
HAL Id: tel-02965696
https://theses.hal.science/tel-02965696v1

Submitted on 13 Oct 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Study of lane reservation problems in a transportation
network
Yunfei Fang

To cite this version:
Yunfei Fang. Study of lane reservation problems in a transportation network. Operations Re-
search [math.OC]. Université de Technologie de Troyes, 2013. English. �NNT : 2013TROY0010�.
�tel-02965696�

https://theses.hal.science/tel-02965696v1
https://hal.archives-ouvertes.fr

Thèse
de doctorat

de l’UTT

Yunfei FANG

 Study of Lane Reservation Problems
in a Transportation Network

Spécialité :
Optimisation et Sûreté des Systèmes

2013TROY0010 Année 2013

THESE

pour l’obtention du grade de

DOCTEUR de l’UNIVERSITE
DE TECHNOLOGIE DE TROYES

Spécialité : OPTIMISATION ET SURETE DES SYSTEMES

présentée et soutenue par

Yunfei FANG

le 18 juin 2013

Study of Lane Reservation Problems in a Transportation Network

JURY

M. S. COHEN DIRECTEUR DE RECHERCHE Président

M. J. CARLIER PROFESSEUR DES UNIVERSITES Rapporteur

Mme Feng CHU PROFESSEUR DES UNIVERSITES Directrice de thèse

M. I. KACEM PROFESSEUR DES UNIVERSITES Rapporteur

Mme N. LABADIE MAITRE DE CONFERENCES - HDR Examinateur

M. S. MAMMAR PROFESSEUR DES UNIVERSITES Directeur de thèse

M. M. PAPAGEORGIOU PROFESSOR Examinateur

Study of Lane Reservation Problems in a

Transportation Network

by

Yunfei FANG

laboratoire d'Optimisation des Systèmes Industriels (LOSI)

Institut Charles Delaunay (ICD), STMR UMR 6279 CNRS

Université de Technologie de Troyes, France

Supervisors: Prof. Feng CHU and Prof. Saïd MAMMAR

June 18, 2013

Acknowledgements

It is not an easy thing to pursue a PhD degree. When I recall the past

years, many people have helped me and I would like to express my appre-

ciation to them.

Firstly, I would like to express my sincere gratitude to Prof. Jacques

CARLIER, Research Director Simon COHEN, Prof. Imed KACEM, As-

sociate Prof. Nacima LABADIE and Prof. Markos PAPAGEORGIOU

for their insightful comments on my work and serving as jury members in

my Ph.D defense committee.

I would like to sincerely thank my supervisors, Prof. Feng CHU and Prof.

Säıd MAMMAR, for their guidance throughout my PhD study. I have

been grateful to Prof. Feng CHU, who have taught me so much, both in

my study and life. I have also been grateful to Prof. Säıd MAMMAR,

who provide insightful comments on my work.

I would like to thank Prof. Ada CHE (Northwestern Polytechnical Univer-

sity (NWPU), China) for his guidance during my short stay at NWPU,

as well as his insightful comments on my work. I would like to thank

Prof. Mengchu ZHOU (New Jersey Institute of Technology, USA) for his

insightful comments on my work.

I would like to thank Isabelle LECLERCQ, Pascale DENIS, Veronique

BANSE, Sabine SEGALA for their sympathetic help for my study and

life. I would like to thank all my friends and colleagues for their help and

useful suggestion both in my study and life.

Finally, I would like to thank my family members, for their support my

decisions and endless care. I would like to especially thank my wife for

her unconditional love.

Résumé

Le concept de réservation de voie a été présenté comme une stratégie

de gestion du trafic et a de nombreuses applications dans la vie réelle.

Des études antérieures dans la littérature se concentrent principalement

sur l’impact de la réservation de voies dans une région locale du réseau

de transport. Dans cette thèse, les problèmes de réservation de voies

sont étudiés dans le but de minimiser l’impact sur le trafic total par la

réservation optimale des voies dans un réseau de transport. Nous nous

sommes d’abord concentré sur le “lane reservation problem” (LRP) pour le

transport automatisé pour les poids lourds avec temps de déplacement sta-

tique. Ce travail est généralisé au “capacitated lane reservation problem”

(CLRP) pour les grands événements spéciaux. Enfin, le “lane reservation

problem with time-dependent travel time” (LRP-TT), et le “lane reserva-

tion problem with time-dependent travel speed” (LRP-TS) sont étudiés.

Pour chacun des problèmes étudiés, les modèles mathématiques appropriés

sont formulés, leurs complexités sont démontrées. Différentes méthodes

de résolution sont explorées, y compris exacte cut-and-solve méthode, cut-

and-solve combinée à une méthode de coupe, et la méthode de recherche

tabou. Les performances des algorithmes proposés sont évaluées sur des

instances générées au aléatoirement. Les résultats numériques ont montré

que les algorithmes proposés sont plus efficaces pour résoudre les problèmes

étudiés que le logiciel commercial CPLEX.

Mots clé: Réservations, Transport de marchandises, Optimisation com-

binatoire, Problèmes de transport (programmation)

Abstract

The concept of lane reservation has been introduced as a traffic manage-

ment strategy and has many applications in real life. Previous studies in

the literature mainly focus on the impact of lane reservation in a local

region of a transportation network. In this thesis, several lane reservation

problems are studied with the objective to minimize impact on total traffic

by optimally setting reserved lanes in a transportation network. We firstly

focus on the lane reservation problem (LRP) for automated truck freight

transportation with static link travel time. This primary work is extended

to the capacitated lane reservation problem (CLRP) for large-scale special

events. Finally, the lane reservation problem with time-dependent travel

time (LRP-TT), and the lane reservation problem with time-dependent

travel speed (LRP-TS) are studied. For each of the considered problems,

appropriate mathematical models are formulated, their complexities are

demonstrated. Different resolution methods are explored, including exact

cut-and-solve method, cut-and-solve and cutting plane combined method,

and tabu search method. The performance of the proposed algorithms is

evaluated by randomly generated instances. Numerical results have shown

that the proposed algorithms are more effective to solve the considered

problems than the commercial package CPLEX.

Keywords: Reservation systems; Freight and freightage; Combinatorial

optimization; Transportation problems (Programming)

Contents

1 Introduction 1

1.1 Background . 1

1.2 Contributions and outline . 2

2 Literature review 5

2.1 Literature review on lane reservation 5

2.1.1 Applications of lane reservation 5

2.1.2 Studies on lane reservation . 8

2.2 Related Transportation problems . 11

2.3 Optimization methods for transportation problems 15

2.3.1 Methods for lane reservation problems 17

2.3.1.1 Cut-and-solve method 17

2.3.1.2 Cutting plane method 22

2.3.1.3 Tabu search . 25

2.4 Conclusion . 27

3 Lane reservation problem 29

3.1 Introduction . 29

3.2 Problem formulation . 31

3.3 Solution approach . 33

3.3.1 Pre-processing . 34

3.3.2 Cut-and-solve method . 35

3.3.2.1 Definition of piercing cut, sparse problem and remain-

ing problem . 35

3.3.2.2 New techniques of generating piercing cut 38

3.4 Computational results . 41

3.5 Conclusions . 47

i

4 Capacitated lane reservation problem 51

4.1 Introduction . 51

4.2 Problem formulation . 53

4.3 Solution approach . 55

4.3.1 Pre-processing . 55

4.3.2 Cut-and-solve method . 56

4.3.3 Cutting plane method to tighten remaining problem 57

4.3.4 Overall algorithm . 61

4.4 Computational results . 61

4.5 Conclusions . 66

5 Lane reservation problems with dynamic link travel time 71

5.1 Introduction . 71

5.2 Lane reservation problem with time-dependent travel time 72

5.2.1 Problem description and formulation 72

5.2.2 Model linearization . 76

5.2.3 Solution approach . 77

5.2.3.1 Pre-processing . 77

5.2.3.2 Cut-and-solve method 78

5.2.3.3 Overall algorithm . 80

5.2.4 Computational results . 80

5.3 Lane reservation problem with time-dependent travel speed 87

5.3.1 Time-dependent travel speed and travel time on non-reserved

lanes . 87

5.3.2 Problem description and formulation 91

5.3.3 Model reformulation . 94

5.3.4 Tabu search algorithm . 94

5.3.5 Computational results . 99

5.4 Conclusions . 103

6 Conclusions and perspectives 105

Appendix I 108

Résumé en français 112

Bibliography 135

ii

Notation

A: set of directed arcs (i, j), i ̸= j, i, j ∈ N

K: set of transportation tasks, k ∈ K

N : set of nodes

Q: set of indices of time interval

Tq: boundary of time interval, q ∈ Q

aij: traffic impact if a lane in link (i, j) ∈ A is reserved

cij: residual capacity of a non-reserved lane in link (i, j) ∈ A

dk: destination node of task k ∈ K

flk: flow of task k (number of vehicles/unit of time), k ∈ K

pk: prescribed travel duration to complete task k ∈ K

sk: source node of task k ∈ K

τij: link travel time on a reserved lane in link (i, j) ∈ A

τ ′ij: link travel time on a non-reserved lane in link (i, j) ∈ A

τ ′′ijq: link travel time on a non-reserved lane in link (i, j) ∈ A when the depar-
ture time at node i is within time interval [Tq, Tq+1), q ∈ Q

τ ∗ij(t): link travel time function on a non-reserved lane in link (i, j) ∈ A when
the departure time at node i is t

iii

iv

List of Figures

2.1 Example of high-occupancy vehicle (HOV) lane. 6

2.2 Example of exclusive bus lane. 7

2.3 Principle of cut-and-solve method. 17

2.4 Illustration of cut-and-solve method. 20

2.5 Convex hull. 23

2.6 Separation algorithm for cover inequality. 26

2.7 Flowchart of a standard tabu search algorithm. 27

3.1 Example of lane reservation. 31

3.2 Algorithm LRP: algorithm for the LRP. 40

3.3 Comparison for Algorithm LRP, LRP′, and LRP′′. 44

3.4 Computational results of problems with different sizes. 45

3.5 Computational results of problems with different types of impact. . . 45

3.6 Computational results of problems with different average node degree. 48

4.1 Illustration for residual capacity. 52

4.2 New separation algorithm for cover inequality. 60

4.3 Algorithm CLRP: algorithm for the CLRP. 62

4.4 Computational results of problems with fixed number of nodes. 64

4.5 Computational results of problems for fixed number of tasks. 65

4.6 Computational results of problems for different prescribed travel dura-

tion. 65

5.1 Example of time-dependent travel time on a non-reserved lane (i, j). . 73

5.2 Example of task path. 79

5.3 Algorithm LRP-TT: algorithm for the LRP-TT. 81

5.4 Computational results of problems with different sizes. 82

5.5 Computational results of problems with different number of time in-

tervals. 84

5.6 Computational results of problems with different impact. 85

v

5.7 Computational results of problems with different prescribed travel du-

ration. 86

5.8 Example of changes of travel speed on a non-reserved lane (i, j). . . . 88

5.9 Procedure of calculating travel time on a non-reserved lane for a given

departure time at node. 89

5.10 Example of travel time function of a non-reserved lane. 91

5.11 Modified label-correcting algorithm for shortest path 95

5.12 Procedure for constructing initial solution. 97

5.13 Procedure for checking the feasibility of move. 98

5.14 Tabu search algorithm for the LRP-TS. 100

A.1 Travel information of vehicle A. 109

A.2 Travel information of vehicle B. 110

vi

List of Tables

3.1 Comparison for Algorithm LRP, LRP′, and LRP′′. 43

3.2 Computational results of problems with different sizes. 43

3.3 Computational results of problems with different types of impact. . . 46

3.4 Computational results of problems with different average node degree. 47

4.1 Computational results of problems with fixed number of nodes. 64

4.2 Computational results of problems with fixed number of tasks. 67

4.3 Computational results of problems with different lane’s residual capacity. 68

4.4 Computational results of problems with different impact. 69

4.5 Computational results of problems with different prescribed travel du-

ration. 70

5.1 Computational results of problems with different sizes. 82

5.2 Computational results of problems with different number of time in-

tervals. 84

5.3 Computational results of problems with different impact. 85

5.4 Computational results of problems with different prescribed travel du-

ration. 86

5.5 notations used in the numerical results. 101

5.6 Computational results of problems with different sizes. 102

vii

viii

Chapter 1

Introduction

This thesis investigates a new type of transportation problem: lane reservation prob-

lem (LRP). It mainly concerns designing and reconfiguring transportation networks

to meet the needs for sustainable development of economy via the lane reservation

strategy. The goal of the research is to develop a methodology and tool for decision-

making of management of transportation. In this chapter, the background of the

thesis is firstly introduced. Then the contributions and outline of this thesis are

presented.

1.1 Background

With the integration process of global economic, transportation plays an important

role for sustainable development of economy in many aspects, such as human daily

moving, logistic transportation and so on. However, rapid urbanization and an

increasing number of vehicles cause many problems, such as inefficient transporta-

tion, higher and unpredictable travel time, fuel waste, and safety/environment issues.

These problems prevent achieving transportation with desirable reliability, efficiency,

and safety.

One conventional solution to these problems is from the point view of improv-

ing infrastructure, including constructing new traffic networks and adding new lanes

by widening the existing roads. Both of the two methods involve in construction,

which requires a large amount of funding and long duration. Such solution is not

always feasible nowadays. Hence, improving traffic situation and transportation effi-

cacity via appropriate management methods and efficient utilization of the existing

infrastructure become more and more important.

Recently a concept called lane reservation strategy has been widely applied as a

traffic management method in real-life around the word. It is to reserve some lanes

1

in the existing transportation network for some special use. Only certain types of

vehicles are allowed to use the reserved lanes. For example, exclusive bus lanes are

introduced in many cities around the world and demonstrated their great success for

public transportation. High-occupancy vehicles (HOV) lanes are made during certain

day-time hours for vehicles with more than one occupant (sometimes more than two).

These HOV lanes are introduced to traffic networks to encourage commuters to car

pool such that the number of vehicles moving on the roads can be reduced. Later,

high-occupancy toll (HOT) lanes are introduced to allow solo driver to pass HOV

lanes by paying a premium price so that HOV lanes can be used more efficiently.

Other applications, such as temporarily reserved lanes for evacuation under emergent

situations and Olympic lanes for Olympic Games, can also be found in reality.

However, this lane reservation strategy reduces the number of general-purpose

lanes, and maybe make the remaining general-purpose lanes congested. Traffic impact

such as increase of travel time could be caused on the remaining general-purpose lanes.

On the other hand, the impact of reserving a lane with busy traffic is obviously

different from that with less traffic. It should be carefully considered selecting roads

from the network to reserve their lanes so as to minimize the total traffic impact

on the overall network. To the best of our knowledge, there are very few studies of

problems on minimizing the impact of reserved lanes with mathematical models and

methods. The lane reservation problem is different from some classical transportation

problems, such as multi-commodity flow problem, vehicle routing problem with time

windows, and facility location problem. Thus, it is meaningful to study such lane

reservation problems. These problems aim to minimize the total traffic impact of the

reserved lanes by optimally selecting them from the network. This thesis consists

of developing new mathematical models and methods for the LRP and several its

variants.

1.2 Contributions and outline

This thesis mainly investigates the lane reservation strategy in order to minimize the

impact on normal traffic by reserved lanes via optimally selecting them from existing

transportation networks. Four lane reservation problems are investigated successively.

We firstly focus our attention on a lane reservation problem for automated trucks with

static link travel time. Then we extend it to a capacitated lane reservation problem

for great events, such as large-scale sport events. Finally, we address two dynamic

lane reservation problems with time-dependent link travel time and time-dependent

2

link travel speed, respectively. The assumptions of the four problems are more and

more close to reality. For each addressed problem, we formulate the mathematical

model, prove the complexity of the problem, and propose solution approach.

The main contributions of this thesis are presented in detail as follows:

1) Study four lane reservation problems for different applications (automated trucks,

great events) under various conditions (residual capacity, static and dynamic

link travel time). These four problem are studied successively and their assump-

tions are more and more close to real-life.

2) For all four problems, appropriate mathematical models are formulated , their

complexities are demonstrated and then exact cut-and-solve method, cut-and-

solve and cutting plane combined method, and metaheuristic method are de-

veloped according to the characteristics of the problems. The performance of

the proposed algorithms is evaluated by randomly generated instances. The re-

sults are compared with those obtained by a direct use of commercial software

CPLEX.

This thesis is organized as follows:

Chapter 2 firstly addresses the literature review on lane reservation strategy. Some

related classical transportation problems and their resolution methods are introduced.

Then the principle of cut-and-solve method, cutting plane method, and tabu search

which will be applied to the resolution of lane reservation problems are explained.

In chapter 3, we study a lane reservation problem, which is intended for future

automated freight transportation. The background of the problem is firstly described.

Then the mathematical model and complexity of the problem are presented. An op-

timal algorithm based on the cut-and-solve method is then proposed for the problem.

New techniques of generating piercing cuts for the cut-and-solve method are devel-

oped according to the characteristics of the problem. Finally, computational results

are reported via numerical experiments.

In chapter 4, we study a capacitated lane reservation problem for large-scale spe-

cial events. This problem is a generalization of the lane reservation problems in

[83]. The problem is formulated as an integer linear programming model and a cut-

and-solve and cutting plane combined method is developed. The embedded cutting

plane method in the proposed algorithm permits to accelerate the convergence of

the algorithm. At last, computational results are presented to evaluate the proposed

algorithm.

3

Chapter 5 investigated two lane reservation problems with dynamic factors: time-

dependent link travel time and time-dependent link travel speed. The lane reservation

problem with time-dependent link travel time is firstly formulated as a mixed integer

non-linear program and later transformed into an equivalent linear one. Then an

optimal algorithm based on the cut-and-solve method is proposed and computational

results are presented. For the lane reservation problem with time-dependent link

travel speed, a procedure is firstly proposed to calculate the travel time for each link.

The obtained link travel time is a piecewise linear continuous function. Moreover,

the “first-in-first-out” property is satisfied in the problem. A tabu search algorithm

is developed to obtain near-optimal soltutions. Numerical experiments are conducted

to evaluated the performance of the proposed algorithm.

Finally, chapter 6 concludes this thesis and discusses perspectives for future work.

4

Chapter 2

Literature review

In this chapter, we mainly review the applications and theoretical studies of lane

reservation. Then, some related transportation problems and their mathematical

formulations are presented. The characteristics of these transportation problems are

described to show that the LRPs in this thesis cannot be transformed directly to any

of them. Finally, optimization methods for the resolution of transportation problems

are presented. Specifically, we describe in detail the methods which will be applied

to the resolution of the LRPs in the following chapters.

2.1 Literature review on lane reservation

2.1.1 Applications of lane reservation

Because of the increase of travel demand and number of vehicles, traffic congestion is

a common phenomenon in many cities around the world. As stating in chapter 1, the

introduction of appropriate traffic management strategies becomes more important

as they are economical and flexible, compared with conventional strategy such as

augmentation and enhancement of transport infrastructure. In recent years, a lane

reservation concept is introduced as a traffic management strategy and has many

real-life applications, such as high-occupancy vehicle (HOV) lane, high-occupancy

toll (HOT) lane, and exclusive bus lane (XBL), etc.

HOV is a vehicle which has multi-occupant. HOV lanes are reserved for the

exclusive use of HOVs (usually referred to carpools, vanpools, buses, and other special

vehicles like emergency vehicles). Usually HOV lanes are marked with special traffic

signs to distinguish from general-purpose lanes. One example of HOV lane is given

in Fig. 2.1. By allowing only HOVs to travel on them, HOV lanes can provide an

alternative for travelers to pass congested areas during peak hours. Thus, HOV lanes

5

(a) Traffic sign for
HOV lane.

(b) HOV lane.

Fig. 2.1: Example of high-occupancy vehicle (HOV) lane.

can offer the benefit of travel time saving to encourage and attract people to use

carpooling, vanpooling, or buses.

The travel time on the HOV lanes can also be predicted. The final goal of provision

of HOV lanes is to reduce traffic congestion, as well as vehicle emissions. Moreover, it

was indicated in [78] that many HOV lane projects were implemented to meet one or

more of the following common objectives: 1), increase the average number of persons

per vehicle; 2), preserve the people-moving capacity of a freeway; 3), improve bus

operations; 4), enhance mobility options for travelers.

The first freeway HOV lane was implemented in the Shirley Highway in North-

ern Virginia, U.S. in 1969 [51] [79]. Since then, many HOV lane projets have been

implemented in the mid-to-late 1980s and 1990s. It was reported that there were

approximately 2,300 miles of operational HOV lane in 28 metropolitan areas in the

United States till the year 2000 [80]. Nowadays, HOV lanes have been widely applied

in many cities around the world, e.g., Canada, Australia, UK, Spain, the Nether-

lands, and Austria in Europe [52] [65]. One successful example of HOV lane is the

one which was built in the Lincoln Tunnel in New Jersey in 1970. According to the

Federal Highway Administration (FHWA) [26]: “Of the HOV facilities with utiliza-

tion data provided, the one with the highest number of peak hour persons in the HOV

lanes is the Route 495 Lincoln Tunnel Bus Lane in New Jersey, with 23,500 vehicles

in the AM peak”.

Based on the past years’ experiences, HOV lanes are generally effective to reduce

traffic congestion by moving more people in fewer vehicles, improving people-moving

capacity, and enhancing mobility options for travelers. However, not all the HOV

projects achieved these objectives. Some HOV lanes are underutilized as the actual

6

Fig. 2.2: Example of exclusive bus lane.

traffic volume on them was significantly below the capacity [47]. To more efficiently

utilize the HOV lanes, some of them are suggested to convert to HOT lanes which

allow solo-occupant vehicles to access to them by paying a premium toll. The amount

of toll varies with level of traffic congestion, which is intended to manage the number

of vehicles on HOT lanes to maintain free-flow speeds. Besides the common benefits

provided by HOV lanes, HOT lanes additionally offer a range of advantages [57]:

1), save travel time for solo-occupant vehicles; 2), generate a source of revenues;

3), improve HOV lanes’ utilization; 4), provide a new travel alternative. The first

operational HOT lane was implemented in SR-91 Express Lanes in California in

1995. It was said that users of the SR-91 Express Lanes saved an average of 12–13

minutes travel time [59].

Another widely used application of the lane reservation concept is the XBL, which

is restricted to buses only during certain hours of the day. In some cities, XBLs

are marked with special signs as shown in Fig. 2.2. Unlike HOV or HOT lanes,

XBLs are open to public buses only. They provide bus priority over other vehicles

to pass congestion regions to enhance bus attractiveness and promote the shift of

travel mode from private vehicles to buses, which finally results in a reduction of

traffic congestion [69]. In large cities with growing populations and limited space

resources, one of the best feasible way to completely solve urban traffic congestion

is to implement high quality public transportation systems. Obviously, XBLs can

enable an on-time bus service during rush hours. Thus, many bus rapid transit

(BRT) systems based on XBLs have been developed in many urban areas during

7

the last several decades throughout North America, Europe, Latin America, Asia,

Australia, and New Zealand. BRT systems play an important role in delivering

increasing ridership and saving bus travel time for the success of public transportation

[22] [49]. A successful example is Curitiba BRT system implemented in Brazil since

1974. It carries about 188,000 daily passengers in the north-south corridor, 80,000 in

the Boqueirao corridor, 52,000 in the east corridor, and 19,000 in the west corridor

[50].

The concept of lane reservation has also studied by researchers for intelligent

transportation systems. Incorporating the techniques of real-time communication,

infrastructure-based cameras, and radio frequency identification readers, an intelligent

lane reservation system for highways (IIRSH) is proposed in [20] [62]. The ILRSH

allows drivers to reserve a slot on a high-priority lane by paying a premium price so

that a time-guaranteed travel can be achieved. Ravi et al. [62] described the general

architecture of the ILRSH together with its components. Later Dobre et al. [20]

presented design details for the ILRSH components and evaluated their feasibility

by simulation experiments. Iftode et al. [41] also proposed a lane reservation based

active highways which is similar to the ILRSH.

2.1.2 Studies on lane reservation

As stated in section 2.1.1, the concept of lane reservation is introduced as a traffic

management strategy and has various applications in real-life. Meanwhile, lane reser-

vation concept has also been paid much attention by researchers and is extensively

investigated in the literature.

In early days, the impact of HOV lanes was evaluated generally via empirical

data, surveys, and statistical methods. Martin et al. [55] reported a two-year study

evaluation on the impact of HOV lane on I-15 in Salt Lake City. The findings indicated

that the HOV lane carried the same number of people as a general-purpose lane with

only 44% of vehicles during the P.M. peak period. The average vehicle occupancy

on the HOV lane section of I-15 increased by 17%, from from 1.1 to 1.3 people per

vehicle. The HOV lane showed a respective 13% and 30% travel time saving during

the A.M. and P.M. peak period. The authors concluded that the HOV lane on I-15 is a

successful operation. In Oregon, [2] evaluated the I-5 before and after the introduction

of an HOV lane. It concluded that HOV users saved 8–10 minutes over the entire

length of the scheme. The HOV lane carried 2,600 people per hour, with 65% more

people than a general-purpose lane. Evaluations of the impact of other HOV projects

can be found in [28]. Although there are some successful instances of HOV lanes

8

that are proved to be an valuable alternative to reduce congestion, negative results

were also reported since one HOV lane facility was closed due to lower utilization

in New Jersey in 1998 [28]. Kwon and Varaiya [47] analyzed the California HOV

system, using empirical data from the Freeway Performance Measurement System

database. It was found that that HOV lanes were under-utilized and suffered from

degraded operations. It was also found that HOV lanes offered small travel time

saving, though it is not statistically significant. Despite these negative findings, the

authors thought that the HOV facilities still can play an important role in California

freeway system if it is operated efficiently.

To efficiently utilize the HOV lanes, researchers proposed HOT lanes to combine

the concepts of congestion pricing and HOV lanes by offering single occupant vehicles

to access to HOV lanes with paying toll. Both empirical and theoretical studies

were conducted to evaluate the impact of HOT lanes. Sullivan and Burris [10] [71]

conducted a benefit-cost (including travel time savings, fuel costs, emissions, capital

costs and operating costs) analysis of California SR-91 and Texas QuickRide HOT

lane projects. The overall benefit-cost ratios of the two projects were both between

1.5 and 1.7, with significant savings in travel time. Abdelghany et al. [3] applied a

dynamic traffic assignment (DTA) simulation methodology to analyse and evaluate

the network performance under various schemes for the design and operation of HOT

lanes. Murray et al. [56] evaluated the impact of a hypothetical HOT lanes in a

network by incorporating the DTA simulation model with an unordered multinomial

logit mode-choice model. The evaluation was under a variety of scenarios, including

sensitivities to departure time window, carpooling attractiveness, pricing levels, and

access restrictions. It concluded that the impact and effectiveness of HOT lane depend

on the complex interaction of the factors mentioned above.

To fully realize the potentials of XBL, many studies on evaluating the impact

of XBL have been widely reported. Sarin et al. [64] evaluated the XBL system in-

troduced in Delhi, India. It was reported that the system failed to save bus travel

time due to the non-compliance of road users. Nevertheless, many positive results

of XBL were reported in the literature. Choi and Choi [14] concluded that the XBL

system was successful after conducting their study in South Korea. Bus travel time

was significantly reduced, a mode shift from car to bus was estimated 12.2%. The

success of XBL was attributed to various reasons, such as public acceptance, gov-

ernment publicity, and systematic cooperation of related authorities, etc. Wei and

Chong [82] compared the performance of the first XBL implemented in Kunming,

China before and after two years’ operation. It was found that the average speed of

9

bus increased from 9.6km/h to 15.2 km/h. Due to the long duration of conducting

before-and-after comparison, simulation method also has been used in recent years

to evaluate the impact of XBL. Shalaby [66] used the TRANSYT-7F simulator to

evaluate the performance of buses and adjacent traffic following the introduction of

XBL in an urban arterial in downtown Toronto, Canada. The results indicated that

the XBL was successful in improving average bus performance with an increase in bus

ridership and a reduction in adjacent traffic volumes. Unlike the previous articles in

which the studies were conducted under homogeneous traffic conditions, Arsan and

Vedagiri [6] [7] studied the impact of provision XBLs on heterogeneous traffic flow.

They applied the micro simulation model HETEROSIM and observed data to vali-

date the developed simulation model. It was found that the maximum permissible

traffic volume (except the buses) to capacity ratio that can ensure a level of service C

is about 0.53 for 11.0m wide road and 0.62 for 14.5m wide road. Besides the studies

on the operational performance of XBL, impacts of XBL on adjacent traffic operation

was also investigated. Karim [43] evaluated the effect of XBL on travel time of other

general vehicles using floating car technique, which requires a test vehicle to “float”

in the traffic flow and to collect data. It was found that the mean travel time of other

general vehicles was significantly increased after executing XBL during morning and

evening peak hours. Yang and Wang [85] compared the XBL with the proposed new

dynamic bus lane (DBL) in terms of travel time and traffic conflicts changes through

the application of micro-simulation approach. Simulation results showed that both

DBL and XBL have positive impact on buses and negative impact on adjacent traffic.

To summarize the literature described above, we can find that the studies on

lane reservation have the following one or more common points: 1), the studies are

mainly focused on the performance impact of single lane reservation project in local

region of transportation networks; 2), the study methods is either based on analyzing

empirical data, or conducting simulation experiments via traffic simulators. It is clear

that the pervious studies provided valuable information for decision-makers when

considering new lane reservations as a traffic management strategy. However, seldom

studies consider optimally selecting lanes from an entire transportation network to

be reserved and no mathematical methods are applied to the studies. It is interesting

and necessary to fill these gaps. Thus, we investigate several optimal lane reservation

problems in a transportation network in this thesis. The considered problems concern

making an optimal selection of lanes from the network to be reserved so that the

impact of reserved lanes is minimized. To the best of our knowledge, the only two

related studies on optimal lane reservation are [83] [84]. The study on this issue

10

should be further conducted in depth. It is obvious that the impact is very different

with different reserved lanes. The lane reservation strategy should be well studied

before it is implemented. In this thesis, we propose mathematical models for the

lane reservation problems, then optimal resolution methods are developed for them.

Resolution methods are evaluated on randomly generated instances because there

is no empirical data and parameters in the literature. The LRPs are studied as

transportation problems in this thesis. In the following section, we will introduce

some related transportation problems and present their resolution models. It will be

seen that our optimal lane reservation problems cannot be transformed directly to

any of them. It is of research interest to study the LRPs. Some related optimization

methods for the resolution of the LRPs are then described.

2.2 Related Transportation problems

In this section, we will introduce some classical transportation problems, including

minimum-cost multicommodity flow problem, facility location problem, and vehicle

routing problem with time window, and present their mathematical formulations.

The characteristics of each problem are also described to compare with those of the

LRPs.

Minimum-cost multicommodity flow problem

Given a network, G = (V,A) composed of a set V of nodes and a set A of directed

arcs. Let K denote a set of commodities. Each commodity k corresponds to a source-

destination pair (sk, tk) and a amount of flow bk. For each arc (i, j) ∈ A, let uij denote

its capacity and ckij denote the cost of transporting per unit flow of commodity k on it.

The minimum-cost multicommodity flow problem (MCMF) is to transport a amount

of flow bk of each commodity k ∈ K from its source sk to destination dk respecting

to the capacity of each arc such that the total transportation cost is minimized.

Define decision variable xkij as the flow of commodity k moving on arc (i, j). Then

the MCMF can be formulated as follows [73]:

min
∑
k∈K

∑
(i,j)∈A

ckijx
k
ij (2.1)

s.t.
∑

i:(sk,i)∈A

xkski = bk, ∀k ∈ K, (2.2)

∑
i:(i,dk)∈A

xkidk = bk, ∀k ∈ K, (2.3)

11

∑
i:(i,j)∈A

xkij −
∑

i:(j,i)∈A

xkji = 0, ∀k ∈ K, ∀j ∈ N \ {sk, dk} (2.4)

∑
k∈K

xkij ≤ uij, ∀(i, j) ∈ A, (2.5)

xkij ≥ 0, ∀(i, j) ∈ A,∀k ∈ K. (2.6)

The objective function (2.1) is to minimize the total transportation cost. Constraint

(2.2)– (2.4) together ensure that a amount of bk commodity k is shipped from source

sk to destination dk. Constraint (2.5) means that the total commodity flow moving

on arc (i, j) is not violated its capacity.

Both the MCMF and the LRPs are intended to transport flow or accomplish

tasks for given sour-destination pairs. However, the MCMF is a linear programming

with xkij of real values. For each commodity, the flow may be transported in several

paths from its source to destination. The MCMF can be directly transformed to

the minimum-cost flow problem if commodity type |k| = 1. In this thesis, the lane

reservation decision is a yes-no decision and the LRPs are formulated as either an

integer linear programming or a mixed integer linear programming.

Facility location problem

Let D be a set of potential sites of facilities, C denotes a set of customers and

cjk, ∀j ∈ D, ∀k ∈ C is the cost of transporting per unit flow of commodity from

facility j to customer k. Let fj denote the cost of opening facilities at site j and

cjk denote the transportation cost from site j to customer k. The classical facility

location problem (FLP) is to open plants from potential sites setD and to service each

customer such that the total cost of opening facilities and transporting commodity is

minimized. Each customer must be serviced exactly by one opened facility.

Define decision variables as follows:

yj yj = 1, if a facility is opened at site j; and otherwise yj = 0, ∀j ∈ D.
xjk xjk = 1, if customer k is serviced by facility j; and otherwise xjk = 0,

∀j ∈ D, ∀k ∈ C.

The FLP can be formulated as the following zero-one integer linear program [5].

min
∑
j∈D

fjyj +
∑
j∈D

∑
k∈C

cjkxjk (2.7)

s.t.
∑
j∈D

xjk = 1, ∀k ∈ C, (2.8)

xjk ≤ yj, ∀j ∈ D, ∀k ∈ C, (2.9)

12

yj ∈ {0, 1}, ∀j ∈ D, (2.10)

xjk ∈ {0, 1}, ∀j ∈ D, ∀k ∈ C. (2.11)

The objective function (2.7) is to minimize the total cost, including opening facilities

cost and transportation cost. Constraint (2.8) ensures that each customer is serviced

by exactly one facility. Constraint (2.9) implies that any customer cannot be serviced

by a facility which is not open.

Although the FLP and LRPs have two following common points: 1), facility loca-

tion decision and lane reservation decision are yes-no decisions; 2), in the FLP only

opened facility can serviced customers, and in the LRP only reserved lanes can be

used by tasks in case of chapter 3. However in the FLP, facilities are located at nodes

and each customer is serviced by only one facility. Although in variants of the FLP,

a customer can be serviced by several opened facilities, there are not any constraints

between these facilities. In the LRPs, lanes are reserved naturally on arcs and a task

path can be composed of exclusively or partial reserved lanes that have precedent

constraints. The modification of one reserved lane may affect the reservation of other

lanes by travel duration constraint.

Vehicle routing problem with time windows (VRPTW)

Given a graph G = (V,A) with node set V = {0, n + 1} ∪ N and arc set A.

Node 0 represents the depot and node n + 1 is a copy of node 0. Each node i ∈ N

corresponds to a customers serviced by a vehicle k ∈ K, which has a capacity q. Each

customer i corresponds to a demand di, a service time si, and a time window [ei, li]

which indicates the earliest and latest starting time to service it. Each arc (i, j) ∈ A

corresponds to a travel time tij and a travel cost cij. The vehicle routing problem

with time windows (VRPTW) is to decide a set of routes for a fleet of vehicles to

satisfy each customer’s demand such that the total travel cost is minimized. Each

customer is serviced only once by exactly one vehicle within the given time window.

And each vehicle must start at node 0 and terminate at node n+ 1.

Defined decision variables as follows:

wki the time vehicle k starts to service customer i, ∀k ∈ K, ∀i ∈ N .
xkij xkij = 1, if arc (i, j) is used by vehicle k; and otherwise xkij = 0, ∀k ∈

K, ∀(i, j) ∈ A.

The VRPTW can be formulated as the following mixed integer program [17].

min
∑
k∈K

∑
(i,j)∈A

cijxkij (2.12)

13

s.t.
∑
k∈K

∑
j:(i,j)∈A

xkij = 1, ∀i ∈ N, (2.13)

∑
j:(0,j)

xk0j = 1, ∀k ∈ K, (2.14)

∑
i:(i,j)∈A

xkij −
∑

i:(j,i)∈A

xkji = 0, ∀k ∈ K, ∀j ∈ N, (2.15)

∑
i:(i,n+1)

xki,n+1 = 1, ∀k ∈ K, (2.16)

xkij(wki + si + tij − wkj) ≤ 0, ∀k ∈ K, ∀(i, j) ∈ A, (2.17)

ei ≤ wki ≤ li, ∀k ∈ K, ∀i ∈ V, (2.18)∑
i∈N

di
∑

j:j∈(i,j)

xkij ≤ q, ∀k ∈ K, (2.19)

xkij ∈ {0, 1}, ∀k ∈ K, ∀(i, j) ∈ A, (2.20)

wki ≥ 0, ∀k ∈ K, ∀i ∈ N. (2.21)

The objective function (2.12) is to minimize the total travel cost. Constraint (2.13)

indicates that each customer is visited exactly once, while constraints (2.14)–(2.16)

ensure that each vehicle is used exactly once and flow conservation is satisfied at each

customer node. Constraints (2.17) and (2.18) are used to model the time window

restriction. Constraint (2.19) is the vehicle capacity restriction. Note that (2.17) is

not linear, but it can be linearized as follows:

wki + si + tij − wkj ≤Mij(1− xkij), ∀k ∈ K, ∀(i, j) ∈ A, (2.22)

where Mij = max{0, li + si + tij − ej} is a constant.

