 6

 8

 10

 12

2 4 8 16

genome

 0

 0.5

 1

 1.5

 2

 2.5

 3

2 4 8 16

intruder

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

2 4 8 16

kmeans

 0

 2

 4

 6

 8

 10

2 4 8 16

labyrinth

 0

 0.5

 1

 1.5

 2

 2.5

 3

2 4 8 16

ssca2

 0

 1

 2

 3

 4

 5

 6

2 4 8 16

vacation

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

2 4 8 16

yada

Figure A.1: Speedups of the best and worst thread mappings in comparison to the
ML when varying concurrency on the SMP-24.

131

132 APPENDIX A. STATIC THREAD MAPPING RESULTS

Best mapping
Worst mapping

ML

Legend

S
p
e
e
d
u
p

S
p
e
e
d
u
p

S
p
e
e
d
u
p

 0

 1

 2

 3

 4

 5

 6

2 4 8 16

bayes

 0

 2

 4

 6

 8

 10

2 4 8 16

genome

 0

 0.5

 1

 1.5

 2

 2.5

 3

2 4 8 16

intruder

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

2 4 8 16

kmeans

 0

 1

 2

 3

 4

 5

 6

 7

 8

2 4 8 16

labyrinth

 0

 0.5

 1

 1.5

 2

 2.5

 3

2 4 8 16

ssca2

 0

 1

 2

 3

 4

 5

 6

2 4 8 16

vacation

 0

 0.3

 0.6

 0.9

 1.2

 1.5

 1.8

2 4 8 16

yada

Figure A.2: Speedups of the best and worst thread mappings in comparison to the
ML when varying concurrency on the SMP-16.

133

 0

 0.25

 0.5

 0.75

 1

 1.25

eager
backoff

eager
suicide

yada

 0

 1

 2

 3

 4

 5

 6

eager
backoff

eager
suicide

lazy
backoff

lazy
suicide

bayes

 0

 1

 2

 3

 4

 5

 6

 7

 8

eager
backoff

eager
suicide

lazy
backoff

lazy
suicide

genome

 0

 0.5

 1

 1.5

 2

 2.5

 3

eager
backoff

eager
suicide

lazy
backoff

lazy
suicide

intruder

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

eager
backoff

eager
suicide

lazy
backoff

lazy
suicide

kmeans

 0

 0.5

 1

 1.5

 2

 2.5

 3

eager
backoff

eager
suicide

lazy
backoff

lazy
suicide

ssca2

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

eager
backoff

eager
suicide

lazy
backoff

lazy
suicide

vacation

 0

 1

 2

 3

 4

 5

 6

 7

 8

eager
backoff

eager
suicide

lazy
backoff

lazy
suicide

labyrinth

Best mapping
Worst mapping

ML

Legend

S
p
e
e
d
u
p

S
p
e
e
d
u
p

S
p
e
e
d
u
p

Figure A.3: Speedups of the best and worst thread mappings in comparison to the
ML when varying the STM parameters on the SMP-24.

134 APPENDIX A. STATIC THREAD MAPPING RESULTS

 0

 0.25

 0.5

 0.75

 1

 1.25

 1.5

 1.75

eager
backoff

eager
suicide

yada

Best mapping
Worst mapping

ML

Legend

S
p
e
e
d
u
p

S
p
e
e
d
u
p

S
p
e
e
d
u
p

 0

 1

 2

 3

 4

 5

 6

eager
backoff

eager
suicide

lazy
backoff

lazy
suicide

bayes

 0

 1

 2

 3

 4

 5

 6

 7

 8

eager
backoff

eager
suicide

lazy
backoff

lazy
suicide

genome

 0

 0.5

 1

 1.5

 2

 2.5

 3

eager
backoff

eager
suicide

lazy
backoff

lazy
suicide

intruder

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

eager
backoff

eager
suicide

lazy
backoff

lazy
suicide

kmeans

 0

 1

 2

 3

 4

 5

 6

 7

 8

eager
backoff

eager
suicide

lazy
backoff

lazy
suicide

labyrinth

 0

 0.5

 1

 1.5

 2

 2.5

 3

eager
backoff

eager
suicide

lazy
backoff

lazy
suicide

ssca2

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

eager
backoff

eager
suicide

lazy
backoff

lazy
suicide

vacation

Figure A.4: Speedups of the best and worst thread mappings in comparison to the
ML when varying the STM parameters on the SMP-16.

APPENDIX B
Extended Abstract in French

Optimisation de la Performance des Applica-

tions de Mémoire Transactionnelle sur des Plates-

formes Multicœurs : Une Approche Basée sur

L’Apprentissage Automatique

Márcio Bastos Castro

Table des matières

1 Introduction 139
1.1 Contributions . 143

2 Mémoire Transactionnelle : Une Nouvelle Approche de la Synchroni-
sation 147
2.1 Les principes de base . 147
2.2 Validation et évaluation de la TM . 151

3 Analyse des Performances des Applications de Mémoire Transaction-
nelle 153
3.1 Impact de la STM sur les performances des applications 153
3.2 Vers un mécanisme de traçage adaptée à la TM 156
3.3 Études de cas . 157

4 Optimisation des Performances des Applications de Mémoire Transac-
tionnelle 161
4.1 Impact du placement de threads sur les performances 161
4.2 Une approche basée sur l’apprentissage automatique pour le place-

ment de threads . 163
4.3 Placement statique de threads . 165
4.4 Placement dynamique de threads . 165

5 Expérimentations, Évaluation et Analyse 169
5.1 Plates-formes multicœurs . 169
5.2 Placement statique de threads . 170
5.3 Placement dynamique de threads . 171

6 Conclusions et Perspectives 175
6.1 Contributions . 176
6.2 Travaux futurs . 177

CHAPITRE 1
Introduction

Depuis les années quatre-vingt, l’évolution des technologies des semi-conducteurs

et des architectures informatiques a permis d’améliorer significativement les perfor-

mances des processeurs avec des accroissements de performances de l’ordre de 40

à 50% [LK08]. Toutefois, avec des circuits de plus en plus denses, cela a soulevé

d’autres problèmes liés notamment à la dissipation de la chaleur dans des transistors.

Cela a conduit les industriels à limiter la fréquence des processeurs et à opter pour

des architectures multiprocesseurs et/ou multicœurs dont la dissipation thermique

est limitée.

Les architectures multicœurs sont au coeur des environnements de haute per-

formance [Asa+09]. Mais, même si elles permettent de répondre convenablement

au problème de dissipation, exploiter efficacement la puissance des architectures

multicœurs reste un défi majeur. Par exemple, la puissance de traitement est sou-

vent limitée par le débit de transfert de données entre la mémoire principale et

les processeurs. Ce problème est connu dans la littérature sous le nom de memory

wall problem [McK04]. Pour répondre à ce problème, ces plates-formes disposent

généralement de hiérarchies de mémoire complexes composées de différents niveaux

de cache pour maximiser l’utilisation des données issues de la mémoire principale.

En considérant que la technologie de semi-conducteurs est capable de doubler

le nombre de transistors sur une puce tous les deux ans, il est clair que le nombre

de cœurs sur une puce continuera à augmenter. Par exemple, le programme de

139

140

recherche informatique mené par Intel a créé un prototype de puce contenant 80

coeurs. Dans ce contexte des architectures many-cores, les chercheurs explorent

également l’utilisation de la technologie 3D pour fournir des mémoires cache à la fois

larges et à faible latence empilées au-dessus des processeurs. Ce qui va permettre de

réduire la consommation énergétique et d’augmenter la bande passante [HBK06].

Par ailleurs, les applications doivent évoluer pour exploiter efficacement la puis-

sance des plates-formes multicœurs. Les applications séquentielles doivent être

découpées en processus ou tâches parallèles. Chaque processus, généralement de

type processus léger ou thread en anglais, est assigné à un processeur spécifique de la

machine d’exécution. Les différents threads se partagent les données de l’application,

nécessitant d’intégrer des mécanismes de synchronisation pour assurer la cohérence

des exécutions. Cette synchronisation complexifie la programmation et induit en

général un surcoût sur les performances l’application.

Les mécanismes de synchronisation traditionnelle, tels que les verrous, les mu-

texes et les sémaphores ont été largement utilisés pour la synchronisation de threads

sur des plates-formes multicœurs. Toutefois, ils présentent des inconvénients im-

portants. Ils sont considérés comme “mécanismes de bas niveau”, puisqu’on doit

contrôler explicitement l’accès aux variables partagées. Aussi, ils provoquent des

blocages, donc les threads doivent se bloquer sur un verrou (ou un ensemble de

verrous) avant de poursuivre leur exécution. Notons également que l’utilisation in-

correcte de ces mécanismes peut facilement conduire à des interblocages (deadlocks)

ou des situations du type livelock [Tai94]. Enfin, la synchronization peut ralentir

considérablement l’évolution de l’exécution des programmes parallèles et rajoute

une complexité importante dans le code source.

En raison des problèmes abordés ci-dessus, les chercheurs tentent de trouver

d’autres mécanismes alternatifs. Un de ces mécanismes qui a fait l’objet d’actives re-

cherches ces dernières années est la Mémoire Transactionnelle (Transactional Memory

– TM). Ce modèle de programmation permet d’écrire des portions parallèles de code

dans des transactions. Ces transactions sont exécutées de façon atomique et isolée les

unes des autres, tout en garantissant l’exactitude de l’exécution parallèle [Dal+10 ;

HLR10]. Lors de l’exécution, les opérations sont exécutées d’une façon spéculative et

le système d’exécution de la TM gère les accès concurrents et détecte les conflits. Les

conflits sont alors résolus en réexécutant les transactions en conflit. Ce qui évite au

141

programmeur de gérer explicitement la synchronisation des accès concurrents aux

données partagées.

Différentes implémentations de systèmes de TM font des compromis entre les

performances et la facilité de programmation. Les choix de conception les plus

courants sont la Mémoire Transactionnelle Logicielle (Software Transactional Memory

– STM), la Mémoire Transactionnelle Matérielle (Hardware Transactional Memory –

HTM) et Mémoire Transactionnelle Hybride (Hybrid Transactional Memory – HyTM).

La STM est une approche logicielle et ne nécessite donc pas de matériel spécifique

[DGK09 ; DSS06 ; FFR08]. Au contraire, toutes les fonctionnalités de la HTM sont

mises en œuvre au niveau matériel [McD+05 ; Moo+06]. La HyTM, quand à elle,

est une approche hybride dans laquelle le matériel sert simplement à optimiser

les performances des transactions qui sont contrôlées par une solution logicielle

[Kum+06 ; Shr+06].

La STM a un certain nombre d’avantages par rapport aux deux autres approches.

Elle portable sur un grand nombre de systèmes et plates-formes et offre une flexi-

bilité dans la mise en œuvre des mécanismes et politiques de détection/résolution

de conflits. En outre, des solutions matérielles et hybrides ne sont pas encore dispo-

nibles dans les processeurs commerciaux. L’inconvénient est que la STM est moins

performante que les HTM et HyTM.

En général, l’efficacité des applications parallèles repose sur l’appariement du

comportement de l’application avec le système et architecture sous-jacents. Plus

précisément, cette question devient beaucoup plus complexe dans les STM. Il y a

deux raisons à cela. La première raison est liée au modèle de la TM : comme la TM

utilise la spéculation, les applications se synchronisant avec de la TM présentent des

comportements irréguliers (les dépendances de données entre les threads ne sont

connues que lors de l’exécution). La deuxième raison est liée à la STM : chaque

système de STM met en œuvre ses propres mécanismes pour détecter et résoudre des

conflits. Ansi, une application se synchronisant à l’aide de la STM peut se comporter

différemment lorsque le système de STM sous-jacent est différent.

La Figure 1.1 illustre ce scénario suivant trois axes. Sur l’axe de la STM, nous

avons presenté quelques systèmes de STM actuellement disponibles. Chacun a ses

spécificités, en ce qui concerne par exemple les mécanismes pour détecter et ré-

soudre les conflits. Sur l’axe des applications utilisant la TM, nous avons inclus les

142

applications et des benchmarks qui sont utilisés pour évaluer les systèmes de STM.

Quelques benchmarks comme par exemple le Stanford Transactional Applications

for Multi-Processing (STAMP) sont composés de plusieurs applications [Min+08].

Les différences entre ces applications se situent sur le niveau de la concurrence, la

probabilité de conflits, la taille et le temps passé à l’intérieur des transactions, etc.

Enfin, sur l’axe des plates-formes multicœurs, nous avons représenté les différences

en termes de hiérarchie mémoire : plates-formes ayant uniquement des caches privés,

uniquement des caches partagés ou les deux. Tous ces aspects peuvent avoir un

impact important sur les performances des applications.

Micro-
Benchmarks

STAMP Lee-TM STMBench7

Applications TM

Plates-formes Multicoeurs

Systèmes STM

TL2

SwissTM

RSTM

TinySTM

C
ac
he
s

P
riv
ée
s

C
ac
he
s

P
ar
ta
gé
es

C
ac
he
s

P
riv
ée
s+
P
ar
ta
gé
es

FIGURE 1.1 – Systèmes de STM, applications et plates-formes multicœurs.

Dans cette thèse, nous voulons comprendre et optimiser les performances des

applications se synchronisant à l’aide de la STM sur des plates-formes multicœurs.

Toutefois, cela n’est pas trivial en raison du nombre de combinaisons possibles des

aspects précédemment cités. Notre objectif est donc d’analyser les performances et

de proposer des améliorations en utilisant des techniques à faible intrusivité à la fois

au niveau des applications et des systèmes de STM.

143

1.1 Contributions

La première contribution de cette thèse se situe sur l’analyse et compréhension

des applications se synchronisant à l’aide de la mémoire transactionnelle sur des

plates-formes multicœurs. Tout d’abord, nous étudions l’impact des systèmes de STM

sur les performances des applications. Nous montrons que ces performances ne dé-

pendent pas seulement des applications, mais aussi des spécificités et paramètres des

systèmes de STM. Pour étudier plus en détail ces questions et aider les développeurs à

comprendre et améliorer les performances, nous proposons une approche générique

pour la collecte des informations pertinentes sur les transactions. Notre solution

peut être appliquée à des systèmes de STM et des applications différentes car elle

ne modifie les codes sources ni des applications cibles, ni celui du système de STM.

