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Abstract

Title: A Semantic Foundation for Gradual Set-Theoretic Types

Keywords: Type Systems · Programming Languages · Gradual Typing · Set-Theoretic Types ·
Semantic Subtyping · Denotational Semantics · Type Inference · Dynamic Typing · Static Typing

In this thesis, we study the interaction between set-theoretic types and gradual typing. Set-
theoretic types are types containing union, intersection, and negation connectives, which are
useful to type several programming language constructs very precisely. For example, union types
can be used to give a very precise type to a conditional instruction, while intersection types can
encode function overloading. On the other hand, gradual typing allows a programmer to bypass
the type-checker, which can be useful when prototyping.

Set-theoretic types are well-suited to a semantic-based approach called "semantic subtyping",
in which types are interpreted as sets of values, and subtyping is dened as set-containment
between these sets. We adopt this approach throughout the entirety of this thesis. Since set-
theoretic types are characterized by their semantic properties, they can be easily embedded in
existing type systems. This contrasts with gradual typing, which is an intrinsically syntactic
concept since it relies on the addition of a type annotation to inform the type-checker not to
perform some checks. In most of the existing literature, gradual typing is added by extending
the subtyping relation in a syntactic way. This makes the approach very dicult to extend and
generalize as this heavily depends on the system at hand.

In this thesis, we try and reconcile the two concepts, by proposing several semantic interpre-
tations of gradual typing. The manuscript is divided into two parts. In the rst part, we propose
a new approach to integrate gradual typing in an existing static type system. The originality
of this approach comes from the fact that gradual typing is added in a declarative way to the
system by adding a single logical rule. As such, we do not need to revisit and modify all the
existing rules. We then propose, for each declarative type system, a corresponding algorithmic
type system, based on constraint solving algorithms. We illustrate this approach on two dier-
ent systems. The rst system is a Hindley-Milner type system without subtyping. We present a
gradually-typed source language, a target language featuring dynamic type checks (or "casts"), as
well as a compilation algorithm from the former to the latter. We then extend this language with
set-theoretic types and subtyping on gradual set-theoretic types, and repeat this presentation.

In the second part of this manuscript, we explore a dierent approach to reconcile set-theoretic
types and gradual typing. While the rst part of the thesis can be seen as a logical approach to
tackle this problem, the second part sets o along a more semantic strategy. In particular, we
study whether it is possible to reconcile the interpretation of types proposed by the semantic
subtyping approach and the interpretation of the terms of a language. The ultimate goal be-
ing to dene a denotational semantics for a gradually-typed language. We tackle this problem
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in several steps. First, we dene a denotational semantics for a simple lambda-calculus with
set-theoretic types, based directly on the semantic subtyping approach. This highlights several
problems, which we explain and x by adapting the approach we used. We then extend this by
giving a formal denotational semantics for the functional core of CDuce, a language featuring
set-theoretic types and several complex constructs, such as type-cases, overloaded functions, and
non-determinism. Finally, we study a gradually-typed lambda-calculus, for which we present a
denotational semantics. We also give a set-theoretic interpretation of gradual types, which allow
us to derive some very powerful results about the representation of gradual types.
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Résumé

Titre : Types Ensemblistes Graduels

Mots-clefs : Systèmes de types · Langages de programmation · Typage graduel · Types en-
semblistes · Sous-typage sémantique · Sémantique dénotationnelle · Inférence de types · Typage
dynamique · Typage statique

Cette thèse porte sur l’étude des interactions entre les types ensemblistes et le typage graduel.
Les types ensemblistes sont des types proposant des connecteurs d’union, d’intersection, et de
négation, qui permettent de typer des programmes demanière très ne et puissante. Par exemple,
l’union permet de spécier très précisément le type d’une instruction conditionnelle, tandis que
l’intersection permet d’encoder la surcharge de fonctions dans le système de types. À l’opposé,
le typage graduel permet au programmeur d’outrepasser les vérications statiques réalisées par
le système de types, an, par exemple, d’accélérer la phase de prototypage.

Les types ensemblistes se prêtent naturellement à une approche sémantique, dans laquelle
laquelle les types sont interprétés comme des ensembles de valeurs, et le sous-typage est déni
comme l’inclusion ensembliste sur ces ensembles. Cette approche, dite du sous-typage séman-
tique, est adoptée tout au long de cette thèse. À l’inverse, le typage graduel est une notion beau-
coup plus syntaxique: c’est à l’aide d’une annotation explicite que le programmeur spécie au
type-checker de ne pas réaliser de vérications. Dans la plupart des travaux existants, la relation
de sous-typage est étendue de manière ad-hoc et syntaxique pour supporter le typage graduel,
ce qui la rend très rigide et peu extensible.

Dans cette thèse, nous tâchons de réconcilier les deux approches, en proposant des interpré-
tations plus sémantiques du typage graduel. Le manuscrit est composé de deux parties. Dans
la première partie, nous proposons une nouvelle approche permettant d’étendre de manière au-
tomatique un système de types avec du typage graduel. L’originalité de cette approche vient du
fait que le typage graduel est ajouté de manière déclarative au système à l’aide d’une simple règle
logique. Ainsi, il n’est pas nécessaire de modier les règles existantes, comme cela est souvent
fait. Nous proposons ensuite des versions algorithmiques, basées sur des algorithmes de réso-
lution de contraintes, pour chaque système déclaratif. Nous illustrons cette approche sur deux
systèmes diérents. Le premier est un système de types à la Hindley-Milner sans sous-typage.
Nous décrivons un langage source graduellement typé, un langage cible comportant des vérica-
tions de type dynamiques (aussi appelées « casts »), ainsi qu’un algorithme de compilation pour
passer du premier au second. Nous répétons ensuite cette présentation en étendant ce langage
avec des types ensemblistes, ainsi qu’avec une relation de sous-typage sur les types graduels en-
semblistes.

Dans la deuxième partie du manuscrit, nous abordons la réconciliation des types graduels et
des types ensemblistes sous un autre angle. Tandis que la première partie propose une approche
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logique, la seconde partie tente de fournir une approche plus sémantique de ce problème. Plus
particulièrement, dans cette partie nous tentons de réconcilier l’interprétation des types pro-
posées par l’approche du sous-typage sémantique avec l’interprétation des expressions d’un lan-
gage, ceci dans l’optique de proposer une sémantique dénotationnelle pour un langage graduelle-
ment typé. Nous attaquons ce problème en plusieurs étapes. Tout d’abord, nous proposons une
sémantique dénotationnelle pour un lambda-calcul simple, basée directement sur l’approche du
sous-typage sémantique. Ceci nous mène à remarquer quelques problèmes, que nous corrigeons
en modiant l’approche considérée. Nous continuons ensuite en fournissant une sémantique
dénotationnelle complète pour la partie fonctionnelle du langage CDuce, un langage support-
ant des types ensemblistes ainsi que diverses constructions complexes (fonctions surchargées,
tests de type dynamiques, non-déterminisme). Enn, nous nous intéressons à un lambda-calcul
graduellement typé, pour lequel nous proposons une sémantique dénotationnelle. Nous pro-
posons aussi une interprétation ensembliste des types graduels qui nous mène à des résultats
puissants portant sur la représentation des types graduels.
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Résumé long

Titre : Types Ensemblistes Graduels

Mots-clefs : Systèmes de types · Langages de programmation · Typage graduel · Types en-
semblistes · Sous-typage sémantique · Sémantique dénotationnelle · Inférence de types · Typage
dynamique · Typage statique

Cette thèse porte sur l’étude des interactions entre les types ensemblistes et le typage graduel.
Les types ensemblistes sont des types proposant des connecteurs d’union, d’intersection, et de
négation, qui permettent de typer des programmes demanière très ne et puissante. Par exemple,
l’union permet de spécier très précisément le type d’une instruction conditionnelle, tandis que
l’intersection permet d’encoder la surcharge de fonctions dans le système de types. À l’opposé,
le typage graduel permet au programmeur d’outrepasser les vérications statiques réalisées par
le système de types, an, par exemple, d’accélérer la phase de prototypage.

Les types ensemblistes se prêtent naturellement à une approche sémantique, dans laquelle
les types sont interprétés comme des ensembles de valeurs, et le sous-typage est déni comme
l’inclusion ensembliste sur ces ensembles. Cette approche, dite du sous-typage sémantique, est
adoptée tout au long de cette thèse. À l’inverse, le typage graduel est une notion beaucoup
plus syntaxique: c’est à l’aide d’une annotation explicite que le programmeur spécie au type-
checker de ne pas réaliser de vérications. Dans la plupart des travaux existants, la relation de
sous-typage est étendue de manière ad-hoc et syntaxique pour supporter le typage graduel, ce
qui la rend très rigide et peu extensible.

Dans cette thèse, nous tâchons de réconcilier les deux approches, en proposant des interpréta-
tions plus sémantiques du typage graduel. Lemanuscrit est composé de deux parties. La première
présente une approche logique qui permet d’ajouter du typage graduel à un système existant de
manière très simple. La seconde partie propose une étude plus sémantique de l’interaction entre
types graduels et types ensemblistes. Le point culminant de cette partie est la dénition d’une
sémantique ensembliste des types graduels, qui permet de simplier grandement l’approche
présentée dans la première partie.

Une approche logique du typage graduel

Dans la première partie de cemanuscrit, nous présentons une approche dite déclarative du typage
graduel. Ce travail avait initialement pour but d’intégrer le typage graduel dans un langage
supportant à la fois polymorphisme, types ensemblistes, et inférence de types. Cependant, cela
a débouché sur une nouvelle approche permettant d’ajouter du typage graduel à tout langage
supportant des types polymorphes.
L’aspect principal de notre contribution à ce problème réside dans notre interprétation des

types graduels comme des types polymorphes. Dans la littérature existante, les types graduels
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sont souvent manipulés à l’aide d’une relation appelée consistency, notée ∼, dénie syntaxique-
ment à l’aide de règles d’inférence telles que:

? ∼ 𝜏 𝜏 ∼ ?

𝜏1 ∼ 𝜏 ′1 𝜏2 ∼ 𝜏 ′2

𝜏1 → 𝜏2 ∼ 𝜏 ′1 → 𝜏 ′2

Ces règles ont la particularité de dénir une relation ∼ non-transitive: sa fermeture transitive
est la relation totale sur les types, car tout type est en relation avec ?, qui est lui-même en relation
avec tout type. Ceci empêche la relation ∼ d’être utilisée dans une règle de subsumption comme
le serait une règle de sous-typage, et elle doit donc être ajoutée de manière ad-hoc dans les règles
d’élimination. Par exemple, les règles de typage des applications peuvent s’écrire:

Γ ` 𝑒1 : 𝜏1 → 𝜏 Γ ` 𝑒2 : 𝜏2
Γ ` 𝑒1𝑒2 : 𝜏

𝜏1 ∼ 𝜏2
Γ ` 𝑒1 : ? Γ ` 𝑒2 : 𝜏2

Γ ` 𝑒1𝑒2 : ?

Bien que cette approche fonctionne, elle est dicilement extensible. En particulier, la relation
∼ étant dénie très syntaxiquement, il est dicile de l’étendre à des types inhéremment séman-
tiques, comme les types ensemblistes. Il est aussi nécessaire de modier chaque règle de typage
pour y ajouter la possibilité d’utiliser cette relation.
An de résoudre ces problèmes, notre approche propose d’introduire le typage graduel via une

simple règle de subsumption dénie sémantiquement. Nous dénissons d’abord une opération
appelée discrimination qui remplace chaque occurrence de ? dans un type graduel par une vari-
able de type arbitraire. Cette opération nous permet de transformer des types graduels en des
types statiques (i.e., non-graduels) polymorphes. Puis, en raisonnant en termes de substitutions
de variables de type, nous dénissons une opération de précision, notée 4, telle qu’un type 𝜏1 est
dit être plus précis qu’un type 𝜏2 si le second peut-être obtenu en remplaçant des occurrences de
? dans le premier par d’autres types.
Cette relation de précision a l’avantage d’être transitive. Ainsi, elle peut être utilisée dans une

règle de subsumption de la façon suivante:

[TMater]
Γ ` 𝑒 : 𝜏
Γ ` 𝑒 : 𝜏 ′

𝜏 4 𝜏 ′

Nousmontrons ainsi que beaucoup des systèmes de types graduels présentés dans la littérature
existante peuvent être obtenus très facilement en partant d’un système de types standards (non
graduels) et en y ajoutant simplement la règle [TMater].
Pour illustrer notre approche, nous considérons dans cette partie trois systèmes de complexité

croissante. Dans le Chapitre 4, nous considérons un langage à la ML, avec polymorphisme du let,
mais sans sous-typage. Nous expliquons, étape par étape, comment dénir le langage source et
son système de types de manière déclarative, comment en déduire une présentation déclarative
du langage de casts associé, puis nous abordons les aspects algorithmiques. Nous présentons
notamment la sémantique opérationnelle du langage de casts, ainsi que l’algorithme d’inférence
de types et de compilation permettant de passer du langage source au langage de casts.
Dans la n du Chapitre 4, nous discutons brièvement des problèmes que l’ajout du sous-

typage causerait pour l’algorithme d’inférence de types. En particulier, nous montrons qu’an de
préserver la complétude de cet algorithme en présence de sous-typage, il est nécessaire d’introduire
des types ensemblistes.
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Ceci nous mène au Chapitre 5, dans lequel nous ajoutons des types ensemblistes et du sous-
typage sémantique à notre langage. Cependant, la simple relation de sous-typage sémantique
dénie en Chapitre 2 s’avère insusante, car elle n’est pas dénie sur les types graduels. Il faut
donc l’étendre à ces derniers. Pour ce faire, nous nous basons une fois de plus sur l’opération
de discrimination que nous avons déni dans le chapitre précédent. En interprétant les types
graduels comme des types statiques polymorphes, nous montrons comment réduire le problème
du sous-typage des types ensemblistes graduels au sous-typage sémantique tel que déni dans
le Chapitre 2. Cela nous permet, entre autres, de réutiliser tous les algorithmes de sous-typage
et d’inférence de types existants.

Sémantique dénotationnelle

La seconde partie du manuscrit est dédiée à l’étude de sémantiques dénotationnelles. Bien que
puissant, le formalisme développé en première partie a mis en valeur d’importantes lacunes dans
notre compréhension des types graduels ensemblistes. En particulier, notre dénition de la re-
lation de précision reste fondamentalement syntaxique, ce qui se ressent particulièrement lors
de la dénition de la sémantique opérationnelle du langage de casts présenté en Chapitre 5. De
nombreux invariants syntaxiques doivent être préservés par réduction, ce qui rend les règles de
réduction particulièrement complexes.
En étudiant les types graduels ensemblistes d’un point de vue dénotationnel, nous espéri-

ons pouvoir obtenir une interprétation ensembliste de ces types, et en déduire des dénitions
sémantiques des relations de sous-typage et de précision. Cependant, dénir une sémantique
dénotationnelle pour un langage graduellement typé avec types ensemblistes s’est avéré être
une tâche particulièrement complexe. Ainsi, nous avons procédé en plusieurs étapes de diculté
croissante.
Tout d’abord, dans le Chapitre 9, nous considérons des types ensemblistes non-graduels, et

nous dénissons une sémantique dénotationnelle pour un lambda-calcul simple équipé de ces
types. L’importance de cette sémantique réside dans le fait que les termes du langage et les types
sont interprétés dans le même domaine. Ainsi, en reliant l’interprétation des types et les valeurs
d’un langage, ce chapitre apporte une brique manquante à l’édice du sous-typage sémantique.
Tout n’est pas cependant parfait : le domaine d’interprétation sus-cité est malheureusement

trop limité pour interpréter parfaitement certains termes dénotationnellement. Ainsi, dans le
Chapitre 10, nous modions ce domaine an de résoudre ce problème. Cela nous permet de cor-
riger notre sémantique dénotationnelle, et nous prouvons qu’elle est à la fois correcte et adéquate,
ce qui prouve son exactitude. Nous prouvons de plus que la relation de sous-typage induite par
la nouvelle interprétation des types sur ce domaine est exactement identique à celle induite par
l’approche du sous-typage sémantique. Ainsi, les conclusions du chapitre précédent restent val-
ables malgré les modications réalisées.
Dans le Chapitre 11, nous étendons ensuite notre sémantique au langageCDuce . Pour ce faire,

nous ajoutons trois éléments principaux: la dérivation de types intersections pour les fonctions,
une forme de choix non déterministe, et des tests de types dynamiques. Chacun de ces éléments
nécessite une modication supplémentaire du domaine d’interprétation des types et des termes
du langage.
Il est relativement aisé d’adapter la sémantique dénotationnelle du chapitre précédent an

de supporter le choix non déterministe ainsi que les tests de types dynamiques. En revanche,
l’inférence de types intersections pour les fonctions est plus problématique. Notre solution né-
cessite l’ajout de nouveaux éléments au domaine d’interprétation des types et des termes, ainsi
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qu’unemodication des règles de typage du langageCDuce an de ne pas autoriser l’inférence de
négations de types arbitraires. Nous parvenons alors, avec cesmodications, à dénir une séman-
tique dénotationnelle correcte pour le langage CDuce modié. De plus, à la n du Chapitre 11,
nous démontrons que les modications apportées à CDuce ne sont nalement que peu contraig-
nantes : nous montrons en eet qu’il est possible, pour chaque terme du langage CDuce , de
trouver un terme de notre langage qui se comporte exactement de la même façon par bisimula-
tion. Ainsi, le formalisme développé dans ce chapitre reste compatible avec le langage CDuce .

La sémantique des types graduels

Après avoir développé une sémantique dénotationnelle pour CDuce , nous revenons à notre
objectif initial : celui de dénir une sémantique ensembliste des types graduels, ainsi qu’une sé-
mantique dénotationnelle pour un langage de casts. Cette étude est présentée dans le Chapitre 12.
Pour des raisons de simplicité, la sémantique présentée dans ce chapitre est basée sur la séman-
tique présentée en Chapitre 10, et ne comporte donc pas les concepts plus avancés présentés en
Chapitre 11.
Nous commençons ce chapitre par la dénition d’une sémantique ensembliste des types gradu-

els ensemblistes. L’idée principale derrière cette sémantique est de distinguer les valeurs appar-
tenant certainement à un type des valeurs appartenant possiblement à un type, sous réserve que
les occurrences du type dynamique ? dans ce type soient résolues vers le bon type statique.
Ainsi, par exemple, le type ? contient possiblement toutes les valeurs, mais n’en contient aucune
certainement. À l’inverse, le type Int des entiers contient certainement toutes les valeurs en-
tières, mais n’en contient aucune autre. Nous distinguons entre les deux notions (possiblement et
certainement) à l’aide d’un « tag » que nous ajoutons aux éléments du domaine d’interprétation.
L’interprétation des types ainsi obtenue est ensembliste : le type 𝜏1 ∨ 𝜏2 est interprété comme

l’union ensembliste des interprétations de 𝜏1 et 𝜏2, et il en va demême pour les types intersections
et négations. Ainsi, en dénissant la relation de sous-typage sur les types graduels ensemblistes
comme l’inclusion ensembliste de leurs interprétations (de la même manière que pour le sous-
typage sémantique), nous obtenons une relation qui satisfait de très fortes propriétés.
De plus, à l’aide de cette interprétation des types, nous parvenons aussi à dénir une rela-

tion de précision de manière ensembliste, plutôt que syntaxique. Nous montrons que les deux
relations sont en réalité très liées, et qu’elles peuvent toutes deux être exprimées en utilisant
uniquement la relation de sous-typage sémantique dénie sur les types statiques. De plus, nous
montrons un résultat particulièrement puissant sur la représentation des types graduels ensemb-
listes, prouvant que tout type peut être représenté demanière équivalente en utilisant une unique
occurrence du type dynamique ?.
Pour conclure le Chapitre 12, nous présentons une sémantique dénotationnelle pour un lan-

gage de casts. En raison de la complexité de cette tâche, nous nous limitons à un langage avec
types simples. Cependant, nous présentons quelques contributions importantes comme la dé-
nition de l’action d’un cast sur un élément du domaine d’interprétation, ce qui induit une inter-
prétation ensembliste des casts du langage.
Enn, nous revenons ensuite en arrière pour appliquer nos nouveaux résultats au travail

présenté dans la première partie dumanuscrit. Ce développement est présenté dans le Chapitre 6.
Nous reprenons le langage présenté dans le Chapitre 5, mais nous introduisons les relations de
sous-typage et de précision sémantiques dénies dans le Chapitre 12. À l’aide de notre résultat
sur la représentation des types graduels, nous réussissons à grandement simplier la sémantique
opérationnelle du langage de casts présenté dans le Chapitre 5. De plus, nous montrons qu’il
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est possible de réutiliser aisément beaucoup de résultats provenant de la théorie du sous-typage
sémantique pour prouver la correction de notre sémantique.
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Chapter 1.

Introduction

“The beginning is the most important part of any work.”

Plato, Republic

The original goal at the start of this thesis was to study the interaction between set-theoretic types
and gradual typing. Set-theoretic types are types containing union, intersection, and negation
connectives, which are useful to type several programming language constructs very precisely.
For example, union types can be used to give a very precise type to a conditional instruction,
while intersection types can encode function overloading. On the other hand, gradual typing
allows a programmer to bypass the type-checker, which can be useful when prototyping, to
speed up the development process.
Throughout this manuscript, we build on the semantic subtyping approach of Frisch et al. [27],

which we extend in several directions: we design a gradually-typed language with polymorphic
set-theoretic types, we connect the model of values of Frisch et al. [27] to the semantics of a
language, and we extend the semantic subtyping approach to gradual types.

1.1. Problem and motivations

At some point in their early days, every programmer comes to a harsh realization: computers
are not smart. They are simply machines that are, unless explicitly programmed to, devoid of
any ability to interpret and analyze the meaning of their actions. Over time, a programmer goes
from asking “Why is this computer not doing what I want?” to wondering “Where is my code
wrong?”.
Bugs are everywhere. At best, they are merely a nuisance, requiring a few hours of work

to nd and x. At worst, they can cost billions in damages. Hence, much research is pursued
towards making programming safer, faster, and less error-prone. Part of this research focuses on
type systems and the development of type checkers, which are tools that analyze a program before
it is even executed (we say they perform checks statically, as opposed to dynamically), to ensure
that certain conditions are met (for example, that one is not trying to subtract one to a word).
There are often three main properties that are considered when designing a type checker:

Expressiveness: is the type system able to accurately characterize the behaviour of a pro-
gram, while not hindering its capabilities?

Safety: which errors is the type system able to catch, and which ones are prone to produce
false negatives or false positives?

Programming eciency: does the type system require a lot of additional work from the
programmer, or is it easy to use?
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Unfortunately, these three properties are closely tied together: stronger and safer type systems
are also often more dicult to use, while ecient and exible systems are often less safe. The
type system of the languageCDuce [1], which is based on the semantic subtyping approach and
will be omnipresent throughout this manuscript, arguably falls into the rst category. While it
allows the programmer to type several constructs very precisely, thus accurately describing the
behaviour of a program, it lacks any form of type inference, which means that the programmer
has to write many long and cumbersome type annotations.
Recently, eorts have been made to reconcile dynamically-typed languages (languages that

do not feature a static type-checker) and statically-typed languages, in the hope of obtaining a
language that can be as safe as the programmer wants it to be, while keeping the possibility
of disabling the type-checker at any time and at any point of a program, should it prove to
be a hindrance. An implementation of this idea is called gradual typing. In a gradually-typed
language, a programmer can, via the help of a specic type annotation, tune the precision of the
type checker on any part of a program. They can also gradually introducemore type annotations,
to make the program safer after the prototyping phase is over.
In this thesis, we study systems that incorporate both set-theoretic types for their expressive-

ness and gradual typing for its ease of use, with the goal of obtaining a powerful but exible type
system.

1.1.1. Set-theoretic types

Set-theoretic types are types containing union (∨), intersection (∧), and negation (¬) connectives.
These connectives can be understood as follows:

Union: the union of two types 𝑡1 and 𝑡2, which we write 𝑡1 ∨ 𝑡2, can be given to values that
have either type 𝑡1 or type 𝑡2;

Intersection: the intersection of two types 𝑡1 and 𝑡2, written 𝑡1 ∧ 𝑡2, can be given to values
that have both types 𝑡1 and 𝑡2;

Negation: the negation of a type 𝑡 , written ¬𝑡 , can be given to values that do not have type
𝑡 .

Naturally, as wewill discuss throughout this manuscript, set-theoretic types can be enrichedwith
various features, such as polymorphism (by adding type variables), recursive types, or gradual
types (by adding a dynamic type).

The presence of set-theoretic connectives greatly improves the expressiveness of types, and
allows for many programming idioms to be typed very precisely. We present some examples
here.

Union types

The rst and arguably most natural application of set-theoretic connectives comes from union
types and, in particular, conditional expressions. Consider the expression if b then 1 else false,
and assume that the language we consider does not allow implicit conversions between integers
and booleans. In the absence of union types, this leaves two possibilities: either this expression
is simply ill-typed because we cannot prove that it always returns an integer or always returns a
boolean, or we can give this expression some kind of top type (for example Any), which means we
lose all the static type information present in the program. However, if our language supports
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union types, we can give this expression the type Int∨Bool, since it is clear that is either returns
an integer or a boolean.
More generally, if an expression 𝑒1 has type 𝑡1 and an expression 𝑒2 has type 𝑡2, then the

expression if b then 𝑒1 else 𝑒2 has type 𝑡1 ∨ 𝑡2. Note that this applies to most heterogeneous
data structures: for example, the list [3; true], which could be given type Any list in a language
with a top type but no union connective, can be typed as (Int ∨ Bool) list using a union type.

This expressivenessmakes union types particularly useful when designing a type system for an
originally untyped language. As such, they have been added to several languages such as Type-
Script (Microsoft [49]), Flow (Facebook [23]), and Typed Racket (Tobin-Hochstadt and Felleisen
[72]).

Overloaded functions

As we explained above, intersection connectives can be used to assign two dierent types to the
same expression. While this is of limited use for constants, this is particularly useful for func-
tions. Suppose, for example, that we want to convert booleans to integers (using the canonical
interpretation that 0 corresponds to false and every other integer to true) and vice-versa. In a
language without overloading, the standard way of doing this would be to provide two functions
intToBool and boolToInt that have respectively types Int → Bool and Bool → Int. However, if
the language supports it, we can dene an overloaded function convertIntBool that does both
conversions, depending on the type of its argument. Such a function can be applied to and can
return both integers and booleans. Using union types, this means that this function can be as-
signed type (Int∨Bool) → (Int∨Bool). However, this is not satisfactory: this type only ensures
that, if we apply this function to an integer, then the result is of type Int ∨ Bool.

We can get a ner type by using an intersection connective. Since this function returns a
boolean whenever it is applied to an integer, and returns an integer whenever it is applied to
a boolean, it has both types Int → Bool and Bool → Int. It can therefore be assigned the
intersection of the two: (Int → Bool) ∧ (Bool → Int). This perfectly represents the behaviour of
the function: not only does this intersection type ensures that the function can only be applied
to integers or booleans, it also induces a correspondence between the type of the argument and
the type of the result, which the type (Int ∨ Bool) → (Int ∨ Bool) does not. In fact, as we
will discuss in Subsection 1.1.2, this hints at the fact that (Int → Bool) ∧ (Bool → Int) is a
subtype of (Int ∨ Bool) → (Int ∨ Bool), and thus that every value of the former type (including
the function convertIntBool) also has the latter type by subtyping. The converse, naturally,
does not hold. Consider for example the identity function that can be applied to both integers
and booleans: since it maps integers or booleans to integers or booleans, it can be given type
(Int∨Bool) → (Int∨Bool). However, since it maps integers to integers and booleans to booleans,
it can be given type (Int → Int) ∧ (Bool → Bool) but not (Int → Bool) ∧ (Bool → Int).
Notice that we have not yet discussed how to implement the function convertIntBool. This is

because, for set-theoretic types to be truly useful, the language must support some form of dy-
namic type checking. In our case, if the exact type of the argument of the function convertIntBool

cannot be resolved statically (as would be the case with a non-deterministic expression for exam-
ple), the language needs to perform a check to decide whether it should be converted to a boolean
or to an integer. In practice, as we will discuss in the second part of this manuscript, we introduce
an expression called a typecase, of the form (𝑥 = 𝑒 ∈ 𝑡)? 𝑒1 : 𝑒2, which binds the result of 𝑒 to 𝑥 ,
and evaluates 𝑒1 if it is of type 𝑡 , or evaluates 𝑒2 if it is not. Using such a construct, our conversion
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function can be implemented as _𝑥 :Int ∨ Bool. (𝑦 = 𝑥 ∈ Int)? intToBool(𝑦) : boolToInt(𝑦). 1

Negation types

With the introduction of typecases comes the problem of type-checking such expressions. We
have already seen that conditional expressions can be typed very precisely using union types.
However, typecases dier slightly from standard if then else constructs as they introduce a
new variable whose type depends on the test. For example, for our above implementation of the
function convertIntBool to be well-typed, 𝑦 must have type Int in the rst branch (intToBool(𝑦))
and type Bool in the second branch (boolToInt(𝑦)).
Verifying the former condition is easy: since we only execute the rst branch if the test suc-

ceeds, that is, if 𝑥 has type Int, we know that𝑦 (which has been bound to the value of 𝑥 ) necessar-
ily has type Int in the rst branch. Verifying the second condition is more dicult, and requires
some additional reasoning. The second branch is only executed if the test fails. This ensures that,
in this branch, 𝑦 does not have type Int. This is where negation types come into play, as we can
type the second branch under the hypothesis that 𝑦 has type ¬Int. This information alone is not
sucient however. We need to also use the fact that 𝑥 (and thus 𝑦) also has type Int ∨ Bool, as
guaranteed by the annotation of the function. Since 𝑦 has both types Int∨Bool and ¬Int, we can
assign it the intersection of the two, which is (Int ∨ Bool) ∧ ¬Int, or, introducing some standard
set-theoretic syntax, (Int ∨ Bool) \ Int. Under this new rened hypothesis, the second branch is
now well-typed since (Int ∨ Bool) \ Int is eectively equivalent to Bool.
From a more general point of view, negation types associated to intersection types can be used

to formalize occurrence typing (Tobin-Hochstadt and Felleisen [73], Pearce [55], Chaudhuri et al.
[20]), which is a method of rening types according to conditionals. If an expression 𝑒 has some
type 𝑡 , and we dynamically check whether it has type 𝑡 ′, then it can be assumed that 𝑒 has type
𝑡 ∧ 𝑡 ′ when the test succeeds, and 𝑡 \ 𝑡 ′ when the test does not.

In general, whether it is based on set-theoretic types or not, occurrence typing has been added
tomany programming languages. Some examples include Flow, Typed Racket, TypeScript, Kotlin
(JetBrains [42]), and Ceylon (King [45]).

Recursive types

Another addition to set-theoretic types we will consider throughout this manuscript is recursive
types. Recursive types, often represented using an explicit binder for recursion denoted `, can
be a powerful tool to encode recursive data structures without the need for inductive types and
variants. For example, in OCaml, the type of lists of integers can be declared as the inductive type
intlist = Emptylist | Cons of (int * intlist), which must then be deconstructed by pattern
matching. Using recursive set-theoretic types equipped with product types, the type of lists of
integers can instead be dened as `𝑋 .(Unit∨ (Int ×𝑋 )). The intuition being that a value of this
type is either of type Unit (the empty list) or a pair of an integer and another value of this type
(a list of at least one integer). Rather than being deconstructed via pattern-matching, this type is
deconstructed as any union type, that is, using a typecase construct: checking whether a list l is
empty or contains at least one integer can be done by checking whether l has type Unit or not.

1In practice, inferring the type (Int → Bool)∧ (Bool → Int) for this function is a dicult problem, and we rather ask
the programmer to explicitly annotate the function with the full intersection type. We explore a possible solution
in [19] which uses a technique called occurrence typing. However, this work is outside the scope of this manuscript
and will not be presented here.
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From amore theoretical point of view, recursive types are also interesting insofar as they allow
the denition of xed-point combinators. The peculiarity of xed-point combinators is that they
often rely on the denition of a function that can be applied to itself an arbitrary number of
times. In most settings, such an operation is not well-typed: if a function has type 𝑡 → 𝑡 , then
it can only be applied to itself if 𝑡 → 𝑡 is a subtype of 𝑡 , which is problematic unless 𝑡 is the top
type (which limits the usefulness of such an operator). Using recursive types, however, it is clear
that a function of type `𝑋 .𝑋 → 𝑡 can be applied to itself an arbitrary number of times.

To illustrate this, consider the following code in CDuce :

type X = X -> Int -> Int

let fun Z ( f : (Int -> Int) -> Int -> Int ) : Int -> Int =

let fun Delta ( x : X ) : Int -> Int =

f ( fun (Int -> Int) v ->( x x v ))

in Delta Delta;;

let fun fact ( f : Int -> Int) : (Int -> Int) =

(fun (x: Int) : Int =

if x = 1 then 1 else (x * (f (x - 1))));;

let factorial = Z fact;;

This code denes the factorial function by declaring a xed-point combinator Z and applying it
to the function fact, of type (Int → Int) → Int → Int, which simply performs a single iteration
of the factorial. The crux of this denition lies in the declaration of the function Delta of type
`𝑋 .𝑋 → Int → Int, which follows the denition of Curry’s xed-point combinator Y.

Polymorphic types

The last aspect we discuss here is polymorphism. Until now, we have only considered monomor-
phic types, which limits their expressiveness. For example, we have shown how recursive set-
theoretic types can be used to encode the type of lists of integers using product types. However,
we currently have no way of encoding the type of homogeneous lists of any type. If we know in
advance that our lists will be of a nite number of types, for example if we only consider lists of
booleans and lists of integers, then we can still use union types to encode the type of our lists, for
example as intlist∨ boollist. However, many functions act on lists of any type (e.g., the func-
tion mapwhich applies a function f to every element of a list l to obtain a second list l’). We could
represent the type of all homogeneous lists using an innite union, as

∨
𝑡 `𝑋 .(Unit∨(𝑡×𝑋 )), and

the function map could be typed using the innite intersection
∧

𝑡,𝑡 ′ 𝑡 list → (𝑡 → 𝑡 ′) → 𝑡 ′ list

(using 𝑡 list as syntactic sugar for the type of lists of type 𝑡 ).
However, this approach presents a major problem. To ensure types are well-founded and that

subtyping is decidable, we prohibit innite unions and intersections.2 The solution is to introduce
polymorphic types, which can nitely represent such types. The type of homogeneous lists of
any type becomes 𝛼 list = `𝑋 .(Unit ∨ (𝛼 × 𝑋 )), and the type of map becomes ∀𝛼, 𝛽. 𝛼 list →
(𝛼 → 𝛽) → 𝛽 list.
Together with set-theoretic types, polymorphic types can be used to great eect. For exam-

ple, Castagna et al. [15] show that they can be used to type the function that inserts a new node in
2This is the contractivity property we will introduce in Chapter 2.
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a red-black tree in a very precise way, without changing the original implementation of Okasaki
[53], enforcing statically three out of the four invariants of red-black trees. Namely, that the root
of the tree is black, that the leaves are black, and that no red node has a red child. The only
missing invariant being that every path from the root to a leaf should contain the same number
of black nodes. The resulting type of the function is:

∀𝛼, 𝛽.(𝛼 Unbal → 𝛼 RTree) ∧ (𝛽 \ (𝛼 Unbal) → 𝛽 \ (𝛼 Unbal))

It uses many of the features presented so far to state that the function maps unbalanced trees of
elements of type 𝛼 to red-rooted balanced trees, and leaves everything else unchanged.

1.1.2. Subtyping on set-theoretic types

We have presented set-theoretic types and given many examples of their expressiveness, but we
have glossed over a central aspect of type-checking: subtyping. Without subtyping, set-theoretic
types lose most of their usefulness. Suppose, as is customary, that we type applications using a
simple modus ponens rule, that is, the application of a function f to a value v is well-typed if and
only if f has some type 𝑡 → 𝑡 ′ and v has type 𝑡 . If f is an overloaded function, for example of type
(Int → Int) ∧ (Bool → Bool), and v is an integer, then for the application 𝑓 𝑣 to be well-typed,
we must be able to deduce that f has type Int → Int or type (Int ∨ Bool) → (Int ∨ Bool). This
is where subtyping comes into play.

The limitations of a syntactic approach

As anticipated, we naturally expect the subtyping relation to satisfy several properties on types,
inspired by set theory. For example, we expect the intersection to be distributive over the union:
the two types 𝑡 ∧ (𝑡1 ∨ 𝑡2) and (𝑡 ∧ 𝑡1) ∨ (𝑡 ∧ 𝑡2) must be, intuitively, equivalent. Here, equivalent
means that they can be used interchangeably. That is, from a subtyping point of view, they
must be subtype of one another. Similarly, when discussing occurrence typing in the previous
subsection, we stated that the type (Int ∨ Bool) ∧ ¬Int is equivalent to Bool, glossing over the
formalism that allows such a deduction. To prove this equivalence, distributivity alone is not
sucient: one must also deduce that Int∧¬Int is equivalent to the empty type 0, that Bool∧¬Int
is equivalent to Bool, and that 0 ∨ Bool is itself equivalent to Bool.

As this explanation indicates, dening a suitable subtyping relation on set-theoretic types us-
ing syntactic deduction rules is a complex task, as many corner cases must be taken into account.
Such denitions are often correct but incomplete, in the sense that they properly reject unsafe
programs, but often also cause safe programs to be rejected. This, of course, becomes even more
complicated when introducing type constructors. For example, as we hinted before, the type
(Int → Int) ∧ (Bool → Bool) is, intuitively, a subtype of (Int ∨ Bool) → (Int ∨ Bool), as every
function that maps integers to integers and booleans to booleans can also be seen as a function
that maps booleans or integers to booleans or integers, although we lose some information in
the process.

Semantic subtyping

As one may have guessed, a semantic approach is, arguably, better suited than a syntactic ap-
proach to dene subtyping on set-theoretic types. This realization led to the theory of semantic

subtyping of Frisch et al. [27], which we will use throughout this manuscript. The central idea
behind semantic subtyping is that types can be seen as sets of values. For example, Int denotes
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the set of all integers, while Int → Int denotes the set of all functions mapping integers to inte-
gers.3 Type connectives can then be interpreted following their set-theoretic counterparts. For
example, the type (Int → Int) ∧ (Bool → Bool) denotes the values belonging to both the sets
denoted by Int → Int and Bool → Bool, which corresponds to the functions that map integers
to integers and booleans to booleans, as anticipated.

The main advantage of semantic subtyping is that subtyping immediately follows from the
interpretation of types as sets of values. We can say that a type 𝑡 is a subtype of a type 𝑡 ′ if the
set of values denoted by 𝑡 is a subset of the set of values denoted by 𝑡 ′. Mathematically, it is clear
that 𝑆1 ⊆ 𝑆2 holds if and only if 𝑆1 ∧ 𝑆2 is empty (where 𝑆2 denotes the set-theoretic complement
of 𝑆2). Going back to set-theoretic types, we obtain that 𝑡 is a subtype of 𝑡 ′ if and only if 𝑡 ∧ ¬𝑡 ′
is empty. This simple and intuitive denition of subtyping, which reduces to checking whether
a type is empty or not, is the very basis of semantic subtyping as presented by Frisch et al. [27].
In Chapter 2, we will give more details into how to interpret types as sets of values, and how to
dene formally this subtyping relation.

1.1.3. Gradual typing

Gradual typing is an approach introduced by Siek and Taha [65] that aims at integrating both
static typing and dynamic typing in a same framework. The core idea is simple: they add a
dynamic type, often denoted ?, to the syntax of types. As its name suggests, this type informs
the type-checker that it must not be checked statically: a value that is given type ? statically can
be used in any context, and, for example, can be passed to a function expecting an integer.
This is not an all or nothing approach: by building types using the dynamic type and the usual

type constructors, a programmer can gradually tune the behaviour of the static type-checker.
For example, a value of type ? → ? is, statically, a function: if one tries to pass it to a function
expecting an integer, for example, the type-checker will fail (as a function is not an integer).
However, this is the only information this type provides. Such a value can be applied to anything,
and can return anything.
Naturally, such exibility comes at a cost. To avoid undened behaviour (e.g., if one uses a dy-

namic type annotation to disable the type-checker and passes a boolean to a function expecting
an integer), the checks that are not done statically must be performed dynamically, that is, during
the execution of the program. This not only incurs a performance cost, but it also adds a com-
pilation step whose role is to insert dynamic checks (or “casts”) into the program. For example,
one can write the following code:

(_𝑥 :?. 𝑥 + 1)true

This code consists in a function that adds one to its argument, and since its parameter is explicitly
given type ?, it can be applied to anything. Here, we apply it to true. While it is clear that such
a program is incorrect, it is, nevertheless, accepted by the type-checker. The compilation step
is here to ensure that this program will be rejected dynamically, by producing the following
compiled code:

(_𝑥 :?. 𝑥 〈Int〉 + 1)true

Here, the expression 𝑥 〈Int〉 is a cast which checks that the value of 𝑥 is an integer, and fails if it
is not the case. At runtime, this code will then reduce to true〈Int〉 + 1, and since true is not an
integer, this will report an error to the programmer.

3Note that this does not state anything about the behaviour of the functions on inputs that are not integers. That is,
a function of type Int → Int could also map booleans to anything.
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Throughout this manuscript, we will study gradual set-theoretic types, that is, set-theoretic
types which can also contain occurrences of the dynamic type. The interaction between set-
theoretic connectives and the dynamic type leads to many interesting problems and program-
ming idioms, which will be detailed later in Chapter 3. This raises questions such as “What is
the meaning of ? ∨ Int? What about ? ∧ Int?”. At rst, one may think that saying that a value
is of type ? ∨ Int is basically the same as saying that it is of type ?, since ? contains strictly less
information than Int, and the information carried by the latter is “erased” by the union connec-
tive. However, we will see that the reality is more complex than this, since a value of type ?∨ Int
cannot be used in the same contexts as a value of type ?.

1.2. Our contributions

Throughout this manuscript, we focus on set-theoretic types and semantic subtyping, and their
interactions with gradual typing. This leads us to consider and study various features of func-
tional programming languages, such as let-polymorphism, type inference, non-determinism, and
typecases.
While, at rst glance, set-theoretic types may seem complicated to use and formalize, we ar-

gue that, not only do they allow us to obtain very expressive type systems, they also form a
mutually benecial relationship with gradual types. On one hand, gradual types can help allevi-
ating the syntactic overhead associated with set-theoretic types. On the other hand, set-theoretic
connectives make the transition between dynamic typing and static typing smoother and ner
grained, giving even more control to the programmer. We go even further by showing that the
very meaning of gradual types can be formalized using the semantic subtyping approach, and
that, in the presence of set-theoretic types, gradual types obtain strong properties which allow
us to directly reuse many of the existing results on semantic subtyping.
This manuscript is separated into two parts, which focus on dierent approaches to gradual

set-theoretic types. The rst part features a logical approach to gradual typing, in which we
propose to add gradual typing to existing type systems using a simple logical rule. The second
part focuses on the denotational semantics associated with semantic subtyping, with the goal of
unearthing the semantic meaning of gradual types. This work culminates with the denition of a
set-theoretic interpretation of gradual types, which is featured in the last chapters of both parts.

1.2.1. A logical approach to gradual typing

In Part I of this thesis, we describe a new approach to endow a static type system with gradual
typing, and apply this approach to several type systems, both with and without subtyping and
set-theoretic types.
The novelty of this approach is that, from a declarative point of view, gradual typing can be

added using a single rule to the static type system. This rule is a subsumption-like structural rule
which features a relation we call materialization, but which corresponds to the precision rela-
tion commonly present in the gradual typing literature. This contrasts with existing approaches
where gradual typing is added by combining subtyping and precision (or consistency) to obtain
a non-transitive relation called consistent subtyping. Due to its lack of transitivity, this relation
has to be embedded in the typing rules, thus making the extension of an existing type system
dicult.
As customary in the gradual typing literature, we also study cast languages, to which we com-

pile our source languages, and we dene the semantics of a source language in terms of the
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semantics of the associated target language. Once again, we show that the declarative presenta-
tion of the compilation system is straightforward: to every application of the structural rule for
materialization corresponds the introduction of a cast in the compiled term. This also provides
a powerful insight into the meaning of blame, as we show that in our system, blame can never
be attributed to the context of an expression.
Naturally, this approach is well-suited to a declarative presentation, but not to an algorithmic

presentation (that is, a presentation without structural typing rules). Thus, we show how to de-
ne algorithmic type systems following our declarative type systems based on constraint solving
algorithms. We show in particular that constraints on gradual types can be solved by converting
occurrences of the dynamic type into type variables.
We follow this presentation for two dierent systems. In Chapter 4, we study a standard

Hindley-Milner type system with ML-like polymorphism. We show that our system is as power-
ful as several existing type systems, despite the absence of consistency and consistent subtyping.
We also show that our type inference algorithm, based on unication, is sound and complete.
In Chapter 5, we add subtyping to our system. From a declarative point of view, adding seman-

tic subtyping to our system simply amounts to adding a subsumption rule. However, to do this,
the subtyping relation must be extended to gradual types. Rather than extending the interpre-
tation function of semantic subtyping to gradual types, we show that we can translate gradual
types into polymorphic non-gradual types, and dene the subtyping relation on gradual types
in terms of this translation. We also use this translation during the algorithmic presentation,
since we solve constraints on gradual types by converting them to polymorphic non-gradual
types. This yields a system which we prove to be sound (but not complete). Additionally, we
provide a formal operational semantics for a cast language with set-theoretic types, based on
complex syntactic operations on types. These operations provide a set-theoretic equivalent of
the ground types present in the gradual typing literature, and allow us to dene the semantics of
our language as a sound and conservative, albeit complex, extension of the semantics presented
in Chapter 4.

1.2.2. Denotational semantics

The denition of the semantics of the cast language in Chapter 5 brought to light several fun-
damental problems with our approach, most notably with our denition of the materialization
relation. Its syntactic nature contrasts heavily with the semantic nature of set-theoretic types
and semantic subtyping, which makes the formal reasoning much more dicult.

In an attempt to solve these problems, and ll in the missing pieces in our understanding of
gradual set-theoretic types, we decided to try and give a set-theoretic interpretation of gradual
types, and a denotational semantics for a gradually-typed language. At the same time, we at-
tempted to reconcile the model of values of semantic subtyping with the semantics of a language,
that is, to give a denotational semantics of a language in terms of the interpretation domain used
to interpret types. We tackled these problems in settings of increasing diculty.
In Chapter 9, we study a simple _-calculus with set-theoretic types but without function over-

loading or typecases. We present our rst attempt at dening a denotational semantics for
this calculus, directly in terms of the interpretation domain of semantic subtyping as presented
by Frisch et al. [27]. We quickly bring to light a problem with this approach, as the interpretation
domain cannot properly represent the semantics of functions without losing information.
We solve this problem in Chapter 10 by slightly modifying the interpretation domain. We

prove that the denotational semantics of our simple _-calculus in this new domain is sound and
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adequate, that is, it properly models the operational behaviour of our calculus, both for diverging
terms and converging terms. Naturally, modifying the interpretation of types raises the question
of whether the subtyping relation induced by this new interpretation is equivalent to the sub-
typing relation dened by Frisch et al. [27], and we show that it is indeed the case.

In Chapter 11, we extend our calculuswith overloaded functions, typecases, and non-determinism,
to obtain a calculus modeling the functional core of CDuce. We present how the interpretation
domain can be extended to properly represent each of these features, before summarizing ev-
erything by giving a sound denotational semantics for the calculus. Everything is not perfect
however, since our semantics requires the introduction of some restrictions on the type system
of CDuce. Nevertheless, in the very last section, we show how our semantics and the semantics
of CDuce can be reconciled.
Finally, in Chapter 12, we tackle our original goal of providing a set-theoretic interpretation of

gradual types and a denotational semantics for a gradually-typed language. We start by gathering
all the intuition we acquired thus far, and provide a set-theoretic interpretation of gradual types.
We show that this new interpretation highlights strong properties about the behaviour of set-
theoretic gradual types, and we use it to dene and study semantic versions of subtyping on
gradual types and materialization. We conclude by providing a sound denotational semantics for
a simply-typed cast language.

1.2.3. The semantics of gradual types

The semantics denitions of gradual subtyping and materialization we obtain in Chapter 12 have
strong consequences. First, they solve a particular problem of our approach presented in Chap-
ter 5, which is related to the way we dealt with negation types. We show in particular that, with
these new relations, ? and ¬? are equivalent from both a subtyping and a materialization point
of view. We also prove a strong result about the representation of gradual types, which states
that every gradual set-theoretic type can be represented using a single occurrence of the dynamic
type.
Equipped with these new results, we go back to the semantics of the cast language presented

in Chapter 5, with the goal of simplifying it. In Chapter 6, we introduce the semantic gradual

subtyping and semantic materialization relations, and we show that these relations can be used
to solve some of the problems we encountered when designing the semantics of our cast lan-
guage, since they allow us to manipulate gradual types semantically rather than syntactically. In
particular, type operators (which compute the domain of a function or the type of the result of an
application) can now be lifted easily from non-gradual types to gradual types, keeping all their
properties in the process. We use these results to dene a new semantics for the cast language
of Chapter 5 which is arguably much simpler and intuitive than the rst.

1.3. A brief timeline of this thesis

This work started as an internship, which led to an article on gradual set-theoretic types pre-
sented at ICFP 2017 (Castagna and Lanvin [13]). When we started this work, we believed that
adding support for set-theoretic types to existing gradual type systems would be a few months
work, at most. However, as demonstrated by the very existence of this manuscript, things were
not so easy.
We quickly realized that most of our intuitions about the behaviour of gradual set-theoretic

type were wrong (we initially rmly believed that Int ∧ ? and Int were equivalent, which led to
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many unsound type systems). Nevertheless, after many tweaks and xes, wemanaged to obtain a
sound gradually-typed language supporting full-edged set-theoretic types, which is presented
in the aforementioned paper. However, the type system and operational semantics were very
ad-hoc, inexible, and dicult to generalize. This motivated us to try and nd a more general
interpretation of gradual set-theoretic types.
This new interpretation constitutesmost of Part I, and has been presented at POPL 2019 (Castagna

et al. [18]). This new approach proved to be much more exible than the rst, and almost entirely
subsumes it. Therefore, the material from our rst paper is mostly absent from this manuscript,
apart from some very specic results (for example, Theorem 5.25). Our POPL 2019 paper focused
on three major points: declarative typing, type inference, and operational semantics. In this pre-
sentation, I concentrate on declarative typing and operational semantics, which are the parts I
was involved the most in. I will only give a brief overview of the ideas involved in the inference
systems, whose development is mostly due to Tommaso Petrucciani and is presented in his thesis
(Petrucciani [56]).
We then took a small detour to study two other problems. The rst concerned the develop-

ment of an abstract machine for a gradually-typed cast language with set-theoretic types, fo-
cusing on its runtime space eciency and an ecient implementation of casts. This work has
been presented at IFL 2019 (Castagna et al. [17]). The second problem was quite orthogonal and
concerned occurrence typing. This is joint work with Giuseppe Castagna, Mickaël Laurent, and
Kim Nguyễn, and is, at the time of writing, unpublished. Both these works are absent from this
manuscript, since the diculties encountered in their development are outside the main scope
of this thesis. Nevertheless, they gave us some important insights into the behaviour of gradual
set-theoretic types, which certainly inuenced several parts of this presentation.
Finally, we were not entirely satised with several aspects of our previous approaches, es-

pecially with our very peculiar treatment of negation types. This led us to believe there was a
crucial missing part in our understanding of gradual set-theoretic types. To solve this problem,
we decided to take a few steps back and formalize, from a denotational point of view, a simple
languages with set-theoretic types, to which we then added gradual types. This study, presented
in Part II, is still in its early stages. Nevertheless, it has already proved very fruitful, and led to a
deeper and better understanding of the various concepts underlying gradual set-theoretic types.

1.4. Outline

The chapter following this introduction is Chapter 2, which introduces the semantic subtyping
approach and summarizes the existing work we will use throughout the thesis. Most notably, it
presents set-theoretic types, their interpretation, and the subtyping relation it induces.
Most of the rest of the manuscript is then divided in two parts.

Part I This part focuses on our declarative approach to embed gradual typing in existing type
systems.

Chapter 3 We introduce the work, focusing on the benets of polymorphic gradual typ-
ing with set-theoretic types and type inference. We then briey introduce our approach
and ideas.

Chapter 4 We start by applying our approach to anML-like languagewith let-polymorphism
but no subtyping. We describe, step by step, the source language, its declarative type sys-
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tem, the cast language and its semantics, the compilation procedure, and the type inference
algorithm.

Chapter 5 We extend our approach to support set-theoretic types, which requires den-
ing a suitable subtyping relation on gradual set-theoretic types. We follow the same pre-
sentation as in the preceding chapter. We briey present a cast language and its operational
semantics, although we relegate most of the presentation to the appendix due to its com-
plexity.

Chapter 6 To solve some problems of the approach presented in Chapter 5, we introduce
various results from Part II. We show some powerful result about the representation of
set-theoretic gradual types, and use them to give a much simpler semantics for the cast
calculus of the previous chapter.

Chapter 7 We conclude this part by discussing our results, comparing them with related
work, and pointing some interesting directions for future work.

Part II This second part focuses on our denotational study of several languages with set-
theoretic types.

Chapter 8 We introduce the work and our motivations, and we summarize our contri-
butions.

Chapter 9 We start by a simple _-calculus, and try to dene its denotational semantics
by directly using existing work. This highlights several problems which we explain.

Chapter 10 We solve the problems exposed in the preceding chapter by adapting our
approach, and dening a new interpretation of types. We show that the subtyping relation
is unchanged, and our semantics is sound and adequate.

Chapter 11 Weextend our approach to support typecases, overloading, and non-determinism.
This allows us to dene a formal denotational semantics for the functional core ofCDuce ,
although we impose some restrictions on the type system that we later show how to
weaken.

Chapter 12 We use the formalism we established thus far to tackle our original goal of
dening a denotational semantics for a gradually-typed language. Although we restrict
the denotational semantics to a simply-typed cast language, we give a full set-theoretic
interpretation of gradual types which yields several powerful results and ties up the two
parts of this manuscript.

Chapter 13 We conclude this part by discussing our results and our approach, and we
point out the main aspects that can be improved.

We conclude the main content of this manuscript by a conclusion in which we summarize our
results and the most important directions for future work.

1.5. Notational conventions

Powerset. Given a set 𝑆 , we write P (𝑆) for the powerset of 𝑆 , that is, the set of all subsets of
𝑆 : P (𝑆) = {𝑆 ′ | 𝑆 ′ ⊆ 𝑆}. Additionally, we write P𝑓 (𝑆) for its nite powerset, that is, the set of
its nite subsets.
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Vectors. We write vectors and tuples using a superscript arrow (®.). We use this notation with
type variables (®𝛼, ®𝛽 or ®𝑋, ®𝑌 ) and types (®𝑡 , ®𝜏). When considering a vector of type variables, we
suppose that all variables are distinct. Therefore, we may implicitly convert between vectors of
type variables and sets of type variables.

Free variables. Given a vector (or a set) of type variables ®𝛼 , we use 𝛽 ♯ ®𝛼 as an equivalent
notation for 𝛽 ∉ ®𝛼 . We lift this relation to vectors of variables, so that ®𝛽 ♯ ®𝛼 stands for ®𝛽 ∩ ®𝛼 = ∅.
We also use this notation with entities other than sets of variables, in which case the notation
refers to the set of type variables occurring in these entities (which will often be dened using
vars or a similar notation). For example, given a vector of type ®𝑡 , we write ®𝛼 ♯ ®𝑡 if ®𝛼 ∩ vars(®𝑡) = ∅,
where vars(®𝑡) denotes the set of all type variables appearing in one or more of the types of ®𝑡 .
When two entities or more appear on one side of the operator ♯ separated by commas, we
consider the union of the type variables they contain. For example, ®𝛼, ®𝛽 ♯ ®𝑡, ®𝑡 ′ stands for ( ®𝛼 ∪ ®𝛽) ∩
(vars(®𝑡) ∪ vars(®𝑡 ′)) = ∅.

Substitutions. We choose to use the postx notation [𝑟/𝑠] for substitutions, where 𝑠 is the
replaced entity, and 𝑟 is the replacement. We will use this notation with type variables and
types (for example, [𝑡/𝛼]), and with language variables and values (for example, [𝑣/𝑥]). Given
a vector of type variables ®𝛼 and a vector of types ®𝑡 having the same length, we write [®𝑡/®𝛼] for
the component-wise substitution of every element of ®𝛼 by the corresponding type in ®𝑡 .
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Chapter 2.

Background

In this chapter, we introduce the background on semantic subtyping and set-theoretic types
needed for the rest of this manuscript. Most of the results and denitions presented here come
from the work of Frisch et al. [27], Castagna and Xu [14], and Gesbert et al. [32].
All along this thesis, we will extensively use and revisit the results presented in this section.

In Part I, we will reuse them directly to give an interpretation of set-theoretic gradual types. In
Part II, we will draw inspiration from these results to dene new interpretations of types and
terms.

Chapter Outline

Section 2.1 This section is a general introduction to set-theoretic types and semantic
subtyping, and gives a rough presentation of the most important features of semantic sub-
typing.

Section 2.2 This section introduces set-theoretic types with type variables, and formal-
izes several important concepts such as type substitutions.

Section 2.3 In this section, we present semantic subtyping and the set-theoretic inter-
pretation of types.

Section 2.4 We present several properties of semantic subtyping. We dene disjunctive
normal forms for set-theoretic types and use this notion to introduce several type opera-
tors.

2.1. Introduction

We have already given some examples highlighting how types with unions, intersection and
negation connectives (which we call set-theoretic types) can be useful from a programming point
of view. However, for set-theoretic types to be truly usable, we need to endow them with a
suitable and intuitive subtyping relation.
From the standpoint of a programmer, it is arguably common and intuitive to think of types

in terms of sets of values: for example, the type Int can be seen as the set of all values denoting
integers. Then, an expression can be given type 𝑡 if every value it can produce is of type 𝑡 .
Following this intuition gives set-theoretic types a natural interpretation that results from the
interpretation of set-theoretic connectives. If Even is the type denoting the set of even integers
andNat the type denoting the set of natural numbers, then Even∧Nat denotes their intersection,
which is the set of non-negative even integers.
Subtyping conveys a notion of safety: a type 𝑡 is a subtype of a type 𝑡 ′ if any expression

of type 𝑡 can be safely passed to a context expecting an expression of type 𝑡 ′. Along with the
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above set-theoretic interpretation, this highlights a strong relation between subtyping and set-
containment. It also results from this intuition that the subtyping relation on set-theoretic types
must follow several natural distributivity rules, such as De Morgan’s laws. For example, it must
treat 𝑡 ∧ (𝑡1 ∨ 𝑡2) and (𝑡 ∧ 𝑡1) ∨ (𝑡 ∧ 𝑡2) as equivalent. Some distributivity rules also apply to
type constructors: for example, (𝑡 × 𝑡1) ∨ (𝑡 × 𝑡2) must be equivalent to 𝑡 × (𝑡1 ∨ 𝑡2) since both
types denote the same set of values. Likewise for function types, (𝑡 → 𝑡1) ∨ (𝑡 → 𝑡2) must be
equivalent to 𝑡 → (𝑡1 ∨ 𝑡2).
This shows that giving a syntactic denition of subtyping, which is often the preferred ap-

proach, would be extremely complex and error prone. Many rules would be needed to ensure
that subtyping satises all the distributivity properties we want, and proving the formal prop-
erties of subtyping would require large case disjunctions. Therefore, we study and present an
alternative way of dening subtyping, which consists in rst dening a set-theoretic model of
types, and then interpreting subtyping between two types as inclusion between their interpre-
tations.
While this seems a simple endeavour, there are some technical details one must be aware of.

In particular, one must be very careful not to introduce any circularity in the denitions: the type
system depends on the subtyping relation, which depends on the set-theoretic interpretation of
types, which depends itself on the type system, to deduce whether a value belongs to a type. To
break this circularity, themodel usually corresponds to an untyped denotational semantics where
types are interpreted as ideals, which precludes the set-theoretic interpretation of negation types
(since the complement of an ideal is not an ideal).
The approach we present here, dubbed semantic subtyping, takes a middle ground between a

syntactic denition of subtyping and a semantic denition based on a full-edged denotational
semantics of the language. Instead of starting from a subtyping relation to arrive to a model,
it starts by dening a model, which is not, in principle, related to the terms of a language, and
builds a subtyping relation from this model. While this may seem counter-intuitive, it is not
necessary to relate the interpretation of types with their actual meaning in the language, we just
need to ensure that the induced subtyping relation is safe (to ensure the type soundness of the
language) and follows the properties we want. Of course, the closer the model and the values of
the language are, the more precise the subtyping relation will be. Therefore, while the model of
types is, in principle, detached from the values of the language, its denition tries to model the
behaviour of values.

2.1.1. Set-theoretic interpretation

Aswe explained, to dene subtyping using the semantic subtyping approach, we start by dening
an interpretation domain, denoted D , which roughly follows the denition of the values of a
language. Then, we dene a interpretation of types (the set of which is denoted Types) as sets of
elements of this domain È.É : Types → P (D). Finally, the subtyping relation is dened using
set-containment over this interpretation: 𝑡1 ≤ 𝑡2 ⇐⇒def È𝑡1É ⊆ È𝑡2É.
As anticipated, the interpretation of set-theoretic types must follow from the mathematical

interpretation of the set-theoretic operations. That is, if 0 denotes the empty type and 1 the top
type (that is, every well-typed expression can be given type 1), then the following equalities must
hold:

È0É = ∅ È1É = D

È𝑡1 ∨ 𝑡2É = È𝑡1É ∪ È𝑡2É È𝑡1 ∧ 𝑡2É = È𝑡1É ∩ È𝑡2É
È¬𝑡É = D \ È𝑡É
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Fixing these equalities leaves the interpretation of type constructors and constants to be dened,
which is the focus of the next subsections.

 Remark 2.1. q
These properties also ensure that the interpretation of types inherit all the distributivity prop-

erties of the set-theoretic operations, as well as De Morgan’s laws. For example, it holds that

È1É = È¬0É, and È𝑡1 ∧ 𝑡2É = È¬(¬𝑡1 ∨ ¬𝑡2)É. Therefore, it is customary to dene 1 as syntac-

tic sugar for ¬0, and 𝑡1 ∧ 𝑡2 as syntactic sugar for ¬(¬𝑡1 ∨ ¬𝑡2), only leaving ∨, ¬ and 0 to be

included in the grammar of types. y

Provided we dened the interpretation of type constructors and constants, we can use the
interpretation È.É to dene subtyping, as we anticipated: 𝑡1 ≤ 𝑡2 ⇐⇒def È𝑡1É ⊆ È𝑡2É. It remains to
prove the properties of this subtyping relation needed to ensure the soundness of the type system
it is included in. Once again, many properties follow from the properties of the corresponding
set-theoretic operations. For example, the transitivity of subtyping follows from the transitivity
of set-containment. Additionally, note that 𝑆1 ⊆ 𝑆2 holds if and only if 𝑆1 ∩ 𝑆2 = ∅. This ensures
that 𝑡1 ≤ 𝑡2 if and only if 𝑡1 ∧ ¬𝑡2 ≤ 0. Thus, many properties of semantic subtyping reduce
to emptiness problems. This is also especially important for the decidability of the subtyping
relation, since this shows that it can be decided as long as the emptiness of a type can also be.

2.1.2. Semantic subtyping for first-order languages

The approach we present here was rst introduced by Hosoya et al. [38], when working on the
XML processing language XDuce. They dened subtyping semantically by building a model of
types, without building a full model of the underlying language.
The language in question is a monomorphic, rst-order language. If we abstract away the

XML-based constructs, this leaves us with a language that does not contain functions, but fea-
tures pairs and constants as values. A syntactic denition of values would thus be 𝑣 F 𝑐 | (𝑣, 𝑣),
where 𝑐 ranges over a certain set of constants C .
Types then feature base types 𝑏 for constants, and a constructor × for pair types. Additionally,

Hosoya, Vouillon and Pierce consider recursive set-theoretic types, therefore, types can also con-
tain set-theoretic connectives. To summarize, types are dened coinductively by the following
grammar, using the previously-dened syntactic sugar for ∧ and 0:

𝑡 F 𝑏 | 𝑡 × 𝑡 | 𝑡 ∨ 𝑡 | ¬𝑡 | 0

In this setting, Hosoya, Vouillon and Pierce showed that types can be immediately interpreted
as sets of values of the language, without introducing any circularity. Base types are interpreted
as the set of constants belonging to them (for example, È𝑏É = {true, false}), and pair types are
interpreted using the Cartesian product (È𝑡1 × 𝑡2É = È𝑡1É × È𝑡2É).
While we showed that it is not practical, in a higher-order setting, to interpret types imme-

diately as sets of values, we still follow the same reasoning when it comes to the interpretation
of constants and pairs. As we will formalize later on, we directly add the constants C of the
language to the interpretation domain D , and introduce a function B(.) that associates to every
base type the set of constants that belong to it, such that È𝑏É = B(𝑏).

2.1.3. Adding arrow types

Frisch et al. [27] extend this approach to a higher-order setting, by considering languages which
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include rst-class functions, and therefore arrow types. As anticipated, this requires some major
changes, since interpreting types directly as sets of values of the language would cause a circu-
larity issue: we could dene the interpretation of arrow types as È𝑡1 → 𝑡2É = {_ 𝑥 . 𝑒 |` _ 𝑥 . 𝑒 :
𝑡1 → 𝑡2}, but then the interpretation of types would depend on the denition of the relation
` 𝑒 : 𝑡 , which in turn depends on the denition of subtyping (which is classically added via a
subsumption rule). However, since our goal is to use the denition of È.É to dene subtyping,
we are stuck in a dependency loop.
This problem does not occur in a rst-order setting because, in a language whose values are

restricted to constants and pairs, the restriction of the relation ` 𝑒 : 𝑡 to values is straightforward.
Deriving the type of _-abstractions, however, requires the full type system since it involves the
typing of arbitrary expressions.

Hence, we need to decouple the interpretation of types from values, and instead dene an
interpretation domain which mimics the behaviour of values, and which allows us to dene
an interpretation function È.É inducing a suitable subtyping relation. A rst idea would be to
interpret functions extensionally, as innite directed graphs mapping inputs to outputs. This
would be formalized as

È𝑡1 → 𝑡2É =def {𝑅 ⊆ D × D | ∀(𝑑1, 𝑑2) ∈ 𝑅, 𝑑1 ∈ È𝑡1É =⇒ 𝑑2 ∈ È𝑡2É}

Intuitively, a relation {(𝑑𝑖 , 𝑑 ′
𝑖 ) | 𝑖 ∈ 𝐼 } represents a function which maps the element 𝑑𝑖 to the

element 𝑑 ′
𝑖 for every 𝑖 ∈ 𝐼 , and diverges on every other element 𝑑 . For this relation to be in the

interpretation of a type 𝑡1 → 𝑡2, we simply require that if 𝑑𝑖 belongs to the interpretation of 𝑡1,
then 𝑑 ′

𝑖 belongs to the interpretation of 𝑡2. In other words, the function it represents maps every
value of type 𝑡1 into a value of type 𝑡2, which is the expected behaviour. Note that we impose no
requirement on the behaviour of the function on values that do not have type 𝑡1. Relations can
also be non-deterministic: the relation {(𝑑,𝑑1), (𝑑, 𝑑2)} maps the same element 𝑑 to both 𝑑1 and
𝑑2, even if 𝑑1 ≠ 𝑑2.

While this denition sounds intuitive, it causes a problem of cardinality. Relations are dened
as innite graphs onD , that is, they are elements ofP (D ×D). For relations to also be elements
of the domain (which is required by the denition of È.É),D must satisfy the following inequality:

P (D × D) ⊆ D

Provided D is non-empty (which is the case as soon as constants are added to the language), this
inequality cannot hold, since P (D × D) and D necessarily have dierent cardinalities.
The solution proposed by Frisch et al. [27] is to restrict relations to nite relations. If we restrict

P (D × D) to nite sets, which we denote by P𝑓 (D × D), then the above equation can hold.
This means that functions do not exactly correspond to elements of D since any function that
can produce an innite number of results (such as the identity function) cannot be represented
by a single element of D . However, it can still be represented by an innite number of nite
relations of D , which corresponds, in essence, to its nite approximations. This also makes sense
intuitively from a programming point of view: any terminating program can only produce a
nite number of intermediary values, and its functions can only be applied to a nite number of
values. Therefore, in principle, the behaviour of any function in a terminating program can be
approximated using nite relations.
Subtyping also behaves as expected with this restriction, thanks to the fact that for every two

sets 𝐴 and 𝐵, P (𝐴) ⊆ P (𝐵) ⇐⇒ P𝑓 (𝐴) ⊆ P𝑓 (𝐵) holds. Therefore, restricting relations to
nite relations does not change the behaviour of subtyping. This leads to the following denition
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of the interpretation of arrow types:

È𝑡1 → 𝑡2É =def {𝑅 ∈ P𝑓 (D × D) | ∀(𝑑1, 𝑑2) ∈ 𝑅, 𝑑1 ∈ È𝑡1É =⇒ 𝑑2 ∈ È𝑡2É}

However, one problem remains. Following this denition, we have:

È1 → 1É =def {𝑅 ∈ P𝑓 (D × D) | ∀(𝑑1, 𝑑2) ∈ 𝑅, 𝑑1 ∈ È1É =⇒ 𝑑2 ∈ È1É}

Since 𝑑2 ∈ È1É always holds, this yields È1 → 1É = P𝑓 (D ×D). In other words, the interpreta-
tion of any type 𝑡1 → 𝑡2 is contained in the interpretation of 1 → 1. By denition of subtyping,
this means that any function can be given type 1 → 1, and can thus be applied to any argument.
This is, obviously, unsound in most settings: the function _𝑥. 𝑥 𝑥 can be applied to 0, reducing
to 0 0, which is a stuck term.

The solution to this second issue is to introduce a special, distinguished symbol, which we
denote Ω. This symbol represents a runtime type error occurring when a function is applied to
an element outside its domain. As such, this particular symbol only appears in the right hand
side of relations, and does not belong to the domain D . In the formal denition we will give
in Section 2.3, we will dene the set DΩ as D ∪ {Ω}, ranged over by 𝜕, and dene relations as
elements of P𝑓 (D × DΩ). The interpretation of arrow types then becomes:

È𝑡1 → 𝑡2É =def {𝑅 ∈ P𝑓 (D × DΩ) | ∀(𝑑, 𝜕) ∈ 𝑅, 𝑑 ∈ È𝑡1É =⇒ 𝜕 ∈ È𝑡2É}

With this new denition, 𝜕 ∈ È1É holds if and only if 𝜕 ≠ Ω. Therefore, the interpretation of
1 → 1 is not equal to P𝑓 (D × DΩ) (the set of all relations) anymore, since it does not contain
the relations belonging to P𝑓 (D ×{Ω}). On the other hand, the interpretation of Int → Int now
contains, for example, the relation {(true,Ω)}, which ensures that Int → Int is not a subtype of
1 → 1.

This approach allows us to dene a subtyping relation on monomorphic set-theoretic types
which enjoys the properties we wanted. Frisch et al. [27] also show that this relation is decidable,
and describe an algorithm, which has then be implemented as part of the language CDuce .
Interestingly, they also show that while types are not directly interpreted as sets of values to
dene subtyping, we can later dene a second interpretation of types È.ÉV as È𝑡ÉV =def {𝑣 |` 𝑣 : 𝑡},
and prove that È𝑡1É ⊆ È𝑡2É ⇐⇒ È𝑡1ÉV ⊆ È𝑡2ÉV . This proves that the subtyping relation they
dene using D truly corresponds to a relation on sets of values of the language.

2.1.4. Adding type variables

We have now explained how to use the semantic subtyping approach in a system with constant,
product, and arrow types. However, we are still limited to a monomorphic setting. The next
step is to add polymorphism, and allow types to contain type variables. We only consider prenex
parametric polymorphism, as types supporting rst-class polymorphism have not been studied
yet using semantic subtyping.

There are two important aspects to type variables. The rst is that type variables are only
related to themselves (by reexivity), and then follow the usual set-theoretic principles. For
example, 𝛼 ≤ 𝛼 ∨ 𝑡 holds, as does 𝛼 ∧ 𝑡 ≤ 𝛼 . The second aspect is that subtyping must be stable
by type substitution: if 𝑡1 ≤ 𝑡2 holds, then 𝑡1\ ≤ 𝑡2\ must also hold for every type substitution \ .

The solution proposed by Castagna and Xu [14] is to integrate type substitutions directly
into the interpretation È.É. They parameterize the interpretation by an assignment, which they

43



Chapter 2: Background

denote [ : Vars → P (D), and which maps variables to subsets of D . The interpretation of a
type depends on this assignment, so that the interpretation function is now È.É(.) : Types →
(Vars → P (D)) → P (D). The interpretation of most types does not change: if 𝑡 is a closed
type, then È𝑡É[ = È𝑡É for every assignment [ (where the interpretation in the right hand side is
the monomorphic version we presented in the previous subsections). The dierence comes from
the interpretation of type variables, which is dened as È𝛼É[ = [ (𝛼). Since subtyping must be
preserved by arbitrary type substitutions, the denition of subtyping is now:

𝑡1 ≤ 𝑡2 ⇐⇒def ∀[ : Vars → P (D) . È𝑡1É[ ⊆ È𝑡2É[

However, this denition has several problems, which Castagna and Xu [14] discuss. The rst
problem is algorithmic: due to the universal quantication on assignments, it is not known
whether the relation is decidable, and they conjecture it to be NEXPTIME-complete if it is. The
second problem is that this relation is not always intuitive. As an example, Castagna and Xu [14]
present the statement:

𝑡 × 𝛼 ≤ (𝑡 × ¬𝑡) ∨ (𝛼 × 𝑡)

where 𝑡 is closed. Here, the variable 𝛼 appears in two unrelated positions in the two types at
hand, therefore, following the intuition that 𝛼 is only comparable with itself, one would expect
this statement to be false. However, according to the above denition, if 𝑡 is taken to be a singleton
type then the statement holds.

To understand why this happens, consider a type 𝑡 such that È𝑡É[ = {𝑑} independently of
[. For every assignment [, we either have 𝑑 ∈ È𝛼É[ or È𝛼É[ ⊆ D \ {𝑑}. Thus, the following
judgment holds for every assignment [, proving that 𝑡 × 𝛼 ≤ (𝑡 × ¬𝑡) ∨ (𝛼 × 𝑡):

{𝑑} × [ (𝛼) ⊆ ({𝑑} × (D \ {𝑑})) ∪ ([ (𝛼) × {𝑑})

Castagna and Xu [14] argue that the problem comes from the fact that for every assignment [,
either È𝑡 ∧ 𝛼É[ is empty, or È𝑡 ∧ ¬𝛼É[ is empty; but none of the two interpretations are always
empty for every assignment. Therefore, they introduce a property they call convexity as a solution
to this problem, akin to parametricity as studied by Reynolds [62]. An interpretation È.É(.) is said
to be convex if it satises the following statement for every set of types {𝑡1, . . . , 𝑡𝑛} ⊆ Types:

∀[. ∃𝑖 ∈ {1..𝑛}. È𝑡𝑖É[ = ∅ ⇐⇒ ∃𝑖 ∈ {1..𝑛}. ∀[. È𝑡𝑖É[ = ∅

For the reasons we stated above, this property cannot be satised by any interpretation that
contains singleton types (types whose interpretation is a singleton that is independent of the
assignment [). Therefore, to achieve convexity, Castagna and Xu [14] propose to change the
interpretation of closed types (and, in particular, singleton types) to interpret them into innite
sets. While this breaks even further the correspondence between the interpretation domain and
the values of the language, this ensures the subtyping relation avoids problematic judgments
such as the one we presented.

The interpretation domain and (convex) interpretation function we will use throughout the
manuscript comes from the work of Gesbert et al. [32], in which they present an algorithm to
decide polymorphic semantic subtyping. They follow the idea of Castagna and Xu [14], and
interpret closed and base types into innite sets. To do this, they attach sets of labels to the
elements of the domainD , where each label is associated to a type variable. Formally, the domain
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is now dened by the following grammar:

D 3 𝑑 F 𝑐𝐿 | (𝑑,𝑑)𝐿 | {(𝑑, 𝜕), . . . , (𝑑, 𝜕)}𝐿

where 𝐿 ranges over P𝑓 (Vars). The interpretation of types is then modied so that closed types
contain elements independently of their labels:

È𝑏É[ = {𝑐𝐿 | 𝑐 ∈ B(𝑏)}
È𝑡1 × 𝑡2É[ = {(𝑑1, 𝑑2)𝐿 | 𝑑1 ∈ È𝑡1É ∧ 𝑑2 ∈ È𝑡2É}

Gesbert et al. [32] go even further by proving that it is possible to remove the dependency of
the interpretation on an assignment [, by interpreting variables as the set of elements having a
matching label:

È𝛼É = {𝑑 ∈ D | 𝛼 ∈ tags(𝑑)}

where tags(𝑑) denotes the outermost set of labels attached to an element 𝑑 . This interpreta-
tion makes the subtyping relation easier to dene and decide, since it removes the universal
quantication introduced by the parameter [. Gesbert et al. [32] dene another relation using
quantication where, as before, È𝛼É[ = [ (𝛼), and prove that the two are actually equivalent.
Throughout this manuscript, we will use the rst interpretation (which does not depend on [)
since it is easier to manipulate, but we will still study the second in Section 2.4 since it is essential
to prove that subtyping is preserved by type substitutions.

2.2. Set-theoretic types

We now bring together the various concepts presented throughout the previous section, and
formalize the types we will use throughout this manuscript.

2.2.1. Syntax

We consider types that feature base types, type variables, products, arrows, and set-theoretic
connectives (see Denition 2.2 for the formal denition). Therefore, we suppose that there exist
three sets corresponding to base types, type variables, and language constants:

V 𝛼 3 𝛼, 𝛽,𝛾 type variables

C 3 𝑐 language constants

B 3 𝑏 base types

The set V 𝛼 is supposed to be countably innite, and V 𝛼 ∩ B = ∅. Moreover, as anticipated in
Subsection 2.1.2, we assume the existence of two functions

B(.) : B → P (C ) 𝑏 (.) : C → B

such that B(.) associates to every base type the set of constants that belong to it, and 𝑏 (.) asso-
ciates to every constant 𝑐 its most precise type 𝑏𝑐 .
Moreover, we assume the existence of a singleton type in B associated to every constant. A

singleton type is a type such that a single constant 𝑐 belongs to it, and is de facto the most precise
type for this constant. As such, we have B(𝑏𝑐) = {𝑐} for every constant 𝑐 ∈ C . When the
constant 𝑐 is determined and when there is no ambiguity, we may use the constant itself instead
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of 𝑏𝑐 to denote its singleton type. For example, we may consider true∨false as a type equivalent
to Bool.

Assuming the above denitions, the types we consider are dened as follows.

Denition 2.2. The set Types of set-theoretic types is the set of terms dened coinductively

by the following grammar:

𝑡 F 𝛼 type variable

| 𝑏 base type

| 𝑡 × 𝑡 product

| 𝑡 → 𝑡 arrow

| 𝑡 ∨ 𝑡 union

| ¬𝑡 negation

| 0 empty

that moreover satisfy the following two conditions:

• (regularity) the term has a nite number of dierent sub-terms;

• (contractivity) every innite branch of the term contains an innite number of occur-

rences of the × or→ type constructors.

As anticipated, the above denition does not introduce a top type or intersection and dierence
connectives. They are dened as abbreviations using the following equalities:

𝑡1 ∧ 𝑡2 =def ¬(¬𝑡1 ∨ ¬𝑡2) intersection

𝑡1 \ 𝑡2 =def 𝑡1 ∧ ¬𝑡2 dierence

1 =def ¬0 any

We refer to 𝑏, ×, and→ as type constructors and to ∨, ¬, ∧, and \ as type connectives.
We suppose the existence of a base type 1B ∈ B that is the top type of base types: ∀𝑏 ∈

B, B(𝑏) ⊆ B(1B).
The negation connective is given a higher precedence than the other connectives, which are

themselves given a higher precedence than constructors. As such, following the usual convention
that the constructor → is right-associative, 𝑡1 → 𝑡2 ∧ 𝑡 ′1 → 𝑡 ′2 is actually equivalent to 𝑡1 →
((𝑡2 ∧ 𝑡 ′1) → 𝑡 ′2). The intersection of two arrow types must be parenthesized as follows (𝑡1 →
𝑡2) ∧ (𝑡 ′1 → 𝑡 ′2).

Note that types are dened coinductively instead of inductively, so they can be innite trees,
provided they satisfy the two conditions presented in Denition 2.2. This gives a denition of
equi-recursive types that is equivalent to the arguably more common denition that involves
explicit binders for recursion.
The contractivity condition is crucial because it removes ill-formed types such as 𝑡 = 𝑡 ∨ 𝑡

(which does not carry any information about the set denoted by the type) or 𝑡 = ¬𝑡 (which cannot
represent any set). It also ensures that the binary relation ⊲ ⊆ Types2 dened by 𝑡1 ∨ 𝑡2 ⊲ 𝑡𝑖 , ¬𝑡 ⊲ 𝑡
is Noetherian (that is, strongly normalizing). This gives an induction principle on Types that we
will use without any further reference to the relation. The induction principle derived from the
relation “⊲” states that we can use induction on type connectives but not on type constructors.
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This is well-founded because contractivity ensures that there are nitely many type connectives
between two type constructors.
The regularity condition, on the other hand, is only needed to ensure the decidability of the

subtyping relation, which relies on the nite representation of types.
Additionally, we write vars(𝑡) to denote the set of type variables that occur in a type 𝑡 . The

function vars(.) cannot be dened inductively since types are dened coinductively, however, it
still satises the following equalities:

vars(𝛼) = {𝛼} vars(𝑏) = ∅
vars(𝑡1 × 𝑡2) = vars(𝑡1) ∪ vars(𝑡2) vars(𝑡1 → 𝑡2) = vars(𝑡1) ∪ vars(𝑡2)
vars(𝑡1 ∨ 𝑡2) = vars(𝑡1) ∪ vars(𝑡2) vars(¬𝑡) = vars(𝑡)

vars(0) = ∅

We say that a type 𝑡 is closed if vars(𝑡) = ∅, and we say that a variable 𝛼 is free in a type 𝑡 , which
we denote by 𝛼 ♯ 𝑡 , if 𝛼 ∉ vars(𝑡).

2.2.2. Type substitutions

Throughout this manuscript, we will regularly use the concept of type substitutions, which we
denote by \ . Their denition is fairly standard.

Denition 2.3 (Type substitution). A type substitution is a mapping \ : V 𝛼 → Types from
type variables to types which is the identity everywhere except on a nite set of type variables,

which we call its domain, denoted dom(\ ). Formally, dom(\ ) = {𝛼 ∈ V 𝛼 | \ (𝛼) ≠ 𝛼}.
We write 𝑡\ for the application of the type substitution \ to the type 𝑡 .

The application of a type substitution to a set-theoretic type follows the intuitive equalities
(which cannot be taken as an inductive denition due to recursive types):

𝛼\ = \ (𝛼) 𝑏\ = 𝑏

(𝑡1 × 𝑡2)\ = (𝑡1\ ) × (𝑡2\ ) (𝑡1 → 𝑡2)\ = (𝑡1\ ) → (𝑡2\ )
(𝑡1 ∨ 𝑡2)\ = (𝑡1\ ) ∨ (𝑡2\ ) (¬𝑡)\ = ¬(𝑡\ )

0\ = 0

Given a type 𝑡 and a variable 𝛼 , we use the notation [𝑡/𝛼] to denote the substitution \ such
that dom(\ ) ⊆ {𝛼} and \ (𝛼) = 𝑡 . This notion is extended to vectors of types and type variables
by dening it pointwise. Given two vectors ®𝑡 of types and ®𝛼 of type variables of equal lengths 𝑛,
we use [®𝑡/®𝛼] to denote the substitution \ such that dom(\ ) ⊆ ®𝛼 and 𝛼𝑖\ = 𝑡𝑖 for every 𝑖 ∈ {1..𝑛}.
We will also commonly refer to the set of variables introduced by a type substitution \ , which

we denote vars(\ ), following the same notation as for the variables occurring in a type:

vars(\ ) =def
⋃

𝛼 ∈dom(\ )
vars(𝛼\ )

Given two type substitutions \1 and \2, we use \1 ◦ \2 to denote their composition, dened by
(\1 ◦ \2) (𝛼) =def 𝛼\2\1. Moreover, if \1 and \2 are disjoint (that is, dom(\1) ∩ dom(\2) = ∅), we
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denote their union by \1 ∪ \2, which is dened as:

(\1 ∪ \2) (𝛼) =def

𝛼\1 if 𝛼 ∈ dom(\1)
𝛼\2 if 𝛼 ∈ dom(\2)
𝛼 otherwise

In Part I, we will regularly refer to these denitions, extending them to various sets of type
variables and types.

2.3. Semantic subtyping

As we explained in the previous sections, in semantic subtyping, we interpret types as subsets of
an interpretation domain. While this domain corresponds roughly to the values of a language, we
have shown that some care must be taken when interpreting functional values, for cardinality
reasons. Therefore, we represent functions as nite relations. As anticipated, we also include
tags to interpret type variables, and include a distinguished symbol Ω to represent type errors.
The following denition summarizes the various steps presented in Section 2.1.

Denition 2.4 (Interpretation domain). The interpretation domainD is the set of nite terms

𝑑 produced inductively by the following grammar:

𝑑 F 𝑐𝐿 | (𝑑,𝑑)𝐿 | {(𝑑, 𝜕), . . . , (𝑑, 𝜕)}𝐿

𝜕 F 𝑑 | Ω

where 𝑐 ranges over the set C of constants, 𝐿 ranges over P𝑓 (V 𝛼 ), and where Ω is such that

Ω ∉ D .

We also write DΩ = D ∪ {Ω}.

Throughout the manuscript, we will commonly denote nite relations {(𝑑1, 𝜕1), . . . , (𝑑𝑛, 𝜕𝑛)}𝐿

by 𝑅𝐿 (or simply 𝑅 in a monomorphic setting), and use {(𝑑𝑖 , 𝜕𝑖) | 𝑖 ∈ 𝐼 }𝐿 as a more formal
notation, implicitly assuming that 𝐼 and 𝐿 are both nite.

In the following denitions, to interpret type variables, we will need to refer to the set of tags
attached to an element of D . To ease the formalism, we dene the following function tags(.),
which extracts the outermost set of types variables attached to an element:

tags(𝑐𝐿) = tags((𝑑1, 𝑑2)𝐿) = tags({(𝑑𝑖 , 𝜕𝑖) | 𝑖 ∈ 𝐼 }𝐿) = 𝐿

The next step is to dene the interpretation of types as sets of elements of D , via a function
D . : Types → P (D). We have already explained in Section 2.1 the intuition behind the inter-
pretation of each constructor and each connective. Formally, the interpretation must satisfy the
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following equalities, where the sets of labels 𝐿 are arbitrary:

È𝛼É = {𝑑 | 𝛼 ∈ tags(𝑑)}
È𝑏É = {𝑐𝐿 | 𝑐 ∈ B(𝑏)}

È𝑡1 × 𝑡2É = {(𝑑1, 𝑑2)𝐿 | 𝑑1 ∈ È𝑡1É ∧ 𝑑2 ∈ È𝑡2É}
È𝑡1 → 𝑡2É = {{(𝑑𝑖 , 𝜕𝑖) | 𝑖 ∈ 𝐼 }𝐿 | ∀𝑖 ∈ 𝐼 . 𝑑𝑖 ∈ È𝑡1É =⇒ 𝜕𝑖 ∈ È𝑡2É}
È𝑡1 ∨ 𝑡2É = È𝑡1É ∪ È𝑡2É

È¬𝑡É = D \ È𝑡É
È0É = ∅

However, the presence of recursive types do not allow us to use these equalities as an inductive
denition of È.É. Instead, we dene a predicate on DΩ × Types to decide whether an element
belongs to the interpretation of a type. We then use this predicate to dene the function È.É
satisfying the above equalities.
Since this predicate is dened on pairs of DΩ × Types, we can rely on the aforementioned

induction principle enabled by the contractivity property of types. Additionally, while types are
interpreted as subsets of D , the predicate is dened on DΩ to slightly simplify the case of arrow
types.

Denition 2.5 (Set-theoretic interpretation of types). We dene a binary predicate (𝜕 : 𝑡)
(“the element 𝜕 belongs to the type 𝑡”) where 𝜕 ∈ DΩ and 𝑡 ∈ Types, by induction on the pair

(𝜕, 𝑡) ordered lexicographically. The predicate is dened as follows:

(𝑑 : 𝛼) = 𝛼 ∈ tags(𝑑)
(𝑐𝐿 : 𝑏) = 𝑐 ∈ B(𝑏)

((𝑑1, 𝑑2)𝐿 : 𝑡1 × 𝑡2) = (𝑑1 : 𝑡1) ∧ (𝑑2 : 𝑡2)
({(𝑑𝑖 , 𝜕𝑖) | 𝑖 ∈ 𝐼 }𝐿 : 𝑡1 → 𝑡2) = ∀𝑖 ∈ 𝐼 . (𝑑𝑖 : 𝑡1) =⇒ (𝜕𝑖 : 𝑡2)

(𝑑 : 𝑡1 ∨ 𝑡2) = (𝑑 : 𝑡1) ∨ (𝑑 : 𝑡2)
(𝑑 : ¬𝑡) = ¬(𝑑 : 𝑡)
(𝜕 : 𝑡) = false otherwise

We dene the set-theoretic interpretation of set-theoretic types È.É : Types → P (D) as
È𝑡É =def {𝑑 ∈ D | (𝑑 : 𝑡)}.

Finally, as anticipated, subtyping is dened using set-containment and the above denition of
the interpretation of types.

Denition 2.6 (Subtyping). We dene the subtyping relation ≤ and subtyping equivalence
relation ' as 𝑡1 ≤ 𝑡2 ⇐⇒def È𝑡1É ⊆ È𝑡2É and 𝑡1 ' 𝑡2 ⇐⇒def (𝑡1 ≤ 𝑡2) and (𝑡2 ≤ 𝑡1).

 Remark 2.7. q
The monomorphic version of semantic subtyping, which we will not state here, can be obtained

straightforwardly by simply removing type variables 𝛼 from the syntax of types given in Deni-

tion 2.2, and removing the sets of labels 𝐿 from the interpretation domain and the interpretation

of types. The types we consider in Part II are monomorphic set-theoretic types and their inter-
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pretation will therefore draw inspiration from the monomorphic version of semantic subtyping.

y

2.4. Properties of semantic subtyping

This section is dedicated to the study of the subtyping relation dened in the previous section. We
prove several results that will be needed in the rest of themanuscript. First of all, we introduce the
aforementioned interpretation of types of Gesbert et al. [32] and their version of quantication-
based semantic subtyping, which is proven to be equivalent to that of Denition 2.6. This then
makes it possible to prove that subtyping is preserved by type substitutions, which will be crucial
to ensure the soundness of the various systems presented in the thesis.
We also introduce some results from Frisch et al. [27] and Castagna and Xu [14] proving that

types can be put in disjunctive normal forms with specic properties, and use these forms to
dene and study the properties of several type operators that will be useful for this work.

2.4.1. Equivalence with quantified subtyping

As anticipated, we now introduce the parameterized interpretation of types and quantication-
based subtyping relation of Gesbert et al. [32], and prove that it is equivalent to the denition
of subtyping we gave in Denition 2.6. While the latter is arguably easier to work with, it may
seem less intuitive than the former when reasoning about polymorphic types. Moreover, the
quantication-based denition makes it easier to reason on type substitutions, and the result of
equivalence will then ensure that subtyping as dened in Denition 2.6 is stable by type substi-
tution.
In this new interpretation, the interpretation domain is unchanged. However, as anticipated,

the interpretation function is now parameterized with an assignment, which is a function [ :
V 𝛼 → P (D) mapping variables to subsets of the interpretation domain. As before, we cannot
immediately give an inductive denition of the interpretation function È.É𝑞(.) due to the pres-
ence of recursive types. Thus, we start by the denition of a ternary predicate on domain el-
ements and types, parameterized by an assignment. All the notions introduced here, related
to quantication-based subtyping, are distinguished from the notions presented in the previous
chapter by a superscript 𝑞 .

Denition 2.8. We dene a ternary predicate (𝜕 :[ 𝑡)𝑞 where 𝜕 ∈ DΩ , 𝑡 ∈ Types, and [ :
V 𝛼 → P (D) by induction on the pair (𝜕, 𝑡) ordered lexicographically. The predicate is dened
as follows:

(𝑑 :[ 𝛼)𝑞 = 𝑑 ∈ [ (𝛼)
(𝑐𝐿 :[ 𝑏)

𝑞 = 𝑐 ∈ B(𝑏)
((𝑑1, 𝑑2)𝐿 :[ 𝑡1 × 𝑡2)

𝑞 = (𝑑1 :[ 𝑡1)𝑞 ∧ (𝑑2 :[ 𝑡2)𝑞

({(𝑑𝑖 , 𝜕𝑖) | 𝑖 ∈ 𝐼 }𝐿 :[ 𝑡1 → 𝑡2)
𝑞 = ∀𝑖 ∈ 𝐼 . (𝑑𝑖 :[ 𝑡1)𝑞 =⇒ (𝜕𝑖 :[ 𝑡2)𝑞

(𝑑 :[ 𝑡1 ∨ 𝑡2)𝑞 = (𝑑 :[ 𝑡1)𝑞 ∨ (𝑑 :[ 𝑡2)𝑞

(𝑑 :[ ¬𝑡)𝑞 = ¬(𝑑 :[ 𝑡)𝑞

(𝜕 :[ 𝑡)𝑞 = false otherwise
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We dene the interpretation È𝑡É𝑞[ of a set-theoretic type 𝑡 as:

È𝑡É𝑞[ =def {𝑑 ∈ D | (𝑑 :[ 𝑡)𝑞}

We dene the quantication-based subtyping relation ≤𝑞
on set-theoretic types as:

𝑡1 ≤𝑞 𝑡2 ⇐⇒def ∀[ : V 𝛼 → P (D) . È𝑡1É𝑞[ ⊆ È𝑡2É𝑞[ .

We now prove that the two subtyping relations ≤ and ≤𝑞 coincide. To achieve this, we rst
introduce the canonical assignment[ : V 𝛼 → P (D) dened by[ (𝛼) = {𝑑 | 𝛼 ∈ tags(𝑑)}. Using
this canonical assignment, the two interpretation functions coincide as stated by the following
lemma:

Lemma 2.9. For every type 𝑡 ∈ Types, È𝑡É = È𝑡É𝑞
[
.

Proof. The statement is proven by a straightforward induction on the pair (𝑑, 𝑡). �

The above lemma proves that the relation ≤𝑞 is stronger than ≤, since if subtyping holds for
every assignment [, then it must in particular hold for [. To prove the converse, we rst prove
a lemma due to Gesbert et al. [32], stating that if the interpretation of a type is empty for the
assignment [ then it must be empty for every other assignment [.

Lemma 2.10. Let 𝑉 ∈ P𝑓 (V 𝛼 ), and 𝑇 = {𝑡 ∈ Types | vars(𝑡) ⊆ 𝑉 }. For every 𝑡 ∈ 𝑇 , the

following holds:

È𝑡É𝑞
[
= ∅ =⇒ ∀[ : V 𝛼 → P (D). È𝑡É𝑞[ = ∅

Proof. We prove the result by contraposition, by proving:

∀𝑡 ∈ 𝑇 . (∃[. È𝑡É𝑞[ ≠ ∅) =⇒ È𝑡É𝑞
[
≠ ∅

To prove this result, we prove the stronger statement:

∀𝑡 ∈ 𝑇 . ∀𝑑 ∈ D . (𝑑 :[ 𝑡)𝑞 ⇐⇒ (𝐹[
𝑉
(𝑑) :[ 𝑡)𝑞

where the function 𝐹
[

𝑉
(.) is dened as follows:

𝐹
[

𝑉
(𝑑) =


𝑐𝑙

[

𝑉
(𝑑) if 𝑑 = 𝑐𝐿

(𝐹[
𝑉
(𝑑1), 𝐹[𝑉 (𝑑2))

𝑙
[

𝑉
(𝑑) if 𝑑 = (𝑑1, 𝑑2)𝐿

{(𝐹[Ω (𝑑𝑖), 𝐹
[

Ω (𝜕𝑖)) | 𝑖 ∈ 𝐼 }𝑙
[

𝑉
(𝑑) if 𝑑 = {(𝑑𝑖 , 𝜕𝑖) | 𝑖 ∈ 𝐼 }𝐿

𝑙
[

𝑉
(𝑑) = {𝛼 ∈ 𝑉 | 𝑑 ∈ [ (𝛼)}

Using the function 𝐹
[

𝑉
(.) to change the labels of domain elements recursively according to

[, we can associate to every element of È𝑡É𝑞[ an element of È𝑡É𝑞
[
, and reciprocally.

The proof is done by induction on the pair (𝑑, 𝑡) ordered lexicographically, and by case
analysis on 𝑡 .

51



Chapter 2: Background

• 𝑡 = 𝛼. We have

(𝑑 :[ 𝛼)𝑞 ⇐⇒ 𝑑 ∈ [ (𝛼)
(𝐹[

𝑉
(𝑑) :[ 𝛼)𝑞 ⇐⇒ 𝐹

[

𝑉
(𝑑) ∈ [ (𝛼) ⇐⇒ 𝛼 ∈ tags(𝐹[

𝑉
(𝑑))

⇐⇒ 𝛼 ∈ 𝑙
[

𝑉
(𝑑) ⇐⇒ (𝛼 ∈ 𝑉 ) ∧ (𝑑 ∈ [ (𝛼))

and the result follows since 𝛼 ∈ 𝑇 implies 𝛼 ∈ 𝑉 .

• 𝑡 = 𝑏. If𝑑 is not of the form 𝑐𝐿 , then the result is immediate. Otherwise, (𝑐𝐿 :[ 𝑏)
𝑞 ⇐⇒

𝑐 ∈ B(𝑏) ⇐⇒ (𝐹[
𝑉
(𝑐𝐿) :[ 𝑏)

𝑞 .

• 𝑡 = 𝑡1 × 𝑡2. If 𝑑 is not of the form (𝑑1, 𝑑2)𝐿 , then the result is immediate. Otherwise,
we have

((𝑑1, 𝑑2)𝐿 :[ 𝑡1 × 𝑡2)
𝑞 ⇐⇒ (𝑑1 :[ 𝑡1)𝑞 ∧ (𝑑2 :[ 𝑡2)𝑞

(𝐹[
𝑉
((𝑑1, 𝑑2)𝐿) :[ 𝑡1 × 𝑡2)

𝑞 ⇐⇒ (𝐹[
𝑉
(𝑑1) :[ 𝑡1)

𝑞 ∧ (𝐹[
𝑉
(𝑑2) :[ 𝑡2)

𝑞

and for 𝑖 ∈ {1, 2}, (𝑑𝑖 :[ 𝑡𝑖)𝑞 ⇐⇒ (𝐹[
𝑉
(𝑑𝑖) :[ 𝑡𝑖)

𝑞 holds by IH.

• 𝑡 = 𝑡1 → 𝑡2. If 𝑑 is not of the form {(𝑑𝑖 , 𝜕𝑖) | 𝑖 ∈ 𝐼 }𝐿 , then the result is immediate.
Otherwise, we have

({(𝑑𝑖 , 𝜕𝑖) | 𝑖 ∈ 𝐼 }𝐿 :[ 𝑡1 → 𝑡2)
𝑞 ⇐⇒ (∀𝑖 ∈ 𝐼 . (𝑑𝑖 :[ 𝑡1)𝑞 =⇒ (𝜕𝑖 :[ 𝑡2)𝑞)

(𝐹[
𝑉
({(𝑑𝑖 , 𝜕𝑖) | 𝑖 ∈ 𝐼 }𝐿) :[ 𝑡1 → 𝑡2)

𝑞 ⇐⇒ (∀𝑖 ∈ 𝐼 . (𝐹[
𝑉
(𝑑𝑖) :[ 𝑡1)

𝑞
=⇒ (𝐹[

𝑉
(𝜕𝑖) :[ 𝑡2)

𝑞)

and for 𝑖 ∈ 𝐼 , both (𝑑𝑖 :[ 𝑡1)𝑞 ⇐⇒ (𝐹[
𝑉
(𝑑𝑖) :[ 𝑡1)

𝑞 and (𝜕𝑖 :[ 𝑡2)𝑞 ⇐⇒ (𝐹[
𝑉
(𝜕𝑖) :[ 𝑡2)

𝑞

hold by IH.