In an optimal solution of the VRPTW, each arc in the network is used at most

once, whereas in the LRPs one reserved lane may be used by several tasks. The time

window constraint in the VRPTW is imposed to each node, whereas the travel time

constraint in the LRPs is imposed to each task path. In the VRPTW, the vehicles

start and terminate at the same depot, whereas there is no such restriction in the

LRPs.

From the above description, it can been seen that although the LRPs have some

common points with the above transportation problems, the LRPs have their own

characteristics which are different from them. The LRPs cannot be transformed di-

rectly to any of them and the mathematical formulations presented previously cannot

be applied to the LRPs. It is necessary to formulate new mathematical models for

the LRPs and study them with new resolution method.

14

2.3 Optimization methods for transportation

problems

For solving transportation problems, various optimization methods have been pro-

posed in the literature, such as heuristics, metaheuristics, approximate algorithms,

exact methods based on branch-and-bound and branch-and-cut, and hybrid methods,

etc.

Heuristics are experience-based approaches which are usually designed to solve

specific problems according to their characteristics. They can find “good” solutions

fast by trading optimality for speed. Examples of heuristics for solving transportation

problems can be found in [31], [63], and [70]. Though heuristics can produce good

enough solutions quickly, the optimality of the solutions is not guaranteed. They

may be used to generate “good” initial solutions for further improvement by other

methods, such as metaheuristics.

Metaheuristics are referred to general concepts or strategies that can be used

as guidelines to obtain “high” quality solutions for general optimization problems.

Unlike heuristics, special mechanisms are designed to avoid getting stuck in a local

optimal solution. Popular metaheuristics include ant colony optimization by Dorigo

[21], tabu search by Glover [34] [36], genetic algorithm by Holland [38], and simu-

lated annealing by Kirkpatrick et al. [46]. Metaheuristics are often combined with

other methods, such as Lagrangian based methods, to evaluate its performance. La-

grangian based method can provide a lower bound for minimization problems. With

the information obtained by it, a feasible solution of the original problem can be

constructed thereafter. But Lagrangian based methods are effective only for certain

type of problems, such as the FLP [74].

Approximate algorithms can find approximate solutions for optimization prob-

lems. Unlike heuristics or metaheuristics, the solutions found by approximate algo-

rithms have guaranteed quality, e.g., the ratio of the approximate solution value and

optimal value is bounded by a constant factor. Therefore, approximate algorithms

can tell us how close approximation solutions are to the optimal solution. Usually

rigor mathematical study of the problems is involved when designing approximate al-

gorithms. Approximate algorithms for solving transportation problems can be found

in [9], [15], [48], [68]. However, not all approximation algorithms are suitable for all

practical applications and some approximation algorithms have impractical running

times even though they are polynomial time, for example O(n2000) [1].

15

Exact methods can solve the problem to optimality and find an optimal solution of

the problem, but the computation time will increase exponentially with the size of NP-

hard problem. Analysis of properties of the problem and appropriate use of combined

or hybrid methods can help solve large scale NP-hard problems. Applications of exact

methods can in seen in [8], [29], [72].

To solve the LRPs in this thesis, we consider an exact method, cut-and-solve

method, which was proposed by Climer and Zhang (2006) [16]. Actually cut-and-solve

method is a particular branch-and-bound method with two nodes at each level of its

search path, where the two nodes corresponding to a sparse problem and a remaining

problem [86]. The sparse problem is solved to optimality due to its small size. Then

only the node corresponding to the remaining problem needs to be branched. Different

from many branch-and-bound methods, the cut-and-solve branches the remaining

problem on a set of variables rather than one variable at each time [86]. These

characteristics result in its following advantages. First, there are no “wrong” subtrees

in which the search of cut-and-solve may get lost. As stated previously, at each

level of the search only the node corresponding to the remaining problem needs to

be branched. Therefore, the search is always a direct path. Second, the memory

requirement for cut-and-solve is negligible as only the current best solution and the

current remaining problem need to be saved at the search path. For the branch-and-

bound or branch-and-cut methods, vast memory is required to store all unexplored

nodes in their search tree.

The cut-and-solve method has been successfully applied to solving some difficult

classical combinatorial optimization problems. It was reported that the implementa-

tion of the cut-and-solve method outperforms state-of-the-art solvers for the asymmet-

ric traveling salesman problem [16]. It also improved the results of some benchmark

instances of facility location problems in the literature [86]. Due to these reasons,

we consider the cut-and-solve method as our main solution approach. In chapter 3,

we consider a LRP for automated freight transportation. We develop a cut-and-solve

based algorithm with new techniques of generating piercing cuts for it. In chapter 4,

we study a capacitated lane reservation problem (CLRP) in which residual capacity

issue is considered. The CLRP is an extension of the LRP. It becomes difficult to

solve when the problem’s size increases. Thus, a cut-and-solve and cutting plane

combined method is developed to accelerate the convergence of the algorithm. Chap-

ter 5 investigates two dynamic LRPs, lane reservation problem with time-dependent

travel time (LRP-TT) and lane reservation problem with time-dependent travel speed

16

Update best

upper bound
lower bound 1LB

by LP relaxation

min min 1min{ , }UB UB UB

min min 2min{ , }UB UB UB 2LB

Remaining

Problem 2

Sparse

Problem 2

Current

Problem 2

Remaining

Problem 1

Sparse

Problem 1

Current Problem 1

(Original problem)

Fig. 2.3: Principle of cut-and-solve method.

(LRP-TS). These two problem are much more difficult to solve than the LRP in chap-

ter 3 and CLRP in chapter 4 since dynamic factor is introduced to the problem. For

the LRP-TT, we develop cut-and-solve based algorithm. New piercing cuts are gen-

erated according to the problem. The computational time increases rapidly with the

size of the problem. Therefore, a tabu search method is applied to the LRP-TS. Some

properties are explored to help solve the LRP-TS. In the following section, we will

describe in detail the cut-and-solve method, cutting plane method, and tabu search,

which will be applied to the resolution of the LRPs.

2.3.1 Methods for lane reservation problems

In this section, the principle of the cut-and-solve method and cutting plane method,

which will be applied for the resolution of the LRPs, are described. Without lose of

generality, the optimization problems are referred to minimization problems if without

special mention.

2.3.1.1 Cut-and-solve method

The cut-and-solve method was firstly proposed by Climer and Zhang for solving the

asymmetry traveling salesman problem [16]. It is an iterative exact method for solving

combinatorial optimization problems.

The general principle of the cut-and-solve method is summarized in Fig. 2.3. It

can be described as follows: 1), at each iteration of the cut-and-solve method, a

17

piercing cut is generated and it decomposes the current problem (it is initialized as

the original problem for the first iteration) into a sparse problem and a remaining

problem; 2), for the sparse problem, it is solved to optimality and the optimal value

UB obtained. The current best upper bound UBmin, is then updated if UB is less

than UBmin; 3), For the remaining problem, its linear relaxation problem is solved

by relaxing the integer variables to real ones and an associated lower bound LB is

obtained; 4), The stopping criterion: LB ≥ UBmin is checked. If it is satisfied, UBmin

and the solution corresponding to it are respective the optimal value and optimal

solution of the original problem. The cut-and-solve method is terminated. Otherwise,

the current problem is set as remaining problem and the steps described above are

repeated.

Remark 1 The optimal value of the sparse problem is an upper bound of the original

problem since it is a subproblem of the original problem. The best upper bound is

updated in case of improvement.

Remark 2 It is difficult to solve the remaining problem optimally as its solution

space is large, hence its linear relaxation problem is solved. Apparently, the optimal

value of the remaining problem is greater than or equal to the lower bound obtained

by the linear relaxation.

Remark 3 After the resolution of the sparse problem, its solution space is removed

away. Hence, the size of the solution space considered is reduced iteratively.

Remark 4 If LB ≥ UBmin is satisfied, then the optimal value of the remaining

problem is also greater than or equal to UBmin, which means that the remaining

problem has no better feasible solutions than the solution corresponding to UBmin.

Hence UBmin is the optimal value of the original problem.

It can be found that the solution space of the remaining problem is reduced after

each iteration. When its linear relaxation problem becomes tight enough, the lower

bound is no less than the best upper bound. At this point, the stopping criterion

is satisfied and the iteration is terminated. Moreover, Climer and Zhang gave the

following two theorems to guaranteed the optimality and termination of the cut-and-

solve method.

Theorem 1 When the cut-and-solve algorithm terminates, the current incumbent

solution must be an optimal solution.

18

Theorem 2 If the solution space for the original problem is finite, and both the

algorithm for solving the relaxed remaining problem and the algorithm for selecting

and solving the sparse problem are guaranteed to terminate, then the cut-and-solve

algorithm is guaranteed to terminate.

The proof of these two theorems can be found in [16]. For more details of the cut-

and-solve method, readers are referred to their paper.

To well illustrate how the cut-and-solve method works, a simple example is pre-

sented as shown in Fig. 2.4. An integer linear program (ILP) is presented in Fig. 2.4(a).

It represents the current problem. The polygon represents the feasible solution region

of its linear relaxation program (LP). The dots inside or on the edge of the polygon

are the feasible solution of the ILP. The optimal value of the ILP is −5, given by

(x1, x2) = (2, 1).

In Fig. 2.4(b), a piercing cut (5x1 − 12x2 ≤ −30) is selected and separated the

solution space of the current problem into two subspaces. The smaller space corre-

sponds to a sparse problem. It can be obtained by simply adding the piercing cut to

the original ILP, as shown in Fig. 2.4(b). The optimal value of the sparse problem

(denoted by UB) can be found relatively easily since its solution space is small. It

is of value 5, given by (x1, x2) = (1, 3). It is clear that UB is an upper bound on

the optimal value of original ILP. The best upper bound (denoted by UBmin) is then

updated as 5.

After solving the sparse problem, its solution space is removed away, the solution

space of the original ILP is then reduced. The linear program shown in Fig. 2.4(c)

represents a remaining problem. It can be obtained by adding the constraint 5x1 −
12x2 ≥ −29 to the original ILP. The solution space of the remaining problem is large,

then its linear relaxation problem is solved by relaxing the integer variables to real

ones and an associated lower bound of the remaining problem (denoted by LB) is

obtained. It is of value −9.5, given by (x1, x2) = (3.5, 1.5). Note that LB is less than

UBmin, then the search continues to the second iteration. Now the current problem

is defined as the remaining problem.

In Fig. 2.4(d), a new piercing cut (5x1−4x2 ≥ 4) is selected and it again separates

the solution space of the current problem into two subspaces. The sparse problem is

presented in Fig. 2.4(d). Its optimal value is −5, given by (x1, x2) = (2, 1). Note that

it is less than UBmin, then UBmin is updated as −5.

In Fig. 2.4(e), the remaining problem is presented and its linear relaxation prob-

lem is solved. The lower bound of the remaining problem is of value −2.855. It is

19

0 1 2 3 4
0

1

2

3

4

(a) Current problem 1

x1

x2 min−4x1 + 3x2

s.t. 5x1 + 7x2 ≤ 28

12x1 − 14x2 ≤ 21

x1, x2 ≥ 0 and integer

0 1 2 3 4
0

1

2

3

4

(b) Sparse problem 1

x1

x2 min−4x1 + 3x2

s.t. 5x1 + 7x2 ≤ 28

12x1 − 14x2 ≤ 21

5x1 − 12x2 ≤ −30

x1, x2 ≥ 0 and integer

0 1 2 3 4
0

1

2

3

4

(c) Remaining problem 1

x1

x2 min−4x1 + 3x2

s.t. 5x1 + 7x2 ≤ 28

12x1 − 14x2 ≤ 21

5x1 − 12x2 ≥ −29

x1, x2 ≥ 0 and integer

0 1 2 3 4
0

1

2

3

4

(d) Sparse problem 2

x1

x2 min−4x1 + 3x2

s.t. 5x1 + 7x2 ≤ 28

12x1 − 14x2 ≤ 21

5x1 − 12x2 ≥ −29

5x1 − 4x2 ≥ 4

x1, x2 ≥ 0 and integer

0 1 2 3 4
0

1

2

3

4

(e) Remaining problem 2

x1

x2 min−4x1 + 3x2

s.t. 5x1 + 7x2 ≤ 28

12x1 − 14x2 ≤ 21

5x1 − 12x2 ≥ −29

5x1 − 4x2 ≤ 3

x1, x2 ≥ 0 and integer

Fig. 2.4: Illustration of cut-and-solve method. (a) Current problem 1 (original integer
linear program ILP). (b) Sparse problem 1 with optimal value of 5. Best
upper bound is updated as 5. (C) Remaining problem 1 with lower bound of
−9.5 obtained by solving its linear relaxation problem. (d) Sparse problem
2 in second iteration with optimal value of −5. Best upper bound is updated
as −5. (e) Remaining problem 2 with lower bound of −2.855. It is greater
than best upper bound. Then best upper bound of value −5 is the optimal
value of the original ILP.

20

greater than UBmin, then the optimal value of the remaining problem is also greater

than UBmin, which means that there exists no better feasible solutions of the original

problem in the solution space of the remaining problem. Hence the search is termi-

nated. Now the UBmin of value −5 is the optimal value of the original ILP and the

optimal solution is (x1, x2) = (2, 1).

The piercing cuts selected for the above example problem are customized for this

particular instance. Actually, the efficiency of the cut-and-solve method is depen-

dent on the selection of appropriate piercing cuts. Climer and Zhang suggested the

following desirable properties of piercing cuts:

1) The subspace removed by the piercing cut from the solution space of the current

problem should be adequately small, so that the sparse problem can be solved

to optimality relatively easily.

2) The optimal solution of the linear relaxation problem of the remaining problem

should be removed by the piercing cut so as to prevent this solution from being

found in subsequent iterations.

3) The piercing cuts should attempt to capture an optimal solution of the original

problem. The algorithm will not be terminated until an optimal solution of the

original problem has been found in the sparse problem.

4) In order to guarantee termination, the subspace removed by each piercing cut

should contain at least one feasible solution of the original problem.

Climer and Zhang defined a variable set composed of the decision variables whose

reduced cost values are greater than a fixed value alpha. The reduced cost values

can be obtained from the optimal solution of the linear relaxation problem of the

remaining problem. Then the piercing cut is defined as the sum of the decision

variables greater than or equal to one. Then a general cut-and-solve procedure is

given as follows.

Climer and Zhang successfully applied the cut-and-solve method to solve the asym-

metry traveling salesman problem, a classical optimization problem with one decision

level. However, the LRPs in this thesis have at least two levels decision: the lane

reservation decision and the task paths decision, which belong to different decision

levels. In this case, the definition of the piercing cuts should be well selected ac-

cording to the characteristics of the addressed problems. In this thesis, we make a

contribution of successfully applying the cut-and-solve method to optimally solve the

LRPs by developing new techniques of generating piercing cuts.

21

General procedure of cut-and-solve method (ILP)

1: Define current problem as original problem. Relax integrality and solve LP of
current problem.

2: Let set V = { variables with reduced costs > alpha }.
3: Solve sparse problem exactly with constraint (sum of variables in V = 0). Update
UBmin if optimal value of sparse problem is less than UBmin.

4: Solve LP of remaining problem with constraint (sum of variables in V ≥ 1) and
obtain its lower bound LB.

5: If (LB ≥ UBmin), return UBmin.
Otherwise, define the current problem as remaining problem and goto step 2.

2.3.1.2 Cutting plane method

In this subsection, we will introduce the cutting plane method, which will be applied

to the resolution of the CLRP to tighten the lower bound of the remaining problem

so that the convergence of the cut-and-solve method can be accelerated. First, the

general principle of the cutting plane method is described, then the separation of

cover inequalities (CIs) for the 0–1 knapsack polytope is explained.

Given an integer linear program: min{cx : x ∈ SILP}, where SILP = SLP ∩ Zn

and SLP = {x ∈ Rn : Ax ≤ b}. The LP corresponding to ILP can be represented

as min{cx : x ∈ SLP}. As shown in Fig. 2.5, the polygon (solid line) represents

the feasible solution region of LP, and the black dots represent the feasible integer

solutions of ILP. The inside polygon (dashed red line) represents the convex hull

of SILP , denoted by conv(SILP). It is the smallest convex set containing SILP . The

optimal solution x∗ of LP is an extreme point of SILP . If x
∗ is not an integer solution,

it will be outside of conv(SILP). Then there exists a linear inequality that separates

x∗ from the conv(SILP), and this linear inequality is satisfied by all the feasible integer

solutions of ILP and violated by x∗. Such linear inequality is called as a cutting plane

or simply a cut for SILP . This cut can be added as an additional linear constraint to

LP, creating a modified LP. Then the non-integer solution x∗ is no longer feasible to

the modified LP. This process is repeated until an optimal solution of the modified

LP is an integer solution, which is also an optimal solution of the original ILP. This

procedure is called cutting plane method. The general procedure of the cutting plane

method is given as follows.

The principle of the cutting plane method is to iteratively generate cutting planes

to cut off the LP solution until it becomes an integer solution. At this point, the

integer solution is an optimal solution of the original ILP. As discussed above, the

cutting planes are satisfied by all the feasible integer solutions of the ILP, they are also

22

General procedure of cutting plane method

1: Relax the integer variables to real ones, solve the LP of ILP.
2: while the solution is not integer do
3: Generate cutting planes which are violated by the solution.
4: Add cutting planes to LP, obtain the modified LP and solve it.
5: end while
6: Return the integer solution.

SLP

conv(SILP)

Fig. 2.5: Convex hull.

called valid inequalities. A valid inequalities is further called a facet if it is necessary

to describe the convex hull of the set of feasible integer solutions of the ILP (e.g.,

the linear inequalities corresponding to the dashed red lines in Fig. 2.5 are facets of

conv(SILP)). It is obvious that if all the facets of the convex hull are known, then the

optimal solution of the LP with these facets will also be optimal to the original ILP.

Unfortunately, it is extremely difficult to find all facets of the convex hull as their

total number is exponential. Researches therefore is devoted to finding some facets for

specific problems. Given a set of linear inequality constraints and an LP solution x∗,

the separation algorithm is to find inequalities that are satisfied by the constraints and

is violated by x∗, or prove that no such one exists. In practice, it is not reasonable to

find all the facets as their number is very large. Sometimes the separation algorithm

is also NP-hard. Thus, in our application of cutting plane method to the addressed

problem, the iteration will be terminated if no valid inequalities are found. Since

the 0–1 Knapsack Problem (KP) is an important substructure of the CLRP, cover

inequalities (CIs) for the 0–1 Knapsack polytope is explained as follows.

23

A knapsack constraint can be represented as the following form:∑
i∈N

wiui ≤ b, (2.23)

where N is a set of items, wi is the weight of item i, b is the capacity of the knapsack.

Decision variable u = {u1, u2, . . . , u|N |} ∈ {0, 1}|N | takes binary values and indicates

that whether item i is selected in the knapsack (ui = 1) or not (ui = 0). Its knapsack

polytope is the convex hull of feasible solutions with the following form:

Ht = conv

{
u ∈ {0, 1}|N | |

∑
i∈N

wiui ≤ b

}
. (2.24)

Set C is called as a cover if
∑

i∈C wi > b, where C ⊆ N . For any cover C, the cover

inequality (CI) for (2.23) is defined as follows:∑
i∈C

ui ≤ |C| − 1. (2.25)

It is obvious that (2.25) is satisfied by all points in Ht. Given a fractional solution

u∗, a CI is called valid if it is violated by u∗ but satisfied by all the points in Ht.

The separation algorithm is to find valid CIs, or prove that none exits. Crowder et

al. [18] pointed out that the separation problem for CIs needs to solve the following

0–1 knapsack problem:

θ = min
∑
i∈N

(1− u∗i)vi (2.26)

s.t.
∑
i∈N

wivi > b, (2.27)

vi ∈ {0, 1}, i ∈ N. (2.28)

Problem (2.26)–(2.28) can be solved by the dynamic program proposed by Kaparis

and Letchford [42]. Let v∗ denote its optimal solution. Define cover C = {i ∈ N | v∗i =

1}. Since v∗ is the optimal solution of problem (2.26)–(2.28), then

θ =
∑
i∈N

(1− u∗i)v
∗
i =

∑
i∈C

(1− u∗i)v
∗
i +

∑
i∈N\C

(1− u∗i)v
∗
i .

According to the definition of C, if i ∈ C, then v∗i = 1, otherwise v∗i = 0. Thus,

θ =
∑
i∈C

(1− u∗i)v
∗
i = |C| −

∑
i∈C

u∗i .

24

If θ < 1, i.e., |C| −
∑

i∈C u
∗
i < 1, which is equivalent to∑

i∈C

u∗i > |C| − 1.

It means that the CI defined by (2.25) is violated by fractional solution u∗, then it

is a valid CI. Therefore, to find CIs for (2.23), we need solve (2.26)–(2.28). If the

optimal value is greater than one, then the CI defined by (2.25) is a valid CI. The

separation algorithm for CIs is presented in Fig. 2.6 [33].

2.3.1.3 Tabu search

Tabu search (TS) is a local serach-based metaheuristic which was introduced by

Golver for solving combinatorial optimization problems [33]. Each solution has an

associated neighborhood, which is a subset of feasible solutions. The TS guides the

search process from the current solution to its best admissible solution in its neigh-

borhood by an operation called move, even if this causes the objective function value

to deteriorate. This is unlike classical descent methods in which only moves lead to

improved objective function values are permitted. To avoid cycling in the search,

attributes of recently visited solutions are recorded in a memory structure called tabu

list to forbid move to them for a number of iterations (called tabu tenure). To lead the

search to a promising region of the solution space, forbidden moves can be overridden

when aspiration criteria are satisfied. The TS terminates when stopping criteria are

satisfied. The flowchart of a standard tabu search algorithm is given in Fig. 2.7 [58].

For details of the TS, readers are referred to [34].

The feature of the TS is that a flexible memory structure and aspiration criteria

are systematically used to guide its search. Moreover, due to the acceptance of

deteriorated solutions in the search process, the TS can “jump” from local optimum

to other region of the solution space so that the probability to find an global optimal

solution is enhanced. The new solution is not randomly generated in the neighborhood

of the current solution, it is the one which is better than the best current solution,

or the best admissible solution which is not tabued. The best admissible solution is

selected from the neighborhood of the current solution according to some pre-given

rules. Compared with other metaheuristics, the TS has the following characteristics:

1) It can jump out local optimum. 2) Cycling in the search are avoid by tabu list.

3) The termination of the search of the TS is not dependent on whether finding a

local optimal solution. The stopping criteria usually include: the maximum number

of iterations; the consecutive number of iterations that best objective function value

is not improved.

25

Separation algorithm for cover inequality

Given a fraction solution u∗, for j = 1, . . . , |N | and r = 0, . . . , b, define:

f(j, r) := min

{
j∑

i=1

(1− u∗i)vi |
j∑

i=1

wivi = r, vi ∈ {0, 1}, i = 1, . . . , j

}

g(j) := min

{
j∑

i=1

(1− u∗i)vi |
j∑

i=1

wivi ≥ b+ 1, vi ∈ {0, 1}, i = 1, . . . , j

}

1: Set f(j, r) := ∞ for j = 1, . . . , |N | and r = 0, . . . , b. Set f(0, 0) := 0.
2: Set g(j) := ∞ for j = 1, . . . , |N |.
3: for j = 1 to |N | do
4: for r = 0 to b do
5: if f(j − 1, r) < f(j, r) then
6: Set f(j, r) := f(j − 1, r)
7: end if
8: end for
9: for r = 0 to b− wj do
10: if f(j − 1, r) + (1− u∗j) < f(j, r + wj) then
11: Set f(j, r + wj) := f(j − 1, r) + (1− u∗j)
12: end if
13: end for
14: for r = b− wj + 1 to b do
15: if f(j − 1, r) + (1− u∗j) < g(j) then
16: Set g(j) := f(j − 1, r) + (1− u∗j)
17: end if
18: end for
19: if g(j) < 1 then
20: Output the violated cover inequality.
21: end if
22: end for

Fig. 2.6: Separation algorithm for cover inequality.

26

Initial

solution

Stopping criteria

satisfied ?

Create a set of

neighborhood solutions

Evaluate the

neighborhood solutions

Choose the best

admissible solution

Yes

Final

 solution

Update

tabu list

No

Fig. 2.7: Flowchart of a standard tabu search algorithm.

2.4 Conclusion

In this chapter, we firstly review the literature on lane reservation. The lane reser-

vation concept has been introduced as a traffic management strategy and has many

applications in real life. Many studies have been conducted based on analyzing em-

pirical data or performing simulation experiments via traffic simulators. However,

most studies focuses on the performance impact of single lane reservation project in

local region of transportation networks. It is necessary to study the impact of lane

reservation concept in the view of an overall network. This is the motivation of this

thesis. Then, we described some related transportation problems and their charac-

teristics to show that the LRPs in this thesis cannot be transformed to any of them.

Thus, it is of research interest to study the lane reservation problems. Finally, we

introduce some optimization method for solving transportation problems. Specially,

we describe the methods which will be applied to our studied problems in detail.

27

28

Chapter 3

Lane reservation problem

3.1 Introduction

As stated in the previous chapter, lane reservation strategy has received increasing

attention and has been applied in reality in recent years. But there are few studies

concerning optimal selection of lanes to be reserved via mathematical methods. In

this chapter, we investigate a lane reservation problem (LRP), which is motivated by

future automated truck freight transportation. With the automated driving charac-

teristics, the automated trucks can form as a fleet with the first one driven by human

and the others automatically follow it [61], [77]. They can offer a range of advantages,

such as low labor cost, high transportation efficacity, and low energetic consumption.

One of the major concerns for the success of future automated truck freight trans-

portation is the safety issue since the automated trucks themselves must be able to

detect all possible dangers and respond to them promptly and correctly, as compared

with manually driven trucks [67], [75]. It is thus preferable to provide an appropriate

driving environment for them. Reserved truck lane is one of the smart options for

reasons as follows. First, it is known that different types of vehicles have different op-

erating characteristic, e.g., acceleration and braking capabilities. If automated trucks

are allowed only on the reserved truck lanes, the deviation of the individual truck

speed from the average speed is small. Thus the overall traffic flow on the reserved

truck lanes is smooth, which may lead to a potential decrease of accident [76]. Sec-

ond, it is also said that the reserved truck lanes simplify the driving environment

for automated trucks, which can make the technical challenge for automated driving

tractable while achieving acceptable safety [67]. Third, the reserved truck lanes can

meet the high time-efficient transportation required for future freight transportation.

If the reserved lanes are used by automated trucks, excluding a number of general

road users, they can keep automated trucks from getting stuck in traffic and the travel

29

duration of the journey can be predictable. Hence, the reserved truck lanes can play

an important role in the success of future automated truck freight transportation.

Constructing new truck lanes is not always feasible due to the large cost, long

duration, limited spatial resource, and environmental issues. Hence appropriate and

efficient use of the existing infrastructure becomes important. One concept is the

lane reservation strategy, which is to select some existing general-purpose lanes from

a transportation network and to convert them to reserved lanes, e.g., dedicated truck

lanes. Since the reserved lanes can be only used by some special types of vehicles,

they can provide the vehicles a relative safe and fast travel environment. However,

the reserved lanes have negative impact on their adjacent general-purpose lanes that

may be congested because the reserved lanes cannot be used by the general road

users. Obviously, the impact of reserving a lane with busy traffic is different from

that with less traffic. Thus it should be carefully considered which existing roads of

the network should be selected to reserve their lanes so as to minimize the impact.

In this chapter, we investigate an LRP for automated trucks. The considered

problem is to design an automated trucks transportation network by selecting ex-

isting roads from a transportation network and reserving lanes from them for the

time-guaranteed transportation. The objective of the LRP is to minimize the to-

tal impact of the reserved lanes on the general-purpose lanes over the network. To

the best of our knowledge, the only related research to the addressed LRP is the

lane reservation problem with time-constrained transportation (LRPTCT), proposed

by Wu et al. [83]. Unlike the LRPTCT which is motivated by performing time-

guaranteed transportation tasks in a possibly saturated network for large-scale sport

events, the LRP is motivated by future automated truck freight transportation. In

the LRPTCT, the task paths are partially reserved, i.e., composed of reserved lanes

and general-purpose lanes. In the LRP, the task paths is exclusively reserved, i.e.,

each lane in the path is a reserved lane, for the reason of safety issue. Moreover, the

complexity of the LRPTCT is not demonstrated and a heuristic algorithm is pro-

posed to obtain near-optimal solutions for the LRPTCT, whereas the LRP is proved

NP-hard and a cut-and-solve based exact algorithm is proposed to obtain an optimal

solution.

The remainder of this chapter is organized as follows. Section 3.2 presents the

problem’s formulation. Then the addressed problem is proved NP-hard. Section 3.3

describes the solution approach which is based on the cut-and-solve method. Section

3.4 reports computational results. Section 3.5 concludes this chapter.

30

R
e
s
e
rv

e
d
 la

n
e

After lane

reservation

Fig. 3.1: Example of lane reservation.

3.2 Problem formulation

A transportation network can be represented by a directed graph G = (N,A), where

N is a set of nodes and A is a set of directed arcs. The nodes and arcs can represent

road intersections and road links in a transportation network, respectively. Given a

set of tasks and a set of source-destination (SD) pairs, each task corresponds to a SD

pair. The considered problem aims at selecting lanes to be reserved and designing an

exclusively reserved path for each task, so that each task can be completed within

the prescribed travel duration. However, traffic impact such as increase of link travel

time on general-purpose lanes may be caused because the reserved lanes cannot be

used by the general road users. The objective of the problem is to minimize the total

traffic impact of all reserved lanes on the general-purpose lanes. A simple example of

lane reservation is given in Fig. 3.1.

In order to well study the problem, some assumptions are made as follows.

1) There are at least two lanes on each link allowing one lane to be reserved. This

is because if there is one and only one lane on a link (i, j) and it is reserved,

then general road users cannot travel from i to j directly. Such impact is too

severe for the network to bear.

2) There is at most one reserved lane on each directed road link. Because the

less number of lanes is reserved, the less impact of reserved lanes is. And one

reserved lane can be used by multiple tasks.

3) There is one and only one designed path for each task from its source to destina-

tion. The addressed problem is aimed to design paths for future fully automated

truck freight transportation. It is natural that such a fleet of automated trucks

travel together in only one path.

31

Moreover, the lanes in the same road link are assumed to have identical parameters.

To simplify the presentation, we do not distinguish “lane” and “arc” (or “link”),

“general-purpose lane” and “non-reserved lane” in the remainder of this thesis.

To formulate the problem, some notations are given as follows.

Sets and parameters
A: set of directed arcs (i, j), i ̸= j, i, j ∈ N
K: set of transportation tasks, k ∈ K
N : set of nodes
aij: traffic impact if a lane in link (i, j) ∈ A is reserved
dk: destination node of task k ∈ K
pk: prescribed travel duration to complete task k ∈ K
sk: source node of task k ∈ K
τij: link travel time on a reserved lane in link (i, j) ∈ A

Decision variables
xkij xkij = 1, if a lane in link (i, j) is in the path of task k and this lane is

reserved; and otherwise xkij = 0, ∀k ∈ K, (i, j) ∈ A.
zij zij = 1, if there is a reserved lane in link (i, j); and otherwise zij = 0,

∀(i, j) ∈ A.

The LRP can be formulated as the following integer linear program Pl.

Pl : min
∑

(i,j)∈A

aijzij (3.1)

s.t.
∑

i:(sk,i)∈A

xkski = 1, ∀k ∈ K, (3.2)

∑
i:(i,dk)∈A

xkidk = 1, ∀k ∈ K, (3.3)

∑
i:(j,i)∈A

xkji =
∑

i:(i,j)∈A

xkij, ∀k ∈ K, ∀j ∈ N \ {sk, dk}, (3.4)

∑
(i,j)∈A

τijxkij ≤ pk, ∀k ∈ K, (3.5)

xkij ≤ zij, ∀k ∈ K, ∀(i, j) ∈ A, (3.6)

xkij ∈ {0, 1}, ∀k ∈ K, ∀(i, j) ∈ A, (3.7)

zij ∈ {0, 1}, ∀(i, j) ∈ A. (3.8)

The objective function (3.1) is to minimize the total traffic impact of all reserved

lanes on the general-purpose lanes over the network. Constraint (3.2) (resp. (3.3))

represents that there is one and only one lane departing from the source node sk

(resp. arriving at the destination node dk) of task k. Constraint (3.4) is the flow

32

conservation constraint for node j in N \ {sk, dk}. It means that if task k arrives at a

node j (j ̸= sk, dk) via a reserved lane, it must also depart from j via a reserved lane,

or it does not visit j. Thus (3.2)–(3.4) together ensure that there is one and only one

path for each task from its source to destination. Constraint (3.5) ensures that the

total travel duration of task k should not exceed the prescribed travel duration pk.

Constraint (3.6) means that task k cannot pass the reserved lane on (i, j) if there is

no reserved lane on (i, j), i.e., if zij = 0, then xkij = 0. Constraints (3.7) and (3.8)

are binary constraints on the decision variables.

The complexity of the LRP is proved by the following theorem.

Theorem 3 The LRP is NP-hard.

Proof : When all the tasks depart from the same source node and the prescribed
travel duration to complete each task is large enough (i.e., the travel duration con-
straint can be removed), then the LRP corresponds to the particular case, the Steiner
tree problem in a directed network, which is known to be NP-hard [44]. Therefore
the LRP is NP-hard. �

Note: Given a directed network G(N,A), a subset Nt ⊆ N of terminals and a root

node r ∈ N \ Nt, the Steiner tree problem in a directed network is to find a set of

paths from r to all terminals in Nt such that the total length of the links in these

paths is as small as possible [39].

3.3 Solution approach

In this section, an optimal algorithm based on the cut-and-solve method is proposed

for the LRP. Briefly speaking, the cut-and-solve method is an iterative search strat-

egy for solving combinatorial optimization problems. Without loss of generality, we

suppose the optimization problem is a minimization problem. At the n-th iteration

(n ≥ 1), a piercing cut (PCn) is generated and it separates the solution space of the

current problem (CPn) into two subspaces (for the first iteration, the CP1 is defined

as the original problem). The small subspace corresponds to a sparse problem (SPn)

and the large one correspond to a remaining problem (RPn). The SPn can be solved

to optimality easily because its solution space is small. Its optimal value (UBn) is an

upper bound on the original problem. Then the solution space of the SPn is removed.

The current best upper bound (UBmin) is then updated as the minimum of UBn and

UBmin. It is difficult to solve the RPn optimally because its solution space is large.

Then the linear relaxation problem (i.e., the integral decision variables are relaxed to

real decision variables) of the RPn is solved and an associated lower bound (LBn) is

33

obtained. If LBn is greater than or equal to UBmin, it means that the optimal value

of the RPn is also greater than or equal to UBmin. Then UBmin is the optimal value

for the original problem. Otherwise, the CPn+1 is defined as the RPn and a new

iteration repeats. The iteration is repeated until an optimal solution of the original

problem is found. For more details of the cut-and-solve method, readers are referred

to Climer and Zhang’s paper [16].

The PCn is important to the efficiency of the cut-and-solve method. The reasons

are explained as follows. The solution space of the SPn should be small enough,

otherwise it will be difficult to solve it in a reasonable time. On the other hand, if

the solution space of the SPn is too small, there may be no better feasible solutions

in it, and UBmin cannot be improved rapidly. Though Climer and Zhang introduced

a general procedure for the generation of the PCn and successfully applied it to

the asymmetric traveling salesman problem (ATSP). However, the addressed LRP

is different from the ATSP. There are two levels of decision variables in the LRP

(lane reservation variables zij and task path variables xkij), whereas the decision

variables belong to the same level in the ATSP. Moreover, the structure of the LRP

is more complicated than that of the ATSP from the point of view of mathematical

formulation. Hence how to adapt the cut-and-solve method to the LRP is a challenge.

It should be carefully considered the characteristic of the problem when applying the

cut-and-solve method. In order to make the solution approach more efficient, a pre-

processing is performed to reduce the solution space of the original problem and a

tightened model is obtained in the following subsection.