Nous montrons ensuite que l’information collectée peut être utile pour comprendre

les performances des applications se synchronisant à l’aide de la STM. Ce travail

a abouti à une publication dans les actes de la conférence Euromicro International

Conference on Parallel, Distributed and Network-Based Computing (PDP) en 2011 :

… Márcio CASTRO, Kiril GEORGIEV, Vania MARANGONZOVA-MARTIN, Jean-François

MÉHAUT, Luiz Gustavo FERNANDES et Miguel SANTANA. « Analysis and Tracing of

Applications Based on Software Transactional Memory on Multicore Architec-

tures ». Dans : Euromicro International Conference on Parallel, Distributed and

Network-Based Computing (PDP). Aya Napa, Cyprus : IEEE Computer Society,

2011, p. 199–206. ISBN : 978-0-7695-4328-4. DOI : 10.1109/PDP.2011.27

La deuxième contribution de cette thèse concerne la proposition d’une approche

visant à améliorer les performances des applications de TM grâce à l’exploitation

de la hiérarchie mémoire de plates-formes multicœurs modernes. Nous évaluons et

démontrons que les stratégies de placement de threads (thread mapping) permetent

de mieux utiliser les plates-formes multicœurs et donc d’améliorer les performances

des applications de TM. Cependant, l’efficacité d’une telle approche repose sur l’ap-

pariement du comportement de l’application avec les caractéristiques du système de

TM sous-jacent. En particulier, les systèmes de STM rendent cette tâche encore plus

difficile en raison de leur système d’exécution. Les systèmes existants de STM mettent

144

en œuvre plusieurs mécanismes pour la détection et résolution des conflits. Ce qui

conduit les applications TM à se comporter différemment pour chaque combinaison

de ces mécanismes. Ainsi, la prédiction d’une stratégie de placement de threads

appropriée pour une application/système de STM spécifique est une tâche délicate.

Nous nous attaquons à ce problème en utilisant de l’Apprentissage Automatique

(Machine Learning – ML) pour déduire automatiquement une stratégie de placement

de threads pour les applications de TM. Notre approche prend en compte non seule-

ment des caractéristiques de l’application de TM mais aussi le système de STM et la

plate-forme multicœurs sous-jacents. Ce travail a abouti à une publication dans les

actes de la conférence High Performance Computing Conference (HiPC) en 2011 :

… Márcio CASTRO, Luís Fabricio Wanderley GÓES, Christiane Pousa RIBEIRO, Mur-

ray COLE, Marcelo CINTRA et Jean-François MÉHAUT. « A Machine Learning-

Based Approach for Thread Mapping on Transactional Memory Applications ».

Dans : High Performance Computing Conference (HiPC). Bangalore, India : IEEE

Computer Society, 2011, p. 1–10. ISBN : 978-1-4577-1949-3. DOI : 10.1109/

HiPC.2011.6152736

Enfin, notre troisième contribution étend la précédente approche en proposant

une stratégie appropriées de placement de threads de manière dynamique pour des

applications de TM. Nous soutenons que des applications plus complexes feront

usage de la TM dans l’avenir proche. Ces applications peuvent être composées de

plusieurs phases d’exécution, chaque phase ayant un comportement potentiellement

différent. Ainsi, au lieu de prévoir et d’appliquer une seule stratégie statique de

placement de threads, nous utilisons des techniques de profilage pour récupérer des

informations utiles lors de l’exécution des applications de TM. Cette technique nous

permet de détecter des changements de comportement et d’appliquer une stratégie

de placement de threads adéquate à chaque phase. Nous avons mis en œuvre cette

approche dans un système de STM récent pour rendre cela transparent à l’utilisateur.

Les résultats préliminaires de notre troisième contribution ont été présentés et

discutés au Euro-TM Workshop on Transactional Memory (WTM) (associé avec la confé-

rence EuroSys 2012). Les soumissions ont été évaluées par les membres du projet

145

Transactional Memories : Foundations, Algorithms, Tools, and Applications (Euro-TM) 1.

… Márcio CASTRO, Luís Fabrício GÓES, Luiz Gustavo FERNANDES et Jean-François

MÉHAUT. « Dynamic Thread Mapping Based on Machine Learning for Tran-

sactional Memory Applications ». Dans : Euro-TM Workshop on Transactional

Memory (WTM). Extended abstract. Avr. 2012

Une version étendue de ce travail a été accepté pour une présentation dans les

actes de la conférence International European Conference on Parallel and Distributed

Computing (Euro-Par) en 2012.

… Márcio CASTRO, Luís Fabrício GÓES, Luiz Gustavo FERNANDES et Jean-François

MÉHAUT. « Dynamic Thread Mapping Based on Machine Learning for Transactio-

nal Memory Applications ». Dans : International European Conference on Parallel

and Distributed Computing (Euro-Par). T. 7484. Lecture Notes in Computer

Science (LNCS). Rhodes Island, Greece : Springer-Verlag, 2012, p. 465–476.

ISBN : 978-3-642-32819-0. DOI : 10.1007/978-3-642-32820-6_47

1. http://www.eurotm.org

CHAPITRE 2
Mémoire Transactionnelle : Une

Nouvelle Approche de la

Synchronisation

2.1 Les principes de base

La Mémoire Transactionnelle (Transactional Memory – TM) offre une nouvelle

façon intéressante de développement d’applications parallèles en utilisant un niveau

d’abstraction plus élevé. Elle déplace le problème de la synchronisation correcte

au système de TM, qui est responsable pour s’assurer que : les interblocages ne se

produisent pas, les situations de compétition (race conditions) sont correctement

traitées et les blocagues sont effectués à une granularité qui permet de bien exploiter

le parallélisme inhérent à l’application.

L’idée originale remonte à 1977, lorsque D. Lomet a remarqué qu’une abstraction

similaire à celle de transactions de base de données pourrait être utilisé comme

mécanisme de programmation afin d’assurer la cohérence des données partagées

entre plusieurs threads [Lom77]. Seize ans plus tard, en 1993, M. Herlih et J. Moss

ont proposé une implémentation d’un système de TM au niveau matériel [HM93].

Dès la publication de ce travail, nous observons un intérêt croissant de recherches

sur la Mémoire Transactionnelle.

147

148

Dans cette section, nous présentons certains aspects importants de la Mémoire

Transactionnelle. Tout d’abord, nous présentons les concepts généraux. Enfin, nous

discutons des différentes approches pour sa mise en œuvre.

2.1.1 Concept

Les concepts de base de la TM sont illustrés dans la Figure 2.1. Les transactions

sont des séquences d’instructions (délimitées par des blocs de code) exécutés par des

threads [HS08]. La façon dont une transaction est définie dans le code source dépend

de son implémentation dans le langage de programmation utilisé. Cependant, les

transactions sont définies dans la plupart des compilateurs qui prennent en charge

la TM par des blocs atomiques. Le code interne au bloc atomique (ainsi que les

routines qu’il invoque) est exécuté comme une transaction et est donc assuré d’être

exécuté de façon atomique et isolé indépendamment des situations de compétition

(data races) [Dal+10 ; HLR10].

no conflict

conflict

rollback

commitabort

atomic {

...

 }

FIGURE 2.1 – Principes de base de la Mémoire Transactionnelle.

Lors de l’exécution d’une application, les opérations des blocs atomiques sont exé-

cutées spéculativement et la Mémoire Transactionnelle controle les accès concurrents

et détecte les conflits. Quand un conflit survient, une seule transaction impliquée

dans le conflit sera validée (de l’anglais commit) alors que les autres seront annulées

(de l’anglais abort) et ré-exécutées (de l’anglais rollback). Dans les cas des transac-

tions sans conflit, le système de TM permettra que toutes les transactions soient

validées simultanément.

À défaut de bonnes traductions en Français, nous emploierons dans la suite le

terme commit pour désigner la validation d’une transaction et le fait que ses modifi-

cations soient visibles par tous les autres transactions, et le terme abort pour désigner

149

l’annulation d’une transaction suite à un conflit. Par extension, nous utiliserons les

verbes commiter et aborter. Le terme transactionnel désigne ce qui a trait à une

transaction. Ainsi, des données transactionnelles sont des données accédées durant

une transaction.

2.1.2 Choix de conception

Fondamentalement, il existe quatre critères importants qui doivent être pris en

compte lors de la conception des systèmes de TM : la granularité des transactions, la

gestion des versions, la détection et la résolution des conflits.

La granularité des transactions est l’unité de stockage dans laquelle un système

de TM détecte les conflits [HLR10]. Dans les langages orientées objet, il est courant

d’utiliser la granularité d’objet, qui détecte les conflits lorsque les threads modifient

l’état d’un même objet. Il existe également d’autres alternatives telles que la granula-

rité du mot mémoire ou la granularité d’une ligne de cache. La première utilise

le mot de mémoire comme l’unité de détection de conflit, alors que la dernière utilise

un ensemble de mots chargés dans le cache. La granularité choisie peut évidemment

affecter les performances des applications et influencer la mis en œuvre d’un système

de TM.

Le second mécanisme important est la gestion de version qui est responsable

pour contrôler la façon dont les modifications de données en mémoire sont gérées.

En général, les systèmes de TM utilisent l’une de ces deux approches : la gestion

de version précoce (de l’anglais eager version management) ou la gestion de version

paresseuse (de l’anglais lazy version management). La première stocke les nouvelles

valeurs en place et les anciennes valeurs dans un historique des valeurs. À l’inverse,

la gestion de version paresseuse laisse les valeurs pré-transactionnelles en mémoire

et place les nouvelles valeurs dans des copies privées.

Le troisième mécanisme important est la détection des conflits. Fondamenta-

lement, la politique de détection des conflits dicte le moment où les conflits sont

détectés. On distingue classiquement deux types de détection des conflits : la détec-

tion précoce des conflits (de l’anglais eager conflict detection) et la détection pares-

seuse des conflits (de l’anglais lazy conflict detection). Dans la première approche, les

conflits sont détectés lorsqu’ils se produisent pendant l’exécution des transactions. En

150

revanche, la deuxième approche détecte les conflits lorsque la transaction commite.

Cela permet de réduire les surcoûts liés à l’exécution des transactions au prix d’une

augmentation du surcoût de la phase de commit.

Enfin, lorsqu’un conflit est détecté, un mécanisme de résolution des conflits est

invoqué par le système de TM. Ce mécanisme décide quelle transaction doit être

ré-exécutée. Cette tâche est généralement traitée par le gestionnaire de contention

qui met en œuvre une ou plusieurs politiques de résolution de conflits. Les deux

alternatives les plus utilisées sont d’aborter immédiatement l’une des transactions en

conflit (dite suicide) ou de rajouter un temps d’attente après un abort, de manière à

éviter la congestion engendrée par une transaction qui aborte et recommence conti-

nuellement (dite backoff). De la même façon, le choix de la politique de résolution

des conflits peut également affecter les performances d’un système de TM.

2.1.3 Les systèmes de TM

Les choix de conception mentionnés ci-dessus constituent le cœur d’un système

de TM. Cependant, les systèmes peuvent être implémentés en logiciel ou implantés

en matériel.

Les systèmes de Mémoire Transactionnelle Logicielle (Software Transactional

Memory – STM) mettent en œuvre toutes les sémantiques transactionnelles dans le

logiciel, telles que la détection des conflits, la gestion des versions et la résolution

des conflits. Elle ne requiert donc pas de support matériel particulier. Ces systèmes

sont en général implémentés sous la forme d’une bibliothèque [HLR10].

À l’inverse des systèmes de STM, les systèmes de Mémoire Transactionelle Ma-

terielle (Hardware Transactional Memory – HTM) sont basés sur le fait qu’aucune

instrumentation logicielle spécifique n’est requise, mais que le système est entière-

ment implanté au niveau matériel. Bien souvent, les systèmes de HTM modifient les

protocoles de cohérence de cache pour mettre en œuvre les mécanismes de détection

et de résolution de conflits [HM93 ; Moo+06].

Enfin, les systèmes de Mémoire Transactionnelle Hybride (Hybrid Transactional

Memory – HyTM) utilisent une approche hybride dans laquelle le matériel sert

simplement à optimiser les performances des transactions qui sont contrôlées par

une solution logicielle [Kum+06 ; Shr+06].

151

2.2 Validation et évaluation de la TM

Des nombreux benchmarks ont été crées depuis la première proposition d’un

système de TM. Les benchmarks les plus utilisés dans le domaine peuvent être classés

dans trois groupes :

… Microbenchmarks basés sur des structures de données. Ils sont basés sur

des structures de données simples pour évaluer les systèmes de TM. Ils sont

utiles pour la construction de base au niveau des idées de modèles de TM

et peuvent être configurés pour répondre aux besoins des utilisateurs. Des

exemples de paramètres communs sont le pourcentage des insertions, des sup-

pressions et des recherches à l’intérieur de la structure de données. Cependant,

ils ne présentent pas un large éventail de caractéristiques de TM [Kes+09] et

ne représentent pas des charges de travail réalistes. Comme exemples, on peut

citer l’arbre bicolore [DSS06], la table de hachage [Dic+09], la liste chaînée

[FFR08] et la liste à enjambements [Dra+11].

… Benchmarks réalistes. Ils représentent de vraies charges de travail originaires

d’une grande variété d’algorithmes et domaines d’application différents. Ces

applications ont un large éventail de comportements transactionnels : diffé-

rentes tailles de transactions, différents taux de conflits, des transactions à gros

grains et à grains fins, etc. Le benchmark les plus utilisé est le Stanford Tran-

sactional Applications for Multi-Processing (STAMP) [Min+08] qui comprend 8

applications et 30 variantes de paramètres d’entrée.

… Générateurs des charges de travail. Les générateurs sont utiles pour explorer

un large éventail de comportements transactionnels et stresser les aspects

particuliers d’un système de TM. Ils ont généralement plusieurs paramètres de

configuration qui peuvent être facilement modifiés pour produire des charges de

travail. Ils ont aussi la capacité d’imiter le comportement des applications réelles

de TM. Le générateur le plus utilisé est EigenBench [Hon+10]. Il permet aux

utilisateurs d’effectuer une exploitation approfondie de l’espace orthogonal des

caractéristiques des applications de TM. En raison de ses nombreux paramètres,

il peut être facilement configuré pour imiter une grande variété de charges de

travail (comme par exemple les charges de travail présentes dans STAMP).

CHAPITRE 3
Analyse des Performances des

Applications de Mémoire

Transactionnelle

3.1 Impact de la STM sur les performances des

applications

Nous avons mentionné précédemment que la performance d’une application de

TM peut être affectée par le système de STM sous-jacent. Du côté du système de STM,

cet impact provient de ses choix de conception, telles que la gestion des versions et la

détection des conflits [Wan+11] et des mécanismes de résolution [HYH12]. Comme

les systèmes de STM utilisent des différentes stratégies, nous nous attendons à ce

que les applications de TM se comportent différemment selon le système de STM

sous-jacent.

Afin d’étudier cet impact, nous avons effectué des expériences avec toutes les

applications du benchmark STAMP. Ce benchmark offre des avantages importants par

rapport à d’autres benchmarks : les applications utilisent une variété d’algorithmes

qui appartiennent à différents domaines. En autre, les applications peuvent être

facilement exécutées avec des systèmes de STM différents. Afin de stresser les

systèmes de STM, nous avons choisi les plus grandes tailles de paramètres d’entrée

153

154

décrites dans l’article de STAMP [Min+08]. Pour couvrir un plus large éventail de

caractéristiques transactionnelles, nous avons utilisé les paramètres de contention

bas pour les applications vacation et kmeans.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 2 4 8 16

number of threads

ssca2

 0

 1

 2

 3

 4

 5

 6

 2 4 8 16

number of threads

vacation

 0

 2

 4

 6

 8

 10

 12

 2 4 8 16

number of threads

labyrinth

 0.4

 0.8

 1.2

 1.6

 2

 2.4

 2.8

 2 4 8 16

number of threads

intruder

 6

 8

 10
TinySTM
SwissTM

TL2
RSTM

 0

 2

 4

 6

 8

 10

 12

 2 4 8 16

number of threads

genome

Legend

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 2 4 8 16

number of threads

bayes

Number of threads

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 2 4 8 16

yada

S
p

e
e

d
u

p

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 2 4 8 16

kmeans

FIGURE 3.1 – Speedups des applications de STAMP avec quatre systèmes de STM.