• 𝑡 = 𝑡1 ∨ 𝑡2. We have

(𝑑 :[ 𝑡1 ∨ 𝑡2)𝑞 ⇐⇒ (𝑑 :[ 𝑡1)𝑞 ∨ (𝑑 :[ 𝑡2)𝑞

(𝐹[
𝑉
(𝑑) :[ 𝑡1 ∨ 𝑡2)

𝑞 ⇐⇒ (𝐹[
𝑉
(𝑑) :[ 𝑡1)

𝑞 ∨ (𝐹[
𝑉
(𝑑) :[ 𝑡2)

𝑞

and the result follows by IH.

• 𝑡 = ¬𝑡 ′. We have

(𝑑 :[ ¬𝑡 ′)𝑞 ⇐⇒ ¬(𝑑 :[ 𝑡 ′)𝑞

(𝐹[
𝑉
(𝑑) :[ ¬𝑡 ′)𝑞 ⇐⇒ ¬(𝐹[

𝑉
(𝑑) :[ 𝑡 ′)𝑞

and the result follows by IH.

• 𝑡 = 0. Immediate since (𝑑 :[ 0)𝑞 can never hold.

�

Finally, using the above lemma and the fact that 𝑡1 ≤ 𝑡2 is equivalent to 𝑡1\𝑡2 ≤ 0 (and similarly
for ≤𝑞), we can prove that the two subtyping relations are equivalent.

Proposition 2.11. For all types 𝑡1, 𝑡2 ∈ Types, 𝑡1 ≤ 𝑡2 ⇐⇒ 𝑡1 ≤𝑞 𝑡2.
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Proof. By denition, 𝑡1 ≤ 𝑡2 ⇐⇒ È𝑡1 \ 𝑡2É = ∅, and 𝑡1 ≤𝑞 𝑡2 ⇐⇒ ∀[. È𝑡1 \ 𝑡2É𝑞[ = ∅.
By Lemma 2.9, the rst statement becomes 𝑡1 ≤ 𝑡2 ⇐⇒ È𝑡1 \ 𝑡2É𝑞[ = ∅. The implication
𝑡1 ≤𝑞 𝑡2 =⇒ 𝑡1 ≤ 𝑡2 is then immediate. The converse follows from Lemma 2.10, taking
𝑉 = vars(𝑡1 \ 𝑡2). �

2.4.2. Stability of subtyping by type substitution

Having proven that the two aforementioned subtyping relations are equivalent, we can now
prove that subtyping as dened in Denition 2.6 is preserved by type substitutions. To do this,
we rst prove the following lemma, introduced by Castagna and Xu [14] in their proof that ≤𝑞

is preserved by type substitutions.

Lemma 2.12. For every 𝑡 ∈ Types, every substitution \ : V 𝛼 → Types, and every assignment

[ : V 𝛼 → P (D), if [ ′ is dened by [ ′(𝛼) = È𝛼\É𝑞[ , then È𝑡\É𝑞[ = È𝑡É𝑞
[′ .

Proof. The statement is shown by straightforward induction on the pair (𝑑, 𝑡). �

The above Lemma allows us to prove that ≤𝑞 is preserved by type substitutions, which then
gives the same result for ≤ thanks to Proposition 2.11.

Proposition 2.13. For every types 𝑡1, 𝑡2 ∈ Types, if 𝑡1 ≤ 𝑡2 then 𝑡1\ ≤ 𝑡2\ for every type

substitution \ .

Proof. By Proposition 2.11, we have 𝑡1 ≤𝑞 𝑡2. By Denition 2.8, this proves∀[. È𝑡1 \ 𝑡2É𝑞[ = ∅.
Now consider an arbitrary \ : V 𝛼 → Types and an assignment [ : V 𝛼 → P (D).
Consider [ ′ dened as [ ′(𝛼) = È𝛼\É𝑞[ . By Lemma 2.12, since È𝑡1 \ 𝑡2É𝑞[′ = ∅, we deduce
that È(𝑡1 \ 𝑡2)\É𝑞[ = ∅. This proves that 𝑡1\ ≤𝑞 𝑡2\ , and the result follows from Proposi-
tion 2.11. �

2.4.3. Normal forms and type operators

In this subsection, we study several type operators that we will use to dene the operational
semantics of our gradually-typed languages, and to prove their soundness.
When dening a algorithmic type system or the operational semantics of a language, one

often needs to compute the domain or codomain of an expression. With simple types, this task is
trivial: since an expression that returns a function necessarily has a type of the form 𝑡1 → 𝑡2, its
domain 𝑡1 and codomain 𝑡2 can be easily computed syntactically. With set-theoretic types, this
is more dicult, since the algorithmic type of an expression can be an arbitrary succession of
intersections and unions of arrow types.

To compute the domain and result type of an arbitrary set-theoretic type 𝑡 , we rst show that 𝑡
can be put in an equivalent disjunctive normal form satisfying specic properties of uniformity.
Then, we dene the various operators syntactically on its disjunctive normal form, and prove
that they satisfy soundness properties, namely, that the types computed this way are the most
precise types that can be derived declaratively.
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 Remark 2.14. q
We distinguish the notions of codomain and result type for set-theoretic types, since the type of

the result of an application depends on the type of the argument, while the codomain does not.

For example, the codomain of (Int → Int)∧(Bool → Bool) is Int∨Bool, since a function of this
type can return both integers and booleans. However, the result type of (Int → Int) ∧ (Bool →
Bool) applied to Int is Int, since a function of this type will always return integers when applied
to integers. y

Disjunctive normal forms for types

The rst step is to prove that types can be put in disjunctive normal form, that is, they are
equivalent to a union of intersections of atoms or negations of atoms, where an atom is either a
product, an arrow, a base type, or a type variable.
Formally, we dene the following sets:

A𝑝𝑟𝑜𝑑 =def {𝑡1 × 𝑡2 | 𝑡1, 𝑡2 ∈ Types}

A𝑓 𝑢𝑛 =def {𝑡1 → 𝑡2 | 𝑡1, 𝑡2 ∈ Types}

and we use the metavariable 𝑎 to range over A𝑝𝑟𝑜𝑑 ∪ A𝑓 𝑢𝑛 ∪ B ∪ V 𝛼 , the set of atoms.
We now dene disjunctive normal forms for set-theoretic types.

Denition 2.15 (Disjunctive normal form). A disjunctive normal form (DNF) is a type 𝑡 ∈
Types such that

𝑡 ≡
∨
𝑖∈𝐼

(∧
𝑎∈𝑃𝑖

𝑎 ∧
∧
𝑎∈𝑁𝑖

¬𝑎
)

where 𝐼 is a nite set of indices, and 𝑃𝑖 and 𝑁𝑖 are nite sets of atoms for every 𝑖 ∈ 𝐼 .

We can then prove that every type is equivalent to a disjunctive normal form, which follows
from the distributivity properties of union and intersection connectives.

Proposition 2.16 (Existence of DNF). For every type 𝑡 ∈ Types, there exists a disjunctive

normal form N (𝑡) such that 𝑡 ' N (𝑡).

Proof. We dene two mutually recursive functions on types N and N ′, by mutual induc-
tion. This induction is well-founded since no recursive use of the functions appears below
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type constructors.

N (𝑎) = 𝑎

N (𝑡1 ∨ 𝑡2) = N (𝑡1) ∨ N (𝑡2)
N (¬𝑡) = N ′(𝑡)
N (0) = 0

N ′(𝑎) = ¬𝑎

N ′(𝑡1 ∨ 𝑡2) =
∨

𝑖∈𝐼 , 𝑗 ∈𝐽

©«
∧

𝑎∈𝑃𝑖∪𝑃 𝑗

𝑎 ∧
∧

𝑎∈𝑁𝑖∪𝑁 𝑗

¬𝑎ª®¬
where N ′(𝑡1) =

∨
𝑖∈𝐼

(∧
𝑎∈𝑃𝑖

𝑎 ∧
∧
𝑎∈𝑁𝑖

¬𝑎
)
and N ′(𝑡2) =

∨
𝑖∈𝐽

©«
∧
𝑎∈𝑃 𝑗

𝑎 ∧
∧
𝑎∈𝑁 𝑗

¬𝑎ª®¬
N ′(¬𝑡) = N (𝑡)
N ′(0) = 1

Following the distributivity properties of the union, intersection and negation connectives,
it is straightforward to verify by mutual induction that N (𝑡) ' 𝑡 and N ′(𝑡) ' ¬𝑡 , and that
N (𝑡) is a disjunctive normal form. �

Before dening the operators on disjunctive normal forms, we need to go a bit further and
introduce uniformity conditions for normal forms. We prove that it is possible to choose the
normal form of a type so that every intersection only contains one kind of atom (besides type
variables). We call such normal forms uniform disjunctive normal forms (UDNF).

Denition 2.17 (Uniform disjunctive normal form). A uniform disjunctive normal form

(UDNF) is a disjunctive normal form

𝑡 ≡
∨
𝑖∈𝐼

(∧
𝑎∈𝑃𝑖

𝑎 ∧
∧
𝑎∈𝑁𝑖

¬𝑎
)

such that for every 𝑖 ∈ 𝐼 , one of the following conditions holds:

• 𝑃𝑖 ∩ B ≠ ∅ and (𝑃𝑖 ∪ 𝑁𝑖) ∩ (A𝑝𝑟𝑜𝑑 ∪ A𝑓 𝑢𝑛) = ∅

• 𝑃𝑖 ∩ A𝑝𝑟𝑜𝑑 ≠ ∅ and (𝑃𝑖 ∪ 𝑁𝑖) ∩ (B ∪ A𝑓 𝑢𝑛) = ∅

• 𝑃𝑖 ∩ A𝑓 𝑢𝑛 ≠ ∅ and (𝑃𝑖 ∪ 𝑁𝑖) ∩ (B ∪ A𝑝𝑟𝑜𝑑 ) = ∅

As before, we prove that every type is equivalent to a uniform disjunctive normal form. This
result follows from the fact that 1 ' 1B ∨ (0 → 1) ∨ (1 × 1), which ensures that the intersec-
tions in a disjunctive normal form can be made uniform by taking their intersection with 1, and
distributing the mentioned union.

Proposition 2.18 (Existence of UDNF). For every type 𝑡 ∈ Types, there exists a uniform

disjunctive normal form N𝑈 (𝑡) such that 𝑡 ' N𝑈 (𝑡).
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Proof. By writing

N (𝑡) =
∨
𝑖∈𝐼

(∧
𝑎∈𝑃𝑖

𝑎 ∧
∧
𝑎∈𝑁𝑖

¬𝑎
)

︸                 ︷︷                 ︸
I𝑖

we dene

N𝑈 (𝑡) =def
∨
𝑖∈𝐼

I𝑖∧1B�0

I base
𝑖 ∨

∨
𝑖∈𝐼

I𝑖∧(1×1)�0

I
prod
𝑖

∨
∨
𝑖∈𝐼

I𝑖∧(0→1)�0

I fun
𝑖

where for every 𝑖 ∈ 𝐼 ,

I base
𝑖 =def 1B ∧

∧
𝑎∈𝑃𝑖∩(B∪V 𝛼 )

𝑎 ∧
∧

𝑎∈𝑁𝑖∩(B∪V 𝛼 )
¬𝑎

I
prod
𝑖

=def (1 × 1) ∧
∧

𝑎∈𝑃𝑖∩(A𝑝𝑟𝑜𝑑∪V 𝛼 )
𝑎 ∧

∧
𝑎∈𝑁𝑖∩(A𝑓 𝑢𝑛∪V 𝛼 )

¬𝑎

I fun
𝑖 =def (0 → 1) ∧

∧
𝑎∈𝑃𝑖∩(A𝑓 𝑢𝑛∪V 𝛼 )

𝑎 ∧
∧

𝑎∈𝑁𝑖∩(A𝑝𝑟𝑜𝑑∪V 𝛼 )
¬𝑎

It is clear that N𝑈 (𝑡) is a uniform disjunctive normal form by denition. We prove that
N𝑈 (𝑡) ' N (𝑡), which ensures that N𝑈 (𝑡) ' 𝑡 by Proposition 2.16.
Since 1 ' 1B ∨ (0 → 1) ∨ (1 × 1), we have, for every 𝑖 ∈ 𝐼 :

I𝑖 ' I𝑖 ∧ 1 ' (I𝑖 ∧ 1B) ∨ (I𝑖 ∧ (0 → 1)) ∨ (I𝑖 ∧ (1 × 1))

All that remains is proving the following results:

I𝑖 ∧ 1B � 0 =⇒ I𝑖 ∧ 1B ' I base
𝑖

I𝑖 ∧ 1 × 1 � 0 =⇒ I𝑖 ∧ 1 × 1 ' I
prod
𝑖

I𝑖 ∧ 0 → 1 � 0 =⇒ I𝑖 ∧ 0 → 1 ' I fun
𝑖

For every 𝑎 ∈ A𝑝𝑟𝑜𝑑 ∪A𝑓 𝑢𝑛 , we have 1B ∧𝑎 ≤ 0. This guarantees that if I𝑖 ∧1B � 0, then
necessarily 𝑃𝑖 ⊆ B∪V 𝛼 . Moreover, this also ensures that 1B∧∧

𝑎∈𝑁𝑖∩(A𝑝𝑟𝑜𝑑∪A𝑓 𝑢𝑛) ¬𝑎 ' 1B .
Hence the rst implication. The other two can be proven using the same reasoning. �

This very last result ensures that, for example, a type 𝑡 ≤ 0 → 1 can always be written
equivalently as a disjunctive normal form containing only arrows, negation of arrows, and type
variables. This will make the denition of operators much easier in the following paragraphs.

Type operators

Having dened (uniform) disjunctive normal forms, we can now dene the various type opera-
tors we will use throughout this manuscript. We dene three of them: the domain operator, the
result type operator, and the projection operator.
The rst we dene is the domain operator, which computes the domain of a function type (that

is, a type 𝑡 ≤ 0 → 1).
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Denition 2.19 (Domain operator). For every type 𝑡 ≤ 0 → 1, we dene its domain dom(𝑡)
as:

dom(𝑡) =def
∧
𝑖∈𝐼

∨
𝑠𝑖→𝑡𝑖 ∈𝑃𝑖

𝑠𝑖

where

N𝑈 (𝑡) '
∨
𝑖∈𝐼

(∧
𝑎∈𝑃𝑖

𝑎 ∧
∧
𝑎∈𝑁𝑖

¬𝑎
)

To compute the domain of a normal form, only the positive arrows are used. The intuition is
that negative arrows to not characterize the input of functions, only their outputs. For example,
if a function is of type (1 → 1) ∧ ¬(Int → Bool), then it can be applied to any argument. In
particular, the negation type ¬(Int → Bool) does not forbid the function to be applied to an
integer, it only states that, when applied to some integers (but not necessarily all), the function
returns something that is not a boolean.
The denition of the domain operator then follows the following intuition: the domain of an

intersection of arrows is the union of their domains, and the domain of a union of arrows is the
intersection of their domains. Intuitively, a function of type (Int → Int) ∧ (Bool → Bool) can be
applied to both integers and booleans, while a function of type (Even → Even) ∨ (Nat → Nat)
can only be safely applied to integers that are both even and non-negative (i.e., Even ∧ Nat),
because we cannot be sure whether it is of one type or the other.
The next operator is the result type operator, which is much more complex. As anticipated,

since the type of the result of an application depends on the type of the argument, this operator
depends on both the type of the function and the type of the argument.

Denition 2.20 (Result type operator). For every type 𝑡 ≤ 0 → 1 and every type 𝑠 such that

𝑠 ≤ dom(𝑡), we dene the result type of 𝑡 applied to 𝑠 , noted 𝑡 ◦ 𝑠 as:

𝑡 ◦ 𝑠 =def
∨
𝑖∈𝐼

∨
𝑄(𝑃𝑖

𝑠�
∨

𝑠𝑖→𝑡𝑖 ∈𝑄 𝑠𝑖

∧
𝑠𝑖→𝑡𝑖 ∈𝑃𝑖\𝑄

𝑡𝑖

where

N𝑈 (𝑡) =
∨
𝑖∈𝐼

(∧
𝑎∈𝑃𝑖

𝑎 ∧
∧
𝑎∈𝑁𝑖

¬𝑎
)

To understand this operator, rst consider a simple intersection of arrows 𝑡 ≡ ∧
𝑝∈𝑃 𝑠𝑝 → 𝑡𝑝

(for the same reasons as before, negation types do not play any role when computing the result
type of an application). If the type of the argument 𝑠 intersects the domain of several arrows,
that is 𝑠 ∧ 𝑠𝑝1 ∧ . . . ∧ 𝑠𝑝𝑛 � 0 for 𝑝1, . . . , 𝑝𝑛 ∈ 𝑃 , then the application may return a result in the
intersection of all arrows, that is, 𝑡𝑝1 ∧ . . . ∧ 𝑡𝑝𝑛 , provided the argument resolves to a value that
is indeed in the intersection of the aforementioned domains. However, the argument may also
resolve to a value that is outside the intersection of these domains. Thus, we need to consider
all the possible intersections between the type 𝑠 and subsets of {𝑠𝑝 | 𝑝 ∈ 𝑃}, and take the union
of all the possible results. This is what the operator does: by removing all subsets 𝑄 that do not
entirely contain 𝑠 , it obtains all the subsets 𝑃𝑖 \𝑄 that have a non-empty intersection with 𝑠 , and
computes the result.
Finally, to generalize this result to a union of intersections of arrows, we just need to consider

that the result of a union is the union of the results. For example, an expression of type (Nat →
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Nat) ∨ (Even → Even) applied to an argument of type Nat ∧ Even will produce a result of type
Nat ∨ Even depending on whether the function resolves to a function of type Nat → Nat or a
function of type Even → Even.

The last operator we dene is the projection operator, which computes the projection of a type
𝑡 ≤ 1 × 1.

Denition 2.21 (Projection operator). For every type 𝑡 ≤ 1 × 1, and every 𝑗 ∈ {1, 2}, we
dene the j-th projection of 𝑡 , noted 𝜋 𝑗 (𝑡) as:

𝜋 𝑗 (𝑡) =def
∨
𝑖∈𝐼

∧
𝑡𝑖1×𝑡𝑖2∈𝑃𝑖

𝑡𝑖𝑗

where

N𝑈 (𝑡) =
∨
𝑖∈𝐼

(∧
𝑎∈𝑃𝑖

𝑎 ∧
∧
𝑎∈𝑁𝑖

¬𝑎
)

Compared to the previous operators, the denition of the projection operator is quite straight-
forward. To understand it, simply remark that the projection of an intersection of products is
the intersection of their projections, and similarly for an union of products. The former ac-
tually comes immediately from the interpretation of types: (𝑡1 × 𝑡2) ∧ (𝑡 ′1 × 𝑡 ′2) is equivalent to
(𝑡1∧𝑡 ′1)× (𝑡2∧𝑡 ′2). The latter is quite intuitive: if an expression has type (Int×Int)∨ (Bool×Bool),
then its rst projection will either reduce to an integer (if the expression reduces to a value of
type Int × Int) or to a boolean (if the expression reduces to a value of type Bool × Bool). Hence,
its rst projection is of type Int ∨ Bool.
Naturally, proving the soundness of systems involving these operators will require some prop-

erties about these operators. We prove that each operator computes the most precise type (corre-
sponding to the operator) that can be derived declaratively. For example, if an expression of type
𝑡 can be given type 𝑡1 → 𝑡2 by subsumption, then necessarily 𝑡1 ≤ dom(𝑡). That is, a declarative
type system with standard rules and a subsumption rule will never deduce an arrow type with a
domain more precise than the type computed by the domain operator.
As the proof of these properties require very involved manipulation of normal forms, we refer

the reader to Frisch et al. [27] for the proofs, and only state the properties.

Proposition 2.22. For every types 𝑡, 𝑡 ′ ∈ Types, if 𝑡 ≤ 0 → 1 then 𝑡 ≤ dom(𝑡) → 1 and if

𝑡 ≤ 𝑡 ′ → 1 then 𝑡 ′ ≤ dom(𝑡).

Proposition 2.23. For every types 𝑡, 𝑡 ′, 𝑠 ∈ Types, if 𝑡 ≤ 0 → 1 and 𝑠 ≤ dom(𝑡) then
𝑡 ≤ 𝑠 → 𝑡 ◦ 𝑠 . Moreover, if 𝑡 ≤ 𝑠 → 𝑡 ′ then 𝑡 ◦ 𝑠 ≤ 𝑡 ′.

Proposition 2.24. For every types 𝑡, 𝑡1, 𝑡2 ∈ Types, if 𝑡 ≤ 1 × 1 then 𝑡 ≤ 𝜋1(𝑡) × 𝜋2(𝑡) and if
𝑡 ≤ 𝑡1 × 𝑡2 then 𝜋1(𝑡) ≤ 𝑡1 and 𝜋2(𝑡) ≤ 𝑡2.
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Chapter 3.

Introduction

The rst part of this thesis is devoted to the study of several gradual type systems, from aHindley-
Milner type system with implicit polymorphism but without subtyping, to a system supporting
full-edged set theoretic types and semantic subtyping. Initially, this work started as an attempt
to add polymorphism and type inference to a set-theoretic gradual type system we presented
in Castagna and Lanvin [13]. However, this led to a novel approach in which polymorphism
facilitated the introduction of gradual typing into existing type systems, independently of the
presence of set-theoretic types.
As such, we consider two type systems: an ML-like type system and a set-theoretic type sys-

tem, towhichwe add gradual typing following this new approach. We study each system declara-
tively using structural rules, before dening the associated semantics and compilation. Then, we
study the algorithmic aspects of typing, by designing type inference algorithms for both systems.

3.1. Gradual typing, set-theoretic types, and polymorphism

We already presented some of the practical benets of combining gradual typing with union
and intersection types in a monomorphic setting. In this rst part, we extend such benets to a
polymorphic setting. For an aperçu of what can be done in this setting, consider the following
ML-like code snippet adapted from Siek and Vachharajani [67]:

let mymap (condition) (f) (x : ?) =

if condition then Array.map f x else List.map f x

According to the value of the argument condition, the function mymap applies either the array
version or the list version of map to the other two arguments. This example cannot be typed using
only simple types: the type of x and the return type of mymap change depending on the value of
condition. By annotating x with the gradual type ?, the type reconstruction system for gradual
types of Siek and Vachharajani [67] can type this piece of code with Bool → (𝛼 → 𝛽) → ? → ?.
That is, type reconstruction recognizes that the parameter conditionmust be bound to a Boolean
value, and the compilation process adds dynamic checks to ensure that the value bound to x will
be, according to the case, either an array or a list whose elements are of a type compatible with
the actual input type of f.

This type however is still imprecise. For example, if we pass a value that is neither an array
nor a list (e.g., an integer) as the last argument to mymap, then this application is well-typed, even
though the execution will always fail, independently of the value of condition. Likewise, the
type gives no useful information about the result of mymap, even though it will clearly be either
a 𝛽-list or a 𝛽-array. These problems can be remedied by using set-theoretic types:

let mymap (condition) (f) (x : (𝛼 array ∨ 𝛼 list) ∧ ?) =

if condition then Array.map f x else List.map f x
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The union indicates that a value of this type is either an array or a list, both of 𝛼-elements. The
intersection indicates that x has both type (𝛼 array∨𝛼 list) and type ?. Intuitively, this type
annotation means that the function mymap accepts for x a value of any type (which is indicated
by ?), as long as this value is also either an array or a list of 𝛼 elements, with 𝛼 being the domain
of the f argument. The use of the intersection of a union type with “?” to type a parameter cor-
responds to a programming style in which the programmer asks the system to statically enforce
that the function will be applied only to arguments in the union type and delegates to the system
any dynamic check regarding the use of the parameter in the body of the function. The system
presented in Section 5.4 can deduce for this denition the type:

Bool → (𝛼 → 𝛽) → ((𝛼 array∨𝛼 list) ∧ ?) → (𝛽 array∨𝛽 list)

This type forces the last argument of mymap to be either an array or a list of elements whose
type is the input type of the argument bound to f. Note that the return type of mymap is no longer
gradual (as it was with the previous denition), since the union type allows us to dene it without
any loss of precision, as well as to capture the correlation with the return type of the argument
bound to f. The derivation of this type is used by the compiler to insert dynamic type-checks
that ensure type soundness. In particular, the compilation process described in Section 4.2 inserts
in the body of mymap the casts that dynamically check that the rst occurrence of x in the body
of the function is bound to an array of elements of the appropriate type, and that the second
occurrence of x is bound to a list of such elements, producing a code like the following:

let mymap (condition) (f) (x : (𝛼 array ∨ 𝛼 list) ∧ ?) =

if condition then Array.map f (x<𝛼 array>) else List.map f (x<𝛼 list>)

where 𝑒<𝑡> is a type-cast expression that dynamically checks whether the result of 𝑒 has type 𝑡 .
This kind of type discipline is out of reach of current systems. To obtain it, in this part of the

thesis we explore a new idea to interpret gradual types, namely, that the unknown type ? acts
like a type variable, but a peculiar one since each occurrence of ? in a typing constraint can be
considered as a placeholder for a possibly distinct type variable.

3.2. Our approach

Most current presentations of gradual type systems rely on either consistency or consistent subtyp-
ing, the latter being the combination of consistency and subtyping on static types. Consistency,
usually denoted ∼, is a reexive and symmetric but non-transitive relation such that 𝜏1 ∼ 𝜏2 holds
whenever 𝜏1 and 𝜏2 are syntactically equal everywhere except where ? occurs. It is often dened
using the following inference rules:

? ∼ 𝜏 𝜏 ∼ ?

𝜏1 ∼ 𝜏 ′1 𝜏2 ∼ 𝜏 ′2

𝜏1 → 𝜏2 ∼ 𝜏 ′1 → 𝜏 ′2

According to these rules, it is clear that the transitive closure of ∼ is the total relation on grad-
ual types, since every type 𝜏 is consistent with ?, which is itself consistent with every type.
This means that, as opposed to subtyping, consistency cannot be added to a type system via a
structural rule such as:

Γ ` 𝑒 : 𝜏
Γ ` 𝑒 : 𝜏 ′

𝜏 ∼ 𝜏 ′
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since such a type system would be able to type every program, even those that do not contain ?.
Therefore, consistency (or consistent subtyping) is usually embedded directly into elimination
rules. For example, the rule for applications is replaced by the two following rules:

Γ ` 𝑒1 : 𝜏1 → 𝜏 Γ ` 𝑒2 : 𝜏2
Γ ` 𝑒1𝑒2 : 𝜏

𝜏1 ∼ 𝜏2
Γ ` 𝑒1 : ? Γ ` 𝑒2 : 𝜏2

Γ ` 𝑒1𝑒2 : ?

The second rule is needed because ? is consistent with 𝜏2 → ? for every type 𝜏2, therefore a value
of type ? can be applied to a value of type 𝜏2.

Such a presentation is not specic to gradual typing: when studying algorithmic type systems
for languages with subtyping, it is customary to embed the subtyping relation into elimination
rules, to mimic the behaviour of a static type checker. However, the use of a subsumption rule
provides an easy and concise way of adding subtyping into an existing type system, and to gain
insight into how a type system behaves in presence of subtyping.
In this work, we show that such an approach is also possible with gradual typing, and we

describe what is, to our knowledge, the rst presentation of a gradual type system that relies
entirely on a single structural rule to introduce gradual typing. When combined with semantic
subtyping, this gives us some insight into the interaction between gradual types and set-theoretic
types, which sometimes proves to be counter-intuitive.
At the core of our approach is the notion that every occurrence of ? behaves as a type variable,

possibly distinct from all the others. We formalize it by dening an operation of discrimination

which replaces each occurrence of ? in a gradual type by a type variable. Our semantics for
gradual types relies on this operation, for two major reasons: rst, it allows us to formalize the
notion of substituting an occurrence of ?with a type, which is the main idea behind consistency.
Second, by applying discrimination we map a polymorphic gradual type into a set of polymor-
phic static types, one for each possible replacement of occurrences of the dynamic type by a
type variable. Then, we can use pre-existing notions on static types (for example, the semantic
subtyping interpretation) to interpret, indirectly, our initial gradual type.
Using discrimination, we dene a relation we call materialization and denote 4, which is a

preorder on gradual types. Given two types 𝜏1 and 𝜏2, 𝜏1 4 𝜏2 when 𝜏2 is more precise than 𝜏1,
that is, if it was obtained from 𝜏1 by replacing some occurrences of ? by some gradual types. This
is a relation that occurs frequently in the gradual typing literature, sometimes reversed. Siek and
Vachharajani [67] call this relation “less or equally informative” while Garcia [29] and others use
the inverse relation v which they call “precision”. To avoid any confusion with the latter, we
choose to call our relation dierently, although we will sometimes refer as 𝜏2 being more precise

than 𝜏1 if 𝜏1 materializes into 𝜏2.
Since this relation is a preorder, it can be used in a structural rule. We argue that adding the

rule

[TMater]
Γ ` 𝑒 : 𝜏
Γ ` 𝑒 : 𝜏 ′

𝜏 4 𝜏 ′

to any static type system is enough to endow it with gradual typing. In particular, we show that
any type derivation in a system where the consistency relation is embedded into elimination
rules can be obtained in our system by applying [TMater] using a precise strategy.

Thanks to this approach, adding subtyping is now only a matter of also adding a subsumption
rule for subtyping. This contrasts with the complexity of existing approaches where consistency
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(or materialization) and subtyping must be combined to dene consistent subtyping. However,
this requires to extend the subtyping relation from static types to gradual types. In the absence of
set-theoretic types, we achieve this by following an existing approach (presented notably by Siek
and Taha [66]) in which ? is simply treated as a new base type that is incompatible with every
other type for subtyping. That is, the subtyping relation ≤ is dened such that ? ≤ ? holds
(by reexivity), but not ? ≤ Int or Int ≤ ?. This contrasts with materialization where ? acts
as a bottom type, which is to be expected: the two relations have very dierent purposes. The
role of subtyping is to determine whether an expression can always be safely used in a given
context, while the role of materialization is to determine whether there is a possibility that using
an expression in a given context is safe.
However, dening a subtyping relation for gradual set-theoretic types is more challenging.

The dynamic type cannot be considered as a separate base type: for reasons we will explain in
Chapter 5, ? \?must not be empty, which would be the case if ?were interpreted as a base type.
Instead, we use once again the notion of discrimination to interpret gradual set-theoretic types as
set-theoretic types with variables, which we restrict to ensure that two occurrences of ? are not
replaced with the same type variable if they do not occur under the same number of negations.
Using this interpretation, deciding subtyping on gradual types reduces to deciding subtyping on
static types, which can be decided using semantic subtyping.
This approach has another advantage: since materialization is expressed in terms of type sub-

stitutions and gradual subtyping reduces to static subtyping, we can describe type inference for
gradual typing by directly reusing existing algorithms for static type systems, where an addi-
tional unication step takes care of solving materialization constraints.
Finally, our approach sheds some light on the logical meaning of gradual typing. It is well-

known that there is a strong correspondence between systems with subtyping and systems with-
out subtyping but with explicit coercions: every usage of the subsumption rule in the former cor-
responds to the insertion of an explicit coercion in the latter. Our denition of materialization
yields an analogous correspondence between a gradually-typed language and the cast calculus
in which the language is compiled: every usage of the materialize rule in the former corresponds
to the insertion of an explicit cast in the latter. As such, the cast language looks like an impor-
tant ingredient for a Curry-Howard isomorphism for gradual typing disciplines. An intriguing
direction for future work is to study the logic associated with these expressions.

3.3. Overview

As a rst step, in Chapter 4, we add gradual typing to ML-like languages. We start by giving the
denition of materialization for simple gradual types, and use it to present a declarative static
semantics for a gradually-typed version of ML. As customary for gradually-typed languages, we
give the dynamic semantics by compiling well-typed terms into a cast calculus, which we prove
to be sound. We then study the algorithmic aspects of typing, by dening a constraint-based
type inference algorithm that we prove to be sound and complete. Finally, we briey discuss
the extension of the system with subtyping, by considering a simple subtyping relation without
set-theoretic types. However, the presence of subsumption makes type inference more dicult
since, in particular, constraint resolution involves computing intersections and unions of types.
Therefore, we postpone the algorithmic aspects of this system to the next chapter.
In Chapter 5, we introduce set-theoretic types, whose interpretation we base on the approach

of semantic subtyping. We add union, negation, and intersection (which are encoded by De
Morgan’s laws) to types, aswell as recursive types (which are needed for the inference algorithm).
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We describe two main challenges. The rst consists in dening a suitable subtyping relation for
gradual set-theoretic types. We achieve this by using our interpretation of ? as type variables,
and lift the subtyping relation from static types to gradual types. The second challenge is the
extension of the cast calculus with set-theoretic types. We propose a rst solution which, albeit
complex, enjoys the usual soundness properties, and is a conservative extension of the approach
presented in Chapter 4.
In Chapter 6, we propose a second approach, based on recent results that will be developed

in the second part of this thesis. By introducing new relations, which we call semantic gradual

subtyping and semantic materialization, we obtain strong results about the representation of set-
theoretic gradual types, which greatly ease reasoning about them. The semantics we obtain using
this approach is quite dierent from the rst, but is much simpler, and enjoys the same soundness
properties.
We follow with a brief conclusion in Chapter 7, in which we discuss our main results, compare

our approach to existing work, and highlight some interesting directions for future work.
Apart from the semantics presented in Chapter 6, the work presented in this part of the thesis

was the subject of an article (Castagna et al. [18]) in which we follow the same presentation,
providing all the details about the semantics of the cast calculi and the inference algorithms. In
this manuscript, we only give a brief overview of the challenges we encountered when dening
the inference algorithms, and provide a quick rundown of our solutions. We refer the interested
reader to the appendix for the full denitions of the inference systems, and to the cited work for
the proofs of all results.
The reason for this omission is twofold: rst, the goal of this thesis is to study the seman-

tics of gradual types and gradually-typed languages, and type inference is a rather independent
problem. Second, the type inference algorithms have been developed in collaboration with and
thoroughly explained by Petrucciani [56], and presenting them here would be redundant at best.
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Chapter 4.

Gradual typing for Hindley-Milner systems

“La gran victoria de hoy fue el resultado de pequeñas victorias

que pasaron desapercibidas.”

Paulo Coelho

In this chapter, we present our interpretation of gradual types as types with polymorphic type
variables. As an example, we use this approach to add gradual typing to a language withML-style
polymorphism, both declaratively and algorithmically.

Chapter Outline

Section 4.1 We introduce our source language, a standard _-calculus equipped with pairs
and a let construct. We then present the materialization relation, and use it to dene a
declarative gradual type system for our source language. We follow with a comparison of
our type system to several existing type systems.

Section 4.2 Wepresent the syntax and semantics of the target language (or cast language)
associated with our source language. This is done by adding casts and explicit type substi-
tutions to our source language. We also show how materialization can be used to provide
a very simple declarative compilation system for our languages. Finally, we present sev-
eral properties of our calculi, revisiting commonly proven properties of gradual languages,
namely type soundness, blame safety, and gradual guarantee.

Section 4.3 We complete our presentation with the denition of a type inference algo-
rithm, which allows us to decide whether a term of the source language is well-typed or
not, and to compile it to a term of the cast language by adding the necessary checks. We
state soundness and completeness properties for this algorithm with respect to the type
system presented in the preceding sections.

Section 4.4 Finally, we hint at a way to add subtyping to our language. While this is easily
done declaratively, we show that type inference becomes considerably more dicult.

4.1. Source language

This chapter starts with the denition of the source language, its declarative type system, and
the presentation of some of its properties.
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4.1.1. Syntax and types

The source language manipulates both static simple types STypes and gradual simple types
GTypes, which are dened inductively by the follow grammar:

STypes 3 𝑡 F 𝛼 | 𝑏 | 𝑡 × 𝑡 | 𝑡 → 𝑡 static simple types
GTypes 3 𝜏 F ? | 𝛼 | 𝜏 × 𝜏 | 𝜏 → 𝜏 gradual simple types

where 𝑏 ranges over a set B of basic types (e.g., B = {Int,Bool}), and 𝛼, 𝛽 , and 𝛾 range over a
countable set V 𝛼 of type variables. The static types STypes (ranged over by 𝑡 ), are the types of
an ML-like language: type variables, basic types, products, and arrows. Gradual types GTypes
(ranged over by 𝜏) add the unknown type ? to them.

The expressions of the source language TermsHM are those dened inductively by the following
grammar:

TermsHM 3 𝑒 F 𝑥 | 𝑐 | _𝑥 . 𝑒 | _𝑥 :𝜏 . 𝑒 | 𝑒 𝑒 | (𝑒, 𝑒) | 𝜋𝑖 𝑒 | let ®𝛼 𝑥 = 𝑒 in 𝑒

where 𝑥 ranges over a countable set of variables Vars, and 𝑐 ranges over a set C of constants.
This grammar corresponds to a fairly standard _-calculus with constants, pairs (𝑒, 𝑒), projections
for the elements of a pair 𝜋𝑖 𝑒 (where 𝑖 ∈ {1, 2}), plus a let construct. There are two aspects to
point out.

One is that there are two forms of _-abstractions: annotated abstractions _𝑥 :𝜏 . 𝑒 and unan-
notated ones _𝑥 . 𝑒 . In the former, the annotation 𝜏 xes the type of the argument, whereas in
the latter the type can be chosen during typing (and will, in practice, be computed by type in-
ference). Furthermore, the type 𝜏 in the explicitly annotated _-abstraction is gradual, while we
require that the inferred type of the parameter of an unannotated abstraction be a static type 𝑡
(cf. Figure 4.1, Rule [THM

Abstr]). This restriction is common in the gradual typing literature, for ex-
ample in [30], and is necessary to properly reject some ill-typed programs. For example, without
this restriction, we could type _𝑥. (𝑥 + 1,¬𝑥) since it would be possible to infer the type ? for 𝑥 ,
so as to deduce for _𝑥. (𝑥 + 1,¬𝑥) the type ? → Int×Bool. But _𝑥. (𝑥 + 1,¬𝑥) is not a well-typed
term in ML, therefore, by the principles of gradual typing (see Theorem 1 of Siek et al. [69]) it
must be rejected unless its parameter is explicitly annotated by a type in which ? occurs (here,
it must be annotated by ? itself).

The second non-standard element of this syntax is that the let binding is decorated with a
vector ®𝛼 of type variables, as in let ®𝛼 𝑥 = 𝑒1 in 𝑒2. This decoration (we reserve the word annotation
for types annotating parameters in _-abstractions) serves as a binder for the type variables that
appear in annotations occurring in 𝑒1. For instance, let𝛼 𝑧 = _𝑥 :𝛼. 𝑥 in 𝑒 and let 𝑧 = _𝑥 . 𝑥 in 𝑒 are
equivalent, while the expression let 𝑧 = _𝑥 :𝛼. 𝑥 in 𝑒 implies that 𝛼 was introduced in an outer
expression such as _𝑦:𝛼. let 𝑧 = _𝑥 :𝛼. 𝑥 in 𝑒 . The normal let from ML can be recovered as the case
where ®𝛼 is empty which would be the case if, as in ML, function parameters never had type
annotations.

As customary, we consider expressions modulo 𝛼-renaming of bound variables. In _𝑥 . 𝑒 and
_𝑥 :𝜏 . 𝑒 , 𝑥 is bound in 𝑒; in let ®𝛼 𝑥 = 𝑒1 in 𝑒2, 𝑥 is bound in 𝑒2 and the variables of ®𝛼 are bound in
𝑒1. We denote by ®𝛼 ♯ 𝑒 the fact that the variables of ®𝛼 are free (i.e., not bound) in 𝑒 . It is also
customary to refer to the source language as the gradually-typed language.
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[THM
Cst ] Γ ` 𝑐 : 𝑏𝑐

[THM
Var ] Γ ` 𝑥 : 𝜏 [®𝑡/®𝛼]

Γ(𝑥) = ∀®𝛼.𝜏

[THM
Proj]

Γ ` 𝑒 : 𝜏1 × 𝜏2

Γ ` 𝜋𝑖 𝑒 : 𝜏𝑖
[THM

Pair]
Γ ` 𝑒1 : 𝜏1 Γ ` 𝑒2 : 𝜏2
Γ ` (𝑒1, 𝑒2) : 𝜏1 × 𝜏2

[THM
App]

Γ ` 𝑒1 : 𝜏 ′ → 𝜏 Γ ` 𝑒2 : 𝜏 ′

Γ ` 𝑒1 𝑒2 : 𝜏

[THM
Abstr]

Γ, 𝑥 : 𝑡 ` 𝑒 : 𝜏
Γ ` _𝑥 . 𝑒 : 𝑡 → 𝜏

[THM
AAbstr]

Γ, 𝑥 : 𝜏 ′ ` 𝑒 : 𝜏
Γ ` _𝑥 :𝜏 ′. 𝑒 : 𝜏 ′ → 𝜏

[THM
Let ]

Γ ` 𝑒1 : 𝜏1 Γ, 𝑥 : ∀®𝛼, ®𝛽.𝜏1 ` 𝑒2 : 𝜏
Γ ` (let ®𝛼 𝑥 = 𝑒1 in 𝑒2) : 𝜏

®𝛼, ®𝛽 ♯ Γ 𝑎𝑛𝑑 ®𝛽 ♯ 𝑒1

[THM
Mater]

Γ ` 𝑒1 : 𝜏 ′

Γ ` 𝑒2 : 𝜏
𝜏 ′ 4 𝜏

Figure 4.1. Declarative type system of the source language

4.1.2. Materialization and type system

One of the main aspects of our approach is that adding gradual typing to a standard Hindley-
Milner type system can be done declaratively in a very simple way. We now illustrate this by
presenting the declarative type system of the source language.

Type system

We use the standard notion for type schemes and type environments. A type scheme has the
form ∀®𝛼.𝜏 , where ®𝛼 is a vector of distinct variables. We identify type schemes with an empty ®𝛼
with gradual types. A type environment Γ is a nite function from variables to type schemes.
The type system is dened by the rules in Figure 4.1, using standard statements of the form

Γ ` 𝑒 : ∀®𝛼.𝜏 .
The rst eight rules are almost those of a standard Hindley-Milner type system. In [THM

Cst ],
we use 𝑏𝑐 to denote the basic type for a constant 𝑐 (e.g., 𝑏3 = Int). One important aspect to
note is that, for reasons discussed earlier, the types used to instantiate the type scheme in [THM

Var ]
and the type used for the domain in [THM

Abstr] must all be static types, as forced by the use of the
metavariable 𝑡 .
The other non-standard aspect is the rule for [THM

Let ]. To type let ®𝛼 𝑥 = 𝑒1 in 𝑒2, we type 𝑒1 with
some type 𝜏1; then, we type 𝑒2 in the expanded environment in which 𝑥 has type ∀®𝛼, ®𝛽.𝜏1. The
rst side condition (®𝛼, ®𝛽 ♯ Γ) asks that all the variables we generalize do not occur free in Γ; this
is standard when implementing let-polymorphism. The second condition ( ®𝛽 ♯ 𝑒1) states that the
type variables ®𝛽 must not occur free in 𝑒1. This means that the type variables that are explicitly
introduced by the programmer (by using them in annotations) can only be generalized at the
level of a let binding by explicitly specifying them in the decoration. In contrast, type variables
introduced by the type system (i.e., the fresh variables in the static type 𝑡 in Rule [THM

Abstr]) can
be generalized at any let (implicitly, that is, by the type system), provided they do not occur in
the environment. Note that we recover the standard Hindley-Milner rule for let bindings when
expressions do not contain annotations and decorations are empty.
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As anticipated, the type system does not need to deal with gradual types explicitly except in
one rule. Indeed, the rst eight rules do not check anything regarding gradual types (they only
impose restrictions that some types must be static). The last rule, [THM

Mater], is a subsumption-like
rule that allows us to make any gradual type more precise by replacing occurrences of ? with
arbitrary gradual types. This is accomplished by the materialization relation 4, which we dene
next.

Materialization

Intuitively, 𝜏1 4 𝜏2 holds when 𝜏2 can be obtained from 𝜏1 by replacing some occurrences of ?
with arbitrary gradual types, possibly dierent for every occurrence. This relation can be easily
dened by the following inductive rules, which add the reexive case for type variables to the
rules of Siek and Vachharajani [67]:1

? 4 𝜏 𝛼 4 𝛼 𝑏 4 𝑏

𝜏1 4 𝜏 ′1 𝜏2 4 𝜏 ′2

(𝜏1, 𝜏2) 4 (𝜏 ′1, 𝜏 ′2)
𝜏1 4 𝜏 ′1 𝜏2 4 𝜏 ′2

𝜏1 → 𝜏2 4 𝜏 ′1 → 𝜏 ′2

However, this denition is intrinsically tied to the syntax of types. Instead, we want the def-
inition of materialization to remain valid also when we extend the language of types we use.
Therefore, we give a denition based on our view, anticipated earlier, of occurrences of ? as type
variables.
First, let us dene a new sort of types, named type frames, as follows:

TFrames 3 𝑇 F 𝑋 | 𝛼 | 𝑏 | 𝑡 × 𝑡 | 𝑡 → 𝑡 simple type frames

where 𝑋 ranges over a set V 𝑋 of frame variables disjoint from V 𝛼 . Type frames are like
gradual types except that, instead of ?, they have frame variables. We write TFrames for the set
of all type frames.
Additionally, we write vars(𝑇 ) to denote the set of variables in V 𝑋 ∪ V 𝛼 occurring in a type

frame 𝑇 , and we denote by vars𝑋 (𝑇 ) and vars𝛼 (𝑇 ) the sets vars(𝑇 ) ∩ V 𝑋 and vars(𝑇 ) ∩ V 𝛼

respectively. We also extend vars(.) to gradual types, static types, type schemes, as well as type
environments, to denote the set of free type variables occurring in them.
Given a type frame𝑇 , wewrite𝑇 † for the gradual type obtained by replacing all frame variables

in𝑇 with ?. The reverse operation, which we call discrimination, is the function★(.) : GTypes →
TFrames dened as follows:

Denition 4.1 (Discrimination of a gradual type). Given a gradual type 𝜏 ∈ GTypes, the set
★(𝜏) of its discriminations is dened as: ★(𝜏) =def {𝑇 ∈ TFrames | 𝑇 † = 𝜏}.

The denition of materialization, stated formally below, says that 𝜏2 materializes 𝜏1 if it can be
obtained from 𝜏1 by rst replacing all occurrences of ? with arbitrary variables in V 𝑋 , and then
applying a substitution which replaces those variables with gradual types.

1Henglein [34] denes an equivalent relation for monomorphic types (called “subtyping”) but with dierent rules.
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Denition 4.2 (Materialization). We dene thematerialization relation on gradual types 𝜏1 4

𝜏2 (“𝜏2 materializes 𝜏1” or “𝜏1 materializes into 𝜏2”) as follows:

𝜏1 4 𝜏2 ⇐⇒def ∃𝑇 ∈ ★(𝜏1), \ : V 𝑋 → GTypes. 𝑇\ = 𝜏2

In the above, \ : V 𝑋 → GTypes is a type substitution (i.e., a mapping that is the identity on a
conite set of variables) from frame variables to gradual types. We use dom(\ ) to denote the set
of variables for which \ is not the identity (i.e., dom(\ ) = {𝑋 | 𝑋\ ≠ 𝑋 }).
It is not dicult to prove that the materialization relation of Denition 4.2 and the one deduced

by the inductive rules that we have given in the previous page are equivalent, and that they are
inverses of the precision relation [29] and of naive subtyping [75].

4.1.3. Comparison to existing relations

In their approach on abstracting gradual typing, Garcia et al. [31] propose to add gradual typing
to existing type systems using abstract interpretation. The cornerstone of their work is the de-
nition of the set of concretizations of a gradual type. They dene this concretization as a function
𝛾 : GTypes → P (STypes) which syntactically replaces all occurrences of ? in a gradual type by
(possibly distinct) static types. Formally, the concretization function 𝛾 is dened by Garcia et al.
[31] syntactically as follows:

𝛾 : GTypes → STypes
𝛾 (𝑏) = {𝑏}
𝛾 (𝛼) = {𝛼}
𝛾 (?) = STypes

𝛾 (𝜏1 → 𝜏2) = {𝑡1 → 𝑡2 | 𝑡1 ∈ 𝛾 (𝜏1), 𝑡2 ∈ 𝛾 (𝜏2)}
𝛾 (𝜏1 × 𝜏2) = {𝑡1 × 𝑡2 | 𝑡1 ∈ 𝛾 (𝜏1), 𝑡2 ∈ 𝛾 (𝜏2)}

In our setting, it is straightforward to prove the following result, stating that the concretiza-
tions of a gradual type are the static types that can be obtained from it by materialization:

Proposition 4.3. For every gradual type 𝜏 ∈ GTypes, 𝛾 (𝜏) = {𝑡 ∈ STypes | 𝜏 4 𝑡}.

Proof. Straightforward by induction on 𝜏 . �

The materialization relation can also be obtained from the concretization operation, by syn-
tactically comparing the concretizations of two types. Formally, we have the following result:

Proposition 4.4. For every gradual types 𝜏1, 𝜏2 ∈ GTypes, 𝜏1 4 𝜏2 ⇐⇒ 𝛾 (𝜏2) ⊆ 𝛾 (𝜏1).

Proof. Straightforward by induction on 𝜏 , using the inductive rules for 4. �

This last result allows us to dene, using only materialization, all the relations commonly
used in the gradual typing literature, following the approach of Garcia et al. [31]. For example,
consistency, a relation on which most of the existing work on gradual typing is based, relates
two gradual types whenever they only dier syntactically where ? occurs.
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Formally, consistency is dened for our types by the following inductive rules:

? ∼ 𝜏 𝜏 ∼ ? 𝛼 ∼ 𝛼 𝑏 ∼ 𝑏

𝜏1 ∼ 𝜏 ′1 𝜏2 ∼ 𝜏 ′2

𝜏1 → 𝜏2 ∼ 𝜏 ′1 → 𝜏 ′2

𝜏1 ∼ 𝜏 ′1 𝜏2 ∼ 𝜏 ′2

𝜏1 × 𝜏2 ∼ 𝜏 ′1 × 𝜏 ′2

Garcia et al. [31] have shown that 𝜏1 and 𝜏2 are consistent with each other if and only if they
share a concretization in common. Based on Proposition 4.4, we deduce a similar result for our
system:

Proposition 4.5. For every gradual types 𝜏1, 𝜏2 ∈ GTypes,

𝜏1 ∼ 𝜏2 ⇐⇒def ∃𝜏 ∈ GTypes, 𝜏1 4 𝜏 and 𝜏2 4 𝜏

Proof. Straightforward by induction on the pair (𝜏1, 𝜏2), following the inductive denition
of consistency. �

This result has already been remarked by Siek and Vachharajani [67] using their precision
relation, which is the inverse of our materialization.
The second commonly-used relation in gradual type systems is called consistent subtyping,

and is often noted ≤̃ . In a system where static types are equipped with a subtyping relation,
consistent subtyping is a relation formalizing whether a gradual typing may be used in place
of another (provided the necessary dynamic checks are inserted). For example, in a context
expecting an expression of type ?, any expression of any type can be used. Conversely, in a
context expecting an expression of a type 𝑡 , an expression of type ? can always be used, provided
we insert a dynamic check to ensure that the result of this expression is indeed of type 𝑡 . This
shows that consistent subtyping is a non-transitive relation whose transitive closure is the full
relation on gradual types: ? is both a consistent subtype and a consistent supertype of every type.
For this reason, it cannot be used in a subsumption rule like the materialization relation, and it
is often embedded directly in other typing rules. For example, the typing rule for applications
may become:

[App]
Γ ` 𝑒1 : 𝜏1 → 𝜏 Γ ` 𝑒2 : 𝜏2

Γ ` 𝑒1 𝑒2 : 𝜏
(𝜏2 ≤̃ 𝜏1)

Garcia et al. [31] dene consistent subtyping as the existence of two concretizations that verify
the subtyping relation on static types. In our system, provided static types are equipped with a
subtyping relation ≤𝑆 , we can dene consistent subtyping as follows:

Denition 4.6. The consistent subtyping relation on gradual types, noted ≤̃ , is dened as:

𝜏1 ≤̃ 𝜏2 ⇐⇒def ∃𝑡1, 𝑡2 ∈ STypes. 𝜏1 4 𝑡1, 𝜏2 4 𝑡2, 𝑡1 ≤𝑆 𝑡2

4.1.4. Relationship with existing type systems

We said that our type system is declarative. This is because all auxiliary relations (here materi-
alization) are handled by structural rules (here [THM

Mater]) added to an existing set of logical and
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STypes 3 𝑡 F 𝑏 | 𝑡 → 𝑡 static simple types
GTypes 3 𝜏 F ? | 𝑏 | 𝜏 → 𝜏 gradual simple types
Terms 3 𝑒 F 𝑥 | 𝑐 | _𝑥 :𝜏 . 𝑒 | 𝑒 𝑒 expressions

[THM
Cst ] Γ `M 𝑐 : 𝑏𝑐

[THM
Var ] Γ `M 𝑥 : 𝑡

Γ(𝑥) = 𝑡

[THM
App]

Γ `M 𝑒1 : 𝜏 ′ → 𝜏 Γ `M 𝑒2 : 𝜏 ′

Γ `M 𝑒1 𝑒2 : 𝜏
[THM

AAbstr]
Γ, 𝑥 : 𝜏 ′ `M 𝑒 : 𝜏

Γ `M _𝑥 :𝜏 ′. 𝑒 : 𝜏 ′ → 𝜏

[THM
Mater]

Γ `M 𝑒1 : 𝜏 ′

Γ `M 𝑒2 : 𝜏
𝜏 ′ 4 𝜏

Figure 4.2. Monomorphic restriction of the implicative fragment of our system

identity rules.2 In a declarative system, every term may have dierent types and derivations;
removing the structural rules corresponds to nding an algorithmic system that for every well-
typed term chooses one particular derivation and, thus, one type of the declarative system. This
is usually obtained by moving the checks of the auxiliary relations into the elimination rules:
this yields a system that is easier to implement but less understandable. And this is exactly what
most gradual type systems do, via the introduction of consistency and consistent subtyping. It is
possible to show that the set of typable terms of our declarative system is the same as the set of
typable terms of the existing gradual type systems that use consistency.
In particular, the relation between our system and the gradual type system of Siek and Taha

[65] can be stated formally. Let `ST denote the typing judgments of Siek and Taha [65] and let
`M denote the monomorphic restriction of the implicative fragment of our system, that is, our
gradual types without type variables and the typing rules of the simply-typed _-calculus plus
materialization: see Figure 4.2 for the complete denition. Then we have the following result:

Proposition 4.7. If Γ `ST 𝑒 : 𝜏 then Γ `M 𝑒 : 𝜏 . Conversely, if Γ `M 𝑒 : 𝜏 , then there exists a

type 𝜏 ′ such that Γ `ST 𝑒 : 𝜏 ′ and 𝜏 ′ 4 𝜏 .

Proof. Both implications can be shown by a straightforward induction on the corresponding
typing derivation. The most enlightening case lies in the proof that Γ `ST 𝑒 : 𝜏 implies
Γ `M 𝑒 : 𝜏 , for the rule [GApp2] of Siek and Taha [65]:

[GApp2]
Γ `ST 𝑒1 : 𝜏 ′ → 𝜏 Γ `ST 𝑒2 : 𝜏2

Γ `ST 𝑒1 𝑒2 : 𝜏
𝜏2 ∼ 𝜏 ′

This rule is derivable in our system, because, by Proposition 4.5, if 𝜏2 ∼ 𝜏 ′ then there exists
some type 𝜏3 such that 𝜏2 4 𝜏3 and 𝜏 ′ 4 𝜏3. Then, using [THM

Mater] twice, we have Γ `M 𝑒1 :
𝜏3 → 𝜏 and Γ `M 𝑒2 : 𝜏3. Finally, [THM

App] proves that Γ `M 𝑒1 𝑒2 : 𝜏 . �

2In logic, logical rules refer to a particular connective (here, a type constructor, that is, either →, or ×, or 𝑏), while
identity rules (e.g., axioms and cuts) and structural rules (e.g., weakening and contraction) do not.
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STypes 3 𝑡 F 𝛼 | 𝑏 | 𝑡 → 𝑡 static simple types
GTypes 3 𝜏 F ? | 𝛼 | 𝑏 | 𝜏 → 𝜏 gradual simple types
Terms 3 𝑒 F 𝑥 | 𝑐 | _𝑥 . 𝑒 | _𝑥 :𝜏 . 𝑒 | 𝑒 𝑒 expressions

[THM
Cst ] Γ `P 𝑐 : 𝑏𝑐

[THM
Var ] Γ `P 𝑥 : 𝜏 [®𝑡/®𝛼]

Γ(𝑥) = ∀®𝛼.𝜏

[THM
Abstr]

Γ, 𝑥 : 𝑡 `P 𝑒 : 𝜏
Γ `P _𝑥. 𝑒 : 𝑡 → 𝜏

[THM
AAbstr]

Γ, 𝑥 : 𝜏 ′ `P 𝑒 : 𝜏
Γ `P _𝑥 :𝜏 ′. 𝑒 : 𝜏 ′ → 𝜏

[THM
App]

Γ `P 𝑒1 : 𝜏 ′ → 𝜏 Γ `P 𝑒2 : 𝜏 ′

Γ `P 𝑒1 𝑒2 : 𝜏
[THM

Mater]
Γ `P 𝑒1 : 𝜏 ′

Γ `P 𝑒2 : 𝜏
𝜏 ′ 4 𝜏

Figure 4.3. Polymorphic restriction of the implicative fragment of our system

The (polymorphic) implicative fragment of our system (i.e., our system without products), de-
noted by `P and presented in Figure 4.3, is yet another well-known gradual type system, because
it coincides with the ITGL type system of Garcia and Cimini [30], denoted by `IT, as stated by
the following result:

Proposition 4.8. If Γ `IT 𝑒 : 𝜏 then Γ `P 𝑒 : 𝜏 . Conversely, if Γ `P 𝑒 : 𝜏 , then there exists a

type 𝜏 ′ such that Γ `IT 𝑒 : 𝜏 ′ and 𝜏 ′ 4 𝜏 .

Proof. The proof is mostly the same as the proof of Proposition 4.7, themain dierence being
the presence of unannotated _-abstractions. However, our typing rule [THM

Abstr] is identical
to the rule [U_] of Garcia and Cimini [30]. �

In other words, the relationship between our new declarative approach (i.e., with the [THM
Mater]

rule) and the standard ones that use consistency (e.g., Siek and Taha [65] and Garcia and Cimini
[30]) is analogous to the usual relationship between a declarative type system with subtyping
(i.e., with a subsumption rule) and an algorithmic type system.

4.1.5. Static gradual guarantee

The static gradual guarantee is a property introduced by Siek et al. [69] to formalize the soundness
of gradual type systems. In essence, it states that making the type annotations of a program less
precise preserves its type.
The presence of [THM

Mater] in the type system of our source language yields the static gradual
guarantee property for free. To show this, we lift the materialization relation to terms by relating
type annotations via materialization. This is a standard construction whose rules are given in
Figure 4.4.
Since types only appear in annotated _-abstractions, most rules are straightforward and only

check that sub-expressions are in amaterialization relation. The rule for annotated _-abstractions
simply adds the check that the explicit type annotations are also in a materialization relation.
The static gradual guarantee is stated as follows:
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𝑥 4 𝑥 𝑐 4 𝑐

𝑒 4 𝑒 ′

_𝑥. 𝑒 4 _𝑥. 𝑒 ′
𝑒 4 𝑒 ′ 𝜏 4 𝜏 ′

_𝑥 :𝜏 . 𝑒 4 _𝑥 . 𝜏 ′𝑒 ′
𝑒1 4 𝑒 ′1 𝑒2 4 𝑒 ′2

𝑒1 𝑒2 4 𝑒 ′1 𝑒
′
2

𝑒1 4 𝑒 ′1 𝑒2 4 𝑒 ′2

(𝑒1, 𝑒2) 4 (𝑒 ′1, 𝑒 ′2)
𝑒 4 𝑒 ′

𝜋𝑖 𝑒 4 𝜋𝑖 𝑒
′

𝑒1 4 𝑒 ′1 𝑒2 4 𝑒 ′2

let ®𝛼 𝑥 = 𝑒1 in 𝑒2 4 let ®𝛼 𝑥 = 𝑒 ′1 in 𝑒 ′2

Figure 4.4. Materialization of terms in TermsHM

Theorem 4.9 (Static gradual guarantee). If ∅ ` 𝑒 : 𝜏 and 𝑒 ′ 4 𝑒 , then ∅ ` 𝑒 ′ : 𝜏 .

Due to the presence of type schemes in environments and typing rules, we cannot immediately
prove this theorem. We rst need to extend the notion of materialization to type schemes and
environments, and then show a weakening property. Given two type schemes 𝑆1 = ∀®𝛼1.𝜏1 and
𝑆2 = ∀®𝛼2.𝜏2, we write 𝑆1 4 𝑆2 if for every instance 𝜏 ′2 = 𝜏2 [®𝑡2/®𝛼2] of 𝑆2 there exists an instance
𝜏 ′1 = 𝜏1 [®𝑡1/®𝛼1] of 𝑆1 such that 𝜏 ′1 4 𝜏 ′2. It is straightforward to show that, if ®𝛼1 = ®𝛼2 = ∅, then
this is equivalent to materialization on gradual types. We then extend this denition to type
environments, and we write Γ1 4 Γ2, when for every 𝑥 ∈ dom(Γ1), Γ1(𝑥) 4 Γ2(𝑥).

We rst state three results related to materialization and free type variables.

Lemma 4.10. For every type scheme 𝑆 = ∀®𝛼.𝜏 . The following results hold:

• for every instance 𝜏 [®𝑡/®𝛼] of 𝑆 , vars(𝑆) ⊆ vars(𝜏 [®𝑡/®𝛼]);

• there exists an instance 𝜏 [®𝑡/®𝛼] of 𝑆 such that vars(𝑆) = vars(𝜏 [®𝑡/®𝛼]).

Proof. For the rst point, notice that vars(𝑆) = vars(𝜏)\ ®𝛼 and that vars(𝜏 [®𝑡/®𝛼]) = (vars(𝜏)\
®𝛼) ∪ vars(®𝑡).
For the second point, the same remark shows that any vector ®𝑡 of closed types (i.e., such that
vars(®𝑡) = ∅) suces. �

Lemma 4.11. For every types 𝜏1, 𝜏2 ∈ GTypes, if 𝜏1 4 𝜏2 then vars(𝜏1) ⊆ vars(𝜏2).

Proof. By hypothesis, since 𝜏1 4 𝜏2, there exists 𝑇1 ∈ TFrames and \ : V 𝑋 → GTypes such
that 𝑇1† = 𝜏1 and 𝑇1\ = 𝜏2. Since \ only acts on frame variables and vars(𝜏1) ⊆ V 𝛼 , it must
hold that vars(𝜏1) ⊆ vars(𝜏2). �

Lemma 4.12. The following results hold:

• for every type schemes 𝑆1, 𝑆2, if 𝑆1 4 𝑆2 then vars(𝑆1) ⊆ vars(𝑆2);

• for every type environments Γ1, Γ2, if Γ1 4 Γ2 then vars(Γ1) ⊆ vars(Γ2).

Proof. Let 𝑆1 = ∀®𝛼1.𝜏1 and 𝑆2 = ∀®𝛼2.𝜏2 two type schemes such that 𝑆1 4 𝑆2. By Lemma 4.10,
there exists an instance 𝜏 ′2 = 𝜏2 [®𝑡2/®𝛼2] of 𝑆2 such that vars(𝜏 ′2) = vars(𝑆2). By denition
of the materialization of type schemes, there exists an instance 𝜏 ′1 = 𝜏1 [®𝑡1/®𝛼1] of 𝑆1 such
that 𝜏 ′1 4 𝜏 ′2. By Lemma 4.11, vars(𝜏 ′1) ⊆ vars(𝜏 ′2), and by Lemma 4.10, vars(𝑆1) ⊆ vars(𝜏 ′1).
Therefore, we deduce that vars(𝑆1) ⊆ vars(𝑆2).

75



Chapter 4: Gradual typing for Hindley-Milner systems

For type environments, the result is an immediate corollary of the rst point. �

We now state the weakening result that will allow us to prove the static gradual guarantee.

Lemma 4.13. For every term 𝑒 ∈ TermsHM and every type environments Γ1, Γ2, if Γ1 4 Γ2 and

Γ2 ` 𝑒 : 𝜏 then Γ1 ` 𝑒 : 𝜏 .

Proof. By induction on the derivation on Γ2 ` 𝑒 : 𝜏 and case analysis on the last rule applied.

• [THM
Cst ]. Immediate since the rule does not depend on the environment.

• [THM
Var ]. By inversion of the typing rules, 𝜏 = 𝜏2 [®𝑡2/®𝛼2] where Γ2(𝑥) = ∀®𝛼2.𝜏2. By

denition of 4 on environments, Γ1(𝑥) 4 Γ2(𝑥). Thus, by noting Γ1(𝑥) = ∀®𝛼1.𝜏1, we
can nd an instance 𝜏 ′ = 𝜏1 [®𝑡1/®𝛼1] of Γ1(𝑥) such that 𝜏 ′ 4 𝜏 . By [THM

Var ], we have
Γ1 ` 𝑥 : 𝜏 ′, and by [THM

Mater], we deduce Γ1 ` 𝑥 : 𝜏 .

• [THM
Proj], [T

HM
Pair], [T

HM
App], [T

HM
Mater]. All these cases are immediately proven by applica-

tion of the induction hypothesis.

• [THM
Abstr], [T

HM
AAbstr]. Also proven immediately by induction hypothesis, by noting that

for every type 𝜏 ∈ GTypes, since 𝜏 4 𝜏 , then it holds that (Γ1, 𝑥 : 𝜏) 4 (Γ2, 𝑥 : 𝜏).

• [THM
Let ]. . By inversion, we have Γ2 ` let ®𝛼 𝑥 = 𝑒1 in 𝑒2 : 𝜏 where:

Γ2 ` 𝑒1 : 𝜏1 Γ2, 𝑥 : ∀®𝛼, ®𝛽.𝜏1 ` 𝑒2 : 𝜏 ®𝛼, ®𝛽 ♯ Γ2 and ®𝛽 ♯ 𝑒1

By induction hypothesis, Γ1 ` 𝑒1 : 𝜏1. By reexivity, Γ2, 𝑥 : ∀®𝛼, ®𝛽.𝜏1 4 Γ1, 𝑥 : ∀®𝛼, ®𝛽.𝜏1
and by induction hypothesis, Γ1, 𝑥 : ∀®𝛼, ®𝛽.𝜏1 ` 𝑒2 : 𝜏 . By Lemma 4.12, vars(Γ1) ⊆
vars(Γ2), which then yields that ®𝛼, ®𝛽 ♯ Γ1. Thus, we have veried all the premises of
Rule [THM

Let ] which proves that Γ1 ` let ®𝛼 𝑥 = 𝑒1 in 𝑒2 : 𝜏 .

�

And nally, using this result, we can prove the static gradual guarantee as stated above.

Proof of Theorem 4.9. We prove the stronger claim that, for every Γ, if Γ ` 𝑒 : 𝜏 and 𝑒 ′ 4 𝑒

then Γ ` 𝑒 ′ : 𝜏 . The proof is done by induction on the derivation Γ ` 𝑒 : 𝜏 and by case
analysis on the last rule applied. All cases are straightforward by application of the induction
hypothesis, except for Rule [THM

AAbstr].
In that case, by inversion, we have 𝑒 = _𝑥 :𝜏1. 𝑒1 and 𝜏 = 𝜏1 → 𝜏2 where Γ, 𝑥 : 𝜏1 ` 𝑒1 : 𝜏2.
Since 𝑒 ′ 4 𝑒 , we have 𝑒 ′ = _𝑥 :𝜏 ′1. 𝑒

′
1 with 𝜏 ′1 4 𝜏1 and 𝑒 ′1 4 𝑒1. By induction hypothesis,

Γ, 𝑥 : 𝜏1 ` 𝑒 ′1 : 𝜏2. By Lemma 4.13, we deduce that Γ, 𝑥 : 𝜏 ′1 ` 𝑒 ′1 : 𝜏2. By [THM
Aabstr] we deduce

that Γ ` 𝑒 ′ : 𝜏 ′1 → 𝜏2, and the result follows by application of [THM
Mater]. �

4.2. Cast language

As customary with gradual typing, the semantics of the gradually-typed language is given by
translating its well-typed expressions into a cast language (also called target language), which
we dene next.
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4.2 Cast language

4.2.1. Syntax

The syntax of the cast language is dened as follows:

Terms〈HM〉 3 𝐸 F 𝑥 | 𝑐 | _𝜏→𝜏𝑥 . 𝐸 | 𝐸 𝐸 | (𝐸, 𝐸) | 𝜋𝑖 𝐸 | let𝑥 =𝐸 in𝐸 | Λ®𝛼. 𝐸 | 𝐸 [®𝑡] | 𝐸〈𝜏 ⇒𝑝 𝜏〉

This is an explicitly-typed _-calculus similar to the source language with a few dierences and
the addition of explicit casts.
There is now just one kind of _-abstraction, _𝜏1→𝜏2𝑥 . 𝐸, which is annotated with its complete

arrow type. While this is not strictly necessary in this calculus, this will become important when
adding set-theoretic types in the next chapter, since the semantics of cast applications will need
to access the type of their argument.
Additionally, let-expressions no longer bind type variables; instead, there are explicit

type abstractions Λ®𝛼. 𝐸 and applications 𝐸 [®𝑡]. For example, the source language expres-
sion let𝛼 𝑧 = _𝑥 :𝛼. _𝑦. 𝑥 in 𝑧 42, of type 𝛽 → Int, is translated into the cast calculus as
let 𝑧 =Λ𝛼𝛽. _𝛼→𝛽→𝛼𝑥 . _𝛽→𝛼𝑦. 𝑥 in 𝑧 [Int, 𝛽] 42. Despite the presence of type abstractions, the cast
calculus does not support rst-class polymorphism; the syntax of types remains unchanged from
Section 4.1 and does not include universally quantied types.
Finally, the important additions to the calculus are explicit casts of the form 𝐸〈𝜏 ⇒𝑝 𝜏 ′〉 where,

as usual in the gradual typing literature, 𝑝 ranges over a set of polarized blame labels. Such an
expression dynamically checks whether 𝐸, of static type 𝜏 , produces a value of type 𝜏 ′; if the
cast fails, then the label 𝑝 is used to blame the cast. These casts are inserted during compilation
to perform runtime checks in dynamically-typed code: for instance, the function _𝑥 :?. 𝑥 + 1
will be compiled into _?→Int𝑥 . 𝑥 〈? ⇒ℓ Int〉 + 1, which checks at runtime whether the function
parameter is bound to an integer value (and if not blames the label ℓ). Blame labels are pointers
that indicate precisely where a cast was originally inserted, and are inserted alongside casts
during compilation. When a cast fails, this allows the program to report precise error messages.
We suppose given a set L of blame labels, ranged over by ℓ . As customary, blame labels in

casts are polarized, and we follow the standard convention of using ℓ to range over positive labels
and ℓ for negative ones.
The polarity of a label indicates whether the failure at point ℓ is due to the context (blame ℓ)

or to the expression in that context (blame ℓ). We write 𝑝 to denote a blame label independently
of its polarity, and use the involutory operation 𝑝 to reverse the polarity of a label.

4.2.2. Type system

The typing rules for the cast language are presented in Figure 4.5. Most of the typing rules are
identical to the rules presented in the previous section for the source language. Type environ-
ments still associate variables to type schemes of the form ∀®𝛼.𝜏 (rule [T〈HM〉

Var ]), and we use the
standard rules for the introduction [T〈HM〉

TAbstr] and elimination [T〈HM〉
TApp ] of type abstractions.

The main addition is our typing rules for casts, which are more precise than the current lit-
erature, since they capture invariants that are typically captured by a separate safe-for relation
that is used to establish the Blame Theorem [75]. A cast 𝐸〈𝜏 ′ ⇒𝑝 𝜏〉 is well-typed if the cast
expression has type 𝜏 ′ and if the cast goes from this type to either a more precise (positive label)
or a less precise (negative label) gradual type 𝜏 . See rules [T〈HM〉

Cast+ ] and [T〈HM〉
Cast−], respectively.

The central idea here is that we correlate the polarity of a label with the direction of a cast:
an upcast will have a negative label while a downcast will have a positive one. In the existing
gradual typing literature, proving the blame safety theorem usually involves two subtyping rela-
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Chapter 4: Gradual typing for Hindley-Milner systems

[T〈HM〉
Cst ]

Γ ` 𝑐 : 𝑏𝑐
[T〈HM〉

Var ]
Γ ` 𝑥 : 𝜏 [®𝑡/®𝛼]

Γ(𝑥) = ∀®𝛼.𝜏

[T〈HM〉
Proj ]

Γ ` 𝐸 : 𝜏1 × 𝜏2

Γ ` 𝜋𝑖 𝐸 : 𝜏𝑖
[T〈HM〉

Pair ]
Γ ` 𝐸1 : 𝜏1 Γ ` 𝐸2 : 𝜏2
Γ ` (𝐸1, 𝐸2) : 𝜏1 × 𝜏2

[T〈HM〉
App ]

Γ ` 𝐸1 : 𝜏 ′ → 𝜏 Γ ` 𝐸2 : 𝜏 ′

Γ ` 𝐸1 𝐸2 : 𝜏

[T〈HM〉
Abstr ]

Γ, 𝑥 : 𝜏 ` 𝐸 : 𝜏 ′

Γ ` _𝜏→𝜏′𝑥 . 𝐸 : 𝜏 → 𝜏 ′
[T〈HM〉

Let ]
Γ ` 𝐸1 : ∀®𝛼.𝜏1 Γ, 𝑥 : ∀®𝛼.𝜏1 ` 𝐸2 : 𝜏

Γ ` let𝑥 =𝐸1 in𝐸2 : 𝜏
®𝛼 ♯ Γ

[T〈HM〉
TAbstr]

Γ ` 𝐸 : 𝜏

Γ ` Λ®𝛼. 𝐸 : ∀®𝛼.𝜏
®𝛼 ♯ Γ [T〈HM〉

TApp ]
Γ ` 𝐸 : ∀®𝛼.𝜏

Γ ` 𝐸 [®𝑡] : 𝜏 [®𝑡/®𝛼]

[T〈HM〉
Cast+ ]

Γ ` 𝐸 : 𝜏 ′

Γ ` 𝐸〈𝜏 ′ ⇒𝑙 𝜏〉 : 𝜏
𝜏 ′ 4 𝜏 [T〈HM〉

Cast−]
Γ ` 𝐸 : 𝜏 ′

Γ ` 𝐸〈𝜏 ′ ⇒
𝑙
𝜏〉 : 𝜏

𝜏 4 𝜏 ′

Figure 4.5. Typing rules for the cast language

tions, called positive subtyping (written ≤+) and negative subtyping (written ≤−), characterizing
respectively casts that cannot yield positive blame and casts that cannot yield negative blame.
The factoring theorem for naive subtyping from Wadler and Findler [75] shows that our mate-
rialization relation implies negative subtyping, and implies the converse of positive subtyping.
In other words, if 𝜏 ′ 4 𝜏 then 𝜏 ′ <:− 𝜏 and 𝜏 <:+ 𝜏 ′. This ensures that a cast that satises rule
[T〈HM〉

Cast+ ] is safe for ℓ , and that a cast that satises rule [T〈HM〉
Cast−] is also safe for ℓ . In other words,

the type system ensures that a well-typed expression can never produce negative blame: this is
the blame safety property of our calculus, which will be stated in Corollary 4.19.
This contrasts with existing approaches, where the direction of a cast3 and the polarity of its

blame label are unrelated, and inwhich dening safe casts thus require the denition of additional
relations. In our system, safe casts are simply casts with negative labels, which greatly simplies
the statement and proof of blame safety. As we will see in Subsection 4.2.4, this is possible thanks
to the fact that every well-typed term of the source language can be compiled into a well-typed
term of the cast language using only downcasts.

4.2.3. Semantics

The main diculty when dening the semantics of a cast calculus is to determine when a cast
should fail. To solve this problem, Wadler and Findler [75] introduce the notion of ground types
to compare types in casts, with the idea that incompatibility between ground types is the source

of all blame. A ground type contains very little information: it only serves to know whether the
underlying value is a function (its ground type being ? → ?), a pair (? × ?), or a constant (in
which case its ground type is simply its base type 𝑏). This allows us to perform purely syntactic
checks when deciding whether a cast should fail or not: casting an expression whose ground
type is ? → ? (that is, a function) to ? × ? fails because a function cannot be cast to a pair.
Materialization allows us to dene the ground type of a type 𝜏 as being the type that mate-

3In most systems, the direction of a cast is not even properly dened, since compilation can insert casts such as
〈? → Int ⇒𝑝 Int → ?〉, in which no type is more precise than the other.
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rializes in 𝜏 while containing as little information as possible about 𝜏 , without being equal to
?:

Proposition 4.14 (Ground type existence). For every type 𝜏 ∈ GTypes \ {?}, there exists a
unique type 𝜏 ′ ∈ GTypes satisfying the following conditions:

• 𝜏 ′ 4 𝜏 and 𝜏 ′ ≠ ?

• ∀𝜏 ′′ ∈ GTypes, 𝜏 ′′ 4 𝜏 ′ =⇒ 𝜏 ′′ = ? or 𝜏 ′′ = 𝜏 ′

Proof. By induction on 𝜏 .

• 𝑏. The only type 𝜏 ′ such that 𝜏 ′ 4 𝑏 and 𝜏 ′ ≠ ? is 𝜏 ′ = 𝑏.

• 𝛼. Similar to 𝑏.

• 𝜏1 × 𝜏2. Let 𝜏 ′ = ? × ?. By denition of 4, we have 𝜏 ′ 4 𝜏1 × 𝜏2, and it is clear that
𝜏 ′ ≠ ?. Now let 𝜏 ′′ ∈ GTypes such that 𝜏 ′′ 4 𝜏 ′ and 𝜏 ′′ ≠ ?. By inversion of the
denition of 4, since 𝜏 ′′ 4 ?× ?, we have 𝜏 ′′ = 𝜏 ′′1 × 𝜏 ′′2 where 𝜏 ′′1 4 ? and 𝜏 ′′2 4 ?. By
denition of 4, this imposes that 𝜏 ′′1 = 𝜏 ′′2 = ?, which proves that 𝜏 ′′ = 𝜏 ′.

• 𝜏1 → 𝜏2. Similar to the previous case, dening 𝜏 ′ as ? → ?.

�

Based on this proposition, we dene the ground type operator that associates to every type 𝜏
(dierent from ?) its ground type. This also gives us a denition of ground types as being the
types that are left unchanged by an application of this operator.

Denition 4.15 (Ground types). For every type 𝜏 ∈ GTypes \ {?}, we dene the ground type
of 𝜏 , noted gnd(𝜏), as the unique gradual type that veries the conditions of Proposition 4.14.

Types 𝜏 such that gnd(𝜏) = 𝜏 are called ground types and are ranged over by 𝜌 .

Following the proof of Proposition 4.14, we obtain that ground types follow the usual inductive
denition from Wadler and Findler [75]:

𝜌 F 𝑏 | 𝛼 | ? × ? | ? → ?

and that the ground type operator gnd(.) obeys the usual equations:

gnd(𝑏) = 𝑏 gnd(𝛼) = 𝛼

gnd(𝜏1 × 𝜏2) = ? × ? gnd(𝜏1 → 𝜏2) = ? → ?

Now that ground types are dened, we can present the operational semantics of the cast calcu-
lus. The cast calculus features a strict call-by-value reduction semantics dened in a small-step
style by the reduction rules presented in Figure 4.6. The semantics is dened in terms of values
(ranged over by 𝑉 ) and evaluation contexts (ranged over by E ).
Values of the cast language are dened by the following grammar:

Values〈HM〉 3 𝑉 F 𝑐 | _𝜏→𝜏𝑥 . 𝐸 | (𝑉 ,𝑉 ) | 𝑉 〈𝜏 → 𝜏 ⇒𝑝 𝜏 → 𝜏〉 | 𝑉 〈𝜏 ×𝜏 ⇒𝑝 𝜏 ×𝜏〉 | 𝑉 〈𝜌 ⇒𝑝 ?〉
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Chapter 4: Gradual typing for Hindley-Milner systems

Cast reductions.

[R〈HM〉
ExpandL] 𝑉 〈𝜏 ⇒𝑝 ?〉 { 𝑉 〈𝜏 ⇒𝑝 gnd(𝜏)〉〈gnd(𝜏) ⇒𝑝 ?〉 if 𝜏 ≠ ? and 𝜏 ≠ gnd(𝜏)

[R〈HM〉
ExpandR] 𝑉 〈? ⇒𝑝 𝜏〉 { 𝑉 〈? ⇒𝑝 gnd(𝜏)〉〈gnd(𝜏) ⇒𝑝 𝜏〉 if 𝜏 ≠ ? and 𝜏 ≠ gnd(𝜏)
[R〈HM〉

CastId] 𝑉 〈𝜏 ⇒𝑝 𝜏〉 { 𝑉

[R〈HM〉
Collapse] 𝑉 〈𝜌 ⇒𝑝 ?〉〈? ⇒𝑞 𝜌〉 { 𝑉

[R〈HM〉
Blame] 𝑉 〈𝜌 ⇒𝑝 ?〉〈? ⇒𝑞 𝜌 ′〉 { blame 𝑞 if 𝜌 ≠ 𝜌 ′

Standard reductions.

[R〈HM〉
CApp ] 𝑉 〈𝜏1 → 𝜏2 ⇒𝑝 𝜏 ′1 → 𝜏 ′2〉𝑉 ′ { (𝑉 (𝑉 ′〈𝜏 ′1 ⇒𝑝 𝜏1〉))〈𝜏2 ⇒𝑝 𝜏 ′2〉

[R〈HM〉
App ] (_𝜏1→𝜏2𝑥 . 𝐸)𝑉 { 𝐸 [𝑉 /𝑥]

[R〈HM〉
CProj ] 𝜋𝑖 (𝑉 〈𝜏1 × 𝜏2 ⇒𝑝 𝜏 ′1 × 𝜏 ′2〉) { (𝜋𝑖 𝑉 )〈𝜏𝑖 ⇒𝑝 𝜏 ′𝑖 〉

[R〈HM〉
Proj ] 𝜋𝑖 (𝑉1,𝑉2) { 𝑉𝑖

[R〈HM〉
TApp ] (Λ®𝛼. 𝐸) [®𝑡] { 𝐸 [®𝑡/®𝛼]

[R〈HM〉
Let ] let𝑥 =𝑉 in𝐸 { 𝐸 [𝑉 /𝑥]

[R〈HM〉
Ctx ] E [𝐸] { E [𝐸 ′] if 𝐸 { 𝐸 ′

[R〈HM〉
CtxBlame] E [𝐸] { blame 𝑝 if 𝐸 { blame 𝑝

Figure 4.6. Semantics of the cast calculus

where, additionally, no casts are identity casts. This denition of values follows the denition
given by Siek et al. [68], where there are three value forms with casts. Values cast from an arrow
type to another arrow type, of the form 𝑉 〈𝜏1 → 𝜏2 ⇒𝑝 𝜏 ′1 → 𝜏 ′2〉, cannot be reduced unless
they are applied to an argument (which will allow the cast to be split, as presented in [R〈HM〉

CApp ]).
The same goes for values cast to a pair type, which can only be reduced when they are applied
a projection. Finally, values of the form 𝑉 〈𝜌 ⇒𝑝 ?〉 are, in essence, values that are “boxed” and
annotated with their ground type. They can only be reduced by being “unboxed”, that is, cast to
some usable type 𝜏 ≠ ?. The ground type of 𝜏 will then be checked against 𝜌 , to decide whether
the cast should fail or not.
Evaluation contexts implement a standard right-most outer-most weak reduction strategy:

E F [] | 𝐸 E | E 𝑉 | E [®𝑡] | (𝐸, E ) | (E ,𝑉 ) | 𝜋𝑖 E | let𝑥 =E in𝐸 | E 〈𝜏 ⇒𝑝 𝜏〉

The reduction rules of Figure 4.6 closely follow the presentation of Siek et al. [68]. They are
divided into two groups: the reductions for the application of casts to a value and the reductions
corresponding to the elimination of type constructors. For the former we use the technique
by Wadler and Findler [75] which consists in checking whether a cast is performed between two
types with the same toplevel constructor and failing when this is not the case. This amounts to
introducing intermediate ground types whenever necessary, using the two rules [R〈HM〉

ExpandL] and
[R〈HM〉

ExpandR], and then checking whether the succession of an upcast and a downcast involves the

same ground type (rule [R〈HM〉
Collapse]) or not (rule [R〈HM〉

Blame]). As we explained before, in regards to

an implementation, the rule [R〈HM〉
ExpandL] corresponds to tagging a value with its type constructor

(as done in Lisp implementations), while the rule [R〈HM〉
Collapse] corresponds to untagging a value.
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4.2 Cast language

Most of the rules of the standard reductions group are taken from Siek et al. [68] too: we added
the rules for type abstractions and applications, for projections, and for let bindings (all absent
in the cited work).
The soundness of this calculus is proven via progress and subject reduction. However, we do

not give a direct proof of these properties: instead, they follow from the corresponding properties
of the cast calculus presented later in Section 5.3, and the conservativity of the extension stated
in Theorem 5.32.
As customary, progress states that every well-typed expression that is not a value can be re-

duced. Additionally, we prove that if an expression reduces to a blame, then this blame is nec-
essarily negative (i.e., it blames a negative label). This will entail the property of blame safety as
an immediate consequence.

Lemma 4.16 (Progress). For every term 𝐸 ∈ Terms〈HM〉
, if ∅ ` 𝐸 : ∀®𝛼.𝜏 then one of the following

holds:

• there exists 𝐸 ′ ∈ Terms〈HM〉
such that 𝐸 { 𝐸 ′

;

• there exists ℓ ∈ L such that 𝐸 { blame ℓ ;

• 𝐸 ∈ Values〈HM〉
.

Subject reduction states that the type of an expression is preserved by reduction, and is for-
malized as follows:

Lemma 4.17 (Subject reduction). For every term 𝐸, 𝐸 ′ ∈ Terms〈HM〉
, if Γ ` 𝐸 : ∀®𝛼.𝜏 and 𝐸 { 𝐸 ′

then Γ ` 𝐸 ′ : ∀®𝛼.𝜏 .

Finally, soundness is an immediate consequence of the above two lemmas, and states that
every expression either reduces to a value, reduces to a positive blame, or diverges. The latter is
necessary since, due to gradual types, diverging expressions can be well-typed. For example, if
we write 𝜔 = _?→?𝑥 . 𝑥 〈? ⇒ℓ1 ? → ?〉 𝑥 , then 𝜔 〈? → ? ⇒ℓ2 (? → ?) → ?〉𝜔 is well-typed and
diverges.

Theorem 4.18 (Soundness). For every term 𝐸 ∈ Terms〈HM〉
, if ∅ ` 𝐸 : ∀®𝛼.𝜏 then one of the

following holds:

• there exists 𝑉 ∈ Values〈HM〉
such that 𝐸 {∗ 𝑉 ;

• there exists ℓ ∈ L such that 𝐸 {∗ blame ℓ ;

• 𝐸 diverges.

The second important result for our calculus is blame safety, introduced byWadler and Findler
[75], which guarantees that the statically typed part of a program cannot be blamed. In our
system, as we anticipated, the typing rules enforce the correspondence between the polarity of
the label of a cast and the direction of materialization. That is, a cast of the form 〈𝜏 ⇒𝑝 𝜏 ′〉 where
𝑝 is negative necessarily veries 𝜏 ′ 4 𝜏 and cannot be blamed since going to a less-precise type
is always a safe operation. Since all this information is encoded in the typing rules, blame safety
is an immediate corollary of Theorem 4.18, and can be stated without resorting to positive and
negative subtyping as dened by Wadler and Findler [75].

Corollary 4.19 (Blame safety). For every term 𝐸 ∈ Terms〈HM〉
and every blame label ℓ ∈ L , if

∅ ` 𝐸 : ∀®𝛼.𝜏 then 𝐸 6{∗ blame ℓ .
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Non-trivial rules.

[CHM
Var ] Γ ` 𝑥  𝑥 [®𝑡] : 𝜏 [®𝑡/®𝛼]

Γ(𝑥) = ∀®𝛼.𝜏 [CHM
Abstr]

Γ, 𝑥 : 𝑡 ` 𝑒  𝐸 : 𝜏

Γ ` _𝑥 . 𝑒  _𝑡→𝜏𝑥 . 𝐸 : 𝑡 → 𝜏

[CHM
Let ]

Γ ` 𝑒1 𝐸1 : 𝜏1 Γ, 𝑥 : ∀®𝛼, ®𝛽.𝜏1 ` 𝑒2 𝐸2 : 𝜏

Γ ` let𝑥 ®𝛼 = 𝑒1 in 𝑒2 let𝑥 =Λ®𝛼, ®𝛽. 𝐸1 in𝐸2 : 𝜏
®𝛼, ®𝛽 ♯ Γ 𝑎𝑛𝑑 ®𝛽 ♯ 𝑒1

[CHM
Mater]

Γ ` 𝑒  𝐸 : 𝜏 ′

Γ ` 𝑒  𝐸〈𝜏 ′ ⇒ℓ 𝜏〉
𝜏 ′ 4 𝜏

Composition and identity rules.

[CHM
Cst ] Γ ` 𝑐  𝑐 : 𝑏𝑐

[CHM
Proj]

Γ ` 𝑒  𝐸 : 𝜏1 × 𝜏2

Γ ` 𝜋𝑖 𝑒  𝜋𝑖 𝐸 : 𝜏𝑖
[CHM

Pair]
Γ ` 𝑒1 𝐸1 : 𝜏1 Γ ` 𝑒2 𝐸2 : 𝜏2
Γ ` (𝑒1, 𝑒2)  (𝐸1, 𝐸2) : 𝜏1 × 𝜏2

[CHM
App]

Γ ` 𝑒1 𝐸1 : 𝜏 ′ → 𝜏 Γ ` 𝑒2 𝐸2 : 𝜏 ′

Γ ` 𝑒1 𝑒2 𝐸1 𝐸2 : 𝜏
[CHM

AAbstr]
Γ, 𝑥 : 𝜏 ′ ` 𝑒  𝐸 : 𝜏

Γ ` _𝑥 :𝜏 ′. 𝑒  _𝜏
′→𝜏𝑥 . 𝐸 : 𝜏 ′ → 𝜏

Figure 4.7. Compilation rules to the cast calculus

4.2.4. Compilation

The nal ingredient of the declarative denition of the system is to show how to compile a well-
typed expression of the source language into an expression of the cast calculus and prove that
compilation preserves types. This result, combined with the soundness of the cast language,
implies the soundness of the gradually-typed language: a well-typed expression is compiled into
an expression that can only either return a value of the same type, or return a cast error, or
diverge.
Compilation is driven by the derivation of the type for the source language expression. Con-

ceptually, compilation is straightforward: every time the derivation uses the [THM
Mater] rule on

some subexpression for a relation 𝜏1 4 𝜏2, a cast 〈𝜏1 ⇒ℓ 𝜏2〉 must be added to that subexpression.
This solves a common ambiguity of gradually-typed languages: to compile an application such
as _𝑥 :?. 𝑥 5 one can either downcast the function to Int → Int, or upcast the argument to ?. Our
approach yields a simple solution: we always downcast the less-precisely typed expression. If the
types of the argument and of the function are not comparable, then they are at least consistent
with each other, and we have shown in the proof of Proposition 4.7 that it is always possible to
downcast both types to a common more precise type.
This is crucial to our blame safety property: since compilation only inserts downcasts and

positive blame labels, this ensures that compiled terms are well-typed for the rules given in
Figure 4.5, and that the blame safety property presented in Corollary 4.19 holds for our source
language.
Technically, to produce a declarative compilation system, we enrich the judgements of typing

derivations with a compilation part: Γ ` 𝑒  𝐸 : 𝜏 means that the source language expression
𝑒 of type 𝜏 compiles to the cast language expression 𝐸. These judgements are derived by the
same rules as those given for the source language in Figure 4.1 to whose judgements we add the
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compilation part. The compilation rules are presented in Figure 4.7, and are separated into two
categories: rules that are non-trivial modications of the rules of Figure 4.1, and rules that simply
compile and compose subexpressions.

[CHM
Var ] compiles occurrences of polymorphic variables by instantiating them with the needed

types. [CHM
Abstr] explicitly annotates the function with the type deduced by inference. The com-

pilation of a let-construct abstracts the type variables that are generalized. Finally, the core of
compilation is given by the [CHM

Mater] rule, which, as explained before, corresponds to the inser-
tion of an explicit cast (with a positive fresh label ℓ). All the remaining rules are straightforward
modications of the rules in Figure 4.1 insofar as their conclusions simply compose the compiled
expressions in the premisses.
Compilation is dened for all well-typed expressions and preserves well-typing:

Theorem 4.20 (Compilation soundness). For every term 𝑒 ∈ TermsHM and every type envi-

ronment Γ, if Γ ` 𝑒 : 𝜏 then there exists a term 𝐸 ∈ Terms〈HM〉
such that Γ ` 𝑒  𝐸 : 𝜏 and

Γ ` 𝐸 : 𝜏 .

4.3. Type inference

In this section we show how to decide whether a given term is well-typed or not: we dene a
type inference algorithm that is sound and complete with respect to the declarative systems we
presented earlier. As anticipated, we will not delve too much into the details, and instead refer
to Petrucciani [56] for more details about the systems and proofs.
The algorithm is mostly based on the work of Pottier and Rémy [58] and of Castagna et al.

[16], adapted for gradual typing. Our algorithm diers from that of Garcia and Cimini [30] in that
ours literally reduces the inference problem to unication. To infer the type of an expression,
we generate constraints that specify the conditions that must hold for the expression to be well-
typed; then, we solve these constraints via unication to obtain a solution (a type substitution).
Our presentation proceeds as follows. We rst introduce type constraints (§4.3.1) and show

how to solve sets of type constraints using standard unication (§4.3.2). Then we show how
to generate constraints for a given expression (§4.3.3). To keep constraint generation separated
from solving, generation uses more complex structured constraints (this is essentially due to the
presence of let-polymorphism) which are then solved by simplifying them into the simpler type
constraints (§4.3.4). Finally, we state our soundness and completeness results for type inference.

4.3.1. Type constraints and solutions

A type constraint has either the form (𝑡1 ¤≤ 𝑡2) or the form (𝜏 ¤4 𝛼), whose meaning we give be-
low. Type constraint sets (ranged over by the metavariable 𝐷) are nite sets of type constraints.
We write vars(𝐷) for the set of type variables appearing in the type constraints in 𝐷 . We write
vars ¤4 (𝐷) for the set of type variables appearing in the gradual types in materialization con-
straints in 𝐷 : that is, vars ¤4 (𝐷) =

⋃
(𝜏 ¤4 𝛼) ∈𝐷 vars(𝜏). When 𝛼 ⊆ V 𝛼 is a set of type variables and

\ is a type substitution, we dene 𝛼\ =
⋃

𝛼 ∈𝛼 vars(𝛼\ ).
We say that a type substitution \ : V 𝛼 → GTypes is a solution of a type constraint set 𝐷 (with

respect to a nite set Δ ⊆ V 𝛼 ), and we write \ Δ 𝐷 , if:

• for every (𝑡1 ¤≤ 𝑡2) ∈ 𝐷 , we have 𝑡1\ = 𝑡2\ ;

• for every (𝜏 ¤4 𝛼) ∈ 𝐷 , we have 𝜏\ 4 𝛼\ and, for all 𝛽 ∈ vars(𝜏), 𝛽\ is a static type;
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• dom(\ ) ∩ Δ = ∅.

A subtyping type constraint (𝑡1 ¤≤ 𝑡2) forces the substitution to unify 𝑡1 and 𝑡2. We use ¤≤ instead
of, say ¤=, to have uniform syntax with the later section on subtyping.

Amaterialization type constraint (𝜏 ¤4 𝛼) imposes two distinct requirements: the solutionmust
make 𝛼 amaterialization of 𝜏 andmust map all variables in 𝜏 to static types. These two conditions
might be separated but in practice they must always be imposed together, and their combination
simplies the description of constraint solving. Note that the constraint (𝛼 ¤4 𝛼) forces 𝛼\ to be
static (since the other requirement, 𝛼\ 4 𝛼\ , is trivial).
Finally, the set Δ is used to force the solution not to instantiate certain type variables (those

that belong to Δ).

4.3.2. Type constraint solving

We solve a type constraint set in three steps: we convert the type constraints to unication
constraints between type frames (notably, by changing every occurrence of ? into a dierent
frame variable); then we compute a unier; nally, we convert the unier into a solution (by
renaming some variables and then changing frame variables back to ?).
We dene this process as an algorithm solve( ·) (·) which, given a type constraint set 𝐷 and

a nite set Δ ⊆ V 𝛼 , computes a set of type substitutions solveΔ (𝐷). This set is either empty,
indicating failure, or a singleton set containing the solution (which is unique up to variable re-
naming).4

We do not describe a unication algorithm explicitly; rather, we rely on properties satised by
standard implementations (e.g., that by Martelli and Montanari [48]). We use unication on type
frames: its input is a nite set𝑇 1 ¤=𝑇 2 of equality constraints of the form𝑇 1 ¤=𝑇 2. We also include
as input a nite set Δ ⊆ V 𝛼 that species the variables that unication must not instantiate (i.e.,
that should be treated as constants). We write unifyΔ (𝑇 1 ¤=𝑇 2) for the result of the algorithm,
which is either fail or a type substitution \ : V 𝛼 ∪V 𝑋 → STypes. We assume that unify satises
the usual soundness and completeness properties and that it computes idempotent substitutions.
Unication is the main ingredient of our type constraint solving algorithm, but we need some

extra steps to handle materialization constraints, as described below.
Let𝐷 be a set of constraints. Wewrite𝐷 as {(𝑡1𝑖 ¤≤ 𝑡2𝑖 ) | 𝑖 ∈ 𝐼 }∪{(𝜏 𝑗 ¤4 𝛼 𝑗 ) | 𝑗 ∈ 𝐽 } by separating

the two kinds of constraints. The algorithm solveΔ (𝐷) is then dened as follows:

1. Let 𝑇 1 ¤=𝑇 2 be {(𝑡1𝑖 ¤= 𝑡2𝑖 ) | 𝑖 ∈ 𝐼 } ∪ {(𝑇𝑗 ¤=𝛼 𝑗 ) | 𝑗 ∈ 𝐽 } where the 𝑇𝑗 are chosen to ensure:

a) for each 𝑗 ∈ 𝐽 , 𝑇 †
𝑗
= 𝜏 𝑗 ;

b) every frame variable 𝑋 occurs in at most one of the 𝑇𝑗 , at most once.

2. Compute unifyΔ (𝑇 1 ¤=𝑇 2):

a) if unifyΔ (𝑇 1 ¤=𝑇 2) = fail, return ∅;

b) if unifyΔ (𝑇 1 ¤=𝑇 2) = \0, return {(\0\ ′0)† |V 𝛼 } where:

i. \ ′0 = [ ®𝛼 ′/ ®𝑋 ] ∪ [ ®𝑋 ′/®𝛼]

ii. ®𝑋 = V 𝑋 ∩ vars ¤4 (𝐷)\0 and ®𝛼 = vars(𝐷) \ (Δ ∪ dom(\0) ∪ vars ¤4 (𝐷)\0)

iii. ®𝛼 ′ and ®𝑋 ′ are vectors of fresh variables
4We use a set because, in the presence of subtyping, constraint solving can produce multiple incomparable solutions.
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In step 1, we convert 𝐷 to a set of type frame equality constraints. To do so, we convert all
gradual types in materialization constraints by replacing each occurrence of ? with a dierent
frame variable. In step 2, we compute a unier for these constraints. If a unier \0 exists (step
2b), we use it to build our solution: however, we need a post-processing step to ensure that 𝛼
and𝑋 variables are treated correctly. For example, a unier could map 𝛼 to𝑋 when (𝛼 ¤4 𝛼) ∈ 𝐷 :
then, converting type frames back to gradual types would yield 𝛼 ≔ ?, which is not a solution
because 𝛼 is mapped to a gradual type when a static type is required. This is because variables 𝛼
appearing on the left of materialization constraints are always introduced to type an unannotated
_-abstraction, and we want the inferred type to be static.

Therefore, to obtain the result we rst compose \0 with a renaming substitution \ ′0; then,
we apply † to change type frames back to gradual types, and we restrict the domain to V 𝛼 .
The renaming \0 introduces fresh variables to replace some frame variables with type variables
( [ ®𝛼 ′/ ®𝑋 ]) and some type variables with frame variables ( [ ®𝑋 ′/®𝛼]). It has two purposes:

1. the rst is to ensure that the variables in vars ¤4 (𝐷) are mapped to static types, which we
need for \ Δ 𝐷 to hold. This is done by renaming all the frame variables that are present in
the solution of the materialization constraints (that is, V 𝑋 ∩vars ¤4 (𝐷)\0) to type variables;

2. the second is to have the substitution introduce as few type variables as possible. This is
done by taking all the type variables occurring in𝐷 that are present neither inΔ (forbidding
their instantiation), in the domain of the solution \0, or in the solution of a materialization
constraint (forbidding them to be instanciated to a gradual type), and mapping them to a
frame variable. This will, in eect, map these type variables to ? after application of the
operator .†.