3.3.1 Pre-processing

Since the paths of the tasks are exclusively reserved, the shortest travel duration for

any given pair of nodes can be computed by some shortest path algorithms (e.g.,

[19, 27, 30, 35]). Here we choose Floyd’s all pairs shortest path algorithm [27]. Let

l(i, j) denote the shortest travel duration from i to j. For ∀k ∈ K, set Ak is defined

as follows:

Ak = { (sk, j) | τskj + l(j, dk) > pk, ∀(sk, j) ∈ A },

where node sk is the source node of task k and τskj is the link travel time on a reserved

lane in link (sk, j). The link (sk, j) in set Ak implies that the sum of the travel time

on a reserved lane in (sk, j) and the shortest travel duration from j to dk is greater

than pk. Then (sk, j) will not be selected for the path of task k in a feasible solution,

otherwise the travel duration constraint will be violated. Since sk is the source node

34

of task k, set Ak implies that the paths which depart from the lane in (sk, j) ∈ Ak will

not be considered as feasible paths for task k. Similarly, set A′
k is defined as follows:

A′
k = { (j, dk) | l(sk, j) + τjdk > pk, ∀(j, dk) ∈ A },

where node dk is the destination node of task k and τjdk is the link travel time on a

reserved lane in link (j, dk).

As explained above, the lanes in sets Ak and A′
k will not be selected for the task

paths and the corresponding variables can be fixed to zero in any feasible solutions.

Then a new model P ′
l is defined as follows.

P ′
l : min

∑
(i,j)∈A

aijZij

s.t. Constraints (3.2)− (3.8)

xkskj = 0, ∀k ∈ K, (sk, j) ∈ Ak, (3.9)

xkjdk = 0, ∀k ∈ K, (j, dk) ∈ A′
k. (3.10)

Constraints (3.9) and (3.10) means that the values of some decision variables are

fixed. Therefore, the solution space of the original problem is reduced. Moreover, the

optimality of the original problem is not changed and then the tightened model P ′
l is

considered in the remainder of this chapter.

3.3.2 Cut-and-solve method

As discussed previously, the PCn is important to the efficiency of the cut-and-solve

method. In the following subsections, some new techniques of generating piercing cut

are developed for the considered problem.

3.3.2.1 Definition of piercing cut, sparse problem and remaining problem

Let Vn (n ≥ 1) denote a subset, which will be defined later, of all the decision

variables. Since all the decision variables are binary variables, the sum of the values

of the variables in Vn is greater than or equal to one, or equal to zero. Climer and

Zhang define the PCn as the sum of the variables in Vn is greater than or equal

to one [16]. With this PCn, the solution space of the CPn is separated into two

subspaces. The large subspace corresponds to the RPn (with the constraint that the

sum of the values of the variables in Vn is greater than or equal to one). The other

subspace corresponds to the SPn (with the constraint that the sum of the values

of the variables in Vn is equal to zero), then each variable in Vn has value of zero.

35

Therefore, the solution space of the SPn is relatively small and the SPn can be solved

relatively easily.

Now the question is how to obtain Vn. Note that the cut-and-solve method will

not be terminated until an optimal solution of the SPn is proved to be the optimal

solution of the original problem. Then the basic-variables (non-zero-value variables)

in this optimal solution are not in Vn because the decision variables in Vn are fixed

to zero in the SPn. Based on this observation, the definition of Vn should have the

following expected property: the decision variables in Vn have small possibility to be

basic-variables in the optimal solution of the original problem. Climer and Zhang

used a tool called reduced cost as a guide for selecting variables for Vn [16]. Given an

integer linear program (ILP) for a minimization problem, a linear program (LP) can

be obtained by relaxing the integer decision variables to real variables. An optimal

solution of the LP defines a set of values referred to as reduced costs. Each variable

has a reduced cost, which is a lower bound on the increase of the objective value if

the value of this variable is increased by one unit. For example, if x has value of

zero in an optimal LP solution X∗
1 and its reduced cost is ten. Then if x is increased

by one unit, i.e., has value of one, in another LP solution X∗
2, then the objective

value of X∗
2 will increase at least ten compared with that of X∗

1. Moreover, decision

variables with large reduced cost in the optimal LP solution have small possibility to

be basic-variables in the optimal solution of the original ILP. Thus Vn is defined as

a set of the decision variables whose reduced costs are greater than a positive given

parameter hn.

However, the LRP is different from the ATSP studied by Climer and Zhang. The

Vn should be defined according to the characteristic of the problem. In the LRP,

there are two different levels of decision levels: the strategic level (associated with

the lane reservation variables zij) and tactical level (associated with the task path

variables xkij). Variables zij is regarded as more important than xkij for the reasons

as follows. First, the task paths are exclusively reserved, which means that only the

reserved lanes can be chosen for the task paths. Second, the reservation of one lane or

not may result in totally different task paths. This is implied by (3.6). For example,

for a given (i, j), if zij = 0 (i.e., lane (i, j) is not reserved), then xkij = 0 for all the

task k (i.e., any task cannot pass via lane (i, j)). Third, the objective of the LRP is

associated with variables zij only. Based on the above reasons, only zij is considered

for defining Vn in the LRP. Let ψ(zij) denote the reduced cost of zij in the optimal

solution of the linear relaxation problem of the CPn. Then Vn (n ≥ 1) is defined as

36

follows:

Vn = { zij | ψ(zij) > hn, ∀(i, j) ∈ A }, (3.11)

where hn is a given positive number. The selection of the value for hn is decided

according to the distribution of the reduced cost of zij (e.g., if Vn is expected to have

nb elements, the value of hn is simply set as the nb-th largest reduced cost of zij).

After Vn is obtained, the PCn (n ≥ 1) is defined as follows:

PCn :
∑

zij∈Vn

zij ≥ 1. (3.12)

Using the PCn, the solution space of the CPn is separated into two subspaces and the

SPn and RPn can be obtained by adding new constraints to the CPn. For example,

the SP1 and RP1 can be defined as follows:

SP1 : min
∑

(i,j)∈A

aijZij

s.t. Constraints (3.2)− (3.10)∑
zij∈V1

zij = 0. (3.13)

RP1 : min
∑

(i,j)∈A

aijZij

s.t. Constraints (3.2)− (3.10)∑
zij∈V1

zij ≥ 1. (3.14)

Then the CP2 is defined as RP1 for the next iteration. Therefore, for n ≥ 2, the SPn

and RPn can be defined as follows:

SPn : min
∑

(i,j)∈A

aijZij

s.t. Constraints (3.2)− (3.10)∑
zij∈Vm

zij ≥ 1, m = 1, 2, . . . , n− 1. (3.15)

∑
zij∈Vn

zij = 0. (3.16)

RPn : min
∑

(i,j)∈A

aijZij

s.t. Constraints (3.2)− (3.10), and (3.15)

37

∑
zij∈Vn

zij ≥ 1. (3.17)

It is not difficult to see that (3.16) and (3.17) are the different constraints for the SPn

and RPn, respectively. Actually, (3.1)–(3.10) and (3.15) together represent the CPn

(n ≥ 2), i.e., RPn−1 (for the first iteration, (3.1)–(3.10) represent the CP1). The SPn

(resp. RPn) can be obtained by adding (3.16) (resp. (3.17)) to the CPn. After then,

the SPn and the linear relaxation problem of the RPn can be solved by calling Cplex

solver.

3.3.2.2 New techniques of generating piercing cut

Via a preliminary test, it becomes more difficult to solve the problem with increase of

its size since the problem is NP-hard. To make the cu-and-solve method more efficient,

some new techniques of generating piercing cut are developed in this subsection.

Since the decision variables in Vn have fixed values of zero in the SPn, if Vn contains

more decision variables, it may be possible to solve the SPn more easily. Intuitively,

we can obtain a larger sized Vn by simply choosing a smaller parameter hn. However,

this strategy is not always appropriate because sometimes a large proportion of zij

have reduced cost of zero. In our preliminary test, it is found that the variables zskj

and zidk with small values in the optimal solution of the linear relaxation problem

of the CPn have small possibility to be basic-variables in the optimal solution of

the original problem. Now let (x∗kij, z
∗
ij) denote the optimal solution of the linear

relaxation problem of the CPn. Then two sets Un and U ′
n are defined as follows:

Un = { zskj | z∗skj < max
j:(sk,j)∈A

z∗skj, ∀k ∈ K, (sk, j) ∈ A },

U ′
n = { zidk | z∗idk < max

i:(i,dk)∈A
z∗idk , ∀k ∈ K, (i, dk) ∈ A }.

For example, zskj1 and zskj2 correspond to the links departing from the source node

sk and respectively have values of 0.7 and 0.3 in the optimal solution of the linear

relaxation problem of the CPn. Then maxj:(sk,j)∈A z
∗
skj

= 0.7 and zskj2 is in set Un.

Then a new definition of the variable set Vn (n ≥ 1) is given as follows:

Vn = { zij | ψ(zij) > hn, ∀(i, j) ∈ A } ∪ Un ∪ U ′
n. (3.18)

compared with (3.15), Vn defined by (3.18) contains more decision variables. Since

the decision variables are fixed to zero in the SPn, it may be possible to solve the

SPn more easily.

In the following part, we make a reduction for the SPn and RPn to solve them

more easily. First, a theorem is given as follows.

38

Theorem 4 Define the SP ′
n and RP ′

n (n ≥ 2) as follows:

SP ′
n : min

∑
(i,j)∈A

aijZij

s.t. Constraints (3.2)− (3.10) and (3.16)∑
zij∈(Vn−1\Vn)

zij ≥ 1. (3.19)

RP ′
n : min

∑
(i,j)∈A

aijZij

s.t. Constraints (3.2)− (3.10) and (3.17).

If V1 ⊇ · · · ⊇ Vn−1 ⊇ Vn, n ≥ 2, then

(a) SP ′
n is equal to SPn,

(b) RP ′
n is equal to RPn.

Proof : The different constraints in the SP ′
n and SPn are (3.19) and (3.15). We need

to prove their equivalence. Because Vn−1 ⊇ Vn, we have Vn−1 = (Vn−1 \ Vn) ∪ Vn and
(Vn−1 \ Vn) ∩ Vn = Ø. Then,∑

zij∈(Vn−1\Vn)

zij =
∑

zij∈(Vn−1\Vn)

zij +
∑

zij∈Vn

zij =
∑

zij∈Vn−1

zij ≥ 1.

The first “=” is satisfied because we have
∑

zij∈Vn
zij = 0 by (3.16). The last “≥” is

implied by (3.15). Hence, (3.19) can be deduced from (3.15).
On the other hand, for ∀m < n, we have Vm ⊇ Vn−1 ⊇ (Vn−1 \ Vn). Then,

Vm = (Vm \ (Vn−1 \ Vn))∪ (Vn−1 \ Vn) and (Vm \ (Vn−1 \ Vn))∩ (Vn−1 \ Vn) = Ø. Then,∑
zij∈Vm

zij =
∑

zij∈(Vm\(Vn−1\Vn))

zij +
∑

zij∈(Vn−1\Vn)

zij ≥
∑

zij∈(Vn−1\Vn)

zij ≥ 1.

The last “≥” is implied by (3.19). Hence, (3.15) can be deduced from (3.15). There-
fore, the equivalence of (3.15) and (3.19) is proved, and SP ′

n is equal to SPn.

The constraints in the RP ′
n and RPn are the same except that there is no (3.15)

in the RP ′
n. Then we need to prove that (3.15) is redundant in the RP ′

n. For ∀m < n,
we have Vm ⊇ Vn. Then, Vm = (Vm \ Vn) ∪ Vn and (Vm \ Vn) ∩ Vn = Ø. Then,∑

zij∈Vm

zij =
∑

zij∈(Vm\Vn)

zij +
∑

zij∈Vn

zij ≥
∑

zij∈Vn

zij ≥ 1

The last “≥” is implied by (3.12). Hence, (3.15) can be deduced from (3.17), which
implies that (3.15) is redundant in the RP ′

n. Hence the RP ′
n is equal to RPn. The

proof of the theorem is finished. �

It can be observed that the n − 1 inequalities in (3.15) are reduced to only one

inequality (3.19) in the SP ′
n, and are totally removed from the RP ′

n. Both the SP ′
n

39

Algorithm LRP

1: Implement the pre-processing for original model Pl, and obtain a new model P ′
l .

2: Initialize n := 0 and best upper bound UBmin := +∞. Set current problem
CP1 := P ′

1.
3: Solve the linear relaxation problem of CP1. If the solution is integral, an global

optimal solution is found, stop the algorithm.
4: repeat
5: Set n := n+1. Use the solution and reduced cost information of linear relaxation

problem of CPn to define Vn by (3.20).
6: Define piercing cut PCn by (3.17) and obtain SP ′

n and RP ′
n.

7: Solve SP ′
n exactly and obtain its optimal value UBn. Set UBmin := UBn if

UBn < UBmin.
8: Solve the linear relaxation problem of RP ′

n and obtain its lower bound LBn. If
the solution is integral, set UBmin := LBn if LBn < UBmin, and go to step 10,
otherwise set CPn+1 := RP ′

n.
9: until (LBn ≥ UBmin)
10: Return UBmin and its corresponding solution as optimal value and optimal solu-

tion of the original problem.

Fig. 3.2: Algorithm LRP: algorithm for the LRP.

and RP ′
n are reduced with less constraints. It may be possible to solve an equivalently

problem more easily without modifying optimality. To satisfy the condition of the

theorem, Vn is defined as follows:

Vn = ({ zij | ψ(zij) > hn, ∀(i, j) ∈ A } ∪ Un ∪ U ′
n) ∩ Vn−1, (3.20)

where V0 = {zij | ∀(i, j) ∈ A}. It is not difficult to see that for n ≥ 2, V1 ⊇ · · · ⊇
Vn−1 ⊇ Vn is satisfied. Then in the algorithm implementation, we define Vn by (3.20),

SP ′
1 by SP1, and RP

′
1 by RP1, respectively.

In summary, the new techniques of generating piercing cut presented in this sub-

section includes two parts. The first part is to enlarge set Vn by adding some variables

which have small possibility to be basic-variable in an optimal solution of the original

problem. The second part involves in modifying set Vn to obtained an equivalent for-

mulation of the SPn and RPn. These techniques are intended to generate appropriate

piercing cuts so as to accelerate the convergence of the algorithm.

The overall Algorithm LRP is presented in Fig. 3.2.

40

3.4 Computational results

The proposed algorithm for the LRP was coded in C++ and combined with CPLEX

12.1 solver in default mode for the resolution of the sparse problem and remaining

problem. The implementation of the algorithm was carried out on a PC with a 3.0

GHz processor and 4.0 GB RAM. Sixty-two problem sets and five problem instances

for each set were randomly generated to evaluate the performance of the algorithm.

The instances are generated in the following way. The graph G(N,A) is generated

based on the network model proposed by Waxman [81]. The nodes of the graph

are randomly and uniformly distributed in a rectangle area [0, 100] × [0, 100]. The

existence of an arc (i, j) is dependent on a probability function α exp(−dij/βD),

where 0 < α, β ≤ 1, dij is the Euclidean distance between nodes i and j, and D is

the maximum distance between any two nodes. Parameter α is proportional to the

number of arcs and a high value of β results in a high ratio of long arcs to short arcs.

The default value of the average node degree ρ = 2|A|/|N | is fixed to 7 by choosing

appropriate values of α and β. The following parameters are generated based on

the way described in Wu et al. [83]. The source-destination pairs are randomly

selected from set N . The link travel time on a reserved lane τij and on a non-reserved

lane τ ′ij are respectively defined as rijdij and dij, where rij is randomly generated from

[0.5, 0.8]. The prescribed travel duration pk is generated from [dis(sk, dk), dis
′(sk, dk)],

where dis(sk, dk) and dis
′(sk, dk) are the shortest travel duration from sk to dk in an

exclusively reserved path and in an exclusively non-reserved path, respectively.

It is very difficult to evaluate quantitatively the impact of reserved lanes. It is

found that the impact has a very close relation with the increase of link travel time

on adjacent non-reserved lanes due to the disallowing use of the reserved lanes by the

general road users. Consequently, we evaluate the impact using the increase of link

travel time on adjacent lanes, as is the case in [83]. Then the impact is calculated

as cij = τ ′ij/(mij − 1), where τ ′ij is the link travel time on a non-reserved lane on

(i, j) and mij is the number of lanes in link (i, j), respectively. Although the context

of the problem in [83] is not identical to that of the LRP, both problems have the

same lane reservation concept, i.e., convert some existing general-purpose lanes to

reserved lanes for special users only. The impact is caused due to such concept. In

addition, the actually statistical result in [60] showed that the link travel time on the

general-purpose lanes increases about 53% after one of three lanes is reserved in A1

highway in Paris, which is very close to the result (50%) obtained by the formula

proposed in [83]. As stated above, the formula proposed by [83] is applicable to our

41

problem. Hence we adopt this formula to estimate the impact. In addition, we have

also conducted numerical experiment for sensitivity analysis of different setting of the

impact.

Because the proposed algorithm is an optimal algorithm, the performance of it

was compared with the direct use of CPLEX in terms of the computational time (in

CPU seconds) of finding an optimal solution. In addition, the performance of the

pre-processing in subsection 3.3.1 and new techniques of generating piercing cut in

subsection 3.3.2.2 was also evaluated with randomly generated instances. To simplify

the presentation of computational results, let CT0 and CTl denote the CPU seconds

required by CPLEX and the proposed Algorithm LRP presented in Fig. 3.2, respec-

tively. Let Algorithm LRP′ and Algorithm LRP′′ respectively denote the algorithm

same as Algorithm LRP presented in Fig. 3.2 except without the pre-processing step

and without the new techniques of generating piercing cut step, and let CT ′
l and CT

′′
l

respectively denote the CPU seconds required by them. The computational results

are reported in Tables 3.1–3.4 and Figs. 3.3–3.6.

Table 3.1 presents the computational results for the three algorithms to evaluate

the performance of the pre-process and improvement of variable set steps. It can

be found that CTl is less than CT ′
l and CT ′′

l over sets 1–8. The mean values of

CT ′
l , CT

′′
l , and CTl are 173.23, 92.90, and 60.99 seconds, respectively. The minimal,

maximal, and mean values of CT ′
l /CTl are 1.92, 7.82, and 2.84, respectively. The

minimal, maximal, and mean values of CT ′′
l /CTl are 1.02, 1.89, and 1.52, respectively.

These results show that the computational time will increase if the pre-process or

new techniques of generating piercing cut step is not implemented. This implies that

the steps of pre-process or new techniques of generating piercing cut are useful in

accelerating the proposed algorithm. Fig. 3.3 presents the results of corresponding

computational time and ratios over sets 1–8. It can be seen from Fig. 3.3(a) that the

computational time CTl increases gradually and CT
′
l increases rapidly when the size of

the problem increases. Fig. 3.3(b) presents the results of CT ′
l /CTl and CT

′′
l /CTl. The

curve of CT ′
l /CTl is above the curve of CT

′′
l /CTl which implies that the pre-processing

step is more efficient in accelerating the convergence of the proposed algorithm.

Table 3.2 presents the computational results of problems with different sizes. It can

be observed from Table 3.2 that CTl is less than CT0 over sets 9–17. The mean values

of CTl and CT0 are 536.31 and 1381.54 seconds, respectively. The minimal, maximal,

and mean values of CTl/CT0 are 0.38, 0.52 and 0.42, respectively. When the size of

the problem increase, the value of CTl/CT0 varies slightly. For example, CTl/CT0

ranges between 0.38 to 0.41 over sets 12–17. Fig. 3.4 presents the corresponding

42

Table 3.1: Comparison for Algorithm LRP, LRP′, and LRP′′.

Set |N | |K| CT ′
l CT ′′

l CTl CT ′
l /CTl CT ′′

l /CTl

1 60 25 19.83 7.18 5.62 3.53 1.28
2 60 30 66.63 10.15 8.52 7.82 1.19
3 70 25 75.91 13.85 11.62 6.53 1.19
4 70 30 125.52 43.46 41.04 3.06 1.06
5 80 25 125.71 31.57 30.98 4.06 1.02
6 80 30 307.98 133.25 96.70 3.18 1.38
7 90 25 247.09 92.59 75.71 3.26 1.22
8 90 30 417.18 411.17 217.71 1.92 1.89

Average 173.23 92.90 60.99 2.84 1.52

Table 3.2: Computational results of problems with different sizes.

Set |N | |K| CTl CT0 CTl/CT0

9 110 10 2.37 4.57 0.52
10 110 15 11.45 45.05 0.45
11 120 15 45.80 90.49 0.51
12 120 20 166.41 417.17 0.40
13 130 20 438.96 1075.65 0.41
14 130 25 671.37 1689.28 0.40
15 140 25 765.84 2014.52 0.38
16 140 30 1172.22 3038.63 0.39
17 150 30 1543.43 4058.54 0.38

Average 536.31 1381.54 0.42

computational time over sets 9–17. It can be seen from it that CTl increases gradually

and CT0 increases much more quickly when the size of the problem increases.

Table 3.3 and Fig. 3.5 present the computational results of problems with different

types of impact cij. The first four types of impact are calculated as reτ
′
ij/(mij−1), e =

1, 2, 3, 4, where r1 = 1.0 and r2, r3, and r4 are randomly generated from [0.5, 1.0],

[1.0, 1.5] and [0.5, 1.5], respectively. Note that the intervals from which r2, r3 and r4

are generated, they are used to generate small impact, large impact, small and large

impact simultaneously, respectively. The fifth type of impact is randomly generated

from [0.5, 10]. It is observed from Table 3.3 that the proposed algorithm is faster

than CPLEX over sets 18–47. The mean values of CTl and CT0 are 27.73 and 89.37

seconds, respectively. The mean value of CTl/CT0 is 0.31. The minimal values of

43

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

400.00

450.00

0 1 2 3 4 5 6 7 8 9

Set

C
o

m
p

u
ta

ti
o

n
al

 t
im

e

CTl

CT ′
l

CT ′′
l

(a) Computational time of CTl, CT ′
l , and CT ′′

l .

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

0 1 2 3 4 5 6 7 8 9

Sets

R
at

io
s

o
f

co
m

p
u
ta

ti
o

n
al

 t
im

e

CT ′
l /CTl

CT ′′
l /CTl

(b) Ratio of computational time of CT ′
l /CTl and CT ′′

l /CTl.

Fig. 3.3: Comparison for Algorithm LRP, LRP′, and LRP′′.

CTl/CT0 for each type of impact are respective 0.25, 0.26, 0.28, 0.26 and 0.26, with

the maximal difference of 0.03. It can be seen from Fig. 3.5(a) that the changing

trend of CTl for each type of impact is almost the same and the differences among

five curves vary slightly for the same number of nodes and tasks. In addition, it is

found from Fig. 3.5(b) that the five curves of CTl/CT0 also vary slightly for the same

combination of number of nodes and tasks. The results show that the performance

of the proposed algorithm is stable for different setting of the impact.

Table 3.4 presents the computational results of problems with average node degree

ρ of values 5, 7, and 12, respectively. The average node degree ρ is defined as 2|A|/|N |,
which denotes the mean number of arcs connected with a node. The larger ρ is, the

denser the network is. It can be seen from Table 3.4 that CTl is less than CT0 over

sets 49–62 and is greater than CT0 for set 48. The computational time CTl and CT0

increase sharply when the average node degree increases. For example, CPLEX takes

68.50 seconds for set 52 with ρ = 5, but it cannot find an optimal solution within

44

0.00

500.00

1000.00

1500.00

2000.00

2500.00

3000.00

3500.00

4000.00

4500.00

9 10 11 12 13 14 15 16 17

Set

C
o

m
p

u
ta

ti
o

n
al

 t
im

e

CTl

CT0

Fig. 3.4: Computational results of problems with different sizes.

0.00

20.00

40.00

60.00

80.00

100.00

120.00

60/15 60/20 70/20 70/25 80/20 80/25

Nodes / Tasks

C
o

m
p

u
ta

ti
o

n
al

 t
im

e

Impac type 1

Impac type 2

Impac type 3

Impac type 4

Impac type 5

(a) Computational time of Tl

0.20

0.30

0.40

0.50

0.60

0.70

0.80

60/15 60/20 70/20 70/25 80/20 80/25

Nodes / Tasks

R
at

io
s

o
f

co
m

p
u

ta
ti

o
n

al
 t

im
e

Impac type 1

Impac type 2

Impac type 3

Impac type 4

Impac type 5

(b) Ratio of computational time of CTl/CT0

Fig. 3.5: Computational results of problems with different types of impact.

45

Table 3.3: Computational results of problems with different types of impact.

Set |N | |K| Impact CTl CT0 CTl/CT0

18 60 15 Type 1 6.90 10.17 0.68
19 60 20 Type 1 6.01 17.91 0.34
20 70 20 Type 1 5.38 15.22 0.35
21 70 25 Type 1 20.10 42.87 0.47
22 80 20 Type 1 36.97 97.86 0.38
23 80 25 Type 1 83.77 336.43 0.25

24 60 15 Type 2 6.59 13.72 0.48
25 60 20 Type 2 2.83 6.44 0.44
26 70 20 Type 2 4.09 14.20 0.29
27 70 25 Type 2 15.50 38.55 0.40
28 80 20 Type 2 56.84 134.85 0.42
29 80 25 Type 2 71.34 279.18 0.26

30 60 15 Type 3 5.17 8.18 0.63
31 60 20 Type 3 8.30 26.82 0.31
32 70 20 Type 3 5.24 15.23 0.34
33 70 25 Type 3 21.95 52.13 0.42
34 80 20 Type 3 40.47 96.42 0.42
35 80 25 Type 3 87.97 319.18 0.28

36 60 15 Type 4 9.20 14.12 0.65
37 60 20 Type 4 5.18 10.71 0.48
37 70 20 Type 4 5.49 19.48 0.28
39 70 25 Type 4 12.30 28.23 0.44
40 80 20 Type 4 33.13 82.00 0.40
41 80 25 Type 4 76.21 293.04 0.26

42 60 15 Type 5 5.33 9.93 0.65
43 60 20 Type 5 5.23 13.34 0.48
44 70 20 Type 5 5.58 16.24 0.28
45 70 25 Type 5 21.87 54.05 0.44
46 80 20 Type 5 50.88 119.36 0.40
47 80 25 Type 5 115.91 495.18 0.26

Average 27.73 89.37 0.31

46

Table 3.4: Computational results of problems with different average node degree ρ.

Set |N | |K| ρ CTl CT0 CTl/CT0

48 100 10 5 1.46 1.03 1.42
49 100 15 5 1.07 3.45 0.31
50 100 20 5 31.83 34.81 0.91
51 100 25 5 33.02 54.98 0.60
52 100 30 5 53.58 68.50 0.78

53 100 10 7 3.23 4.85 0.67
54 100 15 7 84.35 158.30 0.53
55 100 20 7 172.53 402.94 0.43
56 100 25 7 279.91 656.40 0.43
57 100 30 7 267.78 1227.46 0.22

58 100 10 12 21.03 38.71 0.54
59 100 15 12 76.00 567.30 0.13
60 100 20 12 701.71 3218.10 0.22
61 100 25 12 1751.32 5345.93 0.33
62 100 30 12 7189.59 >18000.00 <0.40

Average 711.23 >1985.52 <0.36

18000.00 seconds for set 62 with ρ = 12. However, the proposed algorithm can solve

the problem set 62 and only takes 7189.59 seconds. It can be seen from Fig. 3.6(a) that

CT0 increases much sharply over sets 58–61, while CTl increases gradually. Fig. 3.6(b)

presents the results of CTl/CT0. Generally, the proposed algorithm is more effective

than CPLEX to solve problems with large ρ than to solve problems with small ρ since

the curve of CTl/CT0 with ρ = 12 is below the other two.

3.5 Conclusions

In this chapter, we have investigated a lane reservation problem. The problem is

motivated by future automated truck. The problem is formulated as an integer linear

program and is demonstrated NP-hard. Then, a cut-and-solve based algorithm is

proposed to find an optimal solution. Some new techniques of generating piercing

cuts of the cut-and-solve method are developed in this work. Numerical experiments

on randomly generated instances with different parameter setting show that the pro-

posed algorithm is more efficient than a commercial optimization solver CPLEX for

47

0.00

1000.00

2000.00

3000.00

4000.00

5000.00

6000.00

48 49 50 51 52 53 54 55 56 57 58 59 60 61

C
o

m
p

u
ta

ti
o

n
al

 t
im

e

CTl

CT0

(a) Computational time of CTl and CT0.

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

100/10 100/15 100/20 100/25 100/30

Nodes / Tasks

R
at

io
s

o
f

co
m

p
u

ta
ti

o
n

al
 t

im Average node degree 5

Average node degree 7

Average node degree 12

(b) Ratio of computational time of CTl/CT0.

Fig. 3.6: Computational results of problems with different average node degree.

48

the problem. The corresponding work has been published in the following paper.

Y. Fang, F. Chu, S. Mammar, and A. Che. An optimal algorithm for automated

truck freight transportation via lane reservation strategy. Transportation Research

Part C: Emerging Technologies, 26:170–183, 2013.

49

50

Chapter 4

Capacitated lane reservation
problem

4.1 Introduction

In this chapter, we investigate a capacitated lane reservation problem (CLRP). The

problem is motivated by the transportation requirement for large-scale special events.

As indicated in [83], these events have the following characteristics: 1), there are many

people involving in the events; 2), many activities takes place at different geologically

distributed venues. Moreover, the transportation tasks associated with the events

usually have a strict travel time (e.g., transportation of perishable food, delivering

athletes from their accommodations to stadium, etc.). However, it is difficult to

realize such tasks within a given time due to the heavy traffic. Thus, lane reservation

strategy is introduced as one solution to the time-guaranteed transportation task for

these large-scale events. Nevertheless, lane reservation will affect the normal traffic.

It is important to minimize the impact of reserved lanes. A lane reservation problem

in time constrained transportation (LRPTCT) was firstly studied with mathematical

model and method by Wu et al. [83].

The CLRP is a generation of the work of chapter 3, which was published in [24].

Because the path of a task in the CLRP is not necessary composed of exclusively

reserved lanes. The CLRP is also is a generalization of the LRPTCT. The CLRP

additionally considers the road capacity issue, which is ignored in the LRPTCT. In

reality, traffic situation is closely related to the traffic density. In a transportation

network, the capacity of a road represents the maximum flow can pass the road

without any congestion. The residual capacity of a road is the difference between the

capacity and the average flow of general-purpose vehicles. Specifically, the residual

capacity in this chapter means the residual flow of the road that can be used by the

51

1 (8)

2

(6) 3
(10)

4

(4)
5

(7)

6

Fig. 4.1: Illustration for residual capacity. The number in the parenthesis is the
residual capacity of the road. Task k1 transports flow of 7 from node 1 to
5, and task k2 transports flow of 4 from node 2 to 6. One lane in road (3, 4)
and in road (4, 5) are reserved, respectively.

special tasks without causing any travel delay or congestion on this road. In this way,

the tasks can be accomplished without any delay. An illustration for the residual

capacity issue is given as follows. As shown in Fig. 4.1, each road has a residual

capacity (the number in the parenthesis). Suppose that task k1 transports a flow of

7 from node 1 to 5 and task k2 transports a flow of 4 from node 2 to 6. It is easy to

see that a lane in road (4, 5) should be reserved as its residual capacity is less that

the flow of task k1 for it to be accomplished in time. For road (3, 4), any single task

k1 or k2 can pass via it without any delay since its residual capacity is 10, which is

large enough for single task k1 or k2 to use. It is not necessary to reserve it in this

case. However, the sum of flow transported by tasks k1 and k2 is 11, which is larger

than the residual capacity of (3, 4). And travel delay will occur on lane (3, 4) if both

tasks use it. In this case, we can reserve one lane of road (3, 4) to let both tasks k1

and k2 use it. Because only the vehicles of the tasks are allowed to use the reserved

lane, then we suppose the tasks can pass the reserved lane without any travel delay

and any congestion.

Similar to the previous lane reservation problems, the reserved lanes can provide

a relatively fast and safe travel environment for the vehicles on them. Thus the time-

guaranteed transportation tasks can be ensured. On the other hand, only special

types of vehicles are allowed to use the reserved lanes and other general-purpose

vehicles cannot use them. As a result, there will be more vehicles on non-reserved

lanes in the same roads than ever before and traffic impact on the non-reserved lanes

may be caused. The CLRP is to select some roads from a transportation network and

reserve lanes from them for the time-guaranteed transportation tasks considering the

road’s residual capacity. The objective of the CLRP is to minimize the total impact

of the reserved lanes on the non-reserved lanes.

52

The remainder of this chapter is organized as follows. In section 4.2, the for-

mulation of the CLRP is presented. Then its complexity is demonstrated. Then a

cut-and-solve and cutting plane combined method is developed in section 4.3. The

embedded cutting plane method in the proposed algorithm permits to accelerate the

convergence of the algorithm. In section 4.4, computational results are reported. The

last section draws some conclusions.

4.2 Problem formulation

The CLRP is described as follows. A transportation network can be represented by a

directed graph G = (N,A), where N is a set of nodes and A is a set of directed arcs.

Given a set of tasks and corresponding source-destination (SD) pairs, the CLRP is

to select some roads from a transportation network and reserve lanes from them, so

that the prescribed travel duration of each ask is guaranteed in its designed path and

the road’s residual capacity is not violated. The reserved lanes have traffic impact on

the non-reserved lanes. The objective of the CLRP is to minimize the total impact

of reserved lanes on the non-reserved lanes.

The following assumptions are made so as to well study the addressed problem.

1), there are at least two lanes on each link allowing one lane to be reserved. 2),

there is one and only one designed path for each task from its source to destination.

3), there is at most one reserved lane on each directed road link. 4), the reserved

lanes can be shared by multiple tasks. Because the total flow of tasks (number of

vehicles/unit of time) is relatively small compared to each reserved lane’s capacity

which can be used by tasks.

To formulate the problem, some notations are given as follows.

Sets and parameters
A: set of directed arcs (i, j), i ̸= j, i, j ∈ N
K: set of transportation tasks, k ∈ K
N : set of nodes
aij: traffic impact if a lane in link (i, j) ∈ A is reserved
cij: residual capacity of a non-reserved lane in link (i, j) ∈ A
dk: destination node of task k ∈ K
flk: flow of task k (number of vehicles/unit of time), k ∈ K
pk: prescribed travel duration to complete task k ∈ K
sk: source node of task k ∈ K
τij: link travel time on a reserved lane in link (i, j) ∈ A
τ ′ij: link travel time on a non-reserved lane in link (i, j) ∈ A

53

Decision variables
xkij xkij = 1, if a lane in link (i, j) is in the path of task k and this lane is

reserved; and otherwise xkij = 0, ∀k ∈ K, (i, j) ∈ A.
ykij ykij = 1, if a lane in link (i, j) is in the path of task k and this lane is

not reserved; and otherwise ykij = 0, ∀k ∈ K, ∀(i, j) ∈ A.
zij zij = 1, if there is a reserved lane in link (i, j); and otherwise zij = 0,

∀(i, j) ∈ A.

Compared with the LRP in chapter 3, τ ′ij, flk, cij, and ykij are the new notations

introduced for the CLRP. The CLRP can be formulated as the following integer linear

program Pc.

Pc : min
∑

(i,j)∈A

aijzij (4.1)

s.t.
∑

i:(sk,i)∈A

(xkski + ykski) = 1, ∀k ∈ K, (4.2)

∑
i:(i,dk)∈A

(xkidk + ykidk) = 1, ∀k ∈ K, (4.3)

∑
i:(j,i)∈A

(xkji + ykji) =
∑

i:(i,j)∈A

(xkij + ykij) , ∀k ∈ K, ∀j ∈ N \ {sk, dk}, (4.4)

∑
(i,j)∈A

(
τijxkij + τ ′ijykij

)
≤ pk, ∀k ∈ K, (4.5)

xkij ≤ zij, ∀k ∈ K, ∀(i, j) ∈ A, (4.6)

ykij + zij ≤ 1, ∀k ∈ K, ∀(i, j) ∈ A, (4.7)∑
k∈K

flkykij ≤ cij(1− zij), ∀(i, j) ∈ A, (4.8)

xkij, ykij ∈ {0, 1}, ∀k ∈ K, ∀(i, j) ∈ A, (4.9)

zij ∈ {0, 1}, ∀(i, j) ∈ A. (4.10)

The objective function (4.1) is to minimize the total traffic impact of all reserved

lanes on the general-purpose lanes over the network. Constraints (4.2)–(4.4) ensure

that there is one and only one path for each task from its source to destination.

Constraint (4.5) ensures that the total travel duration of task k should not exceed

the prescribed travel duration pk. Constraint (4.6) means that task k cannot pass

the reserved lane on (i, j) if there is no reserved lane on (i, j), i.e., if zij = 0, then

xkij = 0. Constraint (4.7) is tighter than constraint xkij + ykij ≤ 1. It means that if

task k passes (i, j) (i.e., xkij + ykij = 1), either there is a reserved lane (i.e., xkij = 1),

or there is no one in (i, j) (i.e., ykij = 1), otherwise task k does not pass (i, j) (i.e.,

xkij + ykij = 0). Constraint (4.8) is the residual capacity constraint, i.e., the total

54

flow of the tasks moving on (i, j) is no greater than its residual capacity if there is

no reserved lane on it. Constraints (4.9) and (4.10) are binary constraints on the

decision variables.

Theorem 5 The CLRP is NP-hard.