Nous avons exécuté les applications de STAMP avec quatre systèmes de STM

récents. Les systèmes utilisés sont TinySTM [FFR08] (version 1.0.3), TL2 [DSS06]

(version 0.9.6), SwissTM [DGK09] (version 15.08.2011) et RSTM [Mar+06] (version

7). Ils représentent les systèmes de STM les plus connus implémentés en langage C

(TinySTM et TL2) et C++ (SwissTM et RSTM). Comme certains systèmes de STM

peuvent être configurés pour utiliser des différents algorithmes, nous avons utilisé

leurs configurations par défaut. Chaque expérience a été exécutée au moins 30 fois

et les speedups ont été calculés en utilisant le temps moyen d’exécution sur la plate-

155

forme SMP-24 (nous présentons la description détaillée de cette plate-forme dans la

Section 5.1). Il est également important de mentionner que toutes les expériences

ont été réalisées avec un accès exclusif à la plate-forme et nous avons utilisé une

stratégie de placement de threads statique pour éviter les migrations des threads.

Cette stratégie fixe un thread par cœur et place les threads aussi proches que possible

afin de profiter du partage de cache.

La Figure 3.1 présente les speedups de toutes les applications avec les quatre

systèmes de STM 1. Comme l’on peut constater, les performances des applications

peuvent être considérablement affectées en fonction du système de STM utilisé. Dans

l’ensemble, TinySTM et SwissTM ont présenté les meilleurs résultats. L’application

bayes a présenté un comportement imprévisible. Principalement avec TinySTM, le

temps d’exécution a varié considérablement ce qui rend difficile la comparaison des

ces performances avec SwissTM. Vacation et ssca2 ont présenté des performances

très similaires.

Les deux cas les plus intéressants étaient intruder et labyrinth. Dans le cas de

l’application intruder, les performances obtenues avec ces deux systèmes de STM ont

été très similaires avec un petit nombre de threads. Toutefois, avec 8 et 16 threads,

le système SwissTM a obtenu des meilleurs résultats. Dans le cas de l’application

labyrinth, nous avons remarqué un comportement similaire mais cette fois-ci le

système TinySTM a été plus performant que SwissTM avec un grand nombre de

threads.

Nous pensons que l’utilisation de techniques de traçage peut s’avérer utile pour

analyser ces impacts. Dans la Section 3.2, nous présentons une approche générique

pour récupérer des informations pertinentes à la TM. Enfin, dans la Section 3.3, nous

utilisons cette approche pour mieux comprendre la performance de ces deux cas

intéressants.

3.2 Vers un mécanisme de traçage adaptée à la TM

Dans cette thèse, nous nous sommes particulièrement intéressés par les événe-

ments provenants de l’utilisation de la STM. Cela nous permet de proposer une

1. Nous n’avons pas inclus les résultats de bayes avec TL2, puisque cette configuration conduit à
des exécutions incorrectes de cette application.

156

approche capable de récupérer des informations utiles à faible intrusivité et indépen-

dante de l’application et du système de STM.

Les systèmes de STM offrent un ensemble d’opérations qui fournissent des fonc-

tionnalités de base de la TM. Ces opérations sont implémentées comme des fonctions

dans les systèmes de STM et elles apparaissent dans le code source de l’application

en tant qu’appels aux fonctions du système de STM. Dans la Table 3.1, nous défi-

nissons les événements les plus importants qui peuvent être générés à partir d’un

système de STM. Nous avons également corrélé ces événements avec leurs fonctions

correspondantes dans TinySTM 2.

Événement Fonction (TinySTM) Action

StmIni t stm_init() Initialiser le système de STM.
StmExit stm_exit() Finaliser le système de STM.

T xBegin stm_start() Début d’une transaction.
T x End stm_commit() Commit d’une transaction.
T xAbor t stm_rollback() Ré-exécution d’une transaction abortée.

T xRead stm_load() La transaction lit une donnée en mémoire.
T xW rite stm_store() La transaction écrit une donnée en mémoire.

TABLE 3.1 – Fonctionnalités de base d’un système de STM.

Le traçage des événements cités ci-dessus nous permet de recueillir des informa-

tions utiles de l’exécution des applications à base de TM. Par exemple, les données

tracées peuvent être utilisées pour détecter si l’application présente des points de

contention ou si cette contention est répartie sur toute l’exécution.

Nous avons implémenté notre solution de traçage (libTraceSTM) en s’appuyant

sur le mécanisme d’édition de liens dynamique de Linux. Ce mécanisme offre un

moyen simple d’intercepter les appels aux fonction d’une application sans modifier ces

codes sources originaux. Lors de l’exécution, notre mécanisme de traçage intercepte

les fonctions souhaitées et redirige l’exécution vers les fonctions définies dans le

traceur (dites wrappers). Les fonctions wrapper sont implementées par l’utilisateur.

La Figure 3.2 présente le fonctionnement du traceur. Quand chaque thread est

initialisé par l’application de TM, le traceur crée automatiquement une structure

2. Il n’existe pas de norme en matière de noms de fonctions (API). Bien que le nom de ces fonctions
peut varier en fonction du système de STM, tous les systèmes ont généralement telles fonctionnalités.

157

TinySTM TL2 SwissTM ...

STM Application

STM

libTraceSTM

Th
1

Th
2

Th
n

0001 1 TxEnd
0009 1 TxAbort
0023 1 TxEnd

Th trace buffer
1

...
0003 2 TxEnd
0015 2 TxAbort
0027 2 TxAbort
0029 2 TxEnd

Th trace buffer
2

Th trace file
2

STM function call interception

STM function call

0002 n TxAbort
0004 n TxAbort
0005 n TxAbort

Th trace buffer
n

...

Th trace file
1

...

Th trace file n

...
FIGURE 3.2 – Mécanisme de traçage.

de données interne pour stocker les informations sur ce thread (un fichier de trace

et une mémoire tampon pour stocker temporairement des événements tracés). Les

traces des événements contiennent non seulement l’identifiant du thread mais aussi

leurs estampillages, ce qui permet d’analyser temporellement les événements générés

par des applications basées sur la TM.

Les événements tracés sont tout d’abord stockées dans la mémoire tampon.

Lorsque la mémoire tampon est pleine, son contenu est vidé dans le fichier de trace

correspondant. Puisque nous obtenons un fichier de trace par thread, les fichiers de

trace individuels doivent être fusionnés en un seul fichier suivant un ordre global

d’événements. Nous fournissons donc un outil qui effectue un tri fusion des fichiers

de trace individuels.

3.3 Études de cas

Dans cette section, nous appliquons notre mécanisme de traçage sur des ap-

plications de TM du benchmark STAMP. L’objectif est d’utiliser des techniques de

visualisation simples pour analyser et comprendre le comportement des applications

à partir des données tracées.

Puisque notre mécanisme de traçage enregistre les estampilles de chaque événe-

ment, nous pouvons savoir quand chaque événement s’est produit lors de l’exécu-

tion de l’application. Ceci est utile pour trouver des points de contention pendant

158

l’exécution ou pour vérifier si cette contention est répartie sur toute l’exécution.

Cette information peut être obtenue à partir du traçage des événements T x End et

T xAbor t. Nous pensons que cet ensemble réduit d’événements nous permettra de

recueillir des informations pertinentes sans augmenter le degré d’intrusion.

Nous avons sélectionné les applications intruder et labyrinth pour nos études de

cas car elles présentent différents niveaux de contention, des différentes performances

et des comportements distincts fonction du système de STM utilisé. Les systèmes de

STM choisis pour cet étude sont TinySTM et SwissTM.

3.3.1 Intruder

Dans notre première étude de cas, nous voulons comprendre les causes de la

mauvaise performance de l’application intruder avec des nombres de threads élevés.

En plus de cela, nous voulons savoir pourquoi SwissTM a eu des résultats relativement

meilleurs que TinySTM.

 0

 20

 40

 60

 80

 100

time
Time

 C
o

m
m

it
 r

a
te

 (
%

)

Intruder - TinySTM Intruder - SwissTM

 0

 20

 40

 60

 80

 100

time

2 threads

4 threads

8 threads

16 threads

2 threads

4 threads
8 threads

16 threads

FIGURE 3.3 – Taux de commits de l’application intruder avec TinySTM et SwissTM.

La Figure 3.3 compare le taux de commit de cette application avec TinySTM

et SwissTM. Intruder exécute un très grand nombre de transactions (environ 255

millions de transactions avec 16 threads), ce qui génère 4 Go de données dans notre

format binaire. Tout d’abord, les résultats montrent que les taux de commit changent

considérablement durant l’exécution et ils sont fortement liés au nombre de threads.

Nous avons également observé que cette application présente une augmentation de

la contention vers la fin de son exécution. Le système SwissTM a eu des taux de

159

commits toujours plus élevés par rapport à ceux de TinySTM. Cela veut dire que le

gestionnaire de contention de SwissTM est plus adapté à cette application, ce qui

résulte à des meilleures performances.

Nous croyons que la raison pour laquelle SwissTM a été plus performant que

TinySTM est dû au fait que TinySTM utilise la politique suicide pour la résolution

de conflits. Cette politique se comporte bien sur des charges de travail à faible

contention, ce qui n’est pas le cas de l’application intruder.

3.3.2 Labyrinth

Dans notre second étude de cas, nous analysons l’application labyrinth avec

TinySTM et SwissTM. Comme nous l’avons pu observer dans la Section 3.1, les

performances de labyrinth avec TinySTM et SwissTM ont été similaires avec un

faible nombre de threads. Toutefois, avec 16 threads le système TinySTM a été plus

performant que SwissTM.

 0

 200

 400

 600

 800

 1000

 1200

N
u
m

b
e
r

o
f

e
v
e
n
ts

 (
c
u
m

u
la

ti
v
e
)

Time

TinySTM: TxEnd

TinySTM: TxAbort

SwissTM: TxEnd

SwissTM: TxAbort

FIGURE 3.4 – Nombre de T x End/T xAbor t accumulés dans labyrinth avec 16 threads.

Dans la Figure 3.4, chaque courbe représente le nombre accumulé d’événements

(T x End ou T xAbor t) au cours de l’exécution de labyrinth avec 16 threads sur les

systèmes TinySTM et SwissTM. Les résultats montrent que le taux de croissance

des événements T x End est exponentielle et est très similaire sur les deux systèmes

de STM. Par ailleurs, le taux de croissance de T xAbor t est linéaire mais aussi très

160

similaire sur les deux systèmes de STM. Cela indique que cette application prend

avantage de l’approche optimiste de la TM et justifie les bonnes performances pré-

sentés dans la Section 3.1. Toutefois, le taux de croissance de transactions commitées

est légèrement plus élevé sur TinySTM. Cela est dû au fait que TinySTM utilise la

politique suicide pour la résolution de confits. Cette politique est plus performante

dans le cas de l’application labyrinth car elle présente très peu de conflit et les

transactions en conflit sont abortées immédiatement après la détection de conflit.

CHAPITRE 4
Optimisation des Performances des

Applications de Mémoire

Transactionnelle

4.1 Impact du placement de threads sur les

performances

Les performances des applications parallèles peuvent être améliorées grâce à une

bonne exploitation de la hiérarchie mémoire de plates-formes multicœurs modernes.

Le placement de threads (thread mapping) est une des techniques qui permettent de

mieux utiliser les ressources comme les bus mémoire, la mémoire principale et la

mémoire cache.

Définir une stratégie efficace de placement de threads pour des applications de

TM est un défi. Cela provient du fait que chaque système de STM met en œuvre des

différents mécanismes pour détecter et résoudre les conflits entre les transactions.

Ces mécanismes modifient le comportement de l’application de TM et influencent la

décision de la stratégie de placement de threads.

Pour supporter cette affirmation, nous avons effectué plusieurs expériences avec

toutes les applications du benchmark STAMP sur quatre systèmes de STM différents

(TinySTM, SwissTM, TL2 et RSTM) et quatre stratégies de de placement de threads

161

162

(compact scatter, round-robin et linux). Fondamentalement, ces stratégies peuvent

être caractérisées de la façon suivante :

… scatter : les threads sont répartis sur des différents processeurs. Cela permet

d’éviter le partage de la mémoire cache entre les cœurs afin de réduire la

contention sur la même cache.

… compact : les threads sont physiquement placés proches les uns des autres.

Cela permet de réduire la latence d’accès à la mémoire car les threads partagent

tous les niveaux de la hiérarchie de cache.

… round-robin : cette stratégie est une solution intermédiaire dans laquelle les

threads partagent des niveaux plus hauts de cache (e.g., L3), mais pas les plus

bas (e.g., L2).

… linux : c’est la stratégie utilisée par défaut sur Linux.

La Table 4.1 présente la différence en terme des temps d’exécution entre la

meilleur et la pire stratégie de placement de threads pour toutes les applications du

benchmark STAMP. Nous avons constaté que l’impact de ces stratégies peut être élevé

selon l’application et le système de STM.

Application
TinySTM SwissTM

Meilleur Pire Meilleur Pire
stratégie temps (s) stratégie temps (s) stratégie temps (s) stratégie temps (s)

bayes compact 6.8 scatter 8.9 scatter 6.1 compact 9.6
genome compact 4.0 scatter 10.2 scatter 1.5 compact 1.9
intruder compact 44.9 linux 65.7 compact 15.7 scatter 16.9
kmeans compact 6.7 scatter 7.8 round-robin 5.7 compact 6.6

labyrinth scatter 15.6 round-robin 20.3 scatter 14.5 round-robin 15.7
ssca2 scatter 7.3 compact 9.6 scatter 7.5 compact 10.0

vacation round-robin 7.7 linux 10.7 scatter 8.0 compact 9.8
yada compact 13.1 scatter 17.1 compact 11.2 scatter 14.1

Application
TL2 RSTM

Meilleur Pire Meilleur Pire
stratégie temps (s) stratégie temps (s) stratégie temps (s) stratégie temps (s)

bayes − − − − compact 7.8 round-robin 8.8
genome scatter 2.2 compact 2.6 compact 2.5 linux 2.8
intruder compact 34.5 scatter 39.6 compact 25.5 scatter 34.9
kmeans round-robin 7.1 scatter 8.4 compact 11.8 scatter 17.2

labyrinth round-robin 22.9 scatter 25.7 scatter 17.6 compact 19.6
ssca2 compact 11.8 scatter 15.3 compact 20.7 scatter 35.6

vacation scatter 9.5 compact 10.4 compact 9.7 linux 13.3
yada compact 16.3 scatter 20.0 compact 36.9 scatter 45.8

TABLE 4.1 – Impact du placement de threads sur les performances des applications.