The algorithm solve( ·) (·) satises the following soundness property:

Proposition 4.21 (Soundness of solve). For every set of type constraints 𝐷 and Δ ⊆ V 𝛼
, if

\ ∈ solveΔ (𝐷) then the following hold:

• \ Δ 𝐷 ;

• vars(𝐷)\ ⊆ vars ¤4 (𝐷)\ ∪ Δ.

The last property states that a solution \ returned by solve introduces as few variables as pos-
sible. In particular, the variables it introduces in 𝐷 are only those in Δ and those that appear in
the solutions of variables in vars ¤4 (𝐷) (whose solutions must be static). This is the role of the
substitution [ ®𝑋 ′/®𝛼] in the description of solve. This avoids useless materializations of ? to type
variables, and thus the insertion of useless casts at compilation.
For example, consider the expression let𝑦 =𝑥 in𝐸 where 𝑥 is given type ?. In the declarative

system,𝑦 can be given type ?, or it can be typed as∀𝛼.𝛼 bymaterializing ? into𝛼 and generalizing
its type. However, in this case, the compiled expression would have a cast: let𝑦 =Λ𝛼. 𝑥 〈? ⇒ℓ

𝛼〉 in𝐸. We prefer the compilation without this cast, which is whywe replace as many 𝛼 variables
as possible with ?. This ensures that, for this example, 𝑦 is given type ? by solve.
The algorithm is also complete, in the sense that if a solution to a set of constraints 𝐷 exists,

then solve will nd a “similar solution”:
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Proposition 4.22 (Completeness of solve). For every set of type constraints 𝐷 and Δ ⊆ V 𝛼
,

if there exists \ such that \ Δ 𝐷 then there exists two type substitutions \ ′ and \ ′′ such that:

• \ ′ ∈ solveΔ (𝐷);

• for every 𝛼 ∈ V 𝛼
, 𝛼\ ′(\ ∪ \ ′′) 4 𝛼 (\ ∪ \ ′′)

• for every 𝛼 ∈ V 𝛼
such that 𝛼\ ′ ∈ STypes, 𝛼\ ′(\ ∪ \ ′′) = 𝛼 (\ ∪ \ ′′)

A standard statement of completeness would only feature the rst and last properties. These two
properties state that, if there exists a solution \ of the set of constraints 𝐷 , then the algorithm
will nd a solution \ ′ equal to \ modulo some substitution \ ′′. However, we add the second
weaker property to account for gradual types: the solution \ ′ produced by solve may introduce
less precise types than the solution \ . This means that the types inferred by solve will always
be the least precise possible, which in turn ensures that the casts inserted during compilation
(based on the solution given by solve) fail as little as possible.

4.3.3. Structured constraints and constraint generation

In the absence of let-polymorphism, the type constraints we presented suce to describe the
conditions for a program to be well-typed (following the approach of Wand [76], augmented
with materialization constraints). With let-polymorphism, instead, we would need either to mix
constraint generation and solving or to copy constraints for let-bound expressionsmultiple times.
To avoid this, we use a kind of constraint that includes binding, following Pottier and Rémy [58].
As anticipated, we will not detail all the constraint generation system in this section, and in-

stead refer the reader to Petrucciani [56] and to Figure A.1 in the Appendix. Here, we summarize
the system briey.
We rst dene structured constraints as the terms generated by the following grammar:

𝐶 F (𝑡 ¤≤ 𝑡) | (𝜏 ¤4 𝛼) | (𝑥 ¤4 𝛼) | def 𝑥 : 𝜏 in 𝐶 | ∃ ®𝛼.𝐶 | 𝐶 ∧𝐶 | let𝑥 : ∀®𝛼 ;𝛼 [𝐶] ®𝛼 in 𝐶

Structured constraints include type constraints and ve other forms. A constraint (𝑥 ¤4 𝛼) asks
that the type scheme for 𝑥 has an instance that materializes to the solution of 𝛼 . Existential
constraints ∃®𝛼.𝐶 bind the type variables ®𝛼 occurring in 𝐶; this simplies freshness conditions,
as in Pottier and Rémy [58]. 𝐶 ∧ 𝐶 is simply the conjunction of two constraints, while def and
let constraints are generated to type _-abstractions and let-expressions.
We then dene a function of the form 〈〈𝑒 : 𝑡〉〉 which generates the structured constraint that

must hold for 𝑒 to be given type 𝑡 . The idea is to introduce an existentially bound type variable
(via a constraint of the form ∃𝛼.𝐶) for every sub-expression of 𝑒 , and introduce a materialization
constraint on every gradual type present in the annotation of a _-abstraction, as well as on every
variable.
For example, for a variable 𝑥 to have type 𝑡 , we generate the following constraint:

〈〈𝑥 : 𝑡〉〉 = ∃𝛼. (𝑥 ¤4 𝛼) ∧ (𝛼 ¤≤ 𝑡)

which states that there must be some 𝛼 such that the type of 𝑥 (which will be deduced later on
during constraint rewriting) materializes into 𝛼 , and this 𝛼 must be a subtype of 𝑡 . The solution
for the variable 𝛼 will then give us the type that 𝑥 must be cast to for the expression to be well-
typed.

86



4.3 Type inference

For _-abstractions, we introduce a variable for the type of the body and a variable for the type
of the parameter, and use the constraint def 𝑥 : 𝜏 in 𝐶 to bind the type of the parameter. For
annotated abstractions, this yields constraints of the form:

〈〈(_𝑥 :𝜏 . 𝑒) : 𝑡〉〉 = ∃𝛼1, 𝛼2. (def 𝑥 : 𝜏 in 〈〈𝑒 : 𝛼2〉〉) ∧ (𝜏 ¤4 𝛼1) ∧ (𝛼1 → 𝛼2 ¤≤ 𝑡)

Here, we generate the constraints necessary to ensure that 𝑒 is of type 𝛼2, provided 𝑥 has been
given type 𝜏 . Then, since 𝜏 is a gradual type and subtyping constraints are only dened on static
types, we ask that 𝜏 materializes to some type 𝛼1 such that 𝛼1 → 𝛼2 is a subtype of the expected
type 𝑡 .

This contrasts with unannotated abstractions, for which we bind 𝑥 to 𝛼1 instead:

〈〈(_𝑥. 𝑒) : 𝑡〉〉 = ∃𝛼1, 𝛼2. (def 𝑥 : 𝛼1 in 〈〈𝑒 : 𝛼2〉〉) ∧ (𝛼1 ¤4 𝛼1) ∧ (𝛼1→𝛼2 ¤≤ 𝑡)

As we already explained before, the constraint 𝛼1 ¤4 𝛼1 forces the solution for 𝛼1 to be static, thus
ensuring that the inferred type for the parameter is static.
As a last peek inside the constraint generation rules, the following rule generates the constraint

for an application:
〈〈𝑒1 𝑒2 : 𝑡〉〉 = ∃𝛼. 〈〈𝑒1 : 𝛼 → 𝑡〉〉 ∧ 〈〈𝑒2 : 𝛼〉〉

This fairly-standard constraint introduces a variable 𝛼 to unify the type of the argument with
the domain of the function, and generates the corresponding constraints. As we precised before,
all the remaining rules can be found in Figure A.1 in the appendix.

4.3.4. Constraint solving

While our denition of constraints is mostly based on the work of Pottier and Rémy [58], we
approach constraint solving dierently, following Castagna et al. [16].
Having described how to generate structured constraints from terms of the source language,

and how to solve subtyping and materialization constraints with the algorithm solve presented
in Subsection 4.3.2, the only step left is to convert structured constraints into sets of type con-
straints. For this, we dene a constraint simplication system that rewrites structured constraints
into type constraints. However, this is not so simple, as the presence of let-polymorphism forces
us to solve constraints and compute partial solutions during their simplication.
Once again, we only give a general intuition about the constraint simplication system, refer-

ring the reader to Petrucciani [56] and to Figure A.2 in the Appendix.
Constraint simplication is a relation Γ;Δ ` 𝐶 { 𝐷 , where Γ is a type environment used to

assign types to the variables in constraints of the form (𝑥 ¤4 𝛼), andΔ is a nite subset ofV 𝛼 and is
used to record variables that must not be instantiated. When simplifying constraints for a whole
program, we take Γ and Δ to be initially empty. Γ will then be enriched with variables bound
in def 𝑥 : 𝜏 in 𝐶 constraints, and Δ will be enriched with the variables whose instantiation is
forbidden by let bindings (such as ®𝛼 in the expression let𝑥 ®𝛼 = 𝑒 in 𝑒 ′). Finally,𝐶 is the structured
constraint to be simplied and 𝐷 the result of simplication.
Constraint simplication is dened by a set of syntax-directed and deterministic rules. Subtyp-

ing andmaterialization constraints are left unchanged. Variable constraints (𝑥 ¤4 𝛼) are converted
to materialization constraints by simply replacing 𝑥 with a fresh instance of its type scheme, as
given by the environment Γ. To simplify a def constraint, we update the environment and sim-
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plify the inner constraint:

(Γ, 𝑥 : 𝜏);Δ ` 𝐶 { 𝐷

Γ;Δ ` def 𝑥 : 𝜏 in 𝐶 { 𝐷

For constraints ∃®𝛼.𝐶 , we simplify 𝐶 after performing 𝛼-renaming, if needed, to ensure that ®𝛼 is
fresh. To simplify 𝐶1 ∧𝐶2, we simplify 𝐶1 and 𝐶2 and take the union of the resulting sets.

The rule for let constraints, produced from an expression let𝑥 ®𝛼 = 𝑒 in 𝑒 ′ is of course the most
complicated. To summarize briey, it performs ve steps. First, it simplies the constraints gen-
erated from 𝑒 , while remembering that the ®𝛼 variables must not be instantiated. Second, it uses
the solve algorithm to deduce a solution of these constraints, if one exists. Third, it generalizes
the type given by the solution, producing a type scheme for the variable 𝑥 . Fourth, it expands the
environment Γ with this type scheme, and simplies the constraints constructed from 𝑒 ′. Finally,
it adds some additional constraints to ensure that the solution produced in the second step is
compatible with the constraints generated in the fourth step.
As before, all the rules for constraint simplication can be found in the appendix, in Figure A.2.

4.3.5. Algorithmic compilation

To conclude the presentation of the algorithmic system, we dene a compilation system. As we
already hinted at before, the results of type inference can also be used to compile expressions.
In particular, if 𝑒 is an expression, and if we have a derivation D of Γ;Δ ` 〈〈𝑒 : 𝑡〉〉 { 𝐷 and a
solution \ Δ 𝐷 , we can compute a cast language expression 𝐸 by “following” the derivation D ,
and introducing a cast whenever we construct a materialization constraint. For example, if D

contains the rewriting of a variable materialization constraint such as Γ;Δ ` (𝑥 ¤4 𝛼) { (𝜏 ¤4 𝛼)
where Γ(𝑥) = 𝜏 , then the expression 𝑥 will be compiled into the cast expression 𝑥 〈𝜏\ ⇒ℓ 𝛼\〉.
Formally, we dene this as a function {|.|} (.)(.) which, given a term 𝑒 , a derivation D , and a solu-

tion \ , produces a compiled term {|𝑒 |}D
\ . The denition of this function, although straightforward,

is very verbose, and can be found in the Appendix, in Figure A.3.
As for constraint solving, type inference is both sound and complete:

Theorem 4.23 (Soundness of type inference). Let D be a derivation of Γ; vars(𝑒) ` 〈〈𝑒 :
𝑡〉〉 { 𝐷 . Let \ be a type substitution such that \ vars(𝑒) 𝐷 . Then, we have Γ\ ` 𝑒 : 𝑡\  
{|𝑒 |}D

\ .

Theorem 4.24 (Completeness of type inference). If Γ ` 𝑒 : 𝜏 , then, for every fresh type

variable 𝛼 , there exist 𝐷 and \ such that Γ; vars(𝑒) ` 〈〈𝑒 : 𝛼〉〉 { 𝐷 and [𝜏/𝛼] ∪ \ vars(𝑒) 𝐷 .

The latter result, combined with completeness of solve, ensures that inference can compute
most general types for all expressions. In particular, starting from a program (i.e., a closed ex-
pression) 𝑒 , we pick a fresh variable 𝛼 and generate 〈〈𝑒 : 𝛼〉〉. Theorem 4.24 ensures that, if the
program is well-typed, we can nd a derivation D for ∅; ∅ ` 〈〈𝑒 : 𝛼〉〉 { 𝐷 , and that 𝐷 has a
solution. Since solve is complete, we can compute the principal solution \ of 𝐷 . Then, 𝛼\ is the
most general type for the program and {|𝑒 |}D

\ is its compilation driven by the derivation D .

88



4.4 Adding subtyping

4.4. Adding subtyping

We have shown that declaratively adding gradual types to an existing type system is as simple as
adding a subsumption rule formaterialization. We now show that adding subtyping to the system
of the previous section can be done in the same fashion. We just outline the main dierences and
the necessary additions without giving the details.
We aim at giving simple intuitions about subtyping in gradual type systems and thus prioritize

simplicity. We therefore give a simple syntactic denition for subtyping based on static types,
instead of a more complex but extension-robust semantic denition of it, which is postponed to
the following chapter.
We also highlight the main reasons why extending the type inference algorithm with subtyp-

ing is challenging. As we will explain later on, this extension requires some form of union and
intersection operations on types, which motivates the integration of set-theoretic types in the
next chapter.

4.4.1. Declarative system

Subtyping

We suppose to start from a predened subtyping preorder relation ≤ on B (e.g., Odd ≤ Int ≤
Real) and we extend it to the set GTypes of gradual types by the inductive application of the
following inference rules:

? ≤ ? 𝛼 ≤ 𝛼

𝜏1 ≤ 𝜏 ′1 𝜏2 ≤ 𝜏 ′2

𝜏1 × 𝜏2 ≤ 𝜏 ′1 × 𝜏 ′2

𝜏 ′1 ≤ 𝜏1 𝜏2 ≤ 𝜏 ′2

𝜏1 → 𝜏2 ≤ 𝜏 ′1 → 𝜏 ′2

These rules are standard: covariance for products, co-contravariance for arrows. Just notice that,
from the point of view of subtyping, the dynamic type ? is only related to itself, just like a type
variable.

Type System

The extension of the source gradual language with subtyping could not be simpler: it suces to
add the standard subsumption rule to the declarative typing rules of Figure 4.1:

[THM
Sub]

Γ ` 𝑒 : 𝜏 ′

Γ ` 𝑒 : 𝜏
𝜏 ′ ≤ 𝜏

The denition of the dynamic semantics does not require any essential change, either. The
cast calculus is the same as in Section 4.2, except that the [THM

Sub] rule above must be added to
its typing rules and the two cast reduction rules that use type equality must be generalized to
subtyping, namely:

[R〈HM〉
Collapse] 𝑉 〈𝜌 ⇒𝑝 ?〉〈? ⇒𝑞 𝜌 ′〉 { 𝑉 if 𝜌 ≤ 𝜌 ′

[R〈HM〉
Blame] 𝑉 〈𝜌 ⇒𝑝 ?〉〈? ⇒𝑞 𝜌 ′〉 { blame 𝑞 if 𝜌 � 𝜌 ′

Compared to the rules presented in Figure 4.6, we simply allow the simplication of successive
casts of the form 𝑉 〈𝜌 ⇒𝑝 ?〉〈? ⇒𝑞 𝜌 ′〉 where 𝜌 ≠ 𝜌 ′, as long as 𝜌 ≤ 𝜌 ′.
The proof of type soundness for this new system is essentially the same as for the system

without subtyping. The denition of the compilation of the source language into the “new”
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Chapter 4: Gradual typing for Hindley-Milner systems

cast calculus does not change either (subsumption is neutral for compilation). The proof that
compilation preserves types stays essentially the same, since we have just added the subsumption
rule to both systems.

4.4.2. Type inference

The changes required to add subtyping to the declarative system are minimal: dene the sub-
typing relation, add the subsumption rule, and recheck the proofs since they need slight mod-
ications. On the contrary, dening algorithms to decide the relations we just dened is more
complicated. As we saw in Section 4.3, this amounts to (1) generating a set of constraints and
(2) solving it.
Constraint generation is not problematic. The form of the constraints and the generation

algorithm given in Section 4.3 already account for the extension with subtyping: hence, they do
not need to be changed, neither here nor in the next section. For constraint generation, the rules
presented in Figure A.1 are valid for this system too.
Constraint resolution, instead, is a dierent matter. In the previous section, constraints of

the form 𝛼 ¤≤ 𝑡 were actually equality constraints (i.e., 𝛼 ¤= 𝑡 ) that could be solved by unication.
The same constraints now denote subtyping, and their resolution requires the computation of
intersections and unions. To see why, consider the following OCaml code snippet (that does not
involve any gradual typing):

fun x -> if (fst x) then (1 + snd x) else x

We want our system to deduce for this denition the following type:

(Bool×Int) → ( Int|(Bool×Int) )

since, for an argument of type Bool × Int, the function can either return a value of type Int if its
rst projection is true, or a value of type Bool × Int otherwise.
To that end, a constraint generation system like the one we present in the next section would

assign to the function the type 𝛼 → 𝛽 and generate the following set of four constraints:
{(𝛼 ¤≤ Bool×1), (𝛼 ¤≤ 1×Int), (Int ¤≤ 𝛽), (𝛼 ¤≤ 𝛽)}, where, as dened in Chapter 2, 1 denotes the top
type (that is, the supertype of all types). The rst constraint is generated because fstx is used
in a position where a Boolean is expected; the second comes from the use of sndx in an integer
position; the last two constraints are produced to type the result of an if_then_else expression
(with a supertype of the types of both branches). To compute the solution of two constraints of
the form 𝛼 ¤≤ 𝑡1 and 𝛼 ¤≤ 𝑡2, the resolution algorithm must compute the greatest lower bound of 𝑡1
and 𝑡2 (or an approximation thereof); likewise for two constraints of the form 𝑠1 ¤≤ 𝛽 and 𝑠2 ¤≤ 𝛽

the best solution is the least upper bound of 𝑠1 and 𝑠2. This yields Bool× Int for the domain —i.e.,
the intersection of the upper bounds for 𝛼— and (Int|(Bool×Int)) for the codomain—i.e., the
union of the lower bounds for 𝛽 .

In summary, to perform type reconstruction in the presence of subtyping, one must be able to
compute unions and intersections of types. In some cases, as for the domain in the example above,
the solution of these operations is a type of ML (or of the language at issue): then the operations
can be meta-operators computed by the type-checker but not exposed to the programmer. In
other cases, as for the codomain in the example, the solution is a type which might not already
exist in the language: therefore, the only solution to type the expression precisely is to add the
corresponding set-theoretic operations to the types of the language.
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The full range of these options can be found in the literature. For instance, Pottier [57] denes
intersection and union as meta-operations, and it is not possible to simplify the constraints to
derive a type like the one above. Hosoya et al. [38] implement a hybrid solution in which in-
tersections are meta-operations while full-edged unions —which are necessary to encode XML
types— are included in types. Other systems include both intersections and unions in the types,
starting from the earliest work by Aiken and Wimmers [4] to more recent work by Dolan and
Mycroft [22]. Union and intersection types are the most expressive solution but also the one
that is technically most challenging; this is why the cited works impose some restrictions on
the use of unions and intersections (e.g., no unions in covariant position and no intersections in
contravariant ones). In the next chapter, we embrace unrestricted union and intersection types,
adding them to both static and gradual types, following the approach of semantic subtyping.
This will also require the addition of negation and recursive types.
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Chapter 5.

Gradual typing with set-theoretic types

“Invention, it must be humbly admitted, does not consist in

creating out of void, but out of chaos.”

Mary Shelley, introduction to Frankenstein, 1831

In this chapter, we add set-theoretic types to the calculus we presented in the previous chapter.
We continue with the same intuition that the dynamic type behaves as an existentially quanti-
ed type variable. This allows us to dene both materialization and subtyping on gradual set-
theoretic types, yielding a very simple declarative type system. We then extend the algorithmic
system and the cast language to reect these additions.

Chapter Outline
Section 5.1 We introduce gradual set-theoretic types, and lift all the denitions presented
in Chapter 4 to support them. In particular, we redene type frames, discrimination, and
materialization.

Section 5.2 We dene gradual subtyping for set-theoretic types, and study some of its
properties. In particular, we prove its decidability by reducing the subtyping problem on
gradual set-theoretic types to subtyping on static set-theoretic types. We also study the
interaction between subtyping andmaterialization, showing that the two are commutative.

Section 5.3 We present a cast language that supports set-theoretic types, whose seman-
tics is inspired by the semantics of the language presented in the previous chapter. We
prove this semantics to be a sound conservative extension of the semantics presented in
Chapter 4. However, we highlight some problems with the syntactic denition of materi-
alization, which make the semantics particularly complex.

Section 5.4 We briey show how to extend the inference algorithm of Chapter 4 to
incorporate set-theoretic types. This algorithm is based on an existing inference algorithm
for static set-theoretic types, which makes use of recursive types. While the presence
of recursive gradual types breaks the completeness of our algorithm, we still prove its
soundness.

5.1. Gradual set-theoretic types

5.1.1. Syntax

We start by dening the syntax of the types we are going to use throughout this chapter.
We follow the same approach we presented in the previous chapter: we introduce static types,

gradual types, and type frames, which now all support set-theoretic connectives. Type frames
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correspond to gradual types where occurrences of the dynamic type ? have been replaced with
frame variables, which are ranged over by 𝑋 . We distinguish theses frame variables from type

variables, ranged over by 𝛼 , which are used to express polymorphism.
As before, we suppose given a countable set V 𝛼 of type variables, and a countable set V 𝑋 of

frame variables. Additionally, to ease the formalism, we will use the metavariable 𝐴 to range
over both types of variables (that is, over V 𝑋 ∪ V 𝛼 ).
As in Chapter 2, we suppose given a set C of constants (ranged over by 𝑐), and a set B of base

types (ranged over by 𝑏). We also consider the two following functions relating these two sets
together:

𝑏 (.) : C → B B(.) : B → P (C )

where 𝑏𝑐 corresponds to the base type of the constant 𝑐 , and B(𝑏) is the set of all constants that
can be given type 𝑏 (that is, the set of 𝑐 such that 𝑏 (𝑐) ≤ 𝑏). We assume that every constant has
a corresponding singleton type, that is, for every constant 𝑐 , B(𝑏𝑐) = {𝑐}.

Static types, type frames and gradual types follow the same denition as in the previous chap-
ter, except we add the set-theoretic connectives ¬, ∨, and the empty type 0:

Denition 5.1 (Static types, gradual types, type frames). The sets STypes of static types,
GTypes of gradual types, and TFrames of type frames are the sets of terms 𝑡 , 𝜏 , and𝑇 respec-

tively generated coinductively by the following grammars:

STypes 3 𝑡 F 𝛼 | 𝑏 | 𝑡 × 𝑡 | 𝑡 → 𝑡 | 𝑡 ∨ 𝑡 | ¬𝑡 | 0 static types

GTypes 3 𝜏 F ? | 𝛼 | 𝜏 × 𝜏 | 𝜏 → 𝜏 | 𝜏 ∨ 𝜏 | ¬𝜏 | 0 gradual types

TFrames 3 𝑇 F 𝐴 | 𝑏 | 𝑇 ×𝑇 | 𝑇 → 𝑇 | 𝑇 ∨𝑇 | ¬𝑇 | 0 type frames

(where 𝐴 ranges over V 𝑋 ∪ V 𝛼
, 𝛼 ranges over V 𝛼

, and 𝑏 ranges over B) and that satisfy the

following two conditions:

• (regularity) the term has a nite number of dierent sub-terms;

• (contractivity) every innite branch of a type contains an innite number of occurrences

of the × or→ type constructors.

We introduce the following abbreviations for gradual set-theoretic types, as presented in Chap-
ter 2:

𝜏1 ∧ 𝜏2 =def ¬(¬𝜏1 ∨ ¬𝜏2) 𝜏1 \ 𝜏2 =def 𝜏1 ∧ ¬𝜏2 1 =def ¬0

and likewise for type frames and static types. As precised in Chapter 2, we refer to 𝑏, × and →
as type constructors, and to ∨, ∧, ¬ and \ as type connectives.
Notice that types are dened coinductively, so as to support recursive types. Besides the inter-

est of recursive types per se, we need them to solve subtyping constraints following a technique
introduced by Courcelle [21]. As explained in Chapter 2, the contractivity condition on recursive
types allows us to have an induction principle, while the regularity condition ensures the decid-
ability of the subtyping relation for type frames and static types (which will, in turn, ensure that
subtyping on gradual types is decidable).

As in the previous chapter, for a given type frame 𝑇 , we write vars(𝑇 ) for the set of variables
𝐴 occurring in 𝑇 , and we dene vars𝛼 (𝑇 ) = vars(𝑇 ) ∩ V 𝛼 and vars𝑋 (𝑇 ) = Vars(𝑇 ) ∩ V 𝑋 . We
dene the same operations on static and gradual types, for which the result of vars𝑋 is, of course,
always empty.
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Type substitutions are dened as in Chapter 2, andwe extend them to gradual types by dening
?\ = ? for every substitution \ . We will often distinguish static type substitutions, that is,
substitutions \ : V 𝛼 ∪ V 𝑋 → STypes that map variables into static types, and gradual type
substitutions \ : V 𝛼 ∪ V 𝑋 → GTypes that map variables into gradual types.

5.1.2. Subtyping on type frames

The set-theoretic interpretation of types with type variables presented in Section 2.3 can be ap-
plied to both static types and type frames. The only dierence being that, for the latter, the
tags of an element 𝑑 ∈ D𝛼 range over V 𝛼 ∪ V 𝑋 instead of only V 𝛼 . This yields a denition
of a subtyping relation ≤ and an equivalence relation ' on static types and type frames, whose
denition we do not repeat here. Simply notice that the subtyping relation thus induced on
type frames is a conservative extension of the subtyping relation induced on static types since
STypes ⊆ TFrames, which justies the use of the same symbol.

We simply recall the following property of the subtyping relation presented in Section 2.3 as
Proposition 2.13, which we restate for type frames, and that will be useful later on:

Proposition 5.2. For every 𝑇1,𝑇2 ∈ TFrames, if 𝑇1 ≤ 𝑇2 then for every type substitution

\ : V 𝑋 ∪ V 𝛼 → TFrames, 𝑇1\ ≤ 𝑇2\ .

5.1.3. Materialization

The denition of materialization given in the previous chapter can be extended to gradual set-
theoretic types without changing it. As in the previous chapter, given a type frame 𝑇 , we write
𝑇 † for the gradual type obtained by replacing all frame variables occurring in 𝑇 with ?. The set
★(𝜏) of the discriminations of a gradual set-theoretic type 𝜏 is still dened as:

★(𝜏) =def {𝑇 ∈ TFrames | 𝑇 † = 𝜏}

The denition of materialization, based on discrimination and type substitutions, does not
need to change, even though we have changed the syntax of types. It simply uses the new
denition of the discriminations of a gradual type:

𝜏1 4 𝜏2 ⇐⇒def ∃𝑇 ∈ ★(𝜏1), \ : V 𝑋 → GTypes. 𝑇\ = 𝜏2

Note that, since types are now dened coinductively, an inductive denition would no longer
work.
As for static subtyping, materialization is preserved by type substitutions.

Proposition 5.3. For every 𝜏1, 𝜏2 ∈ GTypes, if 𝜏1 4 𝜏2 then for every type substitution \ :
V 𝛼 → GTypes, 𝜏1\ 4 𝜏2\ .

Proof. Let 𝜏1, 𝜏2 ∈ GTypes such that 𝜏1 4 𝜏2, and \ : V 𝛼 → GTypes.
By denition of 4, there exists 𝑇 ∈ ★(𝜏1), \1 : V 𝑋 → GTypes such that 𝑇\1 = 𝜏2.
Take any substitution \ ′ : V 𝛼 → TFrames such that for every 𝛼 ∈ V 𝛼 , 𝛼\ ′ ∈ ★(𝛼\ ) and
vars𝑋 (𝛼\ ′) ∩ dom(\1) = ∅. The rst condition ensures that 𝑇\ ′ ∈ ★(𝜏1\ ).
Now consider the substitution \ ′1 = [𝑋\1\/𝑋 ]𝑋 ∈dom(\1) ∪ [𝑋/?]𝑋 ∈vars𝑋 (\ ′) , and examine
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the substitution \ ′\ ′1. We distinguish two cases.

• for every 𝛼 ∈ vars𝛼 (𝑇 ), we have 𝛼\ ′\ ′1 = 𝛼\ since \ ′1 replaces all the frame variables
introduced by \ ′ by ? and 𝛼\ ′ ∈ ★(𝛼\ ). And since 𝛼\1 = 𝛼 , we have 𝛼\ ′\ ′1 = 𝛼\1\ .

• for every 𝑋 ∈ vars𝑋 (𝑇 ), since 𝑇\1 = 𝜏2 ∈ GTypes, 𝑋 ∈ dom(\1). Moreover, 𝑋\ ′ = 𝑋 ,
and 𝑋\ ′1 = 𝑋\1\ therefore 𝑋\ ′\ ′1 = 𝑋\1\ .

We deduce that \ ′\ ′1 = \1\ . Since 𝑇\1\ = 𝜏2\ and 𝑇\ ′ ∈ ★(𝜏1\ ), this proves that 𝜏1\ 4
𝜏2\ . �

5.2. Subtyping

Having dened the materialization relation on gradual set-theoretic types, we now show how
to dene subtyping, which, for now, has only been dened on static types and type frames. In
the previous chapter, we dened subtyping on gradual types by treating ? exactly like a type
variable. The intuition being that subtyping should only act on base types and follow the usual
variance rules for arrows and pairs, but should never be able to remove or replace occurrences
of ?: this is the role of materialization.

We might be tempted to use the same approach here: 𝜏1 ≤ 𝜏2 would hold if and only if𝑇1 ≤ 𝑇2

holds, where 𝑇1 and 𝑇2 are both obtained respectively from 𝜏1 and 𝜏2 by replacing every occur-
rence of ? with frame variables. However, this relation is not satisfactory. In particular, it would
validate ?\? ≤ 0, since by replacing both occurrences of ?with𝑋 , we obtain𝑋 \𝑋 ≤ 0. As a con-
sequence, combined with materialization, it would imply that the declarative type system would
type every program, even fully static and nonsensical ones, since any type could be converted to
any other by going through the empty type:

𝜏1 ≤ 𝜏1 \ (? \ ?) 4 𝜏1 \ (𝜏1 \ 0) ≤ 0 ≤ 𝜏2

Note that such a derivation would insert a cast to 𝜏1 \ (𝜏1 \ 0), which will always fail. This is, of
course, undesirable, since a proper gradual type system should properly reject an ill-typed, fully
statically-typed program.
Therefore, to dene subtyping, the idea of replacing ? with type variables requires some care:

we must distinguish occurrences that appear below negation connectives from those that do not,
to ensure that ? ∧ ¬? (i.e., ? \ ?) is not considered to be empty. This means that we cannot
reuse our discrimination relation as is, since it replaces occurrences of ? in a type with arbitrary
(possibly non-distinct) frame variables, independently of their position in the type.
The solution we present in this section consists in dening a new, more restrictive version

of the discrimination function, which only generates polarized type frames. We say that a type
frame is polarized if no frame variable occurs in it in both a positive position (under an even
number of negation connectives) and a negative position (under an odd number of negation
connectives). For example, 𝑋 \ 𝑋 is not a polarized discrimination of ? \ ?, but 𝑋 \ 𝑌 is (and
𝑋 \𝑌 � 0). This will allow us to dene subtyping on gradual types by saying that 𝜏1 is a subtype
of 𝜏2 if there exist two polarized discriminations𝑇1,𝑇2 of 𝜏1 and 𝜏2 respectively such that𝑇1 ≤ 𝑇2.

We go further by studying some other possible denitions of the discriminations of a type, and
the subtyping relations they induce (for example, by also forbidding a variable to occur in both
a covariant and a contravariant position). We show that all these denitions are equivalent, all
having their own advantages depending on the results we need to prove.
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5.2.1. Polarization and variance

A type frame can be represented as an innite tree where nodes correspond to connectives and
constructors (∨,→, and × being binary, and ¬ being unary), and leaves are either a base type 𝑏 or
a variable𝐴. Using such a representation, an occurrence of a variable 𝑋 in a type frame𝑇 can be
represented as a string on the alphabet {×L,×R,→L,→R,∨L,∨R,¬} describing the connectives
and constructors present along the path from the root of the tree to the leave corresponding
to 𝑋 , as well as the direction of the path for binary nodes. For example, the occurrence of 𝑋
in (Int → 𝑋 ) ∨ Bool can be represented as ∨L→R. Of course, the same variable can occur
multiple times in the same type frame, even an innite number of times since types are dened
coinductively.
We distinguish three particular characteristics of an occurrence of a variable in a type frame,

which we call polarity, parity, and variance.

Denition 5.4 (Polarity, parity, variance). For every type frame 𝑇 ∈ TFrames and 𝐴 ∈
vars(𝑇 ), we dene the polarity, parity and variance of an occurrence of 𝐴 in 𝑇 as follows.

• Polarity: an occurrence of 𝐴 in 𝑇 is said to be positive if the symbol ¬ occurs an even

number of times in its path, and is negative otherwise.

• Parity: an occurrence of𝐴 in𝑇 is said to be even if the symbol→𝐿 occurs an even number

of times in its path, and is odd otherwise.

• Variance: an occurrence of𝐴 in𝑇 is said to be covariant if it is both positive and even or
both negative and odd, and is contravariant otherwise.

Notice how the notion of variance coincides with the standard one, where the variance of an
occurrence ips every time its path descends below a negation or to the left of an arrow.
To ease the formalism, we dene some notation to refer to the variables occurring in a type

frame depending on their position. We write varscov(𝑇 ), varscon(𝑇 ), vars+(𝑇 ), and vars−(𝑇 ) for,
respectively, the set of variables that occur (at least) covariantly, contravariantly, positively, and
negatively in a type frame 𝑇 . We dene similar notation for vars𝑋 (.) and vars𝛼 (.) for frame
variables and type variables respectively. As customary, we also extend all these notions to
gradual types and static types, where variables are restricted to V 𝛼 .
Finally, we use these notions to introduce the sets of polarized and variance-polarized type

frames.

Denition 5.5 (Polarized and variance-polarized type frames). For every type frame 𝑇 ∈
TFrames, we say that:

• 𝑇 is polarized if no frame variable occurs both positively and negatively in it, that is,

vars𝑋+ (𝑇 ) ∩ vars𝑋− (𝑇 ) = ∅;

• 𝑇 is variance-polarized if no frame variable occurs in both a covariant and a contravari-

ant position in it, that is, vars𝑋cov(𝑇 ) ∩ vars𝑋con(𝑇 ) = ∅.

We write TFramesvar and TFramespol for the set of variance-polarized and polarized type

frames, respectively.
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5.2.2. Defining subtyping

Having dened polarized type frames, we can now provide the formal denition of subtyping,
following the intuition given in the beginning of this section.

First of all, we dene the subset of the discriminations of a type that are also polarized:

★pol(𝜏) =def ★ (𝜏) ∩ TFramespol

Then, we use this denition to dene subtyping on gradual types:

Denition 5.6 (Subtyping on gradual types). We dene the subtyping relation ≤ between

gradual types as follows:

𝜏1 ≤ 𝜏2 ⇐⇒def ∃𝑇1 ∈ ★pol(𝜏1),𝑇2 ∈ ★pol(𝜏2) . 𝑇1 ≤ 𝑇2

Moreover, we dene the equivalence relation ' on gradual types as:

𝜏1 ' 𝜏2 ⇐⇒def 𝜏1 ≤ 𝜏2 and 𝜏2 ≤ 𝜏1

It is straightforward to verify that this relation is a conservative extension of subtyping on type
frames as dened in the previous section, hence the use of the same symbol.
It is also easy to check that this is a conservative extension of the denition given in the

previous chapter: if 𝜏1 and 𝜏2 are non-recursive and do not contain union, negation, or 0, then
𝜏1 ≤ 𝜏2 holds if and only if it can be derived using the inductive rules of Chapter 4.

This denition of gradual subtyping makes it clear that occurrences of ? under negation types
must be handled with care. Alternatively, we could have handled all contravariant occurrences
of ? similarly, by dening gradual subtyping using variance-polarized type frames, following the
same principle. If we dene the subset of the discriminations of a type that are variance-polarized:

★var(𝜏) =def ★ (𝜏) ∩ TFramesvar

gradual subtyping could have been dened as:

𝜏1 ≤ 𝜏2 ⇐⇒def ∃𝑇1 ∈ ★var(𝜏1),𝑇2 ∈ ★var(𝜏2) . 𝑇1 ≤ 𝑇2

It is obvious that this denition entails the rst one, since any variance-polarized type frame
is also polarized. However, it turns out that both denitions are actually equivalent (we dedicate
Subsection 5.2.4 to proving this result), and both have their uses: the rst one emphasizes the
fact that the problem only arises because of negation types, while the latter is more convenient
to use for some proofs.

5.2.3. Decidability of subtyping

The denition of gradual subtyping follows the intuition presented in the previous chapter, in
which ? is only compatible with itself, and extends it to set-theoretic types: if 𝜏1 is a subtype
of 𝜏2 then every occurrence of ? in 𝜏2 matches an occurrence of ? in 𝜏1. This notion of match-
ing is formalized by the replacement of ? with frame variables, and the subtyping relation tries
to nd such a matching via an existential quantication. This, however, could be computation-
ally problematic: the number of possible substitutions grows exponentially with the number of
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occurrences of ? in the types at hand, and this number can even be innite in the presence of
recursive types.
However, when computing subtyping, it turns out that we do not need to consider every dis-

crimination of the two types. It is sucient to consider the single discrimination in which only
two frame variables appear: one used to replace all the positive occurrences of ?, and the other
used to replace all the negative occurrences of ?; thus eliminating the need for the existential
quantication.
We dedicate this subsection and the following to proving this result, which requires some

additional terminology and notation. We also prove that the discrimination where a variable is
used to replace all covariant occurrences of ? and another for all the contravariant occurrences
can be used to obtain the same result, thus yielding a rst step towards proving that the two
denition of subtyping given in the previous subsection are equivalent.
In the following, we distinguish two particular variables 𝑋 1 and 𝑋 0 in V 𝑋 , and we dene the

four following sets of type frames:

TFramespos =def {𝑇 ∈ TFrames | vars𝑋+ (𝑇 ) ⊆ {𝑋 1} and vars𝑋− (𝑇 ) ⊆ {𝑋 0}}

TFramesneg =def {𝑇 ∈ TFrames | vars𝑋+ (𝑇 ) ⊆ {𝑋 0} and vars𝑋− (𝑇 ) ⊆ {𝑋 1}}

TFramescov =def {𝑇 ∈ TFrames | vars𝑋cov(𝑇 ) ⊆ {𝑋 1} and vars𝑋con(𝑇 ) ⊆ {𝑋 0}}

TFramescon =def {𝑇 ∈ TFrames | vars𝑋cov(𝑇 ) ⊆ {𝑋 0} and vars𝑋con(𝑇 ) ⊆ {𝑋 1}}

It is straightforward to verify that TFramespos and TFramesneg contain polarized type frames,
and that TFramescov and TFramescon contain variance-polarized type frames. We refer to type
frames belonging to these four sets as being, respectively, positively polarized, negatively polar-

ized, covariantly polarized, and contravariantly polarized.
Now, given a gradual type 𝜏 , and for each of these four types of polarization, there exists a

unique discrimination of 𝜏 that respects this polarization. We use the following notation to refer
to these four particular discriminations of 𝜏 :

Positive discrimination 𝜏 ⊕ ∈ ★(𝜏) ∩ TFramespos

Negative discrimination 𝜏 	 ∈ ★(𝜏) ∩ TFramesneg

Covariant discrimination 𝜏? ∈ ★(𝜏) ∩ TFramescov

Contravariant discrimination 𝜏> ∈ ★(𝜏) ∩ TFramescon

While these discriminations cannot be directly dened inductively on types (due to the pres-
ence of recursive types), the following equalities hold nonetheless:

?⊕ = 𝑋 1 ?	 = 𝑋 0

𝛼 ⊕ = 𝛼 𝛼 	 = 𝛼

𝑏⊕ = 𝑏 𝑏	 = 𝑏

(𝜏1 × 𝜏2)⊕ = 𝜏 ⊕1 × 𝜏 ⊕2 (𝜏1 × 𝜏2)	 = 𝜏 	1 × 𝜏 	2
(𝜏1 → 𝜏2)⊕ = 𝜏 ⊕1 → 𝜏 ⊕2 (𝜏1 → 𝜏2)	 = 𝜏 	1 → 𝜏 	2
(𝜏1 ∨ 𝜏2)⊕ = 𝜏 ⊕1 ∨ 𝜏 ⊕2 (𝜏1 ∨ 𝜏2)	 = 𝜏 	1 ∨ 𝜏 	2

(¬𝜏)⊕ = ¬𝜏 	 (¬𝜏)	 = ¬𝜏 ⊕
0⊕ = 0 0	 = 0

Similar equalities hold for 𝜏? and 𝜏>, except the polarity also switches on the left of arrows in
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addition to below negations:

(𝜏1 → 𝜏2)? = 𝜏>
1 → 𝜏?

2 (𝜏1 → 𝜏2)> = 𝜏?
1 → 𝜏>

2

As we stated informally before, we will prove that, for every types 𝜏1 and 𝜏2, the following
equivalences hold:

𝜏1 ≤ 𝜏2 ⇐⇒ 𝜏 ⊕1 ≤ 𝜏 ⊕2 ⇐⇒ 𝜏?
1 ≤ 𝜏?

2

Note that Proposition 5.2 also ensures that 𝜏 ⊕1 ≤ 𝜏 ⊕2 ⇐⇒ 𝜏 	1 ≤ 𝜏 	2 , since the positive and
negative discriminations of a type are syntactically equal, except the variables 𝑋 0 and 𝑋 1 are
switched. A similar result holds for the covariant and contravariant discriminations, so that
the relations induced by subtyping on type frames and each of the four polarizations are all
equivalent.
Proving the two equivalences stated above is not straightforward, however. The intuition

behind proving the second one, 𝜏 ⊕1 ≤ 𝜏 ⊕2 ⇐⇒ 𝜏?
1 ≤ 𝜏?

2 , is that it does not matter whether
we use dierent variables to distinguish occurrences of ? to the left of arrows. Given any two
types, subtyping only compares their subterms that occur under the same number of arrows:
𝜎1 → 𝜏1 ≤ 𝜎2 → 𝜏2 can entirely be decided by comparing 𝜎1 and 𝜎2, as well as 𝜏1 and 𝜏2. The
subterms 𝜎1 and 𝜏2 are, for example, completely independent.
Proving the rst equivalence, namely 𝜏1 ≤ 𝜏2 ⇐⇒ 𝜏 ⊕1 ≤ 𝜏 ⊕2 , is trickier. One direction is

obvious: 𝜏 ⊕1 ≤ 𝜏 ⊕2 clearly implies that 𝜏1 ≤ 𝜏2 since 𝜏 ⊕ ∈ ★(𝜏) for every type 𝜏 . The idea behind
proving the converse is to use Proposition 5.2 and apply well-chosen substitutions to the two
type frames that prove 𝜏1 ≤ 𝜏2, to obtain 𝜏 ⊕1 and 𝜏 ⊕2 from these type frames. It might occur
that the types frames verifying 𝑇1 ≤ 𝑇2 are such that a variable 𝑋 occurs positively in 𝑇1 and
negatively in𝑇2. In this case, substituting 𝑋 by any of the two distinguished variables 𝑋 0 and 𝑋 1

in 𝑇1 and 𝑇2 will never produce similarly polarized type frames. However, in this case, we will
prove that the variable 𝑋 is not actually relevant, and two dierent substitutions can be applied
to 𝑇1 and 𝑇2 while still preserving subtyping.

5.2.4. Equivalence of the definitions of subtyping

In this rather technically dicult subsection, we prove the equivalence of the aforementioned
denitions of subtyping. For this, we need some more notation to refer to variables that occur
in a type frame in two specic positions: we write vars+cov(𝑇 ), vars−cov(𝑇 ), vars+con(𝑇 ), and
vars−con(𝑇 ) for the variables that occur in a positive and covariant position, a negative and co-
variant position, a positive and contravariant position, and a negative and contravariant position,
respectively. Note that, for example, vars+cov(𝑇 ) ≠ vars+(𝑇 ) ∩ varscov(𝑇 ) because a variable can
occur twice in𝑇 , once in a negative-covariant position, and once in a positive-contravariant po-
sition, but never in a positive-covariant position. Such a variable would thus be in both vars+(𝑇 )
and varscov(𝑇 ), but not in vars+cov(𝑇 ) since it does not occur in a position that is both positive and
covariant. However, it holds that varscov(𝑇 ) = vars+cov(𝑇 ) ∪ vars−cov(𝑇 ) since every covariant
position is also either negative or positive (and similarly for other variances and polarities).
As usual, we use similar notation for vars𝛼 and vars𝑋 , and extend it to both static types and

gradual types.
The rst lemmawe prove states that, for every type frame𝑇 , we can obtain another type frame

𝑇 ′ such that 𝑇 can be obtained from 𝑇 ′ by applying a substitution, and no variable occurs in 𝑇 ′

in both a covariant and a contravariant position, or both in a positive and a negative position.
While this result may seem trivial (taking a type frame𝑇 ′ where every variable occurs only once
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may seem to be a trivial solution), it is not, due to recursive types. In a recursive type, a variable
𝑋 can appear an innite number of times both covariantly and contravariantly (as in `𝑋 .𝑋 → 𝑋

for example), making renaming every occurrence of 𝑋 dicult.
This result shows that it is indeed possible to substitute the covariant occurrences of 𝑋 with

a distinguished variable and the contravariant occurrences with some other variable while con-
serving the regularity and contractivity conditions of recursive types (and similarly for positive
and negative occurrences). We generalize the result to all kinds of variables (both polymorphic
variables and frame variables), which, we recall, are ranged over by the metavariable 𝐴.
More precisely, given a type frame 𝑇 , for every variable 𝐴𝑖 that occurs in 𝑇 , we can introduce

four new distinct variables𝐴+∧
𝑖 (for positive-covariant occurrences),𝐴−∧

𝑖 (for negative-covariant
occurrences), 𝐴+∨

𝑖 (for positive-contravariant occurrences), and 𝐴−∨
𝑖 (for negative-contravariant

occurrences), and replace every occurrence of 𝐴𝑖 in 𝑇 by the variable corresponding to its posi-
tion. The lemma shows that the resulting term is indeed a type, that is, it satises the regularity
and contractivity conditions.

Lemma 5.7. For every type frame 𝑇 such that vars(𝑇 ) = {𝐴𝑖 | 𝑖 ∈ 𝐼 }, there exists a type frame 𝑇 ′

such that the four sets

vars+cov(𝑇 ′) ⊆ {𝐴+∧
𝑖 | 𝑖 ∈ 𝐼 } vars+con(𝑇 ′) ⊆ {𝐴+∨

𝑖 | 𝑖 ∈ 𝐼 }

vars−cov(𝑇 ′) ⊆ {𝐴−∧
𝑖 | 𝑖 ∈ 𝐼 } vars−con(𝑇 ′) ⊆ {𝐴−∨

𝑖 | 𝑖 ∈ 𝐼 }

are pairwise disjoint and such that

𝑇 = 𝑇 ′ [𝐴𝑖/𝐴+∧
𝑖 ]𝑖∈𝐼 [𝐴𝑖/𝐴+∨

𝑖 ]𝑖∈𝐼 [𝐴𝑖/𝐴−∧
𝑖 ]𝑖∈𝐼 [𝐴𝑖/𝐴−∨

𝑖 ]𝑖∈𝐼

Proof. See appendix page 245. �

We then use this lemma to deduce several corollaries, which serve to distinguish variables that
occur only in a given position.

Corollary 5.8. For every type frame𝑇 such that vars𝑋 (𝑇 ) = {𝑋1, . . . , 𝑋𝑛}, there exists a type frame

𝑇 ′
such that:

• vars𝑋cov(𝑇 ′) ⊆ vars𝑋 (𝑇 )

• vars𝑋con(𝑇 ′) ⊆ {𝑋 ′
1, . . . , 𝑋

′
𝑛}

• vars𝑋cov(𝑇 ′) ∩ vars𝑋con(𝑇 ′) = ∅

• 𝑇 = 𝑇 ′ [𝑋𝑖/𝑋 ′
𝑖 ]𝑖∈{1..𝑛}

Proof. Lemma 5.7 yields a type frame 𝑇 ′ verifying the third condition, and stronger con-
ditions than the other three. It is then sucient to apply a substitution to unify variables
that do not need to be distinguished, for example variables in vars𝑋cov(𝑇 ′), or variables in
vars𝑋+cov(𝑇 ′) ∪ vars𝑋−cov(𝑇 ′). �

Corollary 5.9. For every type frame𝑇 such that vars𝑋 (𝑇 ) = {𝑋1, . . . , 𝑋𝑛}, there exists a type frame

𝑇 ′
such that:

• vars𝑋even(𝑇 ′) ⊆ vars𝑋 (𝑇 )
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• vars𝑋odd(𝑇
′) ⊆ {𝑋 ′

1, . . . , 𝑋
′
𝑛}

• vars𝑋even(𝑇 ′) ∩ vars𝑋odd(𝑇
′) = ∅

• 𝑇 = 𝑇 ′ [𝑋𝑖/𝑋 ′
𝑖 ]𝑖∈{1..𝑛}

Proof. Consequence of Lemma 5.7, following the same reasoning as for Corollary 5.8. �

Corollary 5.10. For every gradual type 𝜏 such that vars(𝜏) = {𝛼1, . . . , 𝛼𝑛}, there exists a gradual
type 𝜏 ′ such that:

• vars+(𝜏 ′) ⊆ vars(𝜏)

• vars−(𝜏 ′) ⊆ {𝛼 ′
1, . . . , 𝛼

′
𝑛}

• vars+(𝜏 ′) ∩ vars−(𝜏 ′) = ∅

• 𝜏 = 𝜏 ′ [𝛼𝑖/𝛼 ′
𝑖 ]𝑖∈{1..𝑛}

Proof. Consequence of Lemma 5.7, by rst choosing a discrimination 𝑇 ∈ ★(𝜏), then fol-
lowing the same reasoning as for Corollary 5.8, and nally obtaining the gradual type
𝜏 ′ = 𝑇 ′†. �

Recall that subtyping on static types (and, thus, on type frames) can be reduced to an emptiness
problem: 𝑇1 ≤ 𝑇2 if and only if𝑇1 ∧¬𝑇2 ≤ 0. One of the main diculties that arise when proving
the nal result of equivalence comes from the fact that the statement 𝑇 � ∅ is not, in general,
stable by type substitution (although the converse is, by Proposition 5.2). For example, 𝑋 \𝑌 � ∅
holds, but applying the substitution [𝑋/𝑌 ] yields 𝑋 \ 𝑋 � ∅ which does not hold.
The following fundamental result, which highlights the importance of the various polariza-

tions, states that non-emptiness is stable by substitution, provided the substitution does not act
on variables that occur both positively and negatively.

Lemma 5.11. For every type frame 𝑇 � 0, if {𝑋,𝑌 } ♯ vars𝑋− (𝑇 ) or {𝑋,𝑌 } ♯ vars𝑋+ (𝑇 ), then
𝑇 [𝑋/𝑌 ] � 0.

Proof. See appendix page 246. �

Using the above lemma and the fact that 𝑇1 ≤ 𝑇2 if and only if 𝑇1 \ 𝑇2 ≤ 0, we deduce the
following corollary which proves that some variables are not relevant when deciding subtyping,
and can thus be arbitrarily renamed.

Corollary 5.12. For every type frames 𝑇1,𝑇2 such that 𝑇1 ≤ 𝑇2, for every variable 𝑋 such that

𝑋 ∉ vars𝑋+ (𝑇1) ∩ vars𝑋+ (𝑇2) and 𝑋 ∉ vars𝑋− (𝑇1) ∩ vars𝑋− (𝑇2), and for all 𝑌 such that 𝑌 ♯𝑋,𝑇1,𝑇2, it

holds that 𝑇1 [𝑌/𝑋 ] ≤ 𝑇2.

Proof. See appendix page 249. �
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The above corollary provides the rst step towards proving the equivalence of the various
denitions of subtyping. Ths second step consists in proving that subtyping only compares sub-
terms that occur under the same number of arrows. In other terms, if a variable appears in a
type frame with both parities, then all of its negative (or positive) occurrences can be renamed
without changing the properties of the type frame.
The rst lemma is similar to Lemma 5.11 and states that if a type frame 𝑇 is non-empty, and

contains two variables𝑋 and𝑌 that occur with dierent parities in𝑇 , then one can be substituted
by the other while keeping the non-emptiness of 𝑇 .

Lemma 5.13. For every type frame 𝑇 � 0 and every variables 𝑋,𝑌 ∈ V 𝑋
, if 𝑋 ∉ vars𝑋even(𝑇 ) and

𝑌 ∉ vars𝑋odd(𝑇 ) then 𝑇 [𝑋/𝑌 ] � 0.

Proof. See appendix page 249. �

We use this lemma to prove the next one, which states that if a type frame is empty, then
we can nd another identical type frame up to substitution that is also empty, and such that no
variable occurs in it with both parities.

Lemma 5.14. For every type frame𝑇 , if𝑇 ≤ 0 then there exists a type frame𝑇 ′
and a substitution

\ : V 𝑋 → V 𝑋
such that:

• 𝑇 ′ ≤ 0

• 𝑇 = 𝑇 ′\

• vars𝑋even(𝑇 ′) ∩ vars𝑋odd(𝑇
′) = ∅

Proof. See appendix page 252. �

And we nally use this lemma to obtain a similar result for subtyping, following the same idea
as for Corollary 5.8.

Corollary 5.15. For every type frames 𝑇1,𝑇2, if 𝑇1 ≤ 𝑇2 then there exists two type frames 𝑇 ′
1 ,𝑇

′
2

and a substitution \ : V 𝑋 → V 𝑋
such that:

• 𝑇 ′
1 ≤ 𝑇 ′

2

• 𝑇1 = 𝑇 ′
1\

• 𝑇2 = 𝑇 ′
2\

• vars𝑋even(𝑇 ′
1 ,𝑇

′
2 ) ∩ vars𝑋odd(𝑇

′
1 ,𝑇

′
2 ) = ∅

Proof. Let 𝑇 = 𝑇1 \𝑇2. We have 𝑇 ≤ 0 by denition of subtyping.
By Lemma A.5, we nd 𝑇 ′ and \ such that

𝑇 ′ ≤ 0 𝑇 = 𝑇 ′\ vars𝑋even(𝑇 ′) ♯ vars𝑋odd(𝑇
′) .

Since 𝑇 ′ is empty, it cannot be a type variable or a frame variable. Then, we must have
𝑇 ′ = 𝑇 ′

1 \𝑇 ′
2 for two types such that 𝑇1 = 𝑇 ′

1\ and 𝑇2 = 𝑇 ′
2\ .

We have 𝑇 ′
1 ≤ 𝑇 ′

2 by denition of subtyping.
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We have vars𝑋even(𝑇 ′
1 ,𝑇

′
2 ) = vars𝑋even(𝑇 ′) and vars𝑋odd(𝑇

′
1 ,𝑇

′
2 ) = vars𝑋odd(𝑇

′), therefore the
two sets are disjoint. �

Before continuing with the nal proof, we need to distinguish one more particular discrimi-
nation of a gradual type. This discrimination is, in essence, the combination of all the others: it
uses four distinguished variables, and uses one for each polarity-variance combination. Let 𝑋−∧,
𝑋 +∧, 𝑋−∨, 𝑋 +∨ be four distinguished variables in V 𝑋 .

Given a gradual type 𝜏 , we dene 𝜏• as the unique type frame𝑇 ∈ ★(𝜏) such that vars+cov(𝑇 ) ⊆
{𝑋 +∧}, vars−cov(𝑇 ) ⊆ {𝑋−∧}, vars+con(𝑇 ) ⊆ {𝑋 +∨}, and vars−con(𝑇 ) ⊆ {𝑋−∨}.
This discrimination is fundamental because both 𝜏? and 𝜏 ⊕ can be obtained from 𝜏• by sub-

stitution, and Proposition 5.2 guarantees that substitutions preserve subtyping between type
frames. Therefore, all we need is to prove that subtyping between gradual types reduces to sub-
typing using this new discrimination. The following lemma states one direction of this result,
the converse being immediate.

Lemma 5.16. For every gradual types 𝜏1, 𝜏2, if 𝜏1 ≤ 𝜏2 then 𝜏
•
1 ≤ 𝜏•2 .

Proof. See appendix page 253. �

We prove a similar result for the second denition of subtyping we gave at the end of Subsec-
tion 5.2.2, based on the operation ★var(.).

Lemma 5.17. For every gradual types 𝜏1, 𝜏2, if there exists 𝑇1 ∈ ★var(𝜏1) and 𝑇2 ∈ ★var(𝜏2) such
that 𝑇1 ≤ 𝑇2, then 𝜏

•
1 ≤ 𝜏•2 .

Proof. See appendix page 254. �

And nally, we can put all these results together to prove the nal result of equivalence, stating
that all of the previously dened discriminations induce equivalent denitions of subtyping.

Theorem 5.18 (Equivalence of the denitions of subtyping). Let 𝜏1 and 𝜏2 be two gradual
types. The following statements are all equivalent:

1 𝜏1 ≤ 𝜏2 2 ∃𝑇1 ∈ ★var(𝜏1),𝑇2 ∈ ★var(𝜏2) . 𝑇1 ≤ 𝑇2

3 𝜏 ⊕1 ≤ 𝜏 ⊕2 4 𝜏 	1 ≤ 𝜏 	2

5 𝜏?
1 ≤ 𝜏?

2 6 𝜏>
1 ≤ 𝜏>

2

7 𝜏•1 ≤ 𝜏•2

Proof. Wehave already stated that 3 ⇐⇒ 4 and 5 ⇐⇒ 6 are immediate consequences
of Proposition 5.2.
The implications 3 =⇒ 1 and 5 =⇒ 2 are immediate since 𝜏 ⊕ ∈ ★pol(𝜏) and
𝜏? ∈ ★var(𝜏).
Lemma 5.17 shows that 2 =⇒ 7 and Lemma 5.16 shows that 1 =⇒ 7 .
If 𝜏•1 ≤ 𝜏•2 holds, then taking \ = [𝑋 1/𝑋 +∧] [𝑋 1/𝑋 +∨] [𝑋 0/𝑋−∧] [𝑋 0/𝑋−∨] shows that 𝜏•1\ ≤
𝜏•2\ by Proposition 5.2. Since 𝜏•1\ = 𝜏 ⊕1 and 𝜏•2\ = 𝜏 ⊕2 , we have 7 =⇒ 3 . This yields a cycle
7 =⇒ 3 =⇒ 1 =⇒ 7 .
The same reasoning with \ = [𝑋 1/𝑋 +∧] [𝑋 0/𝑋 +∨] [𝑋 1/𝑋−∧] [𝑋 0/𝑋−∨] yields 7 =⇒ 5 ,
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and the cycle 7 =⇒ 5 =⇒ 2 =⇒ 7 .
Combining the two cycles along with the equivalences 3 ⇐⇒ 4 and 5 ⇐⇒ 6 yields
the result. �

This nal result proves not only that subtyping is decidable by avoiding the existential quan-
tication, but also that it reduces in linear time to subtyping on static types, since the polarized
discriminations of a type 𝜏 can be computed in linear time from 𝜏 (by simply replacing every
occurrence of ? by a type variable depending on its position). Moreover, this results gives us
several equivalent denition of gradual subtyping, each having its uses. In the next subsection,
we will use two of them to study the properties of gradual subtyping and its interaction with
materialization.

Before proceeding with the properties of gradual subtyping, note that this decidability result
using polarized discriminations only applies to subtyping, and not to materialization. For mate-
rialization, we must still be able to replace all occurrences of ? in a type with possibly distinct
frame variables. For example, to decide that ?∨? 4 Bool∨ Int, we must consider the type frame
𝑋 0∨𝑋 1, which is not polarized. However, this is not problematic since materialization only con-
siders syntactic equality up to a single type substitution, which is computationally much easier,
as no existential quantication is required.

5.2.5. Properties of subtyping

Equipped with the various equivalent denitions of subtyping, we now study its properties and
its interaction with materialization.
One of the rst questions that come to mind is whether gradual subtyping is preserved by type

substitutions, as are subtyping on static types and subtyping on type frames (Proposition 5.2). It
is, however, not the case in general due to negation types: it holds that 𝛼 \ 𝛼 ≤ 0, but ? \ ? � 0,
even though ?\? = (𝛼\𝛼) [?/𝛼]. However, we can still prove that gradual subtyping is preserved
by static type substitutions, that is, substitutions that map variables to static types.

Proposition 5.19. For every gradual types 𝜏1, 𝜏2 ∈ GTypes, if 𝜏1 ≤ 𝜏2 then for every static

type substitution \ : V 𝛼 → STypes, 𝜏1\ ≤ 𝜏2\ .

Proof. If 𝜏1 ≤ 𝜏2, then by Theorem 5.18, we have 𝜏 ⊕1 ≤ 𝜏 ⊕2 . By Proposition 5.2, it holds
that 𝜏 ⊕1 \ ≤ 𝜏 ⊕2 \ . Since \ cannot introduce frame variables, 𝜏 ⊕1 \ is positively polarized. And
since \ only acts on type variables, (𝜏 ⊕1 \ )† = 𝜏1\ . Therefore, 𝜏 ⊕1 \ = (𝜏1\ )⊕ . Likewise,
𝜏 ⊕2 \ = (𝜏2\ )⊕ . Hence (𝜏1\ )⊕ ≤ (𝜏2\ )⊕ and 𝜏1\ ≤ 𝜏2\ by Theorem 5.18. �

While gradual subtyping is not preserved by gradual type substitutions, we can still deduce
an interesting result about such substitutions. Namely, if two (arbitrary) substitutions \1 and \2
are such that 𝐴\1 ≤ 𝐴\2 for every 𝐴 that appears covariantly in 𝑇 and 𝐴\2 ≤ 𝐴\1 for every 𝐴

that appears contravariantly in 𝑇 , then 𝑇\1 ≤ 𝑇\2. This result will be necessary to prove many
of the results presented later in this section.

Proposition 5.20. For every type frame 𝑇 ∈ TFrames, and every type substitutions \1, \2 :
V 𝛼 ∪ V 𝑋 → GTypes satisfying the following two conditions:

∀𝐴 ∈ varscov(𝑇 ), 𝐴\1 ≤ 𝐴\2 ∀𝐴 ∈ varscon(𝑇 ), 𝐴\2 ≤ 𝐴\1
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then it holds that 𝑇\1 ≤ 𝑇\2.

Proof. See appendix page 255. �

We also prove a property of materialization that is analogous to part of Theorem 5.18 for sub-
typing, namely, that materialization can be dened equivalently using variance-polarized dis-
criminations. This result will be useful later on to make the connection between subtyping and
materialization.

Lemma 5.21. For every gradual types 𝜏1, 𝜏2 ∈ GTypes, if 𝜏1 4 𝜏2, then there exists 𝑇 ∈ ★var(𝜏1)
and \ : V 𝑋 → GTypes such that 𝑇\ = 𝜏2.

Proof. See appendix page 256. �

The next result we prove is that we can always commute applications of subtyping and materi-
alization to apply materialization rst: if 𝜏1 ≤ 𝜏2 4 𝜏3, then there exists a 𝜏 ′2 such that 𝜏1 4 𝜏 ′2 ≤ 𝜏3.
This is interesting in order to study the inversion of the typing relation, and has important con-
sequences on the design of the algorithmic type system.

Lemma 5.22. For every gradual types 𝜏1, 𝜏2, 𝜏3 ∈ GTypes, if 𝜏1 ≤ 𝜏2 4 𝜏3 then there exists 𝜏 ′2 ∈
GTypes such that 𝜏1 4 𝜏 ′2 ≤ 𝜏3.

Proof. See appendix page 256. �

The converse also holds: we can also commute applications of subtyping and materialization
to apply subtyping rst, and the proof of the result is similar. However, we choose to favour the
above direction for the following corollary.
By transitivity of subtyping and materialization, this result entails that any sequence of ap-

plications of these two relations can be collapsed into an application of materialization followed
by an application of subtyping. Formally, we dene <4 as the preorder on gradual types that
combines both relations via the following rules:

𝜏 <4 𝜏

𝜏1 ≤ 𝜏2 𝜏2 <4 𝜏3

𝜏1 <4 𝜏3

𝜏1 4 𝜏2 𝜏2 <4 𝜏3

𝜏1 <4 𝜏3

Then, we obtain the following corollary, formalizing the previous explanation.

Corollary 5.23. For every gradual types 𝜏1, 𝜏2 ∈ GTypes, 𝜏1 <4 𝜏2 if and only if there exists

𝜏 ∈ GTypes such that 𝜏1 4 𝜏 ≤ 𝜏2.

Proof. Suppose that 𝜏1 <4 𝜏2. We reason by induction on the derivation of 𝜏1 <4 𝜏2.
If 𝜏1 = 𝜏2 then 𝜏1 4 𝜏1 ≤ 𝜏2.
If 𝜏1 4 𝜏 ′ <4 𝜏2, then by IH we deduce that there exists 𝜏 ′′ such that 𝜏 ′ 4 𝜏 ′′ ≤ 𝜏2, and by
transitivity of 4 we have 𝜏1 4 𝜏 ′′ ≤ 𝜏2.
If 𝜏1 ≤ 𝜏 ′ <4 𝜏2, then by IH we deduce that there exists 𝜏 ′′ such that 𝜏 ′ 4 𝜏 ′′ ≤ 𝜏2> By
Lemma 5.22, we deduce that there exists 𝜏 such that 𝜏1 4 𝜏 ≤ 𝜏 ′′ and by transitivity of ≤,
we conclude that 𝜏1 4 𝜏 ≤ 𝜏2.
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The converse is immediate by applying each rule once. �

This last result has two important consequences. The rst is that it greatly simplies the
design of the algorithmic type system and its constraint generation step. In particular, this result
justies the rule we presented in Subsection 4.3.3 that generates the constraint associated with
a variable:

〈〈𝑥 : 𝑡〉〉 = ∃𝛼. (𝑥 ¤4 𝛼) ∧ (𝛼 ¤≤ 𝑡)

Using the declarative type system of Figure 4.1, if Γ ` 𝑥 : 𝑡 then it must be because Γ(𝑥) =
𝜏 and 𝜏 <4 𝑡 . But Corollary 5.23 states that 𝜏 <4 𝑡 can be collapsed into one application of
materialization followed by one application of subtyping, which justies that only one constraint
is needed for each relation.
The second consequence of this result is that it proves, for any static type 𝑡 and any gradual

type 𝜏 , that 𝑡 <4 𝜏 necessarily entails 𝑡 ≤ 𝜏 (since a static type 𝑡 can only materialize into itself).
Note that this does not ensure that 𝜏 is static, since 𝑡 ≤ 𝑡 ∨ ? holds, for example. However, this
does ensure that our gradual type system still behaves like a static type system in the absence of
explicit type annotations containing ?, since any application of materialization in this case can
be replaced by an application of subtyping. This means that applying materialization, while not
prohibited, will produce casts that will always succeed.
We conclude this subsection with a crucial result about materialization and subtyping in the

presence of top and bottom types (respectively 1 and 0 in our framework). Since materialization
amounts to replacing occurrences of ? with arbitrary gradual types, two particular materializa-
tions can be obtained by replacing the occurrences of ?with 1 or 0, depending on their variance.
If every covariant occurrence of ? in a type 𝜏 is replaced with 1, and every contravariant occur-
rence with 0, this gives a static type that is a supertype of every materialization of 𝜏 . Similarly, by
reversing the roles of 1 and 0, we can obtain a subtype of every materialization of 𝜏 . For example,
given the type 𝜏 = ? → ?, every materialization of 𝜏 is of the form 𝜏1 → 𝜏2, and is a subtype of
0 → 1 and a supertype of 1 → 0. We call such materializations the extremal materializations of
a type, and introduce some notation to refer to them.

Denition 5.24 (Gradual extrema). For every gradual type 𝜏 ∈ GTypes, we dene the min-

imal (resp. maximal) materialization of 𝜏 , noted 𝜏⇓ (resp. 𝜏⇑), as the static types obtained as

follows:

STypes 3 𝜏⇓ =def 𝜏? [0/𝑋 1] [1/𝑋 0]

STypes 3 𝜏⇑ =def 𝜏? [1/𝑋 1] [0/𝑋 0]

We then formalize the intuition behind these interpretations in the following theorem, which
is actually a consequence of Proposition 5.20.

Theorem 5.25 (Fundamental property of gradual extrema). For every gradual type 𝜏 ∈
GTypes, the following holds

• 𝜏 4 𝜏⇓ and 𝜏 4 𝜏⇑;

• for every 𝜏 ′ ∈ GTypes such that 𝜏 4 𝜏 ′, 𝜏⇓ ≤ 𝜏 ′ ≤ 𝜏⇑.
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Proof. The statements 𝜏 4 𝜏⇓ and 𝜏 4 𝜏⇑ are immediate consequences of the denitions of
materialization and gradual extrema, since 𝜏? ∈ ★(𝜏).

Let 𝜏 ′ such that 𝜏 4 𝜏 ′. By Lemma 5.21, there exists 𝑇 ∈ ★var(𝜏) and \ : V 𝑋 → GTypes
such that 𝑇\ = 𝜏 ′.

Let \̂ = [𝑋 1/𝑋 ]𝑋 ∈vars𝑋cov (𝑇 ) ∪ [𝑋 0/𝑋 ]𝑋 ∈vars𝑋con (𝑇 ) . It holds that 𝑇\̂ = 𝜏?.
Let \⇓ = [0/𝑋 1] [1/𝑋 0] and \⇑ = [1/𝑋 1] [0/𝑋 0]. We have 𝜏⇓ = 𝜏?\⇓ and 𝜏⇑ = 𝜏?\⇑.
Let 𝑋 ∈ vars𝑋cov(𝑇 ). We have 𝑋\̂\⇑ = 𝑋 1\⇑ = 1, hence 𝑋\̂\⇑ ≥ 𝑋\ . Let 𝑋 ∈ vars𝑋con(𝑇 ).

We have 𝑋\̂\⇑ = 𝑋 0\⇑ = 0, hence 𝑋\̂\⇑ ≤ 𝑋\ .
Therefore, by Proposition 5.20 on𝑇 and the substitutions \̂\⇑ and\ , we deduce𝑇\ ≤ 𝑇\̂\⇑,

which gives 𝜏 ′ ≤ 𝜏⇑.
Using a similar reasoning on \⇓, we deduce that 𝜏⇓ ≤ 𝜏 ′. �

In particular, by reexivity of materialization, the extremal materializations of a gradual type 𝜏
are comparable with 𝜏 itself: 𝜏⇓ ≤ 𝜏 ≤ 𝜏⇑, hence their name.
The existence of extremal materialization for gradual types has crucial ramications for grad-

ual type systems, and the semantics of gradual types. Several existing relations can be reduced to
static subtyping using these interpretations. For example, given consistent subtyping as dened
in Denition 4.6, it can be easily proven that:1

𝜏1 ≤̃ 𝜏2 ⇐⇒ 𝜏1
⇓ ≤ 𝜏2

⇑

In Chapter 12, we will present an interpretation of gradual types for which gradual types are
fully determined by their extremal interpretations. In other words, two gradual types 𝜏1 and 𝜏2
such that 𝜏1⇓ ' 𝜏2

⇓ and 𝜏1
⇑ ' 𝜏2

⇑ will be equivalent in this interpretation. We will go even
further by providing a denition of subtyping and materialization that is entirely based on static
subtyping and the extremal interpretations of gradual types (see Theorem 12.14).
While these results do not hold in our system, most notably due to the syntactic nature of ma-

terialization, we will show later in Chapter 6 how integrating these “more semantic” denitions
of subtyping and materialization to our system can make the operational semantics of the cast
calculus much easier to dene and study.

5.3. Source and cast languages

In this section, we briey present our source language, and then propose a rst approach to
dening a target language and its operational semantics based on the semantics presented in
Section 4.2, adapted to support the denitions of materialization and subtyping we gave in the
previous sections. However, the denition of this operational semantics proves to be pretty chal-
lenging, most notably due to the syntactic aspect of materialization. Therefore, we will only
highlight the main aspects of our target language, while referring the interested reader to Ap-
pendix B for the full proofs and denitions.

5.3.1. Syntax and declarative systems

To add set-theoretic types to the source and target languages, changing their syntax is not nec-
essary, we simply need to allow set-theoretic types wherever types appear (in annotations, casts,

1This statement further emphasizes the non-transitivity of consistent subtyping, since generally 𝜏2⇑ � 𝜏2⇓ and thus
𝜏1⇓ ≤ 𝜏2⇑ and 𝜏2⇓ ≤ 𝜏3⇑ does not imply 𝜏1⇓ ≤ 𝜏3⇑.

108



5.3 Source and cast languages

and type applications). Therefore, the grammars generating the terms of the source and cast lan-
guages as those presented in Chapter 4. We denote by TermsST and Terms〈ST〉 the sets of terms
of the source and cast languages, respectively, to distinguish these from the sets of terms that do
not contain set-theoretic types (TermsHM and Terms〈HM〉). It is clear that TermsHM ⊆ TermsST

and Terms〈HM〉 ⊆ Terms〈ST〉 .
The type system is also unchanged, following the extension with subtyping presented in Sec-

tion 4.4. We simply add the following subsumption rule to the system presented in Figure 4.1 for
the source language:

[TST
Sub]

Γ ` 𝑒 : 𝜏 ′

Γ ` 𝑒 : 𝜏
𝜏 ′ ≤ 𝜏

and likewise to the system presented in Figure 4.5 for the cast language, where ≤ is the subtyping
relation of Denition 5.6. We also rename the rules to reect the fact they act on set-theoretic
types, and write [TST

. ] for the typing rules of the source language and [T〈ST〉
. ] for the typing rules

of the target language.
The declarative compilation system is also unchanged from Figure 4.7, except we add the add

the following compilation rule corresponding to an application of [TST
Sub]:

[C〈ST〉
Sub ]

Γ ` 𝑒  𝐸 : 𝜏 ′

Γ ` 𝑒  𝐸 : 𝜏
𝜏 ′ ≤ 𝜏

As for the type system, we rename the compilation rules as [C〈ST〉
. ] to reect the fact they ma-

nipulate terms with set-theoretic types.

5.3.2. Parallel normal forms and operators

Our goal when dening this semantics was to dene a conservative extension of the calculus
dened in Section 4.2, and, in particular, of the semantics presented in Figure 4.6. This proved to
be extremely challenging due to several reasons, the rst of which we outline here.
Recall the reduction rule for applications presented in Figure 4.6:

[R〈HM〉
CApp ] 𝑉 〈𝜏1 → 𝜏2 ⇒𝑝 𝜏 ′1 → 𝜏 ′2〉𝑉 ′ { (𝑉 (𝑉 ′〈𝜏 ′1 ⇒𝑝 𝜏1〉))〈𝜏2 ⇒𝑝 𝜏 ′2〉

The idea behind this rule is that, if we have a function𝑉 of type 𝜏1 → 𝜏2, then casting it to 𝜏 ′1 → 𝜏 ′2
gives a function that can be applied to arguments of type 𝜏 ′1, casts them to 𝜏1, then applies𝑉 and
casts the result back to 𝜏 ′2.

In the presence of set-theoretic types, this is not so simple, as the type of a function is not
necessarily a single arrow type (for example, it can be (Int → Int) ∧ (Bool → Bool) for an over-
loaded function). A rst idea might be to directly use type operators inspired by those presented
in Section 2.4 to compute the domain and codomain of the types at hand, giving a rule of the
form:

𝑉 〈𝜏 ⇒𝑝 𝜏 ′〉𝑉 ′ { (𝑉 (𝑉 ′〈dom(𝜏 ′) ⇒𝑝 dom(𝜏)〉))〈cod(𝜏) ⇒𝑝 cod(𝜏 ′)〉

There are, however, several problems with such a rule. The rst problem is a typing problem:
consider, for example, 𝜏 ′ = (Int → Int) ∧ (Bool → Bool) and suppose that 𝑉 ′ is of type Int. The
codomain of 𝜏 ′ is Int∨Bool (since a function of type 𝜏 ′ can produce both integers and booleans),
however, the expression 𝑉 〈𝜏 ⇒𝑝 𝜏 ′〉𝑉 ′ can be given type Int, as 𝜏 ′ can be given type Int → Int
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by subsumption. Since Int ∨ Bool � Int, this shows that subject reduction would not hold with
such a rule: the left hand side would have type Int, while the right hand side would only have
type Int ∨ Bool.
A solution to this particular problem is to use an operator inspired by the result type operator

dened in Section 2.4 rather than a codomain operator, but this requires to know the type of
the argument. Therefore, we dene an operator type(.) : Values〈ST〉 → GTypes which returns
the type of a value2. Note that since abstractions are fully annotated in the cast language, this
operator does not use the type system: it simply checks the type annotations.

type(𝑐) = 𝑏𝑐 type(_𝜏1→𝜏2𝑥 . 𝐸) = 𝜏1 → 𝜏2

type((𝑉1,𝑉2)) = (type(𝑉1), type(𝑉2)) type(𝑉 〈𝜏1 ⇒𝑝 𝜏2〉) = 𝜏2

Using this denition, we can then use 𝜏 ◦ type(𝑉 ′) instead of cod(𝜏) in the above rule, and
similarly for 𝜏 ′.
However, there is still a second problem with this rule, which comes from the rather syntactic

denition of the materialization relation. Recall the typing rules for casts in the cast language:

[T〈ST〉
Cast+]

Γ ` 𝐸 : 𝜏 ′

Γ ` 𝐸〈𝜏 ′ ⇒𝑙 𝜏〉 : 𝜏
𝜏 ′ 4 𝜏 [T〈ST〉

Cast−]
Γ ` 𝐸 : 𝜏 ′

Γ ` 𝐸〈𝜏 ′ ⇒
𝑙
𝜏〉 : 𝜏

𝜏 4 𝜏 ′

The domain, result, and projection type operators as presented in Section 2.4 are independent
of the syntax of types: they act on types modulo equivalence, by rst transforming them into
equivalent types in disjunctive normal form. Therefore, given two types 𝜏1 and 𝜏2 such that
𝜏1 4 𝜏2, there is no guarantee that dom(𝜏1) 4 dom(𝜏2) since the disjunctive normal forms
associated with 𝜏1 and 𝜏2 might be completely dierent syntactically. This means that, using a
rule such as the one presented above, a well-typed term could reduce to an ill-typed term using
the above typing rules for casts.

Our solution consists in computing the two domain types and two result types in parallel. For
a function cast using 〈𝜏 ⇒𝑝 𝜏 ′〉 and applied to a value of type 𝜎 , we rewrite 𝜏 and 𝜏 ′ in two types
in disjunctive normal form 𝜏𝑁 and 𝜏 ′

𝑁
such that 𝜏 ' 𝜏𝑁 , 𝜏 ′ ' 𝜏 ′

𝑁
and 𝜏𝑁 4 𝜏 ′

𝑁
. We then extract

the part of the domain of 𝜏 ′
𝑁
that can be applied to 𝜎 by a purely syntactic operation, and we

perform the exact same operation on 𝜏𝑁 , ensuring that the types we obtain are still syntactically
similar. We do the same for the result of 𝜏𝑁 and 𝜏 ′

𝑁
applied to 𝜎 .

This yields, in the end, an operation ◦ that takes a cast 〈𝜏 ⇒𝑝 𝜏 ′〉 and a type 𝜎 , and returns
a new cast 〈𝜏1 → 𝜏 ′1 ⇒𝑝 𝜏2 → 𝜏 ′2〉 where 𝜏1 → 𝜏 ′1 4 𝜏2 → 𝜏 ′2 (or vice versa, depending on the
polarity of 𝑝), 𝜎 ≤ 𝜏2 ≤ dom(𝜏2), and 𝜏 ′2 ≤ 𝜏2 ◦ 𝜏 and similarly for 𝜏1. We then use this cast as
we would in the absence of set-theoretic types, by separating it into a cast of the argument and
a cast of the result:

𝑉 〈𝜏 ⇒𝑝 𝜏 ′〉𝑉 ′ { (𝑉 (𝑉 ′〈𝜏1 ⇒𝑝 𝜏 ′1〉))〈𝜏2 ⇒𝑝 𝜏 ′2〉 where 〈𝜏 ⇒𝑝 𝜏 ′〉 ◦ type(𝑉 ′) = 〈𝜏1 → 𝜏2 ⇒𝑝 𝜏 ′1 → 𝜏 ′2〉

The denition of this operator and the underlying disjunctive normal forms for gradual types
being quite complex, we refer the reader to Appendix B for the complete denitions. The same
idea is also used to dene a similar operator for projections, although this one is much simpler
since it does not depend on the type of an argument.

2Of course, we haven’t properly dened the values of the cast language yet. However, we can dene the type(.)
operator on the subset of Terms〈ST〉 dened by the grammar 𝑉 F 𝑐 | _𝜏→𝜏𝑥 . 𝐸 | 𝑉 〈𝜏 ⇒𝑝 𝜏〉 | (𝑉 ,𝑉 ) which will
encompass all values
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5.3.3. Computing ground types

If we truly want to mimic the operational semantics presented in Section 4.2, a second question
arises: what is the set-theoretic equivalent of a ground type? Given a gradual type 𝜏 , the ground
type associated with 𝜏 is meant to be an intermediate type between ? and 𝜏 that only contains
information about the top-level constructor of 𝜏 (which is sucient to determine if a cast should
fail or not).
However, in the presence of set-theoretic types, types do not necessarily have a unique top-

level constructor. For example, (Int → Int) ∨ (Bool × Bool) can be either an arrow or a pair.
Intuitively, the ground type associated to this type must retain information about both construc-
tors, and one could expect it to be (? → ?) ∨ (? × ?). Thus, we could think of dening ground
types using the following grammar:

𝜌 F 𝑏 | ? → ? | ? × ? | 𝜌 ∨ 𝜌 | ¬𝜌

However, to make matters worse, casts do not always lose information about all the top-level
constructors at once. In Section 4.2, a type less precise than a type 𝜏1 → 𝜏2 that is not an arrow
type is necessarily ?. However, with set-theoretic types, we can have a cast such as 〈(Int →
Int) ∨ (Bool×Bool) ⇒𝑝 (Int → Int) ∨?〉. This cast keeps all the information about the Int → Int
part of the origin type, but loses all information about the Bool×Bool part. An intermediate type
between the two cannot be (? → ?) ∨ (? × ?): this type is not truly “intermediate” since it is
not comparable with (Int → Int) ∨ ? using materialization. A truly intermediate type would be
(Int → Int) ∨ (? × ?): it keeps the information about constructors that has been lost, while also
keeping all the information that has been left unchanged by the cast.

This shows that there is no proper denition of the ground type of a set-theoretic type 𝜏 . At
best, we can dene an intermediate type between two type 𝜏1 and 𝜏2, provided they are syntac-
tically compatible (i.e., comparable via materialization). This leads us to dening the notion of
relative ground types and a grounding operation.

Denition 5.26 (Grounding and relative ground types). For all types 𝜏, 𝜏 ′ ∈ GTypes such
that 𝜏 ′ 4 𝜏 , we dene the grounding of 𝜏 with respect to 𝜏 ′, noted 𝜏/𝜏 ′, as follows:

(𝜏1 ∨ 𝜏2)/(𝜏 ′1 ∨ 𝜏 ′2) = (𝜏1/𝜏 ′1) ∨ (𝜏2/𝜏 ′2) ¬𝜏 /¬𝜏 ′ = ¬(𝜏/𝜏 ′)
(𝜏1 ∨ 𝜏2)/? = (𝜏1/?) ∨ (𝜏2/?) ¬𝜏/? = ¬(𝜏/?)
(𝜏1 → 𝜏2)/? = ? → ? (𝜏1 × 𝜏2)/? = ? × ?

𝑏/? = 𝑏 0/? = 0
𝛼/? = 𝛼 𝜏/𝜏 ′ = 𝜏 ′ otherwise

A type 𝜏 is ground with respect to 𝜏 ′ if and only if 𝜏/𝜏 ′ = 𝜏 .

The idea behind this denition is to traverse the connectives of both types inductively to get to
the top-level constructors, and then keep the least amount of information we can keep about this
top-level constructor: if 𝜏 ′ = ? then we dene 𝜏/𝜏 ′ as gnd(𝜏). Otherwise, we dene 𝜏/𝜏 ′ as 𝜏 ′,
since 𝜏 ′ is less precise than 𝜏 .

 Remark 5.27. q
Note that, when computing 𝜏1 ∨ 𝜏2/?, we consider ? to be equivalent to ? ∨ ?, which allows us

to proceed by induction under the ∨ connective, and we compute (𝜏1/?) ∨ (𝜏2/?). The fact that
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Chapter 5: Gradual typing with set-theoretic types

? and ?∨? are considered equivalent should not be surprising given the properties of the union

of types.

However, what is more interesting is that we apply the same reasoning to negation types: when

computing ¬𝜏/?, we consider ? to be equivalent to ¬?, which allows us, once again, to traverse
the ¬ connective. This hints towards an interpretation that would make ? and ¬? equivalent,

which is justied by the fact that both can materialize to the same types. We explore this further

in Chapter 6 and Chapter 12. y

As a nal remark, the notion of relative ground types is also fundamental to compute the
application of casts as presented in the previous subsection. Rewriting two types into two
equivalent disjunctive normal forms that are syntactically similar is only possible if the two
types are syntactically identical above their top-level constructors. As an example, consider
𝜏 = (Int → Int) ∧ ((Bool → Bool) ∨ (Nat → Nat)) and 𝜏 ′ = (Int → Int) ∧ ?. While it
holds that 𝜏 ′ 4 𝜏 , 𝜏 ′ is already in disjunctive normal form while 𝜏 is not. And writing 𝜏 as an
equivalent DNF produces ((Int → Int) ∧ (Bool → Bool)) ∨ ((Int → Int) ∧ (Nat → Nat))
which is not syntactically compatible with 𝜏 ′ anymore. The solution is to rst go through the
intermediate type 𝜏/𝜏 ′ and compute the DNF of 𝜏/𝜏 ′ and 𝜏 , which are guaranteed to contain the
same top-level constructors. The whole diculty of the operational semantics will therefore be
to introduce intermediate ground types whenever needed, and eliminate casts on which the type
operators cannot be applied.

5.3.4. Operational semantics

As anticipated, we only outline the main aspects of our semantics, referring the interested reader
to Appendix B for the details.
As we stated before, the idea behind this operational semantics is to be as close as possible to

the semantics presented in Section 4.2. To achieve this, we use the grounding operation dened
in the previous subsection to compute intermediate types, and we compare these intermediate
types to determine whether a succession of two casts should fail or can be eliminated. While this
may seem simple, formalizing this proves to be a dicult task, due to all the corner cases that
can arise from the presence of set-theoretic types.
Whenever we encounter an expression of the form𝑉 〈𝜏1 ⇒𝑝 𝜏2〉 where 𝜏2 4 𝜏1, we distinguish

three cases. The rst case is when 𝜏1 is already a ground type relatively to 𝜏2, that is, 𝜏1/𝜏2 = 𝜏1.
This is analogous to having an expression of the form 𝑉 〈𝜌 ⇒𝑝 ?〉 in the calculus of Section 4.2.
Such an expression cannot be reduced as is, and is considered to be a boxed value. It can only be
reduced by unboxing it, via a cast going to a more precise type (similarly to [R〈HM〉

Collapse]).
The second case is when the cast from 𝜏1 to 𝜏2 does not lose any information from the top-level

constructors of 𝜏1. If this is the case, then we have 𝜏1/𝜏2 = 𝜏2, since 𝜏2 is the least precise type
between 𝜏1 and 𝜏2 that keeps all the information about the top-level constructors of 𝜏1. This is
analogous to having an expression of the form𝑉 〈𝜏1 → 𝜏2 ⇒𝑝 𝜏 ′1 → 𝜏 ′2〉 or𝑉 〈𝜏1 × 𝜏2 ⇒𝑝 𝜏 ′1 × 𝜏 ′2〉
in the calculus of Section 4.2. Such an expression also cannot be reduced as is, and is considered
to be a value. It will be reduced later on if it is applied to a value or projected, in which case, the
reduction uses the operators dened in Subsection 5.3.2.
The third and last case occurs when none of the above conditions are veried. That is, the

cast from 𝜏1 to 𝜏2 loses information about top-level constructors, and 𝜏1 is not already a ground
type relative to 𝜏2. In which case, and similarly to the rule [R〈HM〉

ExpandL] or Section 4.2, we add an
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intermediate type to the cast, giving the following reduction rule:

[R〈ST〉
ExpandL] 𝑉 〈𝜏1 ⇒𝑝 𝜏2〉 { 𝑉 〈𝜏1 ⇒𝑝 𝜏1/𝜏2〉〈𝜏1/𝜏2 ⇒𝑝 𝜏2〉 if 𝜏1/𝜏2 ≠ 𝜏1 and 𝜏1/𝜏2 ≠ 𝜏2

Note that all this reasoning applies only if 𝜏2 4 𝜏1, that is, if the cast goes from a type to a less
precise type. If 𝜏1 4 𝜏2, then all the grounding operations must be reversed, and we obtain, in
particular, the following rule:

[R〈ST〉
ExpandR] 𝑉 〈𝜏1 ⇒𝑝 𝜏2〉 { 𝑉 〈𝜏1 ⇒𝑝 𝜏2/𝜏1〉〈𝜏2/𝜏1 ⇒𝑝 𝜏2〉 if 𝜏2/𝜏1 ≠ 𝜏1 and 𝜏2/𝜏1 ≠ 𝜏2

Following the same intuition that a “boxing” cast is a cast of the form 〈𝜏1 ⇒𝑝 𝜏2〉 where 𝜏1
is a ground type relatively to 𝜏2, and an “unboxing” cast is, symmetrically, a cast of the form
〈𝜏 ′1 ⇒𝑝 𝜏 ′2〉 where 𝜏 ′2 is a ground type relatively to 𝜏 ′1, we deduce an equivalent of the rules
[R〈HM〉

Blame] and [R〈HM〉
Collapse] presented in the previous chapter:

[R〈ST〉
Collapse] 𝑉 〈𝜏1 ⇒𝑝 𝜏2〉〈𝜏 ′1 ⇒𝑞 𝜏

′
2〉 { 𝑉 if 𝜏1 ≤ 𝜏 ′2 and 𝜏1/𝜏2 = 𝜏1 and 𝜏 ′2/𝜏 ′1 = 𝜏 ′2

[R〈ST〉
Blame] 𝑉 〈𝜏1 ⇒𝑝 𝜏2〉〈𝜏 ′1 ⇒𝑞 𝜏

′
2〉 { blame 𝑞 if 𝜏1 � 𝜏 ′2 and 𝜏1/𝜏2 = 𝜏1 and 𝜏 ′2/𝜏 ′1 = 𝜏 ′2

All the other rules of the semantics are there to deal with corner cases that do not occur in a
language that does not contain set-theoretic types. For example, a cast may try to immediately
“unbox” a value that has not been boxed. In the absence of set-theoretic types, this would amount
to having an expression of the form 𝑉 〈? ⇒𝑝 𝜌〉 where 𝑉 is not boxed. This is impossible: for
such an expression to be well-typed, 𝑉 must have type ?. However, this is only possible if it is
rst boxed by a cast to ?. With set-theoretic types, ? can be introduced by subtyping, yielding,
for example, the cast (_Int→Int𝑥 . 𝑥)〈? ∨ (Int → Int) ⇒𝑝 (? → ?) ∨ (Int → Int)〉. According to
our informal denition, such a cast is an “unboxing” cast (the target type is ground with respect
to the source type), but the above elimination rules cannot apply since there is no “boxing” cast
around the value. Therefore, we need separate rules to handle such casts.
Our semantics satises the same soundness property we stated in Chapter 4, which we prove

using the standard lemmas of progress and subject reduction.

Lemma 5.28 (Progress). For every term 𝐸 ∈ Terms〈ST〉 , if ∅ ` 𝐸 : ∀®𝛼.𝜏 then one of the following

holds:

• there exists 𝐸 ′ ∈ Terms〈ST〉 such that 𝐸 { 𝐸 ′
;

• there exists ℓ ∈ L such that 𝐸 { blame ℓ ;

• 𝐸 ∈ Values〈ST〉 .

Lemma 5.29 (Subject reduction). For every term 𝐸, 𝐸 ′ ∈ Terms〈ST〉 , if Γ ` 𝐸 : ∀®𝛼.𝜏 and 𝐸 { 𝐸 ′

then Γ ` 𝐸 ′ : ∀®𝛼.𝜏 .

Theorem 5.30 (Soundness). For every term 𝐸 ∈ Terms〈ST〉 , if ∅ ` 𝐸 : ∀®𝛼.𝜏 then one of the

following holds:

• there exists 𝑉 ∈ Values〈ST〉 such that 𝐸 {∗ 𝑉 ;

• there exists ℓ ∈ L such that 𝐸 {∗ blame ℓ ;
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• 𝐸 diverges.

As for the calculus presented in the previous chapter, the following blame safety property
holds as an immediate corollary of the above soundness theorem.

Corollary 5.31 (Blame safety). For every term 𝐸 ∈ Terms〈HM〉
and every blame label ℓ ∈ L , if

∅ ` 𝐸 : ∀®𝛼.𝜏 then 𝐸 6{∗ blame ℓ .

Lastly, an important aspect of the cast language dened in this section is that it is a conservative
extension of the cast calculus dened in Chapter 4; which justies the choice of the reduction
rules. Denoting by HM the system with subtyping dened in Section 4.4 and by ST the system
dened in this section, there is a strong bisimulation relation between ST and HM, as stated by
the following result.

Theorem 5.32 (Conservativity). For every term 𝐸 ∈ Terms〈HM〉
such that ∅ `HM 𝐸 : 𝜏 ,

𝐸 {HM 𝐸 ′ ⇐⇒ 𝐸 {ST 𝐸
′
and 𝐸 {HM blame 𝑝 ⇐⇒ 𝐸 {ST blame 𝑝 .

This result ensures that all the properties of the cast language presented in Section 4.2 follow
by conservativity from the properties of this extension.

5.4. Inference

In Chapter 4, we described a type inference algorithm for a systemwithout subtyping, and briey
described the problems that arise when adding subtyping. That description was intended to be
extended here; this motivated some design choices, such as the use of subtyping constraints.
Now we describe what must be changed to adapt the system to set-theoretic types. As stated in
the previous chapter, we only outline the general idea of the algorithm, referring the reader to
the appendix for the formal denitions and to Petrucciani [56] for more details and the complete
proofs.

5.4.1. Type constraints and solutions

We keep the same denition for type constraints except, of course, for the dierent denition of
types. However, the conditions for a type substitution \ to be a solution of a constraint 𝐷 in Δ

must be changed: subtyping constraints now require subtyping instead of equality. So we now
write \ Δ 𝐷 when:

• for every (𝑡1 ¤≤ 𝑡2) ∈ 𝐷 , we have 𝑡1\ ≤ 𝑡2\ ;

• for every (𝜏 ¤4 𝛼) ∈ 𝐷 , we have 𝜏\ 4 𝛼\ and, for all 𝛽 ∈ vars(𝜏), 𝛽\ is a static type;

• dom(\ ) ∩ Δ = ∅.

5.4.2. Type constraint solving

To solve type constraint sets, we replace unication with an algorithm designed for set-theoretic
types and semantic subtyping: the tallying algorithm of Castagna et al. [15]. Given a set𝑇 1 ¤≤𝑇 2 of
subtyping constraints between type frames, tallying computes a nite set Θ of type substitutions
such that, for all \ ∈ Θ and (𝑇 1 ¤≤𝑇 2) ∈ 𝑇 1 ¤≤𝑇 2, we have 𝑇 1\ ≤ 𝑇 2\ . The set computed by
tallying can contain multiple incomparable substitutions. Thus, unlike unication where the
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principal solution to the problem is a unique substitution, the principal solution for tallying is a
set of substitutions.
For example, the constraint (𝛼 × 𝛽) ¤≤ (Int × Int) ∨ (Bool × Bool) has four solutions, two of

them being {𝛼 ≔ Int, 𝛽 ≔ Int} and {𝛼 ≔ Bool, 𝛽 ≔ Bool}, which are not comparable (the other
two are the trivial solutions {𝛼 ≔ 0} and {𝛽 ≔ 0}). Nevertheless, the tallying algorithm of
Castagna et al. [15] is sound and complete with respect to the tallying problem (i.e., checking
whether there exists a substitution solving a set 𝑇 1 ¤≤𝑇 2 of subtyping constraints) insofar as the
set of substitutions computed by the algorithm is principal: any other solution is an instance of
one in the set.
We want to use tallying to dene an algorithm to solve type constraints. Previously, we con-

verted materialization constraints (𝜏 ¤4 𝛼) to equality constraints (𝑇 ¤=𝛼) and used unication.
To do the same here, we rst need to extend tallying to handle such equality constraints. This is
easy to do in our case by adding simple pre- and post-processing steps. The pre-processing step
ensures the algorithm fails immediately should constraints be ill-formed (for example, if there
are two constraints (𝑇1 ¤=𝛼) and (𝑇2 ¤=𝛼) where 𝑇1 ≠ 𝑇2). In practice, the constraints generated
by our constraint generation system are always well-formed and the pre-processing step of the
algorithm never fails.
The pre-processing step ends by taking every equality constraint (𝑇 ¤=𝛼) and performing the

substitution [𝑇 /𝛼] in all subtyping constraints. The algorithm then applies the tallying algorithm
of Castagna et al. [15] to the remaining subtyping constraints. And nally, for every substitution
\ obtained as a solution, we simply extend it with the substitutions [𝑇\/𝛼] that correspond to
the equality constraints.
The resulting algorithm tally ¤=

( ·) (·) satises the following property:

∀\ ∈ tally ¤=
Δ

(
𝑡1 ¤≤ 𝑡2 ∪𝑇 ¤=𝛼

)
.


∀(𝑡1 ¤≤ 𝑡2) ∈ 𝑡1 ¤≤ 𝑡2. 𝑡1\ ≤ 𝑡2\

∀(𝑇 ¤=𝛼) ∈ 𝑇 ¤=𝛼. 𝑇\ = 𝛼\

dom(\ ) ⊆ vars
(
𝑡1 ¤≤ 𝑡2 ∪𝑇 ¤=𝛼

)
\ Δ

Using tally ¤=, we can dene the version of solve for set-theoretic types following the same
approach as before. However, there are two diculties.
The main diculty is the presence of recursive types and their behaviour with respect to

materialization. Consider the recursive type dened by the equation 𝜏 = (? × 𝜏) ∨ 𝑏, where
𝑏 is some basic type. It corresponds to the type of lists of elements of type ?, terminated by a
constant in 𝑏. Since recursive types in our denition are innite regular trees, 𝜏 = (? × 𝜏) ∨ 𝑏

and 𝜏 ′ = (? × ((? × 𝜏 ′) ∨ 𝑏)) ∨ 𝑏 denote exactly the same type. What types can 𝜏 materialize
to? Clearly, both 𝜏1 = (Int × 𝜏2) ∨ 𝑏 and 𝜏2 = (Int × ((Bool × 𝜏2) ∨ 𝑏)) ∨ 𝑏 are possible. Indeed,
? occurs innitely many times in 𝜏 . Materialization could in principle allow us to change each
occurrence to a dierent type. However, since types must be regular trees, only a nite number
of occurrences can be replaced with dierent types (otherwise, the resulting tree would not be a
gradual type). While nite, this number is unbounded.
Recall that step 1 of the algorithm solve picked a discrimination𝑇𝑗 of each 𝜏 𝑗 such that no frame

variable appeared more than once in 𝑇𝑗 . If we consider the recursive type 𝜏 above, there is no 𝑇
such that𝑇 † = 𝜏 and that𝑇 has no repeated frame variables: it would need to have innitelymany
frame variables and thus be non-regular. While we will never need innitely many variables, we
do not know in advance (in this pre-processing step) how many we will need.

A solution to this would be to change the tallying algorithm so that discrimination is performed
during tallying. Then, it could be done lazily, introducing as many frame variables as needed.
However, this sacrices some of the modularity of our current approach.
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We chose to give a denition where no constraint is placed on how many frame variables are
used to replace ?. Of course, a sensible choice is to use dierent variables as much as possible
except for the innitely many occurrences of ? in a recursive loop.
There is a second diculty. For a subtyping constraint (𝑡1 ¤≤ 𝑡2), a substitution \ computed

by tallying ensures 𝑡1\ ≤ 𝑡2\ . However, what we want is rather (𝑡1\ )† ≤ (𝑡2\ )†. This does not
necessarily hold unless the type frames 𝑡1\ and 𝑡2\ are polarized. For example, if the constraint
is (𝛼 ¤≤ 0) and the substitution is [𝑋 \ 𝑋/𝛼], we have 𝑋 \ 𝑋 ≤ 0 but ? \ ? � 0. Therefore, we
need to dene solve so that it ensures polarization in these cases. This can be done by tweaking
the variable renaming step we already had.