Proof : If each road’s residual capacity is very small, then each lane in the task paths
must be reserved. Thus the CLRP corresponds to the LRP described in chapter 3,
which is proved NP-hard in section 3.2. Therefore the CLRP is NP-hard. �

Note: If the road’s residual capacity is large enough, the reduced CLRP corresponds

to the LRPTCT. In this sense, the CLRP is a generalization of the LRPTCT in [83].

4.3 Solution approach

The CLRP is an extension to the LRP on considering the residual capacity issue.

The cut-and-solve method proposed in chapter 3 can also be adapted to the CLRP.

Our previous work shown that the cut-and-solve method can find an optimal solution

of the CLRP more efficiently than CLPEX solver [25]. However, it becomes difficult

to solve the problem in a reasonable time when the size of the problem increases.

To accelerate the convergence of the proposed algorithm, a cut-and-solve and cutting

plane combined method is developed in this section. The cutting plane method is

embedded in the algorithm to obtain a tight lower bound on the remaining problem.

Before first, a pre-processing is performed to reduce the solution space of the original

problem.

4.3.1 Pre-processing

For ∀k ∈ K, let (sk, j) denote a link connected with the source node sk of task k,

and l(j, dk) denote the shortest travel duration from j to dk in an exclusively reserved

path, where dk is the destination node of task k. Then l(j, dk) can be computed by

Floyd’s shortest path algorithm [27]. Define set Ak as follows:

Ak = { (sk, j) | τskj + l(j, dk) > pk, ∀(sk, j) ∈ A },

where τskj is the travel time on a reserved lane in (sk, j). The link (sk, j) in set Ak

implies that the sum of the travel time on a reserved lane in (sk, j) and the shortest

travel duration from j to dk is greater than pk. Then task k cannot pass (sk, j)

55

respecting pk, otherwise the travel duration constraint will be violated. Similarly, A′
k

is defined as follows:

A′
k = { (j, dk) | l(sk, j) + τjdk > pk, ∀(j, dk) ∈ A },

where node dk is the destination node of task k, τjdk is the link travel time on a

reserved lane in (j, dk), and l(sk, j) is the shortest travel duration from sk to j in an

exclusively reserved path.

As explained above, task k cannot pass the links in sets Ak and A′
k and the

corresponding variables can be fixed to zero in any feasible solutions. Then a new

model P ′
c is defined as follows:

P ′
c : min

∑
(i,j)∈A

aijzij

s.t. Constraints (4.2)− (4.10)

xkskj + ykskj = 0, ∀k ∈ K, (sk, j) ∈ Ak, (4.11)

xkjdk + ykjdk = 0, ∀k ∈ K, (j, dk) ∈ A′
k. (4.12)

The solution space of the original problem is reduced as the values of some decision

variables are fixed to zero. Moreover, the optimality of the original problem is not

missed as no feasible solutions are excluded. After the pre-processing step, a tightened

model P ′
c for the original problem is obtained and is considered in the remainder of

the paper.

4.3.2 Cut-and-solve method

As mentioned previously, the cut-and-solve method developed in chapter 3 can be

adapted to the CLRP. The piercing cuts are defined in the same way as (3.12) in sec-

tion 3.3.2.1 of chapter 3. Since the mathematical model of the CLRP is different from

that of the LRP, we only give the definitions of sparse problem SPn and remaining

problem RPn for simplifying the presentation. Details of the cut-and-solve method

can be found in section 3.3.2 of chapter 3.

Then for n ≥ 1, the SPn and RPn are defined as follows:

SPn : min
∑

(i,j)∈A

aijZij

s.t. Constraints (4.2)− (4.12)∑
zij∈Vm

zij ≥ 1, m = 1, 2, . . . , n− 1. (4.13)

56

∑
zij∈Vn

zij = 0. (4.14)

RPn : min
∑

(i,j)∈A

aijZij

s.t. Constraints (4.2)− (4.12), and (4.13)∑
zij∈Vn

zij ≥ 1. (4.15)

Note that (4.15) is the piercing cut. The current problem CP1 is defined as P ′
c for

the first iteration, and CPn is defined as RPn−1 for n ≤ 2. The SPn can be optimally

solved by calling a CPLEX MIP solver. Then the cutting plane method is applied to

the RPn to obtain a tight lower bound.

4.3.3 Cutting plane method to tighten remaining problem

In this subsection, a cutting plane method is applied to tighten the lower bound on

the remaining problem in order to accelerate the convergence of the cut-and-solve

method. Via a preliminary test, it is found that a tight lower bound results a fast

convergence of the cut-and-solve method. This is because a tight lower bound can

provide a helpful reference to evaluate the optimal objective value of the original

problem. The iteration will be terminated until the lower bound on the remaining

problem is greater than or equal to the current best upper bound. With tighter the

lower bound, fewer iterations of the cut-and-solve method are required to obtain an

optimal solution of the original problem. On the other hand, a tight lower bound can

provide useful information to generate an appropriate piercing cut.

The principle of the cutting plane method is to iteratively generate cutting planes

to add successively corresponding constraints to the current relaxation problem until

the fractional solution becomes an integer solution. Moreover, it can be seen that

the lower bound associated with the fractional solution is improved iteratively. Based

on this principle, the cutting plane method can be applied to obtain a tight lower

bound on the remaining problem for the CLRP. The finding of cutting planes is

called separation algorithm. Specifically, given a fractional solution x∗ and s set of

constraints, the separation algorithm is to find inequalities that are violated by x∗ and

valid by feasible solutions of the original problem, or tell that none such inequalities

exits. For details of the cutting plane method, readers are referred to section 2.3.1

of chapter 2. In the following, the separation algorithm for cover equalities for the

studied problem is presented.

57

A knapsack constraint can be represented as the following form:∑
i∈N

wiui ≤ b, (4.16)

where N is a set of items, wi is the weight of item i, b is the capacity of the knapsack.

Binary variable ui indicates that whether item i is selected in the knapsack (ui = 1)

or not (ui = 0). Set C ⊂ N is call cover for (4.16) if
∑

i∈C wi > b. Then∑
i∈C

ui ≤ |C| − 1 (4.17)

is called a cover inequality (CI). A CI is called valid if it is violated by a given

fractional solution but satisfied by the feasible solution of the original problem. The

separation algorithm is to find valid CIs.

Let wi represents τij or τ
′
ij, b represents pk, and binary variable ui represents xkij or

ykij for our problem, the travel duration constraint (4.5):
∑

(i,j)∈A(τijxkij + τ ′ijykij) ≤
pk, ∀k ∈ K, can be directly written as a standard knapsack constraint form. For

∀k ∈ K, the CI for (4.5) has the following form:∑
(i,j)∈Ax

xkij +
∑

(i,j)∈Ay

ykij ≤ |Ax|+ |Ay| − 1, ∀k ∈ K, (4.18)

where Ax and Ay are subsets of A. Then the separation algorithm proposed by

Kaparis and Letchford [42] in Fig. 2.6 can be applied to find CI for (4.5).

Constrain (4.8):
∑

k∈K flkykij ≤ cij(1 − zij),∀(i, j) ∈ A, can be written as a

knapsack constraint form if we move cijzij to the left hand, i.e.,
∑

k∈K flkykij+cijzij ≤
cij. Let C ′ be a cover for (4.8), and |C ′| = m. Suppose items 1, . . . , m − 2, m − 1

correspond to yk1ij, . . . , ykm−2ij, ykm−1ij, and item m corresponds to zij. Then the

corresponding CI is yk1ij + . . . + ykm−2ij + ykm−1ij + zij ≤ m − 1. Given a fractional

solution (y∗, z∗), we have y∗k1ij + . . . + y∗km−2ij
+ y∗km−1ij

+ z∗ij ≤ m− 2 + y∗km−1ij
+ z∗ij.

Because (4.7) implies that ykij + zij ≤ 1 is true (even for a fractional solution), then

y∗k−m−1ij + z∗ij ≤ 1. Therefore, we have y∗k1ij + . . .+ y∗km−2ij
+ y∗km−1ij

+ z∗ij ≤ m− 1. It

means that the above CI is satisfied by the given fractional solution (y∗, z∗). It is not

a valid CI. Then we define a new CI and propose separation algorithm to find valid

CI that is satisfied by the feasible solutions of the original problem.

For ∀(i, j) ∈ A, the CI for (4.8) is defined as follows:∑
k∈C

ykij ≤ (|C| − 1)(1− zij), (i, j) ∈ A, (4.19)

58

where cover C of subset of K. Given a fractional solution (y∗, z∗), the separation

algorithm to find CI for (4.8) needs to solve the following problem [18] for ∀(i, j) ∈ A:

θ = min
∑
k∈K

(1− z∗ij − y∗kij)vk (4.20)

s.t.
∑
k∈K

flkvk ≥ cij + 1, (4.21)

vk ∈ {0, 1}, k ∈ K. (4.22)

The problem (4.20)–(4.22) can be solved by the the following developed algorithm

based on the dynamic program proposed by Kaparis and Letchford [42]. Let v∗ denote

its optimal solution. Define cover C = {k ∈ K | v∗k = 1}. Since v∗ is the optimal

solution of problem (4.20)–(4.22), we have

θ =
∑
k∈K

(1− z∗ij − y∗kij)v
∗
k =

∑
k∈C

(1− z∗ij − y∗kij)v
∗
k +

∑
k∈K\C

(1− z∗ij − y∗kij)v
∗
k.

According to the definition of C, if k ∈ C, then v∗k = 1, otherwise v∗k = 0. Thus,

θ =
∑
k∈C

(1− z∗ij − y∗kij) = |C|(1− z∗ij)−
∑
k∈C

y∗kij.

If θ < 1− z∗ij, i.e., |C|(1− z∗ij)−
∑

k∈C y
∗
kij < 1− z∗ij, which is equivalent to∑

k∈C

y∗kij > (|C| − 1)(1− z∗ij).

It means that the CI defined by (4.19) is violated by fractional solution (y∗, z∗), then

it is a valid CI.

To summarize the above description, the steps of finding valid CI for (4.8) is as

follows: given a fractional solution (y∗, z∗), solve the problem (4.20)–(4.22). If the

optimal value θ is less than 1 − z∗ij, then the CI defined by (4.19) is a valid CI,

otherwise, it is not.

Now we focus on solving the problem (4.20)–(4.22). We adapt the dynamic pro-

gram proposed by Kaparis and Letchford [42] to our problem and propose a new

separation algorithm as presented in Fig. 4.2. The separation algorithm is similar

to that of Kaparis and Letchford except for the definitions of f(h, r) and g(h), and

the final output criterion. The principle of the dynamic program is to compute all

of the f(h, r) and g(h) values, and then use the relation between them to find an

optimal solution to (4.20)–(4.22). f(h, r) is the recursive objective function value of

a dynamic program with the total flow of selected tasks from {1, . . . , h} is exactly

59

New separation algorithm for cover inequality

Given a fractional (y∗, z∗). For h = 1, . . . , |K| and r = 0, . . . , cij, define:

f(h, r) := min

{
h∑

k=1

(1− z∗ij − y∗kij)vk |
h∑

k=1

flkvk = r, (v1, . . . , vh) ∈ {0, 1}h
}

g(h) := min

{
h∑

k=1

(1− z∗ij − y∗kij)vk |
h∑

k=1

flkvk ≥ cij + 1, (v1, . . . , vh) ∈ {0, 1}h
}

1: Set f(h, r) := ∞ for h = 1, . . . , |K| and r = 0, . . . , cij. Set f(0, 0) := 0.
2: Set g(h) := ∞ for h = 1, . . . , |K|.
3: for h = 1 to |K| do
4: for r = 0 to cij do
5: if f(h− 1, r) < f(h, r) then
6: Set f(h, r) := f(h− 1, r)
7: end if
8: end for

9: for r = 0 to cij − flh do
10: if f(h− 1, r) + (1− z∗ij − y∗hij) < f(h, r + flh) then
11: Set f(h, r + flh) := f(h− 1, r) + (1− z∗ij − y∗hij)
12: end if
13: end for

14: for r = cij − flh + 1 to cij do
15: if f(h− 1, r) + (1− z∗ij − y∗hij) < g(h) then
16: Set g(h) := f(h− 1, r) + (1− z∗ij − y∗hij)
17: end if
18: end for

19: if g(h) < 1− z∗ij then
20: Output the violated cover inequality.
21: end if

22: end for

Fig. 4.2: New separation algorithm for cover inequality.

60

r, which is dynamically changed from 0 to the residual capacity cij. g(h) is the ob-

jective value of another dynamic program with the total flow of selected tasks from

{1, . . . , h} is larger than or equal to cij+1. g(h) is used to compute the optimal value

of problem (4.20)–(4.22). It is computed recursively in the dynamic program. When

we obtain its value, the output criterion: g(h) < 1− z∗ij, is checked. If it is true, the

corresponding CI (4.19) is a valid CI and we output it. For details of the separation

algorithm for CI, please Kaparis and Letchford [42].

In the implement of the cutting plane method, we relax integer variables to real

ones and solve the linear relaxation problem of the RPn, then obtain a fractional

solution (x∗, y∗, z∗) and a lower bound on the RPn. Then the separation algorithms

presented in Fig. 2.6 and Fig. 4.2 are applied to find valid CIs (4.18) and (4.19).

If there exist any valid CIs, we add them to the RPn, and again solve the relaxed

problem of RPn until no new valid CIs are found.

4.3.4 Overall algorithm

The overall algorithm for the CLRP is presented in Fig. 4.3. It is a cut-and-solve and

cutting plane combined method. Steps 1 and 2 are the initialization and pre-process.

Steps 3 and 4 are the cutting plane method applied to the CP1 to obtain the initial

lower bound LB0. Steps 5–11 is the iteration for the cut-and-solve method, and steps

9 and 10 are cutting plane method applied to the RPn to obtain lower bound LBn.

The stopping iteration of cut-and-solve method is LBn ≥ UBmin. If it is satisfied,

then UBmin is return as the optimal value of the original problem. Otherwise, we go

back to step 5 and begin a new iteration for the cut-and-solve method.

4.4 Computational results

The proposed algorithm for the CLRP was coded in C++ and combined with CPLEX

12.1 solver in default setting mode for the resolution of the sparse problem and re-

maining problem. The numerical experiments were carried out on a PC with a 3.0

GHz processor and 4.0 GB RAM. Seventy-eight problem sets and five problem in-

stances for each set were randomly generated and tested to evaluate the performance

of the proposed algorithm.

The first scenario of problem instances are obtained from [25]. The overall per-

formance of the proposed algorithm is evaluated on these instances. And the per-

formance of the cutting plane method embedded in the proposed algorithm is also

evaluated. The other scenario of problem instances are generated in a similar way

61

Algorithm CLRP

1: Initialize n := 0 and best upper bound UBmin := +∞.
2: Implement the pre-processing for original model Pc, and obtain a new model P ′

c.
Set current problem CP1 := P ′

c.
3: Solve the linear relaxation problem of CP1 and obtain the initial lower bound
LB0, as well as solution and reduced cost information. If the solution is integral,
an optimal solution is found, stop the algorithm.

4: Apply the separation algorithm described in Fig. 2.6 and Fig. 4.2 to find possible
CIs. If there exist any CIs, add them to CP1 and go to step 3.

5: repeat
6: Set n := n+ 1.
7: Define piercing cut PCn by (4.15) and obtain SPn and RPn.
8: Solve SPn exactly and obtain its optimal value UBn if it exists. Set UBmin :=

UBn if UBn < UBmin.
9: Solve the linear relaxation problem of RPn and obtain its lower bound LBn,

as well as solution and reduced cost information. If the solution is integral, set
UBmin := LBn if LBn < UBmin, and go to step 12.

10: Apply the separation algorithm described in Fig. 2.6 and Fig. 4.2 to find possible
CIs. If there exist any CIs, add them to RPn and go to step 9; otherwise set
CPn+1 := RPn.

11: until (LBn ≥ UBmin)
12: Return UBmin and its corresponding solution as optimal value and optimal solu-

tion of the original problem.

Fig. 4.3: Algorithm CLRP: algorithm for the CLRP.

62

described in chapter 3. They are generated as follows. The graph G(N,A) is gener-

ated based on the network model proposed by Waxman [81]. The link travel time on

a reserved lane τij and on a non-reserved lane τ ′ij are respectively calculated as the

ratio of the length of the lane and the corresponding speed, where the speed is as-

sumed as 60 for a reserved lane and is generated from [30, 50] for a non-reserved lane.

The impact of the reserved lane aij is evaluated as the increase of link travel time on

adjacent lanes. It is set as aij = raτ
′
ij, where ra is a given parameter. The prescribed

travel duration is defined as pk = dis(sk, dk) + rp(dis
′(sk, dk) − dis(sk, dk)), where

dis(sk, dk) and dis
′(sk, dk) are respective the shortest travel duration from sk to dk in

an exclusively reserved path and in an exclusively non-reserved path, and rp is a given

parameter. Integers flk and cij are randomly and uniformly generated from [5, 10]

and [20rc, 30rc], respectively. In the default case, we set ra ∈ [0.2, 0.3], rp = 0.6, and

rc = 1. In addition, sensitive analysis for the performance of the proposed algorithm

were conducted with different setting of ra, rp, and rc.

The performance of the cut-and-solve and cutting plane combined method is com-

pared with the direct use of CPLEX in terms of the computational time (in CPU

seconds) of finding an optimal solution. In addition, the initial lower bound on the

original problem is presented to show the efficiency of the cutting plane method

for tightening the linear relaxation problem. To simplify the presentation of com-

putational results, let CTc and CT0 respectively denote the computational time re-

quired by the proposed algorithm presented in Fig. 4.3 and using CPLEX solver

directly. And CT ′ denote the computational time required by the cut-and-solve

based algorithm which does not embed the cutting plane method in [25]. Denote

by GapL = (LB0 − LB′
0)/LB

′
0 the improvement of the initial lower bound, where

LB0 and LB
′
0 are the initial lower bounds obtained by the cutting plane method and

linear relaxation, respectively. The computational results are reported in Tables 4.1–

4.5 and Figs. 4.4–4.6.

First, we evaluate the overall performance of the proposed algorithm, as well as

the cutting plane method. Table 4.1 and Fig. 4.4 present the computational results

for problems with fixed number of nodes |N | = 100 and the number of tasks |K|
varies from 5 to 40. It can be seen that the computational time required by CPLEX

(CT0) is much more than that required by the algorithms presented in Fig. 4.3 (CTc)

and in [25] (CT ′). For example, CT0 is about 10690 seconds for set 8, while the

other two are less than 3000 seconds. By comparing the computational time CTc and

CT ′, we can evaluate the performance of the cutting plane method. It can be seen

that CTc is larger than CT
′ over sets 1–4. As the size of the problem increases, CT ′

63

Table 4.1: Computational results of problems with fixed 100 nodes.

Set |N | |K| GapL(%) CTc CT ′ CT0

1 100 5 5.06 1.17 0.57 0.70
2 100 10 8.05 5.36 2.93 5.84
3 100 15 4.12 13.24 7.79 23.91
4 100 20 11.44 35.00 30.52 64.52
5 100 25 6.39 65.30 75.97 257.25
6 100 30 8.98 123.13 209.76 501.98
7 100 35 5.06 931.41 1497.37 5065.70
8 100 40 6.22 1137.52 2965.72 10689.96

Average 6.92 289.01 598.83 2076.23

0.00

2000.00

4000.00

6000.00

8000.00

10000.00

12000.00

1 2 3 4 5 6 7 8

Set

C
o

m
p

u
tq

ti
o

n
q
l

ti
m

e

CTc

CT ′

CT0

Fig. 4.4: Computational results of problems with fixed 100 nodes.

increases much more quickly than CTc and CTc is smaller than CT ′ over sets 5–8.

The average computational time CTc decreases to 48.26% (289.01/598.83) of CT ′.

Generally, the cut-and-solve and cutting plane combined method is effective for large

sized problems, and cut-and-solve method is efficient for small sized ones. The reason

can be explained as follows. When the size of the problem is small, the cut-and-solve

and cutting plane combined method takes more computational time than the linear

relaxation to obtain a lower bound on the remaining problem. However, as the size of

the problem increases, the lower bound obtained by the cutting plane method plays

a more important role in the convergence of the algorithm because the algorithm

converges quickly with a tight lower bound. The gap (denote by GapL) between the

initial lower bounds obtained by the cutting plane method and linear relaxation is

also presented to show the performance of the cutting plane method. The average

value of GapL is 6.92%.

64

Fig. 4.5: Ratios of computational time of CTc/CT0 for fixed 20, 25, and 30 tasks.

rp = 0.6

rp ∈ [0.6, 0.7]

rp ∈ [0.5, 0.6]

Fig. 4.6: Ratios of computational time of CTc/CT0 for different different prescribed
travel duration pk = dis(sk, dk) + rp(dis

′(sk, dk) − dis(sk, dk)), dis(sk, dk)
and dis′(sk, dk) are respective the shortest travel duration from sk to dk in
an exclusively reserved path and in an exclusively non-reserved path.

In Table 4.2, we report the results of problems with |K| = 20, 25, and 30 and

|N | increases from 50 to 120. The computational time CTc is smaller than CT0 for

all the sets in Table 4.2. The average value of CTc/CT0 is 21.55% over sets 9–32.

For large fixed |K|, the computational time by CPLEX increases quickly when |N |
increases. For example, CT0 varies from 43.59 to 2801.37 seconds in case of |K| = 30,

while it varies from 7.97 to 130.64 seconds in case of |K| = 20. However, the time

by the proposed algorithm CTc increases gradually when the size of the problem

increases. Fig. 4.5 presents the results CTc/CT0 for the problems with fixed number

of tasks. Generally, CTc/CT0 decreases when |N | increases in case of |K| = 25 and

30. Specially, the curve for |K| = 30 is below the other two. It implies that the

proposed algorithm is more effective for problems with large number of tasks than

with small number of tasks.

65

To test the stability of the proposed algorithm, parameters rc, ra, and rp are

changed for different setting of residual capacity of lanes cij, impact of reserved lanes

aij, and prescribed travel duration pk. They are defined as follows: cij is an integer

and randomly generated from [20rc, 30rc], aij = raτ
′
ij where τ ′ij is the travel time

on a non-reserved lane in (i, j), and pk = dis(sk, dk) + rp(dis
′(sk, dk) − dis(sk, dk)),

dis(sk, dk) and dis
′(sk, dk) are respective the shortest travel duration from sk to dk in

an exclusively reserved path and in an exclusively non-reserved path. The results are

presented in Tables 4.3–4.5. The average values of CTc/CT0 for all problem sets in

Tables 4.3–4.5 are 42.76%, 65.66%, and 57.48%, respectively. The ranges of CTc/CT0

are 38.32–54.86%, 45.03–91.00%, and 36.58–82.75%, respectively. Take Table 4.5

for example, the comparisons of the corresponding CTc/CT0 are shown in Fig. 4.6.

Generally speaking, the change trends of the curves represented three types of rp are

almost the same. This shows that the performance of the proposed algorithm does

not change much with different setting of the prescribed travel duration. Similar

results can also be found for cases of rc and ra.

4.5 Conclusions

In this chapter, we have investigated a capacitated lane reservation problem with con-

sidering residual capacity, which is a generalization of the lane reservation problem

studied previously. The addressed problem is formulated as an integer linear program

model and its complexity is demonstrated NP-hard. We propose a cut-and-solve and

cutting plane combined method, and then develop an exact algorithm to find opti-

mal solutions. Some strategies for reducing the solution space are developed for the

combined method according to the characteristic of the addressed problem. Compu-

tational experiments on randomly generated instances demonstrate that the proposed

algorithm is more efficient to solve the problem than commercial optimization solver

CPLEX. The corresponding work has been published in the following paper.

Y. Fang, F. Chu, S. Mammar, and M. Zhou. Optimal lane reservation in trans-

portation network. IEEE Transactions on Intelligent Transportation Systems, 13(2):

482–491, 2012.

66

Table 4.2: Computational results of problems with fixed 20, 25, and 30 tasks.

Set |N | |K| CTc CT0 CTc/CT0(%)

9 50 20 6.87 7.97 86.13
10 60 20 11.11 24.86 44.67
11 70 20 28.86 48.33 59.71
12 80 20 31.24 69.08 45.22
13 90 20 26.22 87.60 29.93
14 100 20 56.24 89.05 63.15
15 110 20 44.54 99.42 44.80
16 120 20 63.47 130.64 48.59

17 50 25 10.30 15.10 68.23
18 60 25 10.54 24.03 43.87
19 70 25 24.29 51.44 47.23
20 80 25 31.71 81.06 39.12
21 90 25 37.72 104.58 36.07
22 100 25 98.10 209.03 46.93
23 110 25 117.67 299.10 39.34
24 120 25 156.53 882.65 17.73

25 50 30 19.45 43.59 44.63
26 60 30 35.33 94.11 37.54
27 70 30 51.07 113.36 45.05
28 80 30 59.46 165.95 35.83
29 90 30 64.22 217.97 29.46
30 100 30 168.31 926.15 18.17
31 110 30 277.85 1493.25 18.61
32 120 30 310.44 2801.37 11.08

Average 72.56 336.65 21.55

67

Table 4.3: Computational results of problems with different lane’s residual capacity
cij ∈ [20rc, 30rc].

Set rc |N | |K| CTc CT0 CTc/CT0(%)

33 0.6 50 20 20.49 45.37 45.15
34 0.6 60 20 20.94 53.99 38.78
35 0.6 70 20 32.21 60.12 53.58
36 0.6 80 20 47.16 93.61 50.38
37 0.6 90 20 47.56 156.40 30.41

38 1.0 50 20 14.09 36.76 38.32
39 1.0 60 20 15.20 35.19 43.18
40 1.0 70 20 19.34 38.31 50.49
41 1.0 80 20 35.38 79.77 44.36
42 1.0 90 20 25.14 61.49 40.89

43 1.4 50 20 11.74 28.31 41.47
44 1.4 60 20 14.28 32.41 44.07
45 1.4 70 20 13.89 25.31 54.86
46 1.4 80 20 34.02 79.82 42.62
47 1.4 90 20 38.64 85.48 45.21

Average 26.01 60.82 42.76

68

Table 4.4: Computational results of problems with different impact of reserved lanes
aij = raτ

′
ij, τ

′
ij is the travel time on a non-reserved lane in (i, j).

Set ra |N | |K| CTc CT0 CTc/CT0(%)

48 [0.1, 0.2] 50 20 9.11 10.31 88.39
49 [0.1, 0.2] 60 20 25.26 31.47 80.28
50 [0.1, 0.2] 70 20 32.54 37.73 86.23
51 [0.1, 0.2] 80 20 43.58 81.45 53.50
52 [0.1, 0.2] 90 20 45.32 100.64 45.03

53 [0.2, 0.3] 50 20 8.77 15.75 55.70
54 [0.2, 0.3] 60 20 41.49 45.60 91.00
55 [0.2, 0.3] 70 20 43.86 58.56 74.90
56 [0.2, 0.3] 80 20 46.42 72.33 64.18
57 [0.2, 0.3] 90 20 50.88 85.23 59.70

58 [0.3, 0.4] 50 20 9.54 12.17 78.36
59 [0.3, 0.4] 60 20 45.29 51.40 88.12
60 [0.3, 0.4] 70 20 38.40 62.92 61.03
61 [0.3, 0.4] 80 20 37.12 46.61 79.63
62 [0.3, 0.4] 90 20 43.13 80.93 53.30

Average 34.71 52.87 65.66

69

Table 4.5: Computational results of problems with different prescribed travel du-
ration pk = dis(sk, dk) + rp(dis

′(sk, dk) − dis(sk, dk)), dis(sk, dk) and
dis′(sk, dk) are respective the shortest travel duration from sk to dk in
an exclusively reserved path and in an exclusively non-reserved path.

Set rp |N | |K| CTc CT0 CTc/CT0(%)

63 0.6 50 20 12.09 23.97 53.82
64 0.6 60 20 27.93 46.01 60.70
65 0.6 70 20 32.18 67.40 47.74
66 0.6 80 20 40.63 78.72 51.62
67 0.6 90 20 62.33 96.20 64.79

68 [0.6, 0.7] 50 20 22.78 27.53 82.75
69 [0.6, 0.7] 60 20 31.72 39.24 80.82
70 [0.6, 0.7] 70 20 58.45 96.15 60.79
71 [0.6, 0.7] 80 20 35.64 66.39 53.68
72 [0.6, 0.7] 90 20 59.38 99.03 59.96

73 [0.5, 0.6] 50 20 9.63 15.03 64.12
74 [0.5, 0.6] 60 20 30.78 41.51 74.16
75 [0.5, 0.6] 70 20 38.06 82.11 46.36
76 [0.5, 0.6] 80 20 22.58 61.75 36.58
77 [0.5, 0.6] 90 20 49.20 88.35 55.69

Average 35.61 61.96 57.48

70

Chapter 5

Lane reservation problems with
dynamic link travel time

5.1 Introduction

As introduced in chapter 2, the LRPs are intended to design time-guaranteed task

paths by optimally setting reserved lanes in a transportation network. However,

the previously studied LRP in chapter 3 and CLRP in chapter 4 involve only static

link travel time in a transportation network. In real-life, traffic situation dynamically

changes due to many factors, such as peak hours, traffic flow, and weather conditions.

Then link travel time dynamically change due to these factors. In the literature,

dynamic link travel time has been introduced to some transportation problems, such

as the VRPTW [13], [37]. It is necessary to consider dynamic link travel time in

the lane reservation problems to make them closer to the realistic situations. In

this chapter, we investigate two dynamic lane reservation problems: lane reservation

problem with time-dependent travel time (LRP-TT) and lane reservation problem

with time-dependent travel speed (LRP-TS). Compared with the problems in chapters

3 and 4, the travel time on non-reserved lanes in the LRP-TT and LRP-TS is not

a constant, it can be changed with the time of day. Because of the introduction of

dynamic link travel time to the LRP-TT and LRP-TS, the problems become much

difficult to solve. The solution approaches in chapters 3 and 4 cannot be applied

directly to them. A new cut-and-solve based method is developed for the LRP-

TT. New strategies of piercing cut generation are developed for the cut-and-solve

based method. Moreover, for the LRP-TS, the property “first-in-first-out” (FIFO)

is satisfied due to the time-dependent travel speed model. A tabu search algorithm

embedded time-dependent shortest path algorithm is developed for the LRP-TS. The

remainder of this chapter is organized as follows. In sections 5.2 and 5.3, the LRP-TT

71

and LRP-TS are respectively addressed, including problem formulation, linearization

of the nonlinear model, solution approach, and performance evaluation. The chapter

is concluded in section 5.4.

5.2 Lane reservation problem with time-

dependent travel time

5.2.1 Problem description and formulation

The lane reservation problems studied in the previous chapters assume static link

travel time throughout the whole time horizon. In this section, we study a lane

reservation problem with time-dependent travel time (LRP-TT), in which the travel

time on a non-reserved lane is not a constant any more, it dynamically changes with

the time of day.

The LRP-TT is described as follows. Given a network G(N,A), a set of tasks

and corresponding source-destination (SD) pairs, the LRP-TT is to setting reserved

lanes from the network and to design paths for the time-guaranteed tasks, with the

objective of minimizing the total impact of reserved lanes on the network. Unlike the

previous lane reservation problems in which static link travel time in a transportation

network is assumed, the travel time on a non-reserved lane (i, j) ∈ A is assumed to

be dependent on the departure time at node i and the travel time on a reserved lane

is assumed a constant in the LRP-TT. Because non-reserved lanes can be used by

all types of the vehicles, the traffic situation may be very different for different time

of the day. For example, the traffic during morning and afternoon peak hour are

much more congested than other times of the day. Therefore, the travel time on a

non-reserved lane is assumed time-dependent. For reserved lanes, because they can

be used by only the tasks’ vehicles. Therefore, they can provide a congestion free

travel environment and the travel time on a reserved lane is assumed a constant over

the whole time horizon. In this sense, the LRP-TT is an extension to the previous

lane reservation problems.

To well study the lane reservation problem with dynamic link travel time, the

travel time on a non-reserved lane (i, j) ∈ A is assumed to be a step function of the

departure time at node i in the LRP-TT. This assumption has been widely used in

many time-dependent transportation problems, such as time-dependent VRP [53],

time-dependent traveling salesman problem [54], and time-dependent shortest path

problem [11] [87]. The assumption of step function is an approximation of realistic

72

0 1 2 3 4
0

0.5

1

1.5

2

Departure time
at node i

L
in
k
tr
av
el

ti
m
e
on

(i
,j
)

Fig. 5.1: Example of time-dependent travel time on a non-reserved lane (i, j).

continuous function due to the complexity of continuous functions that are much

more difficult to deal with than step functions. We consider a tractable case of

dynamic lane reservation problems with link travel time of a step function at the first

time. It is described as follows. Denote the whole time horizon by [TBEG, TEND).

Let Tq ∈ [TBEG, TEND), q ∈ Q denote the boundary of time interval, where Q =

{0, . . . , nq − 1} and nq is a pre-given integer which represents the number of time

intervals. Then the whole time horizon is divided as follows: [T0, T1, . . . , Tnq−1, Tnq),

where T0 = TBEG, Tnq = TEND, and each [Tq, Tq+1), q ∈ Q represents a time interval.

For a non-reserved lane (i, j) ∈ A, the travel time on (i, j) is a step function of the

departure time at node i. It is a constant for each time interval [Tq, Tq+1),∀q ∈ Q.

An example of the time-dependent travel time for a non-reserved lane (i, j) is given in

Fig. 5.1. For example, if a task departs at i at a time point t1 = 0.5, then t1 ∈ [0, 1),

the travel time on (i, j) will be 2; if it departs at i at a time point t2 ∈ [1, 2), then

travel time on (i, j) will be 1. On the other hand, only the tasks’ vehicles are allowed

to travel on reserved lanes and they can provide a congestion free travel environment.

Thus, the travel time on a reserved lane is assumed a constant over the whole time

horizon.

To formulate the problem, some notations are given as follows.

Sets and input parameters
A: set of directed arcs (i, j), i ̸= j, i, j ∈ N
K: set of transportation tasks, k ∈ K

73

N : set of nodes
Q: set of indices of time interval, Q = {0, . . . , nq − 1}
[Tq, Tq+1) time interval, q ∈ Q
aij: traffic impact if a lane in (i, j) ∈ A is reserved
dk: destination node of task k ∈ K
nq: number of time interval
pk: prescribed travel duration to complete task k ∈ K
sk: source node of task k ∈ K
stk: starting time for task k at node sk, k ∈ K
τij: travel time on a reserved lane in (i, j) ∈ A
τ ′′ijq: travel time on a general-purpose lane in (i, j) ∈ A when departure time

at i is within time interval [Tq, Tq+1), q ∈ Q

Decision variables
bkiq: bkiq = 1 if task k departs at node i in time interval [Tq, Tq+1); otherwise

bkiq = 0, ∀k ∈ K, ∀i ∈ N, ∀q ∈ Q.
tki: departure time of task k at node i; tki = 0 if node i is not visited by task

k, ∀k ∈ K, ∀i ∈ N .
xkij: xkij = 1, if a lane in link (i, j) is in the path of task k and this lane is

reserved; and otherwise xkij = 0, ∀k ∈ K, ∀(i, j) ∈ A.
ykij: ykij = 1, if a lane in link (i, j) is in the path of task k and this lane is

not reserved; and otherwise ykij = 0, ∀k ∈ K, ∀(i, j) ∈ A.
zij: zij = 1, if there is a reserved lane in link (i, j); and otherwise zij = 0,

∀(i, j) ∈ A

The LRP-TT can be formulated as the following programming model Pt:

Pt : min
∑

(i,j)∈A

aijzij (5.1)

s.t.
∑

i:(sk,i)∈A

(xkski + ykski) = 1, ∀k ∈ K, (5.2)

∑
i:(i,dk)∈A

(xkidk
+ ykidk

) = 1, ∀k ∈ K, (5.3)

∑
i:(i,j)∈A

(xkij + ykij) =
∑

i:(j,i)∈A

(xkji + ykji), ∀k ∈ K, ∀j ∈ N\{sk, dk}, (5.4)

xkij ≤ zij , ∀k ∈ K, ∀(i, j) ∈ A, (5.5)

ykij + zij ≤ 1, ∀k ∈ K, ∀(i, j) ∈ A, (5.6)∑
q∈Q

bkiq = 1, ∀k ∈ K, ∀i ∈ N\{dk}, (5.7)

tki ≥
∑
q∈Q

bkiqTq, ∀k ∈ K, ∀i ∈ N\{dk}, (5.8)

74

tki <
∑
q∈Q

bkiqTq+1, ∀k ∈ K, ∀i ∈ N\{dk}, (5.9)

tksk = stk, ∀k ∈ K, (5.10)

tkj =
∑

i:(i,j)∈A

((tki + τij)xkij + (tki +
∑
q∈Q

bkiqτ
′′
ijq)ykij), ∀k ∈ K, ∀j ∈ N\{sk}, (5.11)

tkdk
− tksk ≤ pk, ∀k ∈ K, (5.12)

tki ≥ 0, ∀k ∈ K, ∀i ∈ N, (5.13)

bkiq ∈ {0, 1}, ∀k ∈ K, ∀i ∈ N,∀q ∈ Q, (5.14)

xkij , ykij ∈ {0, 1}, ∀k ∈ K, ∀(i, j) ∈ A, (5.15)

zij ∈ {0, 1}, ∀(i, j) ∈ A. (5.16)

The objective function (5.1) is to minimize the traffic impact of all reserved lanes.