163

4.2 Une approche basée sur l’apprentissage

automatique pour le placement de threads

Pour faire face à la grande diversité des applications, des systèmes de STM et des

plates-formes, nous proposons une approche basée sur l’Apprentissage Automatique

(Machine Learning – ML) pour prédire automatiquement les stratégies de placement

de threads appropriées pour les applications de TM.

Application
Profiling

Pre-Processing
Learning
Process

Applications (1 to n)

Learning phase

Predictor

Application
Profiling

Application n+1

Thread Mapping Strategy

FIGURE 4.1 – Approche basée sur l’apprentissage automatique.

Notre approche est illustrée dans la Figure 4.1. Au cours d’une phase d’appren-

tissage préliminaire, nous construisons les profils des applications s’exécutant sur

différents systèmes de STM. Pour construire les profils nous utilisons l’ensemble de

métriques présentés dans la Table 4.2. Les données collectées sont utilisées par un

algorithme de ML pour créer notre prédicteur. L’algorithme utilisé est le Dichotomiser

3 (ID3) [Qui86]. Cet algorithme génère une arbre de décision qui sera utilisé comme

un prédicteur de placement de threads.

Métrique Valeurs Description

Temps transactionnel (0.0 ; 1.0) Temps transactionnel / Temps total
Taux d’abort (0.0 ; 1.0) Nombre d’aborts / Nombre de commits + Nombre d’aborts

Détection de conflits eager, lazy STM conflict detection policies
Résolution de conflits suicide, backoff STM conflict resolution policies

Défauts de cache (LLC) (0.0 ; 1.0) Nombre de défauts de cache misses / Nombre d’accès

Placement de threads
compact, scatter,

Stratégies de placement de threads
round-robin, linux

TABLE 4.2 – Métriques utilisées pour construire les profils des applications.

164

Une fois que la phase d’apprentissage est terminée, le prédicteur peut être utilisé

pour déduire et ensuite appliquer une stratégie efficace de placement de threads à

des nouvelles applications. Il est important de noter que la phase d’apprentissage

n’est plus nécessaire. Au lieu de cela, le profilage est nécessaire afin de récuperer des

informations de la nouvelle application. Les données collectées sont converties en

conformité avec le format d’entrée de l’arbre de décision. Enfin, l’arbre de décision

est alimenté par ces informations. L’arbre est ensuite exploré pour déterminer une

stratégie de placement. La stratégie de placement de threads est donc appliquée.

Tx Time
Ratio

Tx Abort
Ratio

high

TM Conflict
Resolution

compact

mediumlow

scatter compact

suicide backoff

compact scatter

medium low

LLC Miss
Ratio

high

scatter

low

TM Conflict
Resolution

medium / high

scatter round-robin

suicide backoff

Tx Abort
Ratio

LLC Miss
Ratio

high

compact

medium

round-robin

medium / high

TM Conflict
Detection

low

linux

lazy

TM Conflict
Resolution

eager

compact round-robin

backoff suicide

round-robin

low

(a) SMP-24 (b) SMP-16

FIGURE 4.2 – Arbres de décision générées par l’algorithme ID3 sur deux différentes
plates-formes.

Nous avons utilisé toutes les applications du benchmark STAMP pour construire

le prédicteur. Nous pensons que ces applications réalistes peuvent être utiles pour

construire un prédicteur capable de capturer le comportement des applications de

TM. La Figure 4.2 montre les deux arbres de décision générés par l’algorithme ID3

sur deux plates-formes : SMP-24 (à gauche) et SMP-16 (à droite). Les détails de

ces plates-formes sont présentes dans la Section 5.1. Sur la plate-forme SMP-24,

compact et scatter sont les deux plus importantes stratégies alors que round-robin

et compact sont les plus importantes sur la plate-forme SMP-16. Nous pouvons

également observer que l’arbre de décision de la SMP-16 est beaucoup plus simple

165

que celle de la SMP-24. Ceci peut être expliqué par le fait que la SMP-24 a une

hiérarchie de cache plus complexe.

4.3 Placement statique de threads

Une fois que le prédicteur a été crée, il peut désormais prédire des stratégies

de placement de threads pour des nouvelles applications de TM. Nous pouvons

utiliser deux stratégies différentes pour appliquer le placement de threads d’une

façon statique :

… Prédiction après une exécution préliminaire : la nouvelle application est

exécutée et profilée durant toute son exécution. Puis, l’arbre de décision est

décoré avec les informations collectées. L’arbre est ensuite exploré pour dé-

terminer la stratégie de placement. La stratégie choisie par le prédicteur sera

donc appliquée sur les exécutions ultérieures de cette application.

… Prédiction lors de l’exécution après une courte période de profilage : la

nouvelle application démarre avec une stratégie de placement de threads par

défaut et est profilée pendant une courte période de temps. Puis, l’arbre de

décision est décoré avec les informations collectées. L’arbre est ensuite exploré

pour déterminer la stratégie de placement. La stratégie choisie par le prédicteur

sera donc appliquée à l’exécution.

4.4 Placement dynamique de threads

L’approche statique qui utilise le prédicteur lors de l’exécution après une courte pé-

riode de profilage peut être adaptée pour fonctionner d’une façon dynamique. L’idée

est d’effectuer le profilage ainsi que la prédiction à plusieurs reprises durant l’exé-

cution de l’application. Comme la plupart des caractéristiques considérées peuvent

varier au cours de l’exécution des applications composées de plusieurs phases, il est

important de définir comment et quand le profilage va se produire. Nous proposons

d’utiliser l’échantillonnage au lieu de profiler toute l’exécution de l’application. Cela

réduit considérablement le coût du profilage. Notre proposition est illustrée dans la

Figure 4.3.

166

Transactional Memory
Application

transactions

Dynamic Thread
Mapping

Application

Profiling
Prediction Deployment

t

w

e
x
e
c
u

ti
o

n
 l
in

e
s

FIGURE 4.3 – Exécution avec le placement dynamique de threads.

Notre approche fonctionne de la façon suivante. Au cours de l’initialisation de

l’application, nous appliquons la stratégie de placement de threads par défaut de

Linux. Ensuite, nous profilons t transactions committées lors de l’exécution pour

récupérer les informations nécessaires à notre prédicteur. L’information profilée est

utilisée par le prédicteur pour sélectionner une stratégie de placement de threads

adaptée aux caractéristiques de la charge de travail actuelle. La stratégie est donc

déployée et reste inchangée pendant les w prochaines transactions committées. Ce

processus est répété jusqu’à ce que l’application se termine.

STM core Modules

TinySTM

mod_mem

Dynamic Memory Management

mod_stats

Statistics of Transactions

mod_dtm

Dynamic Thread Mapping

.

.

.
Hardware Topology Analyzer

Thread Mapping Predictor

Transaction Profiler

FIGURE 4.4 – Implementation du placement dynamique dans TinySTM.

Pour que notre solution soit transparente pour les utilisateurs, nous l’avons

implementée dans un système de STM récent. Nous avons choisi TinySTM parmi les

systèmes de STM car il est léger, efficace et a une structure modulaire qui peut être

facilement étendue avec de nouvelles fonctionnalités (Figure 4.4).

Fondamentalement, le système TinySTM est composé d’un noyau, dans lequel

la plupart du code du système de STM est implementé ainsi que quelques modules

supplémentaires. Ces modules implémentent des fonctionnalités de base telles que

la gestion de la mémoire dynamique (mod_mem) et les statistiques des transactions

167

(mod_stats). Nous avons ajouté un nouveau module appelé mod_dtm qui permet

TinySTM de réaliser le placement dynamique de threads d’une façon transparente.

Notre module contient les composants suivants :

… L’analyseur de topologie (Hardware topology analyzer) : est chargé de récu-

pérer des informations utiles de la plate-forme sous-jacente (i.e., la hiérarchie

de caches et comment elles sont partagées). Pour cela, nous utilisons la biblio-

thèque Hardware Locality (hwloc) library [Bro+10].

… Le prédicteur (Thread mapping predictor) : s’appuie sur l’arbre de décision

pour prédire la stratégie de placement de threads. Pendant la phase de prédic-

tion, l’arbre est parcourue et la stratégie de placement de threads est ensuite

déployée.

… Le mécanisme de profilage de transactions (Transaction profiler) : effectue le

profilage de l’application. Les défauts de cache sont obtenus par la bibliothèque

Performance Application Programming Interface (PAPI) [Ter+10]. Les autres

métriques sont obtenues par l’utilisation de compteurs et des informations

provenants du système de STM.

CHAPITRE 5
Expérimentations, Évaluation et

Analyse

5.1 Plates-formes multicœurs

Nous avons mené nos expériences sur deux plates-formes multicœurs (Table 5.1).

La SMP-24 est une plate-forme multicœur basée sur quatre processeurs Intel Xeon

X7460 à six cœurs. Chaque paire de cœurs partage une mémoire cache L2 (3 Mo) et

chaque processeur a une cache L3 partagée (16 Mo).

M
at

ér
ie

l

Characteristic SMP-24 SMP-16
Processeur Intel Xeon X7460 Intel Xeon E7320
Nombre de cœur 24 16
Nombre de processeurs 4 4
Fréquence (GHz) 2.66 2.13
Cache (Mo) 16 (L3) 2 (L2)
Mémoire RAM (Go) 64 64

Lo
gi

ci
el

Nom / version SMP-24 SMP-16
Noyau Linux 3.2.0-2 2.6.18
GCC 4.6.3 4.1.2
TinySTM 1.0.3 1.0.3
Benchmark STAMP 0.9.10 0.9.10
Eigenbench 0.8.0 –

TABLE 5.1 – Caractéristiques des plates-formes.

La SMP-16 est une plate-forme multicœur basée sur quatre processeurs Intel Xeon

169

170

E7320 à quatre cœurs. Chaque paire de cœurs partage une mémoire cache L2 (2 Mo).

Toutes les expériences ont été réalisées avec un accès exclusif à ces plates-formes.

Nous avons utilisé le système TinySTM pour toutes nos expériences car c’est

un système léger, performant et peut être facilement configuré pour utiliser des

différentes politiques pour la détection et résolution de conflits.

5.2 Placement statique de threads

Pour l’evaluation du placement statique de threads, nous avons utilisé la prédiction

lors de l’exécution après une courte période de profilage. La nouvelle application

démarre avec une stratégie de placement de threads par défaut et est profilée pendant

une courte période de temps. Puis, l’arbre de décision est décoré avec les informations

collectées. L’arbre est ensuite exploré pour déterminer la stratégie de placement. La

stratégie choisie par le prédicteur est donc appliquée à l’exécution.

Nous avons utilisé les applications de STAMP pour le processus d’apprentissage.

Nous avons également utilisé deux politiques de détection de conflits (eager et

lazy) et de résolution de conflits (suicide et backoff) visant à alimenter le processus

d’apprentissage. Nous évaluons le prédicteur en utilisant la méthode leave-one-out-

cross-validation. Dans cette méthode, nous excluons l’application que nous voulons

tester du processus d’apprentissage. Cela signifie que l’arbre de décision utilisé par le

prédicteur ne contient pas d’information sur l’application à être testée. La prédiction

est faite lors de l’exécution après une courte période de profilage.

La Figure 5.1 compare les performances de chaque stratégie placement de threads

et notre approche basée sur l’apprentissage automatique avec la performance de

l’oracle. L’oracle représente la performance maximale qui peut être obtenue, car

il considère la meilleure stratégie pour chaque combinaison de paramètres. Une

combinaison de paramètres est une instance d’une application/configuration du

système de STM/plate-forme. Dans la dernière colonne, nous présentons également

les performances globales de chaque stratégie.

Dans l’ensemble, l’approche basée sur le ML a fait des bonnes prédictions sur

les deux plates-formes. Sur ces plates-formes, l’approche basée sur le ML a atteint

97,44% (SMP-24) et 97,04% (SMP-16) de la performance de l’oracle. Sur la plate-

forme SMP-24, linux était la pire stratégie et a atteint 89,27% de la performance de

171

A
v
e

ra
g

e
 p

e
rf

o
rm

a
n

c
e

n
o

m
a

liz
e

d
 t
o

 t
h

e
 o

ra
c
le

 (
%

)

SMP-24

SMP-16

STAMP applications

 70

bayes genome intruder kmeans labyrinth ssca2 vacation yada AVG

 70

 75

 80

 85

 90

 95

 100

bayes genome intruder kmeans labyrinth ssca2 vacation yada AVG

 70

bayes genome intruder kmeans labyrinth ssca2 vacation yada AVG

 70

 75

 80

 85

 90

 95

 100

bayes genome intruder kmeans labyrinth ssca2 vacation yada AVG

Legend

MLLinux

Round-Robin

Linux

Round-Robin

Round-Robin
Scatter
Compact

Round-Robin
Scatter
Compact

FIGURE 5.1 – Performances l’approche basée sur l’apprentissage automatique.

l’oracle. Différemment, compact était le pire sur la plate-forme SMP-24, réalisant

93,14% de la performance de l’oracle.

5.3 Placement dynamique de threads

Comme la plupart des transactions au sein de chaque application du benchmark

STAMP ont généralement un comportement très similaire, ces applications ne sont

pas appropriées pour l’évaluation de notre approche dynamique. Pour cette raison,

nous avons utilisé EigenBench [Hon+10] pour créer de nouvelles applications de TM

composées de différentes charges de travail. Ces charges de travail ont différentes

caractéristiques comme la taille de transactions (grandes et petites), la probabi-

lité de conflits (haute et basse) et le temps passé dans des transactions (long et

court). Comme nous supposons deux possibles valeurs discrètes pour chacun de

ces paramètres, nous pouvons créer un total de 23 charges de travail (nommées

172

W1, W2, . . . , W8).

Ensuite, nous avons établi un ensemble d’applications à partir des 8 charges de

travail distinctes. Nous avons fixé le nombre de phases à 3, donc chaque application

sera composé de trois charges de travail. Par conséquent, toutes les applications

possibles composées de trois charges de travail distinctes est déterminée par C k
n
=

C3
8 , i.e., 56 applications (A1, A2, . . . , A56). Ainsi, l’ensemble des applications peuvent

être représentées comme suit : A1 = {W1, W2, W3}, A2 = {W1, W2, W4}, . . . , A56 =

{W5, W6, W7}. Les phases (charges de travail) ont été parallélisées à l’aide de la

bibliothèque Pthreads.

Applications

R
e

la
ti
v
e

 g
a

in
 (

%
)

Dynamic / Best single thread mapping
Dynamic / Worst single thread mapping

Legend

-10

 0

 10

 20

 30

 40

 50

 60

 70

A
1

A
2

A
3

A
4

A
5

A
6

A
7

A
8

A
9

A
1
0

A
1
1

A
1
2

A
1
3

A
1
4

A
1
5

A
1
6

A
1
7

A
1
8

A
1
9

A
2
0

A
2
1

A
2
2

A
2
3

A
2
4

A
2
5

A
2
6

A
2
7

A
2
8

-10
 0

 10
 20
 30
 40
 50
 60
 70

A
2
9

A
3
0

A
3
1

A
3
2

A
3
3

A
3
4

A
3
5

A
3
6

A
3
7

A
3
8

A
3
9

A
4
0

A
4
1

A
4
2

A
4
3

A
4
4

A
4
5

A
4
6

A
4
7

A
4
8

A
4
9

A
5
0

A
5
1

A
5
2

A
5
3

A
5
4

A
5
5

A
5
6

R
e
la

ti
v
e
 g

a
in

 (
%

)

FIGURE 5.2 – Gains de l’approche dynamique par rapport à la meilleur/pire stratégie
statique.