Apart from these dierences, the algorithm follows the same idea as the algorithm of the
previous chapter, using tally ¤= instead of unication. The formal denition of the algorithm solve
can be found in the appendix.
The algorithm solve is sound, but due to the presence of recursive gradual types (as explained

above), it is not complete:

Proposition 5.33 (Soundness of solve). If \ ∈ solveΔ (𝐷), then \ Δ 𝐷 .

5.4.3. Structured constraints, generation, and simplification

The syntax of structured constraints can be kept unchanged except for the change in the syntax
of types. Constraint generation is also unchanged. Constraint simplication still uses the same
rules, but it relies on the new solve algorithm. Soundness still holds, with the same statement as
Theorem 4.23:

Theorem 5.34 (Soundness of type inference). Let D be a derivation of Γ; vars(𝑒) ` 〈〈𝑒 :
𝑡〉〉 { 𝐷 . Let \ be a type substitution such that \ vars(𝑒) 𝐷 . Then, we have Γ\ ` 𝑒 : 𝑡\  
{|𝑒 |}D

\ .

However, completeness no longer holds, mainly as a consequence of the possible material-
izations of ? in recursive types. Therefore, the rst step to attempt to recover completeness for
inference would be to study how to change the solve algorithm to make it complete.
Note also that type constraint solving can now produce more than one incomparable solution.

So constraint simplication is non-deterministic: in the rule for let constraints, there can be
multiple solutions to try. Soundness ensures that any solution will give a type and a compiled
expression that are sound with respect to the declarative system.
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Chapter 6.

A set-theoretic foundation for casts

“La perfection est atteinte, non pas lorsqu’il n’y a plus rien à

ajouter, mais lorsqu’il n’y a plus rien à retirer.”

Antoine de Saint-Exupéry

The semantics we presented in the previous chapter in Section 5.3 was obtained by directly ex-
tending the semantics presented in Section 4.2 with set-theoretic types. The core ideas were
the same, which allowed us to prove that the semantics of Section 5.3 is a sound conservative
extension of the semantics of Section 4.2.
However, this extension requires the introduction of many complex denitions (relative

ground types, parallel normal forms, type operators) to accommodate for the presence of set-
theoretic types. Due to their semantic nature (type connectives are not meant to be manipulated
syntactically), which contrasts with the syntactic nature of the semantics presented in Section 4.2,
set-theoretic types proved to be more of a hindrance than a help.
The crux of the problem comes from the syntactic denition of materialization: materializa-

tion must preserve the syntactic structure of types, which means that, for example, ? ∨ Bool
materializes into Int ∨ Bool but not into Bool ∨ Int, even though both types are equivalent. The
advantage of this denition is twofold: rst, it provides a very simply way to embed gradual typ-
ing in any type system, only requiring a notion of type variables and type substitutions. Second,
being based on syntactic equality between types and type substitutions, it can easily be added to
any type inference algorithm by adding a simple unication step.
However, when it comes to the cast language, this makes any semantic manipulation of types

(such as the application of one of the type operators presented in Section 2.4) cumbersome. The
major manifestation of this problem being, arguably, the denition of relative ground types and
the extremely complex operational semantics that follows.
This motivated us to study gradual typing from a denotational perspective, with the aim of

nding a semantic denition of materialization, similarly to the denition of semantic subtyping

presented in Section 2.3. The details of this study are covered in Part II of this manuscript. In
this section, we introduce some of the ndings from that study (namely, new interpretations of
materialization and subtyping on gradual types) and use them to deduce some powerful results
about the representation of gradual types. We then use these results to greatly simplify the
semantics presented in Section 5.3.

Chapter Outline

Section 6.1 In this rst section, we introduce the semantic materialization and semantic

gradual subtyping relations, based on the ndings of Chapter 12. Although we do not
present the formal set-theoretic interpretation of types that led to these relations, we show
how they can be intuitively deduced from the relations presented in the previous chapter.
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We then prove a crucial result about the representation of gradual set-theoretic types,
which states that every type can be represented equivalently by a type containing a single
occurrence of the dynamic type.

Section 6.2 We use the aforementioned result about the representation of gradual types
to deduce gradual extensions of the type operators presented in Chapter 2. The result-
ing denitions are simple and intuitive, and we show that they immediately inherit the
soundness properties of the static type operators, which greatly simplies the proofs.

Section 6.3 We present a new operational semantics for the language of Chapter 5, based
on the new relations and operators. We emphasize the simplicity of this semantics com-
pared to the previous one. We prove the soundness of this semantics, and show that most
of it follows from the properties of the operators we dened before.

Section 6.4 Finally, we conclude the chapter with a short summary of the results and
improvements presented in this chapter.

6.1. Semantic materialization and semantic gradual subtyping

6.1.1. A conservative first aempt

The notion of equivalence between types is central in semantic subtyping: two types are equiva-
lent if and only if they represent the same set of values, and therefore behave identically in every
context. Following this intuition, two equivalent gradual types should materialize into the same
types. However, this is currently not the case. Consider for example the types Int∨? and ?∨ Int:
although they are equivalent (for obvious reasons), the former materializes into Int∨Bool while
the latter does not. The latter does, however, materialize to Bool ∨ Int which is equivalent to
Int ∨ Bool.
This leads us to consideringmaterializationmodulo equivalence, in which a type 𝜏1 materializes

into 𝜏2 if 𝜏1 and 𝜏2 are respectively equivalent to two types 𝜏 ′1 and 𝜏 ′2 such that 𝜏 ′1 materializes
(syntactically) into 𝜏 ′2. Formally, the resulting relation, which we call semantic materialization, is
dened as follows:

Denition 6.1 (Semantic materialization). We dene the semantic materialization relation

∼4 between gradual types as follows:

𝜏1
∼4 𝜏2 ⇐⇒def ∃𝜏 ′1, 𝜏 ′2 ∈ GTypes. 𝜏1 ' 𝜏 ′1 4 𝜏 ′2 ' 𝜏2

It is straightforward to show that this yields a relation that is more general than materializa-
tion: if 𝜏1 4 𝜏2 then 𝜏1 ∼4 𝜏2.
While the relation ∼4 does not suer from the same syntactic limitations as 4 and ensures

that two equivalent types behave identically, its denition still relies on the latter, which makes
reasoning about it impractical. However, we can nd an equivalent denition of ∼4 than only
relies on subtyping on static types, and the extremal materializations of gradual types.
To establish this equivalent denition, we rst need the following lemma, which states that if

two gradual types are in a subtyping relation, then so are their extremal materializations.

Lemma 6.2. For every gradual types 𝜏1, 𝜏2, if 𝜏1 ≤ 𝜏2 then 𝜏1
⇓ ≤ 𝜏2

⇓
and 𝜏1

⇑ ≤ 𝜏2
⇑
.
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Proof. By Theorem 5.18, we have 𝜏?
1 ≤ 𝜏?

2 . By Proposition 5.2, it holds that
𝜏?
1 [0/𝑋 1] [1/𝑋 0] ≤ 𝜏?

2 [0/𝑋 1] [1/𝑋 0]. And by Denition 5.24, this yields 𝜏1⇓ ≤ 𝜏2
⇓. Using

a similar reasoning, we deduce 𝜏1⇑ ≤ 𝜏2
⇑. �

Using this lemma, we can prove the following result, which states that semanticmaterialization
reduces to subtyping on static types using the extremal materializations of gradual types.

Proposition 6.3. For every gradual types 𝜏1, 𝜏2 ∈ GTypes, the following holds:

𝜏1
∼4 𝜏2 ⇐⇒

{
𝜏1

⇓ ≤ 𝜏2
⇓

𝜏2
⇑ ≤ 𝜏1

⇑

Proof. We prove the two implications separately.

• Suppose that 𝜏1 ∼4 𝜏2. By denition, there exists 𝜏 ′1, 𝜏
′
2 such that 𝜏1 ' 𝜏 ′1 4 𝜏 ′2 ' 𝜏2. By

Lemma 6.2, we deduce that 𝜏1⇓ ' 𝜏 ′1
⇓ and 𝜏1⇑ ' 𝜏 ′1

⇑ 1 , and similarly for 𝜏2 and 𝜏 ′2 2 .
Now, by Theorem 5.25, it holds that 𝜏 ′1

⇓ ≤ 𝜏 ′2 and 𝜏
′
2 ≤ 𝜏 ′1

⇑. By Lemma 6.2, we deduce
that 𝜏 ′1

⇓ ≤ 𝜏 ′2
⇓ and 𝜏 ′2

⇑ ≤ 𝜏 ′1
⇑ 3 .

Finally, using results 1 , 2 and 3 and by transitivity of subtyping, we deduce that
𝜏1

⇓ ≤ 𝜏2
⇓ and 𝜏2⇑ ≤ 𝜏1

⇑.

• Now suppose that 𝜏1⇓ ≤ 𝜏2
⇓ and 𝜏2

⇑ ≤ 𝜏1
⇑. Consider 𝜏 ′1 = 𝜏1 ∨ (𝜏1 ∧ 𝜏2), and 𝜏 ′2 =

𝜏1
⇓ ∨ (𝜏1⇑ ∧ 𝜏2). By Theorem 5.25, it holds that 𝜏 ′1 4 𝜏 ′2. Moreover, since 𝜏1 ∧ 𝜏2 ≤ 𝜏1,

we have immediately 𝜏1 ' 𝜏 ′1.
Now, by hypothesis, 𝜏2⇑ ≤ 𝜏1

⇑. By Theorem 5.25, this entails 𝜏2 ≤ 𝜏1
⇑. Thus, 𝜏2∧𝜏1⇑ '

𝜏2. We also have by hypothesis 𝜏1⇓ ≤ 𝜏2
⇓. Theorem 5.25 yields 𝜏1⇓ ≤ 𝜏2. Therefore,

𝜏1
⇓ ∨ 𝜏2 ' 𝜏2. Finally, this yields 𝜏 ′2 ' 𝜏2, hence the result.

�

This result conveys a very strong message: any gradual type can be seen as an interval
1 of

possible types, where ? denotes the interval of all types, and a type 𝜏 denotes the interval ranging
from 𝜏⇓ to 𝜏⇑ (or, more precisely, the sub-lattice of the types included between the two). Semantic
materialization then allows us to reduce this interval, by going to any type 𝜏 ′ such that 𝜏⇓ ≤ 𝜏 ′⇓

and 𝜏 ′⇑ ≤ 𝜏⇑, possibly until reaching a static type (that is, a type 𝜏 such that 𝜏⇓ = 𝜏⇑).
Continuing on this interpretation of gradual types as intervals, it would be tempting to in-

troduce a semantic denition of gradual subtyping, in which a type 𝜏1 is a subtype of 𝜏2 if the
interval denoted by 𝜏1 only contains subtypes of elements of the interval denoted by 𝜏2. Formally,
this would amount to dening gradual subtyping so that Lemma 6.2 is an equivalence:

𝜏1
∼≤ 𝜏2 ⇐⇒def

{
𝜏1

⇓ ≤ 𝜏2
⇓

𝜏1
⇑ ≤ 𝜏2

⇑

However, such a denition is problematic, as we will discuss in more details in Chapter 12. For
now, remark that using such a denition, it holds that ? → ? ≤ ? → 0, as we have (? → ?)⇓ =
1It is, actually, a lattice, thanks to the presence of the intersection and union connectives. However, as we will
see later, this lattice is entirely determined by its maximal and minimal elements (i.e., two types with the same
extremal materializations represent the same lattice), hence the use of the term “interval”.

119



Chapter 6: A set-theoretic foundation for casts

1 → 0 ≤ 1 → 0 = (? → 0)⇓ and (? → ?)⇑ = 0 → 1 ≤ 0 → 0 = (? → 0)⇑. Thus, by
subsumption, it is possible to give type 0 to the application of a function of type ? → ? to a
value of type ?, which is unsound as such an application can produce a result.
This problem occurs because, under the denition of semantic subtyping presented in Chap-

ter 2, all types 0 → 𝑡 are equivalent. Hence, comparing two arrow types whose domain is ?
amounts to comparing only their minimal materializations, as their maximal materializations
will always be equivalent. This allows subtyping to bypass the standard variance properties of
arrow types even when their domains are non-empty, thus allowing unsound subsumptions.

6.1.2. Modifying semantic subtyping

There are two solutions to this problem. The rst is to simply use semantic materialization in
conjunction with gradual subtyping as dened in the previous chapter. However, this is not
satisfactory, since this would mean subtyping would still rely on the various discrimination op-
erations, while materialization would not. Additionally, materialization and subtyping would
induce dierent equivalence relations on gradual types, although the intuition dictates that two
types that behave identically for materialization should also behave identically for subtyping,
and vice versa. This is not the case for ? and ¬? for example: both materialize to the same types
(since ¬¬𝜏 is equivalent to 𝜏) but they are not related by subtyping.
The second solution, guided by our research in Chapter 12, is to slightly modify the inter-

pretation of types of semantic subtyping and the induced subtyping relation so that the types
0 → 𝑡 are not equivalent anymore. This makes gradual subtyping as dened above using the ex-
tremal materializations sound, at the cost of the conservativity of semantic subtyping as dened
in Chapter 2.
The change is straightforward: we introduce a new element Ωto the input of relations in

the interpretation of semantic subtyping, and, for a relation to be in the interpretation of a type
𝑡1 → 𝑡2, we force an output to be in the interpretation of 𝑡2 whenever the corresponding input is

Ω. Formally, the new interpretation domain is dened as follows.

Denition 6.4 (New interpretation domain). The interpretation domainD ′
is the set of nite

terms 𝑑 produced inductively by the following grammar:

𝑑 F 𝑐𝐿 | (𝑑, 𝑑)𝐿 | {(], 𝜕), . . . , (], 𝜕)}𝐿

] F 𝑑 | Ω

𝜕 F 𝑑 | Ω

where 𝑐 ranges over the set C of constants, 𝐿 ranges over P𝑓 (V 𝛼 ), and where Ω and

Ω

are

such that Ω,

Ω

∉ D ′
.

We also write D ′
Ω = D ′ ∪ {Ω} and I ′ = D ′ ∪ { Ω}.

And, following our above explanation, the new interpretation of types is dened by only
changing the interpretation of arrow types presented in Denition 2.5 to account for the new
input Ω:

({(]𝑖 , 𝜕𝑖) | 𝑖 ∈ 𝐼 }𝐿 : 𝑡1 → 𝑡2) = ∀𝑖 ∈ 𝐼 . (]𝑖 =

Ω∨ (]𝑖 : 𝑡1)) =⇒ (𝜕𝑖 : 𝑡2)

We write È.É′ : Types → P (D ′) the new interpretation of types this predicate induces, dened
by È𝑡É′ = {𝑑 ∈ D ′ | (𝑑 : 𝑡)}.
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Using this new interpretation, the interpretation of the type 0 → 1 still contains all relations,
whereas the interpretation of, for example, 0 → Int does not contain the relation { Ω

, true}, as
for a relation to belong to 0 → Int, it must map Ωto an integer. Thus, the two types are now
distinct. This ensures that all arrow types verify the usual variance properties for subtyping.
In the following, we consider the relation ¤≤ to be the subtyping relation induced on Types by

the above interpretation, following Denition 2.6. Note that it is straightforward to see that, for
every type 𝑡 , È𝑡É′ = ∅ =⇒ È𝑡É = ∅, which in turn implies that if 𝑡1 ¤≤ 𝑡2 then 𝑡1 ≤ 𝑡2.

6.1.3. Semantic gradual subtyping

We can now lift this new subtyping relation from static types to gradual types using the afore-
mentioned method. This allows us to obtain a subtyping relation on gradual types, which we
call semantic gradual subtyping, which is a conservative extension of the subtyping relation on
static types.

Denition 6.5 (Semantic gradual subtyping). We dene the semantic gradual subtyping
relation

∼≤ between gradual types as follows:

𝜏1
∼≤ 𝜏2 ⇐⇒def

{
𝜏1

⇓ ¤≤ 𝜏2
⇓

𝜏1
⇑ ¤≤ 𝜏2

⇑

And we dene the semantic gradual equivalence relation ∼' as 𝜏1 ∼'𝜏2 ⇐⇒def 𝜏1
∼≤ 𝜏2 and

𝜏2
∼≤ 𝜏1.

This relation will be derived in Chapter 12 using set-containment on a new set-theoretic in-
terpretation of gradual types, similarly to semantic subtyping as presented in Section 2.3.
Note that, as anticipated, using this relation ¬? is equivalent to ?, which was not the case

before. While surprising at rst, this result is actually intuitive: ? and ¬? have the same mate-
rializations modulo equivalence, since every type 𝜏 is equivalent to ¬¬𝜏 . Therefore, following
the intuition we gave in the beginning of this section, ? and ¬? behave identically and should be
considered equivalent.
Naturally, by modifying the subtyping relation on static types, we also indirectly modied the

semantic materialization relation whose denition was based on the former. In the following, we
consider semantic materialization to be dened following Proposition 6.3, that is:

𝜏1
∼4 𝜏2 ⇐⇒def

{
𝜏1

⇓ ¤≤ 𝜏2
⇓

𝜏2
⇑ ¤≤ 𝜏1

⇑

As for subtyping, we will show in Chapter 12 how this denition can be introduced semanti-
cally, using a set-theoretic interpretation of gradual types.
Note that since our new subtyping relation on Types implies the semantic subtyping relation

dened in Chapter 2, it also holds that this denition of materialization implies the previous one
presented in Denition 6.1 as a rst attempt. The converse is obviously not true, for the same
reasons as subtyping: since 0 → 1 and 0 → Int are equivalent for the old denition of subtyping,
they are also materializations of each other for the old denition of semantic materialization.
However, these two types are incomparable under the new denition of semantic materialization.
Having introduced these new materialization and subtyping relations, we now add them to

121



Chapter 6: A set-theoretic foundation for casts

the type system of the cast language, by replacing the rules involving the old relations. Only
three rules need to change, the others being those that can be found in Figure 4.5.

[T〈ST〉
Sub ]

Γ ` 𝐸 : 𝜏 ′

Γ ` 𝐸 : 𝜏
𝜏 ′ ∼≤ 𝜏 [T〈ST〉

Cast+]
Γ ` 𝐸 : 𝜏 ′

Γ ` 𝐸〈𝜏 ′ ⇒𝑙 𝜏〉 : 𝜏
𝜏 ′ ∼4 𝜏 [T〈ST〉

Cast−]
Γ ` 𝐸 : 𝜏 ′

Γ ` 𝐸〈𝜏 ′ ⇒
𝑙
𝜏〉 : 𝜏

𝜏 ∼4 𝜏 ′

6.1.4. Some properties

We now establish several properties of semantic gradual subtyping and semantic materialization
that will be useful to dene our new semantics. The rst property restates Proposition 2.13 for
our new subtyping relation on static types (generalized to type frames). Its proof follows the
same strategy as the proof of Proposition 2.13: we adapt the interpretation of Denition 2.8 to
account for the new input Ω, and prove the same properties.

Proposition 6.6. For every types 𝑇1,𝑇2 ∈ TFrames, if 𝑇1 ¤≤𝑇2 then 𝑇1\ ¤≤𝑇2\ for every type

substitution \ .

Proof. See appendix page 258. �

This result allows us to restate Proposition 5.2 and Proposition 5.3 for our new relations, prov-
ing that they are both stable by static type substitutions. This result is considerably easier to
prove than Proposition 5.3, thanks to the fact that semantic materialization is dened using static
subtyping, and thus inherits its properties.

Proposition 6.7. For every gradual types 𝜏1, 𝜏2, and every static type substitution \ : V 𝛼 →
STypes, the following holds:

𝜏1
∼≤ 𝜏2 =⇒ 𝜏1\

∼≤ 𝜏2\

𝜏1
∼4 𝜏2 =⇒ 𝜏1\

∼4 𝜏2\

Proof. Immediate consequence of Proposition 6.6, and the fact that for every type 𝜏 , (𝜏\ )⇑ =
𝜏⇑\ and (𝜏\ )⇓ = 𝜏⇓\ . �

By also restating Proposition 5.20 for our new subtyping relation (see appendix page 258), we
can also deduce the following crucial property, which ensures that we still have 𝜏⇓ ¤≤ 𝜏⇑ for every
gradual type 𝜏 .

Lemma 6.8. For every gradual type 𝜏 ∈ GTypes, we have 𝜏⇓ ¤≤ 𝜏⇑.

Proof. See appendix page 259. �

As a corollary, this lemma entails that Theorem 5.25 still holds for our new relations.

Corollary 6.9. For every gradual type 𝜏 ∈ GTypes, the following holds

• 𝜏 ∼4 𝜏⇓ and 𝜏 ∼4 𝜏⇑;

• for every 𝜏 ′ ∈ GTypes such that 𝜏 ∼4 𝜏 ′, 𝜏⇓ ∼≤ 𝜏 ′ ∼≤ 𝜏⇑.
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6.2 Type operators

Proof. By Denition 6.5, it is clear that for every static types 𝑡1, 𝑡2 ∈ Types, 𝑡1 ¤≤ 𝑡2 ⇐⇒
𝑡1
∼≤ 𝑡2, since 𝑡1⇓ = 𝑡1

⇑ = 𝑡1 and similarly for 𝑡2.
Since 𝜏⇓⇓ = 𝜏⇓, we have 𝜏⇓ ¤≤ 𝜏⇓

⇓ and by Lemma 6.8 we have 𝜏⇓⇑ = 𝜏⇓ ¤≤ 𝜏⇑, hence 𝜏 ∼4 𝜏⇓
by denition of ∼4 . The same reasoning yields 𝜏 ∼4 𝜏⇑.

Now let 𝜏 ′ ∈ GTypes such that 𝜏 ∼4 𝜏 ′. We have 𝜏⇓ ¤≤ 𝜏 ′⇓ by denition of ∼4 . Additionally,
by Lemma 6.8, we have 𝜏 ′⇓ ¤≤ 𝜏 ′⇑ hence 𝜏⇓ ¤≤ 𝜏 ′⇑ by transitivity of subtyping. This proves
that 𝜏⇓ ∼≤ 𝜏 ′. A similar reasoning yields 𝜏 ′ ∼≤ 𝜏⇑. �

Finally, we prove a fundamental and surprising result about the representation of gradual
types, which states that every gradual type 𝜏 can be represented using a single occurrence of ?,
bounded by 𝜏⇓ and 𝜏⇑ using type connectives. In essence, this result formalizes the intuition that
a gradual type ranges over an interval of types bounded by two static types.

Theorem 6.10. For every gradual type 𝜏 ,

𝜏 ∼'𝜏⇓ ∨ (? ∧ 𝜏⇑)

Proof. See Theorem 12.15 (page 217). �

This result has very strong consequences: we do not need the full syntax of gradual types,
we simply need static types and a single top-level occurrence of ? (or a way to denote the types
ranging from a static type to another).
The importance of this result will become even more apparent in the next section: given a type

operator dened on static types, it can be extended to any gradual type 𝜏 by simply applying it
to the extremal materializations of 𝜏 , and reconstructing the result using the above theorem.

6.2. Type operators

The syntactic denition of materialization was the main reason behind the introduction of com-
plex type operators in Chapter 5. Their goal was to ensure we always preserved the materializa-
tion relation between two types in a cast, particularly when applying a cast function or projecting
a cast pair. This was necessary to ensure type preservation: a cast is allowed only between two
types where one is a materialization of the other.
Now that we introduced a semantic materialization, which is less dependent on the syntax

of types, we can redene the type operators in a much simpler way. In particular, these new
operators are not dened on casts anymore, they are simply dened on types as in Section 2.4.
We then prove later on that they preserve semantic materialization in Proposition 6.20, 6.21,
and 6.22.

6.2.1. Properties of the static operators

Unfortunately, since we changed the interpretation of types on which the operators dened in
Section 2.4 are based, we need tomake some changes to the denition of the static type operators,
and restate and prove their soundness properties.
Thankfully, the domain (Denition 2.19) and projection (Denition 2.21) operators do not need

to change. The only change our new interpretation brings has to do with the result type of an
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application when the considered domain is empty: since 0 → 1 and 0 → 0 were equivalent
under the previous interpretation of types, the most precise type that could be inferred for an
application of a function of type 0 → 1 to an argument of type 0 was 0. Under our new inter-
pretation, the most precise type that can be inferred is now 1, since the type 0 → 1 cannot be
subsumed to a type with a smaller codomain. We slightly modify Denition 2.20 to account for
this change.

Denition 6.11 (Result type operator). For every type 𝑡 ¤≤ 0 → 1 and every type 𝑠 such that

𝑠 ¤≤ dom(𝑡), we dene the result type of 𝑡 applied to 𝑠 , noted 𝑡 ◦ 𝑠 as:

𝑡 ◦ 𝑠 =def
∨
𝑖∈𝐼

∨
𝑄(𝑃𝑖

𝑠 ¤� ∨
𝑠𝑖→𝑡𝑖 ∈𝑄 𝑠𝑖

∧
𝑠𝑖→𝑡𝑖 ∈𝑃𝑖\𝑄

𝑡𝑖 if 𝑠 ¤� 0

=def
∨
𝑖∈𝐼

∧
𝑠𝑖→𝑡𝑖 ∈𝑃𝑖

𝑡𝑖 otherwise

where

N𝑈 (𝑡) =
∨
𝑖∈𝐼

(∧
𝑎∈𝑃𝑖

𝑎 ∧
∧
𝑎∈𝑁𝑖

¬𝑎
)

This new denition of the result type operator on static types follows the same idea as Deni-
tion 2.20, except we add an additional clause for when the type of the argument is empty. In this
case, we simply take the type of the result to be the union of the intersections of the codomains
of the arrows that compose N𝑈 (𝑡).
Using the new subtyping relation on static types, this new denition of the result type operator,

as well as the domain and projection operators as dened in Section 2.4, we restate the same
soundness properties we presented in Section 2.4. We do not detail the proofs of these properties
as they can be obtained from the proofs presented by Frisch et al. [27] by simply replacing their
subtyping relation with ours. The only dierence comes from the decomposition lemma for
subtyping on arrow types, which, as anticipated, features a new condition that handles the case
of an empty domain. As it is fairly complex and out of the scope of this section, we relegate its
statement and proof to the appendix (Lemma A.22, page 260).

Proposition 6.12. For every types 𝑡, 𝑡 ′ ∈ Types, if 𝑡 ¤≤ 0 → 1 then 𝑡 ¤≤ dom(𝑡) → 1 and if

𝑡 ¤≤ 𝑡 ′ → 1 then 𝑡 ′ ¤≤ dom(𝑡).

Proposition 6.13. For every types 𝑡, 𝑡 ′, 𝑠 ∈ Types, if 𝑡 ¤≤ 0 → 1 and 𝑠 ¤≤ dom(𝑡) then 𝑡 ¤≤ 𝑠 →
𝑡 ◦ 𝑠 . Moreover, if 𝑡 ¤≤ 𝑠 → 𝑡 ′ then 𝑡 ◦ 𝑠 ¤≤ 𝑡 ′.

Proposition 6.14. For every types 𝑡, 𝑡1, 𝑡2 ∈ Types, if 𝑡 ¤≤ 1 × 1 then 𝑡 ¤≤ 𝜋1(𝑡) × 𝜋2(𝑡) and if

𝑡 ¤≤ 𝑡1 × 𝑡2 then 𝜋1(𝑡) ¤≤ 𝑡1 and 𝜋2(𝑡) ¤≤ 𝑡2.

6.2.2. Definition of the gradual operators

To dene these new operators, we once again follow the idea that a gradual type denotes an
interval. If 𝜏 ∼≤ 1×1 and represents the interval ranging from 𝜏⇓ to 𝜏⇑, then its rst projectionmust
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denote the interval ranging from 𝜋1 𝜏
⇓ to 𝜋1 𝜏⇑, where 𝜋1 is dened on static types in Section 2.4.

We then use Theorem 6.10 to reconstruct the projection 𝜋1 𝜏 of 𝜏 as (𝜋1 𝜏⇓) ∨ ((𝜋1 𝜏⇑) ∧ ?).
The denitions of the other two operators follow a similar reasoning, extending the denition

of their static counterparts given in Section 2.4, except care must be taken when dealing with
contravariance: if 𝜏 ranges from 𝜏⇓ to 𝜏⇑, then its domain must range from dom(𝜏⇑) to dom(𝜏⇓)
(notice the inversion of 𝜏⇑ and 𝜏⇓), since dom(𝜏⇑) ¤≤ dom(𝜏⇓). Similarly, the type of the result
of an application is covariant in the type of the function but contravariant in the type of the
argument: for a function of type 𝜏 and an argument of type 𝜏 ′, the smallest possible result is
obtained when 𝜏 is the smallest and 𝜏 ′ is the largest, and conversely.

Denition 6.15 (Gradual type operators). For every gradual type 𝜏, 𝜏 ′, we dene the follow-
ing gradual type operators:

Domain operator d̃om(𝜏) =def dom(𝜏⇑) ∨ (? ∧ dom(𝜏⇓))
Result operator 𝜏 ◦̃𝜏 ′ =def (𝜏⇓ ◦ 𝜏 ′⇑) ∨ (? ∧ (𝜏⇑ ◦ 𝜏 ′⇓))

Projection operator 𝜋𝑖 (𝜏) =def (𝜋𝑖 (𝜏⇓)) ∨ (? ∧ (𝜋𝑖 (𝜏⇑)))

The value of these operators is undened whenever the corresponding static type operators are

undened.

Note that since for every static type 𝑡 , 𝑡⇓ = 𝑡⇑ = 𝑡 , and since 𝑡 ∨ (𝑡 ∧?) ∼' 𝑡 , it is straightforward
to verify that these operators are conservative extensions of their static counterparts. They also
verify intuitive results, such as d̃om(? → ?) = 0 ∨ (? ∧ 1) ∼' ? and similarly (? → ?) ◦̃ ?∼' ?.

 Remark 6.16. q
To summarize, the general principle we use to extend type operators from static types to gradual

types is the following. Given a type operator F : Types → Types, we dene its gradual extension
F̃ : GTypes → GTypes as

F̃(𝜏) = F(𝜏⇓) ∨ (F(𝜏⇑) ∧ ?)

provided F is increasing for ¤≤ , and reverse the extremal concretizations if F is decreasing.
Of course, care must be taken to ensure that F is monotonic for ¤≤ . However, if it is not known

whether F is increasing or decreasing, the gradual operator can be dened as

F̃(𝜏) = (F(𝜏⇓) ∧ F(𝜏⇑)) ∨ (((F(𝜏⇓) ∨ F(𝜏⇑)) ∧ ?)

In this case, the minimal materialization of the result is computed using F(𝜏⇓) ∧F(𝜏⇑) (which is
equivalent to the smallest of the two types F(𝜏⇓) and F(𝜏⇑)), and the maximal materialization

is computed similarly using the union connective. y

6.2.3. Soundness of the gradual operators

The next step is to prove that these operators are sound, that is, they satisfy the minimality
conditions presented in Section 2.4. We do not prove these properties from scratch. Instead,
we prove that by denition, the gradual type operators inherit all the properties of the static
operators we stated previously. For the domain operator, the minimality property states that for
every function type 𝜏 , d̃om(𝜏) is the largest type 𝜎 such that 𝜏 ∼≤ 𝜎 → 1. Formally, we have the
following proposition:
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Proposition 6.17. For every gradual types 𝜏, 𝜏 ′ ∈ GTypes, if 𝜏 ∼≤ 0 → 1 then 𝜏 ∼≤ d̃om(𝜏) →
1 and if 𝜏 ∼≤ 𝜏 ′ → 1 then 𝜏 ′ ∼≤ d̃om(𝜏).

Proof. By hypothesis, 𝜏 ∼≤ 0 → 1. By denition of ∼≤ , this entails 𝜏⇓ ¤≤ 0 → 1 and
𝜏⇑ ¤≤ 0 → 1. Moreover, by Corollary 6.9, we have 𝜏⇓ ¤≤ 𝜏⇑. By Proposition 6.12, this entails
dom(𝜏⇑) ¤≤ dom(𝜏⇓). This ensures that (d̃om(𝜏))⇑ ' dom(𝜏⇓) 1 and (d̃om(𝜏))⇓ ' dom(𝜏⇑).
Now, by Proposition 6.12, we have 𝜏⇓ ¤≤ dom(𝜏⇓) → 1. By 1 , we deduce 𝜏⇓ ¤≤ (d̃om(𝜏))⇑ →
1 which gives 𝜏⇓ ¤≤ (d̃om(𝜏) → 1)⇓. A similar reasoning proves 𝜏⇑ ¤≤ (d̃om(𝜏) → 1)⇑, which
yields 𝜏 ∼≤ d̃om(𝜏) → 1.
Now suppose that 𝜏 ∼≤ 𝜏 ′ → 1, by denition of ∼≤ this yields 𝜏⇓ ¤≤ 𝜏 ′⇑ → 1. By Proposi-
tion 6.12, this implies 𝜏 ′⇑ ¤≤ dom(𝜏⇓). Using 1 we deduce that 𝜏 ′⇑ ¤≤ (d̃om(𝜏))⇑. A similar
reasoning proves 𝜏 ′⇓ ¤≤ (d̃om(𝜏))⇓, which ensures 𝜏 ′ ∼≤ d̃om(𝜏). �

For the result type operator, we prove that 𝜏 ◦̃𝜎 is the smallest type 𝜏 ′ such that 𝜏 ∼≤ 𝜎 → 𝜏 ′,
provided 𝜏 is a function type that can be applied to 𝜎 . Since the proof of this result follows the
same idea as the proof of Proposition 6.17, we refer the interested reader to the appendix.

Proposition 6.18. For every gradual types 𝜏, 𝜏 ′, 𝜎 ∈ GTypes, if 𝜏 ∼≤ 0 → 1 and 𝜎 ∼≤ d̃om(𝜏)
then 𝜏 ∼≤ 𝜎 → (𝜏 ◦̃𝜎). Moreover, if 𝜏 ∼≤ 𝜎 → 𝜏 ′ then 𝜏 ◦̃𝜎 ∼≤ 𝜏 ′.

Proof. See appendix page 260. �

Finally, for the projection type operator, we prove that 𝜋1(𝜏) and 𝜋2(𝜏) are respectively the
smallest types 𝜏1 and 𝜏2 such that 𝜏 ∼≤ 𝜏1 × 𝜏2, provided 𝜏 is a pair type.

Proposition 6.19. For every gradual types 𝜏, 𝜏1, 𝜏2 ∈ GTypes, if 𝜏 ∼≤ 1 × 1 then 𝜏 ∼≤ 𝜋1(𝜏) ×
𝜋2(𝜏) and if 𝜏 ∼≤ 𝜏1 × 𝜏2 then 𝜋1(𝜏) ∼≤ 𝜏1 and 𝜋2(𝜏) ∼≤ 𝜏2.

Proof. See appendix page 261. �

6.2.4. Preservation of semantic materialization

Finally, soundness is not the only important property of these operators. We also prove that
they preserve materialization, thus ensuring that applying an operator to the two types of a cast
preserves typability, as in, for example, a reduction rule of the form:

𝜋𝑖 (𝑉 〈𝜏 ⇒𝑝 𝜏 ′〉) { (𝜋𝑖 𝑉 )〈𝜋𝑖 (𝜏) ⇒𝑝 𝜋𝑖 (𝜏 ′)〉

The proof of these results is straightforward, thanks to the denition of semantic materialization
and Proposition 6.3.

Proposition 6.20. For every gradual types 𝜏, 𝜏 ′ ∈ GTypes such that 𝜏 ∼≤ 0 → 1 and 𝜏 ′ ∼≤ 0 →
1, if 𝜏 ∼4 𝜏 ′ then d̃om(𝜏) ∼4 d̃om(𝜏 ′).
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Proof. By Proposition 6.3, we have 𝜏⇓ ¤≤ 𝜏 ′⇓. And by denition of ∼≤ , we have 𝜏⇓ ¤≤ 0 →
1 and 𝜏 ′⇓ ¤≤ 0 → 1. By Proposition 6.12, this entails dom(𝜏 ′⇓) ¤≤ dom(𝜏⇓). Which yields
(d̃om(𝜏 ′))⇑ ¤≤ (d̃om(𝜏))⇑. A similar reasoning on 𝜏⇑ and 𝜏 ′⇑ yields (d̃om(𝜏))⇓ ¤≤ (d̃om(𝜏 ′))⇓,
hence d̃om(𝜏) ∼4 d̃om(𝜏 ′). �

Proposition 6.21. For every gradual types 𝜏, 𝜏 ′, 𝜎 ∈ GTypes such that 𝜏 ∼≤ 0 → 1, 𝜏 ′ ∼≤ 0 →
1, 𝜎 ∼≤ d̃om(𝜏), and 𝜎 ∼≤ d̃om(𝜏 ′), if 𝜏 ∼4 𝜏 ′ then 𝜏 ◦̃𝜎 ∼4 𝜏 ′ ◦̃𝜎 .

Proof. See appendix page 261. �

Proposition 6.22. For every gradual types 𝜏, 𝜏 ′ ∈ GTypes such that 𝜏 ∼≤ 1× 1 and 𝜏 ′ ∼≤ 1× 1,
if 𝜏 ∼4 𝜏 ′ then for every 𝑖 ∈ {1, 2}, 𝜋𝑖 (𝜏) ∼4 𝜋𝑖 (𝜏 ′).

Proof. See appendix page 261. �

6.3. Operational semantics

We can now present our new, enhanced operational semantics for the calculus presented in Sec-
tion 5.3. The terms and evaluation contexts are unchanged. The type system is also unchanged,
except for the three rules involving materialization and subtyping, which now use their semantic
versions, and a slight change to the typing rule for constants, which we introduce and explain
below.

6.3.1. Semantic ground types

The central idea behind this semantics is simple: rather than using intermediate types (or ground
types) to store information about type constructors, we instead use the intersection connective.
Consider a cast function such as 𝑉 〈Int → Int ⇒𝑝 ?〉. The strategy we presented in Chapter 4
and we later adapted in Section 5.3 consisted in splitting the cast by inserting ? → ? as an
intermediate ground type: 𝑉 〈Int → Int ⇒𝑝 ? → ?〉〈? → ? ⇒𝑝 ?〉. Then, depending on
whether this expression is later cast to a compatible or to an incompatible ground type, we either
eliminated the casts we introduced or failed. In essence, ground types were used to check the
compatibility between two type constructors.
The intersection connective can actually perform similar operations in a much simpler way.

To start with, note that every uncast value can either be given type 1 × 1, or 0 → 1, or a base
type 𝑏 (a value cannot be both a pair and a function, for example), which we call its constructor
type. Now, if 𝜏1 and 𝜏2 are two constructor types, then their compatibility can be checked easily
by verifying that 𝜏1 ∧ 𝜏2

∼� 0.
This leaves us with a problem: ensuring that the information about the constructor of a value is

propagated correctly in casts, especially since casts can introduce unions. Otherwise, a sequence
such as𝑉 〈(Int → Int) ∨ (Bool×Bool) ⇒𝑝 ?〉〈? ⇒𝑞 (Bool×Bool)〉 would always be considered
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ne since ((Int → Int) ∨ (Bool × Bool)) ∧ (Bool × Bool) is not empty, and thus the two casts
are compatible. However, if 𝑉 is a function, it is clear that this expression should fail, since it is
trying to cast a function to a pair.
The solution, once again, is to use the intersection connective. When reducing the above

expression, we can perform a syntactic lookup on 𝑉 to deduce its constructor type: if 𝑉 is a
_-abstraction then its constructor type is 0 → 1, if 𝑉 is a pair then its constructor type is 1 × 1,
and if 𝑉 is a constant then its constructor type is simply its (basic) type. Then, we can intersect
all the types in the casts following the value with this top type. Since intersecting a type with
another always produces a smaller type, this operation preserves the type of the expression. In
the case of the expression above, we obtain:

𝑉 〈((Int → Int)∨(Bool×Bool))∧(0 → 1) ⇒𝑝 ?∧(0 → 1)〉〈?∧(0 → 1) ⇒𝑞 (Bool×Bool)∧(0 → 1)〉

or equivalently:
𝑉 〈Int → Int ⇒𝑝 ? ∧ (0 → 1)〉〈? ∧ (0 → 1) ⇒𝑞 0〉

We then notice that we are casting a value to 0, which should obviously fail as no value has type
0, and we can blame the second cast.
With this in mind, the rst major change comes from the denition of values, and more pre-

cisely, cast values.

Denition 6.23 (Values of the cast language). We dene the set Values〈ST〉 of values, ranged
over by 𝑉 , using the following grammar:

Values〈ST〉 3 𝑉 F 𝑐 | _𝜏→𝜏𝑥 . 𝐸 | (𝑉 ,𝑉 ) | Λ®𝛼. 𝐸 | 𝑉 〈𝜏 ⇒𝑝 𝜏〉

where additionally, values of the form 𝑉 〈𝜏 ⇒𝑝 𝜏 ′〉 verify 𝜏 ′ ∼� 0 and either 𝜏 ∨ 𝜏 ′ ∼≤ 0 → 1 or

𝜏 ∨ 𝜏 ′ ∼≤ 1 × 1.

Since we now propagate the information about the constructor type of a value in the casts that
follow it, every value of the form𝑉 〈𝜏 ⇒𝑝 𝜏 ′〉 is such that both 𝜏 and 𝜏 ′ are subtypes of the same
constructor type (which is equivalent to saying that 𝜏 ∨ 𝜏 ′ is a subtype of a constructor type).
Additionally, we forbid 𝜏 ′ to be empty since no values should be of type 0, and in this case the
cast should simply fail, blaming label 𝑝 .

Note that we only consider 0 → 1 and 1× 1 as constructor types in this denition: we do not
include base types. This is because a cast on a constant can always be reduced, there is no need
to wait until a later cast, an application, or a projection to determine whether it should succeed
or not. When reducing a cast constant 𝑐 〈𝜏1 ⇒𝑝 𝜏2〉 we can simply eliminate the cast if 𝑏𝑐 ∧ 𝜏2 is
not empty, and blame 𝑝 otherwise.
As a side eect, this means we eliminate casts such as 3〈Int ⇒𝑝 ?〉: here, the expression

reduces to 3, since𝑏3∧?∼� 0. While not customary in the gradual typing literature, this operation
is sound, as such a cast will never fail. It is usually only kept for the purpose of type preservation,
since 3〈Int ⇒𝑝 ?〉 has type ? but 3 has type Int (or, in our system, the singleton type 𝑏3), which
is not a subtype of ?. However, since casting a constant (or any value) to ? is always a safe
operation, we can simply consider that a constant 𝑐 is always of type 𝑏𝑐 ∧? by replacing the rule
[T〈ST〉

Cst ] presented in Figure 4.5 with the following typing rule:

[T〈ST〉
Cst ]

Γ ` 𝑐 : 𝑏𝑐 ∧ ?
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Using this typing rule, 3 now has type𝑏3∧?, which is a subtype of ?. As such, the above reduction
correctly preserves the type of the expression.

6.3.2. Value operators

As anticipated, the semantics relies on several additional operators, which collect information
about the type and structure of a value.
The rst operator we dene is the constructor operator which associates to every value its con-

structor type, following the intuition we gave previously. This operator will serve to propagate
the constructor type of a value along the casts that follow it.

Denition 6.24 (Constructor operator). We dene the operator cons(.) : Values〈ST〉 →
GTypes as follows:

cons(𝑐) = 𝑏𝑐

cons(_𝜏1→𝜏2𝑥 . 𝐸) = 0 → 1

cons((𝑉1,𝑉2)) = 1 × 1

cons(𝑉 〈𝜏1 ⇒𝑝 𝜏2〉) = cons(𝑉 )
cons(Λ®𝛼. 𝐸) = undened

Note that the constructor operator is not dened for type abstractions. The reason for this
is simple: our semantics requires all type abstractions to be explicitly instantiated before being
cast. In particular, the subtyping relation only acts on types (not type schemes), and as such, an
expression of the form (Λ®𝛼. 𝐸)〈𝜏1 ⇒𝑝 𝜏2〉 is never well typed since Λ®𝛼. 𝐸 cannot have type 𝜏1.

The second operator we need is the value type operator, which performs a syntactic lookup
on a value to determine its most precise type. That is, the type of a _-abstraction is simply its
annotation, the type of a pair of values is the product of the types of its components, the type of
a constant 𝑐 is 𝑏𝑐 ∧? as explained above, and the type of a cast value is the target type of the cast.

Denition 6.25 (Value type operator). We dene the operator type(.) : Values〈ST〉 →
GTypes as follows:

type(𝑐) = 𝑏𝑐 ∧ ?

type(_𝜏1→𝜏2𝑥 . 𝐸) = 𝜏1 → 𝜏2

type((𝑉1,𝑉2)) = type(𝑉1) × type(𝑉2)
type(𝑉 〈𝜏1 ⇒𝑝 𝜏2〉) = 𝜏2

type(Λ®𝛼. 𝐸) = undened

The value type operator is needed for the same reasons as in Section 5.3 when reducing a cast
application. If a function is cast to (Int → Int) ∧ (Bool → Bool) and is applied to a value of type
Int, then the result must be cast to Int (which is the expected type of the application), instead of
Int ∨ Bool (which is the codomain of the type of the function), as the latter would be unsound.
As an example, consider the function _?→?𝑥 . (true〈Bool ⇒𝑝 ?〉) followed by the cast 〈? →

? ⇒𝑞 (Int → Int) ∧ (Bool → Bool)〉 and then applied to 3. If the result were cast to Int ∨ Bool,
we would obtain true〈Bool ⇒𝑝 ?〉〈? ⇒𝑞 Int ∨ Bool〉, which reduces to true. However, since
we can statically deduce that the application is of type Int, this would be unsound. The solution,
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[R〈ST〉
Cons] 𝑉 〈𝜏 ⇒𝑝 𝜏 ′〉 { 𝑉 〈𝜏 ∧ cons(𝑉 ) ⇒𝑝 𝜏 ′ ∧ cons(𝑉 )〉 if 𝜏 ∨ 𝜏 ′ ∼� cons(𝑉 )

[R〈ST〉
Blame] 𝑉 〈𝜏 ⇒𝑝 𝜏 ′〉 { blame 𝑝 if 𝜏 ′ ∼≤ 0

[R〈ST〉
Simpl] 𝑐 〈𝜏 ⇒𝑝 𝜏 ′〉 { 𝑐 if 𝑏𝑐 ∧ ?∼≤ 𝜏 ′

[R〈ST〉
App ] (_𝜏→𝜏′𝑥 . 𝐸)𝑉 { 𝐸 [𝑉 /𝑥]

[R〈ST〉
Proj ] 𝜋𝑖 (𝑉1,𝑉2) { 𝑉𝑖 for 𝑖 ∈ {1, 2}

[R〈ST〉
CApp] (𝑉 〈𝜏 ⇒𝑝 𝜏 ′〉)𝑉 ′ { (𝑉 (𝑉 ′〈d̃om(𝜏 ′) ∧ 𝜎 ⇒𝑝 d̃om(𝜏) ∧ 𝜎〉))〈𝜏 ◦̃ (𝜎 ∧ d̃om(𝜏)) ⇒𝑝 𝜏 ′ ◦̃ (𝜎 ∧ d̃om(𝜏))〉

where 𝜎 = type(𝑉 ′)
[R〈ST〉

CProj] 𝜋𝑖 (𝑉 〈𝜏 ⇒𝑝 𝜏 ′〉) { (𝜋𝑖 𝑉 )〈𝜋𝑖 (𝜏) ⇒𝑝 𝜋𝑖 (𝜏 ′)〉 for 𝑖 ∈ {1, 2}
[R〈ST〉

TApp] (Λ®𝛼. 𝐸) [®𝑡] { 𝐸 [®𝑡/®𝛼]
[R〈ST〉

Let ] let𝑥 =𝑉 in𝐸 { 𝐸 [𝑉 /𝑥]
[R〈ST〉

Ctx ] E [𝐸] { E [𝐸 ′] if 𝐸 { 𝐸 ′

[R〈ST〉
CtxBlame] E [𝐸] { blame 𝑝 if 𝐸 { blame 𝑝

Figure 6.1. Operational semantics of the cast calculus

when reducing a cast application, is to lookup the type of the argument using type(.), and use
this information along with the result type operator ◦̃ to deduce the expected type of the result.
On the above example, we would compute ((Int → Int) ∧ (Bool → Bool)) ◦̃ Int, which evaluates
to Int, and the application would then reduce to true〈Bool ⇒𝑝 ?〉〈? ⇒𝑞 Int〉, which would
properly fail (blaming label 𝑞).

6.3.3. Operational semantics

The full operational semantics of the cast calculus are presented in Figure 6.1, and most of
the rules have already been explained. Rules [R〈ST〉

App ], [R
〈ST〉
Proj ], [R

〈ST〉
TApp], [R

〈ST〉
Let ], [R〈ST〉

Ctx ], and
[R〈ST〉

CtxBlame] are unchanged from Chapter 5 as they do not involve casts. Rule [R〈ST〉
Cons] propa-

gates the information about the constructor type of a value if needed. Rule [R〈ST〉
Blame] fails if a

value is cast to an empty type. Together with [R〈ST〉
Cons], this ensures that if a value is cast to an

incompatible constructor type, then the cast fails. Rule [R〈ST〉
Simpl] performs the simplication of

cast constants we discussed earlier. Rule [R〈ST〉
CProj] reduces the projection of a cast value by simply

applying the projection type operator to both components of the cast.
Rule [R〈ST〉

CApp] is, however, more complicated than anticipated. Similarly to [R〈ST〉
CProj], and fol-

lowing our previous explanation, one could have expected the rule to look like:

(𝑉 〈𝜏 ⇒𝑝 𝜏 ′〉)𝑉 ′ { (𝑉 (𝑉 ′〈d̃om(𝜏 ′) ⇒𝑝 d̃om(𝜏)〉))〈𝜏 ◦̃𝜎 ⇒𝑝 𝜏 ′ ◦̃𝜎〉

where 𝜎 = type(𝑉 ′). That is, we could have simply applied the domain and result type operators
to both components of the cast. However, this does not preserve typability. Consider for example
the expression 𝑉 〈(? → ?) → ? ⇒𝑝 (Int → Int) → Int〉𝑉 ′ where type(𝑉 ′) = Int → Int.
In this expression, we cannot compute ((? → ?) → ?) ◦̃ type(𝑉 ′) because Int → Int is not
a subtype of ? → ?. Therefore, we intersect the type of the argument with the domain of
the function to ensure we can compute the type of the result, which gives a cast of the form
〈𝜏 ◦̃ (𝜎∧ d̃om(𝜏)) ⇒𝑝 𝜏 ′ ◦̃ (𝜎∧ d̃om(𝜏))〉. However, the cast can only be well-typed if it is applied
to an expression of its source type, that is, 𝜏 ◦̃ (𝜎 ∧ d̃om(𝜏)). Thus, we also add an intersection
with 𝜎 on the rst cast, which ensures that the argument can be statically given type d̃om(𝜏) ∧𝜎
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and thus the application𝑉 (𝑉 ′〈d̃om(𝜏 ′)∧𝜎 ⇒𝑝 d̃om(𝜏)∧𝜎〉) can be given type 𝜏 ◦̃ (𝜎∧ d̃om(𝜏)).
While the rule for cast applications is more complicated than anticipated, it must be empha-

sized how the reduction rules are much simpler than the rules presented in Section 5.3. In par-
ticular, operators have straightforward denitions, and the use of the intersection connective in
[R〈ST〉

Cons] removes the need for relative ground types, which is arguably the most complex notion
introduced in Chapter 5.

6.3.4. Properties

The semantics veries the same soundness properties stated in Section 5.3, namely progress,
subject reduction, and blame safety. As before, the latter holds as an immediate corollary of
progress. In this subsection, we provide some insight into the proof of these properties and
detail the required lemmas.
The rst lemma concerns the soundness of the operator type(.): we prove that a value 𝑉 can

indeed be statically given type type(𝑉 ) and, moreover, that type(𝑉 ) is the minimal type that can
be derived by the type system for 𝑉 .

Lemma 6.26. For every value 𝑉 ∈ Values〈ST〉 and every type environment Γ, if Γ ` 𝑉 : 𝜏 then

Γ ` 𝑉 : type(𝑉 ) and type(𝑉 ) ∼≤ 𝜏 .

Proof. See appendix page 261.
The proof is done by a straightforward induction over the derivation Γ ` 𝑉 : 𝜏 and case
analysis over 𝑉 . �

We then obtain two corollaries of this lemma, which are crucial to the soundness of our se-
mantics. The rst result concerns the soundness of cons(.), which is similar to the soundness of
type(.) except that the type cons(𝑉 ) is not minimal.

Lemma 6.27. For every value 𝑉 ∈ Values〈ST〉 and every type environment Γ, if Γ ` 𝑉 : 𝜏 then

Γ ` 𝑉 : cons(𝑉 ).

Proof. Immediate consequence of Lemma 6.26 since for every value 𝑉 , type(𝑉 ) ∼≤ cons(𝑉 ).
�

The second result proves that no value has type 0. This is a critical aspect of semantic subtyp-
ing, and care must be taken to ensure that this holds even in the presence of cast values.

Lemma 6.28. For every value 𝑉 ∈ Values〈ST〉 and every type environment Γ, if Γ ` 𝑉 : 𝜏 then

𝜏 ∼� 0.

Proof. By case analysis, we immediately have that type(𝑉 ) ∼� 0, and we conclude by
Lemma 6.26. �

The next result is fundamental to prove the blame safety of our semantics, and is a major
property of our materialization relation. It states that if a type is non-empty, then making it less
precise (by replacing some of its subterms with ? for example) cannot make it empty. In essence,
this proves that upcasting a value (i.e., casting it to a less precise type) cannot fail. Together with
the correlation between the polarity of blame labels and the direction of casts, this entails the
blame safety of our semantics.

Lemma 6.29. For every types 𝜏1, 𝜏2 ∈ GTypes, if 𝜏1 ∼4 𝜏2 and 𝜏2 ∼� 0 then 𝜏1
∼� 0.
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Proof. By Corollary 6.9, we have 𝜏1
⇓ ¤≤ 𝜏1

⇑. By denition of ∼≤ , this entails 𝜏1 ∼� 0 ⇐⇒
𝜏1

⇑ ¤� 0. By Proposition 6.3, we have 𝜏2⇑ ¤≤ 𝜏1
⇑. And since 𝜏2 ∼� 0, then 𝜏2

⇑ ¤� 0. Therefore,
necessarily 𝜏1⇑ ¤� 0 and 𝜏1 ∼� 0. �

The next result proves the soundness of our strategy of eliminating casts on constants. It
states that for every constant 𝑐 and every type 𝜏 , then either 𝑐 is of type 𝜏 or 𝑐 is of type ¬𝜏 .
This is not the case for functions, for example, since a function of type Bool → Bool is neither
of type Int → Int not ¬(Int → Int), as both intersection (Bool → Bool) ∧ (Int → Int) and
(Bool → Bool) ∧ ¬(Int → Int) are non-empty.

Lemma 6.30. For every type 𝜏 ∈ GTypes, and every constant 𝑐 ∈ C , if 𝑏𝑐 ∧ 𝜏 ∼� 0 then 𝑏𝑐 ∧ ?∼≤ 𝜏 .

Proof. Since (𝑏𝑐 ∧ ?)⇓ = 0, we immediately have (𝑏𝑐 ∧ ?)⇓ ¤≤ 𝜏⇓.
Moreover, (𝑏𝑐 ∧ ?)⇑ = 𝑏𝑐 . By denition of ∼≤ , we have (𝑏𝑐 ∧ 𝜏)⇑ ¤� 0, which entails 𝑏𝑐 ∧
𝜏⇑ ¤� 0. Since È𝑏𝑐É is a singleton, we have either 𝑏𝑐 ¤≤ 𝜏⇑ or 𝑏𝑐 ∧ 𝜏⇑ = 0. Since the latter does
not hold, we have 𝑏𝑐 ¤≤ 𝜏⇑, hence the result. �

Following this lemma, we prove a straightforward result which states that no value is a cast
constant. This will be important when performing a case disjunction on an expression such as
𝑉 〈𝜏1 ⇒𝑝 𝜏2〉: if 𝜏1 is a base type, then necessarily 𝑉 is a constant.

Lemma 6.31. For every value 𝑉 ∈ Values〈ST〉 such that ∅ ` 𝑉 : 𝜏 and cons(𝑉 ) ∈ B, we have

𝑉 ∈ C .

Proof. By induction on 𝑉 .

• 𝑉 = 𝑐. Immediate.

• 𝑉 = 𝑉 ′〈𝜏 ′ ⇒𝑝 𝜏 ′′〉. , where 𝜏 ′∨𝜏 ′′ ∼≤ 0 → 1 or 𝜏 ′∨𝜏 ′′ ∼≤ 1×1. By denition of cons(.),
we have cons(𝑉 ) = cons(𝑉 ′) ∈ B. By IH, there exists 𝑐 ∈ C such that 𝑉 ′ = 𝑐 . By
inversion of the typing rules, we deduce that 𝑏𝑐 ∧ ?∼≤ 𝜏 ′. But since 𝑏𝑐 ∧ ?∼� (1 × 1) ∨
(0 → 1), we have a contradiction.

• The other cases cannot satisfy cons(𝑉 ) ∈ B.

�

We can now state and prove the progress property for our semantics. As in Section 5.3, it states
that a well-typed expression is either a value or can be reduced, and if it reduces to a blame, then
this blame is necessarily positive.

Lemma 6.32 (Progress). For every term 𝐸 ∈ Terms〈ST〉 , if ∅ ` 𝐸 : ∀®𝛼.𝜏 then one of the following

holds:

• there exists 𝐸 ′ ∈ Terms〈ST〉 such that 𝐸 { 𝐸 ′
;

• there exists ℓ ∈ L such that 𝐸 { blame ℓ ;

• 𝐸 ∈ Values〈ST〉 .
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Proof. See appendix page 262.
The proof is done by induction on the derivation ∅ ` 𝐸 : ∀®𝛼.𝜏 and case analysis over the last
rule used. Most cases are straightforward, the most interesting being the cases of [T〈ST〉

Cast+]
and [T〈ST〉

Cast−] when 𝐸 = 𝑉 〈𝜏1 ⇒𝑝 𝜏2〉. If 𝑝 is negative, that is, 𝜏2 ∼4 𝜏1 by rule [T〈ST〉
Cast−], then

Lemma 6.28 ensures that 𝜏1 ∼� 0 since 𝑉 cannot have type 0, and Lemma 6.29 proves that
necessarily 𝜏2 ∼� 0. Thus, 𝑝 cannot be blamed. �

We continue with the lemmas required to prove the subject reduction for our semantics. As
customary, we need three substitution lemmas: one for variables, one for contexts, and one for
type substitutions. They are proven by straightforward inductions on expressions, contexts, and
type derivations respectively.

Lemma 6.33. If Γ, 𝑥 : ∀®𝛼 ′.𝜏 ′ ` 𝐸 : ∀®𝛼.𝜏 , then for every expression 𝐸 ′
such that Γ ` 𝐸 ′ : ∀®𝛼 ′.𝜏 ′, we

have Γ ` 𝐸 [𝐸 ′/𝑥] : ∀®𝛼.𝜏 .

Proof. See appendix page 263. �

Lemma 6.34. If Γ ` E [𝐸] : ∀®𝛼.𝜏 , then Γ ` 𝐸 : ∀®𝛼 ′.𝜏 ′ and for every expression 𝐸 ′
such that

Γ ` 𝐸 ′ : ∀®𝛼 ′.𝜏 ′, we have Γ ` E [𝐸 ′] : ∀®𝛼.𝜏 .

Proof. See appendix page 264. �

Lemma 6.35. If Γ ` 𝐸 : ∀®𝛼.𝜏 , then for every static type substitution \ : V 𝛼 → GTypes such that

dom(\ ) ∩ ®𝛼 = ∅, Γ\ ` 𝐸\ : ∀®𝛼.𝜏\ .

Proof. See appendix page 265. �

Finally, we prove the subject reduction of our semantics. As customary, this states that the
type of an expression is preserved by reduction.

Lemma 6.36 (Subject reduction). For every term 𝐸, 𝐸 ′ ∈ Terms〈ST〉 , if Γ ` 𝐸 : ∀®𝛼.𝜏 and 𝐸 { 𝐸 ′

then Γ ` 𝐸 ′ : ∀®𝛼.𝜏 .

Proof. See appendix page 266.
The proof is done by induction on 𝐸 and case analysis on the reduction rule used for 𝐸 { 𝐸 ′.
Lemma 6.33 proves the result for [R〈ST〉

App ], Lemma 6.35 proves [R〈ST〉
TApp], and the case of [R

〈ST〉
Ctx ]

follows from Lemma 6.34.
The most interesting and dicult case, which we detail here, is the case of rule [R〈ST〉

CApp],
which invokes the soundness lemmas for the various type operators. The case of [R〈ST〉

CProj] is
similar (and simpler), and the remaining cases are straightforward.
For rule [R〈ST〉

Capp], we have (𝑉 〈𝜏1 ⇒𝑝 𝜏2〉)𝑉 ′ { (𝑉 (𝑉 ′〈d̃om(𝜏2) ∧ 𝜎 ⇒𝑝 d̃om(𝜏1) ∧
𝜎〉))〈𝜏1 ◦̃ (𝜎 ∧ d̃om(𝜏1)) ⇒𝑝 𝜏2 ◦̃ (𝜎 ∧ d̃om(𝜏1))〉 where 𝜎 = type(𝑉 ′). Suppose that 𝑝 is
positive. The negative case is proven similarly. By inversion of the typing rules, we have
that there exists 𝜎 ′ and 𝜏 ′ such that:

1 ∅ ` 𝑉 : 𝜏1 2 𝜏1
∼4 𝜏2 3 ∅ ` 𝑉 ′ : 𝜎 ′

4 𝜏2
∼≤ 𝜎 ′ → 𝜏 ′ 5 𝜏 ′ ∼≤∀®𝛼.𝜏
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By Lemma 6.26 and 3 , we deduce that 𝜎 ∼≤ 𝜎 ′. By Proposition 6.17 and 4 , we deduce
𝜎 ′ ∼≤ d̃om(𝜏2), hence 𝜎 ∼≤ d̃om(𝜏2). Thus, by Lemma 6.26, we have ∅ ` 𝑉 ′ : d̃om(𝜏2) ∧𝜎 A .
Proposition 6.20 and 2 ensure d̃om(𝜏1) ∧ 𝜎 ∼4 d̃om(𝜏2) ∧ 𝜎 . Together with A , this proves
∅ ` 𝑉 ′〈d̃om(𝜏2) ∧ 𝜎 ⇒𝑝 d̃om(𝜏1) ∧ 𝜎〉 : d̃om(𝜏1) ∧ 𝜎 B .
By Proposition 6.18, we have 𝜏1 ∼≤ (d̃om(𝜏1) ∧ 𝜎) → 𝜏1 ◦̃ (d̃om(𝜏1) ∧ 𝜎). By [T〈ST〉

Sub ] and 1 ,
along with [T〈ST〉

App ] and B , we deduce that ∅ ` 𝑉 (𝑉 ′〈d̃om(𝜏2) ∧ 𝜎 ⇒𝑝 d̃om(𝜏1) ∧ 𝜎〉) :
𝜏1 ◦̃ (d̃om(𝜏1) ∧ 𝜎) C .
By Proposition 6.21, we deduce that 𝜏1 ◦̃ (d̃om(𝜏1) ∧ 𝜎) ∼4 𝜏2 ◦̃ (d̃om(𝜏1) ∧ 𝜎). Along with
C , this entails ∅ : 𝐸 ′ : 𝜏2 ◦̃ (d̃om(𝜏1) ∧ 𝜎). Finally, 4 and Proposition 6.18 prove
𝜏2 ◦̃ (d̃om(𝜏1) ∧ 𝜎) ∼≤ 𝜏 ′ and the result follows from 5 and [T〈ST〉

Sub ]. �

To conclude this section, our semantics enjoys both the soundness and blame safety properties
stated in Chapter 4, as corollaries of the progress and subject reduction properties.

Theorem 6.37 (Soundness). For every term 𝐸 ∈ Terms〈ST〉 , if ∅ ` 𝐸 : ∀®𝛼.𝜏 then one of the

following holds:

• there exists 𝑉 ∈ Values〈ST〉 such that 𝐸 {∗ 𝑉 and ` 𝑉 : ∀®𝛼.𝜏 ;

• there exists ℓ ∈ L such that 𝐸 {∗ blame ℓ ;

• 𝐸 diverges.

Proof. Immediate consequence of Lemma 6.36 and Lemma 6.32. �

Corollary 6.38 (Blame safety). For every term 𝐸 ∈ Terms〈HM〉
and every blame label ℓ ∈ L , if

∅ ` 𝐸 : ∀®𝛼.𝜏 then 𝐸 6{∗ blame ℓ .

Proof. Immediate consequence of Theorem 6.37. �

6.4. Summary

In this chapter, we considerably improved and simplied the semantics presented in Section 5.3,
and introduced many powerful and interesting results. We summarize these contributions here,
before concluding the rst part of this manuscript.

Semantic relations. First of all, we introduced two new relations, semantic gradual subtyping

and semantic materialization, which are, without doubt, the most important denitions of this
chapter. What dierentiates them from the relations presented in the previous chapters is their
semantic nature: they are dened so that they both induce the same equivalence relation. In
particular, this ensures that two equivalent types (for subtyping) have the same materializations,
which is a crucial property that was missing from our denition of materialization in Chapter 5.

Eicient representation of gradual types. Moreover, we have shown in Chapter 5 (see The-
orem 5.25) that, in the presence of top and bottom types (set-theoretic connectives are not neces-
sary for this result), gradual types have extremal materializations. It turns out that, for the new
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semantic relations, every gradual type can be equated to its extremal materializations, without
any loss of information. This proves that these relations can be easily decided provided static
subtyping also is, since they reduce in linear time to static subtyping (see Denition 6.5 and
Proposition 6.3). Even more importantly, and perhaps surprisingly, given the extremal mate-
rializations of a gradual type, we can reconstruct it (or an equivalent type) using set-theoretic
connectives and a single occurrence of the dynamic type, as shown in Theorem 6.10.

Simple definition of gradual type operators. All these properties were brought together in
Section 6.2. Using the equivalent representation of gradual types, we could devise a very simply
way to “lift” static types operators to gradual types (provided these operators are monotonic),
while preserving all their semantic properties. The proofs of the soundness properties of the
gradual operators are remarkably simple, especially when compared to the proofs of the same
properties for the operators introduced in Chapter 5.

Simple operational semantics. In Chapter 5, set-theoretic types were more of a hindrance
than a help. Accommodating the semantics for their presence required the denition of many
complex notions, especially the grounding operation. In this chapter, we instead we were able to
eciently use set-theoretic types to make the operational semantics of our cast language much
simpler. The notion of ground types is entirely encoded using the intersection connective, and
the operational semantics solely depends on standard notions of semantic subtyping.

Shorter proofs. Last but not least, it must be noted that the proofs of the several properties
presented throughout this chapter are much simpler and shorter than the proofs presented in
Chapter 5. Not only is this a good metric to compare the complexity of the two approaches, it
also is much less error-prone.
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The goal at the origin of this thesis was to combine polymorphic gradual typing and set-theoretic
types. We soon realized that the task was hard, because the systems were intrinsically dierent:
gradual typing is of syntactic nature (“?” is a syntactic placeholder), while set-theoretic types
rely on a semantic-based denition of subtyping. To overcome this discrepancy, the only fea-
sible option seemed to be to give a semantic-oriented interpretation of gradual types: dealing
syntactically with set-theoretic types is unfeasible.
The solution we found to this impasse was to give a semantic interpretation of gradual types

indirectly, by mapping them into sets of types that already had a semantic interpretation, namely
those of Castagna and Xu [14]. Switching to a more semantic-oriented formalization makes all
the chickens come home to roost. We realized that gradual typing, which was hitherto blurred
in the typing rules, could be neatly perceived and captured by a subsumption-like rule using the
preorder on types that we refer to as materialization. We also realized that the materialization
preorder was orthogonal to themuchmore common preorder on types that is subtyping and that,
therefore, the two preorders could be coupled without much interference (but a lot of interplay).
More than that: when, for pedagogical purposes, we studied a restricted version of our system

inChapter 4, we realized that the restriction ofmaterialization to non set-theoretic types yielded a
well-known relation with many names (precision, less-or-equally-informative, naive subtyping).
While the relation was well known, it had never been singled out in a dedicated, structural rule
of the type system. We did so, and thereby we demonstrated how adding the rule [TMater] alone
is enough to endow a declarative type system with graduality. We believe that this declarative
formulation is a valuable contribution to the understanding of gradual typing and complements
the algorithmic systems on which previous work has focused. As an example, materialization
gives a new meaning to the cast calculus: its expressions encode the proofs of the declarative
systems, and casts, in particular, spot the places where [TMater] was used. Casts thus satisfy
much stronger invariants than by using consistency, allowing for a simpler statement of blame
safety.
That said, it is not all a bed of roses. While materialization may enlighten the cast calculus

by a previously unseen logical meaning, to dene its reduction rules in Section 5.3 we had to go
back to the down-and-dirty syntax of types, which is not so easy, especially with set-theoretic
types. This motivated us to pursue some work about the denotational aspects of gradual typing,
which led to a new, more rened, and less syntax-dependent version of materialization, which
proved to be much easier to manipulate. This work will be presented in the second part of this
manuscript. However, since the operational semantics of cast languages is outside the scope
of this second part, we chose to introduce this new denition of the materialization relation in
Chapter 6. The exibility of this new relation allowed us to simplify and improve considerably
the semantics presented in Chapter 5.
Nevertheless, even with a syntactic denition of materialization, we believe that our declar-
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ative formalization makes graduality more intelligible and that our work raises new questions
and opens fresh, unforeseen perspectives, which we discuss towards the end of this chapter.

7.1. Related work

The contributions of this part of the thesis include the replacement of consistency with the ma-
terialization rule and the integration of gradual typing with set-theoretic types (intersection,
union, negation, recursive) and Hindley-Milner polymorphism (with inference). The integration
of all of these features is novel, but prior work has studied the combination of subsets of these
features.

Toro and Tanter [74] introduce a new kind of union type inspired by gradual typing, that
provides implicit downcasts from a union to any of its constituent types. There is some overlap in
the intended use-cases of these gradual union types and our design, though there are considerable
dierences as well, given that our work handles polymorphism and the full range of set-theoretic
types. A similar overlap exists with the work by Jafery and Duneld [41] who introduce gradual
sum types, yet, with the same kind of limitations as Toro and Tanter [74]. Ângelo and Florido
[6] study the combination of gradual typing and intersection types, but in a somewhat limited
form, as the design does not support subtyping or the other set-theoretic types. Ortin and García
[54] also investigate the combination of intersection and union types with gradual typing, but
without higher-order functions and polymorphism.
As discussed in Chapter 3, Siek and Vachharajani [67] showed how to do unication-based

inference in a gradually typed language. Garcia and Cimini [30] took this a step further and pro-
vide inference for Hindley-Milner polymorphism and prove that their algorithm yields principal
types. The work in this part of the thesis builds on this prior work and contributes the additional
insight that a special-purpose constraint solver is not needed to handle gradual typing, but an
o-the-shelf unication algorithm can be used in combination of some pre and post-processing
of the solution. In another line of work, Rastogi et al. [59] develop a ow-based type inference
algorithm for ActionScript to facilitate type specialization and the removal of runtime checks as
part of their optimizing compiler. Campora et al. [10] improve the support for migrating from
dynamic to static typing by integrating gradual typing with variational types. They dene a
constraint-based type inference algorithm that accounts for the combination of these two fea-
tures.
The combination of gradual typing with subtyping has been studied by many authors in the

context of object-oriented languages. Siek and Taha [66] showed how to augment an object
calculus with gradual typing. Their declarative type system uses consistency in the elimination
rules and has a subsumption rule to support subtyping. Their algorithmic type system combines
consistency and subtyping into a single relation, consistent-subtyping. Many subsequent works
adapted consistent-subtyping to dierent settings [40, 9, 71, 47, 31, 46, 77].
There is a long history of type inference with intersection types [63, 44]. The style of type

inference known as soft typing employed union types [11, 5]. The set-constraints of Aiken and
Wimmers [4] employed both intersection and union types. Our work builds on recent results by
Castagna et al. [16] regarding type inference for languages with set-theoretic types and Hindley-
Milner inference. Our work extends their approach to handle gradual typing. The addition of
subtyping to a language presents a signicant challenge for type inference, and there is a long
line of work on this problem [4, 57, 22, 28, 50]. This challenge is intertwinedwith that of inference
with intersection and union types, as we discussed in Section 5.4.
Ours is not the rst line of work that tries to attack the syntactic hegemony currently ruling the
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gradual types community. The rst and, alas hitherto unique, other example of this is the already
cited work of Garcia et al. [31] on “Abstracting Gradual Typing” (AGT) (and its several follow-
ups) which was a source of inspiration for our interpretation of gradual types. AGT uses abstract
interpretation to relate gradual types to sets of static types. This is done via two functions: a
concretization function thatmaps a gradual type 𝜏 into the set of static types obtained by replacing
static types for all occurrences of ? in 𝜏 ; an abstraction function that maps a set of static types
to the gradual type whose concretization best approximates the set. Like AGT, we map gradual
types into sets of static types, although they are dierent from those obtained by concretization,
since we use type variables rather than generic static types. As long as only concretization is
involved, we can follow and reproduce the AGT approach in ours: (1) AGT concretizations of a
type 𝜏 can be dened in our system as the set of static types to which 𝜏 can materialize; (2) this
denition can then be used to give a dierent characterization of the AGT’s consistency relation;
and (3) by using that characterization we can show consistency to be decidable, dene consistent
subtyping, and show that the problem of deciding consistent subtyping in AGT reduces in linear
time to deciding semantic subtyping. But then it is not possible to follow the approach further
since the AGT denition of the abstraction function is inherently syntactic and, thus, is unt to
handle type connectives whose denition is fundamentally of semantic nature. In other terms,
we have no idea about whether —let alone how—AGT could handle set-theoretic types and this is
why we had to nd a new semantic characterizations of constructions that in AGT are smoothly
obtained by a simple application of the abstraction function.
On the topic of gradual typing and polymorphism, there has been considerablework on explicit

parametric polymorphism, in the context of System F [2, 3, 39] and Java Generics [40]. The
presence of rst-class polymorphism, as in System F, requires considerable care in the operational
semantics of a cast calculus. In contrast, the second-class polymorphism (in the sense of Harper
[33]) in this paper does not signicantly impact the operational semantics because casts do not
need to handle the universal type.
The operational semantics for cast calculi are informed by research on runtime contract en-

forcement, especially regarding blame tracking [24]. There is a large body of research on con-
tracts; the most closely related to this paper are the intersection and union contracts of Keil and
Thiemann [43] and the polymorphic contracts of Sekiyama et al. [64].

7.2. Future work

This work lays a foundation for integrating gradual typing and full set-theoretic types and, as
such, it opens many new questions and issues. We detail the two main issues we think would be
interesting to study in the near future.

7.2.1. Intersection types for functions

The rst is to address a restriction we imposed to our system: namely, that it is not possible
to assign intersection types to a function. Forbidding that (other than by subsumption) was an
early design choice of this work, motivated by several reasons: its absence would complicate
the dynamic semantics of the cast calculus; it would make type reconstruction and constraint
solving much more dicult, and it would have probably hindered completeness even for simple
systems; a system without this restriction would have been interesting only if the language had a
type-case construct, which we wanted to avoid for simplicity and for sticking as close as possible
to ML.
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As we discussed in the introduction, some of our previous work [13] featured a system sup-
porting type-cases, gradual typing, and unrestricted intersection types for functions. This led
to very complicated and ad-hoc semantics, which suered from an exponential blow-up during
compilation (one type-case had to be inserted for every sub-intersection of the interface of the
function, which, for an intersection of𝑛 arrow types meant that 2𝑛 type-cases had to be inserted).
Apart from this restriction, the work presented in this part of the manuscript completely sub-
sumes our previous work and features much simpler and intuitive semantics, hence its omission
from the thesis.
However, the drawback is that we have function types that are less expressive than they could

be. For instance, the type deduced for mymap in Chapter 3

Bool → (𝛼 → 𝛽) → ((𝛼 array∨𝛼 list) ∧ ?) → (𝛽 array∨𝛽 list)

is not completely satisfactory insofar as it does not capture the precise correlation between input
and output. As a matter of fact, the following program (which transforms lists into arrays and
viceversa) would get the same type:

let mymap2 (condition) (f) (x : (𝛼 array | 𝛼 list) & ?) =

if condition then Array.to_list(Array.map f x) else Array.of_list(List.map f x)

It would be interesting to remove this restriction in future, so as to allow the system to check
that (the unannotated version of) mymap has the type

Bool → (𝛼 → 𝛽) → ( ((𝛼 array & ?) → 𝛽 array) & ((𝛼 list & ?) → 𝛽 list) )

and that the new mymap2 function has instead type

Bool → (𝛼 → 𝛽) → ( ((𝛼 array & ?) → 𝛽 list) & ((𝛼 list & ?) → 𝛽 array) )

two types where the correlation between the input and the output is more precisely described.
In the long term not only we would like to check the types above, but also we plan to develop
ow analyses that are able to infer such types for code without any type annotation.

7.2.2. Unifying our approach

When we started this work, we were guided by our intuition that ? behaves as a type vari-
able. While we quickly encountered some problems with negation types, we found a solution we
deemed satisfactory (namely, the introduction of the concept of polarization), and this approach
proved to be well-suited to type inference. By reducing materialization to a unication prob-
lem, we could rely on the existing algorithm for tallying to design our type inference algorithm
presented in Section 5.4.
However, for the sake of simplicity, we chose to only add pre- and post-processing steps to

the tallying algorithm instead of truly extending it to support materialization, as this would be
quite a dicult undertaking. This led to a sound but incomplete type inference algorithm, since
we could not guarantee that constraints involving recursive gradual types could be solved using
a nite number of type variables.
Moreover, as we discussed in Section 5.3, this approach proved to also be quite problematic

when dening the semantics of the associated cast language, since the syntactic aspect of mate-
rialization required the introduction of many complex notions. This motivated our subsequent
work on the denotational aspects of gradual typing, which is presented in the second part of this
manuscript.
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This work proved to be fruitful: in Chapter 6, we introduced new versions of both materi-
alization and subtyping. By reducing materialization entirely to static subtyping, we made it
completely independent of the syntax of types, which in turn made it possible to derive much
clearer semantics than the semantics presented in Section 5.3, at the cost of a slight change in
the subtyping relation on static types.
This highlights an obvious direction for future work: introducing the new denitions of ma-

terialization and subtyping right from the start (in the source language) instead of designing the
source language and the cast language around two dierent relations. This would of course pose
new problems for type inference, since materialization constraints could not be solved using
unication anymore. However, materialization constraints could then be rewritten as subtyping
constraints, which would have two important consequences. First, this would remove the need
for the pre- and post-processing steps. Second, constraints would be solved without introducing
new type variables to replace ?, which may in turn restore the completeness of the inference
algorithm.
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Chapter 8.

Introduction

The second part of this manuscript is devoted to denotational semantics. Our work on an opera-
tional semantics for a gradually-typed language with set-theoretic types (presented in Chapter 5)
highlighted a fundamental gap in our understanding of the semantics of gradual types. This mo-
tivated us to study them from a denotational perspective, with the hope of nding a semantic
interpretation of the materialization (or precision) and subtyping relations, which, as we argued
in Part I, are the essence of gradual typing.
However, this was not our only goal. By taking a few steps back, and starting with a simple

_-calculus with set-theoretic types, we hoped to reconcile the interpretation of types in seman-
tic subtyping with the interpretation of terms and values, thus lling in a missing piece in our
understanding of semantic subtyping.

8.1. The denotational semantics of semantic subtyping

As we presented in Chapter 2, semantic subtyping is a technique to dene a subtyping relation
as set-theoretic containment. It consists in interpreting types as sets of values and then dening
one type to be subtype of another if and only if the interpretation of the former is contained in
the interpretation of the latter.

Since a subtyping relation is a pre-order, then it immediately induces the notions of least upper
bound and greatest lower bound of a set of types. It is then natural to use such notions—thus,
the subtyping relation—to characterize, respectively, union and intersection types. This property
was used in the context of XML processing languages by Hosoya, Pierce, and Vouillon [38, 36,
35, 37]: by combining union types with product and recursive types it is easy to encode XML
typing systems such as DTDs or XML Schemas. The work of Hosoya et al., however, had an
important limitation, since it could not dene the subtyping relation for functions types and,
therefore, it could not be used to type languages with higher order functions. This impossibility
resided in a circularity of the denition: to dene subtyping one needs to dene the type of each
value; for non functional values this can be done by induction, but with functional values—i.e.,
_-abstractions—this requires to type the bodies of the functions which, in turn, needs the very
subtyping relation one is dening.

The solution to this circularity problem was found by Frisch et al. [26, 27] and consisted of
three steps: (I) interpret types as sets of elements of some domain D and use this interpretation
to dene a subtyping relation; (II) use the subtyping relation just dened to type a functional
language and in particular its values; (III) show that if we interpret a type as the set of values
of this language that have that type, then this new interpretation induces the same subtyping
relation as the starting one (which interprets types into subsets of the domain D ). To imple-
ment this solution there was a nal important hurdle to clear, that is, to dene a domain D in
which it were possible to give a set-theoretic interpretation of function spaces. We presented a
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possible denition of such a domain in Section 2.3 (Denition 2.19). In this implementation, the
set-theoretic intuition we have of function spaces is that a function is of type 𝑡→𝑠 if whenever
it is applied to a value of type 𝑡 and it returns a result (i.e., the application does not diverge),
then this result is of type 𝑠 . Intuitively, if we interpret functions as binary relations on D , then
the interpretation of 𝑡→𝑠 , noted È𝑡→𝑠É, should be the set of binary relations in which if the
rst projection is in (the interpretation of) 𝑡 , then the second projection is in (the interpretation
of) 𝑠 , namely {𝑓 ⊆ D2 | ∀(𝑑1, 𝑑2) ∈ 𝑓 . 𝑑1 ∈ È𝑡É ⇒ 𝑑2 ∈ È𝑠É }. Note that this set is equiv-

alent to P (È𝑡É×È𝑠É), where the over-line denotes set complement.1 Thus, one would like to

dene È𝑡→𝑠É as P (È𝑡É×È𝑠É), but this would imply that P (D2) ⊆ D , which is impossible for
cardinality reasons. Frisch et al. [26, 27] realized that the three-step solution described above
worked also if one considered only functions with nite graphs, that is, also if we dene È𝑡→𝑠É
as P𝑓 (È𝑡É×È𝑠É), where P𝑓 (𝑆) denotes the set of nite parts of a set 𝑆 , and that was it: since
it is easy to nd a domain that satises P𝑓 (D2) ⊆ D , then we had dened semantic subtyping
also for function types (see [12] for a more extensive explanation and [27] for all the details).
That said, the solution made some readers uneasy. The fact of using nite graph functions to

dene a relation for general function spaces looked more as a technical trick than as a theoretical
breakthrough. Pierre-Louis Curien suggested that the construction was a pied de nez to (it cocked
a snook at) denotational semantics, insofar as it used a semantic construction to dene a language
for which a denotational semantics was not known to exist. The common belief was that the
solution worked because considering all nite functions in the interpretation of a function space
was equivalent to give the nite approximations of the non-nite functions in that space, in the
sameway as, say, Scott domains are built by giving nite approximations of the functions therein.

8.2. Our approach

In this part of the thesis we formalize the above intuition and dene a denotational semantics
for a language with semantic subtyping, in which functions are interpreted as the innite set
of their nite approximations. This yields a model with a simple inductive denition, which
does not need isomorphisms or the solution of domain equation. One of the nice characteristics
of the model we propose is that it does not distinguish between expressions and types. Both
are interpreted as sets of (domain elements representing) values: the set of (all approximations
of) all values typed by a type and the set of (all approximations of) all values produced by an
expression (our interpretation accounts also for non-determinism). This is interesting insofar as
semantic subtyping is particularly suitable to type languages with a type-case construction,2 thus
a denotational semantics that does not distinguish between types and expressions can be more
easily extended to dene the semantics of type-cases (even though there are other problems, as
we will show in Chapter 11).
Dening a formal denotational semantics for CDuce seemed like a daunting task. Thus, we

started by working on a very simple functional core calculus, with pairs and projections but no
type-case construct. Following our goal of interpreting terms and types using the same domain,
it seemed logical to try and dene the semantics of this language using the interpretation domain
of semantic subtyping presented in Section 2.3.

1Strictly speaking, the outermost is the complement w.r.t. D×D , that is, P ((È𝑡É×È𝑠É ∩ (D×D)); however, we will
use this approximation for the sake of clarity.

2Actually, as we explain in Chapter 11 the presence of a type-case is a key ingredient to make the step ( III) of Frisch
et al. [26, 27]’s solution hold.
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This rst approach is presented in Chapter 9. It is based on a very simple idea: the denotational
semantics of a function 𝑓 is simply the set of all the nite relations mapping inputs 𝑥 to outputs
𝑓 (𝑥). For example, the denotational semantics of the successor function _𝑥 :Int. 𝑥 + 1 is the set of
all nite relations of the form {(𝑛, 𝑛 + 1) | 𝑛 ∈ 𝑁 } where 𝑁 ∈ P𝑓 (N). From there, the semantics
of an application is computed by mapping all the elements denoting the argument by all the
relations denoting the left hand side of the application.
This reasoning is only valid for well-typed terms. For example, consider the ill-typed appli-

cation of the successor function to true. Using a standard 𝛽-reduction, this reduces to true + 1,
which is a stuck term. However, following the above reasoning, the denotational semantics of
this application is always empty, since no relation denoting the successor function can map true

to a result. The computational adequacy property (as stated in Theorem 10.20) states that if the
semantics of an expression is empty then it must diverge. Although this property only applies
to well-typed terms, it would be interesting for the semantics to distinguish between diverging
terms and terms that reduce to a stuck expression. Therefore, we need to introduce an element
to denote stuck terms in our semantics. Thankfully, the semantic subtyping approach already
introduces an element symbolizing a type error, which is denoted Ω (see Subsection 2.1.3). Thus,
we formalize the meaning of Ω from a denotational point of view by allowing functions to map
incompatible arguments to Ω.3

While this rst approach seems fairly intuitive, it is not perfect. In particular, since relations
can only map single elements to their results, this approach falls apart as soon as a function is
applied to an argument whose denotation contains multiple elements. As a example, consider
the function _𝑥 :1. (𝑥, 𝑥) which makes a pair from its argument. Intuitively, the semantics of a
pair is obtained by computing the cartesian product of the semantics of its components. This
means that, if we bind 𝑥 to an element 𝑑 in the above function, the semantics of the pair (𝑥, 𝑥)
is exactly the singleton {(𝑑,𝑑)}. This means that the relations denoting this function can only
contain pairs of the form (𝑑, (𝑑,𝑑)). However, if it is applied to an argument 𝑣 whose denotation
contain at least two elements 𝑑1, 𝑑2, then it should be able to return (𝑑1, 𝑑2), as the application
reduces to (𝑣, 𝑣) which contains this denotation. This is reected in the formulation of the weak
computational soundness property (Theorem 9.10) which states that if a term e reduces to a term
e′, then the denotation of e is a subset of but not equal to the denotation of e′.
To solve this problem, we modify the interpretation domain to allow relations to map a -

nite number of inputs to a single output. This second approach is presented in Chapter 10. Of
course, modifying the interpretation domain for our denotational semantics goes against our ini-
tial goal of interpreting types and terms in the same domain. Therefore, we also dene a new
interpretation of types in this domain, which we show induces the same subtyping relation as the
interpretation presented in Section 2.3. The semantics we present in Chapter 10 follows the same
intuition as the semantics presented in Chapter 9, except two occurrences of the same variable
can now be denoted by two dierent approximations of the same value. This allows us to get
back the computational soundness property as expected: if a term e reduces to a term e′, then
their denotations are equal.
We go further by proving the adequacy of our semantics: if the denotation of a term is empty,

then this term diverges. The proof of this property follows a technique inspired by the concept
of logical relations. A logical relation relates expressions with their result, provided both are of a
given type 𝑡 (usually a parameter of the relation). However, we show that since terms and types

3In Chapter 13, we will discuss how we can further formalize the meaning of Ω as an error by introducing what
we call a typed 𝛽-reduction, using which an application is only reduced if the type of the argument is compatible
with the input type of the function.
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are interpreted in the same domain, and since we have an induction principle on the interpreta-
tion domain, we can simplify this technique by directly relating a term with the denotation of its
result.

Having dened sound and adequate semantics for our functional core calculus, we then pro-
ceed in Chapter 11 with our goal of dening a denotational semantics for CDuce . This requires
three additions to our functional core calculus: we must allow functions to be typed with non-
trivial intersection of arrow types; we must add a type-case construct; and we must add some
form of non-determinism.
Adding support for non-deterministic expression is fairly straightforward: we simply extend

the domain withmarks, which are strings denoting the non-deterministic path that led to a result.
In our setting, we consider a binary choice operator choice(e1, e2) that randomly reduces to e1
or to e2. We then consider marks to be strings on the alphabet {𝑙, 𝑟 }, where every character
represents a choice. For example, if a expression is denoted by 3𝑙𝑟 , then it means that it reduces
to 3 provided that the rst choice we encounter reduces to its left hand side, and the second
reduces to its right hand side.
Adding support for type-cases is, also, fairly intuitive. As anticipated, since types and terms

are interpreted as sets of elements of the same domain, comparing the type of the result of an
expression e to a type 𝑡 simply amounts to comparing the denotation of e to the semantic in-
terpretation of 𝑡 using set-containment. Therefore, to compute the semantics of a type-case
(𝑥 = e ∈ 𝑡)? e1 : e2, we simply compute the semantics of e, check whether it is included in the
semantic interpretation of 𝑡 , and compute the semantics of e1 or e2 accordingly.
Most of the diculty lies in the derivation of non-trivial intersection types for functions. To

achieve this, we equip functions with what we call interfaces: instead of only specifying the input
type of a function, we annotate it using an intersection of arrow types. For example, we can
now write _ (Int→Int)∧(Bool→Bool)𝑥 . 𝑥 for the identity function that can both be applied to integers
(returning integers) and to booleans (returning booleans).
Adding support for interfaces in our semantics is dicult for two major reasons. The rst

is that the return type of a function is now made explicit. This means that we must take into
account this new piece of information when dening the semantics of a function. The second
reason is that, to ensure the soundness of the semantics in the presence of type-cases, it is crucial
to ensure that for every value 𝑣 and every type 𝑡 , then either 𝑣 has type 𝑡 or 𝑣 has type ¬𝑡 . This
means, in particular, that if a function cannot be given typeNat → Nat according to its interface,
then it must be of type ¬(Nat → Nat), even if it maps natural numbers to natural numbers. For
example, the function _Nat→Int𝑥 . 𝑥 cannot be given type Nat → Nat by subtyping, so the type
system must be able to give it type ¬(Nat → Nat).
Our solution to these two diculties lies in the extension of nite relations with a new form

of input, and in the addition of explicit negative type annotations to _-abstractions. This allows
us to dene a sound denotational semantics for our language, which, we argue, is still a close
representation of CDuce despite the modications we introduced.

Finally, in Chapter 12, we introduce gradual types. We start by providing a set-theoretic in-
terpretation of gradual types, based on an entirely new interpretation domain which draws in-
spiration from the domains presented in Chapter 10 and Chapter 11.
The main idea behind this new interpretation is to distinguish between the values that always

belong to a type, independently of how the occurrences of ? are rened, and the values that may
belong to a type, provided the occurrences of ? are rened in a certain way. For example, the
value 3 always belong to ? ∨ Int, because it is clear that for every type 𝑡 , it belongs to 𝑡 ∨ Int.
However, it does not always belong to ?, but it may do so, if ? is rened to be a type containing
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3. To distinguish between the two, we introduce tags to our interpretation domain.
Using this interpretation and by interpreting subtyping as set-containment following the se-

mantic subtyping approach, we deduce a subtyping relation on gradual types that satises very
strong properties. Moreover, we also deduce a set-theoretic interpretation of the precision of a
type, which yields a semantic denition of a relation we call materialization, in reference to the
relation of the same name we introduced in the rst part of this manuscript. We prove that sub-
typing and materialization are actually strongly related, as both can be expressed in terms of
subtyping on static types.
Finally, we apply this work to deduce a denotational semantics for a gradually-typed cast

calculus. Due to the complexity of this task, we restrict ourselves to a cast calculus with simple
types. We present in particular a denotational interpretation of casts, by formalizing the action of
a cast on an element of the interpretation domain. To conclude this part, we prove two soundness
results for our semantics.

8.3. Contributions

The main contributions of this part of the thesis can be thus summarized.

• A denotational semantics for functional languages with semantic subtyping (i.e., higher-
order functional languages with type-case expressions and union, intersection, and nega-
tion types) that we prove to be sound. We moreover prove the adequacy of the semantics
restricted to a simple functional core (without type-case expressions).

• A model with a simple domain dened inductively—without resorting to isomorphisms or
the resolution of domain equations—whose elements capture results niteness.

• A new view of continuity: as Scott continuity is a key ingredient to make denotational
semantics provide an extensional view of functional programs, so it seems to us that our
model provides an extensional view of Scott continuity, insofar as it explicitly states that
the essence of computable functions is to map nite enumerations of basis elements of the
argument to nite enumerations of basis elements of the result which, according to Stoy
[70, pp. 97-105], is the very nature of computation (see in particular Condition 6.39 of [70]
and its implications).

• A technique to reconcile two features that rarely t together, namely, the usage of sets of
nite approximations (used to interpret functions) with the usage of set-theoretic comple-
ment (used to interpret negation types).

• An encoding of the language of Frisch et al. [26, 27] into a simpler language in which
recursively dened functions are not primitive but encoded.

• A set-theoretic interpretation of gradual types which entails simple, semantic denitions
of both gradual subtyping and materialization.

• A new view of set-theoretic gradual types as intervals: using the intersection and union
connectives, we highlight a bijection between gradual types and pairs of static types.

• A sound denotational semantics for a simply-typed cast language, which features a deno-
tational interpretation of casts and blame.
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Chapter 9.

A functional core calculus with set-theoretic

types

“A wall is happy when it is well designed, when it rests rmly on

its foundation, when its symmetry balances its part and produces

no unpleasant stresses. Good design can be worked out on the

mathematical principles of mechanics.”

Isaac Asimov, Foundation’s Edge

In this chapter, we dene a denotational semantics for a simple _-calculus with pairs and a limited
use of set-theoretic types, by interpreting terms of this calculus into elements of the domain D

dened in Chapter 2. We hightlight several problems with this approach, which will guide our
subsequent work in Chapter 10.

Chapter Outline

Section 9.1 We present the syntax, type system and operational semantics of our func-
tional core calculus _F, a simply-typed _-calculus that supports a limited use of set-
theoretic types through the use of type annotations on the parameters of _-abstractions.

Section 9.2 We use the interpretation domain of semantic subtyping D to give a de-
notational semantics for _F. This is done in several steps: we rst explain how to give a
semantics to abstractions, then deal with type errors, before providing the full denotational
semantics.

Section 9.3 We state several properties of our denotational semantics, including sound-
ness properties. These properties ensure that our semantics properly implements the op-
erational semantics of _F for non-diverging expressions. We hightlight some issues with
these results, which will motivate the changes presented in the following chapter.

Section 9.4 Wepresent the property of computational adequacy, which is the counterpart
of the soundness properties for diverging expressions. The proof of this result, which uses
a technique inspired by logical relations, will be presented in the next chapter.

9.1. Presentation of _F

9.1.1. Syntax of _F

The functional core calculus _F is a fairly standard simply typed _-calculus equipped with pairs
and which supports a limited use of set-theoretic types. In particular, it is not possible in _F to
assign intersection types to functions, except for trivial ones obtained by subsumption, such as
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(Int → Int) ∧ (0 → 1). This prevents us from using a function with two dierent types, thus
forbidding overloading, which is, arguably, one of the main strengths of set-theoretic types. We
will however handle this point in Chapter 11.
Throughout all this part of the manuscript, we consider the set Types of set-theoretic types to

be dened as in Chapter 2 (Denition 2.2), except we restrict ourselves to monomorphic types.
As a reminder, we have the following denition:

Denition 9.1 (Set-theoretic types). The set Types of set-theoretic types is the set of terms

𝑡 generated coinductively by the following grammar:

Types 3 𝑡 F 𝛼 | 𝑏 | 𝑡 × 𝑡 | 𝑡 → 𝑡 | 𝑡 ∨ 𝑡 | ¬𝑡 | 0 set-theoretic types

where 𝑏 ranges over B and that satisfy the following two conditions:

• (regularity) the term has a nite number of dierent sub-terms;

• (contractivity) every innite branch of a type contains an innite number of occurrences

of the × or→ type constructors.

The terms e ∈ Terms and the values v ∈ Values of _F are dened inductively by the following
grammar

Terms 3 e F 𝑐 | 𝑥 | _𝑥 :𝑡 . e | e e | 𝜋𝑖 e | (e, e)
Values 3 v F 𝑐 | _𝑥 :𝑡 . e | (v, v)

where, additionally, the set Values is restricted to closed well-typed terms for the type system of
Figure 9.1. That is, a term can only be a value if it is closed and well-typed, otherwise it is a stuck
term.
In this denition, 𝑥 ranges over a countable set of variables Vars, 𝑐 over the set of constants

C , and 𝑖 in 𝜋𝑖 ranges over {1, 2}. Moreover, as we stated above, the parameter of a _-abstraction
can and must be explicitly annotated by a set-theoretic type 𝑡 ∈ Types. However, without sub-
sumption, the most precise inferred type for a _-abstraction _𝑥 :𝑡 . e will always be a single arrow
type, with 𝑡 as the domain.

9.1.2. Operational semantics

The operational semantics of _F follows a standard call by value strategy, where evaluation con-
texts implement a left-most outer-most weak reduction strategy. Formally, the reduction rules
are stated in a small-step style as follows.

[RF
app] (_𝑥 :𝑡 . e) v { e [v/𝑥]

[RF
proji

] 𝜋𝑖 (v1, v2) { v𝑖 for 𝑖 ∈ {1, 2}
[RF

ctx] E [e] { E [e′] if e { e′

In these reduction rules, we use the notation e [v/𝑥] to denote the capture-avoiding substitu-
tion of v for the variable 𝑥 in the term e. We use E [e] to denote the term obtained by replacing
the hole of the evaluation context E by the term e. Evaluation contexts are dened inductively
by the following grammar, where [] stands for the hole of the context, implementing the strategy
we stated before.

E F [] | E e | vE | (E , e) | (v, E ) | 𝜋𝑖 E
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[TF
Cst] Γ ` 𝑐 :𝑏𝑐

[TF
Var] Γ ` 𝑥 : Γ(𝑥)

[TF
Sub]

Γ ` e : 𝑡
Γ ` e : 𝑡 ′

𝑡 ≤ 𝑡 ′

[TF
Abs]

Γ, 𝑥 : 𝑡 ` e : 𝑡 ′

Γ ` _𝑥 :𝑡 . e : 𝑡→𝑡 ′
[TF

App]
Γ ` e1 : 𝑡→𝑡 ′ Γ ` e2 : 𝑡

Γ ` e1 e2 : 𝑡 ′

[TF
Pair]

Γ ` e1 : 𝑡1 Γ ` e2 : 𝑡2
Γ ` (e1, e2) : 𝑡1 × 𝑡2

[TF
Proji

]
Γ ` e : 𝑡1 × 𝑡2

Γ ` 𝜋𝑖 e : 𝑡𝑖

Figure 9.1. Typing rules for _F

9.1.3. Type system

To complete the presentation of _F, we now equip it with a type system. The full declarative
denition of the type system is given in Figure 9.1. By declarative, we mean that subtyping is
added as a simple, non-syntax-directed subsumption rule.
Once again, this type system is fairly standard. Statements are of the form Γ ` e : 𝑡 where 𝑡

ranges over set-theoretic types Types and Γ ranges over type environments, that is, nite map-
pings from variables Vars to Types. We use Γ, 𝑥 : 𝑡 to denote the environment obtained by ex-
tending Γ with a mapping from 𝑥 to 𝑡 . In practice, we ensure that no mapping is associated to 𝑥
in Γ beforehand using 𝛼-renaming.

The rule [TF
Cst] makes use of the function 𝑏 (.) : C → B from semantic subtyping that asso-

ciates a base type 𝑏𝑐 to every constant 𝑐 . The rule [TF
Var] simply looks up the type of a variable

𝑥 into the environment Γ, which we denote by Γ(𝑥). As we stated before, there is no rule that
allows us to deduce intersection types for _-abstractions, apart from trivial ones obtained by
subsumption.
As customary for such a calculus, it satises the properties of progress (i.e., every well-typed

term is either a value or can be reduced) and subject-reduction (i.e., the type of a term is preserved
by reduction). As such, it is sound with respect to its type system in the sense of Wright and
Felleisen.