Constraints (5.2)–(5.4) together ensure that there is exact one path for each task k

from sk to dk. Constraint (5.5) means that task k cannot pass the reserved lane in

(i, j) if there is no reserved lane in it. Constraint (5.6) is tighter than constraint

xkij + ykij ≤ 1. It means that if task k passes (i, j) (i.e., xkij + ykij = 1), either

it passes a reserved lane (i, j) (i.e., xkij = 1) or it passes a non-reserved lane (i, j)

(i.e., ykij = 1), otherwise task k dose not pass (i, j) (i.e., xkij + ykij = 0). Constraint

(5.7)–(5.9) indicates that if bkiq = 1, then the departure time tki of task k at node

i is in the time interval [Tq, Tq+1). Constraint (5.10) indicates that task k departs

at node sk at time stk. Constraint (5.11) indicates the time of task k at node j. If

task k visits j via a reserved lane (i, j), the travel time on (i, j) is τij and the time

at j is tki + τij; if it visits j via a non-reserved lane (i, j), the travel time on (i, j) is

dependent on the time interval in which the departure time at node i is. It can be

represent as
∑

q∈Q bkiqτ
′′
ijq, where bkiq = 1 if the departure time at i is in time interval

[Tq, Tq+1) and τ ′′ijq is the corresponding travel time on (i, j). Then the time at j is

tki +
∑

q∈Q bkiqτ
′′
ijq. Constraint (5.12) means that the travel time of task k from sk to

dk should not exceed the prescribed travel duration pk. Constraints (5.13)–(5.16) are

for the decision variables. Note that (5.11) is not linear, and it will be reformulated

as linear inequalities in the following section.

The complexity of the LRP-TT is given by the following theorem.

Theorem 6 The LRP-TT is NP-hard.

Proof : For each (i, j) ∈ A and time interval [Tq, Tq+1), q ∈ Q, if the corresponding
travel time τ ′′ijq is very large (e.g., greater than max

k∈K
{pk}), then each lane in the

75

task paths must be reserved to ensure the time-guaranteed tasks, otherwise the tasks
cannot be completed within the prescribed travel time pk, k ∈ K. Thus, the LRP-TT
is reduced to the LRP in chapter 3, which has been proved NP-hard. Therefore, the
LRP-TT is NP-hard. �

5.2.2 Model linearization

Model Pt is not a linear programming since (5.11) is nonlinear. It difficult to solve

nonlinear programming model. In this section, Pt is transformed into an equivalent

linear model by reformulating (5.11) according to the following three cases.

1) Node j is not visited by task k, i.e.,
∑

i:(i,j)∈A xkij = 0 and
∑

i:(i,j)∈A ykij = 0.

Then (5.11) can be reformulated as follows:

tkj ≤M
∑

i:(i,j)∈A

(xkij + ykij), ∀k ∈ K, ∀j ∈ N\{sk}, (5.17)

where M is a large constant.

2) Node j is visited by task k via a reserved lane in (i, j), i.e.,
∑

i:(i,j)∈A xkij = 1

and
∑

i:(i,j)∈A ykij = 0. Then (5.11) can be reformulated as follows:∑
i:(i,j)∈A

(tkj − tki − τij)xkij = 0, ∀k ∈ K, ∀j ∈ N\{sk}.

Since
∑

i:(i,j)∈A xkij = 1, then each item in the left hand of the above formula is

zero, we have:

(tkj − tki − τij)xkij = 0, ∀k ∈ K, ∀j ∈ N\{sk}, (i, j) ∈ A.

Then it can be further reformulated as follows:

tkj − tki − τij ≤M(1− xkij),
tkj − tki − τij ≥M(xkij − 1),

∀k ∈ K, ∀j ∈ N\{sk}, (i, j) ∈ A. (5.18)

3) Node j is visited by task k via a non-reserved lane in (i, j), i.e.,
∑

i:(i,j)∈A xkij = 0

and
∑

i:(i,j)∈A ykij = 1. Similar to case 2), (5.11) can be reformulated as follows:

tkj − tki −
∑
q∈Q

bkiqτ
′′
ijq ≤M(1− ykij),

tkj − tki −
∑
q∈Q

bkiqτ
′′
ijq ≥M(ykij − 1),

∀k ∈ K, ∀j ∈ N\{sk}, (i, j) ∈ A. (5.19)

Since each of (5.17)–(5.19) is linear, an equivalent linear model P ′
t can be obtained

by replacing (5.11) with (5.17)–(5.19). It is given as follows:

P ′
t : min

∑
(i,j)∈A

aijzij

s.t. constraints (5.2)− (5.10) and (5.12)− (5.19).

76

5.2.3 Solution approach

In this section, in first a pre-processing is firstly performed to tight the solution space

of the problem P ′
t . Then a cut-and-solve based optimal algorithm is developed for

it. Some new strategies are proposed for generating appropriate piercing cuts in the

cut-and-solve method.

5.2.3.1 Pre-processing

For ∀j ∈ N , let l(sk, j) denote the shortest travel duration from sk to j in an exclu-

sively reserved path and l(j, dk) denote the shortest travel duration from j to dk in

an exclusively reserved path, where sk and dk are the source and destination of task

k, respectively. Then l(sk, j) and l(j, dk) can be computed by Dijkstra shortest path

algorithm. For ∀k ∈ K, define set Nk as follows:

Nk = {j | l(sk, j) + l(j, dk) > pk, j ∈ N}.

It is not difficult to see that the nodes in Nk will not be visited by task k otherwise

the travel time constraint will be violated. Then the corresponding decision variables

can be fixed to zero and represented by the following equalities:∑
i:(i,j)∈A

(xkij + ykij) = 0,∑
i:(j,i)∈A

(xkji + ykji) = 0,

tkj = 0,

∀k ∈ K, ∀j ∈ Nk. (5.20)

For ∀k ∈ K, ∀j ∈ N\{sk}, if node j is not visited by task k, then tkj is zero by

its definition; if j is visited by task k, the earliest arrived time at j for task k is

stk + l(sk, j), where stk is the departure time of task k at node sk and l(sk, j) is the

shortest travel duration from sk to j. These two cases can be represented by the

following inequalities:

tkj ≥ (stk + l(sk, j))
∑

i:(i,j)∈A

(xkij + ykij), ∀k ∈ K, ∀j ∈ N\{sk}. (5.21)

Then (5.20) and (5.21) can be added as new constraints to tighten P ′
t . The new model

P ′′
t is given as follows:

P ′′
t : min

∑
(i,j)∈A

aijzij

s.t. constraints (5.2)− (5.10) and (5.12)− (5.21).

77

5.2.3.2 Cut-and-solve method

The principle of the cut-and-solve method has been described in chapter 2. To apply

the cut-and-solve method to the LRP-TT, we need to define the piercing cut (PCn),

current problem (CPn), sparse problem (SPn) and remaining problem (RPn).

In chapters 3 and 4, PCn is defined on a set which includes decision variables

with large reduced cost. The variables’ reduced cost is obtained by applying a linear

relaxation strategy and solve the resulting problem. However, the linear relaxation

strategy is not suitable for the LRP-TT because preliminary experiment results shown

that the lower bound of the LRP-TT obtained by the linear relaxation strategy is

very “bad”, which is not good for the convergence of the cut-and-solve method. For

the LRP-TT, we apply a partial integral relaxation strategy instead of the linear

relaxation strategy. It means that only integer decision variables xkij and zij are

relaxed to continuous while bkiq and ykij are kept non-relaxed. The partial integral

relaxation strategy is based on the following observations.

1) Preliminary experiment results shown that if we apply the linear relaxation

strategy (i.e., relax all the integer variables to continuous), most of the variables

zij have values of zero. And the lower bound (LBn) of the RPn is very “bad”,

which leads to a very slow convergence of the cut-and-solve method since the

method will not be terminated until LBn is greater than or equal to the current

best upper bound (UBmin). To accelerate the termination of the cut-and-solve

method, LBn must be “good” enough. Therefore, we applied a partial integral

relaxation strategy in order to obtain a “good” LBn.

2) The variables relaxed to the task paths are xkij and ykij. If ykij are relaxed,

experiment results shown that they have fractional values and most of xkij have

values of zero, which means that very few reserved lanes are passed by the

tasks. The LBn is very “bad”. Therefore, ykij should not be relaxed. bkiq are

not relaxed for the same reason.

On other hand, variables’ reduced cost cannot be obtained by partial integral relax-

ation strategy. Thus, the previous methods of generating PCn in chapters 3 and 4 is

not suitable for the LRP-TT. New techniques for generating PCn will be explained

as follows.

In our implementation of the algorithm, we apply the partial integral relaxation

strategy to the CPn and solve the resulting problem. Denote the solution by sol∗n =

(t∗kj, b
∗
kiq, x

∗
kij, y

∗
kij, z

∗
ij). Since x∗kij may be fractional value, there may be more than

78

sk1
i1

i2 dk1

y∗

k1sk1
i1

= 1

x∗

k1i1i2
= 1

y∗

k1i2dk1

= 1

(a) Task k1 has one path.

sk2
i3

i4

i5

i6 dk2

y
∗

k2sk2
i3

= 1

x
∗

k2i3i4
= 0.6

x
∗

k2i3i5
= 0.4

x
∗

k2i4i6
= 0.6

x
∗

k2i5i6
= 0.4

y
∗

k2i6dk2

= 1

(b) Task k2 has multi-path.

Fig. 5.2: Example of task path.

one path for some tasks from their sources to destinations. Let Kn denote the set of

tasks that have more than one path in sol∗n:

Kn = {k ∈ K | there are more than one path for task k in solution sol∗n}. (5.22)

For each k ∈ Kn, let ik denote the first node in its paths where multi-path appears.

Then set Vn composed of critical links (ik, jk) is defined as follows:

Vn = { (ik, jk) | (ik, jk) = arg max
(ik,j)∈A

{x∗kikj}, ∀k ∈ Kn }. (5.23)

To explain the above definition, an illustration is presented in Fig. 5.2. In Fig. 5.2, task

k1 has only one path while task k2 has two paths from their sources to destinations,

respectively. Hence k1 /∈ Kn and k2 ∈ Kn. In addition, for task k2, the first node

where multi-path appears is node i3. The links connected with i3 are (i3, i4) and

(i3, i5) and x
∗
k2i3i4

(= 0.6) is larger than x∗k2i3i5(= 0.4). Hence the critical link for task

k2 is (i3, i4). According to the definition of Vn, (ik, jk) is the link with largest value

among all the links outgoing from ik. Preliminary tests shown that the critical links

have large possibility to be selected (i.e., xkikjk + ykikjk = 1) for the task paths in the

optimal solution of the original problem. If all the critical links are selected, then∑
(ik,jk)∈Vn

xkikjk + ykikjk = |Kn|. However, experiments results shown that this is not

always true. Therefore, we suppose that at least hn (hn < |Kn|) critical links are

selected. In our implementation, hn is set as |Kn| − 1 or |Kn| − 2. Then according to

the principle of the cut-and-solve method, the PCn (n ≥ 1) is defined as follows:

PCn :
∑

(ikjk)∈Vn

(xkikjk + ykikjk) ≤ hn − 1, (5.24)

79

For n ≥ 1, the SPn and RPn are defined as follows:

SPn : min
∑

(i,j)∈A

aijZij

s.t. constraints (5.2)− (5.10) and (5.12)− (5.21)∑
(ikjk)∈Vm

(xkikjk + ykikjk) ≤ hn − 1, m = 1, 2, . . . , n− 1. (5.25)

∑
(ikjk)∈Vn

(xkikjk + ykikjk) ≥ hn. (5.26)

RPn : min
∑

(i,j)∈A

aijZij

s.t. constraints (5.2)− (5.10), (5.12)− (5.21), (5.24) and (5.25)

Since xkikjk + ykikjk ≤ 1, (5.26) implies that at least hn items of xkikjk + ykikjk have

non-zero values, i.e., at least hn critical links will be selected for the task paths. The

special case hn = |Kn| implies that xkikjk + ykikjk = 1, ∀k ∈ Kn. Then the SPn can

be solved to optimality relatively easily. The CP1 is defined as P ′′
t and CPn (n ≥ 2)

is defined as RPn−1.

5.2.3.3 Overall algorithm

The overall algorithm is described in Fig. 5.3.

5.2.4 Computational results

In this section, the performance of the proposed algorithm was evaluated on randomly

generated problem instances. The proposed algorithm was coded in Visual C++

embedded with CPLEX 12.1 MIP solver used to solve the sparse problem and relaxed

remaining problem. All the experiments were carried out on a PC with 3.0 GHz CPU

and 4.0 GB RAM. Each problem set includes five instances.

The graphG(N,A) is generated based on the network model proposed by Waxman

[81]. The time horizon is set as [0, 12] and is divided into |Q| time intervals. Obviously,

large |Q| made the problem difficult to solve. In [53], a time-dependent VRPTW was

studied and the number of time interval |Q| is set as 2 or 3. In our experiments,

|Q| is set as 4 or 6. For each (i, j) ∈ A and q ∈ Q, the travel time on a reserved

lane τij and on a non-reserved lane τ ′′ijq are set as the ratio of the length of (i, j)

and a corresponding speed, where the speed is set as 60 for a reserved lane and is

uniformly generated in [30, 50] for a non-reserved lane. The average travel time on

a non-reserved lane over the whole horizon is then computed as τ ′′ij =
∑

q∈Q τ
′′
ijq/|Q|.

80

Algorithm LRP-TT

1: Initialize n := 0 and best upper bound UBmin := +∞.
2: Implement pre-processing for original nonlinear model Pt, and obtain a new linear

model P ′
t . Set current problem CP1 := P ′

t .
3: Apply the partial integral relaxation strategy to CP1, i.e., relax xkij and zij to

continuous, and solve the resulting relaxed problem.
4: repeat
5: Set n := n + 1. Use the solution information of relaxed problem of CPn to

define critical link set Vn by (5.23).
6: Define piercing cut PCn by (5.24) and obtain SPn and RPn.
7: Solve SPn exactly and obtain its optimal value UBn if it exists. Set UBmin :=

UBn if UBn < UBmin.
8: Apply the partial integral relaxation strategy to RPn. Solve the resulting re-

laxed problem and obtain its solution information and lower bound LBn of
RPn. If the solution is integral, set UBmin := LBn if LBn < UBmin, and go to
step 10; otherwise set CPn+1 := RPn.

9: until (LBn ≥ UBmin)
10: Return UBmin and its corresponding solution as optimal value and optimal solu-

tion of the original problem.

Fig. 5.3: Algorithm LRP-TT: algorithm for the LRP-TT.

The impact of reserved lane is set as aij = raτ
′′
ij, where ra is a given parameter. The

prescribed travel duration is set as pk = dis(sk, dk) + rp(dis
′(sk, dk) − dis(sk, dk)),

where dis(sk, dk) (resp. dis
′(sk, dk)) is the shortest travel duration from sk to dk in

the case of the travel time on (i, j) is τij (resp. τ ′′ij), where rp is a given parameter.

In the default case, ra ∈ [0.2, 0.3], rp = 0.7. In addition, experiments of performance

sensitive analysis for these parameters have also been conducted.

The performance of the proposed algorithm is compared with the direct use of

CPLEX to model P ′
t in terms of the computational time (in CPU seconds) of finding

an optimal solution. Let |N |, |K|, and |Q| denote the number of nodes, tasks, and

time intervals; and CTt, CT0 denote the average computational time required by the

proposed algorithm and CPLEX, respectively. Each size of problem has five instances.

With these notations, the computational results are presented as follows.

Table 5.1 and Fig. 5.4 present the computational results of different sized problems

with |N | varies from 80 to 95 and |K| varies from 10 to 30. It can be observed from

Table 5.1 that CTt is less than CT0 over sets 1–7 and CTt/CT0 varies from 26.59% to

87.67%. CPLEX cannot solve problem set 8 exactly within 3600.00 seconds whereas

81

Table 5.1: Computational results of problems with different sizes.

Set |N | |K| |Q| CTt CT0 CTt/CT0(%)

1 80 10 4 12.80 49.31 25.96
2 80 15 4 41.67 86.93 47.93
3 85 15 4 103.63 150.16 69.01
4 85 20 4 237.23 323.22 73.40
5 90 20 4 392.38 516.28 76.00
6 90 25 4 955.30 1132.64 84.34
7 95 25 4 1278.54 1458.40 87.67
8 95 30 4 1710.38 – –

0.00

200.00

400.00

600.00

800.00

1000.00

1200.00

1400.00

1600.00

80/10 80/15 85/15 85/20 90/20 90/25 95/25

Nodes/Tasks

C
P

U
 t

im
e

(s
ec

o
n
d

) CTt

CT0

Fig. 5.4: Computational results of problems with different sizes.

the proposed algorithm takes 1710 seconds. The proposed algorithm can solve the

problems more quickly than CPLEX. However, it also can be found that CTt/CT0

increases with the size of the problem, which means that the proposed algorithm

becomes less efficient to solve large sized problems. It can be seen from Fig. 5.4

that both the computational time by CPLEX and the proposed algorithm increases

quickly with the size of problem. The time required by the proposed algorithm is

slightly less than that by CPLEX.

Table 5.2 presents the results of problems with 4 and 6 time intervals. The com-

putational time CTt is less than CT0 for each set in Table 5.2. The average time CTt

are 52.76 seconds for |Q| = 4 and 98.58 seconds for |Q| = 6, whereas average time

CT0 are 77.30 seconds for |Q| = 4 and 150.51 seconds for |Q| = 6. The difference

between the average values of CTt/CT0 for |Q| = 4 (68.25%) and for |Q| = 6 (65.50%)

is small. Fig. 5.5 presents the computational time CTt and CT0 for |Q| = 4 and 6.

It can be found that both CTt and CT0 increase quickly when |Q| increases from 4

82

to 6. This is easy to understand since larger number of time intervals results in more

decision variables and more constraints in the model, which makes the model difficult

to solve.

Table 5.3 presents the results of problems with different impact aij. Parameter ra

is changed to generate different values of aij. It can be found from Table 5.3 and that

CTt is less than CT0 for problem sets 24–43 except for set 23. The average values of

CTt/CT0 are 68.03% (for ra ∈ [0.1, 0.2]), 72.11% (for ra ∈ [0.2, 0.3]), and 74.44% (for

ra ∈ [0.3, 0.4]), respectively. The differences among the above three values are small,

which shown that the performance of the proposed algorithm is similar for different

impact. From Fig. 5.6 it can be seen that the change trend of CTt for the three types

of ra is similar.

Table 5.4 present the results of problems with different prescribed travel duration

pk. Parameter rp is changed to generate different values of pk. It can be found from

Table 5.4 that CTt is less than CT0 for all the problem sets 45–64 except for set 44.

The average values of CTt/CT0 are 70.83%, 61.27%, and 67.19% for rp = 0.65, 0.70,

and 0.75, respectively. It can be seen from Fig. 5.7 that the change trend of CTt for

the three types of rp is similar. Both CTt and CT0 increase quickly when problem

size increases from 70 nodes and 15 tasks to 80 nodes and 20 tasks.

The numerical experiment results shown that the proposed algorithm can opti-

mally solve all the tested problem sets. The proposed algorithm can find an optimal

solution of the problem faster than CPLEX for 62 out of 64 problem sets. How-

ever, due to the introduction of the dynamic link travel time to the LRP-TT, the

computational time increases sharply with the size of the problem.

The corresponding work in this subsection has been accepted to be published in

the following paper.

Y. Fang, F. Chu, S. Mammar, and A. Che. A cut-and-solve based algorithm for

optimal lane reservation with dynamic link travel times. International Journal of

Production Research (accepted).

83

Table 5.2: Computational results of problems with different number of time intervals
|Q|.

Set |N | |K| |Q| CTt CT0 CTt/CT0(%)

9 65 5 4 1.32 4.61 28.70
10 65 10 4 10.70 20.91 51.15
11 70 10 4 32.61 33.36 97.78
12 70 15 4 44.93 65.69 68.40
13 75 15 4 81.62 86.56 94.29
14 75 20 4 108.46 129.39 83.82
15 80 20 4 89.67 200.56 44.71

Average 52.76 77.30 68.25

16 65 5 6 4.78 6.33 75.57
17 65 10 6 14.52 23.04 63.00
18 70 10 6 13.13 52.85 24.85
19 70 15 6 65.54 92.05 70.86
20 75 15 6 85.03 161.91 52.52
21 75 20 6 82.75 242.17 34.17
22 80 20 6 424.30 474.75 89.37

Average 98.58 150.51 65.50

0.00

100.00

200.00

300.00

400.00

500.00

65/5 65/10 70/10 70/15 75/15 75/20 80/20

Nodes/Tasks

C
P

U
 t

im
e

(s
ec

o
n

d
) CTt, |Q| = 4

CT0, |Q| = 4

CTt, |Q| = 6

CT0, |Q| = 6

Fig. 5.5: Computational results of problems with different number of time intervals.

84

Table 5.3: Computational results of problems with different impact of reserved lanes
aij = raτ

′′
ij, τ

′′
ij is the average travel time on a non-reserved lane in (i, j)

through the whole time horizon.

Set |N | |K| |Q| ra CTt CT0 CTt/CT0(%)

23 50 5 4 [0.1, 0.2] 0.95 0.92 102.71
24 50 10 4 [0.1, 0.2] 2.03 2.62 77.27
25 60 10 4 [0.1, 0.2] 4.76 5.65 84.28
26 60 15 4 [0.1, 0.2] 17.42 31.18 55.85
27 70 15 4 [0.1, 0.2] 15.60 22.24 70.17
28 70 20 4 [0.1, 0.2] 51.96 98.09 52.97
29 80 20 4 [0.1, 0.2] 96.67 117.68 82.14

Average 27.06 39.77 68.03

30 50 5 4 [0.2, 0.3] 0.81 1.00 81.50
31 50 10 4 [0.2, 0.3] 2.54 3.02 83.99
32 60 10 4 [0.2, 0.3] 5.68 7.28 78.03
33 60 15 4 [0.2, 0.3] 26.58 33.34 79.74
34 70 15 4 [0.2, 0.3] 32.04 53.59 59.78
35 70 20 4 [0.2, 0.3] 73.19 100.37 72.92
36 80 20 4 [0.2, 0.3] 91.01 122.93 74.03

Average 33.12 45.93 72.11

37 50 5 4 [0.3, 0.4] 0.79 0.94 84.05
38 50 10 4 [0.3, 0.4] 2.93 3.89 75.34
39 60 10 4 [0.3, 0.4] 7.67 8.07 94.95
40 60 15 4 [0.3, 0.4] 16.95 31.95 53.06
41 70 15 4 [0.3, 0.4] 32.73 60.12 54.45
42 70 20 4 [0.3, 0.4] 72.12 90.33 79.83
43 80 20 4 [0.3, 0.4] 98.20 115.52 85.01

Average 33.06 44.40 74.44

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

50/05 50/10 60/10 60/15 70/15 70/20 80/20

Nodes/Tasks

C
P

U
 t

im
e

(s
ec

o
n
d

)

CTt, ra ∈ [0.1, 0.2]

CTt, ra ∈ [0.2, 0.3]

CTt, ra ∈ [0.3, 0.4]

CT0, ra ∈ [0.1, 0.2]

CT0, ra ∈ [0.2, 0.3]

CT0, ra ∈ [0.3, 0.4]

Fig. 5.6: Computational results of problems with different impact.

85

Table 5.4: Computational results of problems with different prescribed travel du-
ration pk = dis(sk, dk) + rp(dis

′(sk, dk) − dis(sk, dk)), dis(sk, dk) (resp.
dis′(sk, dk)) is the shortest travel duration from sk to dk in the case of the
travel time on (i, j) is τij (resp. τ

′′
ij).

Set |N | |K| |Q| rp CTt CT0 CTt/CT0(%)

44 50 5 4 0.65 0.26 0.22 120.01
45 50 10 4 0.65 2.22 3.61 61.61
46 60 10 4 0.65 7.62 10.76 70.79
47 60 15 4 0.65 9.77 16.16 60.48
48 70 15 4 0.65 18.83 35.16 53.56
49 70 20 4 0.65 44.52 53.81 82.73
50 80 20 4 0.65 68.64 94.71 72.48

Average 21.70 30.63 70.83

51 50 5 4 0.70 0.18 0.19 98.17
52 50 10 4 0.70 1.67 2.37 70.58
53 60 10 4 0.70 7.00 9.93 70.46
54 60 15 4 0.70 12.79 26.28 48.65
55 70 15 4 0.70 16.33 67.13 24.32
56 70 20 4 0.70 55.49 94.59 58.67
57 80 20 4 0.70 126.73 158.91 79.75

Average 31.46 51.34 61.27

58 50 5 4 0.75 0.26 0.33 77.57
59 50 10 4 0.75 2.48 3.14 78.93
60 60 10 4 0.75 6.27 8.65 72.56
61 60 15 4 0.75 20.47 27.96 73.22
62 70 15 4 0.75 25.66 45.60 56.27
63 70 20 4 0.75 62.88 97.00 64.83
64 80 20 4 0.75 70.58 98.00 72.02

Average 26.94 40.10 67.19

 !

" !

!

$!

% !

& !

&" !

&# !

&$!

&% !

' (' ' (& $ (& $ (&') (&') (2 ! "#

$%&'(")*(+(

,
-
.
/0
12

'/
3(
'4
%
5
&
6

CTt, rp = 0.65

CTt, rp = 0.70

CTt, rp = 0.75

CT0, rp = 0.65

CT0, rp = 0.70

CT0, rp = 0.75

Fig. 5.7: Computational results of problems with different prescribed travel duration.

86

5.3 Lane reservation problem with time-

dependent travel speed

5.3.1 Time-dependent travel speed and travel time on non-
reserved lanes

In this section, a dynamic lane reservation problem with time-dependent travel speed

(LRP-TS) is investigated. The LRP-TS in this section and the LRR-TT in section

5.2 have some common points. In both problems, the travel time on a reserved lane

is a constant, while the travel time on a non-reserved lane is dynamically changed.

Both problems have the same objective of minimizing the total impact of reserved

lanes and a mixed integer nonlinear programming model can be formulated for each

of them. However, the two problems have differences. In the LRP-TT, the travel

time on a non-reserved lane (i, j) ∈ A is only dependent on the departure time at

node i [23]. For a given non-reserved lane (i, j) and given departure time at node i,

the travel time on (i, j) is a constant. But the “first-in-first-out” (FIFO) property,

which is common sense as pointed by Ichoua et al. [40], is not satisfied in the LRP-

TT. The FIFO property [40] guarantees that if a vehicle leaves a node i for a node

j at a given time, any identical vehicle leaving node i for node j at a later time will

arrive later at node j. In the LRP-TS, due to the assumption of the time-dependent

travel speed, the FIFO property is satisfied. In addition, the travel time on each

non-reserved lane (i, j) ∈ A, which can be calculated based on the time-dependent

travel speed, is a piecewise linear continuous function of the departure time at node i.

The time-dependent travel speed was firstly introduced to the time-dependent VRP

[40]. Details of the time-dependent travel speed are explained as follows.

Similar to section 5.2, the time horizon can be divided as [T0, T1, . . . , Tnq−1, Tnq),

where nq is the number of time intervals, and for each q ∈ Q = {0, . . . , nq − 1},
[Tq, Tq+1) represents a time interval. T0 and Tnq represent the beginning time and

ending time of the time horizon, and all the tasks should be started and completed

within this time horizon. For each non-reserved lane (i, j), the travel speed on (i, j) at

a time t is dependent on the time interval in which t is. The travel speed is assumed

a constant for each time interval [Tq, Tq+1), q ∈ Q, but it can be changed if the travel

duration includes at least two consecutive time intervals. Therefore, the travel time

on a non-reserved lane (i, j) is depend on the departure time at node i and travel

speeds in related time intervals. An example is given in Fig. 5.8. Suppose that the

whole time horizon is divided as [T0, T1, T2, T3, T4) = [0, 1, 2, 3, 4). The length of (i, j)

is denoted by Dij = 2 and the travel speeds on (i, j) are vij0 = 1, vij1 = 2, vij2 = 1

87

T0 T1 T2 T3 T4t1 t′1 t2 t′2

j

i1
i2

i3

i

Time line

T
ra
v
el

d
is
ta
n
ce

fr
om

i

Fig. 5.8: Illustration of changes of travel speed on a non-reserved lane (i, j). Time
horizon is divided as [T0, T1, T2, T3, T4) = [0, 1, 2, 3, 4). If one vehicle departs
i at time t1 = 0.25, it arrives j at time t′1 = 1.625, and the travel time on
(i, j) is 1.375; if another vehicle departs i at time t2 = 1.75, it arrives j at
time t′2 = 3.2, and the travel time on (i, j) is 1.45.

and vij3 = 2.5 for each time interval, respectively. If a vehicle departs node i at time

t1 = 0.25 ∈ [T0, T1), it travels on (i, j) with a speed of vij0 until it arrives point i1

at time T1, which is the boundary of time interval [T0, T1). The traveled distance

between i and i1 is 0.75 (= vij0 × (T1 − t1)) and the distance between i1 and j is 1.25

(= Dij − vij0 × (T1 − t1)). Then, the vehicle continues traveling on (i, j) with a speed

of vij1 until it arrives point j at time t′1 (= 1.625 = T1 + (Dij − vij0 × (T1 − t1))/vij1).

The travel time on (i, j) is 1.375 (= t′1− t1). For the same example, if another vehicle

departs node i at time t2 = 1.75 ∈ [T1, T2), it travels on (i, j) with a speed of vij1

until it arrives point i2 at time T2. The traveled distance between i and i2 is 0.5

(= vij1 × (T2 − t2)) and the distance between i2 and j is 1.75. Then, it continues

traveling on (i, j) with a speed of vij2 until it arrives point i3 at time T3. The traveled

distance between i and i3 is 1.5 (= 0.5 + vij2 × (T3 − T2)) and the distance between

88

1: Input: departure time t0 at node i and t0 ∈ [Tq, Tq+1), length Dij of lane (i, j).
Denote vijq as the travel speed during time interval [Tq, Tq+1, q ∈ Q).

2: Set t := t0, D := Dij, and t
′ := t+D/vijq.

3: while (t′ > Tq+1) do
4: Set D := D − vijq(Tq+1 − t),
5: Set t := Tq+1,
6: Set t′ := t+D/vij(q+1),
7: Set q := q + 1.
8: end while
9: Return t′ − t0.

Fig. 5.9: Procedure of calculating travel time on a non-reserved lane (i, j) for a given
departure time at node i.

i3 and j is 0.5. It continues traveling on (i, j) with a speed of vij3 until it arrives j at

time t′2 (= 3.2 = T3+(Dij−vij1×(T2−t2)−vij2×(T3−T2))/vij3). The travel time on

(i, j) is 1.45 (= t′2− t2). The above two examples shown that different departure time

at node i will result different link travel time on the non-reserved lane (i, j). For any

non-reserved lane (i, j) in the network and a given departure time t0 at node i, the

travel time on (i, j) can be calculated by the procedure given by Ichoua et al. [40].

It is presented in Fig. 5.9. For details of this procedure, readers could refer to [40].

Moreover, it is pointed out in [40] that the travel time is a piecewise linear continuous

function of the departure time at node i. Nevertheless, the authors did not explain

how to obtain this piecewise linear function. In the following, we will explain how to

obtain the piecewise linear function.

For each non-reserved lane (i, j) in the network for the LRP-TS, the corresponding

travel time τ ∗ij(t) is a piecewise linear function of the departure time t at node i. The

breakpoints (tm, τ
∗
ij(tm)), m = 1, . . . , np, are some special points of the travel time

function τ ∗ij(t), where tm is the departure time at node i, τ ∗ij(tm) is the corresponding

travel time on (i, j), and np is the number of the breakpoints. They are defined as the

points where the slope of the function changes. If the breakpoints of the piecewise

linear function are known, then the function can be obtained by connecting these

breakpoints. To find the breakpoints, a theorem will be presented as follows.

Recall the time horizon is divided into nq time intervals as [T0, T1, . . . , Tnq) for

the LRP-TS, where Tq, q ∈ Q = {0, 1, . . . , nq}, is the boundary of the time interval.

The travel time function τ ∗ij(t) corresponding to the non-reserved lane (i, j) in the

89

network is a piecewise linear function of the departure time t at node i. All the

breakpoints (tm, τ
∗
ij(tm)), m = 1, . . . , np ≤ 2nq have the following characteristics.

Theorem 7 For each breakpoint (tm, τ
∗
ij(tm)), m = 1, . . . , np ≤ 2nq, of the travel

time function on the non-reserved lane (i, j), one of the following two cases is satisfied:

(1), the departure time tm at node i is the boundary of certain time interval; or (2),

the arrived time tm + τ ∗ij(tm) at node j is the boundary of certain time interval.

The proof of this theorem is given in Appendix I. It tells us that the breakpoints

of the travel time function have some special characteristics. Then we can find these

breakpoints according to these characteristics. For the breakpoints corresponding

to first case, the departure times tm at i are the boundaries of the time intervals,

and the travel time τ ∗ij(tm) can be calculated by the procedure in Fig. 5.9. For the

breakpoints corresponding to second case, the arrived times tm+τ ∗ij(tm) at node j are

the boundaries of the time intervals, similar to the procedure in Fig. 5.9, the departure

times tm can be obtained, then the travel time τ ∗ij(tm) can also be obtained.

To illustrate how to find the breakpoints, an example is given as follows. The

considered time horizon is supposed as [0, 4) and all the tasks must be started and

completed within the time horizon. It is divided as [T0, T1, T2, T3, T4) = [0, 1, 2, 3, 4).

The travel speed on a non-reserved lane (i, j) of length 2 for each time interval are

[vij0, vij1, vij2, vij3] = [1, 2, 1, 2.5]. For the breakpoints corresponding to first case, the

departure times tm,m = 1, 2, 3, 4 are T0 = 0, T1 = 1, T2 = 2, and T3 = 3, the

travel time on (i, j) can be calculated by the procedure in Fig. 5.9 and τ ∗ij(t1) = 1.5,

τ ∗ij(t2) = 1, τ ∗ij(t3) = 1.4, and τ ∗ij(t4) = 0.8. Then the breakpoints (tm, τ
∗
ij(tm)),m =

1, 2, 3, 4 corresponding to first case are obtained. Then, we consider the breakpoints

corresponding to second case, whose arrived time at j are respective T2 = 2, T3 = 3,

and T4 = 4 (T0 = 0 and T1 = 1 are not considered because the earliest departure

time at i is T0 = 0 and the travel time is 1.5, then the earliest arrived time at j is

1.5). Similar to the procedure in Fig. 5.9, we can know that for the departure times

at node i are t5 = 1, t6 = 1.5, t7 = 3.2, then the travel times on (i, j) are τ ∗ij(t5) = 1,

τ ∗ij(t6) = 1.5, τ ∗ij(t7) = 0.8, and the arrived time at j are exactly T2, T3, and T4. Then

the breakpoints corresponding to second case are obtained. Now all the breakpoints

(tm, τ
∗
ij(tm)),m = 1, . . . , 7 are obtained.

To obtain the travel time function, the breakpoints are depicted in the Fig. 5.10

and are connected from left to right, then the travel time function is obtained. It can

90

0 1 1.5 2 3 3.2

0.8

1

1.4

1.5

Departure time t

T
ra

v
el

ti
m

e
τ
∗ i
j
(
t)

Fig. 5.10: An example of travel time function of a non-reserved lane (i, j) with length
of 2. Time horizon is divided as [T0, T1, T2, T3, T4) = [0, 1, 2, 3, 4) and the
travel speeds for each time interval are [vij0, vij1, vij2, vij3] = [1, 2, 1, 2.5].

be represented as:

τ ∗ij(t) =

−0.5t+ 1.5, 0 ≤ t < 1
t, 1 ≤ t < 1.5
−0.2t+ 1.8, 1.5 ≤ t < 2
−0.6t+ 2.6, 2 ≤ t < 3
0.8, 3 ≤ t ≤ 3.2

(5.27)

For different non-reserved lane, the corresponding travel time function is different.

Thus, the travel time function on non-reserved lane (i, j) is denoted as τ ∗ij(t) in the

problem formulation in the next section.

5.3.2 Problem description and formulation

The LRP-TS is described as follows. Given a network G(N,A), a set of tasks and

corresponding source-destination pairs, The LRP-TS is to set reserved lanes from

the network and to design paths for the time-guaranteed tasks, with the objective of

minimizing the total impact of reserved lanes on the network. The travel time on a

reserved lane is assumed a constant because it can be only used by the tasks’ vehicles

91

and the travel speed on it is smooth. But the travel time on a non-reserved lane

(i, j) is a piecewise linear function of the departure time at node i as the example in

Fig. 5.10. Because it is assumed that the travel speed on a non-reserved lane (i, j) can

be changed for different time intervals. Therefore, different departure time at i will

result in different travel time on (i, j). For each non-reserved lane, if its length and

the travel speeds for each time interval are known, the travel time function can be

calculated based on the procedure in Fig. 5.9. To formulate the LRP-TS, the travel

time function for each (i, j) ∈ A are pre-calculated and are known parameter in the

LRP-TS.