Nous avons exécuté toutes les applications avec les stratégies de placement

de threads statiques (compact, scatter and round-robin), linux et notre approche

dynamique. La Figure 5.2 présente les gains relatifs de l’approche dynamique par

rapport à la meilleur/pire stratégie statique. Le gain relatif est donné par 1− xd

X s

, où

x d et x s sont les temps moyens obtenus à partir d’au moins 30 exécutions en utilisant

la stratégie dynamique et la meilleur/pire stratégie statique respectivement. Ainsi, les

valeurs positives signifient des gains de performance alors que les valeurs négatives

173

signifient des pertes. L’approche dynamique a présenté des meilleurs résultats que les

stratégies statiques. Cela est dû au fait que l’approche dynamique permet de choisir

une stratégie adaptée à chaque phase.

CHAPITRE 6
Conclusions et Perspectives

Les fabricants de processeurs ont répondu à la demande croissante de puissance

de calcul en fournissant des processeurs de plus en plus rapides. Cependant, obtenir

les meilleures performances sans augmenter ni la consommation d’énergie ni la

production de chaleur est récemment devenue une préoccupation majeure. Pour

répondre à cette nouvelle exigence, les fabricants investissent maintenant sur les

plates-formes multicœurs, en s’appuyant sur le fait que de bonnes performances de

calcul et de consommation d’énergie peuvent être obtenues si l’on réduit les vitesses

d’horloge des unités de calcul (cœurs), tout en augmentant le nombre de cœurs.

Dans ce contexte, la Mémoire Transactionnelle Logicielle est une nouvelle ap-

proche rendant plus facile le développement d’applications parallèles sur les plates-

formes multicœurs modernes. Ce modèle de programmation permet au programmeur

d’écrire des portions parallèles de code dans des transactions. Ces transactions sont

exécutées de façon atomique et isolées les unes des autres, tout en conservant une

correcte exécution parallèle. Lors de l’exécution, les transactions sont exécutées

spéculativement et le système d’exécution de la TM trace en permanence les accès

concurrents et détecte les conflits. Les conflits éventuels sont alors résolus par la

ré-exécution des transactions impliquées dans le conflit. Grâce à cela, la synchronisa-

tion correcte des accès concurrents aux données partagées n’est plus à la charge du

programmeur. Cependant, tout comme les autres environnements de haut niveau

précédemment cités, la STM cache des aspects importants qui peuvent avoir une inci-

175

176

dence sur les performances des applications utilisant de la Mémoire Transactionnelle.

Par ailleurs, les applications utilisant de la TM peuvent se comporter différemment

en fonction des caractéristiques du système de STM sous-jacent.

Les contributions de cette thèse portent sur l’analyse et l’optimisation des perfor-

mances des applications reposant sur de la TM pour des plates-formes multicœurs en

utilisant des techniques à faible intrusivité.

6.1 Contributions

Dans un premier temps, nous avons montré que l’analyse de performances des

applications de TM est rendue complexe par le fait que le modèle de TM et le

système de STM masquent de nombreux aspects pertinents. De plus, la diversité

des applications basées sur de la TM et des systèmes de STM rend difficile d’établir

une solution simple et générique qui permet aux développeurs d’accomplir cette

tâche. Pour s’attaquer à ce problème, nous avons proposé un mécanisme de traçage

générique et portable qui permet de récupérer des événements spécifiques à la TM

afin de mieux analyser les performances des applications. Enfin, nous avons appliqué

notre mécanisme de traçage sur deux applications du benchmark STAMP et analysé

les résultats obtenus.

Ensuite, nous avons adressé le problème de l’amélioration des performances des

applications utilisant de la TM sur des plates-formes multicœurs (Chapitre 4). Nous

avons souligné que le placement des threads (thread mapping) était très important

et pouvait améliorer considérablement les performances globales obtenues. Nous

nous sommes intéressés à récupérer des informations utiles à partir des applications

et des systèmes de STM et ensuite utiliser ces informations pour mieux exploiter la

hiérarchie mémoire des plates-formes multicœurs modernes.

Pour faire face à la grande diversité des applications, des systèmes de STM

et des plates-formes, nous avons proposé une approche basée sur l’Apprentissage

Automatique (Machine Learning – ML) pour prédire automatiquement les stratégies

de placement de threads les plus appropriées pour des applications basées sur de

la TM. Nous avons mis en œuvre deux approches pour effectuer le placement de

threads pour des applications à base de TM dans TinySTM d’une façon statique et

dynamique.

177

Finalement, nous avons évalué les performances obtenues par nos deux approches

sur des applications de TM (Chapter 5). Nous avons montré que l’approche statique

est suffisamment précise et améliore les performances d’un ensemble d’applications

d’au maximum 18%. Dans le cas de l’approche dynamique, avons obtenu des amé-

liorations de performances d’au maximum 31% par rapport à la meilleure stratégie

statique. Dans l’ensemble, l’amélioration de la performance moyenne de l’approche

dynamique par rapport à la meilleure stratégie statique sur chaque application était

d’environ 14% (48 sur 56 charges de travail ont présenté de meilleures performances

avec l’approche dynamique) et la perte de performance moyenne était d’environ

4% (8 sur 56 charges de travail ont présenté de plus mauvaises performances avec

l’approche dynamique).

6.2 Travaux futurs

Les travaux de recherche présentés dans cette thèse peuvent être poursuivis dans

plusieurs directions. Ci-dessous, nous détaillons quelques-unes de ces possibilités :

Explorer de nouvelles architectures, systèmes de STM et applications ba-

sées sur de la TM. Pendant cette thèse, de nombreux efforts ont été fait tendant à

une plus large adoption de la Mémoire Transactionnelle. Des efforts récents sont par

exemple l’ajout du support de la TM par la dernière version de la GNU Compiler

Collection (GCC 4.7) ainsi que l’ajout d’un support matériel de la TM par les nou-

veaux processeurs, comme par exemple le BlueGene/Q d’IBM et les Transactional

Synchronization Extensions (TSX) d’Intel qui seront disponibles dans la future archi-

tecture “Haswell”. Nous croyons que ces efforts permettront d’élargir l’utilisation de

la TM et contribueront également à l’apparition de nouvelles applications réelles

basées sur de la TM. De plus, il est prévu que les nouvelles architectures appliqueront

aussi une conception NUMA. Un des axes possibles de recherche à long terme est

donc l’adaptation de notre prédicteur pour ces nouvelles architectures et applications.

Nous pensons qu’il peut être possible d’étendre notre approche pour qu’elle soit

utilisée pour des plates-formes NUMA. Cependant, la façon dont les données sont

allouées/réparties entre les bancs de mémoire influe également sur les performances

globales des applications sur ces plates-formes. Il sera donc nécessaire de considérer

non seulement les stratégies de placement des threads mais aussi les politiques d’allo-

178

cation de mémoire pour mieux utiliser les bancs de mémoire NUMA. Nos travaux

antérieurs sur l’impact des politiques d’allocation de mémoire sur des plates-formes

NUMA [Cas+09 ; Rib+09 ; Rib+12] peuvent être utilisés comme point de départ.

Créer de nouveaux prédicteurs basés sur d’autres algorithmes d’apprentis-

sage automatique. Notre prédicteur s’appuie sur un algorithme d’apprentissage

du type arbre de décision (ID3). Dans notre approche, nous avons utilisé le profil

de plusieurs applications et systèmes de STM en tant que données d’entrée pour

l’algorithme d’apprentissage ID3. Une fois cette phase d’apprentissage terminée, nous

avons toujours utilisé le même prédicteur pour toutes les nouvelles applications

inconnues. Ce processus est connu sous le nom apprentissage automatique hors ligne.

Une autre direction pour des travaux futurs peut être l’utilisation des algorithmes

d’apprentissage automatique en ligne. Dans l’apprentissage en ligne, les informations

provenant des nouvelles applications profilées peuvent être utilisées pour ajuster

automatiquement le prédicteur. Nous croyons que cette approche peut être utile pour

améliorer la précision de la prédiction sur un plus grand nombre d’applications à

base de TM.

Étendre le prédicteur pour qu’il utilise d’autres mesures du système. Dans

cette thèse, nous avons utilisé un ensemble de critères qui devront être profilés, tels

que l’abort ratio, le défaut de cache et les politiques de détection et de résolution de

conflits. Une autre mesure intéressante qui pourrait être rajoutée est la consommation

d’énergie. L’énergie est de plus en plus l’une des ressources les plus chères et l’élément

de coût le plus important pour faire fonctionner des plates-formes dotées d’un grand

nombre de cœurs. Un scénario réaliste est donc qu’un utilisateur veuille utiliser

la consommation d’énergie au lieu du temps d’exécution en tant qu’indicateur de

performance dans le prédicteur. Dans ce cas, le prédicteur choisirait une stratégie de

placement de threads qui consomme moins d’énergie.

Bibliography

[Alb+05] Kursad Albayraktaroglu, Aamer Jaleel, Xue Wu, Manoj Franklin, Bruce

Jacob, Chau-Wen Tseng, and Donald Yeung. “BioBench: A Benchmark

Suite of Bioinformatics Applications”. In: IEEE International Symposium

on Performance Analysis of Systems and Software (ISPASS). Austin,

USA: IEEE Computer Society, 2005, pp. 2–9. ISBN: 0-7803-8965-4. DOI:

10.1109/ISPASS.2005.1430554.

[Ans+08] Mohammad Ansari, Christos Kotselidis, Kim Jarvis, Mikel Luján, Chris

Kirkham, and Ian Watson. “Lee-TM: A Non-trivial Benchmark for Trans-

actional Memory”. In: International Conference on Algorithms and Ar-

chitectures for Parallel Processing (ICA3PP). Vol. 5022. Lecture Notes in

Computer Science (LNCS). Aiya Napa, Cyprus: Springer-Verlag, 2008,

pp. 196–207. ISBN: 978-3-540-69500-4. DOI: 10.1007/978-3-540-

69501-1_21.

[Ans+09] Mohammad Ansari, Kim Jarvis, Christos Kotselidis, Mikel Luján, Chris

Kirkham, and Ian Watson. “Profiling Transactional Memory Applica-

tions”. In: International Conference on Parallel, Distributed, and Network-

based Processing (PDP). Weimar, Germany: IEEE Computer Society,

2009, pp. 11–20. ISBN: 978-0-7695-3544-9. DOI: 10.1109/PDP.2009.

35.

[App+07] David L. Applegate, Robert E. Bixby, Vasek Chvatal, and William J. Cook.

The Traveling Salesman Problem: A Computational Study. Princeton

Series in Applied Mathematics. Princeton, USA: Princeton University

Press, 2007.

179

http://dx.doi.org/10.1109/ISPASS.2005.1430554
http://dx.doi.org/10.1007/978-3-540-69501-1_21
http://dx.doi.org/10.1007/978-3-540-69501-1_21
http://dx.doi.org/10.1109/PDP.2009.35
http://dx.doi.org/10.1109/PDP.2009.35

180 BIBLIOGRAPHY

[Asa+09] Krste Asanovic et al. “A View of the Parallel Computing Landscape”. In:

Communications of the ACM 52 (10 2009), pp. 56–67. DOI: 10.1145/

1562764.1562783.

[Bai+95] David Bailey, Tim Harris, William Saphir, Rob van der Wijngaart, Alex

Woo, and Maurice Yarrow. The NAS Parallel Benchmarks 2.0. Tech.

rep. NAS-95-020. NASA Ames Research Center, 1995. URL: http:

//www.nas.nasa.gov/assets/pdf/techreports/1995/nas-

95-020.pdf.

[Bou+10] Remco R. Bouckaert, Eibe Frank, Mark A. Hall, Geoffrey Holmes, Bern-

hard Pfahringer, Peter Reutemann, and Ian H. Witten. “WEKA: Ex-

periences with a Java Open-Source Project”. In: Journal of Machine

Learning Research 11 (2010), pp. 2533–2541.

[Bro+10] François Broquedis, Jérôme Clet-Ortega, Stephanie Moreaud, Brice

Goglin, Guillaume Mercier, and Samuel Thibault. “hwloc: A Generic

Framework for Managing Hardware Affinities in HPC Applications”. In:

Euromicro International Conference on Parallel, Distributed and Network-

Based Computing (PDP). Pisa, Italy: IEEE Computer Society, 2010,

pp. 180–186. ISBN: 978-1-4244-5672-7. DOI: 10.1109/PDP.2010.67.

[Cas+08] Calin Cascaval, Colin Blundell, Maged Michael, Harold W. Cain, Peng

Wu, Stefanie Chiras, and Siddhartha Chatterjee. “Software Transac-

tional Memory: Why is it Only a Research Toy?” In: Communications of

the ACM 51.11 (2008), pp. 40–46. ISSN: 0001-0782. DOI: 10.1145/

1400214.1400228.

[Cas+09] Márcio Castro, Luiz Gustavo Fernandes, Christiane Pousa Ribeiro, Jean-

François Méhaut, and Marilton S. de Aguiar. “NUMA-ICTM: A Parallel

Version of ICTM Exploiting Memory Placement Strategies for NUMA

Machines”. In: International Parallel and Distributed Processing Sympo-

sium (IPDPS). Rome, Italy: IEEE Computer Society, 2009, pp. 1–8. ISBN:

978-1-4244-3751-1. DOI: 10.1109/IPDPS.2009.5161155.

[Cas+10] Márcio Castro, Kiril Georgiev, Vania Marangonzova-Martin, Jean-François

Méhaut, Luiz Gustavo Fernandes, and Miguel Santana. Analyzing Soft-

http://dx.doi.org/10.1145/1562764.1562783
http://dx.doi.org/10.1145/1562764.1562783
http://www.nas.nasa.gov/assets/pdf/techreports/1995/nas-95-020.pdf
http://www.nas.nasa.gov/assets/pdf/techreports/1995/nas-95-020.pdf
http://www.nas.nasa.gov/assets/pdf/techreports/1995/nas-95-020.pdf
http://dx.doi.org/10.1109/PDP.2010.67
http://dx.doi.org/10.1145/1400214.1400228
http://dx.doi.org/10.1145/1400214.1400228
http://dx.doi.org/10.1109/IPDPS.2009.5161155

BIBLIOGRAPHY 181

ware Transactional Memory Applications by Tracing Transactions. Tech.

rep. RR-7334. INRIA, 2010.