Theorem 9.2 (Type soundness of _F). Let e ∈ Terms. If ∅ ` e : 𝑡 then either e diverges, or

there exists v ∈ Values such that e {∗ v and ∅ ` v : 𝑡 .

Proving the two properties above (and thus the type soundness theorem) for such a standard
calculus is a routine exercise, and can be done by induction on the terms at hand. We will not
detail these proofs in this manuscript (they can be found in [27]).

9.2. Denotational semantics

Now that the type system and the operational semantics of _F have been presented, we are ready
to provide a denotational semantics of _F. Our goal is to dene an interpretation domain and
an interpretation function È.É that associates to every term e of our calculus a set of denotations
taken from the interpretation domain. However, instead of dening a new interpretation domain,
our semantics will map terms of _F into sets of elements ofD , the domain used to dene semantic
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subtyping presented in Chapter 2. This further emphasizes the correspondence between types
and sets of values.

Two main questions arise when dening a denotational semantics for _F using the domain
D , for which we dedicate two subsections. The rst one concerns the semantics of annotated
_-abstractions, since the semantics of a _-abstraction must also depend on its type annotation.
The second one is linked to Ω, which, in our interpretation domain, represents a failure. Such a
failure must be propagated properly in our semantics.

9.2.1. Dealing with annotated _-abstractions

Providing a denotational semantics for _-abstractions is certainly the most dicult part of this
work. For well-foundedness reasons, similar to the reasons found in the set-theoretic interpre-
tation of semantic subtyping, the denotations of _-abstractions must be kept nite. However,
it is clear that a function such as _𝑥 :1. 𝑥 cannot be represented by a single nite relation, as it
maps every value into itself, and there is an innite number of values in our system. Thus, if
we are to base our denotational semantics on the interpretation domain D (in which relations
are always nite), we must necessarily interpret _-abstractions as the innite set of their nite
approximations, similarly to arrow types.
Now, recall that we dened the set-theoretic interpretation of arrow types in Denition 2.5 as

follows:

È𝑡1 → 𝑡2É = {𝑅 ∈ P𝑓 (D × DΩ) | ∀(𝑑, 𝜕) ∈ 𝑅, 𝑑 ∈ È𝑡1É =⇒ 𝜕 ∈ È𝑡2É}

Notice in particular how the right hand side of every pair is constrained to È𝑡2É only if its left hand
side is an element of È𝑡1É, and can be anything otherwise. This is fundamental, as this ensures
the contravariance of semantic subtyping with respect to the domain of arrow types. One might
be tempted to apply the same principle to deduce the denotational semantics of _-abstractions,
stating that the denotational semantics of an abstraction È_𝑥 :𝑡 . eÉ is the set of relations made of
pairs (𝑑, 𝜕) such that, if the input 𝑑 belongs to È𝑡É, then the output 𝜕 belongs to the semantics of
e, provided we somehow bind 𝑥 to the input 𝑑 .
This raises two questions. The rst one has to dowith the binding of variableswhen computing

the denotational semantics. The solution is fairly standard and consists in adding an environment
as a parameter to our semantics. This environment will map variables to denotations, and will
be denoted by 𝜌 . The formal denition of this environment will be presented later on, along with
the full denotational semantics, in Subsection 9.2.3.
The second question is more about personal preference. Consider, for example, the identity

function restricted to integers idInt = _𝑥 :Int. 𝑥 , and suppose that we apply this function in
an ill-typed context, such as idInt true. With the semantics we hinted at, the semantics of
this application would be the set of all possible denotations, including Ω, since the semantics of
idInt would map true to anything. Is this reasonable? Well, this would certainly not impact the
soundness and the adequacy of our semantics, since these results only apply to well-typed terms.
However, it seems quite unexpected that this function can return, for example, 42, when applied
to true. We could get rid of the condition on the input type, and simply ask that for every pair
(𝑑, 𝜕), the result 𝜕 belongs to the semantics of the body of the abstraction; but this then raises
the problem of dierentiating between functions that share the same body with dierent type
annotations.

With this in mind, the solution we chose is to make use of both type annotations and Ω, to
ensure that _-abstractions used in an ill-typed context necessarily return Ω. The denotational
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semantics of abstractions, in terms of an environment 𝜌 : Vars → D , can be given as follows:

È_𝑥 :𝑡 . eÉ𝜌 = {𝑅 ∈ P𝑓 (D × DΩ) | ∀(𝑑, 𝜕) ∈ 𝑅, 𝑑 ∈ È𝑡É =⇒ 𝜕 ∈ ÈeÉ𝜌,𝑥 ↦→𝑑

𝑑 ∉ È𝑡É =⇒ 𝜕 = Ω}

Notice how in particular the environment is used to bind the parameter to the argument using
the notation 𝜌, 𝑥 ↦→ 𝑑 . Moreover, as we stated above, when the input 𝑑 is not of the input type 𝑡 ,
this semantics forces the output to be Ω.

Now that we have given a denotational semantics to _-abstractions, the semantics of applica-
tions is straightforward, and we already heavily hinted at it in the previous paragraphs. Ignoring,
for now, the propagation of Ω (which we will handle in the next subsection), computing the se-
mantics of an application e1 e2 is simply a matter of mapping every denotation of e2 by every
possible denotation of e1. Formally, this yields the following denition:

Èe1 e2É𝜌 = {𝜕 ∈ DΩ | ∃𝑑 ∈ Èe2É𝜌 , 𝑅 ∈ Èe1É𝜌 , (𝑑, 𝜕) ∈ 𝑅} (9.1)

In light of the previous explanation, this denition looks quite intuitive. However, it features
a peculiarity we ought to highlight. While the semantics ensures that a _-abstraction applied
in an ill-typed context will return Ω, it does not guarantee that Ω will be the only result of
the application. Intuitively, this is due to the fact that an application may be well-typed for a
particular denotation of the argument, and ill-typed for another.
Consider, as an example, the functions cstApp = _𝑓 :Nat → Nat. (𝑓 42) and pred = _𝑥 :Int. (𝑥 −

1), of types (Nat → Nat) → Nat and Int → Int respectively. Since Int → Int is not a subtype
of Nat → Nat, the application of cstApp pred is not well-typed. This is reected by the fact that
its semantics contains Ω. Indeed, if we consider the relation {(0,−1)}, which is a denotation
of pred (it is a nite approximation of this function), it is not in ÈNat → NatÉ since it maps a
natural number (0) to a non-natural number (−1). Therefore, according to our semantics, it must
be mapped to Ω in the semantics of cstApp. However, the relation {(42, 41)} is also a denotation
of pred, but this denotation belongs to ÈNat → NatÉ. Therefore, our semantics for cstApp will
map this denotation to 41, and in the end, ÈcstApp predÉ = {Ω, 41}.

9.2.2. Handling failure

We have shown through several examples that the semantics we gave to _-abstractions and to
applications can produce Ω as a result which, intuitively, corresponds to a stuck reduction. The
problem here is that we currently do not propagate such failures. Consider the semantics we gave
to applications in Formula 9.1, and suppose that e1 is ill-typed and that its semantics contains
Ω. In the current state of the semantics, this denotation will simply be ignored when computing
Èe1 e2É𝜌 .

To solve this problem, we introduce a new operator noted Ω
𝜌

(.) that acts on a term under an
environment 𝜌 . The goal of this operator is to simply handle Ω, that is, for every term e ∈ Terms,
Ω

𝜌
e = {Ω} if and only if the denotational semantics of e under the environment 𝜌 contains Ω,

and Ω
𝜌
e = ∅ otherwise.

There are two cases where we want to explicitly add Ω to the semantics of a term e. The rst
case is when Ω appears in the semantics of one of the sub-expressions of e, which we discussed
earlier in the case of the application. The second case occurs when one tries to apply a value that
is not a function, or to project a value that is not a pair. Clearly, both cases are not well-typed
and should produce a type failure. Formally, this yields the following denition of the operator
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Ω (.)
(.) .

Denition 9.3 (Failure operator Ω (.)
(.) ). For every term e ∈ Terms, and every environment

𝜌 : Vars → D , we have Ω
𝜌
e = {Ω} if any of the following conditions holds

1. e ≡ e1 e2 and Ω ∈ Èe1É𝜌 or Èe1É𝜌 ≠ ∅ and Ω ∈ Èe2É𝜌

2. e ≡ e1 e2 where Èe2É𝜌 ≠ ∅ and ∃𝑑 ∈ Èe1É𝜌 such that 𝑑 ∉ P𝑓 (D × DΩ)

3. e ≡ 𝜋𝑖 e′ and Ω ∈ Èe′É𝜌

4. e ≡ 𝜋𝑖 e′ and ∃𝑑 ∈ Èe′É𝜌 such that 𝑑 ∉ D × D

5. e ≡ (e1, e2) and Ω ∈ Èe1É𝜌 or Èe1É𝜌 ≠ ∅ and Ω ∈ Èe2É𝜌

and Ω
𝜌
e = ∅ otherwise.

Cases (1), (3) and (5) correspond to Ω appearing in a sub-expression of an application, a projec-
tion, and a pair, respectively. Cases (2) and (4) correspond to expressions which apply a value
that is not a function, or project a value that is not a pair, respectively. Note that a peculiarity
of case (1) and (5) is that we only propagate a type error occurring in e2 if e1 is non-empty. In-
deed, since we are in a strict setting, and use a left to right reduction strategy, the application
of a diverging expression to an ill-typed argument diverges and will never get stuck. We reect
this fact in case (1) by ensuring that if e1 diverges, then the semantics of e1 e2 is empty, (it does
not even contain Ω, even if e2 is stuck). Similarly for case (2) we require that Èe2É𝜌 ≠ ∅ since
applying a non-functional value to an expression produces a stuck term only if this expression
does not diverge.
Finally, notice that we do not propagate errors occurring inside the body of a _-abstraction:

since our calculus uses a weak reduction strategy, a _-abstraction is always a value and will
therefore never be stuck.

9.2.3. Denotational semantics for _F

Now that we have dealt with the two main diculties of our semantics, we can give its formal
denition. We start with the formal denition of environments.

Denition 9.4 (Semantic environments). A semantic environment is a function Vars → D .

We use Envs to denote the set of such environments, and use 𝜌 to range over this set:

Envs 3 𝜌 : Vars → D

Moreover, given a variable 𝑥 ∈ Vars and a denotation 𝑑 ∈ D , we use the notation 𝜌, 𝑥 ↦→ 𝑑 to

denote the environment obtained by extending 𝜌 with a mapping from 𝑥 to 𝑑 .

As usual, we ensure via 𝛼-renaming that no conict happens when extending environments. We
now give the full denition of our denotational semantics.

Denition 9.5 (Set-theoretic interpretation of _F). Let 𝜌 ∈ Envs. We dene the set-theoretic
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interpretation of _F as a function È.É(.) : Terms → Envs → P𝑓 (DΩ) as follows:

È𝑥É𝜌 = {𝜌 (𝑥)}
È𝑐É𝜌 = {𝑐}

È_𝑥 :𝑡 . eÉ𝜌 = {𝑅 ∈ P𝑓 (D × DΩ) | ∀(𝑑, 𝜕) ∈ 𝑅, 𝑑 ∈ È𝑡É =⇒ 𝜕 ∈ ÈeÉ𝜌,𝑥 ↦→𝑑

𝑑 ∉ È𝑡É =⇒ 𝜕 = Ω}
Èe1 e2É𝜌 = {𝜕 ∈ DΩ | ∃𝑑 ∈ Èe2É𝜌 , 𝑅 ∈ Èe1É𝜌 , (𝑑, 𝜕) ∈ 𝑅} ∪ Ω

𝜌
e1 e2

È𝜋𝑖 eÉ𝜌 = {𝑑𝑖 | (𝑑1, 𝑑2) ∈ ÈeÉ𝜌 } ∪ Ω
𝜌
𝜋𝑖 e

È(e1, e2)É𝜌 = (Èe1É𝜌 \ {Ω}) × (Èe2É𝜌 \ {Ω}) ∪ Ω
𝜌

(e1,e2)

In light of the preceding explanations, most of the rules should be pretty straightforward. The
semantics of a variable 𝑥 is simply the denotation that has been bound to 𝑥 in the current en-
vironment 𝜌 . The semantics of a constant is the singleton that contains this constant only. We
already explained the rules for _-abstractions and applications, simply notice the use of the oper-
ator Ω (.)

(.) in the semantics of the application, which ensures that failures occurring in both sides
of the application are correctly propagated. The semantics of a projection 𝜋𝑖 e simply amounts to
taking all the pairs in the semantics of e, and extracting their 𝑖-th component. If e contains some
element that is not a pair, then the operator Ω (.)

(.) produces a type failure. Finally, the semantics of
a pair is given by the cartesian product of the semantics of each component, provided we remove
all pairs containing Ω since they are not elements of D . Once again, the operator Ω (.)

(.) takes care
of Ω appearing in any of the components.

9.3. Soundness properties

Now that we presented the denotational semantics of _F, we express and prove its soundness.
The soundness of a denotational semantics is two-sided: it must be soundwith respect to both the
type system and the operational semantics of the underlying language. We dedicate a subsection
to each aspect.

9.3.1. Type soundness

Type soundness is the rst part composing the overall soundness of a denotational semantics. It
states that, if a term is well-typed of a given type 𝑡 , then all its denotations “belong to” this type
𝑡 . It is, in a sense, the denotational counterpart to subject reduction for operational semantics.

For our semantics, this is where semantic subtyping truly shines. Since both types and ex-
pressions are interpreted using the same interpretation domain D , checking that a denotation 𝑑
“belongs to” a given type 𝑡 is simply a matter of checking whether 𝑑 ∈ È𝑡É. For closed terms,
type soundness could therefore simply be stated as:

∀e ∈ Terms, ` e : 𝑡 =⇒ ÈeÉ ⊆ È𝑡É

However, we would like to give a slightly stronger version of the theorem, supporting terms
with free variables, well-typed under a type environment Γ. This requires adding a semantic
environment 𝜌 to the previous statement, to give a semantics to the free variables occurring in e.
This semantics cannot be any semantics, they must at least respect the type information given in
the environment Γ. For example, should Γ assign type Int to a variable 𝑥 , then the environment
𝜌 must only assign denotations of integers to 𝑥 . To achieve this, we dene the denotational
interpretation of a type environment as follows.
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Denition 9.6 (Denotational interpretation of Γ). Let Γ ∈ TEnvs. We dene its denotational

interpretation, noted ÈΓÉ, as the function

È.É : TEnvs → P (Envs)
ÈΓÉ = {𝜌 ∈ Envs | ∀𝑥 ∈ Dom (Γ), 𝜌 (𝑥) ∈ ÈΓ(𝑥)É}

Intuitively, given a type environment Γ, ÈΓÉ is the set of all the environments 𝜌 ∈ Envs that map
every variable present in Γ to a denotation compatible with its type. Using this, we can now state
the type soundness theorem for our semantics.

Theorem 9.7 (Type soundness for _F). For every type environment Γ ∈ TEnvs and every

term e ∈ Terms, if Γ ` e : 𝑡 then for every 𝜌 ∈ ÈΓÉ, ÈeÉ𝜌 ⊆ È𝑡É.

This theorem can be proven by standard induction on e. We will not detail the proof in this
chapter, instead we will prove this result for the extension of our denotational semantics in the
next chapter, and prove some conservativity results. Note that since Ω does not belong to the
interpretation of any type, this theorem yields the following immediate corollary:

Corollary 9.8. For every type environment Γ ∈ TEnvs and every term e ∈ Terms, if Γ ` e : 𝑡 then
for every 𝜌 ∈ ÈΓÉ, Ω ∉ ÈeÉ𝜌 .

This corollary partially formalizes the fact that Ω is a type failure and does not occur in the
semantics of a well-typed expression. While interesting, this result is pretty weak since it does
not truly give a meaning to the appearance of Ω in the semantics of a term.
In Chapter 13, we will discuss a way to obtain a much stronger result, provided we slightly

modify our reduction rules to use a typed 𝛽-reduction, usingwhich an application is only reduced
if the type of the argument is compatible with the input type of the function. By introducing such
a rule, we postulate that it is possible to prove that if the semantics of a term contains Ω, then this
term necessarily reduce to a stuck term. Along with Theorem 9.7, such a result would provide a
denotational equivalent of the progress property for operational semantics.

9.3.2. Computational soundness

The second part composing the soundness of a denotational semantics is the computational

soundness. It states that, if a well-typed expression reduces to another expression, then their
semantics are equal. However, this is where our semantics presents a major issue.
Consider the following function, which constructs a pair of identical components: mkPair =

_𝑥 :1. (𝑥, 𝑥). Its semantics can be computed by essentially taking every denotation 𝑑 ∈ D , and
replacing 𝑥 by 𝑑 . That is, its semantics consists in all nite relations containing pairs of the form
(𝑑, (𝑑,𝑑)), for every 𝑑 ∈ D . This is perfectly sound for values that admit only one denotation.
For example, consider the application (mkPair 3): since the denotational semantics of 3 is the
singleton {3}, the semantics of the application is the singleton {(3, 3)}, which correctly model
the fact that the application reduces to the pair (3, 3).
However, consider now the identity function id = _𝑥 :1. 𝑥 (or any value with multiple deno-

tations, for that matter). The semantics of the application (mkPair id) consists in all pairs (𝑑, 𝑑)
where 𝑑 is a denotation of id. Yet, the application reduces to the pair (id, id), whose semantics
comprises all pairs of the form (𝑑1, 𝑑2) such that both 𝑑1 and 𝑑2 are denotations of id (it is the
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cartesian product of the semantics of id with itself). This clearly demonstrates that computa-
tional soundness does not hold for our semantics, simply because our semantics does not allow
us to bind multiple denotations to the same variable, even though these denotations could come
from the same value.

 Remark 9.9. q
In light of this explanation, one could think of imposing an additional restriction on the calculus,

such as requiring all terms to be ane, that is, such that every variable bound in a _-abstraction
appears at most once in its body. This, however, does not solve the problem, as highlighted by the

following, more complicated example: if e = _𝑥 :1. _𝑦:1. 𝑥 , then the semantics of the application

e id contains only relations of the form {(𝑑𝑖 , 𝜕) | 𝑖 ∈ 𝐼 }, that is, relations where the output is
always the same. However, it reduces to _𝑦:1. id whose semantics contains all relations of the

form {(𝑑𝑖 , 𝜕𝑖) | 𝑖 ∈ 𝐼 } where 𝜕𝑖 denotes the identity function. y

We will show how to solve this problem in the next chapter. Nevertheless, we can still state a
weak version of the computational soundness, using set-containment instead of equality:

Theorem 9.10 (Weak computational soundness for _F). For every term e ∈ Terms and every
type environment Γ ∈ TEnvs, if Γ ` e : 𝑡 and e { e′ then for every 𝜌 ∈ ÈΓÉ, ÈeÉ𝜌 ⊆ Èe′É𝜌 .

Notice the requirement for the reduced expression to be well-typed. This is because ill-typed
expressions can reduce to well-typed expressions, thus eliminating Ω from their semantics. For
example, the semantics of the application (_𝑥 :Int. 𝑥) true is the singleton {Ω}. However, it re-
duces to true by 𝛽-reduction, whose semantics is the singleton {true}.
This theorem immediately yields the following corollary, further emphasizing the fact that the

denotations of a program correspond to the value it produces.

Corollary 9.11. For every term e ∈ Terms and every environment Γ ∈ TEnvs, if Γ ` e : 𝑡 and
e {∗ v then for every 𝜌 ∈ ÈΓÉ, ÈeÉ𝜌 ⊆ ÈvÉ𝜌 .

In the following chapter, we will modify the interpretation domain to allow variables to be
bound to multiple elements, and we will prove the above results with equality instead of set-
containment.

9.4. Computational adequacy

Soundness is just one side of the relation between operational and denotational semantics, since
it shows that when an expression converges to a value, then the expression denotes approxima-
tions of that value. It does not provide any information about diverging expressions. This is the
goal of the property of computational adequacy. It states that if an expression diverges, then its
denotation is undened. In our case, this means that its denotation is empty. Formally, this is
expressed by the following theorem:

Theorem 9.12 (Computational adequacy for _F). For every term e ∈ Terms and every envi-

ronment Γ ∈ TEnvs, if Γ ` e : 𝑡 and e diverges then for every 𝜌 ∈ ÈΓÉ, ÈeÉ𝜌 = ∅.

Together with the computational soundness, it fully encompasses the fact that our denotational
semantics properly simulates the operational semantics of _F.
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While this theorem may seem trivial in some calculi, it is not the case in our. This is due to the
presence of recursive types. Let 𝐷 be the smallest type that satises the equation 𝐷 = 𝐷 → 𝐷

(or, using standard ` notation, 𝐷 = `𝛼.𝛼 → 𝛼). This type satises all the conditions for it to be
a valid recursive type in our system. Now consider the function 𝜔 = _𝑥 :𝐷. 𝑥 𝑥 : it is well-typed
in our system, of type 𝐷 → 𝐷 (or simply 𝐷 , which is equivalent). Thus, 𝜔 𝜔 is well-typed of
type 𝐷 and diverges. Since, in the semantic subtyping framework, an arrow type is never empty,
it holds that 𝐷 ≠ 0. Therefore, computational adequacy cannot be proven by showing that all
diverging expressions have type 0.
The proof of computational adequacy is far from obvious, and we prove it by adapting the

technique of logical relations to our system. As for the previous theorems, we will not explain
the proof in this section, instead redirecting the reader to the next chapter.
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Chapter 10.

A second approach to the semantics of _F

“Pour examiner la vérité il est besoin, une fois dans sa vie, de

mettre toutes choses en doute autant qu’il se peut.”

René Descartes, Les Principes de la philosophie

In this chapter, we extend the previous denotational semantics to solve the problem arising from
its computational soundness. The calculus stays the same, however we perform several changes
to the interpretation domain, and adapt the semantics accordingly.

Chapter Outline
Section 10.1 We present a new interpretation domain DF to interpret the terms of _F,
and give a new interpretation of types into this domain. We then briey recall some im-
portant information about the functional core calculus _F, and provide its full denotational
semantics in DF.

Section 10.2 We state several properties of our semantics relating the two interpretation
domains DF and D . This allows us to relate the semantics of _F presented in Chapter 9
with the one presented in this chapter. We also show that the subtyping relations induced
by the two interpretations are equivalent.

Section 10.3 We state and prove the two main properties of our semantics, namely the
full computational soundness and the computational adequacy. We show how to use a
technique inspired by logical relations to prove the computational adequacy for our se-
mantics.

10.1. The new semantics of _F

In the previous chapter, we explained that, to ensure the well-foundedness of our semantics and
its interpretation domain, we chose to denote _-abstractions using possibly innite sets of nite
approximations. While this allowed us to deduce type-sound and adequate semantics for our
functional core calculus, we demonstrated in Subsection 9.3.2 that our semantics only satised a
very weak version of the computational soundness property.

The idea that a value can be represented by its nite approximations is intuitively sound:
in a non-diverging program (and therefore, in a program whose semantics is non-empty), every
value can only be used a nite number of times, and thus can be nitely approximated. Similarly,
since every variable can only be used a nite number of times, it should always be possible to
denote the argument of an application by a single, large enough nite approximation to deduce
its result. As an example, consider, once again, the identity function idInt = _𝑥 :Int. 𝑥 , and the
pair (idInt 2, idInt 3). The semantics of idInt 2 is the singleton {2}, which can be deduced by
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considering the nite approximation {(2, 2)} of idInt. Similarly, the nite approximation {(3, 3)}
of idInt yields that the semantics of idInt 3 is {3}. Therefore, the semantics of the whole pair
can be computed using only the nite approximation {(2, 2), (3, 3)} of idInt. This is a general
principle of our semantics: if two relations are denotations of the same function, then their union
is also a denotation of this function.
This last fact is correctly handled by the semantics given in Chapter 9. However, what our

semantics does not take into account is the fact that, if a relation is a denotation of a function,
then so can be some sub-relations. Indeed, as {(2, 2), (3, 3)} is an approximation of idInt, so are
{}, {(2, 2)} and {(3, 3)}. Going back to the example we presented in the last chapter, consider the
function mkPair = _𝑥 :1. (𝑥, 𝑥), and suppose that we bind 𝑥 to {(2, 2), (3, 3)}. Our semantics only
deduces for (𝑥, 𝑥) the denotation ({(2, 2), (3, 3)}, {(2, 2), (3, 3)}). However, if we bind𝑥 to, say, the
set containing all the approximations {}, {(2, 2)}, {(3, 3)} and {(2, 2), (3, 3)}, then we can deduce
that every combination of these such as ({(2, 2)}, {(3, 3)}) is a denotation of (𝑥, 𝑥). Intuitively,
since a 𝛽-reduction binds a variable to a value, from a denotational point of view the variable
must be bound to the set of approximations denoting the value. However, for cardinality reasons
(which we presented in Subsection 2.1.3), the inputs of a relation must be kept nite, hence we
only bind variables to nite subsets of the approximations denoting a value.
This is the crux of the problem with the semantics presented in Chapter 9. To solve it, we need

to allow functions to manipulate sets of denotations, so that the same variable can be interpreted
as multiple denotations.

10.1.1. Changing the domain

As we hinted at in the introduction, the solution we propose is to modify the interpretation of
functions so that each nite approximation maps nite sets of denotations (rather than single
denotations) into denotations. Intuitively, these nite sets represent a set of possible approxi-
mations of the input. Of course we consider only non-empty nite sets, since there is no value
whose semantics is empty. 1 In order to do that, we dene a new domain DF to interpret the
terms of _F.

Denition 10.1 (Interpretation domain for _F). The interpretation domain DF
is the set of

nite terms 𝑑 produced inductively by the following grammar

𝑑 F 𝑐 | (𝑑,𝑑) | {(𝑆, 𝜕), . . . , (𝑆, 𝜕)}
𝑆 F {𝑑, . . . , 𝑑} (𝑆 not empty and nite)
𝜕 F 𝑑 | Ω

where 𝑐 ranges over the set C of constants and where Ω is such that Ω ∉ DF
.

We also write DF

Ω = DF ∪ {Ω}.

Notice how we did not impose any restriction on 𝑆 : it can be any set of denotations. However,
two denotations are not necessarily compatible, in the sense that they cannot always denote the
same value. For example, no value can be denoted by both 3 and {}, since no value is both an
integer and a function. This is not a problem in our semantics since such sets can simply be
ignored.

1Confusion must be avoided between a diverging expression—whose semantics is empty—with the expression di-
verging on all its arguments—whose semantics is the singleton containing the empty set, and is thus not empty.

162



10.1 The new semantics of _F

Technically, we could stop here and start dening the denotational semantics of _F using DF.
However, types and terms would then be interpreted in two dierent domains (DF for terms and
D for types). This would make reasoning about our semantics much harder. Therefore, we show
how to interpret types into this new domain DF, so that the new interpretation induces the same
subtyping relation as the old one of Denition 2.5 induced by D .

The interpretation of set-theoretic types into this new domain DF is obtained by a really
straightforward modication of Denition 2.5: all we have to do is to modify just the inter-
pretation of arrow types by replacing the input element 𝑑 by an input set 𝑆 ∈ P𝑓 (DF), and use
intersection instead of membership. For the sake of concision, we use F to denote P𝑓 (DF),
the set of nite parts of DF. Intuitively, it boils down to dening the interpretation so that the
following equation holds:

È𝑡1 → 𝑡2ÉF = {𝑅 ∈ P𝑓 (F × DF
Ω) | ∀(𝑆, 𝜕) ∈ 𝑅. 𝑆 ∩ È𝑡1ÉF ≠ ∅ =⇒ 𝜕 ∈ È𝑡2ÉF}

One might wonder why we chose to use the condition 𝑆 ∩ È𝑡1ÉF ≠ ∅ rather than the apparently
much simple condition 𝑆 ⊆ È𝑡1ÉF in this equation. The reason is that the latter does not induce
the same subtyping relation as the one of Denition 2.5. This is discussed in Section 10.2 and in
particular in Remark 10.9.
Of course, due to recursive types, we cannot dene this new interpretation inductively on

types only using this equation, so we provide the following denition:

Denition 10.2 (Set-theoretic interpretation of types in DF). We dene a binary predicate

(𝑑 : 𝑡)F (“the element 𝑑 belongs to the type 𝑡”) where 𝑑 ∈ DF
and 𝑡 ∈ Types, by induction on

the pair (𝑑, 𝑡) ordered lexicographically. The predicate is dened as follows:

(𝑐 : 𝑏)F = 𝑐 ∈ B(𝑏)
((𝑑1, 𝑑2) : 𝑡1 × 𝑡2)F = (𝑑1 : 𝑡1)F and (𝑑2 : 𝑡2)F

({(𝑆1, 𝜕1), . . . , (𝑆𝑛, 𝜕𝑛)} : 𝑡1 → 𝑡2)F = ∀𝑖 ∈ {1..𝑛}. if ∃𝑑 ∈ 𝑆𝑖 . (𝑑 : 𝑡1)F then (𝜕𝑖 : 𝑡2)F

(𝑑 : 𝑡1 ∨ 𝑡2)F = (𝑑 : 𝑡1)F or (𝑑 : 𝑡2)F

(𝑑 : ¬𝑡)F = not (𝑑 : 𝑡)F

(𝜕 : 𝑡)F = false otherwise

We dene the set-theoretic interpretation È.ÉF : Types → P (DF) as È𝑡ÉF = {𝑑 ∈ DF |
(𝑑 : 𝑡)F}.

As we already declared, both this interpretation and the interpretation of Denition 2.5 in-
duce the same subtyping relation, as dened in Denition 2.6 (that is, È𝑡ÉF = ∅ ⇐⇒ È𝑡É = ∅).
Although the dierences between the two models are minimal, proving they induce the same
subtyping relation is not straightforward. We will discuss and prove this fact later on, in Sec-
tion 10.2.

10.1.2. A new interpretation of _-abstractions

Having dened the new domain DF and the new interpretation of types into this domain È.ÉF,
we can now interpret terms of _F into elements of DF. Naturally, the major change between
the new semantic interpretation È.ÉF(.) and the semantics presented in Denition 9.5 will be the
interpretation of _-abstractions. However, as for the interpretation of types, the semantics of
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_-abstractions is obtained by a straightforward modication of Denition 9.5: we replace inputs
𝑑 ∈ D by sets 𝑆 ∈ F , and use containment instead of membership:

È_𝑥 :𝑡 . eÉF𝜌 = {𝑅 ∈ P𝑓 (F × DΩ) | ∀(𝑆, 𝜕) ∈ 𝑅, either 𝑆 ⊆ È𝑡ÉF and 𝜕 ∈ ÈeÉF𝜌,𝑥 ↦→𝑆

or 𝑆 ⊆ È¬𝑡ÉF and 𝜕 = Ω}

This formula features several important changes compared to the formula given in Denition 9.5.
In particular, we now use two conjunctions instead of two implications. The main reason is that,
in Denition 9.5, the conditions 𝑑 ∈ È𝑡É and 𝑑 ∉ È𝑡É where complementary: one and only one
of them always holds. However, since we now manipulate sets, it is also possible for a set to
intersect both È𝑡ÉF and È¬𝑡ÉF, and therefore not to be contained in any of the two. We want to
avoid such sets, which we do by ensuring one of the two inclusions holds.

 Remark 10.3. q
We could have followed the same strategy as for the interpretation of arrow types, by dening

the semantics of _-abstractions as:

È_𝑥 :𝑡 . eÉF𝜌 = {𝑅 ∈ P𝑓 (F × DΩ) | ∀(𝑆, 𝜕) ∈ 𝑅, 𝑆 ∩ È𝑡ÉF ≠ ∅ =⇒ 𝜕 ∈ ÈeÉF
𝜌,𝑥 ↦→𝑆∩È𝑡ÉF

𝑆 ∩ È𝑡ÉF = ∅ =⇒ 𝜕 = Ω}

It is actually possible to prove the soundness and adequacy of the semantics using this denition.

However, it seems counter-intuitive that, for a given function _𝑥 :𝑡 . e, this formula allows some

sets 𝑆 that are not subsets of È𝑡ÉF to be mapped into elements distinct from Ω. We chose to

emphasize the importance of type annotations by forbidding such sets. y

Also notice that, instead of assigning a single denotation to every variable, environments now
map variables to sets of denotations. Thus, we now modify the denition of semantic environ-
ments to reect this change.

Denition 10.4 (Semantic environments). A semantic environment for _F is a function

Vars → P𝑓 (D). We use EnvsF to denote the set of such environments, and use 𝜌 to range

over this set:

EnvsF 3 𝜌 : Vars → P𝑓 (D)

Moreover, given a variable 𝑥 ∈ Vars and a set 𝑆 ∈ P𝑓 (D), we use the notation 𝜌, 𝑥 ↦→ 𝑆 to

denote the environment obtained by extending 𝜌 with a mapping from 𝑥 to 𝑆 .

Finally, it remains to change the semantics of applications to account for the fact that relations
now take sets as input. Once again, this is only a matter of using containment instead of mem-
bership in Denition 9.5:

Èe1 e2ÉF𝜌 = {𝜕 ∈ DF
Ω | ∃𝑅 ∈ Èe1ÉF𝜌 , ∃𝑆 ⊆ Èe2ÉF𝜌 . (𝑆, 𝜕) ∈ 𝑅} ∪ Ω

𝜌
e1 e2

This is where our remark about the absence of restriction on the elements of 𝑆 in Denition 10.2
comes into play. Nothing prevents us from saying that the function mkPair = _𝑥 :1. (𝑥, 𝑥) maps
the set of denotations {2, 3} into the pair (2, 3), for example. However, no expression will ever
admit both 2 and 3 as denotations, therefore, this mapping will never be used in our semantics.
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10.1.3. New denotational semantics of _F

We can now present the new semantics of _F. The terms and type system of this calculus have
already been presented in Chapter 9. As a reminder, the reduction rules are as follows.

[RF
app] (_𝑥 :𝑡 . e) v { e [v/𝑥]

[RF
proji

] 𝜋𝑖 (v1, v2) { v𝑖 for 𝑖 ∈ {1, 2}
[RF

ctx] E [e] { E [e′] if e { e′

Integrating the changes we presented in the previous subsection, the denotational semantics
of _F in DF is dened as follows:

Denition 10.5 (Set-theoretic interpretation of _F in DF). Let 𝜌 ∈ EnvsF. We dene the

set-theoretic interpretation of _F as a function È.ÉF(.) : Terms → EnvsF → P𝑓 (DF

Ω) as follows:

È𝑥ÉF𝜌 = 𝜌 (𝑥)
È𝑐ÉF𝜌 = {𝑐}

È_𝑥 :𝑡 . eÉF𝜌 = {𝑅 ∈ P𝑓 (F × DF

Ω) | ∀(𝑆, 𝜕) ∈ 𝑅, either 𝑆 ⊆ È𝑡ÉF and 𝜕 ∈ ÈeÉF𝜌,𝑥 ↦→𝑆

or 𝑆 ⊆ È¬𝑡ÉF and 𝜕 = Ω}
Èe1 e2ÉF𝜌 = {𝜕 ∈ DF

Ω | ∃𝑆 ⊆ Èe2ÉF𝜌 , 𝑅 ∈ Èe1ÉF𝜌 , (𝑆, 𝜕) ∈ 𝑅} ∪ Ω
𝜌
e1 e2

È𝜋𝑖 eÉF𝜌 = {𝑑𝑖 | (𝑑1, 𝑑2) ∈ ÈeÉF𝜌 } ∪ Ω
𝜌
𝜋𝑖 e

È(e1, e2)ÉF𝜌 = (Èe1ÉF𝜌 \ {Ω}) × (Èe2ÉF𝜌 \ {Ω}) ∪ Ω
𝜌

(e1,e2)

Apart from the changes in the interpretation of _-abstractions and applications we presented
earlier, the denotational semantics of _F in DF mostly identical to its semantics in D presented
in Chapter 9.
The only remaining change is that, now that environments map variables to sets of denota-

tions, the interpretation of a variable is now simply the set it is bound to in the current environ-
ment (instead of a singleton as in Denition 9.5). The operator Ω (.)

(.) is dened as in Denition 9.3,
except using the new domain DF and semantics È.ÉF(.) .

10.2. Basic properties

Before proving the computational soundness and adequacy of the denotational semantics of _F,
we present several properties formalizing the correspondence between the domains D and DF,
as well as between the semantics presented in this chapter and in Chapter 9.

10.2.1. Equivalence of subtyping

We currently have two interpretations of types: one interpreting types as sets of elements of D ,
the other interpreting types as sets of elements of DF. However, as we stated earlier, these two
interpretations actually induce the same subtyping relation. This subsection focuses on the proof
of this fact, which is not straightforward.
As a rst step, we dene two functions 𝐼 : DΩ → DF

Ω and 𝐵 : DF
Ω → DΩ , which we will use

as a bridge between the two domains. The function 𝐼 denes the injection of an element DΩ into
DF

Ω . The intuition behind it is simple: if a relation 𝑅 ∈ DΩ maps an element 𝑑 into a result 𝜕,
then we can consider it as a relation of DF

Ω mapping the singleton {𝐼 (𝑑)} into the injection of
the result 𝐼 (𝜕).
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Denition 10.6 (Injection of 𝑑 ∈ DΩ). We dene the injection function 𝐼 : DΩ → DF

Ω by

induction as follows:

𝐼 (𝑐) = 𝑐

𝐼 ((𝑑1, 𝑑2)) = (𝐼 (𝑑1), 𝐼 (𝑑2))
𝐼 ({(𝑑1, 𝜕1), . . . , (𝑑𝑛, 𝜕𝑛)}) = {({𝐼 (𝑑1)}, 𝐼 (𝜕1)), . . . , ({𝐼 (𝑑𝑛)}, 𝐼 (𝜕𝑛))})

𝐼 (Ω) = Ω

The second function, which we call the basis function 𝐵 : DF
Ω → DΩ , is slightly more complex.

The intuition behind it is to interpret a relation mapping a set 𝑆 of denotations into a result 𝜕 as
a relation mapping every 𝑑 ∈ 𝑆 into the same 𝜕. Of course, this may produce non-deterministic
relations: for example, the basis of a relation mapping {2} into 2 and {2, 3} into 3 will be a non-
deterministic relation mapping 2 into both 2 and 3 (and 3 into 3). However, this is not a problem
as this is not forbidden by our interpretation of types.

Denition 10.7 (Basis of 𝑑 ∈ DF
Ω). We dene the basis function 𝐵 : DF

Ω → DΩ by induction

as follows:

𝐵(𝑐) = 𝑐

𝐵((𝑑1, 𝑑2)) = (𝐵(𝑑1), 𝐵(𝑑2))

𝐵({(𝑆1, 𝜕1), . . . , (𝑆𝑛, 𝜕𝑛)}) =
⋃

𝑖∈{1..𝑛}

⋃
𝑑𝑖 ∈𝑆𝑖

{(𝐵(𝑑𝑖), 𝐵(𝜕𝑖))}

𝐵(Ω) = Ω

As a remark, it is straightforward to verify that 𝐼 maps elements of D into elements of DF, and
that 𝐵 maps elements of DF into elements of D .

The next step is to show that these functions preserve type membership. That is, 𝑑 ∈ È𝑡É if
and only if 𝐼 (𝑑) ∈ È𝑡ÉF, and conversely for 𝐵. Since subtyping is dened as set-containment, this
will ensure that the two denitions of subtyping are equivalent.

Lemma 10.8. For every 𝑡 ∈ Types,

1. ∀𝑑 ∈ D , 𝑑 ∈ È𝑡É ⇐⇒ 𝐼 (𝑑) ∈ È𝑡ÉF

2. ∀𝑑 ∈ DF
, 𝑑 ∈ È𝑡ÉF ⇐⇒ 𝐵(𝑑) ∈ È𝑡É

Proof. Both results are proven by induction on the pair (𝑑, 𝑡) lexicographically ordered, fol-
lowing the inductive denition of (𝑑 : 𝑡) and (𝑑 : 𝑡)F. For both statements, we prove the
whole equivalence using a single induction (rather than separating the two implications),
since the equivalence is needed to handle the case of negation types by induction. Moreover,
we rst handle the cases where 𝑡 is a union or a negation, to eliminate cases that hold vac-
uously (for example, if ((𝑑1, 𝑑2) : 𝑡) and 𝑡 is not a union nor a negation, then 𝑡 is necessary
a product).

1. • (𝑑, 𝑡1 ∨ 𝑡2). Suppose that 𝑑 ∈ È𝑡1 ∨ 𝑡2É. By denition, there exists 𝑖 ∈ {1, 2} such
that 𝑑 ∈ È𝑡𝑖É. By induction hypothesis, 𝐼 (𝑑) ∈ È𝑡𝑖ÉF and thus 𝐼 (𝑑) ∈ È𝑡1 ∨ 𝑡2ÉF.
The same reasoning can be made if 𝐼 (𝑑) ∈ È𝑡1 ∨ 𝑡2ÉF to prove that 𝑑 ∈ È𝑡1 ∨ 𝑡2É.
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• (𝑑,¬𝑡). Suppose that 𝑑 ∈ È¬𝑡É. By denition, this means that 𝑑 ∉ È𝑡É. Using
the induction hypothesis, we deduce that 𝐼 (𝑑) ∉ È𝑡ÉF, thus 𝐼 (𝑑) ∈ È¬𝑡ÉF.
Conversely, if 𝐼 (𝑑) ∈ È¬𝑡ÉF, the same reasoning can be used to prove that 𝑑 ∈
È¬𝑡É.

• (𝑐, 𝑏). Suppose that 𝑐 ∈ È𝑡É, that is, 𝑐 ∈ B(𝑏). By denition, 𝐼 (𝑐) = 𝑐 , and
È𝑏ÉF = È𝑏É thus 𝐼 (𝑐) ∈ È𝑏ÉF. The same reasoning can be used to prove the
converse.

• ((𝑑1, 𝑑2), 𝑡1×𝑡2). Suppose that (𝑑1, 𝑑2) ∈ È𝑡1 × 𝑡2É. Let 𝑖 ∈ {1, 2}. By construction,
𝑑𝑖 ∈ È𝑡𝑖É. By induction, 𝐼 (𝑑𝑖) ∈ È𝑡𝑖ÉF. Thus, 𝐼 ((𝑑1, 𝑑2)) = (𝐼 (𝑑1), 𝐼 (𝑑2)) ∈
È𝑡1 × 𝑡2ÉF. The same reasoning can be used to prove the converse.

• ({(𝑑1, 𝜕1) . . . (𝑑𝑛, 𝜕𝑛)}, 𝑡1 → 𝑡2). Suppose that {(𝑑1, 𝜕1) . . . (𝑑𝑛, 𝜕𝑛)} ∈ È𝑡1 → 𝑡2É.
Let 𝑖 ∈ [1..𝑛]. If 𝐼 (𝑑𝑖) ∈ È𝑡1ÉF, then by induction, 𝑑𝑖 ∈ È𝑡1É. Thus, by hypothesis,
𝜕𝑖 ∈ È𝑡2É, and by induction, 𝐼 (𝜕𝑖) ∈ È𝑡2ÉF. Therefore, 𝐼 ({(𝑑1, 𝜕1) . . . (𝑑𝑛, 𝜕𝑛)}) =
{({𝐼 (𝑑1)}, 𝐼 (𝜕1)) . . . ({𝐼 (𝑑𝑛)}, 𝐼 (𝜕𝑛))} ∈ È𝑡1 → 𝑡2ÉF. The converse can be proven
using the same reasoning.

2. • (𝑑, 𝑡1∨ 𝑡2). Suppose that 𝑑 ∈ È𝑡1 ∨ 𝑡2ÉF. By denition, there exists 𝑖 ∈ {1, 2} such
that 𝑑 ∈ È𝑡𝑖ÉF. By induction hypothesis, 𝐵(𝑑) ∈ È𝑡𝑖É and thus 𝐵(𝑑) ∈ È𝑡1 ∨ 𝑡2É.
The same reasoning can be made if 𝐵(𝑑) ∈ È𝑡1 ∨ 𝑡2É to prove that 𝑑 ∈ È𝑡1 ∨ 𝑡2ÉF.

• (𝑑,¬𝑡). Suppose that 𝑑 ∈ È¬𝑡ÉF. By denition, this means that 𝑑 ∉ È𝑡ÉF. Using
the induction hypothesis, we deduce that 𝐵(𝑑) ∉ È𝑡É, thus 𝐵(𝑑) ∈ È¬𝑡É.
Conversely, if 𝐵(𝑑) ∈ È¬𝑡É, the same reasoning can be used to prove that 𝑑 ∈
È¬𝑡ÉF.

• (𝑐, 𝑏). Suppose that 𝑐 ∈ È𝑡ÉF, that is, 𝑐 ∈ B(𝑏). By denition, 𝐵(𝑐) = 𝑐 , and
È𝑏ÉF = È𝑏É thus 𝐵(𝑐) ∈ È𝑏É. The same reasoning can be used to prove the
converse.

• ((𝑑1, 𝑑2), 𝑡1 × 𝑡2). Suppose that (𝑑1, 𝑑2) ∈ È𝑡1 × 𝑡2ÉF. Let 𝑖 ∈ {1, 2}. By construc-
tion, 𝑑𝑖 ∈ È𝑡𝑖ÉF. By induction, 𝐵(𝑑𝑖) ∈ È𝑡𝑖É. Thus, 𝐵((𝑑1, 𝑑2)) = (𝐵(𝑑1), 𝐵(𝑑2)) ∈
È𝑡1 × 𝑡2É. The same reasoning can be used to prove the converse.

• ({(𝑆1, 𝜕1) . . . (𝑆𝑛, 𝜕𝑛)}, 𝑡1 → 𝑡2). Let us write 𝑅 = {(𝑆1, 𝜕1) . . . (𝑆𝑛, 𝜕𝑛)} and sup-
pose that 𝑅 ∈ È𝑡1 → 𝑡2ÉF. Let (𝑑, 𝜕) ∈ 𝐵(𝑅), and suppose that 𝑑 ∈ È𝑡1É. We
have to show that 𝜕 ∈ È𝑡2É. By denition of the basis, there exists 𝑖 ∈ [1..𝑛] and
𝑑𝑖 ∈ 𝑆𝑖 such that 𝑑 = 𝐵(𝑑𝑖) and 𝜕 = 𝐵(𝜕𝑖). By induction hypothesis, we deduce
that 𝑑𝑖 ∈ È𝑡1ÉF. Thus, È𝑡1ÉF ∩ 𝑆𝑖 ≠ ∅ and by denition 𝜕𝑖 ∈ È𝑡2ÉF. By induction
hypothesis, this ensures that 𝜕 = 𝐵(𝜕𝑖) ∈ È𝑡2É.
Conversely, if 𝐵(𝑅) ∈ È𝑡1 → 𝑡2É, take any 𝑖 ∈ [1..𝑛] such that 𝑆𝑖 ∩È𝑡1ÉF ≠ ∅. Let
𝑑𝑖 ∈ 𝑆𝑖∩È𝑡1ÉF. By denition of the basis, (𝐵(𝑑𝑖), 𝐵(𝜕𝑖)) ∈ 𝐵(𝑅), and by induction
hypothesis, 𝐵(𝑑𝑖) ∈ È𝑡1É. Thus, by denition, this yields 𝐵(𝜕𝑖) ∈ È𝑡2É and by
induction hypothesis, 𝜕𝑖 ∈ È𝑡2ÉF, hence the result.

�

 Remark 10.9. q
This proof highlights the reason we dened the interpretation of arrow types using an intersec-
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tion:

È𝑡1 → 𝑡2ÉF = {𝑅 ∈ P𝑓 (F × DF

Ω) | ∀(𝑆, 𝜕) ∈ 𝑅. 𝑆 ∩ È𝑡1ÉF ≠ ∅ =⇒ 𝜕 ∈ È𝑡2ÉF}

rather than using containment, which would have been more intuitive:

È𝑡1 → 𝑡2ÉF = {𝑅 ∈ P𝑓 (F × DF

Ω) | ∀(𝑆, 𝜕) ∈ 𝑅. 𝑆 ⊆ È𝑡1ÉF =⇒ 𝜕 ∈ È𝑡2ÉF}

However, this second interpretation does not preserves the subtyping relation. For a counter

example, consider the types 𝑡1 = (True → True) ∧ (False → True) and 𝑡2 = Bool → True. It is
straightforward to verify that, for the interpretation of Denition 2.5, 𝑡1 ' 𝑡2. However, consider

the relation 𝑅 = {({true, false}, false)}. Since {true, false} * ÈTrueÉF, it would hold that

𝑅 ∈ ÈTrue → TrueÉF, should we use the second formula above. Similarly, using the same

reasoning, 𝑅 ∈ ÈFalse → TrueÉF also holds. Thus, this would mean that 𝑅 ∈ È𝑡1ÉF. However,
since {true, false} ⊆ ÈBoolÉF, and false ∉ ÈTrueÉF, it would not hold that 𝑅 ∈ È𝑡2ÉF. Hence,
𝑡1 would not be a subtype of 𝑡2 for the new interpretation. y

Finally, using the two functions 𝐼 and 𝐵, as well as the previous lemma, we can easily prove
the equivalence of the subtyping relation induced by the two interpretations.

Theorem 10.10 (Equivalence of subtyping over DF and D ). For every types 𝑡1, 𝑡2 ∈ Types,
È𝑡1É ⊆ È𝑡2É ⇐⇒ È𝑡1ÉF ⊆ È𝑡2ÉF

Proof. Let 𝑡1, 𝑡2 ∈ Types. We proceed by double implication.

1. Suppose that È𝑡1É ⊆ È𝑡2É. Let 𝑑 ∈ È𝑡1ÉF. By Lemma 10.8, this yields 𝐵(𝑑) ∈ È𝑡1É. By
hypothesis, 𝐵(𝑑) ∈ È𝑡2É. And by Lemma 10.8, 𝑑 ∈ È𝑡2ÉF.

2. Suppose that È𝑡1ÉF ⊆ È𝑡2ÉF. Let 𝑑 ∈ È𝑡1É. By Lemma 10.8, this yields 𝐼 (𝑑) ∈ È𝑡1ÉF. By
hypothesis, 𝐼 (𝑑) ∈ È𝑡2ÉF. And by Lemma 10.8, 𝑑 ∈ È𝑡2É.

�

10.2.2. Relating our two denotational semantics

The only task remaining before proving the soundness and adequacy of our new semantics È.ÉF

for _F is to relate it to the semantics presented in the previous chapter.
The idea is simple: we show that, for every term e of _F, if this term can be denoted by a

denotation 𝑑 using the interpretation of Denition 9.5, then it can be denoted by 𝐼 (𝑑) using the
interpretation of Denition 10.5, where 𝐼 is the injection function from Denition 10.6.
However, the result must be proven by induction on the given term e, and for the induction

hypothesis to be strong enough, it is necessary to generalize the result over arbitrary environ-
ments. Therefore, we rst need to relate our two denitions of semantic environments. This is
straightforward and we achieve it by extending the denition of the function 𝐼 to environments.

Denition 10.11 (Injection of environments). We dene the injection of environments as
the function 𝐼 : Envs → EnvsF such that 𝐼 (𝜌) (𝑥) = 𝐼 (𝜌 (𝑥)).

We can now use this denition to formalize the property we stated previously.

168



10.3 Soundness and adequacy

Theorem 10.12 (Conservativity of the semantics). For every term e ∈ Terms, every envi-

ronment 𝜌 ∈ Envs,
𝑑 ∈ ÈeÉ𝜌 =⇒ 𝐼 (𝑑) ∈ ÈeÉF𝐼 (𝜌)

Proof hint. For the full proof, see Theorem A.33 in the Appendix (page 267).
The proof is done by structural induction on e ∈ Terms, where the induction hypothesis is
generalized over 𝜌 .

• e = 𝑐 . Immediate.

• e = 𝑥 . Use Denition 10.11.

• e = _𝑥 :𝑡 . e′. Take 𝑅 ∈ È_𝑥 :𝑡 . e′É𝜌 and consider (𝑆, 𝜕) ∈ 𝐼 (𝑅). Denition 10.6 ensures
that there exists (𝑑0, 𝜕0) ∈ 𝑅 such that 𝑆 = {𝐼 (𝑑0)} and 𝜕 = 𝐼 (𝜕0). Then distinguish two
cases according to whether 𝑑0 ∈ È𝑡É or not, and use Lemma 10.8 and Denition 9.5.

• For all the remaining cases, consider 𝜕 ∈ ÈeÉ𝜌 , and distinguish the cases where 𝜕

comes from Ω
𝜌
e , and conclude each case by induction hypothesis.

�

Since the reduction rules are the same for both calculi, this result ensures the soundness and
adequacy of the semantics presented in Chapter 9 from the corresponding properties of the se-
mantics we present here. In particular, if a term e diverges, then its semantics ÈeÉF𝜌 must be
empty by adequacy of the semantics of Denition 10.5. And the above result guarantees that
ÈeÉ𝜌 is empty too.

10.3. Soundness and adequacy

We can now state and prove the soundness and adequacy of our semantics. We follow the same
strategy as in the previous chapter: we start by its type soundness, then follow with its compu-
tational soundness, and conclude with its adequacy.

10.3.1. Type soundness

Recall that in Section 9.3, we stated the type soundness of _F for open terms typed in arbitrary
environments. This required the denition of an operation È.É which associated to a type envi-
ronment a set of “compatible” semantic environments. We follow the same strategy here, how-
ever, since we changed the denition of semantic environments in the previous section, we also
need to modify the denition of È.É, yielding a new operation È.ÉF.
This new interpretation is straightforward: if a variable 𝑥 is bound to a type 𝑡 in an environ-

ment Γ, then rather than binding it to a single element 𝑑 of È𝑡É, we map it to a subset of È𝑡ÉF.
This yields the following denition:

Denition 10.13 (Denotational interpretation of Γ). Let Γ ∈ TEnvs. We dene its denota-
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tional interpretation, noted ÈΓÉF, as the function

È.ÉF : TEnvs → P (EnvsF)
ÈΓÉF = {𝜌 ∈ EnvsF | ∀𝑥 ∈ Dom (Γ). 𝜌 (𝑥) ⊆ ÈΓ(𝑥)ÉF}

 Remark 10.14. q
According to this denition, there is a “most-general” environment 𝜌 ∈ ÈΓÉF which is the

environment such that for every 𝑥 , 𝜌 (𝑥) = ÈΓ(𝑥)ÉF. All the results that follow are in particular

true for this most-general environment. This once again emphasizes the link between types and

denotations. y

Using this new denition, we can now state and prove the type soundness theorem for _F,
similarly to Theorem 9.7.

Theorem 10.15 (Type soundness for _F). For every type environment Γ ∈ TEnvs and every

term e ∈ Terms, if Γ ` e : 𝑡 then for every 𝜌 ∈ ÈΓÉF, ÈeÉF𝜌 ⊆ È𝑡ÉF.

Proof hint. We only give a brief outline of the proof. For the full proof, see Theorem A.34 in
the Appendix (page 268).
The proof is done by structural induction on e ∈ Terms generalized over Γ, supposing Γ `
e : 𝑡 .

• e = 𝑐 . By inversion of the typing rules, 𝑏𝑐 ≤ 𝑡 , therefore 𝑐 ∈ È𝑡ÉF.

• e = 𝑥 . Apply Denition 10.13.

• e = _𝑥 :𝑡𝑥 . e′. Consider 𝑅 ∈ È_𝑥 :𝑡𝑥 . e′ÉF𝜌 and (𝑆, 𝜕) ∈ 𝑅 such that 𝑆 ∩ È𝑡𝑥ÉF ≠ ∅.
Denition 10.5 ensures that 𝑆 ⊆ È𝑡𝑥ÉF and that 𝜕 ∈ Èe′ÉF𝜌,𝑥 ↦→𝑆 . Apply the generalized
induction hypothesis to Γ, 𝑥 : 𝑡𝑥 ` e′ : 𝑡e and the semantic environment (𝜌, 𝑥 ↦→ 𝑆) to
deduce that 𝜕 ∈ È𝑡eÉF.

• e1 e2. Inversing the typing rules proves that Ω𝜌
e1 e2 = ∅. Then consider 𝜕 ∈ Èe1 e2ÉF𝜌 .

By inversion, there exists 𝑅 ∈ Èe1ÉF𝜌 and 𝑆 ⊆ Èe2ÉF𝜌 such that (𝑆, 𝜕) ∈ 𝑅. Apply the
induction hypothesis to 𝑅 and 𝑆 to deduce the result.

• (e1, e2). Inversing the typing rules proves that Ω𝜌

(e1,e2) = ∅. This yields È(e1, e2)ÉF𝜌 =
Èe1ÉF𝜌 × Èe2ÉF𝜌 , conclude with the induction hypothesis.

• 𝜋𝑖 e′. Inversing the typing rules proves Ω𝜌

𝜋𝑖 e′ = ∅. Then let 𝑑 ∈ È𝜋𝑖 e′ÉF𝜌 , and inverse
the semantics to prove that there exists (𝑑1, 𝑑2) ∈ Èe′ÉF𝜌 such that 𝑑 = 𝑑𝑖 . Apply the
induction hypothesis.

�

Naturally, this theorem immediately yields the same corollary as in the previous chapter, which
formalizes the fact that Ω cannot occur in the semantics of a well-typed expression.

Corollary 10.16. For every type environment Γ ∈ TEnvs and every term e ∈ Terms, if Γ ` e : 𝑡
then for every 𝜌 ∈ ÈΓÉF, Ω ∉ ÈeÉF𝜌 .
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10.3.2. Computational soundness

Having proven the type soundness of our semantics, we continue with its computational sound-
ness. Contrary to Chapter 9 which featured a weak version of this property, this time we state it
using equality instead of set-containment, which is a much stronger result.

Theorem 10.17 (Computational soundness for _F). For every term e ∈ Terms such that

Γ ` e : 𝑡 and every environment 𝜌 ∈ ÈΓÉF, if e { e′ then ÈeÉF𝜌 = Èe′ÉF𝜌 .

We cannot tackle the proof of this theorem immediately without rst proving two important
lemmas, both related to _-abstractions. When considering a 𝛽-reduction (_𝑥 :𝑡 . e) v { e [v/𝑥],
it is clear that we need some kind of substitution lemma. A rst idea could be to prove that
Èe [v/𝑥]ÉF𝜌 = ÈeÉF

𝜌,𝑥 ↦→ÈvÉF𝜌
, however, this result, while true, is not strong enough: when com-

puting the semantics of a _-abstraction, the parameter 𝑥 is always approximated by a nite set
of denotations. Therefore, what we have to prove is that every denotation 𝑑 of e [v/𝑥] can be
obtained by approximating 𝑥 by a nite subset of ÈvÉF𝜌 .
This result is proven in two steps: we rst prove the monotonicity of È.ÉF(.) with respect to

environments, and then prove the substitution lemma.

Lemma 10.18 (Monotonicity lemma). For every term e ∈ Terms, 𝑥 ∈ Vars, 𝜌 ∈ EnvsF, and
𝑆1, 𝑆2 ∈ P (DF), if 𝑆1 ⊆ 𝑆2 then ÈeÉF𝜌,𝑥 ↦→𝑆1

⊆ ÈeÉF𝜌,𝑥 ↦→𝑆2

Proof hint. See Lemma A.35 in the Appendix (page 269) for the full proof.
The proof is done by a straightforward structural induction on e ∈ Terms, generalized over
𝜌 . �

Lemma 10.19 (Substitution lemma). For every term e ∈ Terms, v ∈ Values, 𝑥 ∈ Vars, 𝜌 ∈ EnvsF,

Èe [v/𝑥]ÉF𝜌 =
⋃

𝑆 ∈P𝑓 (ÈvÉF𝜌 )

ÈeÉF𝜌,𝑥 ↦→𝑆

Proof hint. See Lemma A.36 in the Appendix (page 270) for the full proof.
The proof is done by structural induction on e ∈ Terms, generalized over 𝜌 .

• e = 𝑐 . Immediate.

• e = 𝑦. If𝑦 ≠ 𝑥 the result is immediate. Otherwise, if𝑦 = 𝑥 reason by double inclusion.

• e = _𝑦:𝑡 . e′. By denition, Èe [v/𝑥]ÉF𝜌 = È_𝑦:𝑡 . (e′ [v/𝑥])ÉF𝜌 . Proceed by double inclu-
sion.

– Let 𝑅 ∈ Èe [v/𝑥]ÉF𝜌 , and let us write 𝑅 = {(𝑆𝑖 , 𝜕𝑖) | 𝑖 ∈ 𝐼 }. For every 𝑖 ∈ 𝐼 ,
the induction hypothesis yields the existence of a nite set 𝑆v𝑖 ⊆ ÈvÉF𝜌 such
that 𝜕𝑖 ∈ Èe′ÉF𝜌,𝑦 ↦→𝑆𝑖 ,𝑥 ↦→𝑆v

𝑖
. Then consider the union 𝑆v =

⋃
𝑖∈𝐼 𝑆

v
𝑖 and apply

Lemma 10.18 on this union.

– The second inclusion is straightforward by a simple application of the induction
hypothesis.

• e = e1 e2. Reason by double inclusion, and eliminate the cases involving Ω by induc-
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tion hypothesis. Then, apply the induction hypothesis on both e1 and e2 to deduce
the existence of two sets 𝑆1 and 𝑆2 approximating 𝑥 , and conclude by Lemma 10.18 on
𝑆1 ∪ 𝑆2.

• The other cases are treated similarly.

�

Equipped with these two lemmas, we can now tackle the proof of Theorem 10.17.

Proof. The proof is done by structural induction on e ∈ Terms and cases over the reduction
rule used for e { e′.

• [RF
app]. (_𝑥 :𝑡 . e) v { e [v/𝑥]. Since e is well-typed, by inversion of the typing rules,

we have Γ ` v : 𝑡 . We then proceed by double inclusion.

– Note that, by Theorem 10.15, it holds that Ω ∉ ÈvÉF𝜌 . Moreover, by Deni-
tion 10.5, È_𝑥 :𝑡 . eÉF𝜌 ⊆ P𝑓 (F × DF

Ω). Therefore, Ω
𝜌

(_𝑥 :𝑡 . e) v = ∅.
Now let 𝜕 ∈ È(_𝑥 :𝑡 . e) vÉF𝜌 . There exists 𝑅 ∈ È_𝑥 :𝑡 . eÉF𝜌 and 𝑆 ⊆ ÈvÉF𝜌 such that
(𝑆, 𝜕) ∈ 𝑅. By Theorem 10.15, 𝑆 ⊆ È𝑡ÉF. Thus, by Denition 10.5, it holds that
𝜕 ∈ ÈeÉF𝜌,𝑥 ↦→𝑆 . And the result follows from Lemma 10.19.

– Let 𝜕 ∈ Èe [v/𝑥]ÉF𝜌 . By Lemma 10.19, there exists 𝑆 ∈ P𝑓 (ÈvÉF𝜌 ) such that
𝜕 ∈ ÈeÉF𝜌,𝑥 ↦→𝑆 . By Theorem 10.15, it holds that 𝑆 ⊆ È𝑡ÉF. Therefore, {(𝑆, 𝜕)} ∈
È_𝑥 :𝑡 . eÉF𝜌 and the result follows.

• [RF
proji

]. 𝜋𝑖 (v1, v2) { v𝑖 . By hypothesis, e is well-typed, therefore, by inversion of

the typing rules, Γ ` v𝑖 : 𝑡𝑖 for every 𝑖 ∈ {1, 2}. By Theorem 10.15, Ω ∉ Èv1ÉF𝜌 ∪Èv2ÉF𝜌 .
By Denition 10.5, È(v1, v2)ÉF𝜌 ⊆ DF × DF. Therefore, Ω𝜌

𝜋𝑖 (v1,v2) = ∅.
We then deduce that by Denition 10.5, È(v1, v2)ÉF𝜌 = Èv1ÉF𝜌 × Èv2ÉF𝜌 , which immedi-
ately gives that È𝜋𝑖 (v1, v2)ÉF𝜌 = Èv𝑖ÉF𝜌 .

• [RF
ctx]. E [e] { E [e′]. Straightforward by induction and cases over E , considering

Denition 10.5.

�

10.3.3. Computational adequacy

The next property of our semantics is the property of computational adequacy, which states
that if an expression diverges, then its semantics is empty. The statement of the computational
adequacy only applies to well-typed, closed terms, which we call programs. As we will explore in
Chapter 13 (Subsection 13.2.1), there are ill-typed terms in our system whose semantics is empty
but that do not diverge. Although we conjecture that the adequacy still holds for open terms,
proving it would greatly complicate the proofs. This is due to the fact that we prove the adequacy
property by contrapositive: we show that if an element 𝑑 belongs to ÈeÉF𝜌 , then e reduces to a
value v such that 𝑑 belongs to ÈvÉF𝜌 . In the presence of free variables, this simply does not hold:
given an environment 𝜌 such that 𝜌 (𝑥) = {𝑑}, then it is clear that È𝑥ÉF𝜌 contains 𝑑 , but 𝑥 does
not reduce to a value. This problem could be solved by dening head normal forms, and proving
that e reduces, in this case, to a term in normal form. Since the increased complexity of such a
result far outweighs its benets, we choose to limit ourselves to closed terms.
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In the following, we write Prgs for the set of programs of our calculus, that is, the subset of
Terms of closed well-typed terms:

Prgs = {e ∈ Terms | e closed and ∃𝑡 ∈ Types. ` e : 𝑡}

Using this denition, the adequacy theorem is stated as follows:

Theorem 10.20 (Computational adequacy of _F). For every term e ∈ Prgs and every envi-

ronment 𝜌 ∈ EnvsF, if e diverges then ÈeÉF𝜌 = ∅.

As we already hinted at in the previous chapter, the proof of this theorem is non trivial. To
prove the computational adequacy, we draw our inspiration from the technique of logical rela-
tions. A way to understand this technique is that by dening a type-index family of relations,
it provides a way to split a proof on distinct inductions, such as an induction on the types and
an induction on the expressions. In our case, we do not need to dene a type-indexed family
of relations insofar as the elements of the domain DF are inductively dened. We can replace
the induction on types by an induction on these elements: we just need a single relation R that
relates every converging expression e with every element 𝑑 in the semantics of e.
Formally, the proof proceeds as follows. We dene a relation R ⊆ DF × Prgs between the

semantics and the syntax of our calculus. Then, we prove for all programs e and elements 𝑑
that if 𝑑Re, then there exists a value v such that e {∗ v and that 𝑑Rv. Next, we prove for
every program e that if 𝑑 ∈ ÈeÉF𝜌 then 𝑑Re. From both facts we deduce that if e diverges, then
necessarily ÈeÉF𝜌 = ∅: if ÈeÉF𝜌 is not empty, since e is well-typed, its semantics cannot contain
Ω by type soundness. Thus, it must contain another element 𝑑 . This implies that 𝑑Re and thus
that e converges to some value, contradicting the hypothesis that e diverges.
We proceed with the denition of the relation R:

Denition 10.21. We dene the relation R ⊆ DF×Prgs. The relation is noted inx 𝑑Re and
is dened by induction on the lexicographically ordered pair (𝑑, e), that is, the structure of the
element 𝑑 and of the term e. This is done via the following cases:

𝑐Re ⇔ e {∗ 𝑐 (10.1)

(𝑑1, 𝑑2)Re ⇔ 𝑑1R𝜋1 e and 𝑑2R𝜋2 e (10.2)

{}Re ⇔ e {∗ _𝑥 :𝑡 . e′ (10.3)

𝑅 ∪ {(𝑆,Ω)}Re ⇔ 𝑅Re (10.4)

𝑅 ∪ {(𝑆, 𝑑)}Re ⇔ 𝑅Re and �v ∈ Values. ∀𝑑 ′ ∈ 𝑆. 𝑑 ′Rv (10.5)

{(𝑆𝑖 , 𝑑𝑖) | 𝑖 ∈ 𝐼 }𝐼≠∅Re ⇔ ∀𝑖∈𝐼 .
{
∃v ∈ Values. ∀𝑑 ∈ 𝑆𝑖 . 𝑑Rv

∀v ∈ Values. (∀𝑑 ∈ 𝑆𝑖 . 𝑑Rv) ⇒ 𝑑𝑖Re v
(10.6)

As we explained before, this denition can be understood by considering that the relation R

is dened so that, for every element 𝑑 , it satises the following property:

𝑑Re =⇒ e {∗ v and 𝑑 ∈ ÈvÉF𝜌

Let us explain each clause in detail. Clause (10.1) relates 𝑐 with all expressions that reduce to 𝑐;
clause (10.2) relates (𝑑1, 𝑑2) to the expressions that reduce to a pair of values whose denotation
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contains (𝑑1, 𝑑2); since the empty relation is a sound approximation for all functions, then clause
(10.3) relates it with every expression that reduces to a function.

Now to understand the last three clauses, it is important to understand that, since the com-
putational adequacy only applies to terms whose semantics does not contain Ω, a relation 𝑅 can
carry a lot of useless information. For example, knowing that applying an expression e to the
value 1 produces a stuck term tells us very little about the convergence of e. This can occur
when the pair ({1},Ω) is included in a denotation of e. Hence, clause (10.4) removes such use-
less pairs from relations. Similarly, a relation can contain inputs which are not “constructible”,
that is, are not denotations of any value. For example, knowing that the mapping ({1, 2}, 1) is
included in a relation denoting an expression e does not give us any information about e since it
is impossible to apply it to the set of denotations {1, 2} (no value can be denoted by both 1 and
2). Clause (10.5) removes such pairs from relations. Finally, the last clause (10.6) enters in action
only when the other two previous clauses have already “cleansed” an approximation leaving only
pairs with constructible well-typed inputs. It then checks that every input set is constructible
and that for every value denoting this set, applying the expression to this value produces a result
that correctly denotes the output.
Note that the denitions of clauses (10.4) and (10.5) are well-founded: since relations are nite,

by removing pairs from a relation we either obtain an empty relation (on which we can apply
(10.3)), or a relation whose pairs all satisfy the premises of clause (10.6).
We are now almost ready to state the rst important property of our relation, namely that

every expression related to some element converges. However, to prove this crucial property, we
rst need to prove that the relation is “preserved” by reduction.

Lemma 10.22. For all e1, e2 ∈ Prgs and 𝑑 ∈ DF
, if 𝑑Re2 and e1 { e2 then 𝑑Re1.

Proof. By induction on 𝑑 and cases over 𝑑Re2.

• 𝑐Re2. By Denition 10.21, e2 {∗ 𝑐 . Therefore, since e1 { e2, we have e1 {∗ 𝑐 ,
hence the result.

• (𝑑1, 𝑑2)Re2. Let 𝑖 ∈ {1, 2}. By Denition 10.21, 𝑑𝑖R𝜋𝑖 e2. By denition of the re-
duction contexts, 𝜋𝑖 e1 {∗ 𝜋𝑖 e2. By induction hypothesis, 𝑑𝑖R𝜋𝑖 e1, and the result
follows.

• {}Re2. By Denition 10.21, e2 {∗ _𝑥 :𝑡 . e. Therefore, e1 {∗ _𝑥 :𝑡 . e and the result
follows.

• 𝑅 ∪ {(𝑆,Ω)}Re2. By Denition 10.21, 𝑅Re2. By induction hypothesis, 𝑅Re1. Thus,
𝑅 ∪ {(𝑆,Ω)}Re1.

• 𝑅 ∪ {(𝑆, 𝑑)}Re2. Where 𝑅Re2 and �v ∈ Values. ∀𝑑 ′ ∈ 𝑆. 𝑑 ′Rv. By induction hy-
pothesis, 𝑅Re1. Thus, by Denition 10.21, 𝑅 ∪ {(𝑆, 𝑑)}Re1.

• {(𝑆1, 𝑑1), . . . , (𝑆𝑛, 𝑑𝑛)}Re2. Let 𝑖 ∈ {1..𝑛}. By Denition 10.21, there exists v ∈ Values
such that ∀𝑑 ∈ 𝑆𝑖 , 𝑑Rv, and 𝑑𝑖Re2 v. By denition of the reduction contexts, e1 v {∗

e2 v. Therefore, by induction hypothesis, 𝑑𝑖Re1 v, and the result follows.

�

We can now state the rst lemma needed to prove the adequacy property.

174



10.3 Soundness and adequacy

Lemma 10.23. For all e ∈ Prgs and 𝑑 ∈ DF
, if 𝑑Re then e {∗ v and 𝑑Rv.

Proof. By induction on 𝑑 and cases over 𝑑Re.

• 𝑐Re. By Denition 10.21, e {∗ 𝑐 , and 𝑐R𝑐 .

• (𝑑1, 𝑑2)Re. Let 𝑖 ∈ {1, 2}. By Denition 10.21, 𝑑𝑖R𝜋𝑖 e. By induction hypothesis,
𝜋𝑖 e {∗ v𝑖 and 𝑑𝑖Rv𝑖 . By inversion of the reduction rules, e {∗ (v1, v2). And by
Denition 10.21, (𝑑1, 𝑑2)R(v1, v2).

• {}Re. By Denition 10.21, e {∗ _𝑥 :𝑡 . e′, and {}R_𝑥 :𝑡 . e′.

• 𝑅 ∪ {(𝑆,Ω)}Re. By Denition 10.21, 𝑅Re. By induction hypothesis, e {∗ v such
that 𝑅Rv. The result follows from Denition 10.21.

• 𝑅 ∪ {(𝑆, 𝑑)}Re. Where 𝑅Re and �v ∈ Values. ∀𝑑 ′ ∈ 𝑆. 𝑑 ′Rv. By induction hypoth-
esis, e {∗ v′ such that 𝑅Rv′. The result follows from Denition 10.21.

• {(𝑆1, 𝑑1), . . . , (𝑆𝑛, 𝑑𝑛)}Re. Let 𝑖 ∈ {1..𝑛}. By Denition 10.21, there exists v𝑖 ∈ Values
such that ∀𝑑 ∈ 𝑆𝑖 , 𝑑Rv𝑖 . Moreover, v𝑖 satises 𝑑𝑖Re v𝑖 .
By induction hypothesis, there exists v′𝑖 ∈ Values such that e v𝑖 {∗ v′𝑖 and 𝑑𝑖Rv′𝑖 . By
inversion of the reduction rules, this entails e {∗ _𝑥 :𝑡 . e′ where (_𝑥 :𝑡 . e′) v𝑖 {∗ v′𝑖 .
By Lemma 10.22, this ensures that 𝑑𝑖R(_𝑥 :𝑡 . e′) v𝑖 .
Since the reduction of e is independent of 𝑖 and the choice of v𝑖 , this result holds for
every 𝑖 and every value v𝑖 such that ∀𝑑 ∈ 𝑆𝑖 , 𝑑Rv𝑖 . Hence, by Denition 10.21, this
yields {(𝑆1, 𝑑1), . . . , (𝑆𝑛, 𝑑𝑛)}R_𝑥 :𝑡 . e′.

�

The second lemma, which states that if 𝑑 ∈ ÈeÉF𝜌 then 𝑑Re, cannot be proven immediately. It
needs to be strengthened as some form of substitution lemma. The idea behind this substitution
lemma is to state that if 𝑑 is an element of the semantics of a possibly open term e in an envi-
ronment where variables have been bound to the semantics of some values, then 𝑑 is in relation
with e where the variables have been substituted by their corresponding values.

Lemma 10.24 (Adequacy substitution lemma). For every e ∈ Terms, for every 𝜌 ∈ EnvsF,
𝑥1 . . . 𝑥𝑛 ∈ Vars, v1 . . . v𝑛 ∈ Values, and 𝑆1 . . . 𝑆𝑛 ⊆ DF

, if the following conditions hold:

1. vars(e) ⊆ {𝑥1, . . . , 𝑥𝑛}

2. ∀𝑖 ∈ {1..𝑛}.∀𝑑𝑖 ∈ 𝑆𝑖 . 𝑑𝑖Rv𝑖

then for all 𝑑 ∈ ÈeÉF𝜌,𝑥1 ↦→𝑆1 ...𝑥𝑛 ↦→𝑆𝑛
, we have 𝑑Re[v1/𝑥1 . . . v𝑛/𝑥𝑛].

Proof. By induction on e ∈ Terms. For the sake of concision, let us write 𝜌𝑛 = 𝜌, 𝑥1 ↦→
𝑆1 . . . 𝑥𝑛 ↦→ 𝑆𝑛 , and e𝑛 = e[v1/𝑥1 . . . v𝑛/𝑥𝑛].

• e = 𝑐 . We have È𝑐ÉF𝜌𝑛 = {𝑐} and e𝑛 = 𝑐 . By Denition 10.21, 𝑐R𝑐 , hence the result.

• e = 𝑥 . According to the rst condition, necessarily 𝑥 = 𝑥𝑖 for some 𝑖 ∈ {1..𝑛}. We
then have È𝑥𝑖ÉF𝜌𝑛 = 𝑆𝑖 and e𝑛 = v𝑖 . By hypothesis, ∀𝑑 ∈ 𝑆𝑖 , 𝑑Rv𝑖 , hence the result.

• e = _𝑥 :𝑡 . e′. Let 𝑅 ∈ È_𝑥 :𝑡 . e′ÉF𝜌𝑛 . We distinguish four cases.
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1. 𝑅 = {}. By Denition 10.21, we immediately have {}Re𝑛 since e𝑛 is a _-
abstraction.

2. 𝑅 = 𝑅′ ∪ {(𝑆, 𝜕)}. By Denition 10.5, 𝑅′ ∈ È_𝑥 :𝑡 . e′ÉF𝜌𝑛 . Therefore, by induction
hypothesis, 𝑅′Re𝑛 , and the result follows from Denition 10.21.

3. 𝑅 = 𝑅′∪{(𝑆, 𝑑)} where �v ∈ Values such that ∀𝑑 ′ ∈ 𝑆. 𝑑 ′Rv. By Denition 10.5,
𝑅′ ∈ È_𝑥 :𝑡 . e′ÉF𝜌𝑛 . Therefore, by induction hypothesis, 𝑅′Re𝑛 , and the result
follows from Denition 10.21.

4. 𝑅 = {(𝑆1, 𝑑1), . . . , (𝑆𝑛, 𝑑𝑛)} (𝑛≥1) where ∀𝑖 ∈ {1..𝑛}, ∃v ∈ Values such that
∀𝑑 ∈ 𝑆𝑖 . 𝑑Rv.
Let 𝑖 ∈ {1..𝑛}, and a value v ∈ Values such that ∀𝑑 ∈ 𝑆𝑖 . 𝑑Rv. We need to
prove that 𝑑𝑖Re𝑛 v. By Denition 10.5, we have 𝑆𝑖 ⊆ È𝑡ÉF and 𝑑𝑖 ∈ Èe′ÉF𝜌𝑛,𝑥 ↦→𝑆𝑖

.
By [RF

app], we deduce that e𝑛 v { e′[v1/𝑥1 . . . v𝑛/𝑥𝑛] [v/𝑥]. Since values are
closed terms, we have that 𝑥 ♯ v𝑖 for every 𝑖 ∈ {1..𝑛}, which ensures that
Èe′[v1/𝑥1 . . . v𝑛/𝑥𝑛] [v/𝑥]ÉF = Èe′[v1/𝑥1 . . . v𝑛/𝑥𝑛, v/𝑥]ÉF. By induction hy-
pothesis on e′ generalized on 𝜌 , we obtain that 𝑑𝑖Re′[v1/𝑥1 . . . v𝑛/𝑥𝑛, v/𝑥].
Since e𝑛 v {∗ e′[v1/𝑥1 . . . v𝑛/𝑥𝑛, v/𝑥], we deduce from Lemma 10.22 that
𝑑𝑖Re𝑛 v, hence the result.

• e1 e2. Let 𝑑 ∈ Èe1 e2ÉF𝜌𝑛 . By Denition 10.5, there exists 𝑅 ∈ Èe1ÉF𝜌𝑛 and 𝑆 ⊆ Èe2ÉF𝜌𝑛
such that (𝑆, 𝑑) ∈ 𝑅. By induction hypothesis, we obtain that 𝑅Re1 [v1/𝑥1 . . . v𝑛/𝑥𝑛]
and ∀𝑑 ∈ 𝑆. 𝑑Re2 [v1/𝑥1 . . . v𝑛/𝑥𝑛].
Now, by Lemma 10.23, there exists v′1 ∈ Values such that e1 [v1/𝑥1 . . . v𝑛/𝑥𝑛] {∗ v′1
and 𝑅Rv′1. Similarly for e2, there exists v′2 such that e2 [v1/𝑥1 . . . v𝑛/𝑥𝑛] {∗ v′2 and
∀𝑑 ∈ 𝑆. 𝑑Rv′2.
By Denition 10.21, this entails 𝑑Rv′1 v

′
2. Since e𝑛 { v′1 v

′
2, applying Lemma 10.22

ensures that 𝑑Re𝑛 , hence the result.

• (e1, e2). Let 𝑑 ∈ È(e1, e2)ÉF𝜌𝑛 . By Denition 10.5, we have 𝑑 = (𝑑1, 𝑑2) where for
𝑖 ∈ {1, 2}, 𝑑𝑖 ∈ Èe𝑖ÉF𝜌𝑛 . By IH, we have 𝑑𝑖Re𝑖 . Additionally, for every 𝑖 ∈ {1, 2}, we
have 𝜋𝑖 e𝑛 { e𝑖 [v1/𝑥1 . . . v𝑛/𝑥𝑛]. Hence, by Lemma 10.22, we deduce 𝑑𝑖R𝜋𝑖 e𝑛 . By
Denition 10.5, this proves (𝑑1, 𝑑2)R(e1, e2), which is the result.

• 𝜋𝑖 e′. Consider w.l.o.g. that 𝑖 = 1. Let 𝑑1 ∈ ÈeÉF𝜌𝑛 . By Denition 10.5, there exists 𝑑2 ∈
DF such that (𝑑1, 𝑑2) ∈ Èe′ÉF𝜌𝑛 . By IH, we deduce that (𝑑1, 𝑑2)Re′[v1/𝑥1 . . . v𝑛/𝑥𝑛].
Therefore, by Denition 10.21, we deduce that 𝑑1R𝜋1 e′[v1/𝑥1 . . . v𝑛/𝑥𝑛], hence the
result.

�

Equipped with the previous lemma, we can now prove the second part needed to prove the
adequacy of our semantics, namely that an expression with non-empty semantics is related to
the elements in its semantics:

Corollary 10.25. For all e ∈ Prgs, 𝜌 ∈ EnvsF, and 𝑑 ∈ DF
, if 𝑑 ∈ ÈeÉF𝜌 then 𝑑Re.

Proof. Immediate corollary of Lemma 10.24 taking 𝑛 = 0. �

The adequacy theorem is then a simple corollary of Lemma 10.23 and Corollary 10.25.
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10.3 Soundness and adequacy

Proof of Theorem 10.20. By contrapositive. Let e ∈ Prgs and 𝜌 ∈ EnvsF such that ÈeÉF𝜌 ≠ ∅.
Since e is well-typed, by Theorem 10.15, we have Ω ∉ ÈeÉF𝜌 . Therefore, there must exist 𝑑 ∈
DF such that 𝑑 ∈ ÈeÉF𝜌 . By Corollary 10.25, 𝑑Re. By Lemma 10.23, there exists v ∈ Values
such that e {∗ v, which proves that e does not diverge. �
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Chapter 11.

A denotational semantics for CDuce

“Ideals are dangerous things. Realities are better. They wound,

but they’re better.”

Oscar Wilde, Lady Windermere’s Fan

As we discussed in Chapter 8, if we want the subtyping relation dened by the interpretation of
Denition 2.6 to coincide with the model of the values of the language ([27, Theorem 5.2]), then
the language must provide enough values to separate every pair of distinct types. In other terms,
whenever two types do not have the same interpretation in the denotational model, then there
must exist a value in the language that is in one type but not in the other one.
The language dened in the previous chapter does not have enough values to separate every

pair of types that have distinct interpretations according to Denition 2.5. In order to provide
enough values to distinguish semantically dierent types wemust enrich the system of the previ-
ous chapter in three ways: (𝑖) wemust improve the type system to infer (non-trivial) intersection
types for functions, (𝑖𝑖) we must enrich the terms with a typecase expression, and (𝑖𝑖𝑖) we must
add to the language a non-deterministic choice operator. The resulting calculus is the functional
core of the language CDuce [8].

The rst point is necessary to ensure that non-trivial intersections of arrow types can be in-
troduced by the type system, and that they can thus be inhabited by some values of the language.
The second point ensures that some distinct intersections can be separated from each other. Con-
sider for example the type (Int → Bool) ∧ (Bool → Int). Without a form of type introspection,
the only function that inhabits this type is the function that always diverge on both integers and
booleans, thus making it indistinguishable from the type (Bool ∨ Int) → 0. On the other hand,
the third point ensures that some distinct union types can be separated. This is the case for ex-
ample with the types true → Bool and (true → true) ∨ (true → false). Without a means of
non-deterministically returning two dierent results, any function applied to true and returning
a boolean would either always return true (thus having type true → true) or always return
false (thus having type true → false).
In this chapter, we extend the denotational semantics presented in the previous chapter, fol-

lowing these three directions. We also highlight several problems related to the interpretation of
negations types: denotational semantics often rely on the fact that types are interpreted as ide-
als, yet, as we anticipated in Chapter 2, negation types are not interpreted as ideals in semantic
subtyping (the complement of an ideal is not an ideal). However, by forcing negation types to
be introduced explicitly via type annotations, we deduce a sound denotational semantics for the
functional core of CDuce .

Chapter Outline

Section 11.1 In this section, we add support for the inference of intersection types for
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functions. We change the syntax of _-abstractions to add interfaces, and adapt the type
system in consequence. We show how to deduce negation types for functions while keep-
ing the soundness of the semantics, thus reconciling the interpretation of negation types
with the semantics.

Section 11.2 We extend our system to support typecases, which are a form of conditional
branching allowing for type introspection, a necessary feature to ensure that some distinct
intersection types can be separated from each other.

Section 11.3 We next extend our system to support a form of non-determinism. We
show how we can extend the interpretation domain withmarks, whose goal is to interpret
non-deterministic computations.

Section 11.4 We summarize the previous sections by providing the formal syntax, type
system, operational semantics, and denotational semantics of the language. We then prove
the soundness of our semantics.

Section 11.5 We discuss the introduction of negation types in the interfaces of _-
abstractions. While our language and type system do not exactly correspond to the system
of Frisch et al. [27], we show that we can still reconcile the two by inferring negation types
based on the static type information present in a program.

Section 11.6 Finally, we conclude by briey summarizing the main contributions of this
chapter.

11.1. Inferring intersection types for functions

As anticipated the only way to deduce an intersection type for a _-abstraction in the system of
Chapter 10 is to use subsumption. So for instance, for _𝑥 :Int∨Bool. 𝑥 , the system of Chapter 10
can deduce the type Int∨Bool → Int∨Bool but not the type (Int → Int) ∧ (Bool → Bool) which
is more precise (it is a subtype of the former, and, thus, subsumption cannot be used to infer it),
while being a sound abstraction of the function above (since the identity function maps integers
to integers and Booleans to Booleans).
As a matter of fact, the only _-abstractions in the previous system for which we can deduce

the type (Int → Int) ∧ (Bool → Bool) are all equivalent to _𝑥 :𝑡 .⊥, that is, they are the functions
that diverge on all arguments of type 𝑡 , for any 𝑡 supertype of Int∨Bool (equivalently, they are
the functions in Int∨Bool→0). Therefore, if intersection types for _-abstractions can be deduced
only by subsumption, then there are not enough values to distinguish, say, (Int → Int)∧(Bool →
Bool) from Int∨Bool→0, even though they are two types that have dierent interpretations
according to Denition 2.5.

A rst solution could be to modify the typing rule for abstractions so that for a function such
as _𝑥 :Int∨Bool. 𝑥 the rule checks that it has both type Int → Int and type Bool → Bool and
deduces their intersection for it. This solution, however, presents two major problems. First, we
lose principal types (e.g., _𝑥 :1. 𝑥 has type 𝑡 → 𝑡 for every type 𝑡 and thus a principal type would
require innite intersections). Second, and more importantly, in our case it would yield either
an unsound denotational semantics or an undecidable type system: while it is easy to check
that, say, _𝑥 :Int. 42 has type Int → 42, checking this type for a (well-typed) function _𝑥 :Int. 𝑒
would correspond to check that 𝑒 [𝑛/𝑥] yields 42 for all integers 𝑛. If this were not decidable for
that particular 𝑒 , then the only solution for having a decidable type system would be to deduce
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11.1 Inferring intersection types for functions

that _𝑥 :Int. 𝑒 does not have type Int → 42 and, thus, that it has type ¬(Int → 42). But if 𝑒 [𝑛/𝑥]
actually yields 42 for all integers 𝑛, then its denotation would be in the interpretation of Int → 42

and not in the one of ¬(Int → 42).
To solve these problems, Frisch et al. [27] annotate _-abstractions with their intersection types,

thus providing also their return type(s). So the identity function for integer and Booleans can be
written in system of Frisch et al. [27] as _ (Int→Int)∧(Bool→Bool)𝑥 . 𝑥 and the system deduces for it
the type (Int → Int) ∧ (Bool → Bool), and by subsumption the type Int ∨ Bool → Int ∨ Bool,
but clearly not the type Int ∨ Bool→0, thus distinguishing them.

11.1.1. Syntax and type system

The rstmodication to the system of Chapter 10 is then to adopt syntax and typing rules adapted
from Frisch et al. [27] for _-abstractions. As anticipated, Frisch et al. [27] introduce the following
production for _-abstractions:

eF _
∧

𝑖∈𝐼 (𝑠𝑖→𝑡𝑖 )𝑥 . e 𝐼 nite

as well as the following typing rule:

[TAbs]
∀𝑖 ∈ 𝐼 Γ, 𝑥 : 𝑠𝑖 ` e : 𝑡𝑖

Γ ` _
∧

𝑖∈𝐼 (𝑠𝑖→𝑡𝑖 )𝑥 . e : 𝑡 ∧ 𝑡 ′

𝑡 =
∧

𝑖∈𝐼 (𝑠𝑖 → 𝑡𝑖 )
𝑡 ′ =

∧
𝑛∈𝑁 ¬(𝑠𝑛 → 𝑡𝑛)

𝑡 ∧ 𝑡 ′ ; 0

This rule (taken verbatim from [27]) checks whether a _-abstraction has all the arrow types listed
in its annotation 𝑡 and deduces for the term this type 𝑡 intersected with an arbitrary nite number
of negated arrow types. These negated arrow types can be chosen freely provided that the type
𝑡 ∧ 𝑡 ′ remains non-empty. The purpose of the rule is to ensure that, given any function and any
type 𝑡 , either the function has type 𝑡 or it has type ¬𝑡 . This property not only matches the view
of types as sets of values that underpins semantic subtyping, but also it is necessary to ensure
subject reduction in the presence of typecases (see [27] for details).1

The addition of interfaces and rule [TAbs] may look surprising. For example, it allows the sys-
tem to type _Int→Int𝑥 . 𝑥 as (Int → Int) ∧ ¬(Bool → Bool) (notice the negation) even though,
disregarding the annotation, the function does map Booleans to Booleans. But the language is
explicitly typed, and thus we cannot ignore the annotations: indeed, the function does not have
type Bool → Bool insofar as its application to a Boolean does not return another Boolean but an
error Ω. The point is that the theory of semantic subtyping gives expressions an intrinsic seman-

tics (in the sense of Reynolds [61]) since the semantics of _-abstractions depends on their explicit
type annotations, and this must be reected in the denotational semantics of the expressions.
In particular, notice that according to rule [TAbs] we have _Int→42𝑥 . 42 : Int → 42 while

_Int→Int𝑥 . 42 : ¬(Int → 42) (notice the dierence in the annotations), even though both func-
tions can be applied to integers, and both return 42 on all integers. Therefore, _Int→42𝑥 . 42 and
_Int→Int𝑥 . 42 must have dierent denotations, which means that the denotational semantics of
a _-abstraction must take into account both the codomain of its annotation and the possible
negation types that can be inferred, which the interpretation of the previous chapter does not
do.
This, however, poses a major problem for our denotational semantics: by allowing the type

of a _-abstraction to be arbitrarily rened, it breaks the type soundness property as stated in
1Although by this rule it is possible to deduce innite many distinct types for the same expression, the system still
has a notion of principality, obtained by the introduction of type schemes: see Frisch et al. [27, Section 6.12].
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Theorem 10.15. As an example, consider the identity function 𝑓 = _Int→Int𝑥 . 𝑥 . Intuitively, it
is clear that the empty relation 𝑅 = {} belongs to its denotational semantics, since it is a valid
approximation of its behaviour. If we deduce for 𝑓 the type Int → Int by [TAbs], then this is not
a problem, as the empty relation eectively belongs to the interpretation of Int → Int. However,
[TAbs] also allows us to deduce the type (Int → Int) ∧ ¬(1 → 0) for 𝑓 , since this intersection
is non-empty. And since 𝑅 ∈ È1 → 0É, it is clear that 𝑅 ∉ È(Int → Int) ∧ ¬(1 → 0)É, and thus
the denotational semantics of 𝑓 is not contained in the interpretation of one of its type.
One could argue that it was wrong to assume that the empty relation {} belonged to the se-

mantics of 𝑓 . However, this problem does not only occur with the empty relation. In fact, given
any approximation 𝑅 of a _-abstraction 𝑓 , as long as 𝑓 admits an innite number of approxima-
tions (which happens as long as its codomain is non-empty), one can nd a type 𝑠 → 𝑡 such that
𝑓 has type ¬(𝑠 → 𝑡) and 𝑅 ∉ È¬(𝑠 → 𝑡)É.
To solve this problem, we force _-abstractions to be annotated in advance with their negation

types, and we do not allow the rule [TAbs] to further rene the type of a function. We will
then be able to use this information to remove unwanted elements from the semantics of an
abstraction. While this may seem constraining at rst, we will discuss in Section 11.5 how we
can automatically deduce negative annotations for _-abstractions, thus reconciling our semantics
with the semantics of Frisch et al. [27].
To summarize, we replace the production rule for _-abstractions from the previous chapters

(page 152) by the following rule:

eF _
∧

𝑖∈𝐼 (𝑠𝑖→𝑡𝑖 )∧
∧

𝑛∈𝑁 ¬(𝑠𝑛→𝑡𝑛)𝑥 . e 𝐼 , 𝑁 nite

As anticipated, _-abstractions are annotated with an intersection of arrow types and negation of
arrow types. We will refer to this annotation as its interface.
We also replace the typing rule of Figure 9.1 for abstractions [TF

Abs] by the following rule:

[TC
Abs]

∀𝑖 ∈ 𝐼 Γ, 𝑥 : 𝑠𝑖 ` e : 𝑡𝑖
Γ ` _

∧
𝑖∈𝐼 (𝑠𝑖→𝑡𝑖 )∧

∧
𝑛∈𝑁 ¬(𝑠𝑛→𝑡𝑛)𝑥 . e : 𝑡 ∧ 𝑡 ′

𝑡 =
∧

𝑖∈𝐼 (𝑠𝑖 → 𝑡𝑖 )
𝑡 ′ =

∧
𝑛∈𝑁 ¬(𝑠𝑛 → 𝑡𝑛)

𝑡 ∧ 𝑡 ′ ; 0

This rule is almost exactly the rule of Frisch et al. [27], except the negative part of the type is not
inferred but taken from the interface of the function.

11.1.2. Relating interfaces and denotations

We now know in advance which negation types will be given to a function, but we still need to
ensure that the denotational semantics of abstractions take their interface into account.
To that end, we modify the interpretation of a _-abstraction by adding a form of “dummy”

inputs, which serve to range over all the results that belong to the codomain of the annotation
of the _-abstraction, but cannot denote any expression. We associate such an input Ω

𝑑 (read:
“agemo”) to every element 𝑑 of the interpretation domain.

In practice, if 𝑅 is a relation in the denotation of _𝑠→𝑡𝑥 . e and ( Ω

𝑑 , 𝑑
′) ∈ 𝑅, if 𝑑 ∈ È𝑠ÉC then

𝑑 ′ ∈ È𝑡ÉC. This follows the same principle as the interpretation of types given in the previous
chapters: a relation 𝑅 is in the interpretation of 𝑠 → 𝑡 if for every input that belongs to the
interpretation of 𝑠 , the corresponding output belongs to the interpretation of 𝑡 . The symbol Ω

just serves to ensure the input cannot denote any expression.
Thanks to this marker _ (Int→Int)∧¬(Int→42)𝑥 . 42 and _Int→42𝑥 . 42 now have dierent interpreta-

tions since any relation in the denotation of the former can contain the pairs ( Ω

𝑛, 𝑛
′) for any
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integers 𝑛 and 𝑛′, while the relations in the denotation of the latter can contain such pairs only
for 𝑛′ = 42. A similar modication has to be done to obtain the new interpretation of types È.ÉC,
in order to ensure that if ( Ω

𝑑 , 𝑑
′) ∈ 𝑅 for 𝑅 ∈ È𝑠 → 𝑡ÉC and 𝑑 ∈ È𝑠ÉC, then 𝑑 ′ ∈ È𝑡ÉC.

11.1.3. Denotational semantics

In light of the previous explanation, the new semantics of _-abstractions can be obtained by
extending the semantics presented in the previous chapter to support multiple input types and
the new inputs Ω

𝑑 .

In this new setting functions still denote sets of nite sets of the form {(], 𝜕), . . . , (], 𝜕)}, but
now inputs ] range over I C = P𝑓 (DC) ∪ { Ω

𝑑 | 𝑑 ∈ DC} (we will give the complete formal
denition of the interpretation domain DC and the interpretation of terms in Section 11.4). The
new form of _-abstractions we dened in this section are then interpreted as follows

È_
∧

𝑖∈𝐼 (𝑠𝑖→𝑡𝑖 )∧
∧

𝑛∈𝑁 ¬(𝑠𝑛→𝑡𝑛)𝑥 . eÉC𝜌 = {𝑅 ∈ P𝑓 (I C×DC
Ω) | ∀(], 𝜕) ∈ 𝑅.

∃𝑖∈𝐼 .] ⊆ È𝑠𝑖ÉC ∧ 𝜕 ∈ ÈeÉC𝜌,𝑥 ↦→] or

∀𝑖∈𝐼 .] ⊆ È¬𝑠𝑖ÉC ∧ 𝜕 = Ω or

] = Ω

𝑑 where ∀𝑖 ∈ 𝐼 . 𝑑 ∈ È𝑠𝑖ÉC =⇒ 𝜕 ∈ È𝑡𝑖ÉC

} ∩ È
∧
𝑛∈𝑁

¬(𝑠𝑛 → 𝑡𝑛)É
C

As anticipated, compared to the semantics presented in Chapter 10, there are three major
changes. First, we now force the input ] to either belong to at least one input type 𝑠𝑖 , or to none
of them. Then, in the rst case, we compute the output as usual by binding 𝑥 to ], while in
the second case we simply map the input to Ω. Second, we add Ω

(.) inputs following the same
principle: for every input of the form Ω

𝑑 , and for every input type 𝑠𝑖 containing 𝑑 , we ensure
that the output belongs to the corresponding output type 𝑡𝑖 .

Finally, we simply “lter” the denotation of the abstraction to keep only the elements that
belong to the negative part of its interface. While this may seem surprising, this does not cause
any loss of information: given a relation 𝑅 that approximates the _-abstraction _

∧
𝑖∈𝐼 (𝑠𝑖→𝑡𝑖 )𝑥 . e,

as long as
∧

𝑖∈𝐼 (𝑠𝑖 → 𝑡𝑖) ∧
∧

𝑛∈𝑁 ¬(𝑠𝑛 → 𝑡𝑛) is non-empty, it is possible to add a nite number
of pairs of the form ( Ω

𝑑 , 𝑑
′) to 𝑅 and obtain a relation that belongs to È∧𝑛∈𝑁 ¬(𝑠𝑛 → 𝑡𝑛)ÉC. The

resulting relation behaves exactly as 𝑅, in the sense that it maps the same denotable inputs to
the same outputs. For example, given the relation {({3}, 42)} in the denotation of _Int→Int𝑥 . 42,
it is possible to complete it into the relation {({3}, 42), ( Ω

2, 43)} which belongs to the deno-
tation of _ (Int→Int)∧¬(Int→42)𝑥 . 42 and still maps 3 to 42. Thus, taking the intersection with
È∧𝑛∈𝑁 ¬(𝑠𝑛 → 𝑡𝑛)ÉC actually removes the elements that do not contain enough information.
We will formalize this result later as Lemma 11.11.

Naturally, we also have to modify the interpretation of function spaces to account for the
presence of the new Ω

(.) elements. Thismodication is straightforward and follows the same idea
as the semantics of _-abstractions. The new interpretation must satisfy the following equation

È𝑡1 → 𝑡2ÉC = {𝑅 ∈ P𝑓 (I C×DC
Ω) |∀(], 𝜕) ∈ 𝑅.