The notations of the LRP-TS are given as follows.

Sets and input parameters
A: set of directed arcs (i, j), i ̸= j, i, j ∈ N
K: set of transportation tasks, k ∈ K
N : set of nodes
aij: traffic impact if a lane in (i, j) ∈ A is reserved
dk: destination node of task k ∈ K
pk: prescribed travel duration to complete task k ∈ K
sk: source node of task k ∈ K
stk: starting time for task k at node sk, k ∈ K
τij: travel time on a reserved lane in (i, j) ∈ A
τ ∗ij(t): link travel time function on a non-reserved lane in (i, j) ∈ A when the

task departs at node i at time t

Decision variables
tki: departure time of task k at node j; tkj = 0 if task k does not visit node

j, ∀k ∈ K, ∀i ∈ N
xkij: xkij = 1, if a lane in link (i, j) is in the path of task k and this lane is

reserved; and otherwise xkij = 0, ∀k ∈ K, ∀(i, j) ∈ A.
ykij: ykij = 1, if a lane in link (i, j) is in the path of task k and this lane is

not reserved; and otherwise ykij = 0, ∀k ∈ K, ∀(i, j) ∈ A.
zij: zij = 1, if there is a reserved lane in link (i, j); and otherwise zij = 0,

∀(i, j) ∈ A

Then the LRP-TS is formulated as the following programming model.

Ps : min
∑

(i,j)∈A

aijzij (5.28)

s.t.
∑

i:(sk,i)∈A

(xkski + ykski) = 1, ∀k ∈ K, (5.29)

∑
i:(i,dk)∈A

(xkidk + ykidk) = 1, ∀k ∈ K, (5.30)

92

∑
i:(i,j)∈A

(xkij + ykij) =
∑

i:(j,i)∈A

(xkji + ykji), ∀k ∈ K, ∀j ∈ N\{sk, dk}, (5.31)

xkij ≤ zij, ∀k ∈ K, ∀(i, j) ∈ A, (5.32)

ykij + zij ≤ 1, ∀k ∈ K, ∀(i, j) ∈ A, (5.33)

tksk = stk, ∀k ∈ K, (5.34)

tkj =
∑

i:(i,j)∈A

(
(tki + τij)xkij + (tki + τ ∗ij(tki))ykij

)
, ∀k ∈ K, ∀j ∈ N\{sk}, (5.35)

tkdk − tksk ≤ pk, ∀k ∈ K, (5.36)

tki ≥ 0, ∀k ∈ K, ∀i ∈ N, (5.37)

xkij, ykij ∈ {0, 1}, ∀k ∈ K, ∀(i, j) ∈ A, (5.38)

zij ∈ {0, 1}, ∀(i, j) ∈ A. (5.39)

The model Ps for LRP-TS is similar to model Pt for LRP-TT in section 5.2.1. To

simplify the description, we only explain the differences between them. First, there

are four types of decision variables in Ps, whereas there are five types of decision

variables in Pt. Because in the LRP-TT, the travel time on a non-reserved lane is

dependent on the time interval in which the departure time at node i is. Hence,

we need one type of decision decision variables (bkiq) and constraints (5.7)–(5.9) to

indicate this information when modeling LRP-TT. Second, the constraints (5.35) in

Ps and (5.11) in Pt are different. The item τ ∗ij(tki) in (5.35) represents the travel time

on a non-reserved lane (i, j) when the departure time at node i is tki. The item τ ′′ijq

in (5.11) is a constant and it represents the travel time on a non-reserved lane (i, j)

when the departure time at node i is in time interval [Tq, Tq+1). It can be predictable

that model Ps is more difficult to solve than model Pt because the non-constant item

τ ∗ij(tki) is involved in model Ps. For details of model Pt, readers are referred to section

5.2.1.

The complexity of the LRP-TS is given by the following theorem.

Theorem 8 The LRP-TS is NP-hard.

Proof : If the travel speed on a non-reserved lane (i, j) ∈ A is unchanged over the
whole time horizon, the dynamic link travel time will be reduced to the static link
travel time. If the travel speed on each non-reserved lane is very small, then the
travel time on it will be greater than the prescribed travel time to complete any task
k ∈ K, which implies that each lane in the task paths must be reserved, otherwise the
concerned tasks cannot be completed within the prescribed travel time. In this case,
the LRP-TS is reduced to the LRP in chapter 3, which has been proved NP-hard.
Therefore, the LRP-TS is NP-hard. �

93

5.3.3 Model reformulation

Note that constraint (5.35) is not linear. It can be reformulated in the same way

described in section 5.2.2. To simplify the description, the reformulations of (5.35)

are presented as follows. For details of the transformation, readers are referred to

section 5.2.2.

1) Task k does not visit node j, i.e.,
∑

i:(i,j)∈A xkij = 0, and
∑

i:(i,j)∈A ykij = 0.

Then (5.35) can be reformulated as follows:

tkj ≤M
∑

i:(i,j)∈A

(xkij + ykij), ∀k ∈ K, ∀j ∈ N\{sk}, (5.40)

where M is a large constant.

2) Task k visits node j via a reserved lane in (i, j), i.e.,
∑

i:(i,j)∈A xkij = 1, and∑
i:(i,j)∈A ykij = 0. Then (5.35) can be reformulated as follows:

tkj − tki − τij ≤M(1− xkij),
tkj − tki − τij ≥M(xkij − 1),

∀k ∈ K, ∀j ∈ N\{sk}, (i, j) ∈ A. (5.41)

3) Task k visits node j via a non-reserved lane in (i, j), i.e.,
∑

i:(i,j)∈A xkij = 0, and∑
i:(i,j)∈A ykij = 1. Then (5.35) can be reformulated as follows:

tkj − tki − τ ∗ij(tki) ≤M(1− ykij),
tkj − tki − τ ∗ij(tki) ≥M(ykij − 1),

∀k ∈ K, ∀j ∈ N\{sk}, (i, j) ∈ A. (5.42)

Then Ps can be reformulated as an equivalent model as follows:

P ′
s : min

∑
(i,j)∈A

aijzij

s.t. constraints (5.29)− (5.34) and (5.36)− (5.42).

Note that P ′
s is not a linear model since item τ ∗t (tki) in (5.42) is not linear.

5.3.4 Tabu search algorithm

Tabu search (TS) proposed by Golver, is a local serach-based metaheuristic. It has

been successfully implemented for some transportation problems with dynamic factors

[12] [32] [40]. Generally speaking, tabu search is an iterative search strategy that

starts from an initial solution. At each iteration, a neighborhood is generated around

the current solution. The neighborhood is a subset of feasible solutions which can

94

1: Input network (N,A), set of reserved lanes RA, source node s, and destination
node d. Denote LTij as the travel time on lane (i, j) ∈ A. Let l(s, j), j ∈ N
denote the shortest travel time from s to j, and pred(j) denote the precedent
node of j in the shortest path from s to j.

2: Set l(s, s) := 0 and l(s, j) := +∞ for each j ∈ N \ {s}. Set pred(s) := ∅.
3: while (some arc (i, j) ∈ A satisfies l(s, j) > l(s, i) + LTij) do
4: Set l(s, j) := l(s, i) + LTij,
5: Set pred(j) := i.
6: end while
7: Return l(s, d) as the shortest travel time from s to d.

Note: If (i, j) is reserved, LTij is of value τij; otherwise it is of value τ ∗ij(l(s, i)),
which l(s, i) is the departure time at node i.

Fig. 5.11: Modified label-correcting algorithm for shortest path in a network with
dynamic link travel time.

be reached by an operation called move from the current solution. Then the best

admissible solution in the neighborhood becomes current solution. To avoid the

possibility of cycling in the search, a tabu list is created to record recently visited

solutions and forbid moving to them for a number of iterations (called tabu tenure).

However, forbidden moves can be overridden when aspiration criteria are satisfied.

Finally, tabu search is stopped when some termination rules are met.

As mentioned in section 5.3.1, one characteristic of the LRP-TS is that the FIFO

property is satisfied. Moreover, it was shown that the label-correcting algorithm for

shortest path can be applied to networks with FIFO property [45]. Thus, a modi-

fied label-correcting algorithm is proposed to find shortest path in a network with

dynamic link travel time. It will be extensively used to generate initial solution and

evaluate the feasibility of moves in the TS algorithm. In the remainder of this section,

the modified label-correcting algorithm is firstly described. Then the initial solution,

neighborhood move, tabu list, aspiration criteria, and termination rules for the TS

algorithm are addressed, respectively.

Modified label-correcting algorithm

The modified label-correcting algorithm is presented in Fig. 5.11. It is based on

the algorithm for networks with static link travel time [4]. The only difference between

two algorithm is the travel time, denoted as LTij, on lane (i, j). In [4], the algorithm

deals with static networks and LTij is a constant for each lane (i, j) ∈ A. Whereas

95

in the modified algorithm presented in Fig. 5.11, the value of LTij is dependent on

the reservation status of the lane (i, j). If it is reserved, then LTij is a constant of

value τij; otherwise, LTij is dependent on the departure time l(s, i) at node i and it

is of value τ ∗ij(l(s, i)). Then, given a network (N,A) with FIFO property and a set of

reserved lanes (denoted as RA), the modified label-correcting algorithm in Fig. 5.11

can find a shortest path for a given source-destination pair. This algorithm will be

used to generate initial solution and check the feasible of moves in the TS algorithm.

Initial solution

The initial feasible solution for TS is constructed by a greed heuristic. The idea

of the greed heuristic is to set reserved lanes one by one until a time-guaranteed path

is found for each task. To reduce the computational effort, we firstly compute a set

of candidate reserved lanes for each task as follows.

For ∀(i, j) ∈ A, let l(sk, i) denote the shortest travel duration from sk to i in an

exclusively reserved path and l(j, dk) denote the shortest travel duration from j to dk

in an exclusively reserved path. For ∀k ∈ K, define set Ak as follows:

Ak = { (i, j) ∈ A | l(sk, i) + τij + l(j, dk) > pk }. (5.43)

The lane (i, j) in Ak implies that if it is in the path of task k, the travel time constraint

will be violated. Thus, to ensure the time-guaranteed tasks, it will not be selected

for the path of task k. Then the set of candidate reserved lanes for task k ∈ K is

defined as Ak = A \Ak and we only consider the lanes from it to be reserved for taks

k. In the implementation, the lanes in Ak are ordered in decreasing impact aij and

are selected to be reserved one by one until a time-guaranteed path is found for each

k ∈ K. The overall procedure for constructing initial solution presented in Fig. 5.12

is described as follows.

For each task k ∈ K, its set of reserved lanes RAk is initialized as ∅ and the set of

candidate reserved lanes Ak is defined. Denote the current shortest travel duration of

task k from sk to dk as Lk, which is initialized as +∞. At each iteration, we select the

lane (i, j) with minimal impact from Ak and delete it from Ak. Then we compute the

shortest travel duration L′
k from sk to dk by the modified label-correcting algorithm in

Fig. 5.11. If L′
k < Lk, we updated Lk = L′

k and add lane (i, j) to set RAk; otherwise it

means that the reservation of lane (i, j) does not help reduce the travel duration, and

we do not add it to RAk. The iteration for task k will termination if Lk ≤ pk, which

means that a time-guaranteed path is found for task k. If a time-guaranteed path

96

1: for (k = 1 to |K|) do
2: Initialize RAk := ∅ and Lk = +∞. Define Ak by (5.43) and Ak = A \ Ak.
3: while (Lk > pk) do
4: Select the lane (i, j) with minimal impact of reserved lane from Ak. Then

set Ak := Ak \ {(i, j).
5: Reserve the lanes in RAk, as well lane (i, j).
6: Compute the shortest travel duration L′

k from sk to dk by the modified label-
correcting algorithm in Fig. 5.11.

7: If L′
k < Lk, update Lk := L′

k and RAk := RAk

∪
{(i, j)}.

8: end while
9: end for
10: Return the initial solution.

Fig. 5.12: Procedure for constructing initial solution.

is found for each task k ∈ K, the procedure for constructing initial solution is stopped.

Neighborhood and move

A neighborhood is defined as a subset of feasible solutions which can be reached

from the current solution by an operation called move. In the implement, moves

are defined as changing the reserving status of lanes and three types of moves are

considered. For each move, the set of reserved lanes RA is updated and the move is

evaluated by
∑

(i,j)∈RA aij. To reduce the computational effort, instead of checking

the feasibility of each move in the neighborhood, only some candidate moves are

checked. Details of the three types of moves and strategy for checking the feasibility

of moves are described as follows.

The first type of move (add move) is to add a new reserved lane (i′, j′) to the

network, i.e., RA = RA ∪ {(i′, j′)}, (i′, j′) /∈ RA. Each move of this type is feasible

because adding a reserved lane in the network will not increase the shortest travel

duration for any task k ∈ K.

The second type of move (delete move) is to reset a previously reserved lane (i, j)

as non-reserved, i.e., RA = RA \ {(i, j)}, (i, j) ∈ RA. To reduce the computational

effort for checking the feasibility of the move, a subsetK ′ of tasks is defined as follows:

K ′ = { k | (i, j) ∈ RAk, k ∈ K }, (5.44)

where RAk is the set of reserved lanes in the path of task k ∈ K. Resetting a

previously reserved lane (i, j) as non-reserved may cause the path of task k totally

97

1: Input the move and its type. Let (i′, j′) be the lane involves in the first type
move, (i, j) be the lane involves in the second type move, and (i, j) and (i′, j′)
be the lanes involves in the third type move. Let RA denote the set of reserved
lanes and RAk denote the set of reserved lane in the path of task k ∈ K.

2: If the move is of the first type, it is feasible and apply the modified label-correcting
algorithm in Fig. 5.11 to find the shortest path for each task k ∈ K. Goto step 6.

3: If the move is of second type, update RA = RA \ {(i, j)}; otherwise update
RA = RA ∪ {(i′, j′)} \ {(i, j)}.

4: Define K ′ by (5.44): K ′ = { k | (i, j) ∈ RAk, k ∈ K }.
5: For each k ∈ K ′, find the shortest travel duration Lk for task k by the modified

label-correcting algorithm. For each k ∈ K ′, if Lk ≤ pk, the move is feasible;
otherwise, the move is not feasible.

6: If the move is feasible, return the corresponding task paths.

Fig. 5.13: Procedure for checking the feasibility of move.

changed and its shortest travel duration Lk should be recomputed by the modified

label-correcting algorithm. For each k ∈ K ′, if Lk ≤ pk, the move is feasible; otherwise

it is not feasible.

The third type of move (swap move) is to add a new reserved lane (i′, j′) and

reset a previously reserved lane (i, j) as non-reserved, i.e., RA = RA ∪ {(i′, j′)} \
{(i, j)}, (i′, j′) /∈ RA, (i, j) ∈ RA. The check for the feasibility of the move is the

same as that for the second type of move.

It is easy to see that the number of the third moves is enormous and it is very

time consuming to check the feasibility of all the moves in the neighborhood. To

reduce the computational effort, the search strategy is implemented as follows. The

values of all moves of three types are firstly calculated by
∑

(i,j)∈RA aij and the moves

are ordered in decreasing value. Then we selected the move as candidate move with

minimal value orderly until it is feasible and non-tabued, or results a better feasible

solution than the current best solution.

Tabu list and tabu tenure

To avoid trapping in local minimum, a tabu list is constructed to record the infor-

mation which is used to forbid the search from returning back to previously visited

solutions. As a move is performed in the TS, the lane(s) associated with the move

become(s) tabu in the following nTS iterations by being added to the tabu list. For

98

the move of first type, the lane (i′, j′) introduced to RA is tabu. For the second type,

the lane (i, j) removed from RA is tabu. For the third type, both (i′, j′) and (i, j) are

tabu. The value of tabu tenure nbTS is randomly generated in the range nbL and

2nbL, where nbL is the average number of lanes in the task paths in the initial solution.

Aspiration Criteria

Aspiration criterion is a strategy that can override tabu moves which may lead

to an unexplore search space. In our implementation, we employ a simple aspiration

criterion which removes a move from the tabu list when it results in a new solution

better than the current best solution. Then the current best solution is updated as

the new solution.

Stopping criteria

The preliminary experiments shown that the current best solution usually can be

found within 50 iteration. The total number of iterations of the proposed TS algo-

rithm is set as 100. The algorithm will also be terminated if the current best solution

is not improved for consecutive 50 iterations.

Overall algorithm

The proposed TS algorithm is presented in Fig. 5.14. Steps 1 and 2 are to obtain

an initial solution and initialize parameters. n1 and n2 represent the total number of

iterations in the TS and number of consecutive iterations in which the best solution is

not improved. Steps 5 and 6 are to select the candidate move. Steps 7–11 means that

if the candidate move results in a better solution than the current best solution and

it is feasible, then the current best solution is updated. Steps 12–21 means that the

candidate move does not result in a better solution than the current best solution. If it

is not in the tabu list and feasible, the current solution is updated and a new iteration

repeats; otherwise we goto back to step 6 and select a new candidate move. The TS

algorithm is terminated until the maximal number of iteration is iterMax = 100 or

the current best solution is not improved for consecutive iterNoImprove = 50.

5.3.5 Computational results

In this section, the performance of the proposed TS algorithm was evaluated on

randomly generated problem instances. The algorithm was coded in Visual C++ and

all the experiments were carried out on a PC with 3.0 GHz CPU and 4.0 GB RAM.

Each problem set includes five instances.

99

1: Apply the procedure presented in Fig. 5.12 to find an initial solution.
2: Set current solution solc and current best solution solbest as initial solution. Set

current best objective value valbest := +∞. Set n1 := 0 and n2 := 0.
3: while (n1 < iterMax and n2 < iterNoImprove) do
4: Set n1 := n1 + 1.
5: Generate neighborhood moves. Calculate the values of moves and order the

moves in decreasing values. Set nb := 0.
6: Set nb := nb+1 and set candidate move as the move with nb-th minimal value.
7: if (value of candidate move < valbest) then
8: Apply the procedure in Fig. 5.13 to check the feasibility of the move.
9: if (candidate move is feasible) then
10: Update solc and solbest as the solution corresponding to the candidate

move. Update valbest. Set n2 = 0.
11: end if
12: else
13: if (candidate move is not on the tabu list) then
14: Apply the procedure in Fig. 5.13 to check the feasibility of the move.
15: if (candidate move is feasible) then
16: Update solc as the corresponding solution of candidate move. Set n2 =

n2 + 1.
17: else
18: Goto step 6.
19: end if
20: else
21: Goto step 6.
22: end if
23: end if
24: end while
25: Return solbest and valbset as the current best solution and objective value.

Fig. 5.14: Tabu search algorithm for the LRP-TS.

100

Table 5.5: notations used in the numerical results.

|N |: number of nodes in the network
|K|: number of tasks
CTs: CPU time (second) by TS algorithm
CT0: CPU time (second) by CPLEX
GU(%): GU(%) = 100× (Z(TS)− Z(CPLEX))/Z(CPLEX)
GL(%): GU(%) = 100× (Z(TS)− ZLB(CPLEX))/ZLB(CPLEX)

The problem instances are randomly generated in a similar way as described in

section 5.2.4. The graph G(N,A) is generated based on the network model proposed

by Waxman [81]. The time horizon is set as [0, 12] and is divided into |Q| time

intervals. Denote vr and vijq,∀(i, j) ∈ A,∀q ∈ Q as the speed on a reserved lane and

on a non-reserved lane, respectively. vr is set as 60 and vijq is uniformly generated from

[30, 50]. Then the link travel time τij on a reserved lane is defined as Lengthij/vr. The

link travel time τ ∗ij(t) on a non-reserved lane is calculated by the procedure presented

in Fig. 5.9. The average link travel time on a non-reserved lane through the whole

horizon is defined as τ ∗ij = Lengthij/(
∑

q∈Q vijq/|Q|). Then the impact of reserved

lane is set as aij = raτ
∗
ij, where ra is a given parameter. The prescribed travel

duration is set as pk = dis(sk, dk)+rp(dis
′(sk, dk)−dis(sk, dk)), where dis(sk, dk) and

dis′(sk, dk) are the shortest travel duration from sk to dk in an exclusively reserved

path and in an exclusively non-reserved path. In the default case, ra ∈ [0.2, 0.3],

rp = 0.7.

The performance of the proposed algorithm is compared with the direct use of

CPLEX to the resolution of model P ′
t . For small sized problems, we compare the

computational time of finding an optimal solution by the proposed TS algorithm

and CPLEX. The CPU time for largest size instance by TS is nearly 1800 seconds,

then the maximal running time for CPLEX is set as 3600 seconds. For large sized

instances, CPLEX cannot find an optimal solution (even a feasible solution) within

3600 seconds. Then we compare the upper bound (denoted as Z(TS)) obtained by the

TS algorithm and the upper bound (denoted as Z(CPLEX)). we also compare the

Z(TS) and lower bound (denoted as ZLB(CPLEX)) by CPLEX. With the notations

given in Table 5.5, computational results are reported in Table 5.6.

In Table 5.6, the proposed TS algorithm can find a feasible solutio for all the

problem sets 1–17, whereas CPLEX can find an optimal solution for small sized

problem sets 1–7. As the size of the problem increases, the computational time by

101

Table 5.6: Computational results of problems with different sizes.

Set |N | |K| CTs CT0 GU(%) GL(%)

1 25 7 1.62 27.48 0.04 0.04
2 30 7 3.00 55.84 0.52 0.52
3 35 7 3.69 82.77 2.36 2.36
4 40 7 5.84 167.52 0.93 0.93
5 45 7 11.19 189.93 1.84 1.84
6 50 7 14.88 314.48 1.72 1.72
7 55 10 27.78 1058.15 5.42 5.42

8 60 10 62.43 - 2.41 21.44
9 60 15 100.15 - 1.23 30.51
10 70 15 158.76 - -7.88 49.24
11 70 20 212.27 - -10.10 38.71
12 80 20 405.16 - -5.93 33.72

13 80 25 559.03 - - 52.91
14 90 25 807.38 - - 56.17
15 90 30 1133.66 - - 56.42
16 100 30 1435.07 - - 50.07
17 100 35 1765.37 - - 54.72

102

CPLEX increase quickly and it cannot solve the problem sets optimally within 3600

seconds for sets 8–17. CPLEX can only find a feasible solution for sets 8–12 and it

cannot find a feasible solution for sets 13–17.

It can be seen that the computational time CT0 by CPLEX increases much quickly

from 27.48 seconds for set 1 to 1058.15 seconds for set 7, whereas the time CTs by the

proposed TS algorithm increases slowly from 1.62 seconds for set 1 to 27.78 seconds

for set 7. Note that problem sets 1–7 are solved by CPLEX optimally, the upper

bound and lower bound by CPLEX is also the optimal value of the problem. Thus,

GU is equal to GL for sets 1–7. The gaps GU(%) between the TS upper bound and

optimal value range from 0.04% to 5.42% for sets 1–7, which shown that the feasible

solutions obtained by the TS algorithm are close to the optimal solutions for small

sized problems.

For sets 8–12, CPLEX can only find an feasible solution within 3600 seconds. For

sets 8 and 9, the feasible solutions found by CPLEX are better than those found by

the TS algorithm since the gaps GU(%) are positive. However, for sets 10–12, GU(%)

are negative, which implies that the feasible solutions found by the TS algorithm are

better than those found by CPLEX. The gaps GL between the upper bound by TS

algorithm and the lower bound by CPLEX range from 21.44% to 49.24%. It increases

quickly, as compared with the results for sets 1–7.

For even larger sized problem sets 13–17, CPLEX cannot find a feasible solution

whereas the TS algorithm can. The gaps GL range from 50.07% to 56.17%, which

shown that the differences between upper bound found by the TS algorithm and the

lower bound found by CPLEX are large.

It is true that this part of work is not sufficient, due to a restriction of limited

research time. The preliminary computational result shown that the proposed algo-

rithm can found near optimal solution for small sized problems. However, as the size

of problem increases, the gap between upper bound by the proposed algorithm and

the lower bound by CPLEX increases sharply. Therefore, it is necessary to conduct

more investigate for this problem. Methods for obtaining better lower bound should

be explored in future work. The upper bound can also be improved by some hybrid

methods.

5.4 Conclusions

In this chapter, we have studied the lane reservation problem with time-dependent

travel time (LTP-TT) and lane reservation problem with time-dependent travel speed

103

(LTP-TS). In both of the problems, the link travel time on reserved lanes is a constant,

but the link travel time on non-reserved lanes is not a constant.

In the LTP-TT, the link travel time on non-reserved lanes is a step function of

the departure time at the beginning node of the link. An mixed integer nonlinear

programming model was firstly formulated, and it was then transformed into an equiv-

alent linear model. Then a cut-and-solve based algorithm, in which partial integral

relaxation strategy and new piercing cut generation strategy were proposed, was de-

veloped for the LRP-TT. Computational results shown that the proposed algorithm

can solve nearly all the problem sets more quickly than CLPEX. Sensitive experiment

on different setting of parameters (impact of reserved lanes and prescribed travel du-

ration of the tasks) shown that the overall performance of the proposed algorithm

outperformed CPLEX fro tested problem instances.

In the LTP-TS, the link travel speed on a non-reserved lane is assumed a step

function of the time, which means that the vehicles may travel at different speed on

it. Then the link travel time can be computed and it is a piecewise linear continuous

function based on the assumption of the step function of link travel speed. More-

over, the FIFO property is satisfied in the LRP-TS. The problem was demonstrated

NP-hard. A tabu search algorithm was developed to find near-optimal solutions. A

modified label-correcting algorithm is extensively used to generate the initial solution

and check the feasibility of moves in the proposed TS algorithm. Preliminary compu-

tational result shown that the TS algorithm can efficiently find near-optimal solutions

with “good” quality for small sized problems. However, for larger sized problems, the

gap between upper bound and lower bound is very large. Methods for improving both

of them should be explored in the future.

104

Chapter 6

Conclusions and perspectives

This thesis studied several lane reservation problems which aim to design time-

guaranteed task paths via optimally selecting and reserving lanes from a transporta-

tion network, with the objective of minimizing the total traffic impact of reserved

lanes. For each of the studied problems, mathematical models are formulated, their

complexities are demonstrated, and appropriate resolution methods, including exact

cut-and-solve method, cut-and-solve and cutting plane combined method, and tabu

search method, are proposed. Some problems’ properties are also explored to help

solve the problems. The performance of the proposed algorithms is compared with a

direct use of state-of-the-art solver CPLEX on randomly generated problem instances.

We firstly studied a lane reservation problem (LRP) for future automated truck

freight transportation with static link travel time. An integer linear programming

model was formulated and the complexity of the problem was proved NP-hard. A cut-

and-solve based algorithm was developed to find an optimal solution of the problem.

New strategies of generating piercing cuts were proposed for the cut-and-solve method

according to the characteristics of the problem. Numerical computational results on

randomly generated problem instances shown that the computational time by the

proposed algorithm can efficiently solve the tested problems than CPLEX since the

computational time by the proposed algorithm is only 42% of that by CPLEX on

average for different sized problems. Sensitive experiments of problems with different

types of impact, and different average node degree are also shown the effectiveness of

the proposed algorithm.

The LRP was extended to the capacitated lane reservation problem (CLRP) with

considering residual capacity constraint on non-reserved lanes. For the CLRP, an

integer linear programming model was formulated and its complexity was proved NP-

hard. Then a cut-and-solve and cutting plane combined approach was proposed for

the problem. The embedded cutting plane method in the proposed algorithm permits

105

to accelerate the convergence of the algorithm. Computational results demonstrated

that the proposed algorithm is more efficient to solve the tested problems since it takes

about an average of 23% computational time of CPLEX for different sized problems.

Sensitive experiments for parameters of residual capacity, impact of reserved lanes,

and prescribed travel duration of the tasks shown that the performance is stable with

different setting of the these parameters.

Finally, lane reservation problem with time-dependent travel time (LRP-TT), and

lane reservation problem with time-dependent travel speed (LRP-TS) were studied.

The common characteristic of these two problems is that: the link travel time on

reserved lanes is a constant, but the link travel time on non-reserved lanes are not

constants any more. In the LRP-TT, the link travel time on a non-reserved lane

(i, j) is assumed as a step function of the departure time at node i. A mixed integer

nonlinear programming model was firstly formulated and then it was transformed

into a linear one. The problem was proved NP-hard. A cut-and-solve based approach

with partial integral relaxation strategy and new piercing cut generation strategy is

proposed for the LRP-TT. Computational results shown that the proposed algorithm

can find an optimal solution of tested problems more quickly than CLPEX for different

tested sized problems. It was can be seen that the proposed algorithm takes about

an average of 68%, 74%, and 71% computational time of CPLEX for problems with

different number of time intervals, different impact of reserved lanes, and prescribed

travel duration of the tasks, respectively.

In the LRP-TS, the link travel speed on a non-reserved lane is assumed as a

step function of the time. Therefore, the link travel time on a non-reserved lane

(i, j) is calculated and it is a piecewise linear continuous function of the departure

time at node i. The “first-in-first-out” (FIFO) property is also satisfied. It enables

us to develop a tabu search algorithm in which the shortest paths of the tasks are

computed by the modified label-correcting shortest path algorithm. It becomes much

difficult to solve the problem due to the continuous function of link travel time on

non-reserved lanes. Preliminary computational results shown that the proposed tabu

search algorithm can find near-optimal solutions with “good” quality for tested small

sized problems. However, the gaps between the upper bound and lower bound for

large sized problems are large.

To summary this thesis, there is still much work to do in the future. First of

all, the impact of single reserved lane is assumed as already know parameter for the

studied problems. Actually, this parameter is very complex as many factors, such as

type of the reserved lanes, location of the reserved lanes in the network, reservation

106

time periods, are related with it. It is necessary to systemically study this issue. The

results of this related work may provide useful information for our future work.

It becomes more and more difficult to solve the considered problems, especially the

last two problems. Because of the introduction of the time-dependent link travel time

and time-dependent link travel speed, the link travel time on a non-reserved lane is

not a constant in the LRP-TT and LRP-TS. These problems become more complex to

be solved as compared with the previous problems. Not only spatial decision (decision

of task paths and reserved lanes), but also temporal decision (arrived time of tasks at

the nodes) are considered in both problems. To solve large sized problems, properties

related to these two levels of decisions should more investigated. For example, certain

lanes, which are very far from the source or destination of the task, are unlikely visited

by the task. The theoretical study may help solve the problems.

It can be seen that the proposed algorithm becomes less effective to solve the

LRP, CLRP and LTP-TT, as the ratios of the CPU time by the proposed algorithm

and those by CPLEX increase. Then, more appropriate decomposing strategy for

the current problem and generation strategy for the piercing cut in the cut-and-solve

method should be developed. Some hybrid methods can be developed according to

the analysis of properties of the problem.

It seems that it is much more difficult to solve the LRP-TS than the previous

three problems. The possible reason is that the travel time on a non-reserved lane is

a continuous function. Due to the complexity of the problem, the size of problems

that can be solved is relatively small. Though the computational results shown that

the proposed algorithm can find “good” upper bound for small sized problems, the

gaps between the upper bound and the lower bound are not satisfied. More efficient

methods should be explored to obtain better values of them. Since the travel time is

a continuous function, some analytical method may be developed.

In the LRP-TT and LRP-TS, the number of time intervals is not large because of

the complexity. In future work, it should be considered more number of time intervals

to make the problems closer to realistic situations, obviously the developed resolution

method should be sufficiently robust. In addition, the problems in this thesis only

consider which lanes should be reserved (spatial level). Future work may addition-

ally consider which time periods the lane reservation strategy should be performed

(temporal level).

107

108

Appendix I

In this appendix, we present the proof of the theorem in section 5.3.1 as follows.

Suppose the time horizon is divided into nq time intervals as [T0, T1, . . . , Tnq) for

the LRP-TS, where Tq, q ∈ Q = {0, 1, . . . , nq}, is the boundary of the time interval.

The travel time function τ ∗ij(t) corresponding to the non-reserved lane (i, j) in the

network is a piecewise linear function of the departure time t at node i. Then its

breakpoints have the following characteristics.

Theorem 7 For each breakpoint P = (t, τ ∗ij(t)) of the travel time function on the

non-reserved lane (i, j), one of the following two cases is satisfied: (1), the departure

time t at node i is the boundary of certain time interval Tq, q ∈ Q; or (2), the arrived

time t+ τ ∗ij(t) at node j is the boundary of certain time interval Tq, q ∈ Q.

Proof : Suppose a vehicle A departs at node i at time t, the corresponding travel
time on (i, j) is τ ∗ij(t), and the arrived time at node j is t + τ ∗ij(t). Suppose the
departure time t at node i is in time interval [Tq1 , Tq1+1), the arrived time t + τ ∗ij(t)
at node j is in [Tq2 , Tq2+1), and q2 ≥ q1.

Let ∆t > 0 be a very small positive number satisfying t+∆t ∈ [Tq1 , Tq1+1). Then
vehicle A travels a distance of vijq1∆t from t to t+∆t, where vijq1 is the travel speed
during time interval [Tq1 , Tq1+1). Since the arrived time at j is t + τ ∗ij(t), then the
vehicle travels a distance of Dij − vijq1∆t from t +∆t to t + τ ∗ij(t), where Dij is the
length of lane (i, j). The travel information of vehicle A is presented in Fig. A.1.

Distance

Time t t+∆t t+ τ∗

ij(t)

vijq1∆t Dij − vijq1∆t

Fig. A.1: Travel information of vehicle A.

Now suppose vehicle B departs at node i at time t+∆t, the corresponding travel
time on (i, j) is τ ∗ij(t + ∆t), and the arrived time at node j is t + ∆t + τ ∗ij(t + ∆t).
Then vehicle B travels a distance of Dij − vijq1∆t from t + ∆t to t + τ ∗ij(t), and it
travels a distance vijq1∆t form t+τ ∗ij(t) to t+∆t+τ ∗ij(t+∆t). The travel information
of vehicle B is presented in Fig. A.2.

109

Distance

Time t+∆t t+ τ∗

ij(t)
t+∆t+ τ∗

ij(t+∆t)

vijq1∆tDij − vijq1∆t

Fig. A.2: Travel information of vehicle B.

Note that the distance traveled by vehicle A form t to t + ∆t is equal to the
distance traveled by vehicle B from t+ τ ∗ij(t) to t+∆t+ τ ∗ij(t+∆t).

Denote points P = (t, τ ∗ij(t)) and Pr = (t+∆t, τ ∗ij(t+∆t)). The slope Sr between

P and Pr is:

Sr =
τ ∗ij(t+∆t)− τ ∗ij(t)

t+∆t− t
=
t+∆t+ τ ∗ij(t+∆t)− (t+ τ ∗ij(t))−∆t

∆t

=
t+∆t+ τ ∗ij(t+∆t)− (t+ τ ∗ij(t))

∆t
− 1 (A1)

Similarly, suppose vehicle C departs at node i at time t−∆t, the corresponding
travel time on (i, j) is τ ∗ij(t−∆t), and the arrived time at node j is t−∆t+τ ∗ij(t−∆t).

Denote point Pl = (t−∆t, τ ∗ij(t−∆t)). The slope Sl between Pl and P is:

Sl =
τ ∗ij(t)− τ ∗ij(t−∆t)

t− (t−∆t)
=
t+ τ ∗ij(t)− (t−∆t+ τ ∗ij(t−∆t))−∆t

∆t

=
t+ τ ∗ij(t)− (t−∆t+ τ ∗ij(t−∆t))

∆t
− 1 (A2)

Because P is a breakpoint of the travel time function, then according to the
definition of breakpoint, the right slope Sr at P is not equal to the left slope Sl at
P . In the following we will prove that if t+ τ ∗ij(t) is not the boundary of certain time
interval, then t must be the boundary of certain time interval.