[Cas+11a] Márcio Castro, Kiril Georgiev, Vania Marangonzova-Martin, Jean-François

Méhaut, Luiz Gustavo Fernandes, and Miguel Santana. “Analysis and

Tracing of Applications Based on Software Transactional Memory on

Multicore Architectures”. In: Euromicro International Conference on

Parallel, Distributed and Network-Based Computing (PDP). Aya Napa,

Cyprus: IEEE Computer Society, 2011, pp. 199–206. ISBN: 978-0-7695-

4328-4. DOI: 10.1109/PDP.2011.27.

[Cas+11b] Márcio Castro, Luís Fabricio Wanderley Góes, Christiane Pousa Ribeiro,

Murray Cole, Marcelo Cintra, and Jean-François Méhaut. “A Machine

Learning-Based Approach for Thread Mapping on Transactional Mem-

ory Applications”. In: High Performance Computing Conference (HiPC).

Bangalore, India: IEEE Computer Society, 2011, pp. 1–10. ISBN: 978-1-

4577-1949-3. DOI: 10.1109/HiPC.2011.6152736.

[Cas+12a] Márcio Castro, Luís Fabrício Góes, Luiz Gustavo Fernandes, and Jean-

François Méhaut. “Dynamic Thread Mapping Based on Machine Learn-

ing for Transactional Memory Applications”. In: Euro-TM Workshop on

Transactional Memory (WTM). Extended abstract. Apr. 2012.

[Cas+12b] Márcio Castro, Luís Fabrício Góes, Luiz Gustavo Fernandes, and Jean-

François Méhaut. “Dynamic Thread Mapping Based on Machine Learn-

ing for Transactional Memory Applications”. In: International European

Conference on Parallel and Distributed Computing (Euro-Par). Vol. 7484.

Lecture Notes in Computer Science (LNCS). Rhodes Island, Greece:

Springer-Verlag, 2012, pp. 465–476. ISBN: 978-3-642-32819-0. DOI:

10.1007/978-3-642-32820-6_47.

[Cas10] Márcio Castro. Software Transactional Memory on Parallel Programming

Environments. Tech. rep. LIG Laboratory, Nano2012-OPM2 Project,

2010.

http://dx.doi.org/10.1109/PDP.2011.27
http://dx.doi.org/10.1109/HiPC.2011.6152736
http://dx.doi.org/10.1007/978-3-642-32820-6_47

182 BIBLIOGRAPHY

[CD10] Márcio Castro and Augustin Degomme. Transactional Memory: State

of Art and Trends. Tech. rep. LIG Laboratory, Nano2012-OPM2 Project,

2010.

[CDN93] Michael J. Carey, David J. DeWitt, and Jeffrey F. Naughton. “The 007

Benchmark”. In: ACM SIGMOD Record 22.2 (1993), pp. 12–31. DOI:

10.1145/170036.170041.

[Che+06] Hu Chen, Wenguang Chen, Jian Huang, Bob Robert, and Harold

Kuhn. “MPIPP: An Automatic Profile-Guided Parallel Process Placement

Toolset for SMP Clusters and Multiclusters”. In: International Conference

on Supercomputing (ICS). Cairns, Australia: ACM, 2006, pp. 353–360.

ISBN: 1-59593-282-8. DOI: 10.1145/1183401.1183451.

[Chu+06] Jaewoong Chung, Hassan Chafi, Chi Cao Minh, Austen Mcdonald,

Brian D. Carlstrom, Christos Kozyrakis, and Kunle Olukotun. “The

Common Case Transactional Behavior of Multithreaded Programs”. In:

International Symposium on High-Performance Computer Architecture

(HPCA). Austin, USA: IEEE Computer Society, 2006.

[Cru+11] Eduardo Henrique Molina da Cruz, Marco Antonio Zanata Alves,

Alexandre Carissimi, Philippe Olivier Alexandre Navaux, Christiane

Pousa Ribeiro, and Jean-François Méhaut. “Using Memory Access

Traces to Map Threads and Data on Hierarchical Multi-core Platforms”.

In: IEEE International Symposium on Parallel and Distributed Processing

Workshops and Phd Forum (IPDPSW). IEEE Computer Society, 2011,

pp. 551–558. ISBN: 978-1-61284-425-1. DOI: 10.1109/IPDPS.2011.

197.

[CS00] Nello Cristianini and John Shawe-Taylor. An Introduction to Support Vec-

tor Machines and Other Kernel-based Learning Methods. 1st. Cambridge

University Press, 2000. ISBN: 978-0521780193.

[Cza11] Ireneusz Czarnowski. “Distributed Learning with Data Reduction”. In:

Transactions on Computational Collective Intelligence IV. Vol. 6660. Lec-

ture Notes in Computer Science (LNCS). Springer-Verlag, 2011, pp. 3–

121. ISBN: 978-3-642-21883-5. DOI: 10.1007/978-3-642-21884-2.

http://dx.doi.org/10.1145/170036.170041
http://dx.doi.org/10.1145/1183401.1183451
http://dx.doi.org/10.1109/IPDPS.2011.197
http://dx.doi.org/10.1109/IPDPS.2011.197
http://dx.doi.org/10.1007/978-3-642-21884-2

BIBLIOGRAPHY 183

[Dal+10] Luke Dalessandro, Dave Dice, Michael Scott, Nir Shavit, and Michael

Spear. “Transactional Mutex Locks”. In: International European Con-

ference on Parallel and Distributed Computing (Euro-Par). Vol. 6272.

Lecture Notes in Computer Science (LNCS). Ischia, Italy: Springer-

Verlag, 2010, pp. 2–13. ISBN: 3-642-15290-2. DOI: 10.1007/978-3-

642-15291-7.

[Dam+06] Peter Damron, Alexandra Fedorova, Yossi Lev, Victor Luchangco, Mark

Moir, and Daniel Nussbaum. “Hybrid Transactional Memory”. In: SIG-

PLAN Notices 41.11 (Proceedings of the International Conference on

Architectural Support for Programming Languages and Operating Sys-

tems 2006), pp. 336–346. DOI: 10.1145/1168918.1168900.

[DD06] Mathieu Desnoyers and Michel R. Dagenais. “The LTTng Tracer: A Low

Impact Performance and Behavior Monitor for GNU/Linux”. In: Linux

Symposium. Ottawa, Canada, 2006.

[DGK09] Aleksandar Dragojević, Rachid Guerraoui, and Michal Kapalka. “Stretch-

ing Transactional Memory”. In: ACM SIGPLAN Notices 44.6 (Proceed-

ings of the ACM SIGPLAN Conference on Programming Language

Design and Implementation 2009), pp. 155–165. ISSN: 0362-1340. DOI:

10.1145/1543135.1542494.

[Dic+09] Dave Dice, Yossi Lev, Mark Moir, and Daniel Nussbaum. “Early Experi-

ence with a Commercial Hardware Transactional Memory Implemen-

tation”. In: SIGPLAN Notices 44.3 (Proceedings of the International

Conference on Architectural Support for Programming Languages and

Operating Systems 2009), pp. 157–168. DOI: 10.1145/1508244.

1508263.

[Die+10] Matthias Diener, Felipe L. Madruga, Eduardo R. Rodrigues, Marco

Antonio Z. Alves, Joerg Schneider, Philippe Olivier A. Navaux, and

Hans-Ulrich Heiss. “Evaluating Thread Placement Based on Memory

Access Patterns for Multi-core Processors”. In: IEEE International Con-

ference on High Performance Computing and Communications (HPCC).

Melbourne, Australia: IEEE Computer Society, 2010, pp. 491–496. ISBN:

978-1-4244-8335-8. DOI: 10.1109/HPCC.2010.114.

http://dx.doi.org/10.1007/978-3-642-15291-7
http://dx.doi.org/10.1007/978-3-642-15291-7
http://dx.doi.org/10.1145/1168918.1168900
http://dx.doi.org/10.1145/1543135.1542494
http://dx.doi.org/10.1145/1508244.1508263
http://dx.doi.org/10.1145/1508244.1508263
http://dx.doi.org/10.1109/HPCC.2010.114

184 BIBLIOGRAPHY

[Dra+11] Aleksandar Dragojević, Pascal Felber, Vicent Gramoli, and Rachid Guer-

raoui. “Why STM Can be More Than a Research Toy”. In: Communi-

cations of the ACM 54.4 (2011), pp. 70–77. DOI: 10.1145/1924421.

1924440.

[DS06] Dave Dice and Nir Shavit. “What Really Makes Transactions Faster?”

In: ACM SIGPLAN Workshop on Languages, Compilers, and Hardware

Support for Transactional Computing (TRANSACT). Ottawa, Canada:

ACM, 2006.

[DSS06] Dave Dice, Ori Shalev, and Nir Shavit. “Transactional Locking II”. In: In-

ternational Symposium on Distributed Computing (DISC). Vol. 4167. Lec-

ture Notes in Computer Science (LNCS). Stockholm, Sweden: Springer-

Verlag, 2006, pp. 194–208. ISBN: 978-3-540-44624-8. DOI: 10.1007/

11864219_14.

[Fel+07] Pascal Felber, Christof Fetzer, Ulrich Müller, Torvald Riegel, Martin

Süßkraut, and Heiko Sturzrehm. “Transactifying Applications using an

Open Compiler Framework”. In: ACM SIGPLAN Workshop on Transac-

tional Computing (TRANSACT). Portland, USA: ACM, 2007.

[FFR08] Pascal Felber, Christof Fetzer, and Torvald Riegel. “Dynamic Perfor-

mance Tuning of Word-Based Software Transactional Memory”. In:

ACM SIGPLAN Symposium on Principles and Practice of Parallel Program-

ming (PPoPP). Salt Lake City, USA: ACM, 2008, pp. 237–246. ISBN:

978-1-59593-795-7. DOI: 10.1145/1345206.1345241.

[GCC12] GCC. GNU Compiler Collection. 2012. URL: http://gcc.gnu.org.

[GHC12] GHC. Glasgow Haskell Compiler. 2012. URL: http://www.haskell.

org/ghc.

[GHP05] Rachid Guerraoui, Maurice Herlihy, and Bastian Pochon. “Toward a

Theory of Transactional Contention Managers”. In: ACM Symposium

on Principles of Distributed Computing (PODC). Las Vegas, USA: ACM,

2005, pp. 258–264. ISBN: 1-59593-994-2. DOI: 10.1145/1073814.

1073863.

http://dx.doi.org/10.1145/1924421.1924440
http://dx.doi.org/10.1145/1924421.1924440
http://dx.doi.org/10.1007/11864219_14
http://dx.doi.org/10.1007/11864219_14
http://dx.doi.org/10.1145/1345206.1345241
http://gcc.gnu.org
http://www.haskell.org/ghc
http://www.haskell.org/ghc
http://dx.doi.org/10.1145/1073814.1073863
http://dx.doi.org/10.1145/1073814.1073863

BIBLIOGRAPHY 185

[GKV07] Rachid Guerraoui, Michal Kapalka, and Jan Vitek. “STMBench7: A

Benchmark for Software Transactional Memory”. In: ACM SIGOPS

Operating Systems Review 41.3 (Proceedings of the European Confer-

ence on Computer Systems Mar. 2007), pp. 315–324. DOI: 10.1145/

1272998.1273029.

[GO11] Dominik Grewe and Michael F. P. O’Boyle. “A Static Task Partitioning

Approach for Heterogeneous Systems Using OpenCL”. In: International

Conference on Compiler Construction (CC). Saarbrücken, Germany:

Springer-Verlag, 2011, pp. 286–305. ISBN: 978-3-642-19860-1.

[GUW08] Hector Garcia-Molina, Jeffrey D. Ullman, and Jennifer Wi. Database

Systems: The Complete Book. 2nd. Prentice Hall, 2008. ISBN: 978-0-131-

87325-4.

[HBK06] Jim Held, Jerry Bautista, and Sean Koehl. From a Few Cores to Many:

A Tera-scale Computing Research Overview Editors. Tech. rep. Intel

Whitepaper. California, USA: Intel Corporation, 2006.

[HLM06] Maurice Herlihy, Victor Luchangco, and Mark Moir. “A Flexible Frame-

work for Implementing Software Transactional Memory”. In: ACM

SIGPLAN Conference on Object-Oriented Programming, Systems, Lan-

guages, and Applications (OOPSLA). Portland, USA: ACM, 2006. ISBN:

1-59593-348-4. DOI: 10.1145/1167473.1167495.

[HLR10] Tim Harris, James Larus, and Ravi Rajwar. Transactional Memory:

Synthesis Lectures on Computer Architecture. 2nd. Vol. 5. 1. Madison,

USA: Morgan & Claypool Publishers, 2010, p. 263. DOI: 10.2200/

S00272ED1V01Y201006CAC011.

[HM93] Maurice Herlihy and J. Eliot B. Moss. “Transactional Memory: Ar-

chitectural Support for Lock-Free Data Structures”. In: International

Symposium on Computer Architecture (ISCA). San Diego, USA: IEEE

Computer Society, 1993, pp. 289–300. ISBN: 0-8186-3810-9. DOI: 10.

1109/ISCA.1993.698569.

http://dx.doi.org/10.1145/1272998.1273029
http://dx.doi.org/10.1145/1272998.1273029
http://dx.doi.org/10.1145/1167473.1167495
http://dx.doi.org/10.2200/S00272ED1V01Y201006CAC011
http://dx.doi.org/10.2200/S00272ED1V01Y201006CAC011
http://dx.doi.org/10.1109/ISCA.1993.698569
http://dx.doi.org/10.1109/ISCA.1993.698569

186 BIBLIOGRAPHY

[Hon+09] Shengyan Hong, Sri H. K. Narayanan, Mahmut T. Kandemir, and Özcan

Özturk. “Process Variation Aware Thread Mapping for Chip Multipro-

cessors”. In: Design, Automation & Test in Europe (DATE). Nice, France:

IEEE Computer Society, 2009, pp. 821–826. ISBN: 978-3-9810-8015-5.

[Hon+10] Sungpack Hong, Tayo Oguntebi, Jared Casper, Nathan Bronson, Chris-

tos Kozyrakis, and Kunle Olukotun. “EigenBench: A Simple Exploration

Tool for Orthogonal TM Characteristics”. In: IEEE International Sym-

posium on Workload Characterization (IISWC). Atlanta, USA: IEEE

Computer Society, 2010, pp. 1–11. ISBN: 978-1-4244-9297-8. DOI:

10.1109/IISWC.2010.5648812.

[HS08] Maurice Herlihy and Nir Shavit. The Art of Multiprocessor Program-

ming. Burlington, USA: Morgan Kaufmann, Mar. 2008. ISBN: 978-0-12-

370591-4.

[HX98] Kai Hwang and Zhiwei Xu. Scalable Parallel Computing: Technology,

Architecture, Programming. 1st. McGraw-Hill, 1998. ISBN: 978-0-07031-

798-7.

[HYH12] Zhengyu He, Xiao Yu, and Bo Hong. “Profiling-based Adaptive Con-

tention Management for Software Transactional Memory”. In: Interna-

tional Parallel and Distributed Processing Symposium (IPDPS). Shanghai,

China: IEEE Computer Society, 2012, pp. 1204–1215. DOI: 10.1109/

IPDPS.2012.110.

[Int09] Intel. Intel C++ STM Compiler Prototype Edition 3.0 User’s Guide. 2009.