((] = Ω

𝑑 ∧ 𝑑 ∈ È𝑡1ÉC) or ] ∩ È𝑡1ÉC = ∅) =⇒ 𝜕 ∈ È𝑡2ÉC}

which can be obtained by the inductive denition of a predicate (. : .)C by following Deni-
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tion 10.2 and modifying the case for ({(𝑆1, 𝜕1), ..., (𝑆𝑛, 𝜕𝑛)} : 𝑡1 → 𝑡2) as follows:

({(]𝑖 , 𝜕𝑖) | 𝑖 ∈ 𝐼 } : 𝑡1 → 𝑡2)C = ∀𝑖 ∈ 𝐼 .

{
(]𝑖 =

Ω

𝑑 ∧ (𝑑 : 𝑡1)C) =⇒ (𝜕𝑖 : 𝑡2)C

(∃𝑑 ∈ ]𝑖 . (𝑑 : 𝑡1)C) =⇒ (𝜕𝑖 : 𝑡2)C

(we simply split the denition in two for clarity). It is straightforward to prove that this denition
induces the same subtyping relation on types as the previous one (see Proposition 11.4).

11.2. Adding typecases

11.2.1. Syntax and operational semantics

The second ingredient to obtain the system of Frisch et al. [27] is the addition of a typecase.
Formally we add to the previous productions the following one:

eF (𝑥 = e ∈ 𝑡)? e : e

The expression (𝑥 = e ∈ 𝑡)? e1 : e2 binds the value produced by e to the variable 𝑥 , checks
whether this value is of type 𝑡 , if so it reduces to e1, otherwise it reduces to e2. Therefore to dene
the reduction semantics we have to determine when a value v has a given type 𝑡 , written v ∈ 𝑡 .
For that, Frisch et al. [27] show that it is not necessary to resort to the type-deduction system:
they dene a predicate v ∈ 𝑡 that simply inspects the value v to deduce whether it can be given
type 𝑡 , and show the following two properties, which are necessary to ensure the soundness of
their type system:

v ∈ 𝑡 ⇐⇒ ` v : 𝑡

v ∉ 𝑡 ⇐⇒ v ∈ ¬𝑡

Since their system can infer arbitrary negation types for functions, the denition of this predicate
is quite involved, as, for example, it needs to ensure that _Int→Int𝑥 . 𝑥 ∈ ¬(Bool → Bool) since
_Int→Int𝑥 . 𝑥 can be given type ¬(Bool → Bool) according to their typing rule for abstractions.

However, since we removed the possibility of inferring negation types, we cannot reuse the
predicate of Frisch et al. [27]. Even more problematic is the fact that the two properties above
cannot hold at the same time in our systemwithout additional hypotheses. Consider, for example,
the abstraction _Int→Int𝑥 . 𝑥 . It is clear that it cannot be given type Bool → Bool in our system.
Thus, according to the rst property above, we should have _Int→Int𝑥 . 𝑥 ∉ Bool → Bool, but
then the second property states that we must have _Int→Int𝑥 . 𝑥 ∈ ¬(Bool → Bool), which in
turn implies that our type system should be able to type _Int→Int𝑥 . 𝑥 with type ¬(Bool → Bool),
which is not possible.
To solve this, we introduce some restrictions on the terms we consider. The idea is to ensure

that every _-abstraction of a program contains enough negative annotations to ensure that, for
every type 𝑡 appearing in a typecase in the program, the abstraction can either be given type 𝑡
or type ¬𝑡 . We will dene these restrictions formally in Section 11.4, and show in Section 11.5
how every term of the system of Frisch et al. [27] can be compiled to an operationally equivalent
term satisfying these restrictions by adding a nite number of annotations.
With this in mind, we can dene our version of the predicate ∈, by stating that v ∈

𝑡 ⇐⇒def type(v) ≤ 𝑡 where type(v) is inductively dened as:
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11.2 Adding typecases

type(𝑐) =def 𝑏𝑐

type(_
∧

𝑖∈𝐼 (𝑠𝑖→𝑡𝑖 )∧
∧

𝑛∈𝑁 ¬(𝑠𝑛→𝑡𝑛)𝑥 . e) =def
∧
𝑖∈𝐼

(𝑠𝑖 → 𝑡𝑖) ∧
∧
𝑛∈𝑁

¬(𝑠𝑛 → 𝑡𝑛)

type((v1, v2)) =def type(v1) × type(v2)

The denition of the type(.) operator is fairly straightforward insofar as it simply gathers the
explicit type information present in a program. As anticipated, we will show that, under certain
hypotheses, the two aforementioned properties hold for our operator ∈ (see Propositions 11.8
and 11.13).

The behavior of typecases is then formalized by the following reduction rules, which are taken
verbatim from Frisch et al. [27]:

(𝑥 = v ∈ 𝑡)? e1 : e2 { e1 [v/𝑥] if v ∈ 𝑡

(𝑥 = v ∈ 𝑡)? e1 : e2 { e2 [v/𝑥] if v ∉ 𝑡

Note that, according to these denitions, the test (𝑥 = v ∈ Int → 42)? e1 : e2 will reduce to e1
for v = _Int→42𝑥 . 42 but to e2 for v = _Int→Int𝑥 . 42, further emphasizing the importance for these
two functions to have dierent semantics.

Typecase expressions are needed to dene full-edged overloaded functions as opposed to
having just “coherent overloading” as found in Forsythe [60]. Indeed, the rule [TC

Abs] we added
in the previous section, if taken alone, allows the system to type a limited form of ad hoc polymor-
phism known as coherent overloading. In languages with coherent overloading such as Forsythe
or the system dened so far, it is not possible to distinguish the type (𝑠1 → 𝑡1) ∧ (𝑠2 → 𝑡2) from
(𝑠1∨𝑠2) → (𝑡1∧𝑡2), in the sense that they both type exactly the same set of expressions. 2 The
equivalence (or indistinguishablity) of the two types above states that it is not possible to have a
function with two distinct behaviors chosen according to the type of the argument: the behavior
is the same for inputs of type 𝑠1 or 𝑠2 and the intersection of the arrow types is just a way to
“rene” this behavior for specic cases. In our model instead the relation:

𝑠1 ∨ 𝑠2 → 𝑡1 ∧ 𝑡2 ≤ (𝑠1 → 𝑡1) ∧ (𝑠2 → 𝑡2) (11.1)

is strict. Therefore, to ensure a true correspondence between types and language expressions,
the language must provide a _-abstraction that is in the larger type but not in the smaller one,
for instance because for some argument in 𝑠1 the _-abstraction returns a result that is in 𝑡1 but
not in 𝑡2. This can be done by a typecase, as for foo = _𝑥 :Int ∨ Bool. (𝑦 = 𝑥 ∈ Int)? 𝑦 + 1 : not(𝑦)
which is a function that has type (Int → Int) ∧ (Bool → Bool) but not Int∨Bool → Int∧Bool
(notice that Int∧Bool = 0, therefore a function of this type diverges on all its arguments, which
is not the case for the function foo at issue).

2It is not possible to prove that the two types are equivalent in the system of [60] but this can be done for the system
of [7].
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11.2.2. Typing

The typing rules for typecase expressions are, once again, taken verbatim from Frisch et al. [27]:

[TC
Case]

Γ ` e : 𝑡 ′ Γ, 𝑥 : 𝑡∧𝑡 ′ ` e1 : 𝑠 Γ, 𝑥 : ¬𝑡∧𝑡 ′ ` e2 : 𝑠
Γ ` (𝑥 = e ∈ 𝑡)? e1 : e2 : 𝑠

[TC
Efq]

Γ, 𝑥 : 0 ` e : 𝑡

The [TC
Case] rule infers the type 𝑡 ′ of the tested expression 𝑒 , and then infers the types of the

branch by taking into account the outcome of the test. Namely, it infers the type of 𝑒1 under the
hypothesis that 𝑥 is bound to a value that was produced by 𝑒 (i.e., of type 𝑡 ′) and passed the test
(i.e., of type 𝑡 ): that is, a value of type 𝑡∧𝑡 ′; it infers the type of 𝑒2 under the hypothesis that 𝑥
is bound to a value that was produced by 𝑒 (i.e., of type 𝑡 ′) and did not pass the test (i.e., of type
¬𝑡 ). Thus [TC

Case] renes the type of the dierent occurrences of 𝑥 in the branches to take into
account the outcome of the test, a technique nowadays known as occurrence typing [72]. Rule
[TC

Efq] (ex falso quodlibet) is used for when in the rule [TC
Case] either 𝑡∧𝑡

′ or ¬𝑡∧𝑡 ′ is empty: this
means that the corresponding branch cannot be selected whatever the result of 𝑒 is and therefore,
thanks to [TC

Efq] the branch is not typed (it is given any type, in particular the type of the other
branch). For more discussion on the [TC

Case] rule and its various implications, the reader can refer
to Section 3.3 of [27] or Section 3.3 of [12].

 Remark 11.1. q
One could have expected the rule [TCCase] to introduce a union type so that both branches can

be given dierent types:

[TCCase2]
Γ ` e : 𝑡 ′ Γ, 𝑥 : 𝑡∧𝑡 ′ ` e1 : 𝑡1 Γ, 𝑥 : ¬𝑡∧𝑡 ′ ` e2 : 𝑡2

Γ ` (𝑥 = e ∈ 𝑡)? e1 : e2 : 𝑡1 ∨ 𝑡2

However, supposing that e1 and e2 verify the premises of this rule, since 𝑡1 ≤ 𝑡1 ∨ 𝑡2 and

𝑡2 ≤ 𝑡1 ∨ 𝑡2, by [TCSub] they can both be given type 𝑡1 ∨ 𝑡2, and our typing rule [TCCase] then
derives type 𝑡1∨ 𝑡2 for the whole typecase expression. Thus, the above rule can be derived in our

system. y

11.2.3. Denotational semantics

The denition of the denotational semantics of a typecase expression follows the same idea as for
_-abstractions: given a typecase (𝑥 = e ∈ 𝑡)? e1 : e2, if the semantics of e belongs to the type 𝑡 ,
then the result of the typecase is the semantics of e1 where 𝑥 has been bound to the semantics of
e. Conversely, if the semantics of e does not belong to the type 𝑡 , then the result of the typecase
is computed using e2 by binding 𝑥 to the semantics of e.

There are, however, two problems with this approach. First, proving the substitution lemma
for our denotational semantics (Lemma A.41) which is necessary to prove its soundness is only
possible if the interpretations of variables in the environment 𝜌 are kept nite. Thus, we do not
directly bind 𝑥 to the semantics of e, but to a nite subset of it.
Second, suppose that ÈeÉC𝜌 * È𝑡ÉC. Following the above explanation, we should have 𝑑 ∈

È(𝑥 = e ∈ 𝑡)? e1 : e2ÉC𝜌 ⇐⇒ 𝑑 ∈ Èe2ÉC𝜌,𝑥 ↦→𝑆 for some 𝑆 ∈ P𝑓 (ÈeÉC𝜌 ). However, this is type-
sound only if 𝑆 ⊆ È¬𝑡ÉC, since the second branch is typed under the hypothesis that 𝑥 has type
¬𝑡 according to rule [TC

Case].
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We stated that, under certain restrictions, we could prove that for every value v and every type
𝑡 , then either v ∈ 𝑡 or v ∈ ¬𝑡 . Provided our semantics satises the type soundness property, this
ensures that ÈvÉC * È𝑡ÉC =⇒ ÈvÉC ⊆ È¬𝑡ÉC. However, the same result for arbitrary expres-
sions, which is what we need here, is a consequence of the computational soundness property
(if e {∗ v then ÈeÉC = ÈvÉC), which in turn relies on the type soundness of our semantics.
Therefore, we have to break this circularity to avoid having to prove both the type soundness

and computational soundness properties bymutual induction. We achieve this by simply dening
the semantics of a typecase (𝑥 = e ∈ 𝑡)? e1 : e2 as empty if the semantics of e is not included
in È𝑡ÉC nor in È¬𝑡ÉC. The computational soundness of our semantics will then ensure that this
case can never occur, as this would break its adequacy.

To summarize, the semantics of a typecase expression is dened as:

È(𝑥 = e ∈ 𝑡)? e1 : e2ÉC𝜌 =


⋃

𝑆 ∈P𝑓 (ÈeÉC𝜌 )
Èe1ÉC𝜌,𝑥 ↦→𝑆 if ÈeÉC𝜌 ⊆ È𝑡ÉC⋃

𝑆 ∈P𝑓 (ÈeÉC𝜌 )
Èe2ÉC𝜌,𝑥 ↦→𝑆 if ÈeÉC𝜌 ⊆ È¬𝑡ÉC

∅ otherwise

∪ Ω
𝜌

(𝑥=e∈𝑡 )? e1:e2

As we explained before, we simply bind all nite subsets of the denotation of e to 𝑥 and return
the denotation of the branch selected according to the (semantic) type of the denotation of e.
The only part we did not explain beforehand is the denition of Ω𝜌

(𝑥=e∈𝑡 )? e1:e2
, but it is straight-

forward. It is clear from its semantics that a typecase reduces to a stuck typecase if and only if
the tested expression e reduces to a stuck term. Therefore, since Ω represents stuck terms, we
simply dene Ω𝜌

(𝑥=e∈𝑡 )? e1:e2
= {Ω} whenever Ω ∈ ÈeÉC𝜌 .

11.3. Adding non-determinism

11.3.1. Non-deterministic choice

The very last ingredient to obtain the system of Frisch et al. [27] is the addition of expressions
for random choice.
Frisch et al. [27] introduce a random expression generator of the form rnd(𝑡), which gener-

ates randomly an expression of type 𝑡 . However, dening a denotational semantics for such an
expression proves to be very complex. Thus, we instead choose to dene a binary choice opera-
tor, that just randomly chooses between two expressions. This has no inuence on the syntactic
theory (i.e., all the results of Frisch et al. [27] still hold), but will greatly simplify the denition of
the denotational semantics. For this reason, we still refer to this calculus as the CDuce calculus.
Formally we add to the previous grammar the following production:

eF choice(e, e)

The operational semantics of choice just randomly chooses either of its arguments yielding the
following set of reductions:

choice(e1, e2) { e1
choice(e1, e2) { e2

The need for a choice operator is clear from considering the interpretation of function spaces.
Notice indeed that functions are interpreted as relations, but we do not require them to be de-
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terministic, that is, in our nite relations there may be two pairs with the same rst projection
but dierent second projections. More concretely, if e1 : 𝑡1 and e2 : 𝑡2 then choice(e1, e2) allows
us to dene a value that separates the type 𝑠 → 𝑡1∨ 𝑡2 from the type (𝑠 → 𝑡1) ∨ (𝑠 → 𝑡2) (in our
model the interpretation of the latter type is strictly contained in the interpretation of the former
type), since _𝑥 :𝑠 . choice(e1, e2) is a value in the rst type that it is not in the second type. This is
formalized by the following straightforward typing rule.

[TC
Choice]

Γ ` e1 : 𝑡 Γ ` e2 : 𝑡
Γ ` choice(e1, e2) : 𝑡

Similarly to the rule [TC
Case], this rule does not explicitly introduce a union type, as it can be

introduced by using subsumption in both premises if necessary.

11.3.2. Denoting execution paths

The introduction of the random choice requires a last modication to the interpretation do-
main. Usually, passing from the semantics of a deterministic calculus to the semantics of its non-
deterministic version can be done by interpreting expressions as the set of their possible results.
Since we already interpret expressions as sets (of approximations), then one should interpret ex-
pressions as sets of sets. But since the possible results of an expressions may be innite, then
it would not be possible to dene the interpretation domain by induction, as functions should
return possibly innite sets of elements.
To obviate this we could imagine to dene the semantics of an expression as the set of all

approximations of all its possible results. This is a reasonable solution that would t the spirit of
our approach. However, using this solution would make impossible to distinguish the semantics
of _Int→Int𝑥 . 𝑥 from the one of _Int→Int𝑥 . choice(⊥, 𝑥) (where⊥ is an always diverging expression).
This would be wrong, since the two terms have dierent operational semantics, insofar as the
application of the former to an integer always returns that integer while the same application of
the latter function may diverge.
We need a semantics in which dierent choices are distinguished. Therefore, if we mix in the

semantics of an expression the approximations of dierent results, we still need to distinguish
which approximation belongs to which result, like, for instance, by coloring approximations of
dierent values with dierent colors. This is essentially what we propose here. The solution we
choose is to interpret values as in the previous sections: constants are interpreted as singletons,
pairs of values as the Cartesian product of the interpretations of the values, and _-abstractions
as the set of their nite approximations. As before, deterministic expressions will be interpreted
as the single value they produce.
Multivalued expressions instead, will contain all the interpretations of all the values they may

produce, but the single elements of each value will keep track of the choices the expression made
to produce the value they interpret. This will be done by marking all elements of the domain by
propagation marks, which are nite strings on the alphabet {𝑙, 𝑟 } that record the suite of choices
(𝑙eft or 𝑟 ight) performed to produce a result. The idea is that the semantics of the expression,
say, choice(1, choice(2, 3)) will be the set {1𝑙 , 2𝑟𝑙 , 3𝑟𝑟 }: the expression produces the value 1 by
a left choice, the value 2 by a right choice followed by a left choice, and the value 3 by a right
choice followed by another right choice. Likewise, _Int→Int𝑥 . 𝑥 and of _𝑥 :Int → Int. choice(⊥, 𝑥)
will have distinct interpretations, since the approximations of the former will contain pairs of
the form (𝑛, 𝑛) for 𝑛 ∈ Int, while in the latter the pairs will be of the form (𝑛, 𝑛𝑟 ).
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11.4 Summary and results

The formal denition of the semantics of choice, along with the denition of the new inter-
pretation domain, are presented in the following section.

11.4. Summary and results

We now summarize the previous sections, giving the formal denitions of the language, its type
system, and its operational semantics. Then, we formalize the new interpretation domain, and
give the full denotational semantics of the language.

11.4.1. A summary of the system

The terms e ∈ TermsC and the values v ∈ ValuesC of _C are those dened inductively by the
following grammar:

TermsC 3 e F 𝑐 | 𝑥 | _I𝑥 . e | e e | 𝜋𝑖 e | (e, e) | (𝑥 = e ∈ 𝑡)? e : e | choice(e, e)
ValuesC 3 v F 𝑐 | _I𝑥 . e | (v, v)

where I is a shorthand for
∧

𝑖∈𝐼 (𝑠𝑖 → 𝑡𝑖) ∧
∧

𝑛∈𝑁 ¬(𝑠𝑛 → 𝑡𝑛). As before, values are supposed to
be well-typed. An ill-typed term satisfying the above production rule for v is considered to be a
stuck term.

The operational semantics of _C, which we gradually introduced in the previous sections, are
summarized as follows:

[RC
App] (_I𝑥 . e) v { e [v/𝑥]

[RC
Proji

] 𝜋𝑖 (v1, v2) { v𝑖 𝑖 ∈ {1, 2}
[RC

Choicei
] choice(e1, e2) { e𝑖 𝑖 ∈ {1, 2}

[RC
CaseL] (𝑥 = v ∈ 𝑡)? e1 : e2 { e1 [v/𝑥] if v ∈ 𝑡

[RC
CaseR] (𝑥 = v ∈ 𝑡)? e1 : e2 { e2 [v/𝑥] if v ∉ 𝑡

[RC
Ctx] E [e] { E [e′] if e { e′

Apart from the reduction rules for typecases and random choices which we already presented
earlier, this calculus uses standard reduction rules for pairs and applications.
The evaluation contexts still implement a standard leftmost outermost reduction strategy:

E F [] | E e | vE | (E , e) | (v, E ) | 𝜋𝑖 E | (𝑥 = E ∈ 𝑡)? e : e

Finally, the full type system is summarized in Figure 11.1.

11.4.2. Denotational semantics

We start by summarizing the changes we introduced to the interpretation domain, to obtain
the new domain DC. There are two changes: rst, we added distinguished inputs Ω

(.) to nite
relations. Second, we added propagation marks to memorize the random path that led to a result.
Formally, we dene the set of propagation marks M , ranged over by 𝔪, as the set of strings

on the alphabet {𝑙, 𝑟 }. The interpretation domain for the terms of _C is then dened as follows:

Denition 11.2 (Interpretation domain DC). The interpretation domain DC
is the set of
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[TC
Cst] Γ ` 𝑐 :𝑏𝑐

[TC
Var] Γ ` 𝑥 : Γ(𝑥)

[TC
Sub]

Γ ` e : 𝑡
Γ ` e : 𝑡 ′

𝑡 ≤ 𝑡 ′

[TC
Abs]

∀𝑖 ∈ 𝐼 Γ, 𝑥 : 𝑠𝑖 ` e : 𝑡𝑖
Γ ` _

∧
𝑖∈𝐼 (𝑠𝑖→𝑡𝑖 )∧

∧
𝑛∈𝑁 ¬(𝑠𝑛→𝑡𝑛)𝑥 . e : 𝑡 ∧ 𝑡 ′

𝑡 =
∧

𝑖∈𝐼 (𝑠𝑖 → 𝑡𝑖 )
𝑡 ′ =

∧
𝑛∈𝑁 ¬(𝑠𝑛 → 𝑡𝑛)

𝑡 ∧ 𝑡 ′ ; 0

[TC
App]

Γ ` e1 : 𝑡→𝑡 ′ Γ ` e2 : 𝑡
Γ ` e1 e2 : 𝑡 ′

[TC
Pair]

Γ ` e1 : 𝑡1 Γ ` e2 : 𝑡2
Γ ` (e1, e2) : 𝑡1 × 𝑡2

[TC
Proji

]
Γ ` e : 𝑡1 × 𝑡2

Γ ` 𝜋𝑖 e : 𝑡𝑖

[TC
Choice]

Γ ` e1 : 𝑡 Γ ` e2 : 𝑡
Γ ` choice(e1, e2) : 𝑡

[TC
Case]

Γ ` e : 𝑡 ′ Γ, 𝑥 : 𝑡∧𝑡 ′ ` e1 : 𝑠 Γ, 𝑥 : ¬𝑡∧𝑡 ′ ` e2 : 𝑠
Γ ` (𝑥 = e ∈ 𝑡)? e1 : e2 : 𝑠

[TC
Efq] Γ, 𝑥 : 0 ` e : 𝑡

Figure 11.1. Typing rules for _C

nite terms 𝑑 produced inductively by the following grammar

𝑑 F 𝑐𝔪 | (𝑑, 𝑑)𝔪 | {(], 𝜕), . . . , (], 𝜕)}𝔪

] F {𝑑, . . . , 𝑑} | Ω

𝑑 (] not empty)
𝜕 F 𝑑 | Ω

where 𝑐 ranges over the set C of constants, 𝔪 ranges over the set of marks M , and where Ω

and

Ω

𝑑 are elements that do not belong to DC
.

We also write DC

Ω = DC ∪ {Ω} and I C = (P𝑓 (DC) \ {∅}) ∪ { Ω

𝑑 | 𝑑 ∈ DC}.

We introduce some additional notation to ease the manipulation of marks. We denote the
empty mark by Y ∈ M , and use𝔪1.𝔪2 to denote the concatenation of the two marks𝔪1 and𝔪2.
We note [𝜕]𝔪 the element obtained by concatenating the string𝔪 in front of the top-level mark
of 𝜕 if any. That is, we have the following equalities:

[𝑐𝔪]𝔪′
= 𝑐𝔪

′.𝔪

[(𝑑1, 𝑑2)𝔪]𝔪
′
= (𝑑1, 𝑑2)𝔪

′,𝔪

[{(]𝑖 , 𝜕𝑖) | 𝑖 ∈ 𝐼 }𝔪]𝔪′
= {(]𝑖 , 𝜕𝑖) | 𝑖 ∈ 𝐼 }𝔪′,𝔪

[Ω]𝔪 = Ω

We canonically extend this notation to P (DC) so that if 𝑆 ⊆ DC, then [𝑆]𝔪 = {[𝑑]𝔪 | 𝑑 ∈ 𝑆}.
Finally, we denote by mark(𝑑) the top-level mark of an element 𝑑 ∈ DC, so that:

mark(𝑐𝔪) = mark((𝑑1, 𝑑2)𝔪) = mark({(]𝑖 , 𝜕𝑖) | 𝑖 ∈ 𝐼 }𝔪) = 𝔪

and for a set 𝑆 ⊆ DC, we use 𝑆
��
𝔪
to denote the set of elements in 𝑆 marked by 𝔪, that is:

𝑆
��
𝔪
= {𝑑 ∈ 𝑆 | mark(𝑑) = 𝔪}
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Having dened the new domain DC, we can now dene the new interpretation of types in
this domain. We already explained how to adapt the interpretation presented in Denition 10.2
to account for our new interpretation of arrow types. The only other change is the addition of
marks, but this is straightforward insofar as the new interpretation simply ignores marks.

Denition 11.3 (Set-theoretic interpretation of types in DC). We dene a binary predicate

(𝑑 : 𝑡)C (“the element 𝑑 belongs to the type 𝑡”) where 𝑑 ∈ DC
and 𝑡 ∈ Types, by induction on

the pair (𝑑, 𝑡) ordered lexicographically. The predicate is dened as follows:

(𝑐𝔪 : 𝑏)C = 𝑐 ∈ B(𝑏)
((𝑑1, 𝑑2)𝔪 : 𝑡1 × 𝑡2)C = (𝑑1 : 𝑡1)C and (𝑑2 : 𝑡2)C

({(]𝑖 , 𝜕𝑖) | 𝑖 ∈ 𝐼 } : 𝑡1 → 𝑡2)C = ∀𝑖 ∈ 𝐼 .

{
(]𝑖 =

Ω

𝑑 ∧ (𝑑 : 𝑡1)C) =⇒ (𝜕𝑖 : 𝑡2)C

(∃𝑑 ∈ ]𝑖 . (𝑑 : 𝑡1)C) =⇒ (𝜕𝑖 : 𝑡2)C

(𝑑 : 𝑡1 ∨ 𝑡2)C = (𝑑 : 𝑡1)C or (𝑑 : 𝑡2)C

(𝑑 : ¬𝑡)C = not (𝑑 : 𝑡)C

(𝜕 : 𝑡)C = false otherwise

We dene the set-theoretic interpretation È.ÉC : Types → P (DC) as È𝑡ÉC = {𝑑 ∈ DC |
(𝑑 : 𝑡)C}.

As anticipated, this new interpretation induces the same subtyping relation as the previous
one:

Proposition 11.4. For every types 𝑡1, 𝑡2 ∈ Types, we have 𝑡1 ≤ 𝑡2 ⇐⇒ È𝑡1ÉC ⊆ È𝑡2ÉC.

Proof. It is clear that DF ⊆ DC: the elements of DF simply correspond to the elements of
DC that only have empty marks and do not contain inputs Ω

𝑑 . Conversely, we can associate
to every element of DC an element of DF by the following function 𝐹 :

𝐹 : DC
Ω ↦→ DF

Ω

𝐹 (𝑐𝔪) = 𝐹 (𝑐)
𝐹 ((𝑑1, 𝑑2)𝔪) = (𝐹 (𝑑1), 𝐹 (𝑑2))

𝐹 ({(]𝑖 , 𝜕𝑖) | 𝑖 ∈ 𝐼 }𝔪) = {(𝐹 (]𝑖), 𝐹 (𝜕𝑖)) | 𝑖 ∈ 𝐼 }
𝐹 (Ω) = Ω

and where 𝐹 is extended to I C as follows:

𝐹 : I C ↦→ P𝑓 (DF)
𝐹 ({𝑑1, . . . , 𝑑𝑛}) = {𝐹 (𝑑1), . . . , 𝐹 (𝑑𝑛)}

𝐹 ( Ω

𝑑 ) = {𝑑}

From there, it is straightforward to prove by induction on the pair (𝑑, 𝑡) lexicographically
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ordered that for every type 𝑡 ∈ Types:

∀𝑑 ∈ DC. 𝑑 ∈ È𝑡ÉC ⇐⇒ 𝐹 (𝑑) ∈ È𝑡ÉF

∀𝑑 ∈ DF. 𝑑 ∈ È𝑡ÉF ⇐⇒ 𝑑 ∈ È𝑡ÉC

Which ensures that È𝑡ÉC = ∅ ⇐⇒ È𝑡ÉF = ∅, hence the equivalence of the subtyping
relations since semantic subtyping reduces to an emptiness problem: for every types 𝑡1, 𝑡2,
we have 𝑡1 ≤ 𝑡2 ⇐⇒def È𝑡1ÉF ⊆ È𝑡2ÉF ⇐⇒ È𝑡1ÉF \ È𝑡2ÉF = ∅ ⇐⇒ È𝑡1 ∧ ¬𝑡2ÉF = ∅ and
similarly for È.ÉC. �

Wenow have all the notions required to summarize the denotational semantics of the language
_C in DC:

Denition 11.5 (Set-theoretic interpretation of _C). Let Envs 3 𝜌 : Vars → P𝑓 (DC). We

dene the set-theoretic interpretation of _C as a function È.ÉC(.) : TermsC → Envs → P𝑓 (DC

Ω)
as follows:

È𝑥ÉC𝜌 = 𝜌 (𝑥)

È𝑐ÉC𝜌 = {𝑐Y}

È_
∧

𝑖∈𝐼 (𝑠𝑖→𝑡𝑖 )∧
∧

𝑛∈𝑁 ¬(𝑠𝑛→𝑡𝑛)𝑥 . eÉC𝜌 = {𝑅Y ∈ P𝑓 (I C×DC

Ω) | ∀(], 𝜕) ∈ 𝑅.

∃𝑖∈𝐼 .] ⊆ È𝑠𝑖ÉC ∧ 𝜕 ∈ ÈeÉC𝜌,𝑥 ↦→] or

∀𝑖∈𝐼 .] ⊆ È¬𝑠𝑖ÉC ∧ 𝜕 = Ω or

] = Ω
𝑑 where ∀𝑖 ∈ 𝐼 . 𝑑 ∈ È𝑠𝑖ÉC =⇒ 𝜕 ∈ È𝑡𝑖ÉC

} ∩ È∧𝑛∈𝑁 ¬(𝑠𝑛 → 𝑡𝑛)ÉC

Èe1 e2ÉC𝜌 =
⋃

𝔪1,𝔪2∈M {[𝜕]𝔪1 .𝔪2 ∈ DC

Ω |

∃𝑆 ⊆ Èe2ÉC𝜌
��
𝔪2
, 𝑅𝔪1 ∈ Èe1ÉC𝜌 , (𝑆, 𝜕) ∈ 𝑅} ∪ Ω

𝜌
e1 e2

È𝜋𝑖 eÉC𝜌 = {[𝑑𝑖]𝔪 | (𝑑1, 𝑑2)𝔪 ∈ ÈeÉC𝜌 } ∪ Ω
𝜌
𝜋𝑖 e

È(e1, e2)ÉC𝜌 = {(𝑑1, 𝑑2)Y | ∀𝑖 ∈ {1, 2}, 𝑑𝑖 ∈ Èe𝑖ÉC𝜌 } ∪ Ω
𝜌

(e1,e2)

Èchoice(e1, e2)ÉC𝜌 = {[𝜕]𝑙 | 𝜕 ∈ Èe1ÉC𝜌 } ∪ {[𝜕]𝑟 | 𝜕 ∈ Èe2ÉC𝜌 }

È(𝑥 = e ∈ 𝑡)? e1 : e2ÉC𝜌 =
⋃

𝔪∈M {[𝜕]𝔪 | 𝜕 ∈ Èe1ÉC𝜌,𝑥 ↦→𝑆 , 𝑆 ⊆ ÈeÉC𝜌
��
𝔪
⊆ È𝑡ÉC}∪⋃

𝔪∈M {[𝜕]𝔪 | 𝜕 ∈ Èe2ÉC𝜌,𝑥 ↦→𝑆 , 𝑆 ⊆ ÈeÉC𝜌
��
𝔪
⊆ È¬𝑡ÉC}

∪Ω𝜌

(𝑥=e∈𝑡 )? e1:e2

where Ω
𝜌
e is dened as in Denition 9.3, adding the following condition:

Ω
𝜌

(𝑥=e∈𝑡 )? e1:e2
= {Ω} if Ω ∈ ÈeÉC𝜌

We already explained most of these equations in the previous sections, although the addi-
tion of marks complicates the formalism. Notice how environments are restricted to nite sets
P𝑓 (DC), which slightly simplies the presentation. The propagation of marks follows the fol-
lowing intuition: values are already results and their denotation does not depend on a random
choice, therefore, the denotation of a value will only contain empty marks at top-level. Marks
are introduced via the semantics of choice expressions, which is quite intuitive: the semantics of
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choice(e1, e2) is obtained by prepending the mark 𝑙 to the elements denoting e1, and prepending
the mark 𝑟 to the elements denoting e2.
Note that the semantics of an expression that does not contain any choice will only contain

empty marks, therefore, the above semantics is a conservative extension of the semantics we
presented throughout the previous sections, before the introduction of the choice operator.
The main diculty comes from the semantics of applications and typecases. The input sets

𝑆 we consider in the semantics of applications are, intuitively, approximations of the argument.
However, since we are in a call-by-value setting, for these approximations to be meaningful
they must approximate the same possible value. That is, if the argument is a non-deterministic
expression such as choice(2, 3) whose semantics is {2𝑙 , 3𝑟 }, then we must consider the inputs
{2𝑙 } and {3𝑟 }, but not {2𝑙 , 3𝑟 } since this input does not correspond to the denotation of a value.
Hence, the semantics of an application is dened by taking all nite approximations 𝑆 of all the
possible results of the argument e2, where a possible result corresponds to a mark 𝔪2. Hence,
we consider all sets 𝑆 ⊆ Èe2ÉC𝜌

��
𝔪2
. Then, we propagate the marks denoting the paths that led to

the generation of the input 𝑆 and the relation 𝑅, to obtain the full path that produces a particular
result of the application.
Typecases follow the same idea. Recall that, according to the operational semantics, to com-

pute the result of a typecase, we rst reduce the tested expression to obtain a value and then test
the type of this value. The denotational semantics follows exactly the same principle: we con-
sider all possible results of the tested expression, which we obtain by considering all sets ÈeÉC𝜌

��
𝔪

for all possible marks𝔪 ∈ M . Then, we simply follow the semantics of typecases we dened in
Section 11.2 on this particular set. Additionally, we propagate the mark denoting the path that
led to the tested result, similarly to applications.
This means that, in particular, it is possible for the semantics to select both branches of a type-

case, provided the tested expression is non-deterministic. For example, consider the expression
(𝑥 = choice(42, true) ∈ Int)? 𝑥 + 1 : ¬𝑥 . The semantics of the tested expression is {42𝑙 , true𝑟 }.
For the input {42𝑙 }, the semantics of the typecase evaluates to {43𝑙 }, while for the input {true𝑟 },
the semantics evaluates to {false𝑟 }. Thus, the semantics of the whole expression is {43𝑙 , false𝑟 }.

11.4.3. Properties

We now state the various properties of our semantics, which follow the results presented in the
previous chapters, except they must be slightly modied to account for the non determinism
brought by the choice operator.

The rst result is the type soundness, which is stated exactly as in Chapter 10. The denotational
interpretation of type environments È.ÉC in DC is also dened exactly as in Denition 10.13, by
replacing È.ÉF by È.ÉC, thus we will not restate it here.

Theorem 11.6 (Type soundness for _C). For every type environment Γ ∈ TEnvs and every

term e ∈ TermsC, if Γ ` e : 𝑡 then for every 𝜌 ∈ ÈΓÉC, ÈeÉC𝜌 ⊆ È𝑡ÉC.

Proof. See appendix page 272. �

The next result is the computational soundness, whose statement diers from Chapter 10,
for two reasons. The rst is the addition of marks and non-determinism, which means that
an expression such as choice(e1, e2) can reduce to, say, e1 whose semantics is composed of the
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elements of the denotation of choice(e1, e2) whose mark starts with 𝑙 . Therefore, we do not have
Èe1ÉC = Èchoice(e1, e2)ÉC but rather Èe1ÉC = {𝑑 ∈ DC | [𝑑]𝑙 ∈ Èchoice(e1, e2)ÉC}.

The second reason has been discussed in Section 11.2. Due to the addition of typecases and in-
terfaces but the impossibility of inferring negation types for functions, the computational sound-
ness does not hold for arbitrary terms of our language. As we hinted before, a solution is to only
consider terms where _-abstractions are suciently annotated to ensure that every typecase can
be decided unambiguously. We do this in three steps. First, we dene a predicateW(.) (.) on terms
parameterized by a set of arrow types 𝑆 , which formalizes the meaning of a well-annotated term
for 𝑆 : in essence, it veries that all the functions appearing in a term are annotated with all the
types present in 𝑆 . Second, we dene a function A→(.) on terms which collects all the arrow
types occurring in a term (both in interfaces and typecases). Finally, we dene the set Prg𝑡 (Γ) of
well-typed terms in an environment Γ that are also well-annotated for the arrow types occurring
in them.
First of all, we dene the set A → of arrow types, or functional atoms:

A → =def {𝑠 → 𝑡 | 𝑠, 𝑡 ∈ Types}

We then dene a predicate stating whether a term is well-annotated for a set of functional
atoms.

Denition 11.7 (Well-annotated terms). We dene a predicate W(.) (.) on TermsC, parame-

terized by a set 𝑆 ∈ P𝑓 (A →), by induction on terms as follows:

W𝑆 (𝑐) = true
W𝑆 (𝑥) = true

W𝑆 (_
∧

𝑖∈𝐼 (𝑠𝑖→𝑡𝑖 )∧
∧

𝑛∈𝑁 ¬(𝑠𝑛→𝑡𝑛)𝑥 . e) = W𝑆 (e) ∧ ∀(𝑠 → 𝑡) ∈ 𝑆.∧
𝑖∈𝐼 (𝑠𝑖 → 𝑡𝑖) ≤ 𝑠 → 𝑡 or

∧
𝑛∈𝑁 ¬(𝑠𝑛 → 𝑡𝑛) ≤ ¬(𝑠 → 𝑡)

W𝑆 (e1 e2) = W𝑆 ((e1, e2)) = W𝑆 (choice(e1, e2)) = W𝑆 (e1) ∧ W𝑆 (e2)
W𝑆 (𝜋𝑖 e) = W𝑆 (e)

W𝑆 ((𝑥 = e ∈ 𝑡)? e1 : e2) = W𝑆 (e) ∧ W𝑆 (e1) ∧ W𝑆 (e2)

Most of the denition of this predicate is straightforward, and simply consists in stating that
a term is well-annotated if all of its subterms also are. The only non-trivial statement concerns
_-abstractions. Intuitively, we state that a _-abstraction is well-annotated for a set of functional
atoms 𝑆 if, for every atom 𝑠 → 𝑡 ∈ 𝑆 , the _-abstraction at issue either has type 𝑠 → 𝑡 or type
¬(𝑠 → 𝑡), which we do by checking its interface.

The next step is to dene a function that “collects” the functional atoms occurring in a term.
We suppose given a function A→(.) : Types → P𝑓 (A →) which collects the functional atoms
occurring in a type. In essence, it satises the following equalities:

A→(𝑡1 → 𝑡2) = {𝑡1 → 𝑡2} ∪ A→(𝑡1) ∪ A→(𝑡2)
A→(𝑡1 × 𝑡2) = A→(𝑡1 ∨ 𝑡2) = A→(𝑡1) ∪ A→(𝑡2)

A→(¬𝑡) = A→(𝑡)
A→(𝑡) = ∅ otherwise

Due to the presence of recursive types, it is not possible to consider these equalities as an induc-
tive denition of the function A→(.). However, since our types are regular, we know that the set
A→(𝑡) exists for every type 𝑡 and is nite (see [27] for more details about the well-foundedness
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of this denition).
We then extend this function to obtain a function A→(.) : TermsC → P𝑓 (A →) by induction

on terms. This denition is straightforward insofar as it simply collects all the functional atoms
occurring in the interfaces and typecases of a term:

A→(𝑐) = ∅
A→(𝑥) = ∅

A→(_𝑡𝑥 . e) = A→(e) ∪ A→(𝑡)
A→(e1 e2) = A→((e1, e2)) = A→(choice(e1, e2)) = A→(e1) ∪ A→(e2)

A→(𝜋𝑖 e) = A→(e)
A→((𝑥 = e ∈ 𝑡)? e1 : e2) = A→(𝑡) ∪ A→(e) ∪ A→(e1) ∪ A→(e2)

This denition allows us to prove a rst result. This result states that if a value is well-
annotated for at least all the functional atoms occurring in a type 𝑡 , then this value can either be
given type 𝑡 or type ¬𝑡 statically.

Proposition 11.8. For every v ∈ ValuesC, 𝑡 ∈ Types, and 𝑆 ∈ P𝑓 (A →), if A→(𝑡) ⊆ 𝑆 and

W𝑆 (v) then either v ∈ 𝑡 or v ∈ ¬𝑡 .

Proof. By induction on the pair (v, 𝑡) lexicographically ordered.

• v = 𝑐 . Immediate.

• v = _
∧

𝑖∈𝐼 (𝑠𝑖→𝑡𝑖 )∧
∧

𝑛∈𝑁 ¬(𝑠𝑛→𝑡𝑛)𝑥 . e.

– 𝑡 = 𝑐 . Then v ∈ ¬𝑡 .

– 𝑡 = 𝑡1 × 𝑡2. Then v ∈ ¬𝑡 .

– 𝑡 = 𝑡1 → 𝑡2. Since W𝑆 (v), and by denition, (𝑡1 → 𝑡2) ∈ A→(𝑡) ⊆ 𝑆 , we have
either

∧
𝑖∈𝐼 (𝑠𝑖 → 𝑡𝑖) ≤ 𝑡1 → 𝑡2 in which case v ∈ 𝑡 or

∧
𝑛∈𝑁 ¬(𝑠𝑛 → 𝑡𝑛) ≤

¬(𝑡1 → 𝑡2) in which case v ∈ ¬𝑡 .

– 𝑡 = 𝑡1 ∨ 𝑡2. By induction hypothesis, either v ∈ 𝑡1 in which case v ∈ 𝑡 by
subtyping, or v ∈ 𝑡2 in which case v ∈ 𝑡 by subtyping, or v ∈ ¬𝑡1 and v ∈ ¬𝑡2 in
which case v ∈ ¬𝑡 since ¬𝑡 ' ¬𝑡1 ∧ ¬𝑡2.

– 𝑡 = ¬𝑡 ′. By IH, we have that v ∈ 𝑡 ′ or v ∈ ¬𝑡 ′ which immediately gives the result
since ¬𝑡 ' 𝑡 ′.

– 𝑡 = 0. Then v ∈ ¬𝑡 .

• v = (v1, v2).

– 𝑡 = 𝑡1 → 𝑡2. Then v ∈ ¬𝑡 .

– 𝑡 = 𝑡1 × 𝑡2. By induction hypothesis, either v1 ∈ 𝑡1 and v2 ∈ 𝑡2 in which case
v ∈ 𝑡 , or ∃𝑖 ∈ {1, 2} such that v𝑖 ∈ ¬𝑡𝑖 which yields v ∈ ¬𝑡 since ¬𝑡 ' (¬𝑡1 ×
1) ∨ (1 × ¬𝑡2) ∨ ¬(1 × 1).

– The other cases are proven as before.

�

We now dene the sets of programs. For a given environment Γ and type 𝑡 , a program of

195



Chapter 11: A denotational semantics for CDuce

type 𝑡 is a well-typed term of type 𝑡 in the environment Γ, that is also well-annotated for all the
functional atoms it contains.

Denition 11.9 (Programs). Given a type environment Γ and a type 𝑡 , we dene the set

PrgΓ (𝑡) of the programs of type 𝑡 in the environment Γ as:

PrgΓ (𝑡) = {e ∈ TermsC | Γ ` e : 𝑡 and WA→ (e) (e)}

We are now ready to state the computational soundness for our semantics. As anticipated, it
is stated for programs only, and accounts for non-determinism.

Theorem 11.10 (Computational soundness for _C). For every term e ∈ PrgΓ (𝑡) and every

environment 𝜌 ∈ ÈΓÉC, if e { e′ then there exists 𝔪 ∈ M such that Èe′ÉC𝜌 = {𝑑 ∈ DC |
[𝑑]𝔪 ∈ ÈeÉC𝜌 }.

Proof. See appendix page 278. �

The proof of this theorem is mostly identical to the proof of the same theorem presented in
Chapter 10, and involves the same monotonicity and substitution lemmas (see Lemmas A.41
and A.40). However, it introduces a new crucial lemma which formalizes the meaning of the new
inputs Ω

(.) with respect to negation types. This lemma states that, given a function 𝑓 annotated
with positive and negative types, and given an approximation 𝑅 of the same function but where
the negative annotations have been removed, then 𝑅 can be extended to obtain an approximation
of 𝑓 . This result only holds thanks to the addition of the new inputs Ω

(.) , and, although this is
not stated explicitly, the extension of the relation 𝑅 can be obtained by only extending it with
pairs of the form ( Ω

𝑑 , 𝜕).

Lemma 11.11. For every v = _
∧

𝑖∈𝐼 (𝑠𝑖→𝑡𝑖 )∧
∧

𝑛∈𝑁 ¬(𝑠𝑛→𝑡𝑛)𝑥 . e ∈ ValuesC, if 𝑅Y ∈ È_
∧

𝑖∈𝐼 (𝑠𝑖→𝑡𝑖 )𝑥 . eÉC𝜌
then there exists 𝑅′Y ∈ ÈvÉC𝜌 such that 𝑅 \ Ω(𝑅) ⊆ 𝑅′

where

Ω(𝑅) = {( Ω

𝑑 , 𝜕) | (

Ω

𝑑 , 𝜕) ∈ 𝑅}.3

Proof. See appendix page 278. �

The presentation of the properties of our calculus and its semantics would not be complete
without a type soundness property for the operational semantics. As for the computational
soundness theorem, this property only holds for well-annotated terms, as the reduction of type-
cases would not satisfy the subject reduction otherwise.

Theorem 11.12 (Operational type soundness of _C). Let e ∈ Prg∅ (𝑡). If ` e : 𝑡 then either e
diverges, or there exists v ∈ ValuesC such that e {∗ v and ` v : 𝑡 .

While our semantics and type system diers slightly from the semantics of Frisch et al. [27],
this theorem is proven identically via subject reduction and progress, and we will not restate the
proof here. The only major dierence comes from the semantics of typecases which is much
simpler in our system, and whose soundness rely on the following lemma:

Lemma 11.13. For every v ∈ ValuesC, ` v : type(v). Moreover, for every 𝑡 ∈ Types, if ` v : 𝑡 then
type(v) ≤ 𝑡 .

3Removing the pairs ( Ω

𝑑 , 𝜕) from 𝑅 is not actually needed to prove the result, but makes the proof much easier, and
has no impact on its usefulness.
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Proof. Immediate by induction on v and inversion of the typing rules. �

A consequence of the subject reduction property is that for every type 𝑡 and environment Γ,
the set of programs PrgΓ (𝑡) is stable by reduction. We formalize this in the following proposition.

Proposition 11.14. For every e ∈ PrgΓ (𝑡), if e { e′ then e′ ∈ PrgΓ (𝑡).

Proof. By denition of W. (.), it is clear that for any two sets of atoms such that 𝑆 ⊆ 𝑆 ′, if
W𝑆′ (e′) then W𝑆 (e′). Then, it suces to remark that for every reduction rule A→(e′) ⊆
A→(e), and that WA→ (e) (e) ensures that WA→ (e) (e′). Thus, we have WA→ (e′) (e′) and this
proves that e′ ∈ PrgΓ (𝑡) by subject reduction. �

This last proposition allows us to recursively apply the computational soundness theorem to
a reduction, to deduce the following corollary:

Corollary 11.15. For every term e ∈ PrgΓ (𝑡) and every environment 𝜌 ∈ ÈΓÉC, if e {∗ v then

there exists 𝔪 ∈ M such that ÈvÉC𝜌 = {𝑑 ∈ DC | [𝑑]𝔪 ∈ ÈeÉC𝜌 }.

Proof. Immediate consequence of Theorem 11.10 and Proposition 11.14. �

For complexity reasons, we leave the adequacy of our semantics as a conjecture. Proving this
property should be feasible by following the same strategy as in Chapter 10, by adapting the
relation to support marks.

11.5. Inferring negative interfaces

This last section focuses on reconciling our system with the system of Frisch et al. [27]. The
soundness of our semantics depends on the fact that terms are well-annotated, which means
that the programmer must ensure that all the functions of a program are correctly annotated
with all the arrow types that appear anywhere in the program. In particular, if the programmer
extends a program with a new typecase, he or she must add the appropriate annotations to all
the existing functions of the program.
This is, in practice, unacceptable. To solve this issue, we discuss away to infer the negative part

of interfaces automatically. In other words, for every term of the system of Frisch et al. [27] (i.e.,
where interfaces are conjunctions of arrow types), we can eectively produce a well-annotated
term in our system that produces the same result.
For complexity reasons, a major part of our system is presented in a declarative manner, which

means that we do not truly obtain a compilation algorithm from the system of Frisch et al. [27] to
_C. However, this presentation gives an idea of how the algorithmic type system of CDuce can
be modied to obtain a compilation algorithm to _C.

11.5.1. Source language

We consider a source language adapted from the language of Frisch et al. [27], in which func-
tion interfaces are conjunctions of positive arrow types. To summarize, we consider the terms
TermsFCB and values ValuesFCB dened inductively by the following grammar:

TermsFCB 3 E B 𝑐 | 𝑥 | _
∧

𝑖∈𝐼 𝑠𝑖→𝑡𝑖𝑥 . E | EE | 𝜋𝑖 E | (E, E) | (𝑥 = E ∈ 𝑡)? E : E | choice(E, E)
ValuesFCB 3 V B 𝑐 | _

∧
𝑖∈𝐼 𝑠𝑖→𝑡𝑖𝑥 . E | (V,V)
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This grammar diers slightly from the grammar of CDuce terms presented by Frisch et al. [27]
on two aspects. First, we only consider a binary non-deterministic choice construct choice(E, E),
while Frisch et al. [27] consider the more general expression rnd(𝑡) which picks an arbitrary
expression of type 𝑡 . This restriction is made necessary by our encoding of non-determinism in
the denotational semantics of _C: by restricting non-deterministic choice to a binary construct,
we are able to encode non-deterministic paths using words on a nite alphabet. Nevertheless, a
binary choice operator is sucient to ensure that distinct types can be separated, which is the
main reason behind the introduction of non-determinism by Frisch et al. [27].
The second dierence comes from the denition of _-abstractions, which do not feature an

explicit binder for recursive functions. This is, in fact, unnecessary: as we have discussed in the
introduction chapter (§1.1.1), recursive types can be used to encode recursive functions using a
xed-point combinator.
As usual, we consider values to be closed and well-typed terms. The associated type system

is dened exactly as in Figure 11.1, except for the rule [TC
Abs] in which the negative part is now

inferred:

[TFCB
Abs ]

∀𝑖 ∈ 𝐼 Γ, 𝑥 : 𝑠𝑖 ` E : 𝑡𝑖
Γ ` _

∧
𝑖∈𝐼 (𝑠𝑖→𝑡𝑖 )𝑥 . E : 𝑡 ∧ 𝑡 ′

𝑡 =
∧

𝑖∈𝐼 (𝑠𝑖 → 𝑡𝑖 )
𝑡 ′ =

∧
𝑛∈𝑁 ¬(𝑠𝑛 → 𝑡𝑛)

𝑡 ∧ 𝑡 ′ ; 0

As seen in the above rule, to distinguish the two type systems, we denote this new type system
using a superscript FCB.
The operational semantics of the source language also follows the semantics presented in Sec-

tion 11.4, except for the reduction of typecases. To dene the operational semantics of type-
cases, Frisch et al. [27] introduce the notion of type schemes, so as to avoid invoking the type
system in the reduction rules. To ease the presentation, we immediately dene the semantics of
typecases in terms of the type system, as the soundness properties presented by Frisch et al. [27]
guarantee that the two denitions are equivalent.

[RFCB
CaseL] (𝑥 = V ∈ 𝑡)? E1 : E2 { E1 [V/𝑥] if ` V : 𝑡

[RFCB
CaseR] (𝑥 = V ∈ 𝑡)? E1 : E2 { E2 [V/𝑥] if 0 V : 𝑡

As before, we use a superscript FCB to distinguish the operational semantics of the source lan-
guage from the operational semantics of _C.

We also introduce the following lemma from Frisch et al. [27] which states that every value in
their system is either of type 𝑡 or of type ¬𝑡 , for every type 𝑡 . The fact that this lemma does not
hold in our system is the very reason the inference of negative arrows is necessary.

Lemma 11.16. For every value V ∈ ValuesFCB and every type 𝑡 ∈ Types, either ` 𝑉 : 𝑡 or ` 𝑉 : ¬𝑡 .

We now proceed with the presentation of the compilation system and its properties.

11.5.2. Annotation and results

Having dened the source language, we now present declaratively a compilation system to the
calculus _C. The goal of this compilation system is to show that, to every well-typed term of
type 𝑡 of the source language, it is possible to associate a program of _C that preserves its type,
its semantics, and its reduction.
This process is done in two steps. Given a well-typed term E of the source language, we

rst follow its type derivation to produce a well-typed term e of _C by adding all the necessary

198



11.5 Inferring negative interfaces

[CC
Cst] Γ ` 𝑐  𝑐 :𝑏𝑐

[CC
Var] Γ ` 𝑥  𝑥 : Γ(𝑥)

[CC
Sub]

Γ ` E e : 𝑡

Γ ` E e : 𝑡 ′
𝑡 ≤ 𝑡 ′

[CC
Abs]

∀𝑖 ∈ 𝐼 Γ, 𝑥 : 𝑠𝑖 ` E e : 𝑡𝑖
Γ ` _

∧
𝑖∈𝐼 (𝑠𝑖→𝑡𝑖 )𝑥 . E _

∧
𝑖∈𝐼 (𝑠𝑖→𝑡𝑖 )∧

∧
𝑛∈𝑁 ¬(𝑠𝑛→𝑡𝑛)𝑥 . e : 𝑡 ∧ 𝑡 ′

𝑡 =
∧

𝑖∈𝐼 (𝑠𝑖 → 𝑡𝑖 )
𝑡 ′ =

∧
𝑛∈𝑁 ¬(𝑠𝑛 → 𝑡𝑛)

𝑡 ∧ 𝑡 ′ ; 0

[CC
App]

Γ ` E1 e1 : 𝑡→𝑡 ′ Γ ` E2 e2 : 𝑡

Γ ` E1 E2 e1 e2 : 𝑡 ′
[CC

Pair]
Γ ` E1 e1 : 𝑡1 Γ ` E2 e2 : 𝑡2
Γ ` (E1, E2)  (e1, e2) : 𝑡1 × 𝑡2

[CC
Proji

]
Γ ` E e : 𝑡1 × 𝑡2

Γ ` 𝜋𝑖 E 𝜋𝑖 e : 𝑡𝑖
[CC

Choice]
Γ ` E1 e1 : 𝑡 Γ ` E2 e2 : 𝑡

Γ ` choice(E1, E2)  choice(e1, e2) : 𝑡

[CC
Case]

Γ ` E e : 𝑡 ′ Γ, 𝑥 : 𝑡∧𝑡 ′ ` E1 e1 : 𝑠 Γ, 𝑥 : ¬𝑡∧𝑡 ′ ` E2 e2 : 𝑠

Γ ` (𝑥 = E ∈ 𝑡)? E1 : E2 (𝑥 = e ∈ 𝑡)? e1 : e2 : 𝑠

[CC
Efq] Γ, 𝑥 : 0 ` E e : 𝑡

Figure 11.2. Type-directed rst annotation step of TermsFCB to TermsC

negative interfaces introduced during the derivation. The term we obtain in this way is well-
typed but not necessarilywell-annotated, sincewe do not explicitly consider the functional atoms
that appear in typecases. The second step consists therefore in gathering all the atoms present
in the compiled term e and adding them to the interfaces appearing in e.

First annotation step

The rst step is presented in Figure 11.2 in a declarative style. This presentation introduces
statements of the form Γ ` E  e : 𝑡 , which state that in a type environment Γ, the term
E ∈ TermsFCB compiles to the term e ∈ TermsC of type 𝑡 . The denition of this system is fairly
straightforward, insofar as it mimics the type system presented in Figure 11.1. The only crucial
part is the compilation rule for _-abstractions [CC

Abs], which bridges the gap between the type
system of _C and the type system of Frisch et al. [27] by adding the inferred negative types.
Before continuing with the second step, we prove several properties of this declarative compi-

lation system. The rst, most important property, is completeness: every well-typed term of the
source language can be annotated to obtain a well-typed term (of the same type) of _C. As an-
ticipated, the major diculty in proving this result comes from the annotation of _-abstractions.
This is due to the fact that the rule [CC

Abs] requires the body E of the abstraction to compile to
the same expression e, independently of the type assigned to 𝑥 . Therefore, we need to prove that
if an expression compiles to two dierent terms under two dierent type environments, then
it is possible to “merge” the two terms to obtain a unique annotated term under the two envi-
ronments. This, in particular, requires to prove that negative interfaces can safely be merged
together, which is formalized by the following lemma.

Lemma 11.17. For every 𝑡 =
∧

𝑖∈𝐼 (𝑠𝑖 → 𝑡𝑖) ∈ Types and 𝑡 ′ =
∧

𝑛∈𝑁 ¬(𝑠𝑛 → 𝑡𝑛) ∈ Types, if
∀𝑛 ∈ 𝑁 . 𝑡 ∧ ¬(𝑠𝑛 → 𝑡𝑛) � 0 then 𝑡 ∧ 𝑡 ′ � 0.
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Proof. By induction on the size of 𝑁 . If 𝑁 = ∅ the result is immediate. Otherwise, suppose
that 𝑡 ′′ = 𝑡 ′ ∧ ¬(𝑠0 → 𝑡0), and that ∀𝑛 ∈ 𝑁 . 𝑡 ∧ ¬(𝑠𝑛 → 𝑡𝑛) � 0 and 𝑡 ∧ ¬(𝑠0 → 𝑡0) � 0. We
need to prove that 𝑡 ∧ 𝑡 ′′ � 0.
By IH, we have 𝑡 ∧ 𝑡 ′ � 0. Let 𝑅𝔪 ∈ È𝑡 ∧ 𝑡 ′ÉC. Since 𝑡 ∧ ¬(𝑠0 → 𝑡0) � 0, we can also take
𝑅′𝔪′ ∈ È𝑡 ∧ ¬(𝑠0 → 𝑡0)ÉC. Consider then 𝑅0 = 𝑅 ∪ 𝑅′. By Denition 11.3, we immediately
verify that 𝑅Y0 ∈ È𝑡ÉC by construction. Now let 𝑛 ∈ 𝑁 . By hypothesis, 𝑅𝔪 ∈ È¬(𝑠𝑛 → 𝑡𝑛)ÉC.
By Denition 11.3, there are two cases:

• There exists (𝑆, 𝜕) ∈ 𝑅 such that 𝑆 ∩ È𝑠𝑛ÉC ≠ ∅ and 𝜕 ∉ È𝑡𝑛ÉC. Since (𝑆, 𝜕) ∈ 𝑅0, we
immediately have 𝑅Y0 ∈ È¬(𝑠𝑛 → 𝑡𝑛)ÉC.

• There exists ( Ω

𝑑 , 𝜕) ∈ 𝑅 such that 𝑑 ∈ È𝑠𝑛ÉC and 𝜕 ∉ È𝑡𝑛ÉC. The same reasoning
yields that 𝑅Y0 ∈ È¬(𝑠𝑛 → 𝑡𝑛)ÉC.

The same reasoning on 𝑅′ and ¬(𝑠0 → 𝑡0) yields that 𝑅Y0 ∈ È¬(𝑠0 → 𝑡0)ÉC, hence 𝑅Y0 ∈
È𝑡 ∧ 𝑡 ′′ÉC. �

Having proven that negative interfaces can be merged without producing an empty type, we
can now prove that it is always possible to merge two compiled terms obtained under two dif-
ferent type environments.

Lemma 11.18. For every term E ∈ TermsFCB, if Γ ` E  e : 𝑡 and Γ′ ` E  e′ : 𝑡 ′ then there

exists ê ∈ TermsC such that Γ ` E ê : 𝑡 and Γ′ ` E ê : 𝑡 ′.

Proof. By induction on E and case analysis over the compilation rules used for Γ ` E e : 𝑡
and Γ′ ` E e′ : 𝑡 ′. The only non-trivial case is E = _

∧
𝑖∈𝐼 (𝑠𝑖→𝑡𝑖 )𝑥 . E′ when [CFCB

Abs ] is used
for both statements.
In that case, we have Γ ` E  _

∧
𝑖∈𝐼 (𝑠𝑖→𝑡𝑖 )∧

∧
𝑛∈𝑁 ¬(𝑠𝑛→𝑡𝑛)𝑥 . e : 𝑡 ∧ 𝑡 ′ and Γ′ ` E  

_
∧

𝑖∈𝐼 (𝑠𝑖→𝑡𝑖 )∧
∧

𝑛∈𝑁 ′ ¬(𝑠𝑛→𝑡𝑛)𝑥 . e : 𝑡 ∧ 𝑡 ′′ where 𝑡 ∧ 𝑡 ′ � 0, 𝑡 ∧ 𝑡 ′′ � 0, and 𝑡 =
∧

𝑖∈𝐼 (𝑠𝑖 → 𝑡𝑖),
𝑡 ′ =

∧
𝑛∈𝑁 ¬(𝑠𝑛 → 𝑡𝑛), and 𝑡 ′′ =

∧
𝑛∈𝑁 ′ ¬(𝑠𝑛 → 𝑡𝑛).

By Lemma 11.17, we have 𝑡∧𝑡 ′∧𝑡 ′′ � 0. Thus, we deduce that Γ ` E _𝑡∧𝑡
′∧𝑡 ′′𝑥 . e : 𝑡∧𝑡 ′∧𝑡 ′′

and Γ′ ` E _𝑡∧𝑡
′∧𝑡 ′′𝑥 . e : 𝑡 ∧ 𝑡 ′ ∧ 𝑡 ′′. The result follows by application of [CFCB

Sub ]. �

Using the above lemma, proving the completeness of the compilation system presented in
Figure 11.2 becomes straightforward.

Lemma 11.19. For every term E ∈ TermsFCB, if Γ ` E : 𝑡 in [TFCB], then there exists e ∈ TermsC

such that Γ ` E e : 𝑡 .

Proof. Immediate by induction on the derivation Γ ` E : 𝑡 , taking the compilation rules
corresponding to the typing rules used, and using Lemma 11.18 to merge the premises of
[TFCB

Abs ]. �

The last two lemmas we present for the rst step are straightforward results which state that
the compilation system properly mimics the type system.

Lemma 11.20. For every term E ∈ TermsFCB, if Γ ` E e : 𝑡 , then Γ ` e : 𝑡 .
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Proof. Immediate by induction on the derivation Γ ` E  e : 𝑡 , taking the typing rules of
[TC] corresponding to the compilation rules used. �

Lemma 11.21. For every value V ∈ ValuesFCB, if ` V : 𝑡 and ` V v : 𝑡 ′ then 𝑡 ∧ 𝑡 ′ � 0.

Proof. Once again immediate by cases on V and over the last rule used to derive ` V v :
𝑡 ′. �

Second annotation step

Wenow present the second annotation step, whose goal is to produce a well-annotated term (that
is, a program) from a well-typed term of _C. This step is dened algorithmically as a function
L.M(.) which takes a term of _C and a set of functional atoms 𝑆 , and returns a term that is well-
annotated for 𝑆 . Formally, this function is dened as follows:

Denition 11.22 (Compilation of TermsC to programs). Let 𝑆 = {𝑠 𝑗 → 𝑡 𝑗 | 𝑗 ∈ 𝐽 } ∈
P𝑓 (A →). We dene the function L.M(.) : TermsC → P𝑓 (A →) → TermsC by induction on

TermsC as follows:

L𝑐M𝑆 =def 𝑐

L𝑥M𝑆 =def 𝑥

L_
∧

𝑖∈𝐼 (𝑠𝑖→𝑡𝑖 )∧
∧

𝑛∈𝑁 ¬(𝑠𝑛→𝑡𝑛)𝑥 . eM𝑆 =def _
∧

𝑖∈𝐼 (𝑠𝑖→𝑡𝑖 )∧
∧

𝑛∈𝑁 ′ ¬(𝑠𝑛→𝑡𝑛)𝑥 . LeM𝑆
where 𝑁 ′ = { 𝑗 ∈ 𝐽 |

∧
𝑖∈𝐼

(𝑠𝑖 → 𝑡𝑖) ∧ ¬(𝑠 𝑗 → 𝑡 𝑗 ) ≠ ∅} ∪ 𝑁

Le1 e2M𝑆 =def Le1M𝑆 Le2M𝑆
L𝜋𝑖 eM𝑆 =def 𝜋𝑖 LeM𝑆

L(e1, e2)M𝑆 =def (Le1M𝑆 , Le2M𝑆 )

L(𝑥 = e ∈ 𝑡)? e1 : e2M𝑆 =def (𝑥 = LeM𝑆 ∈ 𝑡)? Le1M𝑆 : Le2M𝑆
Lchoice(e1, e2)M𝑆 =def choice(Le1M𝑆 , Le2M𝑆 )

As for the rst step, the denition of this function is fairly straightforward, and the only non-
trivial case is the case of _-abstractions. The idea is behind this case is simple: given an abstrac-
tion _

∧
𝑖∈𝐼 (𝑠𝑖→𝑡𝑖 )∧

∧
𝑛∈𝑁 ¬(𝑠𝑛→𝑡𝑛)𝑥 . e and a set of functional atoms 𝑆 , we simply add to the negative

part of the interface all the negations of all the atoms present in 𝑆 that do not make the interface
empty. Note that Lemma 11.17 ensures that this step is properly dened, independently of the
order in which we consider the atoms in 𝑆 .
We rst prove that this function properly fullls its purpose, in the sense that when given a

term e and a set of atoms 𝑆 , it produces a term that is well-annotated (according to Denition 11.7)
for the set 𝑆 .

Lemma 11.23. For every term e ∈ TermsC, for every 𝑆 ∈ P𝑓 (A →), it holds that W𝑆 (LeM𝑆 ).
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Proof. By induction on e. Most cases are immediate by induction following Denition 11.22
and Denition 11.7. The only non-trivial case is e = _

∧
𝑖∈𝐼 (𝑠𝑖→𝑡𝑖 )∧

∧
𝑛∈𝑁 ¬(𝑠𝑛→𝑡𝑛)𝑥 . e′, where

LeM𝑆 = _
∧

𝑖∈𝐼 (𝑠𝑖→𝑡𝑖 )∧
∧

𝑛∈𝑁 ′ ¬(𝑠𝑛→𝑡𝑛)𝑥 . Le′M𝑆 . By induction hypothesis, we have W𝑆 (Le′M𝑆 ).
Moreover, for every (𝑠 → 𝑡) ∈ 𝑆 , we distinguish two cases:

•
∧

𝑖∈𝐼 (𝑠𝑖 → 𝑡𝑖) ∧¬(𝑠 → 𝑡) ≤ 0. This yields that
∧

𝑖∈𝐼 (𝑠𝑖 → 𝑡𝑖) ≤ 𝑠 → 𝑡 , which satises
the condition of Denition 11.7.

•
∧

𝑖∈𝐼 (𝑠𝑖 → 𝑡𝑖) ∧¬(𝑠 → 𝑡) � 0. By Denition 11.22, we deduce that there exists 𝑛 ∈ 𝑁 ′

such that 𝑠𝑛 → 𝑡𝑛 ≡ 𝑠 → 𝑡 . Thus,
∧

𝑛∈𝑁 ′ ¬(𝑠𝑛 → 𝑡𝑛) ≤ ¬(𝑠 → 𝑡), hence the result by
Denition 11.7.

�

An immediate corollary of this lemma is that, if we take 𝑆 to be the set of atoms appearing in
a term, the term we obtain by this second step is a program, since it is well-annotated for all the
atoms appearing in it.

Corollary 11.24. For every term e ∈ TermsC such that Γ ` e : 𝑡 , for every 𝑆 ∈ P𝑓 (A →) such
that A→(e) ⊆ 𝑆 , it holds that LeM𝑆 ∈ PrgΓ (𝑡).

Proof. By Lemma 11.23 we have that W𝑆 (LeM𝑆 ), which ensures that WA→ (e) (LeM𝑆 ) since
A→(e) ⊆ 𝑆 . Then, by cases on e, it is immediate to see by Denition 11.22 that Γ ` e : 𝑡
implies Γ ` LeM𝑆 : 𝑡 . Hence, LeM𝑆 ∈ PrgΓ (𝑡). �

We now connect the two steps, by proving that it is possible to associate to every term E of the
source language a program of _C by using only the system presented in Figure 11.2. Intuitively,
this result holds since all the annotations added by the function presented in Denition 11.22 can
be added immediately during the rst step.

Lemma 11.25. For every term E ∈ TermsFCB, if Γ ` E  e : 𝑡 , then for every 𝑆 ∈ P𝑓 (A →),
Γ ` E LeM𝑆 : 𝑡 .

Proof. By induction on E and case disjunction over the last rule used for Γ ` E e : 𝑡 . Once
again, all cases are immediate except [CFCB

Abs ]. In this case, we have E = _
∧

𝑖∈𝐼 (𝑠𝑖→𝑡𝑖 )𝑥 . E′,
e = _

∧
𝑖∈𝐼 (𝑠𝑖→𝑡𝑖 )∧

∧
𝑛∈𝑁 ¬(𝑠𝑛→𝑡𝑛)𝑥 . e′, and Γ ` E e :

∧
𝑖∈𝐼 (𝑠𝑖 → 𝑡𝑖) ∧

∧
𝑛∈𝑁 ¬(𝑠𝑛 → 𝑡𝑛) where∧

𝑖∈𝐼 (𝑠𝑖 → 𝑡𝑖) ∧
∧

𝑛∈𝑁 ¬(𝑠𝑛 → 𝑡𝑛) � 0 and ∀𝑖 ∈ 𝐼 , Γ, 𝑥 : 𝑠𝑖 ` E′ e′ : 𝑡𝑖 .
By induction hypothesis, ∀𝑖 ∈ 𝐼 , Γ, 𝑥 : 𝑠𝑖 ` E′  Le′M𝑆 : 𝑡𝑖 . Moreover, by Denition 11.22
and Lemma 11.17, we have LeM𝑆 = _

∧
𝑖∈𝐼 (𝑠𝑖→𝑡𝑖 )∧

∧
𝑛∈𝑁 ′ ¬(𝑠𝑛→𝑡𝑛)𝑥 . Le′M𝑆 where

∧
𝑖∈𝐼 (𝑠𝑖 → 𝑡𝑖) ∧∧

𝑛∈𝑁 ′ ¬(𝑠𝑛 → 𝑡𝑛) � 0. Hence Γ ` E  LeM𝑆 :
∧

𝑖∈𝐼 (𝑠𝑖 → 𝑡𝑖) ∧
∧

𝑛∈𝑁 ′ ¬(𝑠𝑛 → 𝑡𝑛) and the
result follows by application of [CFCB

Sub ]. �

Finally, we prove the main theorem of this section: that for every well-typed term of the source
language there exists an annotated term of _C that preserves its semantics by bisimulation. This
theorem guarantees that the denotational semantics of _C properly model the operational be-
haviour of CDuce , provided we add enough annotations to lift any ambiguity about the resolu-
tion of typecases.
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11.6 Summary

Theorem 11.26 (Soundness and completeness of compilation). For every term E ∈
TermsFCB, if ` E : 𝑡 then there exists e ∈ Prg∅ (𝑡) such that ` E  e : 𝑡 and the follow-

ing holds:

1. E { E′ =⇒ ∃e′ ∈ TermsC. e { e′ and ` E′ e′ : 𝑡

2. e { e′ =⇒ ∃E′ ∈ TermsFCB. E { E′
and ` E′ e′ : 𝑡

Proof. See appendix page 280. �

11.6. Summary

In this chapter, we enriched the language presented in the previous chapters with function in-
terfaces, non-deterministic choice, and typecases. These are the three necessary components to
ensure that the interpretation of types we presented in Section 2.3 coincides with the interpre-
tation of types as sets of values. We summarize the main contributions of this chapter here.

Encoding of non-determinism. The rst, arguably simplest, contribution of this chapter is
the encoding of non-determinism in the interpretation domain DC. By extending the interpreta-
tion domain withmarks, which are nite strings over the alphabet {𝑙, 𝑟 }, we were able to provide
a denotational semantics of non-deterministic choice expressions where the mark of a denotation
represents the random path that led to a result. We showed how to propagate this information
through applications and typecases, based on the reduction strategy we adopted for our calculus.

Typecases and programs. With the addition of typecases comes a new diculty: for the
operational semantics of typecases to be sound, it is necessary to ensure that for every value v
and every type 𝑡 appearing in a typecase, v can either be given type 𝑡 or type ¬𝑡 . To achieve
this, Frisch et al. [27] introduce a new typing rule for _-abstractions that can derive arbitrary
negations of arrow types. However, we have shown that this rule is incompatible with the type
soundness of our denotational semantics. To solve this problem, wemodied both the syntax and
the type system of our language to explicitly introduce negative arrow types, and we introduced
the notion of well-annotated terms. In a well-annotated term, we proved that every _-abstraction
can either be given type 𝑡 or type ¬𝑡 for every type 𝑡 that appears in a typecase of the term, thus
ensuring the soundness of our semantics.

The semantics of functions. Following the previous point, _-abstractions in _C are annotated
with an intersection of arrow types or negations of arrow types, which we call their interface. We
showed how to account for the presence of an explicit return type in the denotational semantics of
abstractions, so as to ensure that two functions that produce the same results on the same inputs
but are annotated dierently have distinct denotational semantics. Additionally, we showed that
this is strongly tied to the interpretation of the negative part of an interface: as long as this does
not make it empty, adding a negation type to the interface of a function simply amounts to taking
a subset of its denotational semantics, without any loss of information.

The semantics of CDuce . Finally, since we introduced an important restriction on the type
system of CDuce originally presented by Frisch et al. [27], we discussed in Section 11.5 how to
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Chapter 11: A denotational semantics for CDuce

reconcile our semantics with the semantics of CDuce . Given a term of CDuce , we showed
that it is possible to add all the necessary negation of arrow types to obtain a term of _C that is
well-annotated and that preserves both its reduction and its type.
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Chapter 12.

Denotational semantics for gradual typing

“The pursuit of truth and beauty is a sphere of activity in which

we are permitted to remain children all our lives.”

Albert Einstein

In this chapter, we go back to the interpretation of types and the denotational semantics presented
in Chapter 10, and extend them to support gradual typing. We use this new semantics to get an
insight into how gradual types behave in the presence of set-theoretic types.

Chapter Outline

Section 12.1 We extend the interpretation domain DF with tags, to distinguish between
boxed and unboxed values, where unboxed values belong to the static part of a type, and
boxed values belong to its dynamic part. We show how to interpret types as elements
of this new domain DG, and deduce several relations with interesting properties, namely
subtyping and materialization.

Section 12.2 We present the syntax and declarative type system of a gradually-typed lan-
guage _G. We limit ourselves to a simply typed _-calculus without pairs, to focus on the
main diculty which is the denotational interpretation of applications and casts. After
briey summarizing the operational semantics for _G (which is a fairly standard opera-
tional semantics for a simply typed cast calculus), we conclude this section by giving its
formal denotational semantics.

Section 12.3 As in the previous chapters, we state and prove the two main properties of
our semantics, namely the type soundness and the computational soundness.

12.1. The set-theoretic semantics of gradual types

In the previous chapters, we have laid the groundwork necessary to give a set-theoretic interpre-
tation of gradual types and the denotational semantics of a gradually-typed language. As adding
gradual typing to a fully-featured language such as the language of Chapter 11 would be a huge
undertaking, we chose to take a few steps back and use the interpretation domain presented in
Chapter 10 as the basis for our work on gradual types.

Throughout this section, we consider gradual set-theoretic types as dened in Chapter 5, ex-
cept we restrict ourselves to monomorphic types. As a reminder, the set GTypes is dened as
follows.

205



Chapter 12: Denotational semantics for gradual typing

Denition 12.1 (Gradual types). The set GTypes of gradual types is the set of terms 𝜏 gen-

erated coinductively by the following grammar:

GTypes 3 𝜏 F ? | 𝜏 × 𝜏 | 𝜏 → 𝜏 | 𝜏 ∨ 𝜏 | ¬𝜏 | 0 gradual types

where 𝑏 ranges over B, and that satisfy the following two conditions:

• (regularity) the term has a nite number of dierent sub-terms;

• (contractivity) every innite branch of a type contains an innite number of occurrences

of the × or→ type constructors.

To give a set-theoretic interpretation of these types, the rst step is to extend the interpretation
domain DF. We then study various relations induced by this interpretation, namely, subtyping
and materialization. While the denition of subtyping follows the same strategy as in the previ-
ous chapters, the set-theoretic denition of materialization is entirely novel. By formalizing the
notion of boxed and unboxed values, this new interpretation characterizes set-theoretically the
very essence of gradual typing.

12.1.1. An interpretation domain for gradual types

To understand precisely how to interpret gradual types set-theoretically, we rst need to think
about the behaviour of values in a gradually-typed program. Recall that the elements of our
interpretation domain represent the results of computations. In the presence of gradual typing,
new results are possible. First, a computation may end by a cast failure that will blame some
particular position in the source code. As customary, positions to blame are denoted by labels.
Thus, we add “blames” to the possible results of a computation. Formally, we suppose given a
set of blame labels L , and we dene the set Blame of blames as follows:

Blame =def {blame ℓ | ℓ ∈ L } ∪ {blame ℓ | ℓ ∈ L }

where labels are used to denote the point of failure and have a polarity that indicates whether the
failure at point ℓ is due to the context (blame ℓ) or to the expression in that context (blame ℓ). We
write 𝑝 to denote a blame label independently of its polarity, and use the involutory operation 𝑝

to reverse the polarity of a label.
Secondly, a computation may also return a value of unknown type. For instance, if we feed the

function _𝑥 :Int. 𝑥 with an integer value, then it will return an integer value (i.e., the same integer),
but if we feed the function _𝑥 :?. 𝑥 with the same integer, it will return a value of unknown type.
Even if both functions return the same integer, the one returned by the former can be used only
in contexts where an integer is expected, while the one returned by the latter can be used in any
context —e.g., one that expects a boolean— even though it may then also dynamically fail. As we
see, our old values can play two dierent roles according to whether they are used with a static
or a dynamic type, and the semantics must distinguish these two roles.
Another way to understand this is by seeing a gradually typed program as having two parts:

a dynamically typed part and a statically typed one. When a value travels through the statically
typed part, it can be safely handled since the type-checker has already ensured that no type er-
ror will occur along its path. This is, in essence, the reason we can use type erasure in statically
typed programs. However, when this value crosses into the dynamically typed part of the pro-
gram, anything can happen. Therefore, it must carry its type information so that its type can be
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12.1 The set-theoretic semantics of gradual types

checked at runtime. In other words, the value becomes “boxed”, or “annotated” with some run-
time type information. When crossing back into the static world, and once this information has
been veried as sound at the boundary, it can safely be discarded: the value is then “unboxed”.
From a domain point of view, we distinguish between “boxed” and “unboxed” values by anno-

tating them with a tag. This tag can be either ? or !, indicating that the value plays a dynamic
(i.e., the value is boxed) or a static role (i.e., the value is unboxed), respectively.
This yields the following denition of the new domain DG:

Denition 12.2 (Interpretation domain DG). The interpretation domain DG
is the set of

nite terms 𝑑 produced inductively by the following grammar

𝑑 F 𝑐𝑔 | (𝑑, 𝑑)𝑔 | {(𝑆, 𝜕), . . . , (𝑆, 𝜕)}𝑔

𝑆 F {], . . . , ]} 𝑆 non empty

] F 𝑑 | Ω

𝜕 F 𝑑 | Ω | blame 𝑝

𝑔 F ! | ?
𝑝 F ℓ | ℓ

where 𝑐 ranges over the set C of constants, ℓ ranges over the set L of blame labels, and where

Ω and

Ω

are such that Ω ∉ DG
and

Ω

∉ DG
.

We also write DG

Ω = DG ∪ {Ω} ∪ Blame and I G = P𝑓 (DG ∪ { Ω}) \ {∅}.
We will also commonly use 𝑅 to range over the set P𝑓 (I G × DG

Ω) so that 𝑅𝑔 ranges over the
nite relations in DG

with tag 𝑔.

We may also use 𝜕 to range over both ] and 𝜕, that is, over elements of DG

Ω ∪ { Ω}.

The superscript 𝑔 that appears in the elements of DG is the gradual tag of the element. We
dene tag(.) : DG → {!, ?} the function that returns the topmost tag of a denotation. We also
use the involutory operation . : {!, ?} → {!, ?} which reverses a tag: ! = ? and ? = !. For
𝑔 ∈ {!, ?}, we also dene the two operations .𝑔 : DG

Ω ∪ { Ω} → DG
Ω ∪ { Ω} which modify the

topmost tag of a denotation to 𝑔 (and is the identity on Ω, Ω, and blame 𝑝). A value 𝑑 such that
tag(𝑑) = ! is said to be static, and a value 𝑑 such that tag(𝑑) = ? is said to be dynamic.
Notice how blame denotations are separated from the rest and are not included in DG but in

DG
Ω . Much like Ω, blame is a form of error, and must be propagated as such. For example, when

evaluating a pair (e1, e2), if e1 produces a blame, then the whole pair must evaluate to a blame
instead of to a pair of the form (blame 𝑝, 3).

We also draw inspiration from Chapter 11 and introduce a form of dummy input Ω, although
it behaves dierently than in Chapter 11. Contrary to the inputs Ω

𝑑 of Chapter 11, this input

Ωis not meant to be used in the denotational semantics of our language. Its role, which we
will explain in more details in the next sections, is to slightly change the behaviour of semantic
subtyping on static types to avoid unsound subsumptions. In particular, the introduction of Ω

will make the interpretation of types such as 0 → 1 and 0 → Int dierent, although in semantic
subtyping as presented in Chapter 2, all types 0 → 𝑡 are equivalent. There is also no need to
distinguish Ωinputs from the other inputs of a relation: an input set canmix elements ofDG with

Ω. Doing so greatly simplies the formalism as Ωcan simply be treated as any other element in
the interpretation of arrow types, as we will see in Denition 12.5.
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12.1.2. A set-theoretic interpretation of gradual types

Using this new domain DG, we can now give a set-theoretic interpretation of gradual types.
Overall, our interpretation follows the same strategy as the interpretation presented in Chap-
ter 10, in Denition 10.2. We just need to account for blame and tags.

The interpretation of blame is straightforward: any program of any type can produce a blame
as a result. In other words, every denotation of the form blame 𝑝 is in every type, including 0.
Note that this is simply an artifact of the denition: the interpretation of 0 is still empty, and no
value can be given type 0. However, a function that has type 1 → 0 may now return a blame.
Dealing with tags is less trivial. To understand the interpretation of tags, one can use the same

intuition that guided us throughout Part I of this manuscript, namely that every occurrence of
the dynamic type ? behaves as some form of existentially-quantied type variable. This leads us
to distinguishing between values that are always of type 𝜏 , independently of how the occurrences
of ? in 𝜏 are interpreted, and values that are possibly of type 𝜏 , that is, values that belong to at
least one static type that can be obtained by replacing the occurrences of ? in 𝜏 . As an example,
the value 3 is always of type Int ∨ ?, independently of how ? is interpreted: hence 3! belongs
to the interpretation of Int ∨ ?. On the contrary, true is of type Int ∨ Bool but not Int ∨ Int for
example, hence true? belongs to the interpretation of Int ∨ ? but true! does not.

We can connect this intuition with the notion of tags and the interpretation of types given in
Chapter 10: a static element 𝑑 ∈ DG belongs to the interpretation of a type 𝜏 if and only if the
“untagged” counterpart of 𝑑 in DF belongs to the interpretation of every static type 𝑡 that can be
obtained by replacing the occurrences of ? in 𝜏 with static types. Similarly, a dynamic element
𝑑 ∈ DG belongs to the interpretation of 𝜏 if and only if its untagged counterpart belongs to at
least one type 𝑡 that can be obtained from 𝜏 .

Throughout the rest of this chapter, we will say that an element 𝑑 certainly belongs to a type 𝜏
whenever 𝑑! belongs to 𝜏 , and that 𝑑 possibly belongs to 𝜏 whenever 𝑑? belongs to 𝜏 . Notice that
this informal terminology makes it clear that if a type contains a static element, it also contains
its dynamic counterpart: if an element certainly belongs to a type, then it also possibly belongs
to it. The converse is, obviously, not true.
This intuition gives us a clear interpretation of the dynamic type. Since ? can contain any value

but can be used in any context and does not carry any static information, it is clear that it must
contain every element with a dynamic tag, and only these elements. On the contrary, constant
types are fully static: for example, the type Int denotes the set of all integers 𝑛𝑔 independently
of their tag, since Int cannot be made more precise and certainly contains all integers.

 Remark 12.3. q
Following the standard set-theoretic interpretation of intersection types, this interpretation val-

idates our intuition that for every non-empty type 𝜏 , 𝜏 ∧? is not empty. Indeed, any non-empty

type necessarily contains at least one dynamic element: we have already stated that if a type

contains a static element, then it also contains its dynamic counterpart, therefore a type cannot

contain only static elements. And since ? contains all dynamic elements, the intersection of a

non-empty type 𝜏 with ? is never empty: it contains all the dynamic elements belonging to 𝜏 . y

We can continue with this intuition to deduce the interpretation of product types. Product
types are more complex in the sense that they can be partially dynamic, such as, for example,
? × Int. Notice that no value is always of type ? × Int: whatever pair (𝑑1, 𝑑2) we consider, it is
always possible to interpret ? as a type 𝑡 that does not contain 𝑑1 (the easiest one being 0) such
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that the interpretation of 𝑡 × Int does not contain (𝑑1, 𝑑2). This is because the only way for a pair
to always be in a type is if both its components also are. In other words, a pair (𝑑1, 𝑑2)! is in the
interpretation of a type 𝜏1 × 𝜏2 if and only if 𝑑!

1 and 𝑑
!
2 are respectively in the interpretations of

𝜏1 and 𝜏2.

 Remark 12.4. q
When it comes to the dynamic tag ?, we could simply drop the condition on tags and say that

(𝑑1, 𝑑2)? is in the interpretation of a type 𝜏1 × 𝜏2 if and only if 𝑑1 and 𝑑2 are respectively in the

interpretations of 𝜏1 and 𝜏2.

However, asking for 𝑑?
𝑖 to belong to 𝜏𝑖 is the weakest possible condition about the tag of 𝑑𝑖 :

if 𝑑
𝑔

𝑖
belongs to 𝜏𝑖 for some tag 𝑔, then it is also the case for 𝑑?

𝑖 (as formalized later on in

Proposition 12.6). Therefore, it is equivalent and much simpler to say that (𝑑1, 𝑑2)𝑔 belongs to
𝜏1 × 𝜏2 if and only if 𝑑

𝑔

𝑖
belongs to 𝜏𝑖 for 𝑖 ∈ {1, 2}, as in Denition 12.5. y

The interpretation of tags gets more complicated when considering arrow and negation types,
due to contravariance. When does a relation 𝑅 always belong to a type 𝜏1 → 𝜏2? Following the
above intuition, this is the case when for every type 𝑡1 and 𝑡2 obtained from 𝜏1 and 𝜏2, 𝑅 belongs
to the interpretation of 𝑡1 → 𝑡2. According to the interpretation presented in Denition 10.2, this
holds when 𝑅 maps every input that belongs to 𝑡1 to an output that belongs to 𝑡2. In other words,
by contrapositive, it must not be possible to nd two materializations 𝑡1 and 𝑡2 of 𝜏1 and 𝜏2 such
that 𝑅 maps an input of type 𝑡1 to an output that is not in the interpretation of 𝑡2. Using our
previous terminology, for every input of 𝑅 that possibly belongs to 𝜏1, the corresponding output
must always belong to 𝜏2, otherwise it is possible to nd two types 𝑡1 and 𝑡2 that violate the above
condition.
Formally, for a relation {(𝑆1, 𝜕1), . . . , (𝑆𝑛, 𝜕𝑛)}! to belong to a type 𝜏1 → 𝜏2, it must then hold

that for every pair (𝑆𝑖 , 𝜕𝑖), if there exists an element 𝑑 ∈ 𝑆𝑖 that possibly belongs to 𝜏1 —i.e., 𝑑?

belongs to 𝜏1— then 𝜕!𝑖 must belong to 𝜏1.
The same reasoning can be followed to deduce when a relation 𝑅 possibly belongs to a type

𝜏1 → 𝜏2. Given a pair of 𝑅, there are two possibilities that ensure that the condition of Deni-
tion 10.2 holds for some type 𝑡1 → 𝑡2: either the input does not belong to 𝑡1, in which case the
implication is vacuously true, or the output belongs to 𝑡2. In other words, 𝑅 possibly belongs to
𝜏1 → 𝜏2 if for every pair of 𝑅, either the input does not always belong to 𝜏1, or the output possibly
belongs to 𝜏2. Equivalently, whenever an input always belongs to 𝜏1, the output possibly belongs
to 𝜏2.

Finally, all that remains to explain is the interpretation of negation types, which is simpler.
Intuitively, a value possibly belongs to a type whenever it does not always belong to its negation.
Symmetrically, to preserve the equality of the interpretations of ¬¬𝜏 and 𝜏 , if a value always
belongs to the negation of a type, then it cannot possibly belong to this type. Formally, this gives
the following formula: (𝑑 : ¬𝜏)G ⇐⇒ tag(𝑑) = 𝑔 and not (𝑑𝑔 : 𝜏)G.
Putting the previous explanation together, we obtain the following interpretation of gradual

types in DG:

Denition 12.5 (Set-theoretic interpretation of types in DG). We dene a binary predicate

(𝜕 : 𝜏)G (“the element 𝜕 belongs to the type 𝜏”) where 𝜕 ∈ DG

Ω ∪ { Ω} and 𝜏 ∈ GTypes, by
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induction on the pair (𝜕, 𝜏) ordered lexicographically. The predicate is dened as follows:

(blame 𝑝 : 𝜏)G = true

(𝑑 : ?)G = tag(𝑑) = ?

(𝑐𝑔 : 𝑏)G = 𝑐 ∈ B(𝑏)

((𝑑1, 𝑑2)𝑔 : 𝜏1 × 𝜏2)G = (𝑑𝑔1 : 𝜏1)
G

and (𝑑𝑔2 : 𝜏2)
G

({(𝑆1, 𝜕1), . . . , (𝑆𝑛, 𝜕𝑛)}𝑔 : 𝜏1 → 𝜏2)G = ∀𝑖 ∈ {1..𝑛}. if ∃] ∈ 𝑆𝑖 . (]𝑔 : 𝜏1)
G

then (𝜕𝑔
𝑖
: 𝜏2)

G

(𝑑 : 𝜏1 ∨ 𝜏2)G = (𝑑 : 𝜏1)G or (𝑑 : 𝜏2)G

(𝑑 : ¬𝜏)G = tag(𝑑) = 𝑔 and not (𝑑𝑔 : 𝜏)G

( Ω: 𝜏)G = true

(𝜕 : 𝜏)G = false otherwise

We dene the set-theoretic interpretation of gradual types È.ÉG : GTypes → P (DG) as
È𝜏ÉG = {𝑑 ∈ DG | (𝑑 : 𝜏)G}.

In the end, the set-theoretic interpretation of gradual types is really similar to the interpre-
tation of types presented in Chapter 10. The major dierence is the propagation of tags, which
amounts to reversing the tag on the element being checked according to the variance of the type
at hand.
Note that the interpretation È.ÉG is dened on DG. This means in particular that a blame

element never belongs to the set-theoretic interpretation of a type, and that while (blame 𝑝 : 0)G

holds, the set-theoretic interpretation of 0 is still empty.
From this interpretation, we can immediately deduce a few interesting properties regarding

the behaviour of gradual set-theoretic types. Firstly, the interpretations of ? and¬? are equal, and
consist in all values tagged with ?. While this may seem surprising, this behaviour is expected: if
the dynamic type ? is seen as the absence of type information, then ¬? provides no information
either. Another way to see this is by thinking of ? as a type that stands for any type: if ? stands
for any type 𝜏 , then it also stands for ¬𝜏 , and thus ¬? stands for ¬¬𝜏 , which is equivalent to 𝜏 .

Secondly, the interpretations of 0, 1 and ? are very dierent: 0 denotes the empty set of values,
1 the set of all values (static and dynamic), while ? denotes the set containing all dynamic values.
This is further emphasized by the fact that 𝜏 ∧? does not, generally, have the same interpretation
as 𝜏 . For example, Int ∧ ? denotes the set of all boxed integers, while Int denotes the set of all
integers, boxed or not.
More formally, a crucial property of our interpretation (which we already hinted at previ-

ously), is that if a type contains an unboxed value (i.e., a value with tag !) then it contains the
boxed version of this value. The converse only holds for static types: if a static type contains a
boxed value, then unboxing it produces a value that is still in this type. This yields the following
proposition:

Proposition 12.6. For all type 𝜏 ∈ GTypes, for all static type 𝑡 ∈ Types, for all 𝑑 ∈ DG
,

𝑑! ∈ È𝜏ÉG =⇒ 𝑑? ∈ È𝜏ÉG

𝑑! ∈ È𝑡ÉG ⇐⇒ 𝑑? ∈ È𝑡ÉG
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Proof. We prove the following two stronger results for every 𝜕 ∈ DG
Ω ∪ { Ω}:

(𝜕! : 𝜏)G =⇒ (𝜕? : 𝜏)G

(𝜕! : 𝑡)G ⇐⇒ (𝜕? : 𝑡)G

Both results are proven by induction on the pair (𝜕, 𝜏) or (𝜕, 𝑡) lexicographically ordered,
following Denition 12.5. Notice that if 𝜕 ∉ DG, the result is immediate since the operation
.𝑔 is the identity on blame 𝑝 , Ω and Ω. Hence we only treat the cases where 𝜕 = 𝑑 ∈ DG.

1. (𝜕! : 𝜏)G =⇒ (𝜕? : 𝜏)G.

• (𝑑! : ?)G. Vacuously true.

• (𝑐! : 𝑏)G. By Denition 12.5, this implies 𝑐 ∈ B(𝑏) and thus (𝑐? : 𝑏)G.

• ((𝑑1, 𝑑2)! : 𝜏1 × 𝜏2)G By Denition 12.5, (𝑑!
1 : 𝜏1)

G and (𝑑!
2 : 𝜏2)

G. By induction
hypothesis, this implies that (𝑑?

1 : 𝜏1)
G and (𝑑?

2 : 𝜏2)
G. By Denition 12.5, this

yields ((𝑑1, 𝑑2)? : 𝜏1 × 𝜏2)G.

• ({(𝑆1, 𝜕1), . . . , (𝑆𝑛, 𝜕𝑛)}! : 𝜏1 → 𝜏2)G. Let 𝑖 ∈ {1..𝑛} such that ∃] ∈ 𝑆𝑖 . (]! : 𝜏1)G.
By induction hypothesis, (]? : 𝜏1)G. By hypothesis and Denition 12.5, this en-
sures that (𝜕!𝑖 : 𝜏2)

G. By induction hypothesis, (𝜕?𝑖 : 𝜏2)
G, hence the result.

• (𝑑! : 𝜏1 ∨ 𝜏2)G. By Denition 12.5, (𝑑! : 𝜏1)G or (𝑑! : 𝜏2)G. By induction hypoth-
esis, (𝑑? : 𝜏1)G or (𝑑? : 𝜏2)G. Thus, by Denition 12.5, (𝑑? : 𝜏1 ∨ 𝜏2)G.

• (𝑑! : ¬𝜏)G. By Denition 12.5, it does not hold that (𝑑? : 𝜏)G. Therefore, by
induction hypothesis, necessarily (𝑑! : 𝜏)G does not hold. Thus, (𝑑? : ¬𝜏)G.

2. (𝜕! : 𝑡)G ⇐ (𝜕? : 𝑡)G.

• (𝑑? : ?)G. Vacuously true since ? ∉ Types.

• (𝑐? : 𝑏)G. By Denition 12.5, this implies 𝑐 ∈ B(𝑏) and thus (𝑐! : 𝑏)G.

• ((𝑑1, 𝑑2)? : 𝑡1 × 𝑡2)G By Denition 12.5, (𝑑?
1 : 𝑡1)

G and (𝑑?
2 : 𝑡2)

G. By induction
hypothesis, this implies that (𝑑!

1 : 𝑡1)
G and (𝑑!

2 : 𝑡2)
G. By Denition 12.5, this

yields ((𝑑1, 𝑑2)! : 𝑡1 × 𝑡2)G.

• ({(𝑆1, 𝜕1), . . . , (𝑆𝑛, 𝜕𝑛)}? : 𝑡1 → 𝑡2)G. Let 𝑖 ∈ {1..𝑛} such that∃] ∈ 𝑆𝑖 . (]? : 𝑡1)G. By
induction hypothesis, (]! : 𝑡1)G. By hypothesis and Denition 12.5, this ensures
that (𝜕?𝑖 : 𝑡2)

G. By induction hypothesis, (𝜕!𝑖 : 𝑡2)
G, hence the result.

• (𝑑? : 𝑡1 ∨ 𝑡2)G. By Denition 12.5, (𝑑? : 𝑡1)G or (𝑑? : 𝑡2)G. By induction hypothe-
sis, (𝑑! : 𝑡1)G or (𝑑! : 𝑡2)G. Thus, by Denition 12.5, (𝑑! : 𝑡1 ∨ 𝑡2)G.

• (𝑑? : ¬𝑡)G. By Denition 12.5, it does not hold that (𝑑! : 𝑡)G. Therefore, by in-
duction hypothesis, necessarily (𝑑? : 𝑡)G does not hold. Thus, (𝑑! : ¬𝑡)G.

�

While we have already shown that, in general, 𝜏 ∧ ¬𝜏 is not empty (and thus, it is not true
anymore that a value always belongs to a type or its negation), our interpretation still satises the
De Morgan’s laws. This is a crucial property since it ensures that, for example, a value belongs
to the intersection of two types if and only if it belongs to both types.
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Proposition 12.7 (De Morgan’s laws). For all types 𝜏, 𝜏1, 𝜏2 ∈ GTypes,

È¬¬𝜏ÉG = È𝜏ÉG

È¬(𝜏1 ∨ 𝜏2)ÉG = È¬𝜏1 ∧ ¬𝜏2ÉG

È¬0ÉG = DG

Proof. We prove the three equalities separately.

1. (𝑑 : ¬¬𝜏)G ⇐⇒ not (𝑑 tag(𝑑) : ¬𝜏)
G

⇐⇒ not not (𝑑 tag(𝑑) : 𝜏)G ⇐⇒ (𝑑 : 𝜏)G

2. (𝑑 : ¬(𝜏1 ∨ 𝜏2))G ⇐⇒ not (𝑑 tag(𝑑) : 𝜏1 ∨ 𝜏2)
G

⇐⇒ not ((𝑑 tag(𝑑) : 𝜏1)
G
or (𝑑 tag(𝑑) : 𝜏2)

G
)

⇐⇒ (not (𝑑 tag(𝑑) : 𝜏1)
G
) and (not (𝑑 tag(𝑑) : 𝜏2)

G
)

⇐⇒ (𝑑 : ¬𝜏1 ∧ ¬𝜏2))G

3. (𝑑 : ¬0)G ⇐⇒ not (𝑑 tag(𝑑) : 0)
G

⇐⇒ true

�

12.1.3. Subtyping and materialization

Having dened the interpretation of gradual types and stated some of its most important prop-
erties, we can now proceed with the study of two relations induced by this interpretation.
The rst relation is subtyping, for which we use the denition of semantic subtyping presented

in Chapter 2: subtyping of two gradual types is just dened as the set-containment of their
interpretations:

Denition 12.8 (Subtyping on DG). We dene the subtyping relation ≤ and the subtyping
equivalence relation ' on DG

as 𝜏1 ≤ 𝜏2 ⇐⇒def È𝜏1ÉG ⊆ È𝜏2ÉG and 𝜏1 ' 𝜏2 ⇐⇒def (𝜏1 ≤
𝜏2) and (𝜏2 ≤ 𝜏1).