Note that t ∈ [Tq1 , Tq1+1) and t + τ ∗ij(t) ∈ [Tq2 , Tq2+1), q2 ≥ q1. If τ ∗ij(t) is not the
boundary of certain time interval, then t + τ ∗ij(t) ∈ (Tq2 , Tq2+1). Because ∆t is very
small, the distance vijq1∆t is also small. That means vehicle B takes very short time
to travel this distance and the arrived time t +∆t + τ ∗ij(t +∆t) at node j of vehicle
B is in time interval [Tq2 , Tq2+1). Therefore, vehicle B travels a distance of vijq1∆t at
an unchangeable speed of vijq2 from t+ τ ∗ij(t) to t+∆t+ τ ∗ij(t+∆t). Then,

Sr =
t+∆t+ τ ∗ij(t+∆t)− (t+ τ ∗ij(t))

∆t
− 1 =

vijq1∆t/vijq2
∆t

− 1

=
vijq1
vijq2

− 1 (A3)

Similar, the arrived time t − ∆t + τ ∗ij(t − ∆t) at node j of vehicle C is also in
time interval [Tq2 , Tq2+1). Then t must be the boundary of certain time interval. If
it is not, we have t ∈ (Tq1 , Tq1+1) and t − ∆t ∈ (Tq1 , Tq1+1). Note that the distance

110

traveled by vehicle C form t−∆t to t is equal to the distance traveled by vehicle A
from t−∆t+τ ∗ij(t−∆t) to t+τ ∗ij(t). Therefore, vehicle A travels a distance of vijq1∆t
at an unchangeable speed of vijq2 from t−∆t+ τ ∗ij(t+∆t) to t+ τ ∗ij(t). Then,

Sl =
t+ τ ∗ij(t)− (t−∆t+ τ ∗ij(t−∆t))

∆t
− 1 =

vijq1∆t/vijq2
∆t

− 1

=
vijq1
vijq2

− 1 (A4)

Eq. (A3) and (A4) imply that Sr = Sl, which means that the slope does not change
at point P . This is contradictory to the definition of breakpoint. Therefore, t must
be the boundary of certain time interval. The theorem is proved. �

111

112

Résumé en français

Chapitre 1 Introduction

Le transport joue un rôle de plus en plus prépondérant dans l’organisation de nos

sociétés et le processus d’intégration de l’économie mondiale. Il est donc crucial de

viser sa bonne gestion. Mais, l’urbanisation rapide et le nombre sans cesse croissant

de véhicules causent de nombreux problèmes, tels que l’inefficacité ou l’inadéquation

de certain modes de transport, l’augmentation du temps de voyage, le gaspillage

de l’énergie, et la dégradation de l’environnement. La solution conventionnelle, qui

consiste à augmenter la capacité du réseau de transport en créant de nouvelles routes

ou de nouvelles voies sur les routes existantes, n’est généralement pas viable pour des

raisons économiques et de contraintes spatiales. Il est donc nécessaire d’explorer de

nouvelles solutions faisant appel à une meilleure gestion et organisation du trafic.

Parmi les solutions alternatives, la stratégie de réservation des voies semble être

prometteuse. Ainsi, des voies peuvent être réservées pour les usagers prioritaires.

Seuls certains types de véhicules sont autorisés à utiliser les voies réservées. Ces

voies peuvent alors offrir un environnement de voyage sans congestion. Le concept

de réservation des voies a été présenté comme une stratégie de gestion du trafic

et a été mis en place dans plusieurs pays. Il y a relativement peu de travaux sur

l’optimisation du choix de ces voies sur un réseau de transport. Cette thèse s’inscrit

dans cette perspective. Elle a pour objectif de fournir une aide à la décision pour la

mise en place de stratégies de réservation des voies.

Dans cette thèse, quatre nouveaux problèmes de réservation des voies sont étudiés.

Le but est de minimiser l’impact global sur le trafic de l’opération de réservation des

voies. Les problèmes considérés acquièrent un caractère plus général et plus réaliste

en y intégrant différents facteurs. Nous étudions dans un premier temps, le problème

“lane reservation problem” (LRP) avec un temps de parcours statique sur la voie

réservée. Par la suite, le problème “capacitated lane reservation problem” (CLRP)

prend en compte la capacité des voies. Enfin, les problèmes “lane reservation problems

113

with time-depdedent travel time” (LRP-TT) et “lane reservation problems with time-

depdedent travel speed” (LRP-TS) avec un temps de parcours dynamique sur les

voies non réservées sont étudiés. Pour chacun des problèmes, de nouveaux modèles

mathématiques (programmation linéaire en nombres entiers ou programmation non

linéaire en nombres mixtes, du plus basique au plus élaboré) et méthodes de résolution

(“cut-and-solve”, la méthode de coupe, et la recherche tabou) sont développés. Les

performances des algorithmes proposés sont évaluées par des expériences numériques.

Cette thèse est organisée comme suit. Un état de l’art sur la stratégie de réservation

des voies est présenté dans le chapitre 2. Certains problèmes de transport sont in-

troduits et certaines méthodes de optimisation, y compris “cut-and-solve”, méthode

de coupe, recherche tabou, sont décrites. Dans le chapitre 3, une approche basée

sur la méthode “cut-and-solve” est développée pour le LRP. Une approche combinée

des méthodes de “cut-and-solve” et de coupe est proposée pour le CLRP dans le

chapitre 4. Le chapitre 5 considère les problèmes LRP-TT et LRP-TS. La méthode

de “cut-and-solve” est développée pour le LRP-TT et la méthode de recherche tabou

est développée pour le LRP-TS.

Chapitre 2 Etat de l’art

Dans ce chapitre, nous présentons d’abord le principe d’utilisation de la réservation

des voies dans des réseaux de transport afin de réduire les congestions. La réservation

des voies aux usagers prioritaires a été mise en place dans certains pays depuis bientôt

quarante ans. Les voies sont souvent réservées pour les bus et les taxis [22] [49] [50].

Dans certains pays d’Amérique du Nord, une voie est réservée aux véhicules avec au

moins deux passagers [51] [80]. Cette voie est destinée à encourager le covoiturage

afin de réduire le nombre de véhicules sur la route. Une alternative est d’offrir une

réservation premium à des usagers non prioritaires contre un droit de péage élevé

pour utiliser efficacement la voie réservée [59].

Le concept de réservation de la voie a été étudié dans la littérature. Les études

ont les points communs suivants : 1), Elles sont axées sur la performance d’une voie

réservée dans la région locale des réseaux de transport; 2), les méthodes d’étude

sont soit basées sur l’analyse de données empiriques, soit utilisent des expériences

de simulation via des simulateurs de trafic. Il n’y avait quasiment pas de travaux

sur l’optimisation du choix de ces voies au niveau d’un réseau de transport, ce qui

conforte la nécessité du travail réalisé dans le cadre de cette thèse.

114

Ensuite, quelques problèmes classiques de transport sont présentés, comme le

problème de multiflot de coût minimum, le problème de localisation des installations,

le problème de tournées avec fenêtres de temps, et leurs modèles mathématiques

détaillés. Il est indiqué que les problèmes de réservation des voies ne peuvent pas être

transformés en aucun d’entre eux. D’où l’intérêt scientifique d’étudier ces problèmes.

Enfin, les méthodes de résolution sont présentées. D’abord, la méthode “cut-

and-solve” est introduite. Cette méthode a été proposée par Climer et Zhang [16].

C’est une méthode exacte itérative qui peut trouver une solution optimale pour une

problème de programmation en nombres entiers ou mixtes. Pour un problème, à la

n-ème itération de la méthode, le “current problem” (CPn) est décomposé en deux

sous-problèmes : le “sparse problem” (SPn) et le “remaining problem” (RPn) par

une “piercing cut” (PCn). Le SPn peut être résolu exactement et fournit une borne

supérieure du problème original. La meilleure borne supérieure du problème original

est ensuite mise à jour. Le SPn n’est pas pris en compte dans les itérations ultérieures.

La résolution du modèle relaxé du RPn permet de fournir une borne inférieure du RPn.

Si la borne inférieure du RPn est supérieure ou égale à la meilleure borne supérieure du

problème original, elle est alors la valeur optimale et le processus d’itération s’arrête.

Sinon, le RPn devient le CPn+1 pour la prochaine itération. La définition de PCn est

importante pour la méthode “cut-and-solve” car la résolution du SPn dépend de la

PCn. En plus, une borne inférieure serrée du RPn peut accélérer la convergence de

la “cut-and-solve”.

La méthode de coupe intégrée est une méthode itérative qui peut améliorer la

borne inférieure de la programmation linéaire en nombres entiers. A la première

itération, un modèle relaxé du problème est résolu et une solution fractionnaire est

obtenue. D’abord on recherche les “cover inequalities” (CIs) valides pour toutes les

solutions réalisables du problème original mais violées par la solution fractionnaire.

Ces CIs permettent de séparer toutes les solutions réalisables de la solution fraction-

naire. Ensuite, ces CIs sont ajoutées au modèle relaxé précédent. Un nouveau modèle

relaxé est obtenu et résolu. Ce processus continue jusqu’à ce qu’aucune CIs ne soit

trouvée ou que la solution fractionnaire soit une solution réalisable du problème orig-

inal (aussi une solution optimale réalisable du problème original). L’algorithme de la

recherche de CIs est un algorithme de séparation. Des détails de la méthode de coupe

pour CIs peuvent être trouvés dans la littérature [42].

La méthode de “tabu search” est une stratégie de recherche itérative. A chaque

itération de la méthode, un voisin “neighborhood” est généré autour de la solution

courante “current solution” (pour la première itération, on prend la solution initiale

115

“initial solution”). Le “neighborhood” est un ensemble de solutions réalisables, qui

peut être atteint par une opération appelée “move” à partir de “current solution”.

La meilleure solution admissible dans ce “neighborhood” est choisie et devient la

“current solution” pour la prochaine itération. La meilleure solution est mise à jour

si la meilleure solution admissible est meilleure qu’elle. Pour interdire de retomber

dans le minimum local auquel on vient d’échapper, le mécanisme (“tabu list”) est

créé pour interdire de revenir aux dernières “moves” explorées. L’itération de la

“tabu search” est répétée jusqu’à ce qu’un nombre maximal d’itérations soit atteint.

Chapitre 3 Problème de réservation des voies

Dans ce chapitre, nous étudions un problème de réservation des voies “lane reservation

problem” (LRP), motivé par le transport de marchandises par l’utilisation de camions

automatisés. Ces camions automatisés du futur peuvent former un peloton avec le

premier conduit par l’homme et les autres suivent en mode automatique [61] [77].

Pour assurer un environnement approprié et sûr pour ces camions automatisés, il

est préférable de leur réserver des voies. Cela consiste à sélectionner certaines voies

ordinaires existantes dans un réseau de transport et de les convertir en des voies

réservées à l’usage spécifique de camions automatisés. Les voies réservées peuvent

offrir un itinéraire sans congestion et la durée de transit est alors mâıtrisée. Cette

stratégie apparâıt comme plus économique et plus flexible que celle qui consisterait à

construire de nouvelles infrastructures. C’est une stratégie intelligente de gestion du

trafic.

Cependant, les voies réservées ont un impact négatif sur les autres usagers sur les

voies adjacentes. Ces voies utilisées par les usagers généraux peuvent être encombrées

et la durée de leur trajet se trouvera plus longue. Il faut donc bien déterminer quelles

voies du réseau devraient être réservées afin de minimiser l’impact de ces réservations

de voies. Le “lane reservation problem” (LRP) dans ce chapitre se formalise comme

suit. On a un réseau G(N,A), où N est un ensemble de nœuds et A est un ensemble

d’arcs orientés. Étant donné un ensemble de tâches de transport sachant qu’une paire

source-destination correspond à chaque tâche, le LRP consiste à réserver des voies

dans le réseau et à concevoir un chemin pour chaque tâche afin qu’elle puisse être

achevée dans un délai prescrit. Le critère est de minimiser l’impact total de toutes

les voies réservées sur le trafic.

Pour bien étudier le problème, certaines hypothèses sont formulées comme suit :

1), il y a au moins deux voies sur chaque arcs permettant ainsi la réservation d’une

116

voie si nécessaire; 2), il y a au plus une voie réservée sur chaque arc parce que les voies

réservées peuvent être partagées entre tous les usagers des tâches; 3), les camions de

chaque tâche se déplacent sur un chemin exclusivement réservé (chaque voie dans

le chemin est réservée) à partir de sa source vers sa destination pour une raison de

sécurité.

Modèle Mathématique

Pour formuler le problème, les notations sont présentées comme suit.

Paramètres
A : l’ensemble des arcs orientés (i, j), i ̸= j, i, j ∈ N
K : l’ensemble des tâches de transport k ∈ K
N : l’ensemble des nœuds
aij : l’impact de la réservation d’une voie (i, j) ∈ A
dk : le nœud destination de la tâche k ∈ K
pk : la durée de trajet maximale souhaitée de la tâche k ∈ K
sk : le nœud source de la tâche k ∈ K
τij : la durée de traversée de la voie réservée (i, j) ∈ A

Variables de décision
xkij xkij = 1, si la tâche k ∈ K traverse la voie réservée (i, j) ∈ A; xkij = 0,

sinon
zij zij = 1, si la voie (i, j) ∈ A est réservée; zij = 0, sinon

Le LRP est formulé comme le problème de programmation linéaire suivant :

Pl : min
∑

(i,j)∈A

aijzij (3.1)

s.t.
∑

i:(sk,i)∈A

xkski = 1, ∀k ∈ K, (3.2)

∑
i:(i,dk)∈A

xkidk = 1, ∀k ∈ K, (3.3)

∑
i:(j,i)∈A

xkji =
∑

i:(i,j)∈A

xkij, ∀k ∈ K, ∀j ∈ N \ {sk, dk}, (3.4)

∑
(i,j)∈A

τijxkij ≤ pk, ∀k ∈ K, (3.5)

xkij ≤ zij, ∀k ∈ K, ∀(i, j) ∈ A, (3.6)

xkij ∈ {0, 1}, ∀k ∈ K, ∀(i, j) ∈ A, (3.7)

zij ∈ {0, 1}, ∀(i, j) ∈ A. (3.8)

La fonction objectif (3.1) consiste à minimiser l’impact global sur le trafic de toutes

117

les voies réservées. (3.2)–(3.4) indiquent qu’il y a exactement un chemin pour chaque

tâche k ∈ K à partir de sa source sk vers sa destination dk. (3.5) est la contrainte de

délai. Elle indique que la tâche doit être achevée dans le délai pk. (3.6) indique que

la tâche k ne peut pas passer la voie réservée (i, j) si cette dernière n’est pas réservée,

c’est-à-dire, si zij = 0, alors xkij = 0. (3.7) et (3.8) sont les contraintes sur la nature

des variables de décision.

Le LRP est NP-difficile, car un cas particulier de celui-ci (si les sources de toutes

les tâches sont du même nœud et le délai pk est très grand) peut être réduit au

problème de l’arbre de Steiner orienté, qui est également connu pour être NP-difficile

[44].

Approche de résolution

Pour résoudre le problème, un pré-traitement est d’abord effectué pour réduire

l’espace des solutions du modèle Pl et un nouveau modèle P ′
l serré est obtenu. Notons

l(j, dk) (resp. l(sk, j)) comme étant la plus courte durée de trajet à partir de nœud

j vers le nœud dk (resp. à partir de nœud sk vers le nœud j) dans un chemin

exclusivement réservé (il peut être calculé par les algorithmes de plus court chemin).

Pour chaque tâche k ∈ K, les ensembles Ak et A′
k sont définis comme suit :

Ak = { (sk, j) | τskj + l(j, dk) > pk, ∀(sk, j) ∈ A },

A′
k = { (j, dk) | l(sk, j) + τjdk > pk, ∀(j, dk) ∈ A }.

Les voies dans les ensembles Ak ou A
′
k ne seront pas dans le chemin de la tâche k, sinon

la tâche k ne pourra pas être achevée dans le délai pk. Les variables correspondantes

peuvent donc être fixées à zéro. Le nouveau modèle P ′
l est défini comme suit :

P ′
l : min

∑
(i,j)∈A

aijZij

s.t. Constraintes (3.2)− (3.8)

xkskj = 0, ∀k ∈ K, (sk, j) ∈ Ak, (3.9)

xkjdk = 0, ∀k ∈ K, (j, dk) ∈ A′
k. (3.10)

Le P ′
l est égal au Pl, mais l’espace des solutions de P ′

l est réduit car certaines variables

de décision sont fixées à zéro. La méthode de “cut-and-solve” va donc résoudre le

modèle P ′
l au lieu du modèle Pl.

L’approche de résolution pour le LRP est basée sur la méthode de “cut-and-

solve”. C’est une méthode exacte itérativede programmation en nombres entiers qui

118

peut trouver une solution optimale . A la n-ème itération de la méthode, le “current

problem” (CPn) est décomposé en deux sous-problèmes: le “sparse problem” (SPn)

et le “remaining problem” (RPn) par une “piercing cut” (PCn) comme suit :

PCn :
∑

zij∈Vn

zij ≥ 1,

où Vn = { zij | ψ(zij) > hn, ∀(i, j) ∈ A }, ψ(zij) est la coût réduit de la variable de

décision zij, et hn est une constante connue. Par cette PCn, le SPn peut être obtenu

en ajoutant la contrainte
∑

zij∈Vn
zij = 0 au problème CPn et le RPn peut être obtenu

en ajoutant la contrainte
∑

zij∈Vn
zij ≥ 1 au problème CPn. Le CPn est défini comme

le P ′
l pour n = 1 et RPn−1 pour n ≥ 2. Les SPn et RPn sont définis comme suit :

SPn : min
∑

(i,j)∈A

aijZij

s.t. Constraintes (3.2)− (3.10)∑
zij∈Vm

zij ≥ 1, m = 1, 2, . . . , n− 1. (3.11)

∑
zij∈Vn

zij = 0. (3.12)

RPn : min
∑

(i,j)∈A

aijZij

s.t. Constraintes (3.2)− (3.10), et (3.11)∑
zij∈Vn

zij ≥ 1. (3.13)

Pour améliorer la performance de la méthode “cut-and-solve”, deux ensembles

sont définis :

Un = { zskj | z∗skj < max
j:(sk,j)∈A

z∗skj, ∀k ∈ K, (sk, j) ∈ A },

U ′
n = { zidk | z∗idk < max

i:(i,dk)∈A
z∗idk , ∀k ∈ K, (i, dk) ∈ A },

où les z∗skj et z
∗
idk

sont les valeurs des variables de décision dans la solution optimale

du problème de la relaxation linéaire de la CPn. Une nouvelle définition de Vn est

présentée comme suit :

Vn = ({ zij | ψ(zij) > hn, ∀(i, j) ∈ A } ∪ Un ∪ U ′
n) ∩ Vn−1, (3.14)

où V0 = {zij | ∀(i, j) ∈ A}. Selon la définition de (3.20), V1 ⊇ · · · ⊇ Vn−1 ⊇ Vn, n ≥ 2,

est satisfaite. Les SPn et RPn sont donc réduits à des nouveaux “sparse problem”

119

(SP ′
n) et “remaining problem” (RP ′

n), qui sont définis comme suit :

SP ′
n : min

∑
(i,j)∈A

aijZij

s.t. Constraintes (3.2)− (3.10) et (3.12)∑
zij∈(Vn−1\Vn)

zij ≥ 1. (3.15)

RP ′
n : min

∑
(i,j)∈A

aijZij

s.t. Constraintes (3.2)− (3.10) et (3.13).

Il est prouvé que le SP ′
n (resp. RP ′

n) est égal au SPn (RPn), mais le SP ′
n (resp. RP ′

n)

a moins de contraintes que SPn (resp. RPn).

Le SP ′
n peut être résolu exactement par le logiciel commercial CPLEX et fournit

une borne supérieure du problème original. La meilleure borne supérieure est ensuite

mise à jour. Le SP ′
n n’est pas pris en compte dans les prochaines itérations. Il est

difficile de résoudre le RP ′
n exactement. La relaxation linéaire du RP ′

n est donc résolu

et une borne inférieure du RP ′
n est obtenue par CPLEX. Le RP ′

n est ensuite devenue

le CPn+1 dans la prochaine itération. Après chaque itération, la taille du “current

problem” devient plus petite. Cette phase est répétée jusqu’à ce que le critère d’arrêt

soit atteint : la borne inférieure du RP ′
n est supérieure ou égale à la meilleure borne

supérieure. La valeur optimale du problème original est alors obtenue.

Expériences numériques

L’algorithme proposé a été évalué par 62× 5 instances générées au aléatoirement.

Le temps CPU nécessité par l’algorithme proposé est comparé à celui de la résolution

directe du problème par CPLEX. Les expériences numériques montrent que : 1),

toutes les instances sont résolues exactement par l’algorithme proposé. Il peut trou-

ver une solution optimale pour la plus grande instance constituée 150 nœuds et 30

tâches en 1543.43 secondes, comparativement, CPLEX a nécessité prend 4058.54 sec-

ondes pour la même instance. 2), les pré-traitement et les nouvelles définitions des

“sparse problem” et “remaining problem” sont efficaces pour accélérer la convergence

de l’algorithme proposé. L’algorithme proposé est 2.84 fois plus rapide que le même

algorithme sans pré-traitement et 1.52 fois plus rapide que le même algorithme sans

utiliser les nouvelles définitions des “sparse problem” et “remaining problem”. 3), les

temps CPU moyenss de l’algorithme proposé sont réduisent respectivement de 42%,

31%, et 36% de ceux de CPLEX pour les instances avec différentes tailles, différents

120

impacts des voies réservées et différents degrés moyens des noeuds du réseau (défini

par 2 × nombre d’arcs/nombre de nœuds).

Chapitre 4 Problème de réservation des voies avec

contrainte de capacité

Dans ce chapitre, nous étudions le “capacitated lane reservation problem” (CLRP)

pour les événements exceptionnels, tels que les grandes manifestations sportives. En

raison du trafic dense lors de ces occasions, il est difficile d’accomplir les tâches de

transport dans les délais. La stratégie de réservation des voies est donc nécessaire.

Le CLRP est une extension du LRP étudié dans le chapitre 3, car il considère la

capacité résiduelle de chaque voie non réservée dans le réseau, qui est ignorée dans

le LRP. La capacité résiduelle d’une voie non réservée est le flux résiduel de la voie

qui peut être utilisé par les tâches spéciales sans causer plus de temps de parcours

ou de congestion sur cette voie. C’est-à-dire, le flux total des tâches se déplaçant sur

la voie non réservée ne peut pas être supérieur à sa capacité résiduelle. Pour une

voie réservée, elle peut être partagée par toutes les tâches, parce que les véhicules

généraux ne peuvent pas l’utiliser, et la capacité de celle-ci est suffisante pour que

chaque tâche puisse l’utiliser.

Ici, on a un réseau G(N,A), où N est un ensemble de nœuds, et A est un ensemble

d’arcs orienté, et étant donné un ensemble de tâches de transport associant une paire

source-destination à chaque tâche. Le CLRP dans ce chapitre consiste à réserver des

voies dans le réseau et à concevoir un chemin pour chaque tâche afin qu’elle puisse

être achevée dans un délai prescrit. Le flux total des tâches se déplaçant sur chaque

voie non réservée ne peut pas être supérieur à sa capacité résiduelle. Le but est de

minimiser l’impact total de toutes les voies réservées sur le trafic.

Les hypothèses pour le CLRP sont les mêmes que celles pour le LRP, mais ces

deux problèmes se différencient sur un point : le chemin pour chaque tâche n’est pas

nécessairement exclusivement réservé, c’est-à-dire, il peut exister des tronçons sans

voie réservée dans le chemin.

Modèle Mathématique

Les notations pour le CLRP sont présentées comme suit.

Paramètres
A : l’ensemble des arcs orientés (i, j), i ̸= j, i, j ∈ N
K : l’ensemble des tâches de transport k ∈ K

121

N : l’ensemble des nœuds
aij : l’impact de la réservation d’une voie (i, j) ∈ A
cij : la capacité résiduelle d’une voie non réservée (i, j) ∈ A
dk : le nœud destination de la tâche k ∈ K
flk : flux de trafic de la tâche k ∈ K
pk : la durée de trajet maximale souhaitée pour la tâche k ∈ K
sk : le nœud source de la tâche k ∈ K
τij : la durée de traversée de la voie réservée (i, j) ∈ A
τ ′ij : la durée de traversée de la voie non réservée (i, j) ∈ A

Variables de décision
xkij xkij = 1, si la tâche k ∈ K traverse la voie réservée (i, j) ∈ A; xkij = 0,

sinon
ykij ykij = 1, si la tâche k ∈ K traverse la voie non réservée (i, j) ∈ A;

ykij = 0, sinon
zij zij = 1, si la voie (i, j) ∈ A est réservée; zij = 0, sinon

Le CLRP est formulé comme un problème de programmation linéaire :

Pc : min
∑

(i,j)∈A

aijzij (4.1)

s.t.
∑

i:(sk,i)∈A

(xkski + ykski) = 1, ∀k ∈ K, (4.2)

∑
i:(i,dk)∈A

(xkidk + ykidk) = 1, ∀k ∈ K, (4.3)

∑
i:(j,i)∈A

(xkji + ykji) =
∑

i:(i,j)∈A

(xkij + ykij) , ∀k ∈ K, ∀j ∈ N \ {sk, dk}, (4.4)

∑
(i,j)∈A

(
τijxkij + τ ′ijykij

)
≤ pk, ∀k ∈ K, (4.5)

xkij ≤ zij, ∀k ∈ K, ∀(i, j) ∈ A, (4.6)

ykij + zij ≤ 1, ∀k ∈ K, ∀(i, j) ∈ A, (4.7)∑
k∈K

flkykij ≤ cij(1− zij), ∀(i, j) ∈ A, (4.8)

xkij, ykij ∈ {0, 1}, ∀k ∈ K, ∀(i, j) ∈ A, (4.9)

zij ∈ {0, 1}, ∀(i, j) ∈ A. (4.10)

La fonction coût (4.1) minimise l’impact global sur le trafic de toutes les voies

réservées. (4.2)–(4.4) indiquent qu’il y a exactement un chemin pour chaque tâche

k ∈ K à partir de sa source sk vers sa destination dk. (4.5) est la contrainte de délai.

Elle indique que la tâche doit être achevée dans le délai pk. (4.6) indique que la

tâche k ne peut pas passer la voie réservée (i, j) si cette dernière n’est pas réservée,

122

c’est-à-dire, si zij = 0, alors xkij = 0. (4.7) indique que la tâche k peut passer la voie

non réservée (i, j) si cette dernière n’est pas réservée, c’est-à-dire, si ykij = 1, alors

zij = 0. (4.8) indique que le flux total des tâches se déplaçant sur chaque voie non

réservée (i, j) ne peut pas être supérieur à la capacité résiduelle cij. (4.9) et (4.10)

sont les contraintes sur les variables de décision.

Le CLRP est NP-difficile, car le LRP est un cas particulier de celui-ci (dans le

cas ou la capacité résiduelle de chaque voie non réservée est très petite, alors chaque

voie dans le chemin de la tâche doit être réservée), qui a été également démontré

NP-difficile dans chapitre 3.

Approche de résolution

Pour résoudre le problème, un pré-traitement est d’abord effectué pour réduire

l’espace des solutions du modèle Pc et un nouveau modèle P ′
c serré est obtenu. Notons

l(j, dk) (resp. l(sk, j)) comme la plus courte durée de transit à partir de j vers le nœud

dk (resp. à partir de nœud sk vers le nœud j) dans un chemin exclusivement réservé.

Pour chaque tâche k ∈ K, les ensembles Ak et A′
k sont définis comme suit :

Ak = { (sk, j) | τskj + l(j, dk) > pk, ∀(sk, j) ∈ A },

A′
k = { (j, dk) | l(sk, j) + τjdk > pk, ∀(j, dk) ∈ A }.

Les voies dans les ensembles Ak ou A′
k ne sont pas dans le chemin de la tâche k, sinon

la tâche k ne peut pas être achevée dans le délai pk. Les variables correspondantes

peuvent donc être fixées à zéro. Le modèle P ′
l est défini comme suit :

P ′
c : min

∑
(i,j)∈A

aijZij

s.t. Constraintes (4.2)− (4.10)

xkskj + ykskj = 0, ∀k ∈ K, (sk, j) ∈ Ak, (4.11)

xkjdk + ykjdk = 0, ∀k ∈ K, (j, dk) ∈ A′
k. (4.12)

Pour résoudre le CLRP, une approche combinée des méthodes de “cut-and-solve”

et de coupe est proposée. La méthode de coupe est intégrée dans l’algorithme proposé

pour obtenir une borne inférieure serrée pour le “remaining problem” (RPn). Le

“piercing cut” (PCn) de la “cut-and-solve” est défini comme suit :

PCn :
∑

zij∈Vn

zij ≥ 1,

123

où Vn = { zij | ψ(zij) > hn, ∀(i, j) ∈ A }, ψ(zij) est le coût réduit de la variable de

décision zij, et hn est une constante connue. Le “sparse problem” (SPn) et RPn sont

définis comme suit :

SPn : min
∑

(i,j)∈A

aijZij

s.t. Constraintes (4.2)− (4.12)∑
zij∈Vm

zij ≥ 1, m = 1, 2, . . . , n− 1. (4.13)

∑
zij∈Vn

zij = 0. (4.14)

RPn : min
∑

(i,j)∈A

aijZij

s.t. Constraintes (4.2)− (4.12), et (4.13)∑
zij∈Vn

zij ≥ 1. (4.15)

Le SPn est résolu exactement par le logiciel commercial CPLEX et fournit une

borne supérieure du problème original. La meilleure borne supérieure est ensuite mise

à jour.

La méthode de coupe intégrée est une méthode itérative qui peut améliorer la

borne inférieure du problème de programmation linéaire en nombres entiers RPn. A

la première itération de la méthode de coupe, un modèle de la relaxation linéaire

du RPn est résolu et une solution fractionnaire est obtenue. Les “cover inequalities”

(CIs) correspondant aux contraintes (4.5) et (4.8) sont obtenues par les algorithmes

de séparation et sont définies respectivement comme suit :∑
(i,j)∈Ax

xkij +
∑

(i,j)∈Ay

ykij ≤ |Ax|+ |Ay| − 1, ∀k ∈ K, (4.16)

∑
k∈C

ykij ≤ (|C| − 1)(1− zij), (i, j) ∈ A, (4.17)

où Ax et Ay sont des sous-ensembles de A, et C est le sous-ensemble de K. Le algo-

rithme de séparation pour (4.5) et (4.8) sont basés sur l’algorithme dans la littérature

[42]. Les lecteurs intéressés peuvent se référer à ce travail. Les CIs trouvées par

le algorithme de séparation sont satisfaites par toutes les solutions réalisables du

problème original, mais elles sont violées par la solution fractionnaire. Ensuite ces

CIs sont ajoutées au modèle relaxé précédent. La borne supérieure du RPn peut donc

être améliorée. Ce processus se poursuit jusqu’à ce qu’aucune CIs ne soit trouvée par

l’algorithme de séparation.

124

Comme pour la méthode dans chapitre 3, l’itération de la “cut-and-solve” est

répétée jusqu’à ce que le critère d’arrêt soit atteint : la borne inférieure du RPn est

supérieure ou égale à la meilleure borne supérieure. La valeur optimale du problème

original est alors obtenue.

Expériences numériques

La performance de l’algorithme proposé a été évaluée sur des instances générées

au aléatoirement. Les expériences numériques montrent que : 1), toutes les instances

sont résolues exactement par l’algorithme proposé. Celui-ci peut trouver une solution

optimale pour la plus grande instance de 120 nœuds du réseau. 2), la méthode de

coupe améliore la première borne inférieure de 6.92% en moyenne pour les instances

à 100 nœuds et 5–40 tâches. Les temps CPU moyens sont de 289.01 secondes pour

la méthode combinée “cut-and-solve” et méthode de coupe, et 598.83 secondes pour

la méthode “cut-and-solve”. 3), les temps CPU moyens pour l’algorithme proposé

réduisent respectivement de 21.55%, 42.76%, 65.66%, et 57.48% de ceux obténus par

CPLEX pour des instances avec différents nombres de nœuds, différents capacités

résiduelles des voies non réservées, différents impacts des voies réservées et différents

délais prescrits pour réaliser la tâche.

Chapitre 5 Problème de reservation des voies avec

temps de parcours variable

Le LRP du chapitre 3 et le CLRP du chapitre 4 concernent la réservation des voies

dans un réseau avec un temps de parcours sur la voie supposé constant. En réalité, le

temps de parcours sur une voie varie au cours du temps en raison de plusieurs facteurs

tels que les heures de pointe, le flux de trafic et les conditions météorologiques. La

prise en compte d’un temps de parcours sur une voie variable a été considérée dans

certains problèmes de transport [13], [37]. Pour rendre le problème plus proche des sit-

uations réelles, il est nécessaire de considérer le temps de parcours dynamique dans les

problèmes de réservation des voies. Dans ce chapitre, nous étudions deux problèmes

de réservation des voies avec le temps de parcours variable : “lane reservation prob-

lem with time-dependent travel time” (LTP-TT) et “lane reservation problem with

time-dependent travel speed” (LTP-TS). Dans ces deux problèmes, le temps de par-

cours sur les voies non réservées n’est plus constant, il peut virer au fonction du temps.

125

5.1 Problème de reservation des voies avec temps de parcours
variable

Dans le LRP-TT, l’horizon de temporel est subdivisé en plusieurs petits intervalles,

le temps de parcours sur une voie non réservée (i, j) est une fonction de l’heure de

départ au nœud i. Le temps de parcours est une constante si l’heure de départ au

nœud i est dans le même intervalle de temps, mais il change pour différents intervalles

de temps. Autrement dit, le temps de parcours sur une voie non réservée est une

fonction de l’étape, chaque étape correspond à un intervalle de temps. Le temps de

parcours sur une voie réservée est une constante.

Le problème est décrit comme suit. On a un réseau G(N,A), et un ensemble

de tâches de transport associé à des paires source-destination. Le LRP-TT a pour

objectif de réserver des voies dans le réseau afin de respecter les temps de transport

pour chaque tâche en minimisant l’impact de toutes les voies réservées.

Modèle Mathématique

Les notations pour le LRP-TT sont présentées comme suit.

Paramètres
A : l’ensemble des arcs orientés (i, j), i ̸= j, i, j ∈ N
K : l’ensemble des tâches de transport k ∈ K
N : l’ensemble des nœuds
Q : l’ensemble des indices des intervalles de temps
[Tq, Tq+1) : intervalle de temps, q ∈ Q
aij : l’impact de la réservation d’une voie (i, j) ∈ A
dk : le nœud destination de la tâche k ∈ K
pk : la durée de trajet maximale souhaitée pour la tâche k ∈ K
sk : le nœud source de la tâche k ∈ K
stk : l’heure de départ de la tâche k ∈ K au nœud sk
τij : la durée de traversée de la voie réservée (i, j) ∈ A
τ ′′ijq : la durée de traversée de la voie non réservée (i, j) ∈ A si l’heure de départ

au nœud i est dans l’intervalle de temps [Tq, Tq+1), q ∈ Q

Variables de décision
bkiq bkiq = 1, si la tâche k part du nœud i dans l’intervalle [Tq, Tq+1); bkiq = 0,

sinon
tki l’heure de départ de la tâche k ∈ K au nœud i ∈ N ; si la tâche k ne

visite pas le nœud i
xkij xkij = 1, si la tâche k ∈ K traverse la voie réservée (i, j) ∈ A; xkij = 0,

sinon

126

ykij ykij = 1, si la tâche k ∈ K traverse la voie non réservée (i, j) ∈ A;
ykij = 0, sinon

zij zij = 1, si la voie (i, j) ∈ A est réservée; zij = 0, sinon

Le LRP-TT est formulé comme le problème d’optimisation suivant :

Pt : min
∑

(i,j)∈A

aijzij (5.1)

s.t.
∑

i:(sk,i)∈A

(xkski + ykski) = 1, ∀k ∈ K, (5.2)

∑
i:(i,dk)∈A

(xkidk
+ ykidk

) = 1, ∀k ∈ K, (5.3)

∑
i:(i,j)∈A

(xkij + ykij) =
∑

i:(j,i)∈A

(xkji + ykji), ∀k ∈ K, ∀j ∈ N\{sk, dk}, (5.4)

xkij ≤ zij , ∀k ∈ K, ∀(i, j) ∈ A, (5.5)

ykij + zij ≤ 1, ∀k ∈ K, ∀(i, j) ∈ A, (5.6)∑
q∈Q

bkiq = 1, ∀k ∈ K, ∀i ∈ N\{dk}, (5.7)

tki ≥
∑
q∈Q

bkiqTq, ∀k ∈ K, ∀i ∈ N\{dk}, (5.8)

tki <
∑
q∈Q

bkiqTq+1, ∀k ∈ K, ∀i ∈ N\{dk}, (5.9)

tksk = stk, ∀k ∈ K, (5.10)

tkj =
∑

i:(i,j)∈A

((tki + τij)xkij + (tki +
∑
q∈Q

bkiqτ
′′
ijq)ykij), ∀k ∈ K, ∀j ∈ N\{sk}, (5.11)

tkdk
− tksk ≤ pk, ∀k ∈ K, (5.12)

tki ≥ 0, ∀k ∈ K, ∀i ∈ N, (5.13)

bkiq ∈ {0, 1}, ∀k ∈ K, ∀i ∈ N,∀q ∈ Q, (5.14)

xkij , ykij ∈ {0, 1}, ∀k ∈ K, ∀(i, j) ∈ A, (5.15)

zij ∈ {0, 1}, ∀(i, j) ∈ A. (5.16)

La fonction objectif (5.1) consiste à l’impact global sur le trafic de toutes les voies

réservées. Les conditions (5.2)–(5.4), (5.5) et (5.6) sont respectivement similaires à

(4.2)–(4.4), (4.6) et (4.7) du modèle du CLRP étudié dans chapitre 4. (5.7)–(5.9)

indiquent que si bkiq = 1, alors l’heure de départ de la tâche k au nœud i est dans

l’intervalle de temps [Tq, Tq+1). (5.10) indique que la tâche k part du nœud sk à

l’heure stk. (5.11) indique que l’heure de départ de la tâche k au nœud j. (5.12)

127

indique que la durée de trajet à partir du nœud sk vers le nœud dk ne doit pas être

supérieure au délai pk. (5.13)–(5.16) sont les contraintes sur les variables de décision.