URL: http://software.intel.com/en-us/articles/intel-c-

stm-compiler-prototype-edition/.

[JK81] Xiong Ji-Guang and Tokinori Kozawa. “An Algorithm for Searching

Shortest Path by Propagating Wave Fronts in Four Quadrants”. In:

Design Automation Conference (DAC). Nashville, Tennessee, United

States: IEEE Press, 1981, pp. 29–36.

[KB12] Laxmikant V. Kale and Abhinav Bhatele, eds. Parallel Science and En-

gineering Applications: The Charm++ Approach. 1st. CRC Press, 2012.

ISBN: 1466504129.

http://dx.doi.org/10.1109/IISWC.2010.5648812
http://dx.doi.org/10.1109/IPDPS.2012.110
http://dx.doi.org/10.1109/IPDPS.2012.110
http://software.intel.com/en-us/articles/intel-c-stm-compiler-prototype-edition/
http://software.intel.com/en-us/articles/intel-c-stm-compiler-prototype-edition/

BIBLIOGRAPHY 187

[KCP06] Milind Kulkarni, L. Paul Chew, and Keshav Pingali. “Using Transactions

in Delaunay Mesh Generation”. In: Workshop on Transactional Memory

Workloads. Ottawa, Canada: ACM, 2006, pp. 23–31.

[Kes+09] Gokcen Kestor, Srdjan Stipic, Osman Unsal, Adrián Cristal, and Mateo

Valero. “RMS-TM: A Transactional Memory Benchmark For Recognition,

Mining And Synthesis Applications”. In: ACM SIGPLAN Workshop on

Transactional Computing (TRANSACT). Raleigh, USA: ACM, 2009.

[Kni86] Thomas F. Knight. “An Architecture for Mostly Functional Languages”.

In: ACM Lisp and Functional Programming Conference. Cambridge, USA:

ACM, Aug. 1986, pp. 500–519. ISBN: 0-89791-200-4. DOI: 10.1145/

319838.319854.

[Knu+08] Andreas Knüpfer, Holger Brunst, Jens Doleschal, Matthias Jurenz,

Matthias Lieber, Holger Mickler, Matthias S. Müller, and Wolfgang E.

Nagel. “The Vampir Performance Analysis Tool-Set”. In: Tools for High

Performance Computing (2008), pp. 139–155. DOI: 10.1007/978-3-

540-68564-7_9.

[Kum+06] Sanjeev Kumar, Michael Chu, Christopher J. Hughes, Partha Kundu,

and Anthony Nguyen. “Hybrid Transactional Memory”. In: ACM SIG-

PLAN Symposium on Principles and Practice of Parallel Programming

(PPoPP). New York, USA: ACM, 2006. ISBN: 1-59593-189-9. DOI: 10.

1145/1122971.1123003.

[LK08] James Larus and Christos Kozyrakis. “Transactional Memory: Is TM

the Answer for Improving Parallel Programming?” In: Communications

of ACM 51.7 (2008), pp. 80–88. ISSN: 0001-0782. DOI: 10.1145/

1364782.1364800.

[Lom77] David Bruce Lomet. “Process Structuring, Synchronization, and Recov-

ery Using Atomic Actions”. In: SIGPLAN Notices 12.3 (Proceedings of

the ACM Conference on Language Design for Reliable Software 1977),

pp. 128–137. DOI: 10.1145/390017.808319.

http://dx.doi.org/10.1145/319838.319854
http://dx.doi.org/10.1145/319838.319854
http://dx.doi.org/10.1007/978-3-540-68564-7_9
http://dx.doi.org/10.1007/978-3-540-68564-7_9
http://dx.doi.org/10.1145/1122971.1123003
http://dx.doi.org/10.1145/1122971.1123003
http://dx.doi.org/10.1145/1364782.1364800
http://dx.doi.org/10.1145/1364782.1364800
http://dx.doi.org/10.1145/390017.808319

188 BIBLIOGRAPHY

[Lou+09] João Lourenço, Ricardo Dias, João Luis, Miguel Rebelo, and Vasco

Pessanha. “Understanding the Behavior of Transactional Memory Appli-

cations”. In: ACM Workshop on Parallel and Distributed Systems: Testing

and Debugging (PADTAD). Chicago, USA: ACM, 2009, pp. 31–39. ISBN:

978-1-60558-655-7. DOI: 10.1145/1639622.1639625.

[Mal+11] Walther Maldonado, Patrick Marlier, Pascal Felber, Julia Lawall, Giller

Muller, and Etienne Rivière. “Deadline-Aware Scheduling for Software

Transactional Memory”. In: International Conference on Dependable

Systems & Networks (DSN). Hong Kong, China: IEEE Computer Society,

2011, pp. 257–268. ISBN: 978-1-4244-9231-2. DOI: 10.1109/DSN.

2011.5958224.

[Mar+06] Virendra J. Marathe, Michael F. Spear, Christopher Heriot, Athul Acharya,

David Eisenstat, William N. Scherer, and Michael L. Scott. “Lowering

the Overhead of Software Transactional Memory”. In: ACM SIGPLAN

Workshop on Languages, Compilers, and Hardware Support for Transac-

tional Computing (TRANSACT). Ottawa, Canada: ACM, 2006.

[McD+05] Austen McDonald, JaeWoong Chung, Hassan Chafi, Chi Cao Minh,

Brian D. Carlstrom, Lance Hammond, Christos Kozyrakis, and Kunle

Olukotun. “Characterization of TCC on Chip-Multiprocessors”. In: Inter-

national Conference on Parallel Architectures and Compilation Techniques

(PACT). Saint Louis, USA: IEEE Computer Society, 2005, pp. 63–74.

ISBN: 0-7695-2429-X. DOI: 10.1109/PACT.2005.11.

[McK04] Sally A. McKee. “Reflections on the Memory Wall”. In: Conference on

Computing Frontiers. Ischia, Italy: ACM, 2004, pp. 162–168. ISBN: 1-

58113-741-9. DOI: 10.1145/977091.977115.

[Min+08] Chi Cao Minh, JaeWoong Chung, Christos Kozyrakis, and Kunle Oluko-

tun. “STAMP: Stanford Transactional Applications for Multi-Processing”.

In: IEEE International Symposium on Workload Characterization (IISWC).

Seattle, USA: IEEE Computer Society, 2008, pp. 35–46. ISBN: 978-1-

4244-2777-2. DOI: 10.1109/IISWC.2008.4636089.

http://dx.doi.org/10.1145/1639622.1639625
http://dx.doi.org/10.1109/DSN.2011.5958224
http://dx.doi.org/10.1109/DSN.2011.5958224
http://dx.doi.org/10.1109/PACT.2005.11
http://dx.doi.org/10.1145/977091.977115
http://dx.doi.org/10.1109/IISWC.2008.4636089

BIBLIOGRAPHY 189

[MIS05] Virendra J. Marathe, William N. Scherer III, and Michael L. Scott.

“Adaptive Software Transactional Memory”. In: International Sym-

posium on Distributed Computing (DISC). Vol. 3724. LNCS. Krakow,

Poland: Springer-Verlag, 2005, pp. 354–368. ISBN: 3-540-29163-6.

[Mit97] Tom M. Mitchell. Machine Learning. 1st. New York, USA: McGraw-Hill,

1997. ISBN: 978-0070428072.

[ML06] Milo Martin and Colin Blundelland E. Lewis. “Subtleties of Transac-

tional Memory Atomicity Semantics”. In: IEEE Computer Architecture

Letters 5 (2 2006). DOI: 10.1109/L-CA.2006.18.

[MM08] Virendra Jayant Marathe and Mark Moir. “Toward High Performance

Nonblocking Software Transactional Memory”. In: PPoPP ’08: Proc. of

the 13th ACM SIGPLAN Symposium on Principles and Practice of Parallel

Programming. Salt Lake City, UT, USA: ACM, 2008, pp. 227–236.

[Moo+06] Kevin E. Moore, Jayaram Bobba, Michelle J. Moravan, Mark D. Hill,

and David A. Wood. “LogTM: Log-based Transactional Memory”. In:

International Symposium on High-Performance Computer Architecture

(HPCA). Austin, USA: IEEE Computer Society, 2006, pp. 254–265. ISBN:

0-7803-9368-6. DOI: 10.1109/HPCA.2006.1598134.

[MSS08] Virendra J. Marathe, Michael F. Spear, and Michael L. Scott. “Scalable

Techniques for Transparent Privatization in Software Transactional

Memory”. In: International Conference on Parallel Processing (ICPP).

Portland, USA: IEEE Computer Society, 2008, pp. 67–74. ISBN: 978-0-

7695-3374-2. DOI: 10.1109/ICPP.2008.69.

[Nar+06] Ramanathan Narayanan, Berkin Ö. Ikyilmaz, Joseph Zambreno, Gokhan

Memik, and Alok Choudhary. “MineBench: A Benchmark Suite for Data

Mining Workloads”. In: IEEE International Symposium on Workload

Characterization. San Jose, USA: IEEE Computer Society, 2006, pp. 182–

188. ISBN: 1-4244-0508-4. DOI: 10.1109/IISWC.2006.302743.

[Oli+11] Poliana Oliveira, Henrique Cota de Freitas, Christiane Pousa Ribeiro,

Márcio Castro, Vania Marangonzova-Martin, and Jean-François Méhaut.

“Performance Evaluation of WiNoCs for Parallel Workloads Based on

http://dx.doi.org/10.1109/L-CA.2006.18
http://dx.doi.org/10.1109/HPCA.2006.1598134
http://dx.doi.org/10.1109/ICPP.2008.69
http://dx.doi.org/10.1109/IISWC.2006.302743

190 BIBLIOGRAPHY

Collective Communications”. In: IADIS International Conference on

Applied Computing (AC). Rio de Janeiro, Brazil: IADIS Press, 2011,

pp. 307–314. ISBN: 978-989-8533-06-7.

[PK01] Athanassios Papagelis and Dimitrios Kalles. “Breeding Decision Trees

Using Evolutionary Techniques”. In: International Conference on Ma-

chine Learning (ICML). Williamstown, USA: Morgan Kaufmann, 2001,

pp. 393–400. ISBN: 1-55860-778-1.

[PW10] Donal E. Porter and Emmett Witchel. “Understanding Transactional

Memory Performance”. In: IEEE International Symposium on Perfor-

mance Analysis of Systems and Software (ISPASS). White Plains, EUA:

IEEE Computer Society, 2010, pp. 97–108. ISBN: 978-1-4244-6023-6.

DOI: 10.1109/ISPASS.2010.5452061.

[Qui08] Michael Jay Quinn. Parallel Programming in C with MPI and OpenMP.

New York, NY: McGraw-Hill, 2008. ISBN: 0071232656.

[Qui86] John Ross Quinlan. “Induction of Decision Trees”. In: Machine Learn-

ing 1.1 (1986), pp. 81–106. ISSN: 0885-6125. DOI: 10.1023/A:

1022643204877.

[Rib+09a] Christiane Pousa Ribeiro, Márcio Castro, Luiz Gustavo Fernandes, Jean-

François Méhaut, Alexandre Carissimi, and Fabrice Dupros. “High

Performance Applications on Hierarchical Shared Memory Multiproces-

sors”. In: Colloque d’Informatique: Brésil / INRIA, Coopérations, Avancées

et Défis (COLIBRI). Bento Gonçalves, Brazil: Brazilian Computer Society,

2009, pp. 55–60.

[Rib+09b] Christiane Pousa Ribeiro, Jean-François Méhaut, Alexandre Carissimi,

Márcio Castro, and Luiz Gustavo Fernandes. “Memory Affinity for Hier-

archical Shared Memory Multiprocessors”. In: International Symposium

on Computer Architecture and High Performance Computing (SBAC-PAD).

São Paulo, Brazil: IEEE Computer Society, 2009, pp. 59–66. ISBN: 978-

0-7695-3857-0. DOI: 10.1109/SBAC-PAD.2009.16.

http://dx.doi.org/10.1109/ISPASS.2010.5452061
http://dx.doi.org/10.1023/A:1022643204877
http://dx.doi.org/10.1023/A:1022643204877
http://dx.doi.org/10.1109/SBAC-PAD.2009.16

BIBLIOGRAPHY 191

[Rib+10] Christiane Pousa Ribeiro, Márcio Castro, Jean-François Méhaut, and

Alexandre Carissimi. “Improving Memory Affinity of Geophysics Appli-

cations on NUMA Platforms Using Minas”. In: International Meeting

on High Performance Computing for Computation Science (VECPAR).

Vol. 6449. Lecture Notes in Computer Science (LNCS). Berkeley, USA:

Springer-Verlag, 2010, pp. 272–292. ISBN: 978-3-642-19327-9. DOI:

10.1007/978-3-642-19328-6_27.

[Rib+11] Christiane Pousa Ribeiro, Márcio Castro, Jean-François Méhaut, Vania

Marangonzova-Martin, Henrique Cota de Freitas, and Carlos Augusto

Paiva da Silva Martins. “Investigating the Impact of CPU and Memory

Affinity on Multi-core Platforms: A Case Study of Numerical Scientific

Multithreaded Applications”. In: IADIS International Conference on

Applied Computing (AC). Rio de Janeiro, Brazil: IADIS Press, 2011,

pp. 299–306. ISBN: 978-989-8533-06-7.

[Rib+12] Christiane Pousa Ribeiro, Márcio Castro, Vania Marangonzova-Martin,

Jean-François Méhaut, Henrique Cota de Freitas, and Carlos Augusto

Paiva da Silva Martins. “Evaluating CPU and Memory Affinity for Nu-

merical Scientific Multithreaded Benchmarks on Multi-cores”. In: IADIS

International Journal on Computer Science and Information Systems

(IJCSIS) (1 2012). ISSN: 1646-3692.

[Rib11] Christiane Pousa Ribeiro. “Contributions on Memory Affinity Man-

agement for Hierarchical Shared Memory Multi-core Platforms”. PhD

thesis. Université de Grenoble, June 2011.

[Ros+07] Christopher J. Rossbach, Owen S. Hofmann, Donald E. Porter, Hany E.

Ramadan, Aditya Bhandari, and Emmett Witchel. “TxLinux: Using and

Managing Hardware Transactional Memory in an Operating System”.

In: ACM SIGOPS Symposium on Operating Systems Principles (SOSP).

Stevenson, USA: ACM, 2007, pp. 87–102. ISBN: 978-1-59593-591-5.

DOI: 10.1145/1294261.1294271.

[SBS11] S. Subramanya Sastry, Rastislav Bodík, and James E. Smith. “Rapid Pro-

filing via Stratified Sampling”. In: ACM SIGARCH Computer Architecture

http://dx.doi.org/10.1007/978-3-642-19328-6_27
http://dx.doi.org/10.1145/1294261.1294271

192 BIBLIOGRAPHY

News 29.2 (Proceedings of the International Symposium on Computer

Architecture 2011), pp. 278–289. DOI: 10.1145/384285.379273.