The role of subtyping is to dictate whether it is statically sound to pass a value to a context,
knowing the type of the value and the type expected by the context. This is, in essence, the
reason we use set-containment to dene subtyping: if a context can accept values from a set 𝑆 ,
then it can accept values from any smaller set 𝑆 ′ ⊆ 𝑆 .
However, the whole point of gradual typing is to allow some statically unsound operations to

take place, provided we insert the dynamic checks necessary to ensure that this does not result in
a stuck computation. In other words, while subtyping facilitates the movement of values inside
the static world or inside the dynamic world, it does not allow values to cross the boundary
between the two, which is the role of gradual typing.
We therefore dene a new relation, materialization, which formalizes the ability to cross be-

tween the static world and the dynamic world. Formally, we say that 𝜏1 materializes in 𝜏2, noted
𝜏1 4 𝜏2, if 𝜏1 is “more dynamic” (or less precise) than 𝜏2. The idea being that values that go from
type 𝜏1 to type 𝜏2 will cross (even partially) from the dynamic world into the static world: they
may be unboxed, but will never become boxed. In other words, 𝜏1 materializes in 𝜏2 if all the
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static values of 𝜏1 are preserved and are still static values of 𝜏2, and if the dynamic values of 𝜏2
are also dynamic values of 𝜏1. Formally, this yields the following denition:

Denition 12.9 (Materialization). We dene the materialization relation 4 on DG
as

𝜏1 4 𝜏2 ⇐⇒def ∀𝑑 ∈ DG,

{
𝑑? ∈ È𝜏2ÉG =⇒ 𝑑? ∈ È𝜏1ÉG

𝑑! ∈ È𝜏1ÉG =⇒ 𝑑! ∈ È𝜏2ÉG

The above denition strongly resembles some form of set-containment. Therefore, we can
wonder if materialization can be expressed using set-containment, or even subtyping. And it is
indeed possible: the rst condition in Denition 12.9 amounts to checking whether the dynamic
values of 𝜏2 are also dynamic values of 𝜏1. Recall that the dynamic values of a type can be obtained
by taking its intersection with ?. Therefore, this condition is equivalent to checking whether
𝜏2 ∧ ? ≤ 𝜏1 ∧ ?.

The second condition is trickier. It amounts to checking whether the static values of 𝜏1 are also
static values of 𝜏2. But since ¬? ' ?, we have no way of selecting only the static values of a type
using connectives. What we can do, however, is removing dynamic values from the equation by
adding the set of all dynamic values to both types: if the set containing all static values of 𝜏1 and
all dynamic values is contained in the set containing all static values of 𝜏2 and all dynamic values,
then our second condition holds. And this set can be obtained easily by simply taking the union
of both types with ?.
Putting all of this together, we obtain the following syntactic characterization of materializa-

tion:

Proposition 12.10 (Syntactic characterization of materialization). For every types 𝜏1, 𝜏2 ∈
GTypes,

𝜏1 4 𝜏2 ⇐⇒
{
𝜏2 ∧ ? ≤ 𝜏1 ∧ ?

𝜏1 ∨ ? ≤ 𝜏2 ∨ ?

Proof. We proceed by double implication.

• 𝜏1 4 𝜏2. We prove the two statements.

1. Let𝑑 ∈ È𝜏2 ∧ ?ÉG. By Denition 12.5 and Proposition 12.7, 𝑑 ∈ È𝜏2ÉG∩È?ÉG. By
Denition 12.5, this yields tag(𝑑) = ?, thus 𝑑? = 𝑑 ∈ È𝜏2ÉG. By Denition 12.9,
we deduce that 𝑑 ∈ È𝜏1ÉG. Since tag(𝑑) = ?, we deduce that 𝑑 ∈ È𝜏1 ∧ ?ÉG.

2. Let 𝑑 ∈ È𝜏1 ∨ ?ÉG. If tag(𝑑) = ? then immediately 𝑑 ∈ È?ÉG and thus 𝑑 ∈
È𝜏2 ∨ ?ÉG by Denition 12.5. Otherwise, if tag(𝑑) = ! then necessarily 𝑑 ∈
È𝜏1ÉG. And since 𝑑 = 𝑑!, by Denition 12.9, we deduce that 𝑑 ∈ È𝜏2ÉG and the
result follows.

• 𝜏2 ∧ ? ≤ 𝜏1 ∧ ? and 𝜏1 ∨ ? ≤ 𝜏2 ∨ ?. We prove the two statements of Denition 12.9.

1. Let 𝑑? ∈ È𝜏2ÉG. By Denition 12.5, 𝑑? ∈ È?ÉG. Thus, by Proposition 12.7,
𝑑? ∈ È? ∧ 𝜏2ÉG. By hypothesis, this yields 𝑑? ∈ È? ∧ 𝜏1ÉG, and Proposition 12.7
then yields 𝑑? ∈ È𝜏1ÉG.

2. Let 𝑑! ∈ È𝜏1ÉG. By Denition 12.5, 𝑑! ∈ È𝜏1 ∨ ?ÉG. Thus, by hypothesis, 𝑑! ∈
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È𝜏2 ∨ ?ÉG. By Denition 12.5, 𝑑! ∉ È?ÉG thus necessarily 𝑑! ∈ È𝜏2ÉG.

�

We have given set-theoretic denitions of subtyping and materialization on gradual types,
however, a problem remains: the decidability of these relations. Subtyping, on non-gradual set-
theoretic types, reduces to an emptiness problem: 𝑡1 is a subtype of 𝑡2 if and only if 𝑡1 ∧ ¬𝑡2 is
empty. And since the emptiness of a set-theoretic type is decidable, so is subtyping. However, as
we have already shown, this reduction is not feasible in our interpretation of gradual types: ? is
a subtype of itself, but ? ∧ ¬? is not empty since it is equivalent to ?.
There is, however, an additional property of gradual types induced by our interpretation that

can help us: the set of the materializations of a gradual type always contains two extremal static
types. That is, every gradual type 𝜏 materializes in two static types that are, respectively, a
subtype and a supertype of every other materialization of 𝜏 . The extremal materializations of a
gradual types are dened informally as follows:

Denition 12.11 (Gradual extrema). For every gradual type 𝜏 ∈ GTypes, we dene the min-

imal (resp. maximal) materialization of 𝜏 , noted 𝜏⇓ (resp. 𝜏⇑), as the static type obtained by

replacing every covariant (resp. contravariant) occurrence of ? in 𝜏 by 0 and every contravari-

ant (resp. covariant) occurrence of ? in 𝜏 by 1.

For a more formal denition of the gradual extremawhich properly formalizes the substitution
of the occurrences of ? and ensures that extrema are well-dened for recursive types, we redirect
the reader to Chapter 5 and Denition 5.24 in particular.
It is straightforward to verify that we have the following equalities:

(𝜏1 → 𝜏2)⇓ = 𝜏1
⇑ → 𝜏2

⇓ (𝜏1 → 𝜏2)⇑ = 𝜏1
⇓ → 𝜏2

⇑

(¬𝜏)⇓ = ¬(𝜏⇑) (¬𝜏)⇑ = ¬(𝜏⇓)
(𝜏1 ∨ 𝜏2)⇓ = 𝜏1

⇓ ∨ 𝜏2
⇓ (𝜏1 ∨ 𝜏2)⇑ = 𝜏1

⇑ ∨ 𝜏2
⇑

(𝜏1 × 𝜏2)⇓ = 𝜏1
⇓ × 𝜏2

⇓ (𝜏1 × 𝜏2)⇑ = 𝜏1
⇑ × 𝜏2

⇑

Gradual extrema can be understood as follows: according to Denition 12.9, materializing
a type can remove dynamic values from its interpretation (possibly converting them to static
values), but can never remove static values. Therefore, the nest materialization of a type 𝜏 can
be obtained by removing all its dynamic values (i.e., all values tagged with ?). This produces a
type containing only the values 𝑑 such that 𝑑! belongs to 𝜏 : this is the minimal materialization
𝜏⇓ of 𝜏 .

The maximal materialization 𝜏⇑ is obtained similarly, except this time, we simply convert all
the dynamic values of 𝜏 into static values: we obtain a type containing all the values 𝑑 such that
𝑑? belongs to 𝜏 . This is formalized by the following proposition:

Proposition 12.12 (Denotational interpretation of extrema). For every gradual type 𝜏 ∈
GTypes,

È𝜏⇓ÉG = {𝑑 ∈ DG | 𝑑! ∈ È𝜏ÉG}

È𝜏⇑ÉG = {𝑑 ∈ DG | 𝑑? ∈ È𝜏ÉG}
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Proof. We prove the equivalent result that for every 𝑑 ∈ DG, we have the following equiv-
alences:

(𝑑 : 𝜏⇓)G ⇐⇒ (𝑑! : 𝜏)G

(𝑑 : 𝜏⇑)G ⇐⇒ (𝑑? : 𝜏)G

This allows us to reason by induction on the pair (𝑑, 𝜏) lexicographically ordered. Due to the
variance involved in the denition of the extrema, the two equivalences must be proven in
a single induction. However, since the two are proven almost identically, we only explicitly
prove the rst one.

• (𝑑,¬𝜏). We have (¬𝜏)⇓ = ¬(𝜏⇑). Thus, by Denition 12.5, if we write 𝑔 = tag(𝑑), we
have that (𝑑 : (¬𝜏)⇓)G ⇐⇒ ¬(𝑑𝑔 : 𝜏⇑)G. By IH, using the second equivalence, we
have that ¬(𝑑𝑔 : 𝜏⇑)G ⇐⇒ ¬(𝑑? : 𝜏)G. By Denition 12.5, we have ¬(𝑑? : 𝜏)G ⇐⇒
(𝑑! : ¬𝜏)G, hence the result.

• (𝑑, 𝜏1 ∨ 𝜏2). We have (𝜏1 ∨ 𝜏2)⇓ = 𝜏1
⇓ ∨ 𝜏2

⇓. By Denition 12.5, we have

(𝑑 : (𝜏1 ∨ 𝜏2)⇓)
G ⇐⇒ (𝑑 : 𝜏1⇓)

G ∨ (𝑑 : 𝜏2⇓)
G. By IH, we deduce that

(𝑑 : (𝜏1 ∨ 𝜏2)⇓)
G ⇐⇒ (𝑑! : 𝜏1)G∨(𝑑! : 𝜏2)G, and the result follows by Denition 12.5.

• (𝑑, ?). We have ?⇓ = 0, hence (𝑑 : ?⇓)G cannot hold. By Denition 12.5, we also have
that (𝑑 : ?)G ⇐⇒ tag(𝑑) = ?, which ensures that (𝑑! : ?)G does not hold either.

• ((𝑑1, 𝑑2)𝑔, 𝜏1 × 𝜏2). We have (𝜏1 × 𝜏2)⇓ = 𝜏1
⇓ × 𝜏2

⇓. By Denition 12.5, we have

((𝑑1, 𝑑2)𝑔 : (𝜏1 × 𝜏2)⇓)
G ⇐⇒ (𝑑𝑔1 : 𝜏1⇓)

G ∧ (𝑑𝑔2 : 𝜏2⇓)
G. By IH, we deduce that

((𝑑1, 𝑑2)𝑔 : (𝜏1 × 𝜏2)⇓)
G ⇐⇒ (𝑑!

1 : 𝜏1)
G ∧ (𝑑!

2 : 𝜏2)
G. By Denition 12.5, we have

(𝑑!
1 : 𝜏1)

G ∧ (𝑑!
2 : 𝜏2)

G ⇐⇒ ((𝑑1, 𝑑2)! : 𝜏1 × 𝜏2)G, hence the result.

• ({(𝑆𝑖 , 𝜕𝑖) | 𝑖 ∈ 𝐼 }𝑔, 𝜏1 → 𝜏2). We have (𝜏1 → 𝜏2)⇓ = 𝜏1
⇑ → 𝜏2

⇓. By Deni-

tion 12.5, we have ({(𝑆𝑖 , 𝜕𝑖) | 𝑖 ∈ 𝐼 }𝑔 : (𝜏1 → 𝜏2)⇓)
G ⇐⇒ (∀𝑖 ∈ 𝐼 . (∃] ∈

𝑆𝑖 . (]𝑔 : 𝜏1⇑)
G) =⇒ (𝜕𝑔

𝑖
: 𝜏2⇓)

G). By IH, we have (]𝑔 : 𝜏1⇑)
G ⇐⇒ (]? : 𝜏1)G

and (𝜕𝑔
𝑖
: 𝜏2⇓)

G ⇐⇒ (𝜕!𝑖 : 𝜏2)
G. Therefore, the above condition is equivalent to

∀𝑖 ∈ 𝐼 . (∃] ∈ 𝑆𝑖 . (]? : 𝜏1)G) =⇒ (𝜕!𝑖 : 𝜏2)
G. By Denition 12.5, this is equivalent to

({(𝑆𝑖 , 𝜕𝑖) | 𝑖 ∈ 𝐼 }! : 𝜏1 → 𝜏2)G, hence the result.

• All other cases vacuously hold since neither (𝑑 : 𝜏⇓)G nor (𝑑! : 𝜏)G can hold.

�

This last property allows us to prove the fundamental property of gradual extrema as stated
in Chapter 5 (Theorem 5.25), which formalizes our previous explanation: the types 𝜏⇓ and 𝜏⇑ are
materializations of 𝜏 that are respectively a subtype and a supertype of every other materializa-
tion of 𝜏 . Thanks to our set-theoretic interpretation of gradual types and Proposition 12.12, the
proof of this theorem is much simpler than in Chapter 5 and does not rely on the manipulation
of type substitutions.

Theorem 12.13 (Fundamental property of gradual extrema). For every gradual type 𝜏 ∈
GTypes, the following holds:
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• 𝜏 4 𝜏⇓ and 𝜏 4 𝜏⇑;

• for every 𝜏 ′ ∈ GTypes such that 𝜏 4 𝜏 ′, 𝜏⇓ ≤ 𝜏 ′ ≤ 𝜏⇑.

Proof. We prove the two properties independently.

• Let 𝑑 ∈ DG such that 𝑑? ∈ È𝜏⇓ÉG. By Proposition 12.12, we have 𝑑! ∈ È𝜏ÉG. By
Proposition 12.6, we deduce that 𝑑? ∈ È𝜏ÉG.
Now let 𝑑 ∈ DG such that 𝑑! ∈ È𝜏ÉG. By Proposition 12.12, we have 𝑑𝑔 ∈ È𝜏⇓ÉG

independently of 𝑔, thus in particular 𝑑! ∈ È𝜏⇓ÉG. Hence, by Denition 12.9, we
deduce that 𝜏 4 𝜏⇓.
The same reasoning can be followed to deduce that 𝜏 4 𝜏⇑.

• Let 𝜏 ′ ∈ GTypes such that 𝜏 4 𝜏 ′. Let 𝑑 ∈ È𝜏⇓ÉG. By Proposition 12.12, we have
𝑑! ∈ È𝜏ÉG. By Denition 12.9, this yields 𝑑! ∈ È𝜏 ′ÉG. Hence, by Proposition 12.6,
necessarily 𝑑 ∈ È𝜏 ′ÉG, which proves that 𝜏⇓ ≤ 𝜏 ′. The same reasoning proves that
𝜏 ′ ≤ 𝜏⇑.

�

We can now start to see how gradual extrema can help us deciding subtyping and material-
ization. We have shown in Proposition 12.10 that materialization reduces to gradual subtyping,
by comparing separately the static and the dynamic parts of types. We can of course follow the
same strategy for subtyping: a type 𝜏1 is a subtype of 𝜏2 if and only if the static (resp. dynamic)
values of 𝜏1 are also static (resp. dynamic) values of 𝜏2.

This is where gradual extrema come into play. As Proposition 12.12 shows, 𝜏⇓ and 𝜏⇑ repre-
sent exactly the static part and the dynamic part of 𝜏 , respectively. Thus, we can compute both
subtyping and materialization by simply comparing extremal materializations. This allows us to
deduce the following theorem, which forms the basis of the work we presented in Chapter 6:

Theorem 12.14 (Decidability of subtyping and materialization). For every types 𝜏1, 𝜏2 ∈
GTypes,

𝜏1 ≤ 𝜏2 ⇐⇒ 𝜏1
⇓ ≤ 𝜏2

⇓
and 𝜏1

⇑ ≤ 𝜏2
⇑

𝜏1 4 𝜏2 ⇐⇒ 𝜏1
⇓ ≤ 𝜏2

⇓
and 𝜏2

⇑ ≤ 𝜏1
⇑

Proof. We rst prove the rst equivalence.

• Suppose that 𝜏1 ≤ 𝜏2 and let 𝑑 ∈ È𝜏1⇓É
G. By Proposition 12.12, we have 𝑑! ∈ È𝜏1ÉG.

By hypothesis, this yields 𝑑! ∈ È𝜏2ÉG. By Proposition 12.12, we deduce 𝑑 ∈ È𝜏2⇓É
G,

hence 𝜏1⇓ ≤ 𝜏2
⇓. Now let 𝑑 ∈ È𝜏1⇑É

G. By Proposition 12.12, we have 𝑑? ∈ È𝜏1ÉG.
By hypothesis, this yields 𝑑? ∈ È𝜏2ÉG. By Proposition 12.12, we deduce 𝑑 ∈ È𝜏2⇑É

G,
hence 𝜏1⇑ ≤ 𝜏2

⇑.

• Now suppose that 𝜏1⇓ ≤ 𝜏2
⇓ and 𝜏1⇑ ≤ 𝜏2

⇑, and let 𝑑 ∈ È𝜏1ÉG. Suppose that tag(𝑑) = ?.
By Proposition 12.12, we have that 𝑑 ∈ È𝜏1⇑É

G. By hypothesis, this yields 𝑑 ∈ È𝜏2⇑É
G.

Hence, by Proposition 12.12, 𝑑? ∈ È𝜏2ÉG, but since 𝑑? = 𝑑 we deduce that 𝜏1 ≤ 𝜏2. The
same reasoning can be followed using 𝜏1⇓ if tag(𝑑) = !, yielding the result.
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Now, for the second equivalence, by Proposition 12.10, we have that 𝜏1 4 𝜏2 ⇐⇒ 𝜏1 ∨ ? ≤
𝜏2∨? and 𝜏2∧? ≤ 𝜏1∧?. Moreover, it holds that (𝜏1 ∨ ?)⇓ ' 𝜏1

⇓, (𝜏1 ∨ ?)⇑ ' 1, (𝜏1 ∧ ?)⇓ ' 0,
and (𝜏1 ∧ ?)⇑ = 𝜏1

⇑, and similarly for 𝜏2. Thus, using the rst equivalence, we deduce that:

𝜏1 4 𝜏2 ⇐⇒ 𝜏1
⇓ ≤ 𝜏2

⇓ and 1 ≤ 1 and 0 ≤ 0 and 𝜏2⇑ ≤ 𝜏1
⇑

Since 0 ≤ 0 and 1 ≤ 1 trivially hold, we have the result. �

This theorem drives a very strong message. It states that to add gradual typing to a language,
it is not necessary to dene the subtyping and materialization relations as we did in the pre-
vious subsections: all is needed is an initial subtyping relation on static types, together with
the denition of gradual extrema. Provided the subtyping relation on static types is decidable,
Theorem 12.14 also guarantees the decidability of both subtyping and materialization on gradual
types, by reducing them to subtyping on static types. And since for every static type 𝑡 , 𝑡⇑ = 𝑡⇓ = 𝑡 ,
dening gradual subtyping this way guarantees that it is a conservative extension of its static
counterpart.
We nish this section by an even more drastic property than Theorem 12.14, which proves we

do not even need the full syntax of gradual types:

Theorem 12.15 (Representation of gradual types). For every gradual type 𝜏 ,

𝜏 ' 𝜏⇓ ∨ (? ∧ 𝜏⇑)

Proof. We have (𝜏⇓ ∨ (? ∧ 𝜏⇑))⇓ = 𝜏⇓ ∨ (0∧𝜏⇑) ' 𝜏⇓ and (𝜏⇓ ∨ (? ∧ 𝜏⇑))⇑ = 𝜏⇓ ∨ (1∧𝜏⇑) '
𝜏⇓ ∨ 𝜏⇑ ' 𝜏⇑ since 𝜏⇓ ≤ 𝜏⇑. Hence the result follows immediately from Theorem 12.14. �

According to this theorem, every gradual type 𝜏 is equivalent to the ? type as long as we bound
it with the two extrema 𝜏⇓ and 𝜏⇑. Therefore, every gradual type can be represented by a pair of
static types, and to add gradual typing to a system, it suces to add a single constant ? to types
that will always appear at top level, and never under an arrow or product.

12.1.4. About semantic subtyping

While the last few theorems provide very strong results about gradual types, there is, however,
one caveat that must be taken into account. In semantic subtyping as dened in Chapter 2,
arrow types do not always verify the usual variance properties. In particular, all types 0 → 𝑡

are equivalent, since they all contain all nite relations of the interpretation domain. This means
that the variance properties of arrow types can also be broken when ? occurs contravariantly,
since taking is minimal concretization makes the domain of the arrow empty.
Consider for example the type ? → ?. Its minimal concretization is 1 → 0. Its maximal

concretization if 0 → 1, which, under the denition of semantic subtyping given in Chapter 2, is
equivalent to 0 → 0. According to Theorem 12.14, this proves that ? → ? is a subtype of ? → 0.
This is clearly unsound, as it allows to deduce type 0 for the application of a function of type
? → ? to a value of type ?, even though such an application can return a result.
This is the reason we introduced the new element Ω, which changes the subtyping relation on

static types. In our new interpretation, the interpretation of the type 0 → 1 contains all relations,
whereas the interpretation of, for example, 0 → Int does not contain the relation {{ Ω}, true},
thus making the two distinct. This ensures that all arrow types, including those where ? occurs
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[TG
Cst] Γ ` 𝑐 : 𝑏𝑐

[TG
Var] Γ ` 𝑥 : Γ(𝑥)

[TG
Sub]

Γ ` E : 𝜏 𝜏 ≤ 𝜏 ′

Γ ` E : 𝜏 ′

[TG
Abs]

Γ, 𝑥 : 𝜏 ` E : 𝜏 ′

Γ ` _𝑥 :𝜏 . E : 𝜏 → 𝜏 ′
[TG

App]
Γ ` E1 : 𝜏 ′ → 𝜏 Γ ` E2 : 𝜏 ′

Γ ` E1 E2 : 𝜏

[TG
Cast+]

Γ ` E : 𝜏

Γ ` E〈𝜏 ⇒ℓ 𝜏
′〉 : 𝜏 ′

𝜏 4 𝜏 ′ [TG
Cast−]

Γ ` E : 𝜏

Γ ` E〈𝜏 ⇒ℓ 𝜏
′〉 : 𝜏 ′

𝜏 ′ 4 𝜏

Figure 12.1. Typing rules for _G

contravariantly, verify the usual variance properties for subtyping. This is a crucial aspect that
will be needed in the proof of Proposition 12.17, on which the soundness of our semantics relies.

12.2. Semantics of a simply-typed gradual calculus

In this section, we use the formalism we developed in the previous section to present a denota-
tional semantics for a cast calculus. However, due to the complexity of this task, and for reasons
we will highlight throughout this section, we restrict ourselves to a cast calculus with simple
types.

12.2.1. Presentation of _G

In the rest of this chapter, we restrict the set of typesGTypes to simple gradual types: we remove
the set-theoretic connectives and the product constructor from the grammar of types. In the
following, the set GTypes of gradual types therefore refers to the types 𝜏 dened inductively as
follows:

GTypes 3 𝜏 F 𝑏 | 𝜏 → 𝜏 | ?

where 𝑏 ranges over the set of basic types B.
We consider a standard cast calculus, similar to the cast calculus we presented in Chapter 4,

except we do not consider polymorphism. This yields a calculus that is close to the calculus
presented by Siek et al. [68]. The terms E ∈ TermsG of _G are those dened inductively by the
following grammar:

TermsG 3 E F 𝑐 | 𝑥 | _𝑥 :𝜏 . E | EE | E〈𝜏 ⇒𝑝 𝜏〉

The type system of _G is presented in Figure 12.1. This type system is identical to the type
system of the cast calculus presented in Chapter 4. In particular, we establish a correspondence
between the direction of a cast and the polarity of its label: a cast with a positive label goes from
a type to a more precise type, while a cast with a negative label goes from a type to a less precise
type.
The values v ∈ ValuesG and the reduction contexts E of _G are those dened inductively by the
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[RG
App] (_𝑥 :𝜏 . E) v { E [v/𝑥]

[RG
CApp] (v〈𝜏1 → 𝜏2 ⇒𝑝 𝜏 ′1 → 𝜏 ′2〉) v′ { (vv′〈𝜏 ′1 ⇒𝑝 𝜏1〉)〈𝜏2 ⇒𝑝 𝜏 ′2〉
[RG

Id] v〈? ⇒𝑝 ?〉 { v
[RG

ExpandL] v〈𝜏1 → 𝜏2 ⇒𝑝 ?〉 { v〈𝜏1 → 𝜏2 ⇒𝑝 ? → ?〉〈? → ? ⇒𝑝 ?〉 if 𝜏1 → 𝜏2 ≠ ? → ?

[RG
ExpandR] v〈? ⇒𝑝 𝜏1 → 𝜏2〉 { v〈? ⇒𝑝 ? → ?〉〈? → ? ⇒𝑝 𝜏1 → 𝜏2〉 if 𝜏1 → 𝜏2 ≠ ? → ?

[RG
Collapse] v〈[ ⇒𝑝 ?〉〈? ⇒𝑞 [

′〉 { v if gnd(v) ≤ [ ′

[RG
Blame] v〈[ ⇒𝑝 ?〉〈? ⇒𝑞 [

′〉 { blame 𝑞 if gnd(v) � [ ′

[RG
Ctx] E [E] { E [E′] if E { E′

[RG
CtxBlame] E [E] { blame 𝑝 if E { blame 𝑝

Figure 12.2. Operational semantics of _G

following grammars:

ValuesG 3 v F 𝑐 | _𝑥 :𝜏 . E | v〈[ ⇒𝑝 ?〉 | v〈𝜏 → 𝜏 ⇒𝑝 𝜏 → 𝜏〉
E F [] | E E | vE | E 〈𝜏 ⇒𝑝 𝜏〉

where [ ranges over ground types dened as follows:

[ F ? → ? | 𝑏

As anticipated, this denition of values is fairly standard and follows closely the denition we
gave in Chapter 4.
To conclude the presentation of _G, its operational semantics is summarized in Figure 12.2.

Once again, most of this semantics common in the gradual typing literature. The only peculiarity
comes from the rules [RG

Collapse] and [RG
Blame] which make use of an operator noted gnd(.). This

operator returns the ground type associated to a value, and is dened inductively as follows:

gnd(𝑐) = 𝑏𝑐 gnd(_𝑥 :𝜏 . E) = ? → ?

gnd(v〈𝜏1 → 𝜏2 ⇒𝑝 𝜏 ′1 → 𝜏 ′2〉) = ? → ? gnd(v〈[ ⇒𝑝 ?〉) = gnd(v)

The reason these rules use the operator gnd(.) instead of directly comparing the two ground
types [ and [ ′ is to avoid some unnecessary error that may arise due to subtyping. For example,
consider the expression 2〈Int ⇒𝑝 ?〉〈? ⇒𝑞 Nat〉. If the result of the reduction were decided by
comparing the source type of the rst cast and the target type of the second cast, this expression
would fail since Int is not a subtype ofNat. However, it is clear that 2 is of typeNat, thus failing is
not necessary here, and the expression can be safely reduced to 2. This is the role of the operator
gnd(.): it extracts the most precise ground type associated to a value, which ensures that rule
[RG

Blame] is applied as little as possible.

12.2.2. A new interpretation of types

The interpretation of types we presented in Section 12.1 (Denition 12.5) is based on the intuition
that the values belonging to a gradual type 𝜏 can be separated into two categories: the values
that belong to every materialization of 𝜏 (we annotate these values with the tag !), and the val-
ues that belong to some materializations of 𝜏 (we annotate these values with the tag ?). Using
this intuition, we obtained that, for example, the interpretation of the type ? → ? contains in
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Chapter 12: Denotational semantics for gradual typing

particular all possible relations tagged with ?, since every relation belongs to at least one arrow
type.
This interpretation of types is particularly useful to dene and reason about the subtyping

and materialization relations set-theoretically. This makes it well-suited to the denition of a
gradually-typed source language, in which the use of materialization is implicit. However, in a
cast language, every use of the materialization relation is made explicit by the presence of a cast,
and the dynamic type ? behaves similarly to a base type: the values of the cast language that
can be given type ? are precisely the values that have been explicitly cast to ?. Similarly, the
values of the cast language that have type ? → ? are exactly the functions that, when applied to
a value that has been explicitly cast to ?, return a value cast to ?. This contrasts with the static
semantics of a source language where applying a function of type ? → ? to a value of type ? can
return a result of any type, since both the type of the function and the type of the value can be
materialized to anything.
This leads us to dening a new interpretation of gradual types which is guided by the be-

haviour of the values of our cast language _G. This new interpretation is given as a function
〈〈.〉〉 : GTypes → P (DG) dened as follows.

Denition 12.16 (Concrete interpretation of gradual types). We dene a binary predicate

〈𝜕 : 𝜏〉 (“the element 𝜕 belongs to the type 𝜏”) where 𝜕 ∈ DG

Ω ∪ { Ω} and 𝜏 ∈ GTypes, by
induction on the pair (𝜕, 𝜏) ordered lexicographically. The predicate is dened as follows:

〈blame 𝑝 : 𝜏〉 = true

〈 Ω: 𝜏〉 = true

〈𝑐! : 𝑏〉 = 𝑐 ∈ B(𝑏)
〈𝑐? : ?〉 = true

〈{(𝑆1, 𝜕1), . . . , (𝑆𝑛, 𝜕𝑛)}! : 𝜏1 → 𝜏2〉 = ∀𝑖 ∈ {1..𝑛}. if ∃] ∈ 𝑆𝑖 . 〈] : 𝜏1〉 then 〈𝜕𝑖 : 𝜏2〉
〈{(𝑆1, 𝜕1), . . . , (𝑆𝑛, 𝜕𝑛)}? : ?〉 = ∀𝑖 ∈ {1..𝑛}. if ∃] ∈ 𝑆𝑖 . 〈] : ?〉 then 〈𝜕𝑖 : ?〉

〈𝜕 : 𝜏〉 = false otherwise

We dene the concrete interpretation of gradual types 〈〈.〉〉 : GTypes → P (DG) as 〈〈𝜏〉〉 =
{𝑑 ∈ DG | 〈𝑑 : 𝜏〉}.

Under this interpretation, tags take on anothermeaning: an element taggedwith ? corresponds
to a value that has been explicitly cast to ?, whereas an element tagged with ! corresponds to a
value that has not been cast, or that has been cast to a type dierent from ?. Following this idea,
the values that can be given type 𝑏 are exactly the constants 𝑐 such that 𝑐 ∈ B(𝑏) and that have
not been cast to ?, hence the concrete interpretation of 𝑏 as the set {𝑐! | 𝑐 ∈ B(𝑏)}. Similarly,
every constant that has been cast to ? can be given type ?, hence, the concrete interpretation of
? contains all elements 𝑐? ∈ DG.
The interpretation of arrow types is fairly straightforward and closely mimics the interpreta-

tion of arrow types presented in Chapter 10 (Denition 10.2). The only peculiarity comes from
the fact that since a function can only be given type 𝜏1 → 𝜏2 if it has not been cast to ? (as ? is
not a subtype of 𝜏1 → 𝜏2), a relation can only belong to the concrete interpretation of 𝜏1 → 𝜏2 if
its tag is !.

Finally, the second-to-last rule of Denition 12.16, which formalizes whether a relation belongs
to the concrete interpretation of ?, is probably the most surprising. Its denition comes from the
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12.2 Semantics of a simply-typed gradual calculus

operational semantics of _G presented in Figure 12.2: for a functional value to be cast to ?, it
must rst be cast to ? → ?, as enforced by Rule [RG

ExpandL]. Therefore, a relation that belongs
to the concrete interpretation of ? must satisfy two conditions: it must be tagged with ?, and it
must be a function that maps values of type ? to values of type ?.
While this new interpretation of types is based on a completely dierent intuition than the

interpretation presented in Section 12.1, the two are not incompatible. In particular, they both
induce the same subtyping relation on GTypes, as formalized by the following result. This result
will be crucial to prove that our semantics is sound with respect to the type system of Figure 12.1
which uses the subtyping relation dened in Section 12.1.

Proposition 12.17. For every types 𝜏, 𝜏 ′ ∈ GTypes, 〈〈𝜏〉〉 ⊆ 〈〈𝜏 ′〉〉 ⇐⇒ 𝜏 ≤ 𝜏 ′.

Proof hint. See appendix page 281 for the full proof.
The main diculty comes from arrow types, and highlights the reason why Ωis necessary.
Let 𝜏 = 𝜏1 → 𝜏2 and 𝜏 ′ = 𝜏 ′1 → 𝜏 ′2, and suppose that 𝜏 ≤ 𝜏 ′. We can show that 𝜏 and 𝜏 ′

necessarily verify the usual variance properties.
Suppose that 𝜏 ′1 � 𝜏1. Then there exists 𝑑 ∈ È𝜏 ′1É

G \ È𝜏1ÉG. By Proposition 12.6, we have
𝑑? ∈ È𝜏 ′1É

G \ È𝜏1ÉG. By Denition 12.5, we have that {{𝑑?},Ω}! ∈ È𝜏ÉG \ È𝜏 ′ÉG, which
contradicts the hypothesis that 𝜏 ≤ 𝜏 ′. Hence, 𝜏 ′1 ≤ 𝜏1.
Similarly, suppose that 𝜏2 � 𝜏 ′2. There exists 𝑑 ∈ È𝜏2ÉG \È𝜏 ′2É

G. By Proposition 12.6, we have
𝑑? ∈ È𝜏2ÉG. By Denition 12.5, we have that {{ Ω}, 𝑑?}! ∈ È𝜏ÉG \ È𝜏 ′ÉG, which once again
contradicts the hypothesis. Hence, 𝜏2 ≤ 𝜏 ′2.
Then, using these variance properties, we easily prove that 〈〈𝜏〉〉 ⊆ 〈〈𝜏 ′〉〉 by induction hy-
pothesis and Denition 12.16. �

As a nal remark, one of the main reasons we restricted this calculus to simple types is that
this interpretation of types cannot be easily extended to set-theoretic types. A rst issue comes
from the fact that, in the presence of set-theoretic types, ? does not behave exactly like a base
type anymore, since its intersection with any other type (apart from the empty type) is non-
empty. As such, it is possible to cast 3 to, for example, the type Int ∧ ?. However, if we were
to interpret the intersection set-theoretically in the above interpretation, the intersection of Int
(whose interpretation only contains values tagged with !) with ? (whose interpretation only
contains values tagged with ?) would be empty. This suggests that in a cast language with set-
theoretic types, values behave entirely dierently than in a cast language with simple types, and
thus the concrete interpretation of types must be changed accordingly. We will discuss this point
in more details in Chapter 13.

12.2.3. The denotational semantics of casts

The central part of our semantics is the denition of the semantics of casts from a denotational
perspective. Operationally, the role of a cast is simple: it converts a value of type 𝜏 into a value of
another type 𝜏 ′ if this operation is possible, or raises an error otherwise. For constants, there are
only two operations possible: converting a constant into a “boxed” constant (a constant cast to
?), and converting a “boxed” constant into an “unboxed” constant (a constant without any cast
attached). For functions, this is more complex, since it is also possible to cast a function from a
type 𝜏1 → 𝜏2 to another type 𝜏 ′1 → 𝜏 ′2, which produces another function that can now be applied
to arguments of type 𝜏 ′1 and returns results of type 𝜏 ′2. Moreover, “boxing” a function by casting
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it to the dynamic type introduces an intermediate cast to the type ? → ?, whose role is to ensure
that casting a function from a type 𝜏1 → 𝜏2 to ? and later from type ? to another type 𝜏 ′1 → 𝜏 ′2
always goes through an intermediate type that is compatible (with respect to materialization)
with both 𝜏1 → 𝜏2 and 𝜏 ′1 → 𝜏 ′2.
We formalize these same operations denotationally, by seeing a cast as an operation that con-

verts an element 𝜕 ∈ DG
Ω into a set of elements of DG

Ω . The reason this operation can return
multiple elements (possibly innitely many) is due to the fact that casting a relation to a type
𝜏 ′1 → 𝜏 ′2 can return many relations of this type. For example, consider the relation of type ? → ?

that maps 3? to 3?. Casting it to Int → Int should intuitively produce the relation that maps 3!

to 3!, since it can now be applied to unboxed arguments, and it now returns unboxed results.
However, it can also produce the relation that maps true! to Ω, since applying a relation cast to
Int → Int to an argument of type Bool should clearly return a type error.
The formal denition of this operation, which we call the coercion of an element 𝜕 ∈ DG

Ω by a
cast, is presented in the following denition. To ease the notation, we dene FG = P𝑓 (DG) to
range over nite sets that do not contain Ω, as Ωdoes not intervene in the denotational semantics
of the language.

Denition 12.18 (Coercion of denotations). Given a cast 〈𝜏 ⇒𝑝 𝜏 ′〉, we dene the coercion
function (.)〈𝜏 ⇒𝑝 𝜏 ′〉 : DG

Ω → P (DG

Ω) by induction on its argument 𝜕 ∈ DG

Ω and cases on 𝜏

and 𝜏 ′ as follows:

𝑐𝑔〈𝜏 ⇒𝑝 ?〉 = {𝑐?} (1)
𝑐𝑔〈𝜏 ⇒𝑝 𝜏 ′〉 = {𝑐!} if 𝜏 ′ ≠ ? and 𝑏𝑐 ≤ 𝜏 ′ (2)
𝑐𝑔〈𝜏 ⇒𝑝 𝜏 ′〉 = {blame 𝑝} if 𝜏 ′ ≠ ? and 𝑏𝑐 � 𝜏 ′ (3)

𝑅!〈𝜏1 → 𝜏2 ⇒𝑝 𝜏 ′1 → 𝜏 ′2〉 = {𝑅′! | 𝑅′ ∈ P𝑓 (FG × DG

Ω), ∀(𝑆 ′, 𝜕′) ∈ 𝑅′,

either (𝑆 ′ ⊆ 〈〈𝜏 ′1〉〉 and ∃(𝑆, 𝜕) ∈ 𝑅, 𝑆 ⊆ 𝑆 ′〈𝜏 ′1 ⇒𝑝 𝜏1〉, 𝜕′ ∈ 𝜕〈𝜏2 ⇒𝑝 𝜏 ′2〉)
or (𝑆 ′ ⊆ 〈〈𝜏 ′1〉〉 and blame 𝑞 ∈ 𝑆 ′〈𝜏 ′1 ⇒𝑝 𝜏1〉 and 𝜕′ = blame 𝑞)
or (𝑆 ′ ∩ 〈〈𝜏 ′1〉〉 = ∅ and 𝜕′ = Ω)} (4)

𝑅!〈? → ? ⇒𝑝 ?〉 = {𝑅?} (5)
𝑅?〈? ⇒𝑝 ? → ?〉 = {𝑅!} (6)
𝑅!〈𝜏1 → 𝜏2 ⇒𝑝 ?〉 = {𝜕? | 𝜕 ∈ 𝑅!〈𝜏1 → 𝜏2 ⇒𝑝 ? → ?〉} if (𝜏1, 𝜏2) ≠ (?, ?) (7) (∗)
𝑅?〈? ⇒𝑝 𝜏1 → 𝜏2〉 = 𝑅!〈? → ? ⇒𝑝 𝜏1 → 𝜏2〉 if (𝜏1, 𝜏2) ≠ (?, ?) (8) (∗)

𝑅?〈? ⇒𝑝 ?〉 = {𝑅?} (9)
𝑅?〈? ⇒𝑝 𝑏〉 = {blame 𝑝} (10)

blame 𝑞〈𝜏 ⇒𝑝 𝜏 ′〉 = {blame 𝑞} (11)
𝜕〈𝜏 ⇒𝑝 𝜏 ′〉 = {Ω} otherwise (12)

where 𝑆 〈𝜏 ⇒𝑝 𝜏 ′〉 is dened for 𝑆 ∈ FG
as:

𝑆 〈𝜏 ⇒𝑝 𝜏 ′〉 =
⋃
𝑑∈𝑆

𝑑 〈𝜏 ⇒𝑝 𝜏 ′〉

(∗) For a proper inductive denition, case (4) should be expanded in cases (7) and (8). However,
we choose to keep this informal notation for the sake of concision.

In essence, given a cast 〈𝜏 ⇒𝑝 𝜏 ′〉, the role of this denition is to convert every element
belonging to 〈〈𝜏〉〉 into a set of elements that belong to 〈〈𝜏 ′〉〉. Let us explain the various rules
this denition comprises. First, remark that they are split into two main categories: rules that
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12.2 Semantics of a simply-typed gradual calculus

deal with constants (rules (1) to (3)), and rules that deal with relations (rules (4) to (10)). Rules
(11) and (12) are just there to propagate blame through casts, and to produce a type error if the
element that is being coerced does not belong to the concrete interpretation of the source type
of the cast, respectively.

As anticipated, we distinguish three cases for constants. First, coercing a constant 𝑐𝑔 (inde-
pendently of its tag) to ? returns the same constant tagged with ? (rule (1)). Note that if 𝑔 = ?,
this simply corresponds to an identity cast of the form 𝑐 〈𝑏 ⇒𝑝 ?〉〈? ⇒𝑞 ?〉, which is simply
moved operationally by Rule [RG

Id] to return the boxed constant 𝑐 〈𝑏 ⇒𝑝 ?〉. Second, coercing a
constant 𝑐𝑔 to a type 𝜏 dierent from ? can produce two dierent results: either the type of 𝑐 is
a subtype of 𝜏 , in which case the constant can be unboxed, producing the element 𝑐! (rule (2)),
or the type of 𝑐 is not a subtype of 𝜏 , in which case the cast must be blamed (rule (3)).

For functions, the heart of the denition comes from rule (4), which may seem complex. How-
ever, this rule is a simple reinterpretation of the reduction rule [RG

CApp] of Figure 12.2 from a
denotational perspective. Consider a relation 𝑅! that belongs to the concrete interpretation of
a type 𝜏1 → 𝜏2. When coercing it to another type 𝜏 ′1 → 𝜏 ′2, we obtain the relations 𝑅′! whose
inputs and outputs satisfy several conditions. First, if an input of 𝑅′ belongs to the concrete in-
terpretation of 𝜏 ′1 and can be coerced to an input of 𝑅 by a cast going from 𝜏 ′1 to 𝜏1, then the result
of 𝑅′ can be obtained by casting the corresponding result of 𝑅 from 𝜏2 to 𝜏 ′2. This is, in essence,
the denotational equivalent of Rule [RG

CApp], and this corresponds to the rst part of rule (4) of
Denition 12.18. However, there is a corner case we need to take into account, which is the case
when the coercion of an input of 𝑅′ from 𝜏 ′1 to 𝜏1 fails. In this case, according to Rule [RG

Capp] and
the propagation of blame by Rule [RG

CtxBlame], the application must fail: hence 𝑅′ outputs a blame
in this case. This is the second part of rule (4). Finally, as anticipated, if an input of 𝑅′ does not
belong to the concrete interpretation of 𝜏 ′1, then the output is simply a type error Ω, as stated by
the last part of rule (4).

The rest of the rules is easier. Rules (5) and (6) correspond, respectively, to the boxing (tagging
with ?) and unboxing (tagging with !) of relations that have been cast from and to ? → ?. When
considering a cast that goes immediately from a type 𝜏1 → 𝜏2 to ? without going through ? → ?

as an intermediate type, we simply merge rules (4) and (5) to mimic the introduction of ? → ?

as an intermediate type. This yields rule (7). Similarly, rule (8) deals with the other direction,
where a cast goes from a type ? to a type 𝜏1 → 𝜏2 distinct from ? → ?. Rule (9) is straightforward
and simply ignores an identity cast going from ? to ?. Finally, rule (10) produces a blame when
a boxed function is being cast to a type that is not an arrow type.
Using this operation, dening the denotational semantics of a cast expression E〈𝜏 ⇒𝑝 𝜏 ′〉 is

only a matter of coercing every element of the denotation of E by the cast 〈𝜏 ⇒𝑝 𝜏 ′〉. Formally,
we obtain that:

ÈE〈𝜏 ⇒𝑝 𝜏 ′〉ÉG
𝜌
=

⋃
𝜕∈ÈEÉG𝜌

𝜕〈𝜏 ⇒𝑝 𝜏 ′〉

Note that it is not necessary to handle and propagate Ω separately if it occurs in the semantics
of E, as we have done before (in the case of the application in Denition 10.5 for example) with
the help of the operator Ω (.)

(.) . Denition 12.18 already takes care of correctly propagating errors
including blame, since Ω〈𝜏 ⇒𝑝 𝜏 ′〉 = {Ω} and blame 𝑞〈𝜏 ⇒𝑝 𝜏 ′〉 = {blame 𝑞}.

12.2.4. Denotational semantics of _G

We now present the rest of the denotational semantics of _G, which is fairly straightforward and
mostly follows the semantics presented in the previous chapters, the only major dierence being
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the addition of blame and tags.

Denition 12.19 (Set-theoretic interpretation of _G). Let 𝜌 ∈ Envs. We dene the set-

theoretic interpretation of _G as a function È.ÉG(.) : TermsG → Envs → P𝑓 (DG

Ω) as follows:

È𝑥ÉG𝜌 = 𝜌 (𝑥)
È𝑐ÉG𝜌 = {𝑐!}

È_𝑥 :𝜏 . EÉG𝜌 = {𝑅! | 𝑅 ∈ P𝑓 (FG × DG

Ω), ∀(𝑆, 𝜕) ∈ 𝑅,

either 𝑆 ⊆ 〈〈𝜏〉〉 and 𝜕 ∈ ÈEÉG𝜌,𝑥 ↦→𝑆

or 𝑆 ∩ 〈〈𝜏〉〉 = ∅ and 𝜕 = Ω}
ÈE1 E2ÉG𝜌 = {𝜕 ∈ DG

Ω | ∃𝑆 ⊆ ÈE2ÉG𝜌 , 𝑅! ∈ ÈE1ÉG𝜌 , (𝑆, 𝜕) ∈ 𝑅} ∪ Ω
𝜌

E1 E2
∪ B𝜌E1 E2

ÈE〈𝜏 ⇒𝑝 𝜏 ′〉ÉG
𝜌

=
⋃

𝜕∈ÈEÉG𝜌
𝜕〈𝜏 ⇒𝑝 𝜏 ′〉

As anticipated, elements tagged with ? correspond to values that have been explicitly cast to
?. Hence, _-abstractions and constants, which are uncast values, are respectively interpreted as
relations and constants tagged with ! only. Apart from the addition of the tag, the interpretation
of _-abstractions is identical to the interpretation we gave in Chapter 10, except we now use the
concrete interpretation of the annotation 〈〈𝜏〉〉 to determine whether the input is well-typed or
not.
The interpretation of applications is also mostly identical to the interpretation of Chapter 10,

apart from two additions. First, notice that we only consider relations that are tagged with !: this
is because a function that has been cast to ? cannot be applied, as ? is not an arrow type. Hence,
the function must be unboxed by being cast to an arrow type before it can be applied, and this
operation will produce relations that are tagged with !. Second, we introduced a new operator,
B
(.)
(.) , which is similar to Ω (.)

(.) , but whose role is to propagate blame instead of Ω. It is dened as
follows.

Denition 12.20 (Blame operator B(.)
(.) ). For every term E ∈ TermsG, and every environment

𝜌 ∈ Envs, we dene the set B𝜌E ⊆ Blame as follows:

1. if E ≡ E1 E2 then


B
𝜌

E = ÈE1ÉG𝜌 ∩ Blame if ÈE1ÉG𝜌 ∩ Blame ≠ ∅
B
𝜌

E = ÈE2ÉG𝜌 ∩ Blame if ÈE1ÉG𝜌 ≠ ∅
B
𝜌

E = ∅ otherwise

2. B
𝜌

E = ∅ otherwise

The idea is similar to the denition of the operator Ω (.)
(.) given in the previous chapters. Given

an application E1 E2, if the semantics of E1 produces a blame, then this blame is propagated in
the semantics of the application. If the semantics of E2 produces a blame and the semantics of
E1 is non-empty (that is, E1 does not diverge), then the blame is propagated in the semantics of
the application. Otherwise, no blame is propagated by the operator.
Lastly, we also need to modify the operation of the operator Ω (.)

(.) to account for tags. In par-
ticular, as we explained before, an application in which the function has been cast to ? is not
well-typed. We reect this is the denition of Ω (.)

(.) by stating that if, in an application E1 E2, the
semantics of E1 contains an element that is not a relation tagged with !, then the application is
ill-typed and its semantics contains Ω.
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Denition 12.21 (Failure operator Ω (.)
(.) for _G). For every term E ∈ TermsG, and every envi-

ronment 𝜌 : Envs, we have Ω𝜌

E = {Ω} if any of the following conditions holds

1. E ≡ E1 E2 and Ω ∈ ÈE1ÉG𝜌 or ÈE1ÉG𝜌 ≠ ∅ and Ω ∈ ÈE2ÉG𝜌

2. E ≡ E1 E2 where ÈE2ÉG𝜌 ≠ ∅ and ∃𝑑 ∈ ÈE1ÉG𝜌 such that �𝑅 ∈ P𝑓 (FG × DG

Ω), 𝑑 = 𝑅!

and Ω
𝜌

E = ∅ otherwise.

As anticipated, the two operators dened above only apply to applications, as the propagation
of errors through cast expressions is already handled by the coercion operation presented in
Denition 12.18.

12.3. Soundness properties

Having presented the denotational semantics of _G, we now state and prove its properties. We
prove the same properties as in the previous chapters, namely its type soundness and its com-
putational soundness, while leaving its adequacy as a conjecture.

12.3.1. Type soundness

The rst property of _G we prove is its type soundness. It is stated exactly as in Chapter 10,
except it uses the concrete interpretation of types both in the denotational interpretation of type
environments and in the statement of the theorem itself. The denotational interpretation of type
environments is dened exactly as in Denition 10.13, except we replace È.ÉF by 〈〈.〉〉.

Denition 12.22 (Denotational interpretation of Γ). Let Γ ∈ TEnvs. We dene its denota-

tional interpretation, noted ÈΓÉG, as the function

È.ÉG : TEnvs → P (Envs)
ÈΓÉG = {𝜌 ∈ Envs | ∀𝑥 ∈ Dom (Γ) . 𝜌 (𝑥) ⊆ 〈〈Γ(𝑥)〉〉}

To prove the type soundness of _G, we rely on the following lemma which formalizes the
intuition that coercing an element of type 𝜏 to a type 𝜏 ′ produces a set of elements of type 𝜏 ′.

Lemma 12.23. For every cast 〈𝜏 ⇒𝑝 𝜏 ′〉 and every 𝜕 ∈ DG

Ω , if 𝜕 ∈ 〈〈𝜏〉〉 then 𝜕〈𝜏 ⇒𝑝 𝜏 ′〉 ⊆ 〈〈𝜏 ′〉〉.

Proof. See appendix page 282. �

This lemma ensures the type soundness of the semantics of cast expressions. The type sound-
ness of the rest of the semantics is fairly straightforward and its proof follows the same strategy
as for the semantics presented in Chapter 10.

Theorem 12.24 (Type soundness for _G). For every type environment Γ ∈ TEnvs and every
term E ∈ TermsG, if Γ ` E : 𝜏 then for every 𝜌 ∈ ÈΓÉG, ÈEÉG𝜌 ⊆ 〈〈𝜏〉〉.
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Proof. See appendix page 283. �

12.3.2. Computational soundness

The second property we prove is the computational soundness property, whose statement diers
slightly from the previous chapters, in the sense that we must now account for blame. That is,
if an expression E reduces to E′, then we still show that the semantics of E and E′ are equal.
However, if an expression E reduces to blame 𝑝 , then we show that the semantics of E is exactly
equal to {blame 𝑝}.
As in Chapter 10, the proof of this property relies on a monotonicity lemma and a substitution

lemma which we state here, and whose proofs are fairly straightforward by induction on the
term at hand.

Lemma 12.25. For every term E ∈ TermsG, 𝑥 ∈ Vars, 𝜌 ∈ Envs, and 𝑆1, 𝑆2 ∈ P (DG), if 𝑆1 ⊆ 𝑆2

then ÈEÉG𝜌,𝑥 ↦→𝑆1
⊆ ÈEÉG𝜌,𝑥 ↦→𝑆2

Proof. See appendix page 283. �

Lemma 12.26. For every term E ∈ TermsG, v ∈ ValuesG, 𝑥 ∈ Vars, 𝜌 ∈ Envs,

ÈE [v/𝑥]ÉG𝜌 =
⋃

𝑆 ∈P𝑓 (ÈvÉG𝜌 )

ÈEÉG𝜌,𝑥 ↦→𝑆

Proof. See appendix page 284. �

The proof of the computational soundness theorem also relies on two additional lemmaswhich
were not needed in the previous chapters, due to the addition of blame. The rst lemma states
that the denotational semantics of a value is never empty. It is needed to ensure that a blame
produced in the right hand side of an application is correctly propagated by the operator B(.)

(.) if
the left hand side is a value.

Lemma 12.27. For every value v ∈ ValuesG and every 𝜌 ∈ Envs, ÈvÉG𝜌 ≠ ∅.

Proof. See appendix page 286. �

The last lemma we need states that the semantics of a value can never contain a blame, which
is crucial for the soundness of our semantics.

Lemma 12.28. For every value v ∈ ValuesG and every 𝜌 ∈ Envs, ÈvÉG𝜌 ∩ Blame = ∅.

Proof. See appendix page 286. �

Finally, we can state and prove the computational soundness of _G. As anticipated, the theorem
features two cases, depending on whether the term at hand reduces to another term or to a
blame. This theorem ensures that our denotational semantics is consistent with the operational
semantics of _G for non-diverging terms.
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Theorem 12.29 (Computational soundness for _G). For every term E ∈ TermsG such that

Γ ` E : 𝜏 and every environment 𝜌 ∈ ÈΓÉG,

E { E′ =⇒ ÈEÉG𝜌 = ÈE′ÉG𝜌
E { blame 𝑝 =⇒ ÈEÉG𝜌 = {blame 𝑝}

Proof. See appendix page 286. �
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Chapter 13.

Discussion

In this second part of the manuscript, we have described how to adapt and extend the interpreta-
tion of types as sets of values proposed by semantic subtyping to dene a denotational semantics
for several languages.
We started this work with two goals in mind. The rst was to provide a true set-theoretic

interpretation of gradual types and a denotational semantics for a gradually-typed language, to
better understand the connection between set-theoretic types and gradual types. The second
was to bridge the gap between the interpretation of types proposed by Frisch et al. [27] to dene
their subtyping relation and the interpretation of the values of a language. That is, our aim was
to show that the elements of their interpretation domain D corresponded precisely to the values
of a functional language.
However, as we have shown in Chapter 9, even for a very simple _-calculus, the behaviour

of functions cannot be properly represented using the interpretation domain D . The problem
comes from the fact that, due to cardinality reasons, functions are represented as nite binary
relations in D . Since it is possible for a function to accept an innite number of inputs and to
have an innite number of outputs (especially in a higher-order setting), from a denotational
perspective, the only way to properly interpret a function using D is to interpret it as a possibly
innite set of nite binary relations. However, this causes values to be now interpreted as sets of
elements of D , whereas the input of a function is still represented as a single element of D , thus
breaking the idea that functions map values to values.
This led us to proposing a slight modication to the interpretation domain. In Chapter 10, we

have presented a new domainDF in which nite relations take nite sets of elements as inputs. By
only slightly revising the interpretation of types and the semantics presented in Chapter 9 to use
set-containment instead of membership when needed, we have obtained a sound and adequate
denotational semantics for our simple _-calculus with set-theoretic types. We have also shown
in Theorem 10.10 that our new interpretation of types induces the same subtyping relation as
the interpretation proposed by Frisch et al. [27]. This ensures that our work is still in line with
our original goal of reconciling semantic subtyping with the interpretation of the values of a
language.
Having dened a sound and adequate denotational semantics for a simple functional calcu-

lus, we then extended our language with function interfaces, typecases, and non-deterministic
choices. According to Frisch et al. [27], these three constructs are necessary to ensure that the
subtyping relation presented in Chapter 2 coincides with the subtyping relation that would be
induced by directly interpreting types as sets of values. From a more practical point of view,
interfaces and typecases along with intersection types provide a way to perform function over-
loading, which is a powerful and frequently used feature of many programming languages.
This extension yields a language that corresponds to the functional core of CDuce . In Chap-

ter 11, we showed how to adapt the interpretation domainDF to account for interfaces, typecases,
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and non-determinism. The latter was accounted for by addingmarks, which are strings over the
alphabet {𝑙, 𝑟 }, to elements of the domain. These marks denote the execution path that led to
the production of a result. Interfaces and typecases were accounted for by adding dummy inputs
denoted Ω

𝑑 whose role is to ensure that, given any relation 𝑅 belonging to a type 𝑡 , and any nega-
tion type ¬(𝑠 ′ → 𝑡 ′), it is possible to “complete” 𝑅 to obtain a relation belonging to 𝑡∧¬(𝑠 ′ → 𝑡 ′),
as long as this intersection is non-empty. This is necessary to ensure that typecases can always
be reduced without ambiguity, that is, that the semantics of every value either belongs to a type
or its negation. Nevertheless, this was not sucient, and we had to slightly modify the syntax
and type system of CDuce as the original typing rule for _-abstractions, which allows their type
to be arbitrarily rened with negation types, is incompatible with our semantics. Instead, we
required _-abstractions to be explicitly annotated with their negation types, which allowed us to
prove the soundness of our semantics.

In the last chapter of this part, Chapter 12, we then tackled our goal of providing a set-theoretic
interpretation of gradual types and a denotational semantics for a cast language. We distin-
guished between the values that belong to every materialization of a type and the values that
belong to some materializations of a type, which we reected in the interpretation domain by
adding tags (either ? or !) to the elements of the domain. The interpretation of types that en-
sued gave us plenty of powerful results: a semantic denition of gradual subtyping, a semantic
denition of materialization, and a theorem stating that every set-theoretic gradual type can be
represented equivalently with a single, top-level occurrence of the dynamic type. Nevertheless,
everything is not perfect, as we showed that if the subtyping relation on gradual types is made
to be a conservative extension of semantic subtyping as dened in Chapter 2, then it is unsound
as it allows subsumptions such as ? → ? ≤ ? → 0. Our solution was to slightly modify the
interpretation domain by adding again a marker Ωto the input of functions, whose role is to
guarantee that, for distinct types 𝑡 , the types 0 → 𝑡 are all distinguishable from each other,
which in turn prevents unsound subsumptions on gradual types.
We then presented a cast language restricted to simple types and without pairs, to focus on the

semantics of casts and applications. We argued that the interpretation of types we presented in
the rst section was too disconnected from the behaviour of the values of our cast language. For
example, our interpretation of the type ? → ? contained all functions, while, in a cast language,
a function of type ? → ? is specically a function that maps boxed values (values cast to ?) to
boxed values. This led us to dening a new interpretation of types, which we called the concrete
interpretation of gradual types, which properly models the behaviour of the values of the cast
language. Using this interpretation, we dened a denotational semantics of the cast language,
which we proved to be type sound and computationally sound.

13.1. Related work

Aswe have discussed throughout this discussion, one of themain goals of this workwas to bridge
the gap between the interpretation of types proposed by Frisch et al. [27] and the interpretation
of the values of a language. This led us to dening our denotational semantics in terms of sets of
elements of the interpretation domain used to dene the interpretation of types, so as to ensure
types and terms are interpreted into the same domain.
To our knowledge, there is no existing work that attempts to dene the denotational semantics

of a language in terms of sets of elements of an interpretation domain. While Frisch et al. [27]
dene an interpretation of types as sets of values and prove that it coincides with their interpre-
tation of types on the domain D , they never directly propose an interpretation of expressions,
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or even values, on D .
We are also unaware of much existing work on the denotational semantics of gradual typing

from a set-theoretic perspective. There are some similarities with the work of New et al. [52],
in which they interpret the dynamic type ? as the sum of the types ? × ?, ? → ?, and a type
corresponding to constants cast to ?. We can obtain a similar result from our set-theoretic in-
terpretation of gradual types, where the sum type is simply interpreted as a union type: every
element belonging to the interpretation of ? is either a function, a pair, or a constant tagged with
?. Our denotational interpretation of casts also bears some resemblance to the direct cast transla-
tion of New and Ahmed [51], in which casts are interpreted as functions in a metalanguage. For
example, similarly to our semantics, they interpret a cast going from an arrow type 𝜏1 → 𝜏2 to the
dynamic type as a function that rst casts its argument from 𝜏1 → 𝜏2 to ? → ?, and then injects

it into ?. Nevertheless, none of the aforementioned works propose a set-theoretic interpretation
of gradual types or of a gradually-typed language.

13.2. Future work

In this section, we present some interesting directions for future work, and detail some aspects
whose discussion we postponed until now.

13.2.1. About the meaning of Ω

Throughout this part of the manuscript, we consistently referred to Ω as being a type error, or
symbolizing a stuck reduction. However, we never truly formalized this meaning via a theorem,
and all the results we presented (particularly the type soundness theorems) would still hold if we
simply ignored Ω in our semantics.

We believe that it is possible to prove a result which we call the Ω-adequacy, which states that
the semantics of an expression contains Ω if and only if this expression reduces to a stuck term.
Formally, we conjecture that we can prove the following result for the semantics of _F, provided
we introduce a few changes to the interpretation domain DF and to the operational semantics of
_F, which we detail in this part of the discussion.

Conjecture 13.1 (Ω-adequacy). For every closed term e ∈ Terms, Ω ∈ ÈeÉF∅ ⇐⇒ e {∗ e′

and e′ is stuck.

Notice that we only state this conjecture for closed terms. Generalizing it to arbitrary terms
may be possible, although this would require to dene head normal forms and would make the
proofs more dicult, for a minimal gain.
To prove this property, we rst need to introduce a typed 𝛽-reduction rule. Essentially, this

means that an application is only reduced if the type of the argument is compatible with the type
of the annotation of the _-abstraction. Formally, this means replacing the standard 𝛽-reduction
rule with the following:

[RF
app] (_𝑥 :𝑡 . e) v { e [v/𝑥] if ` v : 𝑡

This change is necessary since, without it, an ill-typed application can still reduce to a value,
even though its semantics contains Ω. For example, the application (_𝑥 :Int. 𝑥) true reduces to
true using a standard 𝛽-reduction, but its denotation according to Denition 10.5 is exactly {Ω}.
Using a typed 𝛽-reduction, this application would be stuck, thus verifying the Ω-adequacy.
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This is not sucient however, as there are still stuck ill-typed terms whose semantics does not
contain Ω. As an example, consider the function f = _𝑥 :Int. (_𝑦:Int. 𝑦) 2 which always return 2
for every integer argument, but is written so as to ensure that it can only be given type Int → Int
and not Int → 2. From a denotational perspective, its semantics only contains relations that
belong to the type Int → 2, even though it cannot be given this type statically. As such, if it is
passed as argument to the function _f:Int → Nat. f 0), for example, the resulting application is
stuck since f cannot be given type Int → Nat. However, its semantics is exactly {2}, and does
not contain Ω.

We can x this by drawing inspiration from Chapter 11. The solution is to enforce a corre-
spondence between the type of a value and the type of its denotation, so as to prove a stronger
form of the type soundness property for values:

Conjecture 13.2 (Strong type soundness for values). For every (closed) value v ∈ Values,
` v : 𝑡 ⇐⇒ ÈvÉF∅ ⊆ È𝑡ÉF.

This can be done by rst annotating _-abstraction with their full type, and then introducing
the elements Ω

(.) to the interpretation domain so that two _-abstractions with the same body
and input type but with dierent output types can be distinguished. For example, the denotation
of _Int→Int𝑥 . 2 would now contain the relation {( Ω

1,−1)} while the denotation of _Int→Nat𝑥 . 2
would not.
Having proven this result, the last remaining step is to generalize the computational adequacy

of _F to arbitrary closed terms (rather than limiting it to well-typed terms) whose semantics
do not contain Ω. This is fairly straightforward as most of the proofs are still valid, the only
major dierence being that the strong type soundness for values must be invoked in the proof
of Lemma 10.23.
Finally, the Ω-adequacy is obtained as a corollary of the generalized computational adequacy,

and its proof highlights the true meaning of the operator Ω (.)
(.) . As an example, consider the case

of a pair (e1, e2) whose denotation contains Ω. By inversion of the denition of the semantics
and of the operator Ω (.)

(.) , we distinguish two cases. The rst case is when Ω ∈ Èe1ÉF𝜌 . By in-
duction, we deduce that e1 reduces to a stuck term, and according to our reduction strategy (we
reduce terms from left to right), the whole pair reduces to a stuck term. The second case is when
Ω ∈ Èe2ÉF𝜌 , and where Èe1ÉF𝜌 is non-empty but does not contain Ω. By the generalized com-
putational adequacy property, this ensures that e1 reduces to a value v. We also obtain that, by
induction, e2 reduces to a stuck term. Therefore, according to our reduction strategy, we obtain
that (e1, e2) {∗ (v, e2), which in turn reduces to a stuck term.

13.2.2. About the denotational semantics of CDuce

In Chapter 11, we presented a sound semantics for a language mimicking the functional core of
CDuce : a _-calculus supporting typecases, function overloading, and non-determinism. There
are two major directions for future work on this semantics.

About its adequacy

The rst concerns the adequacy of our semantics, which we left as a conjecture. It should be
possible to prove it for the deterministic restriction of our calculus by following the same strategy
as in Chapter 10, and reusing the relation dened in Denition 10.21, adding a rule to remove
pairs of the form ( Ω

𝑑 , 𝜕) from nite relations similarly to what we have done for pairs containing
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Ω. The presence of typecases should only add a single case to the proof of the substitution lemma
(Lemma 10.24), which should be provable by application of the induction hypothesis.

Proving the adequacy in the presence of non-deterministic expressions is, however, more com-
plex, especially since marks now have to be taken into account when dening the relation.
The several lemmas that led to the adequacy theorem also need to be restated. For example,
Lemma 10.23 does not hold anymore: if 𝑑Re and e {∗ v, we do not have 𝑑Rv, since the marks
of a denotation change by reduction. At best, we could state that there exists a 𝑑 ′ and a mark 𝔪

such that 𝑑 ′Rv and [𝑑 ′]𝔪 = 𝑑 . Whether this new statement is sucient to prove the adequacy
is left as future work.

About the inference of negative arrows

To obtain a type soundness property for our semantics, we slightly modied the type system
of CDuce by imposing the restriction that _-abstractions have to be fully annotated with their
negation types, forbidding any form of type inference in the type system. In CDuce the type of
a function can be arbitrarily rened using negative arrow types, so as to ensure that every value
belongs to a type or its negation (this is particularly important for the soundness of the reduction
of typecases).
Nevertheless, we argued that this change was not overly restrictive, by showing that to every

CDuce term corresponds a term of our system that behaves identically (by bisimulation), and
for which we can compute a denotational semantics. In essence, this term is obtained by rst
annotating the CDuce term by all the negative arrow types that are inferred by the type system,
and then adding all the negative arrow types that are necessary to ensure typecases are resolved
unambiguously. While the latter step can be done algorithmically, for the sake of simplicity we
only presented the former step in a declarative way. Thus, this does not give us a compilation
algorithm from CDuce to _C.
However, we believe that it should be possible to adapt the algorithmic type system of

CDuce to obtain a way to algorithmically annotate _-abstractions with the negations that are
necessary to ensure a program is well-typed. Due to the complexity ofCDuce’s algorithmic type
system, we leave this as future work.

13.2.3. About the denotational semantics for gradual typing

In Chapter 12, we presented a set-theoretic interpretation of gradual types featuring full-edged
set-theoretic types, including product types. However, for complexity reasons, in the second part
of the chapter, we limited our denotational semantics to a cast calculus with simple types and
without products. This gives two immediate ways to continue this work.

About pairs and product types

The rst aspect is the addition of pairs and product types to the cast language of Section 12.1.
However, this is not a feature that can simply be dropped-in, due to the behaviour of blames.
Intuitively, following the idea that a gradually-typed language should fail as little as possible, an
expression such as 𝜋1 (3〈Int ⇒𝑝 ?〉, 2〈Int ⇒𝑝′ ?〉)〈?×? ⇒𝑞 Int×Bool〉 should not fail and reduce
to 3, even though it is clear that the pair that is being projected is not of type Int × Bool, since
its second component is of type Int. However, since we project this pair to its rst component,
this error can safely be ignored. This is similar to how we handle cast functions: if we consider
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Chapter 13: Discussion

a function f that maps, say, 0 to true and 1 to 1, then casting this function to Int → Bool only
produces an error if it is later applied to 1, but not if it is applied to 0.
From an operational point of view, this is often formalized by seeing cast pairs as values. Here,

the pair (3〈Int ⇒𝑝 ?〉, 2〈Int ⇒𝑝′ ?〉)〈?×? ⇒𝑞 Int×Bool〉 is a value, and the cast is only evaluated
when one tries to apply a projection to this value. From a denotational perspective, this is more
complicated, since we do not have a notion of delayed cast in our interpretation domain. If the
denotation of an expression contains the pair (3?, 2?)?, and we cast this expression to Int× Bool,
we have to produce a denotation for the cast expression that belongs to Int × Bool.

The unsatisfactory solution would be to simply fail in this case, but this would change the
operational behaviour of casts.
A dierent solution would be to add blame as an element of DG, instead of only restricting

it to the output of relations. With such a modication, the above denotation could be cast to
(3!, blame 𝑞)!, and then its rst projectionwould produce 3! (ignoring the blame)while its second
projection would produce blame 𝑞. However, this second solution causes a problem with the set-
theoretic interpretation of types. For the type soundness theorem to hold, this means that blame
needs to also be added to the interpretation of product types. That is, the interpretation of Int ×
Bool would now contain the pair (3!, blame 𝑞)!. However, this also holds for the interpretation
of Int×¬Bool. As such, the intersection (Int×Bool) ∧ (Int×¬Bool) would not empty anymore,
which completely changes the subtyping relation on static types. In fact, no type would be truly
empty anymore, since even 0 would contain all blame elements.
It may be possible to adapt the interpretation of subtyping to account for this. However, an-

other possible solution would be to parameterize blame elements with elements of DG. That is, a
blame element would now be denoted blame𝑑 𝑝 . Using this, we could modify the interpretation
of types so that blame𝑑 𝑝 belongs to a type 𝜏 if and only if 𝑑 belongs to 𝜏 . This would ensure
that the interpretation of 0 is still empty, and that Bool and ¬Bool would not contain the same
blame elements (thus making (Int×Bool) ∧ (Int×¬Bool) empty). This seems to be a promising
solution which we plan to explore in the future.

About set-theoretic types

Naturally, the second direction for future work on the set-theoretic semantics of cast languages
concerns the addition of set-theoretic types. The semantics we presented in Denition 12.19 is,
in itself, independent of the syntax of types. However, it relies on the concrete interpretation of
types (Denition 12.16) and on the coercion of denotations (Denition 12.18) which both rely on
the hypothesis that types do not contain set-theoretic connectives.
The rst hurdle that comes from the presence of set-theoretic types is that a value can be both

boxed (have type ?) and unboxed (have a precise static type). For example, it is possible to cast
3 to Int ∧ ?, which gives it both type ? and Int. The same goes for functions, which can both
have type ? and an arrow type (and thus, can be applied). This raises the question of how to
distinguish, from a denotational perspective, a value that has been cast to ? from a value that has
been cast to ?∧ 𝑡 where 𝑡 is a static type. Necessarily, both must be denoted by elements tagged
with ?.

This leads us towards an idea that we have already begun to explore in Chapter 6: that the
type of a value can be propagated along its casts, so that a value cast to ? is eectively identical
to the same value cast to ? ∧ 𝑡 where 𝑡 is the “constructor type” of the unboxed value (that is,
the type of the constant if the unboxed value is a constant, and 0 → 1 if the unboxed value is a
function). This also hints at the fact that there is no true distinction between an element tagged
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13.2 Future work

with ? and an element tagged with ! in the semantics of a set-theoretic cast language, since the
cast of a value to ? can be performed without changing its semantics.

The second problem comes from the fact that the source and target types of a cast would
not necessarily share the same syntactic structure anymore, since materialization satises the
standard distributivity and commutativity rules of set-theoretic connectives. This means that
coercing a denotation as in Denition 12.18 cannot be performed syntactically anymore. A solu-
tion that comes to mind is to introduce the gradual type operators presented in Chapter 6, and
base the coercion operation on these operators.
To summarize, despite its length, this second part just scratches the surface of the study of a

set-theoretic semantics for cast languages. The bulk of the work looks to be still ahead, although
we already identied and proposed viable solutions to many problems linked to this study.
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Conclusion

This thesis started with the goal of dening and studying a language featuring both set-theoretic
types and gradual typing. All our work builds on the semantic subtyping approach to set-
theoretic types, which we adapted and extended in two dierent directions.
In the rst part of this work, we presented a way to add gradual typing to a set-theoretic type

system, based on the idea that the dynamic type behaves as a type variable. However, we realized
that this could be generalized to any type system, and this gave us a simple and declarative way
of embedding gradual typing in any existing type system. Thus, we also applied our approach to
a simple type system with polymorphism but without subtyping.
Our presentation was not limited to the declarative aspects of gradual typing. We also pre-

sented two cast languages, one corresponding to our ML-like source language, and the other fea-
turing full-edged set-theoretic types. We proved the soundness of these languages, and showed
that our novel approach to gradual typing unearths a new meaning for blame.
The second part of this thesis focused on the denotational semantics associated with semantic

subtyping. We started by dening a denotational semantics for a simple calculus, in which terms
and types are interpreted into the same domain. While this was not immediately possible with
the interpretation domain we initially considered (which directly came from the semantic sub-
typing approach), we showed that a very simply modication of this domain made it possible,
while preserving the subtyping relation. We proved that the resulting semantics are computa-
tionally sound and adequate, as well as sound with respect to the interpretation of types. We
then extended our approach to provide a sound denotational semantics for the functional core
of CDuce , which required once again a modication of the interpretation domain.
In the end of the second part, we applied the knowledge we acquired during this work to

provide a set-theoretic interpretation of gradual types. This interpretation led to many powerful
results about set-theoretic gradual types, but also pinpointed some interesting incompatibilities
between the subtyping relation used previously and gradual typing, for which we gave a simple
x. We also presented a denotational semantics for a simply-typed cast language, which we
proved to be sound. This semantics provides a good basis for future work on a cast language
featuring set-theoretic types.
Finally, we went back to the cast language with set-theoretic types we studied in the rst

part of the manuscript to apply our newly obtained results. This allowed us not only to greatly
simplify the semantics of the cast language, but also to simplify the proof of its soundness as well
as the denition of the various operators introduced in its semantics.

Future work

We have already presented several directions for future work in the concluding discussions of
both parts of this manuscript (Chapter 7 and Chapter 13). We recapitulate the ideas that seem
the most important here.

239



A source language based on semantic relations. In Chapter 6, we introduced semantic
versions of gradual subtyping and materialization, which feature many interesting and pow-
erful properties. We applied these relations to present a semantics for a cast language with set-
theoretic types, but we did not provide an associated source language and compilation algorithm.
Since the subtyping relations used in Chapter 5 and 6 on static types are dierent, the algorithms
presented in the former cannot be reused directly and would need to be adapted to use the new
semantic relations.

A sound and complete inference algorithm for gradual set-theoretic types. The type
inference algorithm presented in Chapter 5 is sound but not complete. While it should be possible
to modify the tallying algorithm to obtain its completeness, it may be better to simply focus on
dening a new algorithm based on the new semantic relations. By leveraging the strong semantic
properties of these relations (particularly Theorem 6.10), it should be possible to obtain a sound
and complete algorithm that only requires little to no modication of the tallying algorithm.

Function interfaces and gradual typing. While the language presented in Chapter 6 fea-
tures full-edged set-theoretic types, it does not support many of the features that make set-
theoretic types interesting in practice. Adding function interfaces and typecases as in Chapter 11
to this language would greatly improve its expressiveness.

A denotational interpretation of type errors. Throughout Part II of this manuscript, we
continuously referred to the elementΩ as being an error symbolizing a stuck reduction. However,
we never truly formalized this meaning. In Chapter 13, we presented a possible course of action
to tackle this problem which would be interesting to follow.

A denotational semantics for set-theoretic gradual typing. In Chapter 12, we limited our
denotational semantics to a cast calculus with simple types only, although our interpretation of
gradual types supports full-edged set-theoretic types. Extending our denotational semantics to
support set-theoretic types would be a major step forward and may provide us with new insights
into the behaviour of gradual set-theoretic types.
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Appendix A.

Additional proofs and definitions

A.1. A declarative approach to gradual typing

A.1.1. Gradual typing for Hindley-Milner systems

This subsection of the appendix contains the full formal denitions of the three steps composing
the type inference algorithm described in Chapter 4.

〈〈𝑥 : 𝑡〉〉 = ∃𝛼. (𝑥 ¤4 𝛼) ∧ (𝛼 ¤≤ 𝑡) 𝛼 ♯ 𝑡

〈〈𝑐 : 𝑡〉〉 = (𝑏𝑐 ¤≤ 𝑡)
〈〈(_𝑥. 𝑒) : 𝑡〉〉 = ∃𝛼1, 𝛼2. (def 𝑥 : 𝛼1 in 〈〈𝑒 : 𝛼2〉〉) ∧ (𝛼1 ¤4 𝛼1) ∧ (𝛼1→𝛼2 ¤≤ 𝑡) 𝛼1, 𝛼2 ♯ 𝑡, 𝑒

〈〈(_𝑥 : 𝜏 . 𝑒) : 𝑡〉〉 = ∃𝛼1, 𝛼2. (def 𝑥 : 𝜏 in 〈〈𝑒 : 𝛼2〉〉) ∧ (𝜏 ¤4 𝛼1) ∧ (𝛼1→𝛼2 ¤≤ 𝑡) 𝛼1, 𝛼2 ♯ 𝑡, 𝜏, 𝑒

〈〈𝑒1 𝑒2 : 𝑡〉〉 = ∃𝛼. 〈〈𝑒1 : 𝛼 → 𝑡〉〉 ∧ 〈〈𝑒2 : 𝛼〉〉 𝛼 ♯ 𝑡, 𝑒1, 𝑒2
〈〈(𝑒1, 𝑒2) : 𝑡〉〉 = ∃𝛼1, 𝛼2. 〈〈𝑒1 : 𝛼1〉〉 ∧ 〈〈𝑒2 : 𝛼2〉〉 ∧ (𝛼1 × 𝛼2 ¤≤ 𝑡) 𝛼1, 𝛼2 ♯ 𝑡, 𝑒1, 𝑒2

〈〈𝜋𝑖 𝑒 : 𝑡〉〉 = ∃𝛼1, 𝛼2. 〈〈𝑒 : 𝛼1 × 𝛼2〉〉 ∧ (𝛼𝑖 ¤≤ 𝑡) 𝛼1, 𝛼2 ♯ 𝑡, 𝑒

〈〈let ®𝛼 𝑥 = 𝑒1 in 𝑒2 : 𝑡〉〉 = let 𝑥 : ∀®𝛼 ;𝛼 [〈〈𝑒1 : 𝛼〉〉]vars(𝑒1)\ ®𝛼 . 𝛼 in 〈〈𝑒2 : 𝑡〉〉 𝛼 ♯ ®𝛼, 𝑒1

Figure A.1. Constraint generation

Γ;Δ ` (𝑡1 ¤≤ 𝑡2) { {𝑡1 ¤≤ 𝑡2} | ∅ Γ;Δ ` (𝜏 ¤4 𝛼) { {𝜏 ¤4 𝛼} | ∅

Γ;Δ ` (𝑥 ¤4 𝛼) { {𝜏{ ®𝛼 ≔ ®𝛽} ¤4 𝛼} | ®𝛽
Γ(𝑥) = ∀®𝛼. 𝜏
®𝛽 ♯ Γ

(Γ, 𝑥 : 𝜏);Δ ` 𝐶 { 𝐷 | 𝛼
Γ;Δ ` def 𝑥 : 𝜏 in 𝐶 { 𝐷 | 𝛼

Γ;Δ ` 𝐶 { 𝐷 | 𝛼
Γ;Δ ` (∃®𝛼. 𝐶) { 𝐷 | 𝛼 ∪ ®𝛼

®𝛼 ♯ Γ, 𝛼
Γ;Δ ` 𝐶1 { 𝐷1 | 𝛼1 Γ;Δ ` 𝐶2 { 𝐷2 | 𝛼2

Γ;Δ ` 𝐶1 ∧𝐶2 { 𝐷1 ∪ 𝐷2 | 𝛼1 ∪ 𝛼2
𝛼1 ♯ 𝛼2

Γ;Δ ∪ ®𝛼 ` 𝐶1 { 𝐷1 | 𝛼1

(Γ, 𝑥 : ∀®𝛼, ®𝛽. 𝛼\1);Δ ` 𝐶2 { 𝐷2 | 𝛼2

Γ;Δ ` let 𝑥 : ∀®𝛼 ;𝛼 [𝐶1] ®𝛼
′
. 𝛼 in 𝐶2 { 𝐷2 ∪ equiv(\1, 𝐷1) | 𝛼

\1 ∈ solveΔ∪®𝛼 (𝐷1)
®𝛼 ♯ Γ\1
®𝛽 = vars(𝛼\1) \ (vars(Γ\1) ∪ ®𝛼 ∪ ®𝛼 ′)
♯
{
{𝛼}, ®𝛼, 𝛼1, 𝛼2, (vars(\1) \ vars(𝐷1))

}
𝛼, ®𝛼 ♯ Γ,Δ
𝛼 = {𝛼} ∪ ®𝛼 ∪ 𝛼1 ∪ 𝛼2 ∪ (vars(\1) \ vars(𝐷1))

where equiv(\, 𝐷) =def
{
(𝛼 ¤4 𝛼)

�� 𝛼 ∈ vars ¤4 (𝐷) ∪ vars(𝐷)\
}

∪ ⋃
𝛼 ∈dom(\ ),𝛼\ static{(𝛼 ¤≤ 𝛼\ ), (𝛼\ ¤≤ 𝛼)}

Figure A.2. Constraint simplication
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Chapter A: Additional proofs and denitions

Figure A.1 denes a function 〈〈(·) : (·)〉〉 such that, for every expression 𝑒 and every static type
𝑡 , 〈〈𝑒 : 𝑡〉〉 is a structured constraint that expresses the conditions that must hold for 𝑒 to have type
𝑡\ for some substitution \ .

Figure A.2 presents the constraint simplication rules in a form inwhichwe track explicitly the
variables we introduce and state precise freshness conditions. In a derivation Γ;Δ ` 𝐶 { 𝐷 | 𝛼 ,
the set 𝛼 is the set of fresh variables introduced by simplication.

L𝑥MD
\
= 𝑥 [ ®𝛽\ ]〈𝜏{ ®𝛼 ≔ ®𝛽}\ ⇒ℓ 𝛼\〉
with ℓ fresh
where D =

Γ;Δ ` 〈〈𝑥 : 𝑡〉〉 { {(𝜏{ ®𝛼 ≔ ®𝛽} ¤4 𝛼), (𝛼 ¤≤ 𝑡)}
L𝑐MD

\
= 𝑐

L_𝑥. 𝑒MD
\
= _ (𝛼1→𝛼2)\𝑥 . L𝑒MD′

\

where D =
D ′ :: (Γ, 𝑥 : 𝛼1);Δ ` 〈〈𝑒 : 𝛼2〉〉 { 𝐷 ′

Γ;Δ ` 〈〈(_𝑥. 𝑒) : 𝑡〉〉 { 𝐷 ′ ∪ {(𝛼1 ¤4 𝛼1), (𝛼1 → 𝛼2 ¤≤ 𝑡)}
L_𝑥 : 𝜏 . 𝑒MD

\
= (_ (𝜏→𝛼2)\𝑥 . L𝑒MD′

\
)〈(𝜏 → 𝛼2)\ ⇒ℓ (𝛼1 → 𝛼2)\〉

with ℓ fresh

where D =
D ′ :: (Γ, 𝑥 : 𝜏);Δ ` 〈〈𝑒 : 𝛼2〉〉 { 𝐷 ′

Γ;Δ ` 〈〈(_𝑥 : 𝜏 . 𝑒) : 𝑡〉〉 { 𝐷 ′ ∪ {(𝜏 ¤4 𝛼1), (𝛼1 → 𝛼2 ¤≤ 𝑡)}
L𝑒1 𝑒2MD

\
= L𝑒1MD1

\
L𝑒2MD2

\

where D =
D1 :: Γ;Δ ` 〈〈𝑒1 : 𝛼 → 𝑡〉〉 { 𝐷1 D2 :: Γ;Δ ` 〈〈𝑒2 : 𝛼〉〉 { 𝐷2

Γ;Δ ` 〈〈𝑒1 𝑒2 : 𝑡〉〉 { 𝐷1 ∪ 𝐷2

L(𝑒1, 𝑒2)MD
\
= (L𝑒1MD1

\
, L𝑒2MD2

\
)

where D =
D1 :: Γ;Δ ` 〈〈𝑒1 : 𝛼1〉〉 { 𝐷1 D2 :: Γ;Δ ` 〈〈𝑒2 : 𝛼2〉〉 { 𝐷2

Γ;Δ ` 〈〈(𝑒1, 𝑒2) : 𝑡〉〉 { 𝐷1 ∪ 𝐷2 ∪ {𝛼1 × 𝛼2 ¤≤ 𝑡}
L𝜋𝑖 𝑒MD

\
= 𝜋𝑖 L𝑒MD′

\

where D =
D ′ :: Γ;Δ ` 〈〈𝑒 : 𝛼1 × 𝛼2〉〉 { 𝐷 ′

Γ;Δ ` 〈〈𝜋𝑖 𝑒 : 𝑡〉〉 { 𝐷 ′ ∪ {𝛼𝑖 ¤≤ 𝑡}
Llet ®𝛼 𝑥 = 𝑒1 in 𝑒2MD

\
= let 𝑥 = Λ®𝛼1, ®𝛽1. L𝑒1MD1

\1
𝜌\ in L𝑒2MD2

\

where D =
D1 :: Γ;Δ ∪ ®𝛼 ` 𝐶1 { 𝐷1 D2 :: (Γ, 𝑥 : ∀®𝛼, ®𝛽. 𝛼\1);Δ ` 𝐶2 { 𝐷2

Γ;Δ ` 〈〈let ®𝛼 𝑥 = 𝑒1 in 𝑒2 : 𝑡〉〉 { 𝐷2 ∪ equiv(\1, 𝐷1)
and \1 ∈ solveΔ∪®𝛼 (𝐷1) ®𝛼1, ®𝛽1 fresh 𝜌 = { ®𝛼 ≔ ®𝛼1} ∪ { ®𝛽 ≔ ®𝛽1}

Figure A.3. Algorithmic compilation

Figure A.3 denes the compilation algorithm that, given an expression 𝑒 , a derivation D of
Γ;Δ ` 〈〈𝑒 : 𝑡〉〉 { 𝐷 , and a substitution \ such that \ vars(𝑒) 𝐷 , produces a cast language
expression L𝑒MD

\
. It is dened by induction on 𝑒 . For each case, we deconstruct the derivation D

to obtain the sub-derivations used to compile the sub-expressions of 𝑒; we write the derivation
in a compressed form where we collapse applications of the rules for denition, existential, and
conjunctive constraints.
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A.1 A declarative approach to gradual typing

A.1.2. Gradual typing with set-theoretic types

Subtyping

Lemma A.1. For every type frame𝑇 such that vars(𝑇 ) = {𝐴𝑖 | 𝑖 ∈ 𝐼 }, there exists a type frame𝑇 ′

such that the four sets

vars+cov(𝑇 ′) ⊆ {𝐴+∧
𝑖 | 𝑖 ∈ 𝐼 } vars+con(𝑇 ′) ⊆ {𝐴+∨

𝑖 | 𝑖 ∈ 𝐼 }

vars−cov(𝑇 ′) ⊆ {𝐴−∧
𝑖 | 𝑖 ∈ 𝐼 } vars−con(𝑇 ′) ⊆ {𝐴−∨

𝑖 | 𝑖 ∈ 𝐼 }

are pairwise disjoint and such that

𝑇 = 𝑇 ′ [𝐴𝑖/𝐴+∧
𝑖 ]𝑖∈𝐼 [𝐴𝑖/𝐴+∨

𝑖 ]𝑖∈𝐼 [𝐴𝑖/𝐴−∧
𝑖 ]𝑖∈𝐼 [𝐴𝑖/𝐴−∨

𝑖 ]𝑖∈𝐼

Proof. Clearly,𝑇 ′ is denable as a tree: it is the tree that coincides with𝑇 except on variables,
and that, where 𝑇 has a variable 𝐴𝑖 , has one of 𝐴+∧

𝑖 , 𝐴+∨
𝑖 , 𝐴−∧

𝑖 , or 𝐴−∨
𝑖 depending on the

position of that occurrence of 𝐴𝑖 . The tree 𝑇 ′ is also clearly contractive and the sets of
variables in dierent positions are disjoint.
For 𝑇 ′ to be a type frame, it must also be regular. Since 𝑇 is regular, it can be described

by a nite system of equations 
𝑥1 = 𝑇 1

...

𝑥𝑛 = 𝑇𝑛

such that every 𝑇 𝑖 is an inductively generated term of the grammar

𝑇 F 𝑥 | 𝑋 | 𝛼 | 𝑏 | 𝑇 ×𝑇 | 𝑇 → 𝑇 | 𝑇 ∨𝑇 | ¬𝑇 | 0

(𝑥 serves as a recursion variable) and that (reading the equations as a tree) 𝑇 = 𝑥1.
Then, 𝑇 ′ can be dened as 𝑥+∧1 where



𝑥+∧1 = 𝑓 +∧(𝑇 1)
𝑥+∨1 = 𝑓 +∨(𝑇 1)
𝑥−∧1 = 𝑓 −∧(𝑇 1)
𝑥−∨1 = 𝑓 −∨(𝑇 1)

...

𝑥−∨𝑛 = 𝑓 −∨(𝑇𝑛)

and where (dening + = −, − = +, ∧ = ∨, and ∨ = ∧), 𝑓 𝑝𝑣 (𝑇 ) is dened inductively as:

𝑓 𝑝𝑣 (𝑥) = 𝑥𝑝𝑣 𝑓 𝑝𝑣 (𝑋 ) = 𝑋𝑝𝑣 𝑓 𝑝𝑣 (𝛼) = 𝛼𝑝𝑣

𝑓 𝑝𝑣 (𝑏) = 𝑏 𝑓 𝑝𝑣 (𝑇1 ×𝑇2) = 𝑓 𝑝𝑣 (𝑇1) × 𝑓 𝑝𝑣 (𝑇2) 𝑓 𝑝𝑣 (𝑇1 → 𝑇2) = 𝑓 𝑝𝑣 (𝑇1) → 𝑓 𝑝𝑣 (𝑇2)
𝑓 𝑝𝑣 (𝑇1 ∨𝑇2) = 𝑓 𝑝𝑣 (𝑇1) ∨ 𝑓 𝑝𝑣 (𝑇2) 𝑓 𝑝𝑣 (¬𝑇 ′) = ¬𝑓 𝑝𝑣 (𝑇 ′) 𝑓 𝑝𝑣 (0) = 0

At most 4𝑛 equations are needed to dene𝑇 ′ (they could be less, since some 𝑥𝑝𝑣
𝑖

could be
unreachable from 𝑥+∧1 ). Therefore, 𝑇 ′ is regular. �
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Lemma A.2. For every type frame 𝑇 � 0, if {𝑋,𝑌 } ♯ vars𝑋− (𝑇 ) or {𝑋,𝑌 } ♯ vars𝑋+ (𝑇 ), then
𝑇 [𝑋/𝑌 ] � 0.

Proof. Let 𝑋,𝑌 be two frame variables. We rst give some auxiliary denitions.
Let 𝜎 range over the two symbols � and �. We dene 𝜎 as follows: � =def � and � =def �.
Given a type frame𝑇 ′, wewrite𝑇 ′ � � if {𝑋,𝑌 } ♯ vars𝑋− (𝑇 ) and𝑇 ′ � � if {𝑋,𝑌 } ♯ vars𝑋+ (𝑇 ).
Note that, for all 𝑇 ′, 𝑇1, and 𝑇2, we have:

(¬𝑇 ′ � 𝜎) =⇒ (𝑇 ′ � 𝜎)
(𝑇1 ∨𝑇2 � 𝜎) =⇒ (𝑇1 � 𝜎) ∧ (𝑇2 � 𝜎)
(𝑇1 ×𝑇2 � 𝜎) =⇒ (𝑇1 � 𝜎) ∧ (𝑇2 � 𝜎)
(𝑇1 → 𝑇2 � 𝜎) =⇒ (𝑇1 � 𝜎) ∧ (𝑇2 � 𝜎)

We dene a function 𝐹𝜎 on domain element tags (nite sets of variables) as:

𝐹�(𝐿) =
{
𝐿 ∪ {𝑋,𝑌 } if 𝑋 ∈ 𝐿 or 𝑌 ∈ 𝐿

𝐿 otherwise
𝐹�(𝐿) =

{
𝐿 \ {𝑋,𝑌 } if 𝑋 ∉ 𝐿 or 𝑌 ∉ 𝐿

𝐿 otherwise

We also dene 𝐹 on domain elements as follows:

𝐹𝜎 (𝑐𝐿) = 𝑐𝐹
𝜎 (𝐿)

𝐹𝜎 ((𝑑1, 𝑑2)𝐿) = (𝐹𝜎 (𝑑1), 𝐹𝜎 (𝑑2))𝐹
𝜎 (𝐿)

𝐹𝜎 ({(𝑑1, 𝑑 ′
1), . . . , (𝑑𝑛, 𝑑 ′

𝑛)}𝐿) = {(𝐹𝜎 (𝑑1), 𝐹𝜎 (𝑑 ′
1)), . . . , (𝐹𝜎 (𝑑𝑛), 𝐹𝜎 (𝑑 ′

𝑛))}𝐹
𝜎 (𝐿)

𝐹𝜎 (Ω) = Ω

We must show:

𝑇 � 0

either {𝑋,𝑌 } ♯ vars𝑋− (𝑇 ) or {𝑋,𝑌 } ♯ vars𝑋+ (𝑇 )

}
=⇒ 𝑇 [𝑋/𝑌 ] � 0

This can be restated as:

∃𝑑 ∈ D . (𝑑 : 𝑇 )
∃𝜎. 𝑇 � 𝜎

}
=⇒ ∃𝑑 ′ ∈ D . (𝑑 ′ : 𝑇 [𝑋/𝑌 ])

We prove the following, stronger claim:

∀𝑑,𝑇 , 𝜎. 𝑇 � 𝜎 =⇒
{
(𝑑 : 𝑇 ) =⇒ (𝐹𝜎 (𝑑) : 𝑇 [𝑋/𝑌 ])
¬(𝑑 : 𝑇 ) =⇒ ¬(𝐹𝜎 (𝑑) : 𝑇 [𝑋/𝑌 ])

by induction on the pair (𝑑,𝑇 ), ordered lexicographically. For a given𝑑 ,𝑇 , and 𝜎 , we assume
𝑇 � 𝜎 and proceed by case analysis on 𝑇 and 𝑑 .

Let \ = [𝑋/𝑌 ].

𝑇 = 𝛼 .
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Since 𝛼\ = 𝛼 , we must show

(𝑑 : 𝛼) =⇒ (𝐹𝜎 (𝑑) : 𝛼) ¬(𝑑 : 𝛼) =⇒ ¬(𝐹𝜎 (𝑑) : 𝛼) .

If (𝑑 : 𝛼), then 𝛼 ∈ tags(𝑑) and also 𝛼 ∈ tags(𝐹𝜎 (𝑑)). Likewise, if 𝑑 ∉ È𝛼É, then
𝛼 ∉ tags(𝑑) and also 𝛼 ∉ tags(𝐹𝜎 (𝑑)).

𝑇 = 𝑍 , with 𝑍 ≠ 𝑋 and 𝑍 ≠ 𝑌 .

Like the previous case.

𝑇 = 𝑋 .

Since 𝑋 ∈ vars𝑋+ (𝑋 ), we have 𝜎 = �.

We must show

(𝑑 : 𝑋 ) =⇒ (𝐹�(𝑑) : 𝑋 ) ¬(𝑑 : 𝑋 ) =⇒ ¬(𝐹�(𝑑) : 𝑋 ) .

If (𝑑 : 𝑋 ), then 𝑋 ∈ tags(𝑑) and 𝑋 ∈ tags(𝐹�(𝑑)). If ¬(𝑑 : 𝑋 ), then 𝑋 ∉ tags(𝑑) and
𝑋 ∉ tags(𝐹�(𝑑)).

𝑇 = 𝑌 .

Since 𝑌 ∈ vars𝑋+ (𝑌 ), we have 𝜎 = �.

We must show

(𝑑 : 𝑌 ) =⇒ (𝐹�(𝑑) : 𝑋 ) ¬(𝑑 : 𝑌 ) =⇒ ¬(𝐹�(𝑑) : 𝑋 ) .

If (𝑑 : 𝑌 ), then 𝑌 ∈ tags(𝑑) and 𝑋 ∈ tags(𝐹�(𝑑)). If ¬(𝑑 : 𝑌 ), then 𝑌 ∉ tags(𝑑) and
then 𝑋 ∉ tags(𝐹�(𝑑)).

𝑇 = 𝑏.

Since 𝑏\ = 𝑏, we must show

(𝑑 : 𝑏) =⇒ (𝐹𝜎 (𝑑) : 𝑏) ¬(𝑑 : 𝑏) =⇒ (𝐹𝜎 (𝑑) : 𝑏) .

If (𝑑 : 𝑏), then 𝑑 = 𝑐𝐿 with 𝑐 ∈ B𝑏. Then, 𝐹𝜎 (𝑑) = 𝑐𝐹
𝜎 (𝐿) and (𝐹𝜎 (𝑑) : 𝑏).

If ¬(𝑑 : 𝑏) and 𝑑 is of the form 𝑐𝐿 , then 𝑐 ∉ B𝑏: then, 𝐹𝜎 (𝑑) ∉ È𝑏É. If 𝑑 is not of the
form 𝑐𝐿 , then 𝐹𝜎 (𝑑) is not either and we have 𝐹𝜎 (𝑑) ∉ È𝑏É.

𝑇 = 𝑇1 ×𝑇2.

Since 𝑇 � 𝜎 , we have 𝑇1 � 𝜎 and 𝑇2 � 𝜎 .

We must show

(𝑑 : 𝑇1 ×𝑇2) =⇒ (𝐹𝜎 (𝑑) : 𝑇1\ ×𝑇2\ )
¬(𝑑 : 𝑇1 ×𝑇2) =⇒ ¬(𝐹𝜎 (𝑑) : 𝑇1\ ×𝑇2\ ) .

If (𝑑 : 𝑇1 × 𝑇2), then 𝑑 is of the form (𝑑1, 𝑑2)𝐿 and, for both 𝑖 , (𝑑𝑖 : 𝑇1). We have
𝐹𝜎 (𝑑) = (𝐹𝜎 (𝑑1), 𝐹𝜎 (𝑑2))𝐹

𝜎 (𝐿) . By IH, (𝑑1 : 𝑇1) implies (𝐹𝜎 (𝑑1) : 𝑇1\ ); likewise for 𝑑2.
Therefore, (𝐹𝜎 (𝑑) : 𝑇1\ ×𝑇2\ ).
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If ¬(𝑑 : 𝑇1 × 𝑇2) and 𝑑 = (𝑑1, 𝑑2)𝐿 , then either ¬(𝑑1 : 𝑇1) or ¬(𝑑2 : 𝑇2). Then, by IH,
either ¬(𝐹𝜎 (𝑑1) : 𝑇1\ ) or ¬(𝐹𝜎 (𝑑2) : 𝑇2\ ). Therefore, ¬(𝐹𝜎 (𝑑) : 𝑇1\ ×𝑇2\ ). If 𝑑 is of
another form, then the result is immediate.

𝑇 = 𝑇1 → 𝑇2.

Since 𝑇 � 𝜎 , we have 𝑇1 � 𝜎 and 𝑇2 � 𝜎 .

We must show

(𝑑 : 𝑇1 → 𝑇2) =⇒ (𝐹𝜎 (𝑑) : 𝑇1\ → 𝑇2\ )
¬(𝑑 : 𝑇1 → 𝑇2) =⇒ ¬(𝐹𝜎 (𝑑) : 𝑇1\ → 𝑇2\ ) .

If (𝑑 : 𝑇1 → 𝑇2), then 𝑑 is of the form {(𝑑 𝑗 , 𝑑
′
𝑗 ) | 𝑗 ∈ 𝐽 }𝐿 and, for all 𝑗 ∈ 𝐽 , we have:

(𝑑 𝑗 : 𝑇1) =⇒ (𝑑 ′
𝑗 : 𝑇2) .

We have 𝐹𝜎 (𝑑) = {(𝐹𝜎 (𝑑 𝑗 ), 𝐹𝜎 (𝑑 ′
𝑗 )) | 𝑗 ∈ 𝐽 }𝐹𝜎 (𝐿) .