Le LRP-TT est NP-difficile, car un cas particulier de celui-ci (si le temps de par-

cours τ ′′ijq est très grand pour les couples (i, j) ∈ A et q ∈ Q, alors chaque voie dans

le chemin de la tâche doit être réservée) peut être réduit au LRP, qui a été aussi

démontré NP-difficile dans chapitre 3.

Linéarisation du modèle

Le modèle Pt n’est pas linéaire. Il est transformé en un modèle linéaire équivalent

par linéarisation de la contrainte (5.11). Pour chaque tâche k ∈ K et chaque nœud

j ∈ N \ {sk}, il y a trois cas : 1), la tâche k ne visite pas j; 2), la tâche k visite j via

une voie réservée (i, j); 3), la tâche k visite j via une voie non réservée (i, j). Pour

chaque cas, (5.11) peut être transformée en les contraintes suivantes (5.17), (5.18), et

(5.19) :

tkj ≤M
∑

i:(i,j)∈A

(xkij + ykij), ∀k ∈ K, ∀j ∈ N\{sk}, (5.17)

tkj − tki − τij ≤M(1− xkij),
tkj − tki − τij ≥M(xkij − 1),

}
∀k ∈ K, ∀j ∈ N\{sk}, (i, j) ∈ A, (5.18)

tkj − tki −
∑
q∈Q

bkiqτ
′′
ijq ≤M(1− ykij),

tkj − tki −
∑
q∈Q

bkiqτ
′′
ijq ≥M(ykij − 1),

 ∀k ∈ K, ∀j ∈ N\{sk}, (i, j) ∈ A, (5.19)

où M est une très grande constante. Le modèle linéaire P ′
t peut donc être représenté

comme suit : (5.1)–(5.10) et (5.12)–(5.19).

Approche de résolution

D’abord, un pré-traitement est effectué. Notons l(j, dk) (resp. l(sk, j)) comme

la plus courte durée de transit à partir de j vers destination du nœud dk (resp. à

partir du nœud sk vers le nœud j) dans un chemin exclusivement réservé. L’ensemble

Nk, k ∈ K, est défini comme suit :

Nk = {j | l(sk, j) + l(j, dk) > pk, j ∈ N}.

Les variables correspondantes peuvent être fixées à zéro :∑
i:(i,j)∈A

(xkij + ykij) = 0,∑
i:(j,i)∈A

(xkji + ykji) = 0,

tkj = 0,

 ∀k ∈ K, ∀j ∈ Nk. (5.20)

128

Pour ∀k ∈ K, ∀j ∈ N\{sk}, l’heure plus tôt au nœud j est soit zéro, soit stk+ l(sk, j).

Ces deux cas peuvent être représentés comme suit :

tkj ≥ (stk + l(sk, j))
∑

i:(i,j)∈A

(xkij + ykij), ∀k ∈ K, ∀j ∈ N\{sk}. (5.21)

(5.20) et (5.21) peuvent alors être ajoutées comme de nouvelles contraintes au modèle

P ′
t et un nouveau modèle P ′′

t est obtenu. Il est défini comme suit :

P ′′
t : min

∑
(i,j)∈A

aijzij

s.t. constraintes (5.2)− (5.10) et (5.12)− (5.21).

L’approche de résolution pour le LRP-TT est basée sur la méthode de “cut-and-

solve”, mais la génération de “piercing cut” (PCn) est différente de celle dans les

chapitres précédents. Au lieu de la relaxation linéaire (toutes les variables entières

sont relaxées en des variables continues), une relaxation partielle (i.e., variables

entières xkij et zij sont relaxées en des variables continues, et bkiq et ykij ne sont

pas relaxées) est appliquée au “current problem” (CPn) pour générer la PCn. Car

si la relaxation linéaire est appliquée, la borne inférieure du “remaining problem”

(RPn) est très mauvaise, ce qui ne contribue pas à la convergence de la méthode

“cut-and-solve”. Par la suite, le modèle de la relaxation partielle du CPn est résolu,

une solution fractionnaire sol∗n est obtenue. Kn est défini comme l’ensemble des tâches

qui ont un multi-chemin à partir de leurs sources vers les destinations. Pour chaque

k ∈ Kn, une voie critique (ik, jk) avec la plus grande valeur dans le multi-chemin de

la tâche k dans sol∗n est trouvée. Ensuite, Vn est défini comme l’ensemble des voies

critiques (ik, jk) des tâches k ∈ Kn. La PCn est defini comme suit :

PCn :
∑

(ikjk)∈Vn

xkikjk + ykikjk ≤ hn − 1,

où hn est un nombre entier donné. Le “sparse problem” (SPn) et RPn sont définis

comme suit :

SPn : min
∑

(i,j)∈A

aijZij

s.t. constraintes (5.2)− (5.10) et (5.12)− (5.21)∑
(ikjk)∈Vm

xkikjk + ykikjk ≤ hn − 1, m = 1, 2, . . . , n− 1. (5.22)

∑
(ikjk)∈Vn

xkikjk + ykikjk ≥ hn. (5.23)

129

RPn : min
∑

(i,j)∈A

aijZij

s.t. constraintes (5.2)− (5.10), (5.12)− (5.21), et (5.22)∑
(ikjk)∈Vn

xkikjk + ykikjk ≤ hn − 1 (5.24)

Comme dans les chapitres précédents, l’itération de la “cut-and-solve” est répétée

jusqu’à ce que la borne inférieure du RPn devienne supérieure ou égale à la meilleure

borne supérieure.

Expériences numériques

La performance de l’algorithme proposé a été évaluée par des instances générées

au aléatoirement. Les expériences numériques montrent que : 1), l’algorithme pro-

posé peut résoudre exactement la plus grande instance constituée de 95 nœuds du

réseau. 2), les temps CPU moyens de l’algorithme proposé sont réduisent de 65.50%,

74.44%, et 67.19% de ceux de CPLEX pour les instances avec différents nombres

d’intervalles de temps, différents impacts des voies réservées et différents délais pre-

scrits pour compléter la tâche.

5.2 Problème de reservation des voies avec vitesse variable

Le problèm “lane reservation problem with time-dependent travel speed” (LRP-

TS) est similaire au LRP-TT sauf sur un point. Dans le LRP-TT, le temps de parcours

sur une voie non réservée (i, j) est une constante si l’heure de départ au nœud i est

dans le même intervalle de temps. Dans le LRP-TS, la vitesse des véhicules est une

constante si l’heure est dans le même intervalle de temps. Le temps de parcours sur

une voie non réservée (i, j) dans le LRP-TS est donc relatif à la vitesse sur la voie, pas

uniquement l’heure de départ au nœud i. D’abord, le temps de parcours sur une voie

non réservée est calculée selon la procédure dans [40]. C’est une fonction continue

de l’heure de départ au nœud i linéaire par morceaux. De plus, on suppose que le

principe “first-in-first-out” est satisfait.

Le LRP-TS vise à de réserver des voies dans le réseau G(N,A) afin de respecter

les temps de transport pour chaque tâche k ∈ K en minimisant l’impact de toutes

les voies réservées. Le temps de parcours sur une voie non réservée est une fonction

continue linéaire par morceaux et le temps de parcours sur une voie réservée est une

constante.

Les notations pour le LRP-TS sont présentées comme suit.

130

Paramètres
A : l’ensemble des arcs orientés (i, j), i ̸= j, i, j ∈ N
K : l’ensemble des tâches de transport k ∈ K
N : l’ensemble des nœuds
aij : l’impact de la réservation d’une voie (i, j) ∈ A
dk : le nœud destination de la tâche k ∈ K
pk : la durée de trajet maximale souhaitée pour la tâche k ∈ K
sk : le nœud source de la tâche k ∈ K
stk : l’heure de départ de la tâche k ∈ K au nœud sk
τij : la durée de traversée de la voie réservée (i, j) ∈ A
τ ∗ij(t) : la durée de traversée de la voie non réservée (i, j) ∈ A si l’heure de départ

au nœud i est t

Variables de décision
tki l’heure de départ de la tâche k ∈ K au nœud i ∈ N ; tki = 0, si la tâche

k ne visite pas le nœud i
xkij xkij = 1, si la tâche k ∈ K traverse la voie réservée (i, j) ∈ A; xkij = 0,

sinon
ykij ykij = 1, si la tâche k ∈ K traverse la voie non réservée (i, j) ∈ A;

ykij = 0, sinon
zij zij = 1, si la voie (i, j) ∈ A est réservée; zij = 0, sinon

Le LRP-TT est formulé comme le problème d’optimisation suivant :

Ps : min
∑

(i,j)∈A

aijzij (5.25)

s.t.
∑

i:(sk,i)∈A

(xkski + ykski) = 1, ∀k ∈ K, (5.26)

∑
i:(i,dk)∈A

(xkidk + ykidk) = 1, ∀k ∈ K, (5.27)

∑
i:(i,j)∈A

(xkij + ykij) =
∑

i:(j,i)∈A

(xkji + ykji), ∀k ∈ K, ∀j ∈ N\{sk, dk},

(5.28)

xkij ≤ zij, ∀k ∈ K, ∀(i, j) ∈ A, (5.29)

ykij + zij ≤ 1, ∀k ∈ K, ∀(i, j) ∈ A, (5.30)

tksk = stk, ∀k ∈ K, (5.31)

tkj =
∑

i:(i,j)∈A

(
(tki + τij)xkij + (tki + τ ∗ij(tki))ykij

)
, ∀k ∈ K, ∀j ∈ N\{sk}, (5.32)

tkdk − tksk ≤ pk, ∀k ∈ K, (5.33)

tki ≥ 0, ∀k ∈ K, ∀i ∈ N, (5.34)

xkij, ykij ∈ {0, 1}, ∀k ∈ K, ∀(i, j) ∈ A, (5.35)

131

zij ∈ {0, 1}, ∀(i, j) ∈ A. (5.36)

Le modèle Ps du LRP-TS est similaire au modèle Pt du LRP-TT mais diffère par

les deux points suivants : 1), il y a quatre types de variables de décision dans Ps et

cinq types de variables de décision dans Pt. Parce que le temps de parcours sur une

voie non réservée dans LRP-TT dépend de l’intervalle de temps, nous avons donc

besoin de variables de décision bkiq et des contraintes (5.7)–(5.9) pour indiquer cette

information dans le modèle Pt; 2), les contraintes (5.11) dans Pt et (5.32) dans Ps sont

différentes. τ ′′ijq dans (5.11) est une constante et τ ∗ij(tki) dans (5.32) est une fonction

de tki. Il est plus difficile de résoudre le modèle Ps que le modèle Pt en raison de la

fonction τ ∗ij(tki).

Le LRP-TS est NP-difficile, car un cas particulier de celui-ci (si le temps de par-

cours τ ∗ij(t) est très grand pour tout (i, j) ∈ A et t ∈ [Tq, Tq+1), q ∈ Q, alors chaque

voie dans le chemin de la tâche doit être réservée) peut être réduit au LRP, qui a été

aussi démontré NP-difficile dans chapitre 3.

Reformulation du modèle

Le modèle Ps ne peut pas être résolu par CPLEX. Il peut être transformé en un

modèle équivalent par reformulation de la contrainte (5.32) selon les trois cas suivants

: 1), la tâche k ne visite pas j; 2), la tâche k visite j via une voie réservée (i, j); 3),

la tâche k visite j via une voie non réservée (i, j). Pour chaque cas, (5.32) peut être

transformée en les contraintes suivantes (5.37), (5.38), et (5.39) :

tkj ≤M
∑

i:(i,j)∈A

(xkij + ykij), ∀k ∈ K, ∀j ∈ N\{sk}, (5.37)

tkj − tki − τij ≤M(1− xkij),
tkj − tki − τij ≥M(xkij − 1),

}
∀k ∈ K, ∀j ∈ N\{sk}, (i, j) ∈ A. (5.38)

tkj − tki − τ ∗ij(tki) ≤M(1− ykij),
tkj − tki − τ ∗ij(tki) ≥M(ykij − 1),

}
∀k ∈ K, ∀j ∈ N\{sk}, (i, j) ∈ A. (5.39)

où M est une très grande constante. Le modèle P ′
s est donc représenté comme suit :

P ′
s : min

∑
(i,j)∈A

aijzij

s.t. constraintes (5.26)− (5.31) et (5.33)− (5.39).

Bien que le modèle P ′
s ne soit pas strictement linéaire en raison de la fonction τ ∗ij, il

est linéaire par morceaux et peut être résolu par CPLEX.

132

Approche de résolution

L’approche de résolution pour le LRP-TS est fondée sur la méthode de “tabu

search”, qui est une stratégie de recherche itérative. A chaque itération de la méthode,

un “neighborhood” est généré autour de la “current solution” (pour la première

itération, il est pris comme “initial solution”). Le “neighborhood” est un ensem-

ble de solutions réalisables, qui peut être créé par une opération appelée “move” à

partir de “current solution”. La meilleure solution admissible dans ce “neighborhood”

est choisi et devient la “current solution” pour la prochaine itération. La meilleure

solution est mise à jour si la meilleure solution admissible est meilleure qu’elle. Pour

éviter de retomber dans le minimum local auquel on vient d’échapper, le mécanisme

(“tabu list”) est créé pour interdire de revenir aux dernières “moves” explorées.

La solution initiale est construite sur la base d’un algorithme modifié pour la

recherche du plus court chemin dans un réseau avec des temps de parcours dynamiques

sur les voies non réservées. L’idée est de les transformer en voies réservées une à une

jusqu’à ce que chaque tâche puisse être réalisée dans le délai prescrit.

Les solutions dans le “neighborhood” sont relatives à trois types de “move” : 1),

ajouter une nouvelle voie réservée (i′, j′) au réseau; 2), supprimer une voie réservée

(i, j) du réseau; 3), ajouter une nouvelle voie réservée (i′, j′) au réseau et supprimer

une voie réservée (i, j) du réseau. Le chemin le plus court pour chaque tâche est recal-

culé par l’algorithme modifié pour la recherche du plus court chemin. Si la plus courte

durée de parcours de chaque tâche n’est pas supérieure au délai prescrit, le “move” est

réalisable. Ensuite, la meilleure solution admissible est choisie et les voies correspon-

dant (i′, j′) et/ou (i, j) sont interdites pour quelques itérations prochaines. L’itération

de la “tabu search” est répétée jusqu’à ce qu’un nombre maximal d’itération soit at-

teint.

Expériences numériques

La performance de l’algorithme proposé a été évaluée sur des instances générées

au aléatoirement. Les résultats numériques montrent que l’algorithme proposé peut

résoudre des problèmes jusqu’à 100 nœuds et 35 tâches avec un temps de calcul CPU

raisonnable (moins de 30 minutes). Pour les instances de petite taille (25–55 nœuds

et 7–10 tâches), l’écart maximal entre la borne supérieure et la solution optimale est

5.42%. Pour les instances de grande taille (80–100 nœuds et 25–35 tâches), CPLEX ne

peut pas trouver une solution réalisable. L’écart maximal entre la borne supérieure

donnée par l’algorithme proposé et la borne inférieure obtenue par CPLEX est de

133

56.42%.

Chapitre 6 Conclusions et perspectives

Dans cette thèse, nous avons étudié quatre problèmes de réservation des voies dans les

réseaux de transport. L’objectif de la thèse est de fournir une aide à la décision pour

mettre en place la stratégie de réservation des voies. D’abord, nous avons considéré

le LRP avec le temps de parcours statique sur une voie dans chapitre 3. Ensuite,

le CLRP dans chapitre 4 prend en compte la capacité des voies. Enfin, nous avons

considéré dans le chapitre 5 les LRP-TT et LRP-TS avec le temps de parcours dy-

namique sur les voies non réservées. Pour les quatre problèmes, nous avons développé

de nouveaux modèles mathématiques du plus basique au plus élaboré (programma-

tion linéaire en nombres entiers ou programmation non linéaire en nombres mixtes).

Après l’étude des propriétés de chaque problème, nous avons proposé des méthodes

de résolution : la méthode fondée sur “cut-and-solve” pour le LRP et LRP-TT; la

méthode combinée “cut-and-solve” et méthode de coupe pour le CLRP; et la méthode

utilisant la recherche tabou pour le LRP-TS. Les algorithmes proposés permettent

de trouver des solutions optimales ou proches de l’optimum. Les performances des

algorithmes proposés sont évaluées par des expériences numériques.

Plusieurs études restent à faire pour la recherche future. D’abord, l’impact de la

seule voie réservée est considéré comme paramètre d’entrée des problèmes. En fait,

ce paramètre est très complexe car de nombreux facteurs, comme le type des voies

et l’emplacement des voies réservées dans le réseau, y contribuent. Il est nécessaire

d’étudier systématiquement ce paramètre. Il devient difficile de résoudre le LTP-TT et

LRP-TS pour des instances de grande taille, en particulier le LTP-TS. Un algorithme

efficace doit être développé pour trouver une borne inférieure de meilleure que celle

obtenue par CPLEX enfin d’évaluer la recherche tabou proposée dans chapitre 5.

Enfin, avec le volume de transport croissant au quotidien et le processus d’intégration

de l’économie mondiale, bien gérer le trafic devient de plus en plue important. La

stratégie de réservation des voies fournit une alternative pour les gestionnaires. Comme

pour toute stratégie de gestion de la circulation, il est nécessaire de bien examiner

tous les effets positifs et négatifs avant de l’appliquer les décissions dans la vie réelle.

Enfin, cette stratégie doit aussi s’intégrer dans la conception de systèmes de transport

intelligents.

134

Bibliography

[1] Approximation algorithm. http://en.wikipedia.org/wiki/Approximation_

algorithm.

[2] HOV lane/current evaluation results. Oregon Department of Transportation,

2001.

[3] A. F. Abdelghany, K. F. Abdelghany, H. S. Mahmassani, and P. M. Murray.

Dynamic traffic assignment in design and evaluation of high-occupancy toll lanes.

Transportation Research Record: Journal of the Transportation Research Board,

1733:39–48, 2000.

[4] R. Ahuja, T. Magnanti, and J. Orlin. Network flows: theory, algorithms, and

applications. 1993.

[5] K. S. Al-Sultan and M. A. Al-Fawzan. A tabu search approach to the unca-

pacitated facility location problem. Annals of Operations Research, 86:91–103,

1999.

[6] V. T. Arasan and P. Vedagiri. Bus priority on roads carrying heterogeneous

traffic: a study using computer simulation. European Journal of Transport and

Infrastructure Research, 8(1):45–64, 2008.

[7] V. T. Arasan and P. Vedagiri. Study of the impact of exclusive bus lane under

highly heterogeneous traffic condition. Public Transport, 2(1–2):135–155, 2010.

[8] N. Azi, M. Gendreau, and J.-Y. Potvin. An exact algorithm for a single-vehicle

routing problem with time windows and multiple routes. European journal of

operational research, 178(3):755–766, 2007.

[9] N. Bansal, A. Blum, S. Chawla, and A. Meyerson. Approximation algorithms

for deadline-tsp and vehicle routing with time-windows. In Proceedings of the

thirty-sixth annual ACM symposium on Theory of computing, Chicago, USA,

2004. ACM.

135

[10] M. Burris and E. Sullivan. Benefit-cost analysis of variable pricing projects:

QuickRide HOT lanes. Journal of Transportation Engineering, 132(3):183–190,

2006.

[11] I. Chabini. A new algorithm for shortest paths in discrete dynamic networks.

In Proceedings of the 8th IFAC Symposium on Transportation Systems, Chania,

Greece, 1997.

[12] M.-S. Chang, S.R. Chen, and C.-F. Hsueh. Real-time vehicle routing problem

with time windows and simultaneous delivery/pickup demands. Journal of the

Eastern Asia Society for Transportation Studies, 5:2273–2286, 2003.

[13] Z. Chen and H. Xu. Dynamic column generation for dynamic vehicle routing

with time windows. Transportation Science, 40(1):74–88, 2006.

[14] D. Choi and W. Choi. Effects of an exclusive bus lane for the oversaturated

freeway in Korea. In Institute of Transportation Engineers 65th Annual Meeting,

1995.

[15] F. A. Chudak and D. B. Shmoys. Improved approximation algorithms for the

uncapacitated facility location problem. SIAM Journal on Computing, 33(1):1–

25, 2003.

[16] S. Climer and W. Zhang. Cut-and-solve: An iterative search strategy for combi-

natorial optimization problems. Artificial Intelligence, 170(8-9):714–738, 2006.

[17] J.-F. Cordeau, G. Laporte, M. W. P. Savelsbergh, and D. Vigo. Vehicle routing.

Handbooks in Operations Research and Management Science. North-Holland,

Amsterdam, 2007.

[18] H. Crowder, E.L. Johnson, and M. Padberg. Solving large-scale zero-one linear

programming problems. Operations Research, 31(5):803–834, 1983.

[19] E.W. Dijkstra. A note on two problems in connexion with graphs. Numerische

mathematik, 1(1):269–271, 1959.

[20] C. Dobre, V. Cristea, and L. Iftode. ILRSH: Intelligent lane reservation system

for highway(s). In 2012 Sixth International Conference on Complex, Intelligent,

and Software Intensive Systems, pages 747–754, Palermo, Italy, Jul. 2012.

136

[21] Marco Dorigo. Optimization, learning and natural algorithms. PhD thesis, Po-

litecnico di Milano, Italy, 1992.

[22] S. Falbel, P. Rodriguez, H. Levinson, K. Younger, and S. Misiewicz. Bus rapid

transit plans in New York’s capital district. Journal of Public Transportation,

9:23–49, 2006.

[23] Y. Fang, F. Chu, S. Mammar, and A. Che. A cut-and-solve based algorithm for

optimal lane reservation with dynamic link travel times. International Journal

of Production Research (accepted).

[24] Y. Fang, F. Chu, S. Mammar, and A. Che. An optimal algorithm for auto-

mated truck freight transportation via lane reservation strategy. Transportation

Research Part C: Emerging Technologies, 26:170–183, 2013.

[25] Y. Fang, F. Chu, S. Mammar, and M. Zhou. Optimal lane reservation in trans-

portation network. IEEE Transactions on Intelligent Transportation Systems,

13(2):482–491, 2012.

[26] Federal Highway Administration. http://ops.fhwa.dot.gov/publications/

fhwahop09029/sec2_operational.htm.

[27] R.W. Floyd. Algorithm 97: shortest path. Communications of the ACM,

5(6):345, 1962.

[28] C. Fuhs and J. Obenberger. Development of high-occupancy vehicle facilities:

Review of national trends. Transportation Research Record, 1781:1–9, 2002.

[29] V. Gabrel, A. Knippel, and M. Minoux. Exact solution of multicommodity

network optimization problems with general step cost functions. Operations

Research Letters, 25(1):15–23, 1999.

[30] G. Gallo and S. Pallottino. Shortest path algorithms. Annals of Operations

Research, 13(1):1–79, 1988.

[31] N. Garg and J. Köenemann. Faster and simpler algorithms for multicommod-

ity flow and other fractional packing problems. SIAM Journal on Computing,

37(2):630–652, 2007.

[32] M. Gendreau, F. Guertin, J.-Y. Potvin, and E. Taillard. Parallel tabu search for

real-time vehicle routing and dispatching. Transportation science, 33(4):381–390,

1999.

137

[33] F. Glover. Future paths for integer programming and links to artificial intelli-

gence. Computers & Operations Research, 13(5):533–549, 1986.

[34] F. Glover. Tabu search: A tutorial. Interfaces, 20(4):74–94, 1990.

[35] F. Glover, R. Glover, and D. Klingman. Computational study of an improved

shortest path algorithm. Networks, 14(1):25–36, 1984.

[36] Fred Glover. Tabu search–part I. ORSA Journal on computing, 1(3):190–206,

1989.

[37] A. Haghani and S. Jung. A dynamic vehicle routing problem with time-dependent

travel times. Computers & operations research, 32(11):2959–2986, 2005.

[38] J.H. Holland. Adaptation in natural and artificial systems. Ann Arbor, MI:

University of Michigan Press, 1975.

[39] F. K. Hwang, D. S. Richards, and P. Winter. The Steiner tree problem. North

Holland, Amsterdam, The Netherlands, 1992.

[40] S. Ichoua, M. Gendreau, and J.-Y. Potvin. Vehicle dispatching with time-

dependent travel times. European Journal of Operational Research, 144(2):379–

396, 2003.

[41] Liviu Iftode, Stephen Smaldone, Mario Gerla, and James Misener. Active high-

ways (position paper). In IEEE 19th International Symposium on Personal,

Indoor and Mobile Radio Communications, pages 1–5, Cannes, France, Sept.

2008.

[42] K. Kaparis and A.N. Letchford. Separation algorithms for 0-1 knapsack poly-

topes. Mathematical programming, 124(1):69–91, 2010.

[43] S. Karim. The effect of bus lane on the travel time of other modes using float-

ing car method. In Proceedings of the Eastern Asia Society for Transportation

Studies, pages 135–149, Fukuoka, Japan, Oct. 2003.

[44] R.M. Karp. Reducibility among combinatorial problems. Complexity of Computer

Computations. Plenum Press, New York, 1972.

[45] D. E. Kaufman and R. L. Smith. Fastest paths in time-dependent networks

for intelligent vehicle-highway systems application. Journal of Intelligent Trans-

portation Systems, 1(1):1–11, 1993.

138

[46] S. Kirkpatrick, C.D. Gelatt, and M.P. Vecchi. Optimization by simmulated

annealing. Science, 220(4598):671–680, 1983.

[47] J. Kwon and P. Varaiya. Effectiveness of California’s high occupancy vehi-

cle (HOV) system. Transportation Research Part C: Emerging Technologies,

16(1):98–115, 2008.

[48] T. Leighton, F. Makedon, S. Plotkin, C. Stein, E. Tardos, and S. Tragoudas.

Fast approximation algorithms for multicommodity flow problems. Journal of

Computer and System Sciences, 50(2):228–243, 1995.

[49] H. S. Levinson, S. Zimmerman, J. Clinger, and J. Gast. Bus rapid transit:

synthesis of case studies. Transportation Research Record, 1841:1–11, 2003.

[50] H. S. Levinson, S. Zimmerman, J. Clinger, and S. C. Rutherford. Bus rapid

transit: An overview. Journal of Public Transportation, 5(2):1–30, 2002.

[51] R. B. Machemehl, T. W. Rioux, A. Tsyganov, and P. Poolman. Freeway opera-

tional flexibility concepts. Technical report, NO. 1844-1, Center for Transporta-

tion Research, University of Texas at Austin, Austin, Texas, 2001.

[52] C Maclennan. Priority for public transport and other high occupancy vehicles

on urban roads. Routes/Roads, Special II(10.07 A):5–38, 1995.

[53] C. Malandraki and M. S. Daskin. Time dependent vehicle routing problems:

Formulations, properties and heuristic algorithms. Transportation Science,

26(3):185–200, 1992.

[54] C. Malandraki and R. B. Dial. A restricted dynamic programming heuristic

algorithm for the time dependent traveling salesman problem. European Journal

of Operational Research, 90(1):45–55, 1996.

[55] P. Martin, J. Perrin, R. Lambert, and P. Wu. Evaluate effectiveness of high oc-

cupancy vehicle (HOV) lanes. Technical report, NO. UTL-1001-48, Civil & En-

vironmental Engineering Department, University of Utah, Salt Lake City, Utah,

2002.

[56] P. M. Murray, H. S. Mahmassani, and K. F. Abdelghany. Methodology for as-

sessing high-occupancy toll-lane usage and network performance. Transportation

Research Record: Journal of the Transportation Research Board, 1765:8–15, 2001.

139

[57] B. G. Perez, G.-C. Sciara, and P. Brinckerhoff. A guide for HOT lane de-

velopment. Federal Highway Administration, US Department of Transporta-

tion, http://ntl.bts.gov/lib/jpodocs/repts_te/13668_files/chapter_1.

htm, 2003.

[58] D. T. Pham and D. Karaboga. Intelligent Optimisation Techniques: Genetic

Algorithms, Tabu Search, Simulated Annealing and Neural Networks. Springer,

London, 2000.

[59] R. W. Poole Jr and C. K. Orski. HOT lanes: a better way to attack urban

highway congestion. Regulation, 23(1):15–20, 2000.

[60] J. Princeton and S. Cohens. Impact of a dedicated lane on the capacity and the

level of service of an urban motorway. Procedia Social and Behavioral Sciences,

16:196–206, 2011.

[61] R. Ramakers, K. Henning, S. Gies, D. Abel, and H. Max. Electronically coupled

truck platoons on german highways. In 2009 IEEE International Conference on

Systems, Man and Cybernetics, pages 2409–2414, Oct. 2009.

[62] N. Ravi, S. Smaldone, L. Iftode, and M. Gerla. Lane reservation for highways

(position paper). In Proceeding of IEEE International Conference on Intelligent

Transportation Systems, pages 795–800, Seattle, WA, USA, Aug. 2007.

[63] M. G. C. Resende and R. F. Werneck. A hybrid multistart heuristic for the unca-

pacitated facility location problem. European Journal of Operational Research,

174(1):54–68, 2006.

[64] S. Sarin, A. S. Sarna, and B. Sharme. Experience with bus lanes under mixed

traffic conditions. In Institute of Transportation Engineers 53rd Annual Meeting,

1983.

[65] S. Schijns and P. Eng. Brisbane, Australia–HOV metropolis? In 10th Inter-

national Conference on High–Occupancy Vehicle Systems, Dallas, Texas, Aug.

2000.

[66] A. S. Shalaby. Simulating performance impacts of bus lanes and supporting

measures. Journal of transportation engineering, 125(5):390–397, 1999.

140

[67] S. E. Shladover. Truck automation operational concept alternatives. In 2010

IEEE Intelligent Vehicles Symposium, pages 1072–1077, San Diego, USA, Jun.

2010.

[68] D. B. Shmoys, É. Tardos, and K. Aardal. Approximation algorithms for facility

location problems. In Proceedings of the twenty-ninth annual ACM symposium

on Theory of computing, El Paso, Texas, USA, 1997.

[69] N. Smith and D. Hensher. The future of exclusive busways: the Brazilian expe-

rience. Transport Reviews, 18(2):131–152, 1998.

[70] M. M. Solomon. Algorithms for the vehicle routing and scheduling problems

with time window constraints. Operations Research, 35(2):254–265, 1987.

[71] E. Sullivan and M. Burris. Benefit-cost analysis of variable pricing projects: SR-

91 express lanes. Journal of transportation engineering, 132(3):191–198, 2006.

[72] D. Tcha and B. Lee. A branch-and-bound algorithm for the multi-level unca-

pacitated facility location problem. European Journal of Operational Research,

18(1):35–43, 1984.

[73] J. A. Tomlin. Minimum-cost multicommodity network flows. Operations Re-

search, 14(1):45–51, 1966.

[74] S. Tragantalerngsak, J. Holt, and M. Rönnqvist. Lagrangian heuristics for the

two-echelon, single-source, capacitated facility location problem. European Jour-

nal of Operational Research, 102(3):611–625, 1997.

[75] H.-S. J. Tsao and J. L. Botha. An automated highway system dedicated to inter-

city trucking: Design options, operating concepts, and deployment. Journal

of Intelligent Transportation Systems: Technology, Planning, and Operations,

7(2):169–196, 2002.

[76] H.S.J. Tsao and J.L. Botha. Definition and evaluation of bus and truck au-

tomation operations concepts. Technical report, No. UCB-ITS-PRR-2003-19,

California Partners for Advanced Transit and Highways (PATH), Institute of

Transportation Studies (UCB), UC Berkeley, 2003.

[77] S. Tsugawa, S. Kato, and K. Aoki. An automated truck platoon for energy

saving. In 2011 IEEE/RSJ International Conference on Intelligent Robots and

Systems, pages 4109–4114, San Francisco, CA, USA, Aug. 2011.

141

[78] K. F. Turnbull. HOV project case studies: history and institutional arrange-

ments. Technical report, NO. DOT-T-92-13, Texas Transportation Institute,

Texas A & M University System, College Station, Texas, 1990.

[79] K. F. Turnbull. HOV and HOT lanes in the United States. In Proceedings of

European Transport Conference, Strasbourg, France, Sept. 2005.

[80] K. F. Turnbull and T. DeJohn. New Jersey I-80 and I-287 HOV lane case study.

Technical report, NO. FHWAOP-00-018, Texas Transportation Institute, Texas

A & M University System, College Station, Texas, 2000.

[81] B. M. Waxman. Routing of multipoint connections. IEEE Journal on Selected

Areas in Communications, 6(9):1617–1622, 1988.

[82] L. Wei and T. Chong. Theory and practice of bus lane operation in Kunming.

DISP, 151:68–72, 2002.

[83] Y. Wu, C. Chu, F. Chu, and N. Wu. Heuristic for lane reservation problem

in time constrained transportation. In Proceedings of Automation Science and

Engineering, pages 543–548, Bangalore, India, Aug. 2009.

[84] Y. Wu and N. Wu. An approximate algorithm for the lane reservation problem

in time constrained transportation. In 2010 2nd International Conference on

Advanced Computer Control (ICACC), pages 192–196, Shenyang, China, Mar.

2010.

[85] H. Yang and W. Wang. An innovative dynamic bus lane system and its

simulation-based performance investigation. In Proceedings of Intelligent Ve-

hicles Symposium, Xi’an, China, Jun. 2009.

[86] Zhen Yang, Feng Chu, and Haoxun Chen. A cut-and-solve based algorithm

for the single-source capacitated facility location problem. European Journal of

Operational Research, 221(3):521–532, 2012.

[87] A. K. Ziliaskopoulos and H. S. Mahmassani. Time-dependent,shortest-path algo-

rithm for real-time intelligent vehicle highway system applications. Transporta-

tion Research Record, (1408):94–100, 1993.

142

Etude des problèmes de réservation de
voies dans un réseau de transport

Le concept de réservation de voies a été présenté
comme une stratégie de gestion du trafic et a de
nombreuses applications dans la vie réelle. Des
études antérieures dans la littérature se concentrent
principalement sur l'impact de la réservation de
voies dans une région locale d’un réseau de
transport. Dans cette thèse, les problèmes de
réservation de voies sont étudiés dans le but de
minimiser l'impact total sur le trafic par la
réservation de voies dans un réseau de transport.
Nous avons d’abord étudié le problème de
réservation de voies (LRP) pour les poids lourds
automatisé avec temps de déplacement statique. Ce
travail est généralisé au problème de réservation de
voies avec une capacité limitée de la voie (CLRP)
pour les grands événements spéciaux. Enfin, le
problème de réservation de voies avec le temps de
déplacement dynamique (LRP-TT) et le problème de
réservation de voies avec la vitesse de déplacement
dynamique (LRP-TS) sont étudiés. Pour chacun des
problèmes étudiés, les modèles mathématiques
appropriés sont formulés, leurs complexités sont
démontrées. Différentes méthodes de résolution
sont explorées, y compris une méthode exacte cut-
and-solve, une méthode de cut-and-solve et plan de
coupe combinée et une méthode de recherche
tabou. Les performances des algorithmes proposés
sont évaluées par des instances générées
aléatoirement. Les résultats numériques ont montré
que les algorithmes proposés sont plus efficaces
que le logiciel commercial CPLEX.

Mots clés : réservations de voie - problèmes de
transport (programmation) - optimisation
combinatoire - transport de marchandises.

Yunfei FANG
Doctorat : Optimisation et Sûreté des Systèmes

Année 2013

Study of Lane Reservation Problems in a
Transportation Network

The concept of lane reservation has been introduced
as a traffic management strategy and has many
applications in real life. Previous studies in the
literature mainly focus on the impact of lane
reservation in a local region of transportation
network. In this thesis optimal lane reservation
problems are studied with the objective to minimize
impact on total traffic by optimally setting reserved
lanes in a transportation network. We firstly focus
on the lane reservation problem (LRP) for automated
truck freight transportation with static link travel
time. This primary work has been extended to the
capacitated lane reservation problem (CLRP) for
large-scale special events. Finally, lane reservation
problem with time-dependent travel time (TTLRP),
and lane reservation problem with time-dependent
travel speed (TSLRP) are studied. For each of the
considered problems, appropriate mathematical
models are formulated, their complexities are
demonstrated. Different resolution methods are
explored including exact cut-and-solve method, cut-
and-solve and cutting plane combined method, and
Tabu-search method. The performance of the
proposed algorithms is evaluated by randomly
generated instances. Numerical results have shown
that the proposed algorithms are more effective to
solve the considered problems than the reference
commercial package CPLEX.

Keywords: reservation systems - transportation
problems (programming) - combinatorial
optimization - freight and freightage.

Ecole Doctorale "Sciences et Technologies"

Thèse réalisée en partenariat entre :

	cover
	MyThesis