[SH11] Robert Schöne and Daniel Hackenberg. “On-Line Analysis of Hardware

Performance Events for Workload Characterization and Processor Fre-

quency Scaling Decisions”. In: International Conference on Performance

Engineering (ICPE). Karlsruhe, Germany: ACM, 2011, pp. 481–486.

ISBN: 978-1-4503-0519-8. DOI: 10.1145/1958746.1958819.

[She99] Sameer Shende. “Profiling and Tracing in Linux”. In: USENIX Annual

Technical Conference. Monterey, USA: USENIX Association, 1999.

[Shr+06] Arrvindh Shriraman, Virendra J. Marathe, Sandhya Dwarkadas, Michael

L. Scott, David Eisenstat, Christopher Heriot, William N. Scherer III, and

Michael F. Spear. “Hardware Acceleration of Software Transactional

Memory”. In: ACM SIGPLAN Workshop on Languages, Compilers, and

Hardware Support for Transactional Computing (TRANSACT). Ottawa,

Canada: ACM, 2006. ISBN: 1-59593-320-4.

[SM06] Sameer S. Shende and Allen D. Malony. “The TAU Parallel Perfor-

mance System”. In: International Journal of High Performance Com-

puting Applications 20 (2 May 2006), pp. 287–311. DOI: 10.1177/

1094342006064482.

[Tai94] Kuo-Chung Tai. “Definitions and Detection of Deadlock, Livelock, and

Starvation in Concurrent Programs”. In: International Conference on

Parallel Processing (ICPP). Vol. 2. Raleigh, USA: IEEE Computer Society,

1994, pp. 69–72. ISBN: 0-8493-2494-7. DOI: 10.1109/ICPP.1994.84.

[Ter+10] Dan Terpstra, Heike Jagode, Haihang You, and Jack Dongarra. “Col-

lecting Performance Data with PAPI-C”. In: Tools for High Performance

Computing. Springer-Verlag, 2010, pp. 157–173. DOI: 10.1007/978-

3-642-11261-4_11.

[Tou+09] Georgios Tournavitis, Zheng Wang, Björn Franke, and Michael F.P.

O’Boyle. “Towards a Holistic Approach to Auto-Parallelization: Integrat-

ing Profile-Driven Parallelism Detection and Machine-Learning Based

Mapping”. In: ACM SIGPLAN Notices 44.6 (Proceedings of the ACM

http://dx.doi.org/10.1145/384285.379273
http://dx.doi.org/10.1145/1958746.1958819
http://dx.doi.org/10.1177/1094342006064482
http://dx.doi.org/10.1177/1094342006064482
http://dx.doi.org/10.1109/ICPP.1994.84
http://dx.doi.org/10.1007/978-3-642-11261-4_11
http://dx.doi.org/10.1007/978-3-642-11261-4_11

BIBLIOGRAPHY 193

SIGPLAN Conference on Programming Language Design and Imple-

mentation 2009), pp. 177–187. DOI: 10.1145/1543135.1542496.

[VIR07] VIRTUTECH SIMICS. Simics 3.0 – User Guide for Unix. 2007. URL:

http://www.simics.net.

[Wam+12] Jons-Tobias Wamhoff, Christof Fetzer, Pascal Felber, Etienne Rivière,

and Gilles Muller. “FastLane: Streamlining Transactions for Low Thread

Counts”. In: ACM SIGPLAN Workshop on Transactional Computing

(TRANSACT). New Orleans, USA: ACM, 2012.

[Wan+11] Qingping Wang, Sameer Kulkarni, John Cavazos, and Michael Spear.

“Towards Applying Machine Learning to Adaptive Transactional Mem-

ory”. In: ACM SIGPLAN Workshop on Transactional Computing (TRANS-

ACT). San Jose, USA: ACM, 2011.

[Wan09] Ruibo Wang. “Investigating Software Transactional Memory on Big SMP

Machines”. In: ACIS International Conference on Software Engineering,

Artificial Intelligence, Networking, and Parallel/Distributed Computing

(SNPD). Daegu, Korea: IEEE Computer Society, 2009, pp. 507–509.

ISBN: 978-0-7695-3642-2. DOI: 10.1109/SNPD.2009.25.

[WL10] Ruibo Wang and Kai Lu. “Using Transactional Memory on CC-NUMA

Systems”. In: International Conference on Networked Computing (INC).

Gyeongju, South Korea: IEEE Computer Society, 2010, pp. 1–3. ISBN:

978-89-88678-20-6.

[WLL09] Ruibo Wang, Kai Lu, and Xicheng Lu. “Investigating Transactional

Memory Performance on ccNUMA Machines”. In: International Sym-

posium on High Performance Distributed Computing (HPDC). Garch-

ing, Germany: ACM, 2009, pp. 67–68. ISBN: 978-1-60558-587-1. DOI:

10.1145/1551609.1551625.

[WO09] Zheng Wang and Michael F.P. O’Boyle. “Mapping Parallelism to Multi-

cores: A Machine Learning Based Approach”. In: ACM SIGPLAN Notices

44.4 (Proceedings of the ACM SIGPLAN Symposium on Principles and

Practice of Parallel Programming 2009), pp. 75–84. DOI: 10.1145/

1594835.1504189.

http://dx.doi.org/10.1145/1543135.1542496
http://www.simics.net
http://dx.doi.org/10.1109/SNPD.2009.25
http://dx.doi.org/10.1145/1551609.1551625
http://dx.doi.org/10.1145/1594835.1504189
http://dx.doi.org/10.1145/1594835.1504189

194 BIBLIOGRAPHY

[Yen+07] Luke Yen, Jayaram Bobba, Michael R. Marty, Kevin E. Moore, Haris

Volos, Mark D. Hill, Michael M. Swift, and David A. Wood. “LogTM-SE:

Decoupling Hardware Transactional Memory from Caches”. In: IEEE

International Symposium on High Performance Computer Architecture

(HPCA). Phoenix, USA: IEEE Computer Society, 2007, pp. 261–272.

ISBN: 1-4244-0804-0. DOI: 10.1109/HPCA.2007.346204.

[Zha+09] Jin Zhang, Jidong Zhai, Wenguang Chen, and Weimin Zheng. “Pro-

cess Mapping for MPI Collective Communications”. In: International

European Conference on Parallel and Distributed Computing (Euro-Par).

Vol. 5704. Lecture Notes in Computer Science (LNCS). Ischia, Italy:

Springer-Verlag, 2009, pp. 81–92. ISBN: 978-3-642-03868-6. DOI: 10.

1007/978-3-642-03869-3_11.

[Zha00] Guoqiang Peter Zhang. “Neural Networks for Classification: A Survey”.

In: IEEE Transactions on Systems, Man, and Cybernetics, Part C: Appli-

cations and Reviews 30.4 (2000), pp. 451–462. DOI: 10.1109/5326.

897072.

[Zyu+08] Ferad Zyulkyarov, Adrian Cristal, Sanja Cvijic, Eduard Ayguade, Mateo

Valero, Osman Unsal, and Tim Harris. “WormBench: A Configurable

Workload for Evaluating Transactional Memory Systems”. In: Work-

shop on Memory Performance: Dealing with Applications, Systems and

Architecture (MEDEA). Toronto, Canada: ACM, 2008, pp. 61–68. ISBN:

978-1-60558-243-6. DOI: 10.1145/1509084.1509093.

[Zyu+10] Ferad Zyulkyarov, Srdjan Stipic, Tim Harris, Osman Unsal, Adrián

Cristal, Ibrahim Hur, and Mateo Valero. “Discovering and Understand-

ing Performance Bottlenecks in Transactional Applications”. In: Interna-

tional Conference on Parallel Architectures and Compilation Techniques

(PACT). Vienna, Austria: ACM, 2010, pp. 285–294. ISBN: 978-1-4503-

0178-7. DOI: 10.1145/1854273.1854311.

http://dx.doi.org/10.1109/HPCA.2007.346204
http://dx.doi.org/10.1007/978-3-642-03869-3_11
http://dx.doi.org/10.1007/978-3-642-03869-3_11
http://dx.doi.org/10.1109/5326.897072
http://dx.doi.org/10.1109/5326.897072
http://dx.doi.org/10.1145/1509084.1509093
http://dx.doi.org/10.1145/1854273.1854311

Abstract

Multicore processors are now a mainstream approach to deliver higher performance to parallel applications. In order
to develop efficient parallel applications for those platforms, developers must take care of several aspects, ranging from the
architectural to the application level. In this context, Transactional Memory (TM) appears as a programmer friendly alternative
to traditional lock-based concurrency for those platforms. It allows programmers to write parallel code as transactions, which
are guaranteed to execute atomically and in isolation regardless of eventual data races. At runtime, transactions are executed
speculatively and conflicts are solved by re-executing conflicting transactions. Although TM intends to simplify concurrent
programming, the best performance can only be obtained if the underlying runtime system matches the application and platform
characteristics.

The contributions of this thesis concern the analysis and improvement of the performance of TM applications based on
Software Transactional Memory (STM) on multicore platforms. Firstly, we show that the TM model makes the performance
analysis of TM applications a daunting task. To tackle this problem, we propose a generic and portable tracing mechanism
that gathers specific TM events, allowing us to better understand the performances obtained. The traced data can be used,
for instance, to discover if the TM application presents points of contention or if the contention is spread out over the whole
execution. Our tracing mechanism can be used with different TM applications and STM systems without any changes in their
original source codes.

Secondly, we address the performance improvement of TM applications on multicores. We point out that thread mapping is
very important for TM applications and it can considerably improve the global performances achieved. To deal with the large
diversity of TM applications, STM systems and multicore platforms, we propose an approach based on Machine Learning to
automatically predict suitable thread mapping strategies for TM applications. During a prior learning phase, we profile several
TM applications running on different STM systems to construct a predictor. We then use the predictor to perform static or
dynamic thread mapping in a state-of-the-art STM system, making it transparent to the users.

Finally, we perform an experimental evaluation and we show that the static approach is fairly accurate and can improve the
performance of a set of TM applications by up to 18%. Concerning the dynamic approach, we show that it can detect different
phase changes during the execution of TM applications composed of diverse workloads, predicting thread mappings adapted
for each phase. On those applications, we achieve performance improvements of up to 31% in comparison to the best static
strategy.

Résumé

Le concept de processeur multicœurs constitue le facteur dominant pour offrir des hautes performances aux applications
parallèles. Afin de développer des applications parallèles capables de tirer profit de ces plate-formes, les développeurs doivent
prendre en compte plusieurs aspects, allant de l’architecture aux caractéristiques propres à l’application. Dans ce contexte, la
Mémoire Transactionnelle (Transactional Memory – TM) apparaît comme une alternative intéressante à la synchronisation basée
sur les verrous pour ces plates-formes. Elle permet aux programmeurs d’écrire du code parallèle encapsulé dans des transactions,
offrant des garanties comme l’atomicité et l’isolement. Lors de l’exécution, les opérations sont exécutées spéculativement et
les conflits sont résolus par ré-exécution des transactions en conflit. Bien que le modèle de TM ait pour but de simplifier la
programmation concurrente, les meilleures performances ne pourront être obtenues que si l’exécutif est capable de s’adapter
aux caractéristiques des applications et de la plate-forme.

Les contributions de cette thèse concernent l’analyse et l’amélioration des performances des applications basées sur la
Mémoire Transactionnelle Logicielle (Software Transactional Memory – STM) pour des plates-formes multicœurs. Dans un
premier temps, nous montrons que le modèle de TM et ses performances sont difficiles à analyser. Pour s’attaquer à ce problème,
nous proposons un mécanisme de traçage générique et portable qui permet de récupérer des événements spécifiques à la TM
afin de mieux analyser les performances des applications. Par exemple, les données tracées peuvent être utilisées pour détecter
si l’application présente des points de contention ou si cette contention est répartie sur toute l’exécution. Notre approche peut
être utilisée sur différentes applications et systèmes STM sans modifier leurs codes sources.

Ensuite, nous abordons l’amélioration des performances des applications sur des plate-formes multicœurs. Nous soulignons
que le placement des threads (thread mapping) est très important et peut améliorer considérablement les performances globales
obtenues. Pour faire face à la grande diversité des applications, des systèmes STM et des plates-formes, nous proposons une
approche basée sur l’Apprentissage Automatique (Machine Learning) pour prédire automatiquement les stratégies de placement
de threads appropriées pour les applications de TM. Au cours d’une phase d’apprentissage préliminaire, nous construisons les
profils des applications s’exécutant sur différents systèmes STM pour obtenir un prédicteur. Nous utilisons ensuite ce prédicteur
pour placer les threads de façon statique ou dynamique dans un système STM récent.

Finalement, nous effectuons une évaluation expérimentale et nous montrons que l’approche statique est suffisamment
précise et améliore les performances d’un ensemble d’applications d’un maximum de 18%. En ce qui concerne l’approche
dynamique, nous montrons que l’on peut détecter des changements de phase d’exécution des applications composées des
diverses charges de travail, en prévoyant une stratégie de placement appropriée pour chaque phase. Sur ces applications, nous
avons obtenu des améliorations de performances d’un maximum de 31% par rapport à la meilleure stratégie statique.

	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Research issues
	Understanding the performance of TM applications
	Improving the performance of TM applications

	Contributions
	Scientific context of the thesis
	Thesis outline

	Background
	Multicore platforms
	Architectural concept
	Performance of multicores
	Impacts of the memory hierarchy
	Synchronization of shared data

	Transactional memory
	General concepts
	Design choices
	Implementation approaches
	Software transactional memory systems

	Benchmarks for evaluating transactional memory systems
	Data structure-based microbenchmarks
	Realistic benchmarks
	Highly configurable workload generators

	Concluding remarks

	Understanding the Performance of TM Applications
	STM vs. traditional synchronization
	Performance impact of STM systems
	Tracing TM applications
	Goals
	Which events to trace?

	A tracing mechanism adapted for TM applications
	Function interceptions
	Timestamps
	Intrusiveness

	Case studies: STAMP applications
	Intruder
	Genome
	Labyrinth

	Concluding remarks

	Improving the Performance of TM Applications on Multicores
	Impact of thread mapping on TM applications
	A machine learning-based approach for thread mapping
	Overview of the ML-based approach
	Application profiling
	Data pre-processing
	Learning process
	Prediction

	Static thread mapping
	Gathering input data to feed the learning process
	Generating the decision trees
	Predicting and applying thread mapping strategies

	Dynamic thread mapping
	From static to dynamic thread mapping
	Implementation on TinySTM

	Concluding remarks

	Experimental Evaluation
	Experimental setup
	Multicore platforms
	Performance metrics

	Static thread mapping analysis
	Varying concurrency
	Modifying the STM parameters
	Overall results

	Dynamic thread mapping analysis
	Workloads
	Dynamic thread mapping vs. static thread mapping
	Varying concurrency
	Modifying the STM parameters
	Varying the number of phases
	Dynamic thread mapping in action

	Concluding remarks

	Related Work
	Evaluation of TM systems and applications
	Performance evaluation of TM systems
	Post-mortem analysis of TM applications

	Thread and process mapping
	Machine learning

	Conclusion and Perspectives
	Contributions
	Future works

	Static Thread Mapping Results
	Extended Abstract in French
	Bibliography