For every 𝑗 , by the induction hypothesis applied to𝑇1 and 𝑑 𝑗 , and to𝑇2 and 𝑑 ′
𝑗 , we get

(𝑑 𝑗 : 𝑇1) =⇒ (𝐹𝜎 (𝑑 𝑗 ) : 𝑇1\ ) ¬(𝑑 𝑗 : 𝑇1) =⇒ ¬(𝐹𝜎 (𝑑 𝑗 ) : 𝑇1\ )
(𝑑 ′

𝑗 : 𝑇2) =⇒ (𝐹𝜎 (𝑑 ′
𝑗 ) : 𝑇2\ ) ¬(𝑑 ′

𝑗 : 𝑇2) =⇒ ¬(𝐹𝜎 (𝑑 ′
𝑗 ) : 𝑇2\ ) .

We must show, for all 𝑗 ∈ 𝐽 :

(𝐹𝜎 (𝑑 𝑗 ) : 𝑇1\ ) =⇒ (𝐹𝜎 (𝑑 ′
𝑗 ) : 𝑇2\ )

whichwe prove using the induction hypothesis (in particular, using the contrapositive
of the second implication derived by induction).

If ¬(𝑑 : 𝑇1 → 𝑇2) and 𝑑 is of the form {(𝑑 𝑗 , 𝑑
′
𝑗 ) | 𝑗 ∈ 𝐽 }𝐿 , then there exists a 𝑗0 ∈ 𝐽

such that
(𝑑 𝑗0 : 𝑇1) ¬(𝑑 ′

𝑗0
∈ 𝑇2) .

We have 𝐹𝜎 (𝑑) = {(𝐹𝜎 (𝑑 𝑗 ), 𝐹𝜎 (𝑑 ′
𝑗 )) | 𝑗 ∈ 𝐽 }𝐹𝜎 (𝐿) . By IH, we show

(𝐹𝜎 (𝑑 𝑗0) : 𝑇1\ ) ¬(𝐹𝜎 (𝑑 𝑗0) : 𝑇2\ ) .

If 𝑑 is of another form, we have the result directly. then we get the result directly.

𝑇 = 𝑇1 ∨𝑇2.

Since 𝑇 � 𝜎 , we have 𝑇1 � 𝜎 and 𝑇2 � 𝜎 .

By the induction hypothesis applied to 𝑑 and 𝑇𝑖 , we get

(𝑑 : 𝑇𝑖) =⇒ (𝐹𝜎 (𝑑) : 𝑇𝑖\ ) ¬(𝑑 : 𝑇𝑖) =⇒ ¬(𝐹𝜎 (𝑑) : 𝑇𝑖\ ) .

We must show

(𝑑 : 𝑇1 ∨𝑇2) =⇒ (𝐹𝜎 (𝑑) : 𝑇1\ ∨𝑇2\ ) ¬(𝑑 : 𝑇1 ∨𝑇2) =⇒ (𝐹𝜎 (𝑑) : 𝑇1\ ∨𝑇2\ ) .
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To show the rst implication, assume (𝑑 : 𝑇1 ∨ 𝑇2): then either (𝑑 : 𝑇1) or (𝑑 : 𝑇2);
then either (𝐹𝜎 (𝑑) : 𝑇1\ ) or (𝐹𝜎 (𝑑) : 𝑇2\ ); then (𝐹𝜎 (𝑑) : 𝑇1\ ∨ 𝑇2\ ). To show the
second, assume ¬(𝑑 : 𝑇1 ∨ 𝑇2): then ¬(𝑑 : 𝑇1) and ¬(𝑑 : 𝑇2); then ¬(𝐹𝜎 (𝑑) : 𝑇1) and
¬(𝐹𝜎 (𝑑) : 𝑇2); then ¬(𝐹𝜎 (𝑑) : 𝑇1 ∨𝑇2).

𝑇 = ¬𝑇 ′.

Since 𝑇 � 𝜎 , 𝑇 ′ � 𝜎 .

By applying the induction hypothesis to 𝑑 and 𝑇 ′, we get

(𝑑 : 𝑇 ′) =⇒ (𝐹𝜎 (𝑑) : 𝑇 ′\ ) ¬(𝑑 : 𝑇 ′) =⇒ ¬(𝐹𝜎 (𝑑) : 𝑇 ′\ ) .

We must show

(𝑑 : ¬𝑇 ′) =⇒ (𝐹𝜎 (𝑑) : ¬(𝑇 ′\ )) ¬(𝑑 : ¬𝑇 ′) =⇒ ¬(𝐹𝜎 (𝑑) : ¬(𝑇 ′\ )) .

For the rst implication, assume (𝑑 : ¬𝑇 ′): then ¬(𝑑 : 𝑇 ′), ¬(𝐹𝜎 (𝑑) : 𝑇 ′\ ), and
(𝐹𝜎 (𝑑) : ¬(𝑇 ′\ )). For the second, assume ¬(𝑑 : ¬𝑇 ′): then ¬¬(𝑑 : 𝑇 ′), that is,
(𝑑 : 𝑇 ′); hence (𝐹𝜎 (𝑑) : 𝑇 ′\ ), and ¬(𝐹𝜎 (𝑑) : ¬(𝑇 ′\ )).

𝑇 = 0.

Both implications are trivial. �

Corollary A.3. For every type frames 𝑇1,𝑇2 such that 𝑇1 ≤ 𝑇2, for every variable 𝑋 such that

𝑋 ∉ vars𝑋+ (𝑇1) ∩ vars𝑋+ (𝑇2) and 𝑋 ∉ vars𝑋− (𝑇1) ∩ vars𝑋− (𝑇2), and for all 𝑌 such that 𝑌 ♯𝑋,𝑇1,𝑇2, it

holds that 𝑇1 [𝑌/𝑋 ] ≤ 𝑇2.

Proof. If 𝑋 ∉ vars𝑋 (𝑇1), the result is immediate because 𝑇1 [𝑌/𝑋 ] = 𝑇1. If 𝑋 ∉ vars𝑋 (𝑇2),
thenwe have𝑇2 = 𝑇2 [𝑌/𝑋 ] and the result can be derived by Proposition 5.2. We consider the
case 𝑋 ∈ vars𝑋 (𝑇1) ∩ vars𝑋 (𝑇2). In this case, we have 𝑋 ∉ vars𝑋+ (𝑇1) ∩ vars𝑋− (𝑇1): otherwise,
𝑋 could not occur in 𝑇2. Therefore, 𝑋 occurs only positively or only negatively in 𝑇1.

Given 𝑇1, 𝑇2, 𝑋 , and 𝑌 satisfying

𝑋 ∉ vars𝑋+ (𝑇1) ∩ vars𝑋+ (𝑇2) 𝑋 ∉ vars𝑋− (𝑇1) ∩ vars𝑋− (𝑇2) 𝑌 ♯𝑇1,𝑇2, 𝑋 ,

we must show 𝑇1 ≤ 𝑇2 =⇒ 𝑇1 [𝑌/𝑋 ] ≤ 𝑇2.
We show the contrapositive: 𝑇1 [𝑌/𝑋 ] � 𝑇2 =⇒ 𝑇1 � 𝑇2. Assume 𝑇1 [𝑌/𝑋 ] � 𝑇2.
We have 𝑇1 = 𝑇1 [𝑌/𝑋 ] [𝑋/𝑌 ] and 𝑇2 = 𝑇2 [𝑋/𝑌 ]. Let 𝑇 = 𝑇1 [𝑌/𝑋 ] \𝑇2. We have 𝑇 � 0

by denition of subtyping.
We show that either {𝑋,𝑌 } ♯ vars𝑋− (𝑇 ) or {𝑋,𝑌 } ♯ vars𝑋+ (𝑇 ) holds. Note that

vars𝑋+ (𝑇 ) = vars𝑋+ (𝑇1 [𝑌/𝑋 ]) ∪ vars𝑋− (𝑇2) vars𝑋− (𝑇 ) = vars𝑋− (𝑇1 [𝑌/𝑋 ]) ∪ vars𝑋+ (𝑇2) .

If 𝑋 ∈ vars𝑋+ (𝑇1), then 𝑋 ∉ vars𝑋− (𝑇1) and 𝑋 ∉ vars𝑋+ (𝑇2): therefore, {𝑋,𝑌 } ♯ vars𝑋− (𝑇 ). If
𝑋 ∈ vars𝑋− (𝑇1), then 𝑋 ∉ vars𝑋+ (𝑇1) and 𝑋 ∉ vars𝑋− (𝑇2): therefore, {𝑋,𝑌 } ♯ vars𝑋+ (𝑇 ).

By Lemma A.2, we have 𝑇 [𝑋/𝑌 ] � 0: that is, (𝑇1 [𝑌/𝑋 ] \ 𝑇2) [𝑋/𝑌 ] � 0; that is,
𝑇1 [𝑌/𝑋 ] [𝑋/𝑌 ] � 𝑇2 [𝑋/𝑌 ], which is 𝑇1 � 𝑇2. �

Lemma A.4. For every type frame 𝑇 � 0 and every variables 𝑋,𝑌 ∈ V 𝑋
, if 𝑋 ∉ vars𝑋even(𝑇 ) and

𝑌 ∉ vars𝑋odd(𝑇 ) then 𝑇 [𝑋/𝑌 ] � 0.
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Proof. We rst give some auxiliary denitions.
Let 𝜎 range over the two symbols 4 and O. We dene 𝜎 as follows: 4 =def O and O =def 4.
Given a type frame 𝑇 ′, we write 𝑇 ′ � 4 if 𝑋 ∉ vars𝑋odd(𝑇

′) and 𝑌 ∉ vars𝑋even(𝑇 ′); we write
𝑇 ′ � O if 𝑋 ∉ vars𝑋even(𝑇 ′) and 𝑌 ∉ vars𝑋odd(𝑇

′).
Note that, for all 𝑇 ′, 𝑇1, and 𝑇2, we have:

(¬𝑇 ′ � 𝜎) =⇒ (𝑇 ′ � 𝜎)
(𝑇1 ∨𝑇2 � 𝜎) =⇒ (𝑇1 � 𝜎) ∧ (𝑇2 � 𝜎)
(𝑇1 ×𝑇2 � 𝜎) =⇒ (𝑇1 � 𝜎) ∧ (𝑇2 � 𝜎)
(𝑇1 → 𝑇2 � 𝜎) =⇒ (𝑇1 � 𝜎) ∧ (𝑇2 � 𝜎)

We dene a function 𝐹𝜎 on domain element tags (nite sets of variables) as:

𝐹 4 (𝐿) = 𝐿 𝐹O(𝐿) =
{
𝐿 ∪ {𝑋 } if 𝑌 ∈ 𝐿

𝐿 \ {𝑋 } if 𝑌 ∉ 𝐿

We also dene 𝐹 on domain elements as follows:

𝐹𝜎 (𝑐𝐿) = 𝑐𝐹
𝜎 (𝐿)

𝐹𝜎 ((𝑑1, 𝑑2)𝐿) = (𝐹𝜎 (𝑑1), 𝐹𝜎 (𝑑2))𝐹
𝜎 (𝐿)

𝐹𝜎 ({(𝑑1, 𝑑 ′
1), . . . , (𝑑𝑛, 𝑑 ′

𝑛)}𝐿) = {(𝐹𝜎 (𝑑1), 𝐹𝜎 (𝑑 ′
1)), . . . , (𝐹𝜎 (𝑑𝑛), 𝐹𝜎 (𝑑 ′

𝑛))}𝐹
𝜎 (𝐿)

𝐹𝜎 (Ω) = Ω

We must show:
𝑇 � 0

𝑋 ∉ vars𝑋even(𝑇 )
𝑌 ∉ vars𝑋odd(𝑇 )

 =⇒ 𝑇 [𝑋/𝑌 ] � 0

This can be restated as:

∃𝑑 ∈ D . (𝑑 : 𝑇 )
𝑇 � O

}
=⇒ ∃𝑑 ′ ∈ D . (𝑑 ′ : 𝑇 [𝑋/𝑌 ])

We prove the following, stronger claim:

∀𝑑,𝑇 , 𝜎. 𝑇 � 𝜎 =⇒
(
(𝑑 : 𝑇 ) ⇐⇒ (𝐹𝜎 (𝑑) : 𝑇 [𝑋/𝑌 ])

)
by induction on the pair (𝑑,𝑇 ), ordered lexicographically. For a given𝑑 ,𝑇 , and 𝜎 , we assume
𝑇 � 𝜎 and proceed by case analysis on 𝑇 and 𝑑 .

Let \ = [𝑋/𝑌 ].

𝑇 = 𝛼 .

Note that 𝛼\ = 𝛼 .

(𝑑 : 𝛼) ⇐⇒ 𝛼 ∈ tags(𝑑)
⇐⇒ 𝛼 ∈ tags(𝐹𝜎 (𝑑)) neither 𝐹 4 nor 𝐹O aect variables other than 𝑋

⇐⇒ (𝐹𝜎 (𝑑) : 𝛼)
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𝑇 = 𝑍 , with 𝑍 ≠ 𝑋 and 𝑍 ≠ 𝑌 .

Like the previous case.

𝑇 = 𝑋 .

Note that we must have 𝑇 � 4 because 𝑋 ∈ vars𝑋even(𝑋 ) and 𝑋 ∉ vars𝑋odd(𝑋 ).

Note that 𝑋\ = 𝑋 .

(𝑑 : 𝑋 ) ⇐⇒ 𝑋 ∈ tags(𝑑)
⇐⇒ 𝑋 ∈ tags(𝐹 4 (𝑑))
⇐⇒ (𝐹 4 (𝑑) : 𝑋 )

𝑇 = 𝑌 .

Note that we must have 𝑇 � O because 𝑌 ∈ vars𝑋even(𝑌 ) and 𝑌 ∉ vars𝑋odd(𝑌 ).

Note that 𝑌\ = 𝑋 .

(𝑑 : 𝑌 ) ⇐⇒ 𝑌 ∈ tags(𝑑)
⇐⇒ 𝑋 ∈ tags(𝐹O(𝑑))
⇐⇒ (𝐹O(𝑑) : 𝑋 )

𝑇 = 𝑏.

Note that 𝑏\ = 𝑏.

If (𝑑 : 𝑏), then 𝑑 must be of the form 𝑐𝐿 with 𝑐 ∈ B𝑏. Then, 𝐹𝜎 (𝑑) = 𝑐𝐹
𝜎 (𝐿) and

(𝐹𝜎 (𝑑) : 𝑏).

If (𝐹𝜎 (𝑑) : 𝑏), then 𝐹𝜎 (𝑑) must be of the form 𝑐𝐿 with 𝑐 ∈ B𝑏. Then, 𝑑 = 𝑐𝐿
′ and

(𝑑 : 𝑏).

𝑇 = 𝑇1 ×𝑇2.

If (𝑑 : 𝑇1 × 𝑇2), then 𝑑 = (𝑑1, 𝑑2)𝐿 , (𝑑1 : 𝑇1), and (𝑑2 : 𝑇2). We have 𝐹𝜎 (𝑑) =
(𝐹𝜎 (𝑑1), 𝐹𝜎 (𝑑2))𝐹

𝜎 (𝐿) . By IH we have, for 𝑖 ∈ {1, 2}, (𝑑𝑖 : 𝑇𝑖) ⇐⇒ (𝐹𝜎 (𝑑𝑖) : 𝑇𝑖\ );
hence, (𝐹𝜎 (𝑑) : 𝑇1\ ×𝑇2\ ).

If (𝐹𝜎 (𝑑) : 𝑇1\ × 𝑇2\ ), then 𝐹𝜎 (𝑑) = (𝑑1, 𝑑2)𝐿 , (𝑑1 : 𝑇1\ ), and (𝑑2 : 𝑇2\ ). Then, we
have 𝑑 = (𝑑 ′

1, 𝑑
′
2)𝐿

′ , with 𝑑1 = 𝐹𝜎 (𝑑 ′
1) and 𝑑2 = 𝐹𝜎 (𝑑 ′

2). By IH we have, for 𝑖 ∈ {1, 2},
(𝑑 ′

𝑖 : 𝑇𝑖) ⇐⇒ (𝑑𝑖 : 𝑇𝑖\ ); hence, (𝑑 : 𝑇1 ×𝑇2).

𝑇 = 𝑇1 → 𝑇2.

Note that, since 𝑇 � 𝜎 , we have 𝑇1 � 𝜎 and 𝑇2 � 𝜎 .

If (𝑑 : 𝑇1 → 𝑇2), then 𝑑 = {(𝑑 𝑗 , 𝑑
′
𝑗 ) | 𝑗 ∈ 𝐽 }𝐿 and

∀𝑗 ∈ 𝐽 . (𝑑 𝑗 : 𝑇1) =⇒ (𝑑 ′
𝑗 : 𝑇2) .

Then, 𝐹𝜎 (𝑑) = {(𝐹𝜎 (𝑑 𝑗 ), 𝐹𝜎 (𝑑 ′
𝑗 )) | 𝑗 ∈ 𝐽 }𝐹𝜎 (𝐿) . By IH, for every 𝑗 ∈ 𝐽 ,

(𝑑 𝑗 : 𝑇1) ⇐⇒ (𝐹𝜎 (𝑑 𝑗 ) : 𝑇1\ ) (𝑑 ′
𝑗 : 𝑇2) ⇐⇒ (𝐹𝜎 (𝑑 ′

𝑗 ) : 𝑇2\ ) .
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Therefore, we have

∀𝑗 ∈ 𝐽 . (𝐹𝜎 (𝑑 𝑗 ) : 𝑇1\ ) =⇒ (𝐹𝜎 (𝑑 ′
𝑗 ) : 𝑇2\ )

and hence (𝐹𝜎 (𝑑) : 𝑇1\ → 𝑇2\ ).

If (𝐹𝜎 (𝑑) : 𝑇1\ → 𝑇2\ ), then 𝐹𝜎 (𝑑) = {(𝑑 𝑗 , 𝑑
′
𝑗 ) | 𝑗 ∈ 𝐽 }𝐿 and

∀𝑗 ∈ 𝐽 . (𝑑 𝑗 : 𝑇1\ ) =⇒ (𝑑 ′
𝑗 : 𝑇2\ ) .

Then, 𝑑 = {(𝑑 𝑗 , 𝑑
′
𝑗 ) | 𝑗 ∈ 𝐽 }𝐿′ , with, for every 𝑗 ∈ 𝐽 , 𝐹𝜎 (𝑑 𝑗 ) = 𝑑 𝑗 and 𝐹𝜎 (𝑑 ′

𝑗 ) = 𝑑 ′
𝑗 . By

IH, for every 𝑗 ∈ 𝐽 ,

(𝑑 𝑗 : 𝑇1) ⇐⇒ (𝑑 𝑗 : 𝑇1\ ) (𝑑 ′
𝑗 : 𝑇2) ⇐⇒ (𝑑 ′

𝑗 : 𝑇2\ ) .

Therefore, we have
∀𝑗 ∈ 𝐽 . (𝑑 𝑗 : 𝑇1) =⇒ (𝑑 ′

𝑗 : 𝑇2)

and hence (𝑑 : 𝑇1 → 𝑇2).

𝑇 = 𝑇1 ∨𝑇2.

(𝑑 : 𝑇1 ∨𝑇2) ⇐⇒ (𝑑 : 𝑇1) ∨ (𝑑 : 𝑇2)
⇐⇒ (𝐹𝜎 (𝑑) : 𝑇1\ ) ∨ (𝐹𝜎 (𝑑) : 𝑇2\ ) by IH

⇐⇒ (𝐹𝜎 (𝑑) : 𝑇1\ ∨𝑇2\ )

𝑇 = ¬𝑇 ′.

(𝑑 : ¬𝑇 ′) ⇐⇒ ¬(𝑑 : 𝑇 ′)
⇐⇒ ¬(𝐹𝜎 (𝑑) : 𝑇 ′\ ) by IH

⇐⇒ (𝐹𝜎 (𝑑) : ¬(𝑇 ′\ ))

𝑇 = 0.

Trivial, since (𝑑 : 0) never holds for any 𝑑 and since 0\ = 0. �

Lemma A.5. For every type frame𝑇 , if𝑇 ≤ 0 then there exists a type frame𝑇 ′
and a substitution

\ : V 𝑋 → V 𝑋
such that:

• 𝑇 ′ ≤ 0

• 𝑇 = 𝑇 ′\

• vars𝑋even(𝑇 ′) ∩ vars𝑋odd(𝑇
′) = ∅

Proof. Assume that vars𝑋 (𝑇 ) = {𝑋1, . . . , 𝑋𝑛}.
By Corollary 5.9, we can nd 𝑇 ′ such that vars𝑋even(𝑇 ′) ⊆ {𝑋1, . . . , 𝑋𝑛} is disjoint from

vars𝑋odd(𝑇
′) ⊆ {𝑋 ′

1, . . . , 𝑋
′
𝑛} and that 𝑇 = 𝑇 ′ [𝑋𝑖/𝑋 ′

𝑖 ]𝑛𝑖=1.
We must prove 𝑇 ′ ≤ 0. We have 𝑇 ≤ 0, which is 𝑇 ′ [𝑋𝑖/𝑋 ′

𝑖 ]𝑛𝑖=1 ≤ 0. Therefore, we also
have 𝑇 ′ [𝑋𝑖/𝑋 ′

𝑖 ]𝑛𝑖=1 [𝑋 ′
𝑖 /𝑋𝑖]𝑛𝑖=1 ≤ 0 (by Proposition 5.2), which is 𝑇 ′ [𝑋 ′

𝑖 /𝑋𝑖]𝑛𝑖=1 ≤ 0.
Let ®𝑋 be the vector 𝑋1 . . . 𝑋𝑛 and ®𝑋 ′ be the vector 𝑋 ′

1 . . . 𝑋
′
𝑛 . We have ®𝑋 ♯ vars𝑋odd(𝑇

′) and
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®𝑋 ′ ♯ vars𝑋even(𝑇 ′). We also have ®𝑋 ♯ ®𝑌 .
By Lemma A.4, we have

𝑇 ′ � 0 =⇒ 𝑇 ′ [ ®𝑋 ′/ ®𝑋 ] � 0

and, by contrapositive,
𝑇 ′ [ ®𝑋 ′/ ®𝑋 ] ≤ 0 =⇒ 𝑇 ′ ≤ 0

which yields 𝑇 ′ ≤ 0. �

Lemma A.6. For every gradual types 𝜏1, 𝜏2 and every type frames 𝑇1 ∈ ★(𝜏1), 𝑇2 ∈ ★(𝜏2), if
vars𝑋+cov(𝑇1,𝑇2), vars𝑋+con(𝑇1,𝑇2), vars𝑋−cov(𝑇1,𝑇2), and vars𝑋−con(𝑇1,𝑇2) are pairwise disjoint then𝑇1 ≤
𝑇2 =⇒ 𝜏•1 ≤ 𝜏•2 .

Proof. We dene

\ = [𝑋 +∧/𝑋 ]𝑋 ∈vars𝑋+cov (𝑇1,𝑇2) ∪ [𝑋 +∨/𝑋 ]𝑋 ∈vars𝑋+con (𝑇1,𝑇2)

∪ [𝑋−∧/𝑋 ]𝑋 ∈vars𝑋−cov (𝑇1,𝑇2) ∪ [𝑋−∨/𝑋 ]𝑋 ∈vars𝑋−con (𝑇1,𝑇2)

\ is well-dened because the four sets are disjoint. We have𝑇1\ = 𝜏•1 and𝑇2\ = 𝜏•2 . We have
𝑇1\ ≤ 𝑇2\ by Proposition 5.2. �

Lemma A.7. For every gradual types 𝜏1, 𝜏2, if 𝜏1 ≤ 𝜏2 then 𝜏
•
1 ≤ 𝜏•2 .

Proof. By denition of 𝜏1 ≤ 𝜏2, there exist 𝑇1 ∈ ★(𝜏1) and 𝑇2 ∈ ★(𝜏2) such that:

vars𝑋+ (𝑇1) ♯ vars𝑋− (𝑇1) vars𝑋+ (𝑇2) ♯ vars𝑋− (𝑇2) 𝑇1 ≤ 𝑇2 .

Let ®𝑋 =
(
vars𝑋+ (𝑇1) ∩ vars𝑋− (𝑇2)

)
∪

(
vars𝑋− (𝑇1) ∩ vars𝑋+ (𝑇2)

)
and let ®𝑌 be a vector of variables

outside 𝑇1 and 𝑇2. Since 𝑇1 and 𝑇2 are polarized, we have

∀𝑋 ∈ ®𝑋 .

{
𝑋 ∈ vars𝑋+ (𝑇1) =⇒ 𝑋 ∉ vars𝑋+ (𝑇2)
𝑋 ∈ vars𝑋− (𝑇1) =⇒ 𝑋 ∉ vars𝑋− (𝑇2)

and we can apply Corollary A.3 to derive 𝑇1 [ ®𝑌/ ®𝑋 ] ≤ 𝑇2. We have

vars𝑋+ (𝑇1 [ ®𝑌/ ®𝑋 ],𝑇2) ♯ vars𝑋− (𝑇1 [ ®𝑌/ ®𝑋 ],𝑇2) .

We apply Corollary 5.15 to 𝑇1 [ ®𝑌/ ®𝑋 ] and 𝑇2 to nd 𝑇 ′
1 , 𝑇

′
2 , ®𝑋 ′, and ®𝑌 ′ such that:

𝑇 ′
1 ≤ 𝑇 ′

2 𝑇1 [ ®𝑌/ ®𝑋 ] = 𝑇 ′
1 [ ®𝑋 ′/®𝑌 ′] and 𝑇2 = 𝑇 ′

2 [ ®𝑋 ′/®𝑌 ′] vars𝑋even(𝑇 ′
1 ,𝑇

′
2 ) ♯ vars𝑋odd(𝑇

′
1 ,𝑇

′
2 ) .

We have

𝜏1 = 𝑇 †
1 = (𝑇1 [ ®𝑌/ ®𝑋 ])† = (𝑇 ′

1 [ ®𝑋 ′/®𝑌 ′])† = (𝑇 ′
1 )†

𝜏2 = 𝑇 †
2 = (𝑇 ′

2 [ ®𝑋 ′/®𝑌 ′])† = (𝑇 ′
2 )† .

We also have

vars𝑋+ (𝑇 ′
1 ,𝑇

′
2 ) ♯ vars𝑋− (𝑇 ′

1 ,𝑇
′
2 ) vars𝑋even(𝑇 ′

1 ,𝑇
′
2 ) ♯ vars𝑋odd(𝑇

′
1 ,𝑇

′
2 )
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and therefore the following four sets are disjoint

vars𝑋+cov(𝑇 ′
1 ,𝑇

′
2 ) vars𝑋+con(𝑇 ′

1 ,𝑇
′
2 ) vars𝑋−cov(𝑇 ′

1 ,𝑇
′
2 ) vars𝑋−con(𝑇 ′

1 ,𝑇
′
2 ) .

Then, by Lemma A.6, we have 𝜏•1 ≤ 𝜏•2 . �

Lemma A.8. For every gradual types 𝜏1, 𝜏2, if there exists𝑇1 ∈ ★var(𝜏1) and𝑇2 ∈ ★var(𝜏2) such that
𝑇1 ≤ 𝑇2, then 𝜏

•
1 ≤ 𝜏•2 .

Proof. We have

𝑇
†
1 = 𝜏1 and 𝑇 †

2 = 𝜏2 vars𝑋cov(𝑇1) ♯ vars𝑋con(𝑇1) and vars𝑋cov(𝑇2) ♯ vars𝑋con(𝑇2) 𝑇1 ≤ 𝑇2 .

We apply Corollary 5.15 to 𝑇1 and 𝑇2 to nd 𝑇 ′
1 , 𝑇

′
2 , ®𝑋 , and ®𝑌 such that:

𝑇 ′
1 ≤ 𝑇 ′

2 𝑇1 = 𝑇 ′
1 [ ®𝑋/®𝑌 ] and 𝑇2 = 𝑇 ′

2 [ ®𝑋/®𝑌 ] vars𝑋even(𝑇 ′
1 ,𝑇

′
2 ) ♯ vars𝑋odd(𝑇

′
1 ,𝑇

′
2 ) .

Since we have

vars𝑋cov(𝑇 ′
1 ) ♯ vars𝑋con(𝑇 ′

1 ) and vars𝑋cov(𝑇 ′
2 ) ♯ vars𝑋con(𝑇 ′

2 ) vars𝑋even(𝑇 ′
1 ,𝑇

′
2 ) ♯ vars𝑋odd(𝑇

′
1 ,𝑇

′
2 ) ,

we also have
vars𝑋+ (𝑇 ′

1 ) ♯ vars𝑋− (𝑇 ′
1 ) and vars𝑋+ (𝑇 ′

2 ) ♯ vars𝑋− (𝑇 ′
2 ) .

Let ®𝑋 ′ =
(
vars𝑋+ (𝑇 ′

1 ) ∩ vars𝑋− (𝑇 ′
2 )

)
∪

(
vars𝑋− (𝑇 ′

1 ) ∩ vars𝑋+ (𝑇 ′
2 )

)
and let ®𝑌 ′ be a vector of

variables outside 𝑇 ′
1 and 𝑇 ′

2 . We have

∀𝑋 ∈ ®𝑋 ′.

{
𝑋 ∈ vars𝑋+ (𝑇 ′

1 ) =⇒ 𝑋 ∉ vars𝑋+ (𝑇 ′
2 )

𝑋 ∈ vars𝑋− (𝑇 ′
1 ) =⇒ 𝑋 ∉ vars𝑋− (𝑇 ′

2 )

and we can apply Corollary A.3 to derive 𝑇 ′
1 [ ®𝑌 ′/ ®𝑋 ′] ≤ 𝑇 ′

2 .
We have

𝜏1 = 𝑇 †
1 = (𝑇 ′

1 [ ®𝑋/®𝑌 ])† = (𝑇 ′
1 )† = (𝑇 ′

1 [ ®𝑌 ′/ ®𝑋 ′])†

𝜏2 = 𝑇 †
2 = (𝑇 ′

2 [ ®𝑋/®𝑌 ])† = (𝑇 ′
2 )† .

Let 𝑇 ′′
1 = 𝑇 ′

1 [ ®𝑌 ′/ ®𝑋 ′].
We also have

vars𝑋+ (𝑇 ′′
1 ,𝑇

′
2 ) ♯ vars𝑋− (𝑇 ′′

1 ,𝑇
′
2 ) vars𝑋even(𝑇 ′′

1 ,𝑇
′
2 ) ♯ vars𝑋odd(𝑇

′′
1 ,𝑇

′
2 )

and therefore the following four sets are disjoint

vars𝑋+cov(𝑇 ′′
1 ,𝑇

′
2 ) vars𝑋+con(𝑇 ′′

1 ,𝑇
′
2 ) vars𝑋−cov(𝑇 ′′

1 ,𝑇
′
2 ) vars𝑋−con(𝑇 ′′

1 ,𝑇
′
2 ) .

Then, by Lemma A.6, we have 𝜏•1 ≤ 𝜏•2 . �
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Proposition A.9. For every type frame 𝑇 ∈ TFrames, and every type substitutions \1, \2 :
V 𝛼 ∪ V 𝑋 → GTypes satisfying the following two conditions:

∀𝐴 ∈ varscov(𝑇 ), 𝐴\1 ≤ 𝐴\2 ∀𝐴 ∈ varscon(𝑇 ), 𝐴\2 ≤ 𝐴\1

then it holds that 𝑇\1 ≤ 𝑇\2.

Proof. For every substitution \ , and every set 𝑆 ∈ Vars, we write \ |𝑆 for the substitution that
veries 𝑋\ |𝑆 = 𝑋\ if 𝑋 ∈ 𝑆 and 𝑋\ |𝑆 = 𝑋 otherwise.
We dene

𝑃 (𝑇, \1, \2) ⇐⇒def
(
\1 |varscov (𝑇 ) ≤ \2 |varscov (𝑇 )

)
and

(
\2 |varscon (𝑇 ) ≤ \1 |varscon (𝑇 )

)
and note that the following hold

𝑃 (𝐴, \1, \2) =⇒ 𝐴\1 ≤ 𝐴\2

𝑃 (𝑇1 ×𝑇2, \1, \2) =⇒ 𝑃 (𝑇1, \1, \2) and 𝑃 (𝑇2, \1, \2)
𝑃 (𝑇1 → 𝑇2, \1, \2) =⇒ 𝑃 (𝑇1, \2, \1) and 𝑃 (𝑇2, \1, \2)
𝑃 (𝑇1 ∨𝑇2, \1, \2) =⇒ 𝑃 (𝑇1, \1, \2) and 𝑃 (𝑇2, \1, \2)

𝑃 (¬𝑇 ′, \1, \2) =⇒ 𝑃 (𝑇 ′, \2, \1)

We show the following result (which implies the statement)

∀\1, \2, 𝑑,𝑇 .
𝑃 (𝑇, \1, \2)
(𝑑 : 𝑇\1)

}
=⇒ (𝑑 : 𝑇\2)

by induction on (𝑑,𝑇 ).

𝑇 = 𝑏 or 𝑇 = 0. Trivial, since 𝑇\1 = 𝑇 = 𝑇\2.

𝑇 = 𝐴. We have 𝐴\1 ≤ 𝐴\2 and (𝑑 : 𝐴\1), which implies (𝑑 : 𝐴\2).

𝑇 = 𝑇1 ×𝑇2.

We have 𝑇\1 = (𝑇1\1) × (𝑇2\1) and 𝑇\2 = (𝑇1\2) × (𝑇2\2).

Since (𝑑 : 𝑇\1), we have 𝑑 = (𝑑1, 𝑑2) and (𝑑𝑖 : 𝑇𝑖\1).

Since 𝑃 (𝑇𝑖 , \1, \2) holds for both 𝑖 , by IH we have (𝑑𝑖 : 𝑇𝑖\2). Then, (𝑑 : 𝑇\2).

𝑇 = 𝑇1 → 𝑇2.

We have 𝑇\1 = (𝑇1\1) → (𝑇2\1) and 𝑇\2 = (𝑇1\2) → (𝑇2\2).

Since (𝑑 : 𝑇\1), we have 𝑑 = {(𝑑𝑖 , 𝑑 ′
𝑖 ) | 𝑖 ∈ 𝐼 } and ∀𝑖 ∈ 𝐼 . (𝑑𝑖 : 𝑇1\1) =⇒ (𝑑 ′

𝑖 : 𝑇2\1).

We have 𝑃 (𝑇1, \2, \1) and 𝑃 (𝑇2, \1, \2).

For every 𝑑𝑖 such that (𝑑𝑖 : 𝑇1\2), by IH we have (𝑑𝑖 : 𝑇1\1), therefore (𝑑 ′
𝑖 : 𝑇2\1), and,

by IH, (𝑑 ′
𝑖 : 𝑇2\2). Therefore, ∀𝑖 ∈ 𝐼 . (𝑑𝑖 : 𝑇1\2) =⇒ (𝑑 ′

𝑖 : 𝑇2\2), and hence (𝑑 : 𝑇\2).

𝑇 = 𝑇1 ∨𝑇2.
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We have either (𝑑 : 𝑇1\1) or (𝑑 : 𝑇2\1). Therefore, since 𝑃 (𝑇𝑖 , \1, \2) holds for both 𝑖 ,
by IH we have either (𝑑 : 𝑇1\2) or (𝑑 : 𝑇2\2), and hence (𝑑 : 𝑇\2).

𝑇 = ¬𝑇 ′.

We have ¬(𝑑 : 𝑇 ′\1). Since 𝑃 (𝑇 ′, \2, \1), by IH (𝑑 : 𝑇 ′\2) =⇒ (𝑑 : 𝑇 ′\1). Therefore,
by contrapositive, we have ¬(𝑑 : 𝑇 ′\2), hence (𝑑 : ¬𝑇 ′\2). �

Lemma A.10. For every gradual types 𝜏1, 𝜏2 ∈ GTypes, if 𝜏1 4 𝜏2 then there exists 𝑇 ∈ ★var(𝜏1)
and \ : V 𝑋 → GTypes such that 𝑇\ = 𝜏2.

Proof. By denition of 𝜏1 4 𝜏2, there exist a 𝑇1 and a \1 : V 𝑋 → GTypes such that 𝑇 †
1 = 𝜏1

and that 𝑇1\1 = 𝜏2. Let vars𝑋 (𝑇1) = {𝑋1, . . . , 𝑋𝑛}.
By Corollary 5.8, we can nd a 𝑇 such that vars𝑋cov(𝑇 ) ⊆ {𝑋1, . . . , 𝑋𝑛} is disjoint from

vars𝑋con(𝑇 ) ⊆ {𝑋 ′
1, . . . , 𝑋

′
𝑛} and such that 𝑇1 = 𝑇 [𝑋𝑖/𝑋 ′

𝑖 ]𝑛𝑖=1. Clearly, 𝑇 † = 𝑇 †
1 = 𝜏1.

We take \ to be [𝑋𝑖\1/𝑋𝑖]𝑛𝑖=1 ∪ [𝑋𝑖\1/𝑋 ′
𝑖 ]𝑛𝑖=1 restricted to vars𝑋 (𝑇 ). We have:

𝑇\ = 𝑇 ( [𝑋𝑖\1/𝑋𝑖]𝑛𝑖=1 ∪ [𝑋𝑖\1/𝑋 ′
𝑖 ]𝑛𝑖=1) = 𝑇 [𝑋𝑖/𝑋 ′

𝑖 ]𝑛𝑖=1\1 = 𝑇1\1 = 𝜏2 . �

Lemma A.11. For every gradual types 𝜏1, 𝜏2, 𝜏3 ∈ GTypes, if 𝜏1 ≤ 𝜏2 4 𝜏3 then there exists 𝜏 ′2 ∈
GTypes such that 𝜏1 4 𝜏 ′2 ≤ 𝜏3.

Proof. By LemmaA.10, since 𝜏2 4 𝜏3, there exist𝑇2 and \ : V 𝑋 (𝑇2) → GTypes such that𝑇 †
2 =

𝜏2, that 𝑇2\ = 𝜏3, and that vars𝑋cov(𝑇2) ∩ vars𝑋con(𝑇2) = ∅. Assume that vars𝑋cov = {𝑋1, . . . , 𝑋𝑛}
and vars𝑋con = {𝑌1, . . . , 𝑌𝑚}.
Let \ = [(𝑋𝑖\ )?/𝑋𝑖]𝑛𝑖=1 ∪ [(𝑌𝑖\ )>/𝑌𝑖]𝑛𝑖=1. We have (𝑇2\ )† = 𝑇2\ = 𝜏3.
Let \̂ = [∧𝑛

𝑗=1𝑋 𝑗\/𝑋𝑖]𝑛𝑖=1 ∪ [∨𝑚
𝑗=1 𝑌𝑗\/𝑌𝑖]𝑚𝑖=1.

Let \̌ = [∧𝑛
𝑗=1𝑋 𝑗\/𝑋 1] ∪ [∨𝑚

𝑗=1 𝑌𝑗\/𝑋 0].
We have:

∀𝑖 = 1, . . . , 𝑛. 𝑋𝑖\̂ ≤ 𝑋𝑖\ ∀𝑖 = 1, . . . ,𝑚. 𝑌𝑖\ ≤ 𝑌𝑖\

We take 𝜏 ′2 = (𝜏?
1 \̌ )†. We must show:

𝜏1 4 (𝜏?
1 \̌ )

† (𝜏?
1 \̌ )

† ≤ 𝜏3

The former holds because (𝜏?
1 \̌ )† = 𝜏?

1 [∧𝑛
𝑗=1𝑋 𝑗\/𝑋 1] [∨𝑚

𝑗=1 𝑌𝑗\/𝑋 0] and 𝜏?
1 ∈ ★(𝜏1).

To show the latter, we show:

(𝜏?
1 \̌ )

† ≤ (𝜏?
2 \̌ )

† 𝜏?
2 \̌ = 𝑇2\̂ (𝑇2\̂ )† ≤ (𝑇2\ )†

We show (𝜏?
1 \̌ )† ≤ (𝜏?

2 \̌ )†. By Theorem 5.18, 𝜏1 ≤ 𝜏2 implies 𝜏?
1 ≤ 𝜏?

2 . By Proposi-
tion 5.20, 𝜏?

1 \̌ ≤ 𝜏?
2 \̌ . Both 𝜏

?
1 \̌ and 𝜏

?
2 \̌ are covariantly polarized, therefore, (𝜏

?
1 \̌ )†

? = 𝜏?
1 \̌

and (𝜏?
2 \̌ )†

? = 𝜏?
2 \̌ . Hence, (𝜏

?
1 \̌ )† ≤ (𝜏?

2 \̌ )†.
To show 𝜏?

2 \̌ = 𝑇2\̂ , just note that 𝜏?
2 = 𝑇2( [𝑋 1/𝑋𝑖]𝑛𝑖=1 ∪ [𝑋 0/𝑌𝑖]𝑚𝑖=1).

Now we show (𝑇2\̂ )† ≤ (𝑇2\ )†. First, note that \̂ |varscov (𝑇2) ≤ \ |varscov (𝑇2) and \ |varscon (𝑇2) ≤
\̂ |varscon (𝑇2) . Hence, by Proposition 5.20, we have 𝑇2\̂ ≤ 𝑇2\ . Since both 𝑇2\̂ and 𝑇2\ are
covariantly polarized, we have 𝑇2\̂ = ((𝑇2\̂ )†)? and 𝑇2\ = ((𝑇2\ )†)?. This yields the result
we need. �
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Simplifying the semantics

To tackle the proof of Proposition 6.6, we follow the same principle as in Chapter 2. We extend
the interpretation of Denition 2.8 to account for the new element Ωas follows:

({(]𝑖 , 𝜕𝑖) | 𝑖 ∈ 𝐼 }𝐿 :[ 𝑡1 → 𝑡2)
𝑞 = ∀𝑖 ∈ 𝐼 . (]𝑖 =

Ω∨ (]𝑖 :[ 𝑡1)𝑞) =⇒ (𝜕𝑖 :[ 𝑡2)𝑞

We dene the interpretation È𝑡É𝑞[
′ of a set-theoretic type 𝑡 as:

È𝑡É𝑞[
′ =def {𝑑 ∈ D ′ | (𝑑 :[ 𝑡)𝑞}

And we now write ¤≤𝑞 for the induced subtyping relation on set-theoretic types as:

𝑡1 ¤≤𝑞
𝑡2 ⇐⇒def ∀[ : V 𝛼 → P (D ′) . È𝑡1É𝑞[

′ ⊆ È𝑡2É𝑞[
′

We also dene the canonical assigment [ on the new domain as [ (𝛼) = {𝑑 ∈ D ′ | 𝛼 ∈ tags(𝑑)}.

Lemma A.12. For every type 𝑡 ∈ Types, È𝑡É = È𝑡É𝑞
[
.

Proof. The statement is proven by a straightforward induction on the pair (𝑑, 𝑡). �

Lemma A.13. Let 𝑉 ∈ P𝑓 (V 𝛼 ), and 𝑇 = {𝑡 ∈ Types | vars(𝑡) ⊆ 𝑉 }. For every 𝑡 ∈ 𝑇 , the

following holds:

È𝑡É𝑞
[

′ = ∅ =⇒ ∀[ : V 𝛼 → P (D ′) . È𝑡É𝑞[
′ = ∅

Proof. We follow the exact same proof as for Lemma 2.10. We prove the stronger statement:

∀𝑡 ∈ 𝑇 . ∀𝑑 ∈ D . (𝑑 :[ 𝑡)𝑞 ⇐⇒ (𝐹[
𝑉
(𝑑) :[ 𝑡)𝑞

where the function 𝐹
[

𝑉
(.) is dened as follows:

𝐹
[

𝑉
(𝑑) =


𝑐𝑙

[

𝑉
(𝑑) if 𝑑 = 𝑐𝐿

(𝐹[
𝑉
(𝑑1), 𝐹[𝑉 (𝑑2))

𝑙
[

𝑉
(𝑑) if 𝑑 = (𝑑1, 𝑑2)𝐿

{(𝐹[Ω (]𝑖), 𝐹
[

Ω (𝜕𝑖)) | 𝑖 ∈ 𝐼 }𝑙
[

𝑉
(𝑑) if 𝑑 = {(]𝑖 , 𝜕𝑖) | 𝑖 ∈ 𝐼 }𝐿

𝑙
[

𝑉
(𝑑) = {𝛼 ∈ 𝑉 | 𝑑 ∈ [ (𝛼)}

Where 𝐹[
𝑉
(Ω) = Ω and 𝐹

[

𝑉
( Ω) = Ω.

The proof is done by induction on the pair (𝑑, 𝑡) ordered lexicographically, and by case
analysis on 𝑡 . The only case that changes from the proof of Lemma 2.10 is the following.

• 𝑡 = 𝑡1 → 𝑡2. If 𝑑 is not of the form {(]𝑖 , 𝜕𝑖) | 𝑖 ∈ 𝐼 }𝐿 , then the result is immediate.
Otherwise, we have

({(]𝑖 , 𝜕𝑖) | 𝑖 ∈ 𝐼 }𝐿 :[ 𝑡1 → 𝑡2)
𝑞 ⇐⇒ (∀𝑖 ∈ 𝐼 . (]𝑖 =

Ω∨ (]𝑖 :[ 𝑡1)𝑞) =⇒ (𝜕𝑖 :[ 𝑡2)𝑞)
(𝐹[

𝑉
({(]𝑖 , 𝜕𝑖) | 𝑖 ∈ 𝐼 }𝐿) :[ 𝑡1 → 𝑡2)

𝑞

⇐⇒ (∀𝑖 ∈ 𝐼 . (]𝑖 = 𝐹
[

𝑉
( Ω) ∨ (𝐹[

𝑉
(]𝑖) :[ 𝑡1)

𝑞) =⇒ (𝐹[
𝑉
(𝜕𝑖) :[ 𝑡2)

𝑞)

and for 𝑖 ∈ 𝐼 , both (𝑑𝑖 :[ 𝑡1)𝑞 ⇐⇒ (𝐹[
𝑉
(𝑑𝑖) :[ 𝑡1)

𝑞 and (𝜕𝑖 :[ 𝑡2)𝑞 ⇐⇒

257



Chapter A: Additional proofs and denitions

(𝐹[
𝑉
(𝜕𝑖) :[ 𝑡2)

𝑞 hold by IH, and 𝐹
[

𝑉
( Ω) = Ω. Hence the result.

�

Proposition A.14. For all types 𝑡1, 𝑡2 ∈ Types, 𝑡1 ¤≤ 𝑡2 ⇐⇒ 𝑡1 ¤≤𝑞
𝑡2.

Proof. By denition, 𝑡1 ¤≤ 𝑡2 ⇐⇒ È𝑡1 \ 𝑡2É′ = ∅, and 𝑡1 ¤≤𝑞
𝑡2 ⇐⇒ ∀[. È𝑡1 \ 𝑡2É𝑞[

′ = ∅.
By Lemma A.12, the rst statement becomes 𝑡1 ¤≤ 𝑡2 ⇐⇒ È𝑡1 \ 𝑡2É𝑞[

′ = ∅. The implication
𝑡1 ¤≤𝑞

𝑡2 =⇒ 𝑡1 ¤≤ 𝑡2 is then immediate. The converse follows from Lemma A.13, taking
𝑉 = vars(𝑡1 \ 𝑡2). �

Lemma A.15. For every 𝑡 ∈ Types, every substitution \ : V 𝛼 → Types, and every assignment

[ : V 𝛼 → P (D ′), if [ ′ is dened by [ ′(𝛼) = È𝛼\É𝑞[
′
, then È𝑡\É𝑞[

′ = È𝑡É𝑞
[′
′
.

Proof. The statement is shown by straightforward induction on the pair (𝑑, 𝑡). �

Proposition A.16. For every types 𝑡1, 𝑡2 ∈ Types, if 𝑡1 ¤≤ 𝑡2 then 𝑡1\ ¤≤ 𝑡2\ for every type sub-

stitution \ .

Proof. By Proposition A.14, we have 𝑡1 ¤≤𝑞
𝑡2. By the denition of È.É𝑞.

′, this proves
∀[. È𝑡1 \ 𝑡2É𝑞[

′ = ∅.
Now consider an arbitrary \ : V 𝛼 → Types and an assignment [ : V 𝛼 → P (D ′). Con-
sider [ ′ dened as [ ′(𝛼) = È𝛼\É𝑞[

′. By Lemma A.15, since È𝑡1 \ 𝑡2É𝑞[′
′ = ∅, we deduce

that È(𝑡1 \ 𝑡2)\É𝑞[
′ = ∅. This proves that 𝑡1\ ¤≤𝑞

𝑡2\ , and the result follows from Proposi-
tion A.14. �

Proposition A.17. For every type frame 𝑇 ∈ TFrames, and every type substitutions \1, \2 :
V 𝛼 ∪ V 𝑋 → GTypes satisfying the following two conditions:

∀𝐴 ∈ varscov(𝑇 ), 𝐴\1 ¤≤𝐴\2 ∀𝐴 ∈ varscon(𝑇 ), 𝐴\2 ¤≤𝐴\1

then it holds that 𝑇\1 ¤≤𝑇\2.

Proof. We follow the same proof as for Proposition A.9.
For every substitution \ , and every set 𝑆 ∈ Vars, wewrite \ |𝑆 for the substitution that veries
𝑋\ |𝑆 = 𝑋\ if 𝑋 ∈ 𝑆 and 𝑋\ |𝑆 = 𝑋 otherwise.
We dene

𝑃 (𝑇, \1, \2) ⇐⇒def
(
\1 |varscov (𝑇 ) ¤≤ \2 |varscov (𝑇 )

)
and

(
\2 |varscon (𝑇 ) ¤≤ \1 |varscon (𝑇 )

)
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and note that the following hold

𝑃 (𝐴, \1, \2) =⇒ 𝐴\1 ¤≤𝐴\2

𝑃 (𝑇1 ×𝑇2, \1, \2) =⇒ 𝑃 (𝑇1, \1, \2) and 𝑃 (𝑇2, \1, \2)
𝑃 (𝑇1 → 𝑇2, \1, \2) =⇒ 𝑃 (𝑇1, \2, \1) and 𝑃 (𝑇2, \1, \2)
𝑃 (𝑇1 ∨𝑇2, \1, \2) =⇒ 𝑃 (𝑇1, \1, \2) and 𝑃 (𝑇2, \1, \2)

𝑃 (¬𝑇 ′, \1, \2) =⇒ 𝑃 (𝑇 ′, \2, \1)

We show the following result (which implies the statement)

∀\1, \2, 𝑑,𝑇 .
𝑃 (𝑇, \1, \2)
(𝑑 : 𝑇\1)

}
=⇒ (𝑑 : 𝑇\2)

by induction on (𝑑,𝑇 ). The only case that changes from the proof of Proposition A.9 is the
following:

𝑇 = 𝑇1 → 𝑇2.

We have 𝑇\1 = (𝑇1\1) → (𝑇2\1) and 𝑇\2 = (𝑇1\2) → (𝑇2\2).

Since (𝑑 : 𝑇\1), we have 𝑑 = {(]𝑖 , 𝜕𝑖) | 𝑖 ∈ 𝐼 } and ∀𝑖 ∈ 𝐼 . (]𝑖 =

Ω∨ (]𝑖 : 𝑇1\1)) =⇒
(𝜕𝑖 : 𝑇2\1).

We have 𝑃 (𝑇1, \2, \1) and 𝑃 (𝑇2, \1, \2).

For every ]𝑖 such that (]𝑖 : 𝑇1\2), by IH we have (]𝑖 : 𝑇1\1), therefore (𝜕𝑖 : 𝑇2\1), and,
by IH, (𝜕𝑖 : 𝑇2\2). Additionally, for every ]𝑖 such that ]𝑖 =

Ω, we have (𝜕𝑖 : 𝑇2\1), and,
by IH, (𝜕𝑖 : 𝑇2\2). Therefore, ∀𝑖 ∈ 𝐼 . (]𝑖 =

Ω∨ (𝑑𝑖 : 𝑇1\2)) =⇒ (𝑑 ′
𝑖 : 𝑇2\2), and hence

(𝑑 : 𝑇\2). �

Lemma A.18. For every gradual type 𝜏 ∈ GTypes, we have 𝜏⇓ ¤≤ 𝜏⇑.

Proof. Let \⇓ = [0/𝑋 1] [1/𝑋 0] and \⇑ = [1/𝑋 1] [0/𝑋 0]. We have 𝜏⇓ = 𝜏?\⇓ and 𝜏⇑ = 𝜏?\⇑.
Let 𝑇 = 𝜏?. We have vars𝑋cov(𝑇 ) = {𝑋1} and vars𝑋con(𝑇 ) = {𝑋 0}. Moreover, we have

𝑋1\⇓ = 0 ¤≤ 1 = 𝑋1\⇑, and 𝑋0\⇑ = 0 ¤≤ 1 = 𝑋0\⇓.
Therefore, by Proposition A.17 on𝑇 and the substitutions \⇑ and \⇓, we deduce𝑇\⇓ ¤≤𝑇\⇑,

which gives 𝜏⇓ ¤≤ 𝜏⇑. �

We introduce the following two lemmas from Frisch [25] (Lemma 4.6 and Lemma 4.8).

Lemma A.19. Let (𝑋𝑖)𝑖∈𝑃 , (𝑋𝑖)𝑖∈𝑁 , (𝑌𝑖)𝑖∈𝑃 , (𝑌𝑖)𝑖∈𝑁 be four nite families of sets. Then:(⋂
𝑖∈𝑃

𝑋𝑖 × 𝑌𝑖

)
\
(⋃
𝑖∈𝑁

𝑋𝑖 × 𝑌𝑖

)
=

⋃
𝑁 ′⊆𝑁

(⋂
𝑖∈𝑃

𝑋𝑖 \
⋃
𝑖∈𝑁 ′

𝑋𝑖

)
× ©«

⋂
𝑖∈𝑃

𝑌𝑖 \
⋃

𝑖∈𝑁 \𝑁 ′
𝑌𝑖

ª®¬
Lemma A.20. Let (𝑋𝑖)𝑖∈𝑃 and (𝑋𝑖)𝑖∈𝑁 be two nite families of sets. Then:⋂

𝑖∈𝑃
P𝑓 (𝑋𝑖) ⊆

⋃
𝑖∈𝑁

P𝑓 (𝑋𝑖) ⇐⇒ ∃𝑖0 ∈ 𝑁 .
⋂
𝑖∈𝑃

𝑋𝑖 ⊆ 𝑋𝑖0

Lemma A.21. For every types 𝑡1, 𝑡2 ∈ Types, È𝑡1 → 𝑡2É′ = P𝑓 ((È𝑡1É′ ∪ { Ω}) × È𝑡2É′
D′

Ω

I ′×D′
Ω

).
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Proof. We have the following equalities:

È𝑡1 → 𝑡2É′ = {𝑅 ∈ P𝑓 (I ′ × D ′
Ω) | ∀(], 𝜕) ∈ 𝑅, ¬((] = Ω∨ ] ∈ È𝑡1É′) ∧ 𝜕 ∉ È𝑡2É′)}

− {𝑅 ∈ P𝑓 (I ′ × D ′
Ω) | 𝑅 ∩ ((È𝑡1É′ ∪ { Ω}) × È𝑡2É′

D′
Ω ) = ∅}

− {𝑅 ∈ P𝑓 (I ′ × D ′
Ω) | 𝑅 ⊆ (È𝑡1É′ ∪ { Ω}) × È𝑡2É′

D′
Ω

I ′×D′
Ω

}

�

Lemma A.22. Let 𝑃, 𝑁 be two nite sets of arrow types where 𝑃 is non-empty, we have:∧
𝑡1→𝑡2∈𝑃

𝑡1 → 𝑡2 ¤≤
∨

𝑡1→𝑡2∈𝑁
𝑡1 → 𝑡2 ⇐⇒ ∃𝑡1 → 𝑡2 ∈ 𝑁 .

(
È𝑡1É′ ⊆

⋃
𝑡1→𝑡2∈𝑃

È𝑡1É′
)
∧ ∀𝑃 ′ ( 𝑃 .

(
È𝑡1É′ ∪ { Ω} ⊆

⋃
𝑡1→𝑡2∈𝑃 ′

(È𝑡1É′ ∪ { Ω})
)

∨ ©«
⋂

𝑡1→𝑡2∈𝑃\𝑃 ′
È𝑡2É′ ⊆ È𝑡2É′

ª®¬
Proof. Corollary of lemmas A.21, A.20, and A.19. �

Note that according to the same lemma from Frisch et al. [27], the subtyping relation holds
immediately if we can chose 𝑡1 to be empty. However, in our case, if È𝑡1É′ = ∅, then the conditions
on the right yields in particular for 𝑃 ′ = ∅ that we must have

{ Ω} ⊆ ∅ ∨
( ⋂
𝑡1→𝑡2∈𝑃

È𝑡2É′ ⊆ È𝑡2É′
)

which is equivalent to ⋂
𝑡1→𝑡2∈𝑃

È𝑡2É′ ⊆ È𝑡2É′

since the condition on the left hand side of the disjunction cannot hold.

Proposition A.23. For every gradual types 𝜏, 𝜏 ′, 𝜎 ∈ GTypes, if 𝜏 ∼≤ 0 → 1 and 𝜎 ∼≤ d̃om(𝜏)
then 𝜏 ∼≤ 𝜎 → 𝜏 ◦̃𝜎 . Moreover, if 𝜏 ∼≤ 𝜎 → 𝜏 ′ then 𝜏 ◦̃𝜎 ∼≤ 𝜏 ′.

Proof. By denition of ∼≤ , we have 𝜏⇓ ¤≤ 0 → 1, and𝜎⇑ ¤≤ (d̃om(𝜏))⇑ ' dom(𝜏⇓), thus 𝜏⇓ ◦ 𝜎⇑

is well-dened. A similar reasoning proves that 𝜏⇑ ◦ 𝜎⇓ is also well-dened. Moreover,
Proposition 6.13 proves that 𝜏⇓ ◦ 𝜎⇑ ¤≤ 𝜏⇑ ◦ 𝜎⇓, hence (𝜏 ◦̃𝜎)⇑ ' 𝜏⇑ ◦ 𝜎⇓ and (𝜏 ◦̃𝜎)⇓ ' 𝜏⇓ ◦ 𝜎⇑

1 .
By Proposition 6.13, it holds that 𝜏⇓ ¤≤ 𝜎⇑ → 𝜏⇓ ◦ 𝜎⇑. By 1 , we deduce 𝜏⇓ ¤≤ 𝜎⇑ → (𝜏 ◦̃𝜎)⇓,
which proves 𝜏⇓ ¤≤ (𝜎 → 𝜏 ◦̃𝜎)⇓. A similar reasoning with 𝜏⇑ proves 𝜏 ∼≤ 𝜎 → 𝜏 ◦̃𝜎 .
Now if 𝜏 ∼≤ 𝜎 → 𝜏 ′, then by denition of ∼≤ we have 𝜏⇓ ¤≤ (𝜎 → 𝜏 ′)⇓ ' 𝜎⇑ → 𝜏 ′⇓. By
Proposition 6.18, we deduce 𝜏⇓ ◦ 𝜎⇑ ¤≤ 𝜏 ′⇓. By 1 , we have (𝜏 ◦̃𝜎)⇓ ¤≤ 𝜏 ′⇓. A similar reasoning

260



A.1 A declarative approach to gradual typing

with 𝜏⇑ proves 𝜏 ◦̃𝜎 ∼≤ 𝜏 ′. �

Proposition A.24. For every gradual types 𝜏, 𝜏1, 𝜏2 ∈ GTypes, if 𝜏 ∼≤ 1 × 1 then 𝜏 ∼≤ 𝜋1(𝜏) ×
𝜋2(𝜏) and if 𝜏 ∼≤ 𝜏1 × 𝜏2 then 𝜋1(𝜏) ∼≤ 𝜏1 and 𝜋2(𝜏) ∼≤ 𝜏2.

Proof. By denition of ∼≤ , we have 𝜏⇓ ¤≤ 1 × 1, thus 𝜋𝑖 (𝜏⇓) is well-dened for 𝑖 ∈ {1, 2}. A
similar reasoning proves that 𝜋𝑖 (𝜏⇑) is also well-dened. Moreover, Proposition 6.14 proves
that 𝜋𝑖 (𝜏⇓) ¤≤ 𝜋𝑖 (𝜏⇑), hence (𝜋𝑖 (𝜏))⇑ ' 𝜋𝑖 (𝜏⇑) and (𝜋𝑖 (𝜏))⇓ ' 𝜋𝑖 (𝜏⇓) for 𝑖 ∈ {1, 2} 1 .
By Proposition 6.14, it holds that 𝜏⇓ ¤≤ 𝜋1(𝜏⇓) × 𝜋2(𝜏⇓). By 1 , we deduce 𝜏⇓ ¤≤ (𝜋1(𝜏))⇓ ×
(𝜋2(𝜏))⇓, which proves 𝜏⇓ ¤≤ (𝜋1(𝜏) × 𝜋2(𝜏))⇓. A similar reasoningwith 𝜏⇑ proves 𝜏 ∼≤ 𝜋1(𝜏)×
𝜋2(𝜏).
Now if 𝜏 ∼≤ 𝜏1 × 𝜏2, then by denition of ∼≤ we have 𝜏⇓ ¤≤ (𝜏1 × 𝜏2)⇓ ' 𝜏1

⇓ × 𝜏2
⇓. By Propo-

sition 6.19, we deduce 𝜋𝑖 (𝜏⇓) ¤≤ 𝜏𝑖
⇓ for 𝑖 ∈ {1, 2}. By 1 , we have (𝜋𝑖 (𝜏))⇓ ¤≤ 𝜏𝑖

⇓. A similar
reasoning with 𝜏⇑ proves 𝜋𝑖 (𝜏) ∼≤ 𝜏𝑖 . �

Proposition A.25. For every gradual types 𝜏, 𝜏 ′, 𝜎 ∈ GTypes such that 𝜏 ∼≤ 0 → 1, 𝜏 ′ ∼≤ 0 →
1, 𝜎 ∼≤ d̃om(𝜏), and 𝜎 ∼≤ d̃om(𝜏 ′), if 𝜏 ∼4 𝜏 ′ then 𝜏 ◦̃𝜎 ∼4 𝜏 ′ ◦̃𝜎 .

Proof. By Proposition 6.3, we have 𝜏⇓ ¤≤ 𝜏 ′⇓. By Proposition 6.13, we have 𝜏⇓ ◦ 𝜎⇑ ¤≤ 𝜏 ′⇓ ◦ 𝜎⇑.
Thus, by Denition 6.15, (𝜏 ◦̃𝜎)⇓ ¤≤ (𝜏 ′ ◦̃𝜎)⇓. A similar reasoning proves (𝜏 ′ ◦̃𝜎)⇑ ¤≤ (𝜏 ◦̃𝜎)⇑,
hence 𝜏 ◦̃𝜎 ∼4 𝜏 ′ ◦̃𝜎 . �

Proposition A.26. For every gradual types 𝜏, 𝜏 ′ ∈ GTypes such that 𝜏 ∼≤ 1×1 and 𝜏 ′ ∼≤ 1×1,
if 𝜏 ∼4 𝜏 ′ then for every 𝑖 ∈ {1, 2}, 𝜋𝑖 (𝜏) ∼4 𝜋𝑖 (𝜏 ′).

Proof. Let 𝑖 ∈ {1, 2}. By Proposition 6.3, we have 𝜏⇓ ¤≤ 𝜏 ′⇓. By Proposition 6.14, we have
𝜋𝑖 (𝜏⇓) ¤≤ 𝜋𝑖 (𝜏 ′⇓). Thus, by Denition 6.15, (𝜋𝑖 (𝜏))⇓ ¤≤ (𝜋𝑖 (𝜏 ′))⇓. A similar reasoning proves
(𝜋𝑖 (𝜏 ′))⇑ ¤≤ (𝜋𝑖 (𝜏))⇑, hence 𝜋𝑖 (𝜏) ∼4 𝜋𝑖 (𝜏 ′). �

Lemma A.27. For every value 𝑉 ∈ Values〈ST〉 and every type environment Γ, if Γ ` 𝑉 : 𝜏 then

Γ ` 𝑉 : type(𝑉 ) and type(𝑉 ) ∼≤ 𝜏 .

Proof. By case analysis on𝑉 , and induction over the derivation Γ ` 𝑉 : 𝜏 . If the last rule used
in the derivation is [T〈ST〉

Sub ], then the result follows immediately by induction. Otherwise,
we distinguish the following cases:

• 𝑉 = 𝑐. The only rule that can be applied is [T〈ST〉
Cst ], and 𝜏 = 𝑏𝑐 ∧ ? = type(𝑐).

• 𝑉 = _𝜏1→𝜏2𝑥 . 𝐸. By [T〈ST〉
Abstr], 𝜏 = 𝜏1 → 𝜏2 = type(𝑉 ).

• 𝑉 = (𝑉1,𝑉2) . By [T〈ST〉
Pair ], 𝜏 = 𝜏1 × 𝜏2 where ∀𝑖 ∈ {1, 2}, Γ ` 𝑉𝑖 : 𝜏𝑖 . By induction

hypothesis, Γ ` 𝑉𝑖 : type(𝑉𝑖) and type(𝑉𝑖) ∼≤ 𝜏𝑖 . Therefore, type(𝑉 ) = type(𝑉1) ×
type(𝑉2) ∼≤ 𝜏 and by [T〈ST〉

Pair ], Γ ` 𝑉 : type(𝑉 ).

• 𝑉 = 𝑉 ′〈𝜏1 ⇒𝑝 𝜏2〉. Suppose that 𝑝 is positive. The negative case is proven similarly.
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By [T〈ST〉
Cast+], we have 𝜏 = 𝜏2, and type(𝑉 ) = 𝜏2, hence the result.

• 𝑉 = Λ®𝛼. 𝐸. Forbidden by the hypothesis Γ ` 𝑉 : 𝜏 , which cannot contain a type
scheme.

�

Lemma A.28 (Progress). For every term 𝐸 ∈ Terms〈ST〉 , if ∅ ` 𝐸 : ∀®𝛼.𝜏 then one of the following

holds:

• there exists 𝐸 ′ ∈ Terms〈ST〉 such that 𝐸 { 𝐸 ′
;

• there exists ℓ ∈ L such that 𝐸 { blame ℓ ;

• 𝐸 ∈ Values〈ST〉 .

Proof. By induction on the derivation ∅ ` 𝐸 : ∀®𝛼.𝜏 and case analysis over the last rule used.

• [T〈ST〉
Cst ] . Immediate, 𝐸 is a value 𝑐 .

• [T〈ST〉
Var ] . Impossible since 𝐸 is not well-typed in an empty environment.

• [T〈ST〉
Proj ] . We have 𝐸 = 𝜋𝑖 𝐸

′ where ∅ ` 𝐸 ′ : 𝜏1 × 𝜏2. By induction hypothesis, we
distinguish three cases:

– 𝐸 ′ { 𝐸 ′′, in which case, by [R〈ST〉
Ctx ] and E = 𝜋𝑖 [], we have 𝐸 { 𝜋𝑖 𝐸

′′;

– 𝐸 ′ { blame ℓ , in which case, by [R〈ST〉
CtxBlame] and E = 𝜋𝑖 [], we have 𝐸 {

blame ℓ ;

– 𝐸 ′ ∈ Values〈ST〉 in which case, by inversion of the typing rules, either 𝐸 ′ =
(𝑉1,𝑉2) and 𝐸 { 𝑉𝑖 by [R〈ST〉

Proj ], or 𝐸
′ = 𝑉 ′〈𝜏 ′1 ⇒𝑝 𝜏 ′2〉 where 𝜏 ′2

∼≤ 𝜏1 × 𝜏2 and 𝐸

reduces by [R〈ST〉
CProj].

• [T〈ST〉
Pair ] . We have 𝐸 = (𝐸1, 𝐸2) where for every 𝑖 ∈ {1, 2}, ∅ ` 𝐸𝑖 : 𝜏𝑖 . By induction

hypothesis, we distinguish the following cases:

– 𝐸2 { 𝐸 ′
2, by [R〈ST〉

Ctx ] and E = (𝐸1, []) we have 𝐸 { (𝐸1, 𝐸 ′
2);

– 𝐸2 { blame ℓ , by [R〈ST〉
CtxBlame] and E = (𝐸1, []) we have 𝐸 { blame ℓ ;

– 𝐸2 ∈ Values〈ST〉 and 𝐸1 { 𝐸 ′
1, by [R〈ST〉

Ctx ] and E = ( [], 𝐸2) we have 𝐸 { (𝐸 ′
1, 𝐸2);

– 𝐸2 ∈ Values〈ST〉 and 𝐸1 { blame ℓ , by [R〈ST〉
Ctx ] and E = ( [], 𝐸2) we have 𝐸 {

blame ℓ ;

– 𝐸2 ∈ Values〈ST〉 and 𝐸1 ∈ Values〈ST〉 , then 𝐸 ∈ Values〈ST〉 .

• [T〈ST〉
App ] . We have 𝐸 = 𝐸1 𝐸2 where ∅ ` 𝐸1 : 𝜏2 → 𝜏1 and ∅ ` 𝐸2 : 𝜏2. By induction

hypothesis, we distinguish the following cases:

– 𝐸2 { 𝐸 ′
2, by [R〈ST〉

Ctx ] and E = 𝐸1 [] we have 𝐸 { 𝐸1 𝐸
′
2;

– 𝐸2 { blame ℓ , by [R〈ST〉
CtxBlame] and E = 𝐸1 [] we have 𝐸 { blame ℓ ;

– 𝐸2 ∈ Values〈ST〉 and 𝐸1 { 𝐸 ′
1, by [R〈ST〉

Ctx ] and E = [] 𝐸2 we have 𝐸 { 𝐸 ′
1 𝐸2;
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– 𝐸2 ∈ Values〈ST〉 and 𝐸1 { blame ℓ , by [R〈ST〉
Ctx ] and E = [] 𝐸2 we have 𝐸 {

blame ℓ ;

– 𝐸2 ∈ Values〈ST〉 and 𝐸1 ∈ Values〈ST〉 , then by inversion of the typing rules either
𝐸1 = _𝜏

′
2→𝜏′1𝑥 . 𝐸 ′, and by [R〈ST〉

App ] we have 𝐸 { 𝐸 ′ [𝐸2/𝑥]; or 𝐸1 = 𝑉 ′
1 〈𝜏 ′1 ⇒𝑝 𝜏 ′2〉

where 𝜏 ′2
∼≤ 𝜏2 → 𝜏1 and 𝐸 reduces by [R〈ST〉

CApp].

• [T〈ST〉
Abstr] . Immediate since 𝐸 is necessarily a value.

• [T〈ST〉
Let ] . We have 𝐸 = let𝑥 =𝐸1 in𝐸2 where ∅ ` 𝐸1 : ∀®𝛼1.𝜏1 and 𝑥 : ∀®𝛼1.𝜏1 ` 𝐸2 : 𝜏2. By

induction hypothesis, we distinguish the following cases:

– 𝐸1 { 𝐸 ′
1, by [R〈ST〉

Ctx ] and E = let𝑥 = [] in𝐸2 we have 𝐸 { let𝑥 =𝐸 ′
1 in𝐸2;

– 𝐸1 { blame ℓ , by [R〈ST〉
CtxBlame] and E = let𝑥 = [] in𝐸2 we have 𝐸 { blame ℓ ;

– 𝐸1 ∈ Values〈ST〉 , by [R〈ST〉
Let ] we have 𝐸 { 𝐸2 [𝐸1/𝑥].

• [T〈ST〉
TAbstr] . Immediate since 𝐸 is a value.

• [T〈ST〉
TApp] . We have 𝐸 = 𝐸 ′[®𝑡] where ∅ ` 𝐸 ′ : ∀®𝛼 ′.𝜏 ′. By induction hypothesis, we

distinguish three cases:

– 𝐸 ′ { 𝐸 ′′, by [R〈ST〉
Ctx ] and E = [] [®𝑡] we have 𝐸 { 𝐸 ′′[®𝑡];

– 𝐸 ′ { blame ℓ , by [R〈ST〉
CtxBlame] and E = [] [®𝑡] we have 𝐸 { blame ℓ ,

– 𝐸 ′ ∈ Values〈ST〉 , then by inversion of the typing rules, we have 𝐸 ′ = Λ®𝛼 ′. 𝐸 ′′ and
by [R〈ST〉

TApp] we have 𝐸 { 𝐸 ′′ [®𝑡/®𝛼 ′].

• [T〈ST〉
Cast+] . We have 𝐸 = 𝐸 ′〈𝜏1 ⇒ℓ 𝜏2〉 where ∅ ` 𝐸 ′ : 𝜏1. By induction hypothesis, we

distinguish the following cases:

– 𝐸 ′ { 𝐸 ′′, by [R〈ST〉
Ctx ] and E = []〈𝜏1 ⇒ℓ 𝜏2〉 we have 𝐸 { 𝐸 ′′〈𝜏1 ⇒ℓ 𝜏2〉;

– 𝐸 ′ { blame ℓ ′, by [R〈ST〉
CtxBlame] and E = []〈𝜏1 ⇒ℓ 𝜏2〉 we have 𝐸 { blame ℓ ′;

– 𝐸 ′ ∈ Values〈ST〉 where 𝜏1 ∨ 𝜏2
∼� cons(𝐸 ′), then 𝐸 { 𝐸 ′〈𝜏1 ∧ cons(𝐸 ′) ⇒ℓ 𝜏2 ∧

cons(𝐸 ′)〉 by [R〈ST〉
Cons];

– 𝐸 ′ ∈ Values〈ST〉 where 𝜏2 ∼≤ 0, then 𝐸 { blame ℓ by [R〈ST〉
Blame];

– 𝐸 ′ ∈ Values〈ST〉 where 𝜏2
∼� 0 and 𝜏1 ∨ 𝜏2

∼≤ cons(𝐸 ′), if cons(𝐸 ′) = 1 × 1 or
cons(𝐸 ′) = 0 → 1 then 𝐸 is a value. Otherwise, cons(𝐸 ′) ∈ B and by
Lemma 6.31, we have 𝐸 ′ = 𝑐 and cons(𝐸 ′) = 𝑏𝑐 . Since 𝜏2 ∼≤ 𝑏𝑐 and 𝜏2

∼� 0, we
deduce that 𝜏2 ∧ 𝑏𝑐

∼� 0. By Lemma 6.30, we deduce that 𝑏𝑐 ∧ ?∼≤ 𝜏2, thus 𝐸 { 𝑐

by [R〈ST〉
Simpl].

• [T〈ST〉
Cast−] . We have 𝐸 = 𝐸 ′〈𝜏1 ⇒ℓ 𝜏2〉 where ∅ ` 𝐸 ′ : 𝜏1 and 𝜏2

∼4 𝜏1. We follow
the same reasoning as in the previous case and distinguish the same cases, except
when 𝐸 ′ ∈ Values〈ST〉 where 𝜏2 ∼≤ 0. By Lemma 6.28, we deduce that 𝜏1 ∼� 0. Thus, by
Lemma 6.29, necessarily 𝜏2 ∼� 0 and this case cannot occur.

• [T〈ST〉
Sub ] . Immediate by induction.

�
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Lemma A.29. If Γ, 𝑥 : ∀®𝛼 ′.𝜏 ′ ` 𝐸 : ∀®𝛼.𝜏 , then for every expression 𝐸 ′
such that Γ ` 𝐸 ′ : ∀®𝛼 ′.𝜏 ′, we

have Γ ` 𝐸 [𝐸 ′/𝑥] : ∀®𝛼.𝜏 .

Proof. By induction on 𝐸 generalized over Γ.

• 𝐸 = 𝑐. Immediate since 𝑥 does not appear in 𝐸.

• 𝐸 = 𝑦. If 𝑥 ≠ 𝑦 then the result is immediate. Otherwise, by [T〈ST〉
Var ], we have Γ, 𝑥 :

∀®𝛼 ′.𝜏 ′ ` 𝑥 : ∀®𝛼 ′.𝜏 ′ and by inversion of the typing rules, ∀®𝛼 ′.𝜏 ′ ∼≤∀®𝛼.𝜏 . Since 𝐸 [𝐸 ′/𝑥] =
𝐸 ′, the result follows.

• 𝐸 = _𝜏1→𝜏2𝑦. 𝐸 ′′. By inversion of the typing rules, 𝜏1 → 𝜏2
∼≤∀®𝛼.𝜏 , and Γ, 𝑥 : ∀®𝛼 ′.𝜏 ′, 𝑦 :

𝜏1 ` 𝐸 ′′ : 𝜏2. By induction hypothesis, and Γ, 𝑦 : 𝜏1 ` 𝐸 ′′ [𝐸 ′/𝑥] : 𝜏2, and the result
follows by [T〈ST〉

Abstr] and [T〈ST〉
Sub ].

• 𝐸 = 𝐸1 𝐸2. By inversion of the typing rules, Γ, 𝑥 : ∀®𝛼 ′.𝜏 ′ ` 𝐸1 : 𝜏2 → 𝜏1 and Γ, 𝑥 :
∀®𝛼 ′.𝜏 ′ ` 𝐸2 : 𝜏2, where 𝜏1

∼≤∀®𝛼.𝜏 . By IH, we have Γ ` 𝐸1 [𝐸 ′/𝑥] : 𝜏2 → 𝜏1 and
Γ ` 𝐸2 [𝐸 ′/𝑥] : 𝜏2 and the result follows from [T〈ST〉

App ] and [T〈ST〉
Sub ].

• 𝐸 = 𝜋𝑖 𝐸
′′. By inversion of the typing rules, Γ, 𝑥 : ∀®𝛼 ′.𝜏 ′ ` 𝐸 ′′ : 𝜏1×𝜏2 where 𝜏𝑖 ∼≤∀®𝛼.𝜏 .

By IH, we have Γ ` 𝐸 ′′ [𝐸 ′/𝑥] : 𝜏1×𝜏2, and the result follows from [T〈ST〉
Proj ] and [T〈ST〉

Sub ].

• 𝐸 = (𝐸1, 𝐸2) . By inversion of the typing rules, Γ, 𝑥 : ∀®𝛼 ′.𝜏 ′ ` 𝐸1 : 𝜏1 and Γ, 𝑥 : ∀®𝛼 ′.𝜏 ′ `
𝐸2 : 𝜏2, where 𝜏1 × 𝜏2

∼≤∀®𝛼.𝜏 . By IH, we have Γ ` 𝐸1 [𝐸 ′/𝑥] : 𝜏1 and Γ ` 𝐸2 [𝐸 ′/𝑥] : 𝜏2
and the result follows from [T〈ST〉

Pair ] and [T〈ST〉
Sub ].

• 𝐸 = let𝑦 =𝐸1 in𝐸2. By inversion of the typing rules, Γ, 𝑥 : ∀®𝛼 ′.𝜏 ′ ` 𝐸1 : ∀®𝛽.𝜏1 and
Γ, 𝑥 : ∀®𝛼 ′.𝜏 ′, 𝑦 : ∀®𝛽.𝜏1 ` 𝐸2 : 𝜏2, where 𝜏2 ∼≤∀®𝛼.𝜏 . By IH, we have Γ ` 𝐸1 [𝐸 ′/𝑥] : ∀®𝛽.𝜏1
and Γ, 𝑦 : ∀®𝛽.𝜏1 ` 𝐸2 [𝐸 ′/𝑥] : 𝜏2 and the result follows from [T〈ST〉

Let ] and [T〈ST〉
Sub ].

• 𝐸 = 𝐸 ′′[®𝑡] . By inversion of the typing rules, Γ, 𝑥 : ∀®𝛼 ′.𝜏 ′ ` 𝐸 ′′ : ∀®𝛽.𝜏 ′′ where
𝜏 ′′ [®𝑡/ ®𝛽] ∼≤∀®𝛼.𝜏 . By IH, we have Γ ` 𝐸 ′′ [𝐸 ′/𝑥] : ∀®𝛽.𝜏 ′′, and the result follows from
[T〈ST〉

TApp] and [T〈ST〉
Sub ].

• 𝐸 = Λ ®𝛽. 𝐸 ′′. By inversion of the typing rules, Γ, 𝑥 : ∀®𝛼 ′.𝜏 ′ ` 𝐸 ′′ : 𝜏 ′′ where
∀®𝛽.𝜏 ′′ ∼≤∀®𝛼.𝜏 . By IH, we have Γ ` 𝐸 ′′ [𝐸 ′/𝑥] : 𝜏 ′′, and the result follows from [T〈ST〉

TAbstr]
and [T〈ST〉

Sub ].

• 𝐸 = 𝐸 ′′〈𝜏1 ⇒𝑝 𝜏2〉. By inversion of the typing rules, Γ, 𝑥 : ∀®𝛼 ′.𝜏 ′ ` 𝐸 ′′ : 𝜏1 and

𝜏2
∼≤∀®𝛼.𝜏 . By IH, we have Γ ` 𝐸 ′′ [𝐸 ′/𝑥] : 𝜏1, and the result follows from [T〈ST〉

Cast+]
(resp. [T〈ST〉

Cast−]) if 𝜏1
∼4 𝜏2 (resp. 𝜏2 ∼4 𝜏1) and [T〈ST〉

Sub ].

�

Lemma A.30. If Γ ` E [𝐸] : ∀®𝛼.𝜏 , then Γ ` 𝐸 : ∀®𝛼 ′.𝜏 ′ and for every expression 𝐸 ′
such that

Γ ` 𝐸 ′ : ∀®𝛼 ′.𝜏 ′, we have Γ ` E [𝐸 ′] : ∀®𝛼.𝜏 .
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Proof. By induction on E .

• E = [] . Immediate since E [𝐸] = 𝐸.

• E = 𝐸 ′′ E ′. By inversion of the typing rules, Γ ` 𝐸 ′′ : 𝜏1 → 𝜏2, and Γ ` E ′ [𝐸] : 𝜏1,
and 𝜏2 ∼≤∀®𝛼.𝜏 . By induction hypothesis, Γ ` 𝐸 : ∀®𝛼 ′.𝜏 ′ and Γ ` E ′ [𝐸 ′] : 𝜏1. Thus, by
[T〈ST〉

App ] we have Γ ` E [𝐸 ′] : 𝜏2 and the result follows by [T〈ST〉
Sub ].

• E = E ′𝑉 . By inversion of the typing rules, Γ ` E ′ [𝐸] : 𝜏1 → 𝜏2, and Γ ` 𝑉 : 𝜏1, and
𝜏2
∼≤∀®𝛼.𝜏 . By induction hypothesis, Γ ` 𝐸 : ∀®𝛼 ′.𝜏 ′ and Γ ` E ′ [𝐸 ′] : 𝜏1 → 𝜏2. Thus, by

[T〈ST〉
App ] we have Γ ` E [𝐸 ′] : 𝜏2 and the result follows by [T〈ST〉

Sub ].

• E = E ′[®𝑡] . By inversion of the typing rules, Γ ` E ′ [𝐸] : ∀®𝛽.𝜏 ′′, and 𝜏 ′′ [®𝑡/ ®𝛽] ∼≤∀®𝛼.𝜏 .
By induction hypothesis, Γ ` 𝐸 : ∀®𝛼 ′.𝜏 ′ and Γ ` E ′ [𝐸 ′] : ∀®𝛽.𝜏 ′′. Thus, by [T〈ST〉

TApp] we
have Γ ` E [𝐸 ′] : 𝜏 ′′ [®𝑡/ ®𝛽] and the result follows by [T〈ST〉

Sub ].

• E = (𝐸 ′′, E ′). By inversion of the typing rules, Γ ` 𝐸 ′′ : 𝜏1, and Γ ` E ′ [𝐸] : 𝜏2, and
𝜏1 × 𝜏2

∼≤∀®𝛼.𝜏 . By induction hypothesis, Γ ` 𝐸 : ∀®𝛼 ′.𝜏 ′ and Γ ` E ′ [𝐸 ′] : 𝜏2. Thus, by
[T〈ST〉

Pair ] we have Γ ` E [𝐸 ′] : 𝜏1 × 𝜏2 and the result follows by [T〈ST〉
Sub ].

• E = (E ′,𝑉 ) . By inversion of the typing rules, Γ ` E ′ [𝐸] : 𝜏1, and Γ ` 𝑉 : 𝜏2, and
𝜏1 × 𝜏2

∼≤∀®𝛼.𝜏 . By induction hypothesis, Γ ` 𝐸 : ∀®𝛼 ′.𝜏 ′ and Γ ` E ′ [𝐸 ′] : 𝜏1. Thus, by
[T〈ST〉

Proj ] we have Γ ` E [𝐸 ′] : 𝜏1 × 𝜏2 and the result follows by [T〈ST〉
Sub ].

• E = 𝜋𝑖 E ′. By inversion of the typing rules, Γ ` E ′ [𝐸] : 𝜏1 × 𝜏2, and 𝜏𝑖
∼≤∀®𝛼.𝜏 . By

induction hypothesis, Γ ` 𝐸 : ∀®𝛼 ′.𝜏 ′ and Γ ` E ′ [𝐸 ′] : 𝜏1 × 𝜏2. Thus, by [T〈ST〉
Proj ] we

have Γ ` E [𝐸 ′] : 𝜏𝑖 and the result follows by [T〈ST〉
Sub ].

• E = let𝑥 =E ′ in𝐸 ′′. By inversion of the typing rules, Γ ` E ′ [𝐸] : ∀®𝛽.𝜏1, and Γ, 𝑥 :
∀®𝛽.𝜏1 ` 𝐸 ′′ : 𝜏2, and 𝜏2 ∼≤∀®𝛼.𝜏 . By induction hypothesis, Γ ` 𝐸 : ∀®𝛼 ′.𝜏 ′ and Γ ` E ′ [𝐸 ′] :
∀®𝛽.𝜏1. Thus, by [T〈ST〉

Let ] we have Γ ` E [𝐸 ′] : 𝜏2 and the result follows by [T〈ST〉
Sub ].

• E = E ′〈𝜏1 ⇒𝑝 𝜏2〉. By inversion of the typing rules, Γ ` E ′ [𝐸] : 𝜏1, and 𝜏2
∼≤∀®𝛼.𝜏 .

By induction hypothesis, Γ ` 𝐸 : ∀®𝛼 ′.𝜏 ′ and Γ ` E ′ [𝐸 ′] : 𝜏1. Thus, by [T〈ST〉
Cast+] or

[T〈ST〉
Cast−] depending on the polarity of 𝑝 , we have Γ ` E [𝐸 ′] : 𝜏2 and the result follows

by [T〈ST〉
Sub ].

�

Lemma A.31. If Γ ` 𝐸 : ∀®𝛼.𝜏 , then for every static type substitution \ : V 𝛼 → GTypes such that

dom(\ ) ∩ ®𝛼 = ∅, Γ\ ` 𝐸\ : ∀®𝛼.𝜏\ .

Proof. By induction on the derivation Γ ` 𝐸 : 𝜏 and case analysis over the last rule used.

• [T〈ST〉
Cst ] . Immediate since 𝑏𝑐\ = 𝑏𝑐 and 𝑐\ = 𝑐 .

• [T〈ST〉
Var ] . We have 𝐸 = 𝑥 , Γ ` 𝑥 : ∀®𝛼.𝜏 , and Γ(𝑥) = ∀®𝛼.𝜏 . This gives (Γ\ ) (𝑥) = ∀®𝛼.𝜏\ .

And since 𝑥\ = 𝑥 , the result follows by [T〈ST〉
Var ].
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• [T〈ST〉
Cast+], [T

〈ST〉
Cast−], [T

〈ST〉
Sub ] . Follow immediately from Proposition 6.7.

• The other cases are immediate by application of the induction hypothesis.

�

Lemma A.32 (Subject reduction). For every term 𝐸, 𝐸 ′ ∈ Terms〈ST〉 , if ∅ ` 𝐸 : ∀®𝛼.𝜏 and 𝐸 { 𝐸 ′

then ∅ ` 𝐸 ′ : ∀®𝛼.𝜏 .

Proof. By induction on 𝐸 and case analysis on the reduction rule used for 𝐸 { 𝐸 ′.

• [R〈ST〉
Cons]. 𝑉 〈𝜏1 ⇒𝑝 𝜏2〉 { 𝑉 〈𝜏1∧cons(𝑉 ) ⇒𝑝 𝜏2∧cons(𝑉 )〉. Suppose that 𝑝 is positive.

The negative case is proven similarly. By inversion of the typing rules, ∅ ` 𝑉 : 𝜏1,
𝜏2
∼≤∀®𝛼.𝜏 , and 𝜏1

∼4 𝜏2. By Lemma 6.27, we have ∅ ` 𝑉 : 𝜏1 ∧ cons(𝑉 ). Moreover,
since 𝜏1 ∼4 𝜏2, we have 𝜏1 ∧ cons(𝑉 ) ∼4 𝜏2 ∧ cons(𝑉 ). Finally, by [T〈ST〉

Cast+], it holds that
∅ ` 𝑉 〈𝜏1 ∧ cons(𝑉 ) ⇒𝑝 𝜏2 ∧ cons(𝑉 )〉 : 𝜏2 ∧ cons(𝑉 ) and the result follows by
subtyping and [T〈ST〉

Sub ].

• [R〈ST〉
Simpl]. 𝑐 〈𝜏1 ⇒𝑝 𝜏2〉 { 𝑐 and 𝑏𝑐 ∧ ?∼≤ 𝜏2. By inversion of the typing rules, 𝜏2 ∼≤∀®𝛼.𝜏 .

By transitivity, this yields 𝑏𝑐∧?∼≤∀®𝛼.𝜏 . By [T〈ST〉
Cst ] and [T〈ST〉

Sub ] we deduce ∅ ` 𝑐 : ∀®𝛼.𝜏 .

• [R〈ST〉
App ]. (_𝜏1→𝜏2𝑥 . 𝐸)𝑉 { 𝐸 [𝑉 /𝑥]. By inversion of the typing rules, 𝜏1 → 𝜏2

∼≤ 𝜏 ′1 →
𝜏 ′2 where ∅ ` 𝑉 : 𝜏 ′1, 𝜏

′
2
∼≤∀®𝛼.𝜏 , and 𝑥 : 𝜏1 ` 𝐸 : 𝜏2. By Proposition 6.17, we have 𝜏 ′1

∼≤ 𝜏1,
hence ∅ ` 𝑉 : 𝜏1 by [T〈ST〉

Sub ]. We also have by Denition 6.15 that 𝜏1 → 𝜏2 ◦̃𝜏1 = 𝜏1.
Moreover, since 𝜏1 → 𝜏2

∼≤ 𝜏1 → 𝜏 ′2, by Proposition 6.18, we have 𝜏2
∼≤ 𝜏 ′2. Hence

𝜏2
∼≤∀®𝛼.𝜏 by transitivity of subtyping. By Lemma 6.33, we deduce that ∅ ` 𝐸 [𝑉 /𝑥] : 𝜏2

and the result follows by [T〈ST〉
Sub ].

• [R〈ST〉
Proj ]. 𝜋𝑖 (𝑉1,𝑉2) { 𝑉𝑖 . By inversion of the typing rules, ∅ ` (𝑉1,𝑉2) : 𝜏1 × 𝜏2 where

𝜏𝑖
∼≤∀®𝛼.𝜏 . By inversion of [T〈ST〉

Pair ], we have ∅ ` 𝑉𝑖 : 𝜏𝑖 and the result follows by [T〈ST〉
Sub ].

• [R〈ST〉
CApp]. (𝑉 〈𝜏1 ⇒𝑝 𝜏2〉)𝑉 ′ { (𝑉 (𝑉 ′〈d̃om(𝜏2) ∧ 𝜎 ⇒𝑝 d̃om(𝜏1) ∧ 𝜎〉))〈𝜏1 ◦̃ (𝜎 ∧

d̃om(𝜏1)) ⇒𝑝 𝜏2 ◦̃ (𝜎 ∧ d̃om(𝜏1))〉 where 𝜎 = type(𝑉 ′). Suppose that 𝑝 is positive.
The negative case is proven similarly. By inversion of the typing rules, we have:

1 ∅ ` 𝑉 : 𝜏1 2 𝜏1
∼4 𝜏2 3 ∅ ` 𝑉 ′ : 𝜎 ′

4 𝜏2
∼≤ 𝜎 ′ → 𝜏 ′2 5 𝜏 ′2

∼≤∀®𝛼.𝜏

By Lemma 6.26 and 3 , we deduce that 𝜎 ∼≤ 𝜎 ′. By Proposition 6.17 and 4 , we deduce
𝜎 ′ ∼≤ d̃om(𝜏2), hence 𝜎 ∼≤ d̃om(𝜏2). Thus, by Lemma 6.26, we have ∅ ` 𝑉 ′ : d̃om(𝜏2) ∧
𝜎 A .
Proposition 6.20 and 2 ensure d̃om(𝜏1) ∧ 𝜎 ∼4 d̃om(𝜏2) ∧ 𝜎 . Together with A , this
proves ∅ ` 𝑉 ′〈d̃om(𝜏2) ∧ 𝜎 ⇒𝑝 d̃om(𝜏1) ∧ 𝜎〉 : d̃om(𝜏1) ∧ 𝜎 B .
By Proposition 6.18, we have 𝜏1 ∼≤ (d̃om(𝜏1) ∧𝜎) → 𝜏1 ◦̃ (d̃om(𝜏1) ∧𝜎). By [T〈ST〉

Sub ] and
1 , along with [T〈ST〉

App ] and B , we deduce that ∅ ` 𝑉 (𝑉 ′〈d̃om(𝜏2) ∧ 𝜎 ⇒𝑝 d̃om(𝜏1) ∧
𝜎〉) : 𝜏1 ◦̃ (d̃om(𝜏1) ∧ 𝜎) C .
By Proposition 6.21, we deduce that 𝜏1 ◦̃ (d̃om(𝜏1) ∧ 𝜎) ∼4 𝜏2 ◦̃ (d̃om(𝜏1) ∧ 𝜎). Along
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with C , this entails ∅ : 𝐸 ′ : 𝜏2 ◦̃ (d̃om(𝜏1) ∧ 𝜎). Finally, 4 and Proposition 6.18 prove
𝜏2 ◦̃ (d̃om(𝜏1) ∧ 𝜎) ∼≤ 𝜏 ′2 and the result follows from 5 and [T〈ST〉

Sub ].

• [R〈ST〉
CProj]. 𝜋𝑖 (𝑉 〈𝜏1 ⇒𝑝 𝜏2〉) { (𝜋𝑖 𝑉 )〈𝜋𝑖 (𝜏1) ⇒𝑝 𝜋𝑖 (𝜏2)〉. Suppose that 𝑝 is positive.

The negative case is proven similarly. By inversion of the typing rules, we have:

1 ∅ ` 𝑉 : 𝜏1 2 𝜏1
∼4 𝜏2 3 𝜏2

∼≤ 𝜏 ′1 × 𝜏 ′2 4 𝜏 ′𝑖
∼≤∀®𝛼.𝜏

By Proposition 6.19, we have 𝜏1 ∼≤ 𝜋1(𝜏1) × 𝜋2(𝜏1). By [T〈ST〉
Sub ] and 1 , this entails ∅ `

𝑉 : 𝜋1(𝜏1) × 𝜋2(𝜏1). By [T〈ST〉
Proj ], we deduce ∅ ` 𝜋𝑖 𝑉 : 𝜋𝑖 (𝜏1) A .

By Proposition 6.22 and 2 , we have 𝜋𝑖 (𝜏1) ∼4 𝜋𝑖 (𝜏2) B . The result follows by an
application of [T〈ST〉

Cast+] with A and B , and an application of [T〈ST〉
Sub ] with 4 .

• [R〈ST〉
TApp]. (Λ ®𝛽. 𝐸) [®𝑡] { 𝐸 [®𝑡/ ®𝛽]. By inversion of the typing rules, ∅ ` Λ ®𝛽. 𝐸 : ∀®𝛽.𝜏 ′

where ∅ ` 𝐸 : 𝜏 ′ and 𝜏 ′ [®𝑡/ ®𝛽] ∼≤∀®𝛼.𝜏 . By Lemma 6.35, we have ∅ ` 𝐸 [®𝑡/ ®𝛽] : 𝜏 ′ [®𝑡/ ®𝛽].
The result follows by subtyping.

• [R〈ST〉
Let ]. let𝑥 =𝑉 in𝐸 { 𝐸 [𝑉 /𝑥]. By inversion of the typing rules, ∅ ` 𝑉 : ∀®𝛼1.𝜏1 and

𝑥 : ∀®𝛼1.𝜏1 ` 𝐸 : 𝜏2 where 𝜏2 ∼≤∀®𝛼.𝜏 . By Lemma 6.33, we deduce that ∅ ` 𝐸 [𝑉 /𝑥] : 𝜏2,
hence the result by [T〈ST〉

Sub ].

• [R〈ST〉
Ctx ]. E [𝐸] { E [𝐸 ′] where 𝐸 { 𝐸 ′. Immediate consequence of the induction

hypothesis and Lemma 6.34.

�

A.2. Denotational semantics

A.2.1. Second approach to the semantics of the functional core calculus

Theorem A.33 (Conservativity of the semantics). For every term e ∈ Terms, every environ-
ment 𝜌 ∈ Envs,

𝑑 ∈ ÈeÉ𝜌 =⇒ 𝐼 (𝑑) ∈ ÈeÉF𝐼 (𝜌)

Proof. The proof is done by structural induction on e ∈ Terms, where the induction hypoth-
esis is generalized over 𝜌 .

• e = 𝑐 . Immediate since È𝑐É𝜌 = {𝑐}, È𝑐ÉF𝐼 (𝜌) = {𝑐}, and 𝐼 (𝑐) = 𝑐 .

• e = 𝑥 . Immediate by denition of 𝐼 (𝜌): È𝑥É𝜌 = {𝜌 (𝑥)} and È𝑥ÉF𝐼 (𝜌) = 𝐼 (𝜌) (𝑥) =
{𝐼 (𝜌 (𝑥))}.

• e = _𝑥 :𝑡 . e′. Let 𝑅 ∈ È_𝑥 :𝑡 . e′É𝜌 and let (𝑆, 𝜕) ∈ 𝐼 (𝑅). By Denition 10.6, there exists
(𝑑0, 𝜕0) ∈ 𝑅 such that 𝑆 = {𝐼 (𝑑0)} and 𝜕 = 𝐼 (𝜕0). We distinguish two cases:

1. 𝑑0 ∈ È𝑡É. By Lemma 10.8, 𝑆 ⊆ È𝑡ÉF. And by Denition 9.5, 𝜕0 ∈ Èe′É𝜌,𝑥 ↦→𝑑0
.

Thus, by induction hypothesis, 𝜕 = 𝐼 (𝜕0) ∈ Èe′ÉF𝐼 (𝜌),𝑥 ↦→𝐼 (𝑑0) .

2. 𝑑0 ∉ È𝑡É. By Lemma 10.8, 𝑆 ⊆ È¬𝑡ÉF. And by Denition 9.5, 𝜕0 = Ω. Thus,

267



Chapter A: Additional proofs and denitions

𝜕 = Ω, and this proves that 𝐼 (𝑅) ∈ ÈeÉF𝐼 (𝜌) .

• e = e1 e2. Let 𝜕 ∈ Èe1 e2É𝜌 . We distinguish four cases:

1. There exists 𝑅 ∈ Èe1É𝜌 and 𝑑 ∈ Èe2É𝜌 such that (𝑑, 𝜕) ∈ 𝑅. By induction hypoth-
esis, 𝐼 (𝑅) ∈ Èe1ÉF𝐼 (𝜌) and 𝐼 (𝑑) ∈ Èe2ÉF𝐼 (𝜌) . By Denition 10.6, (𝐼 (𝑑), 𝐼 (𝜕)) ∈ 𝐼 (𝑅).
Thus 𝐼 (𝜕) ∈ ÈeÉF𝐼 (𝜌) .

2. 𝜕 = Ω where Ω ∈ Èe1É𝜌 . By induction hypothesis, Ω ∈ Èe1ÉF𝐼 (𝜌) , thus Ω ∈
ÈeÉF𝐼 (𝜌) .

3. 𝜕 = Ω where Ω ∈ Èe2É𝜌 and Èe1É𝜌 ≠ ∅. By induction hypothesis, Ω ∈ Èe2ÉF𝐼 (𝜌)
and Èe1ÉF𝐼 (𝜌) ≠ ∅. Thus Ω ∈ ÈeÉF𝐼 (𝜌) .

4. 𝜕 = Ω where there exists 𝑑 ∈ Èe1É𝜌 such that 𝑑 ∉ P𝑓 (D × DΩ) and Èe2É𝜌 ≠ ∅.
By induction hypothesis, 𝐼 (𝑑) ∈ Èe1ÉF𝐼 (𝜌) . By Denition 10.6, 𝐼 (𝑑) ∉ P𝑓 (F ×
DF

Ω). And by induction hypothesis, Èe2ÉF𝐼 (𝜌) ≠ ∅. Thus Ω ∈ ÈeÉF𝐼 (𝜌) .

• e = (e1, e2). Let 𝜕 ∈ È(e1, e2)É𝜌 . We distinguish three cases:

1. There exists 𝑑1 ∈ Èe1É𝜌 and 𝑑2 ∈ Èe2É𝜌 such that 𝜕 = (𝑑1, 𝑑2). By induction
hypothesis, 𝐼 (𝑑1) ∈ Èe1ÉF𝐼 (𝜌) and 𝐼 (𝑑2) ∈ Èe2ÉF𝐼 (𝜌) . By Denition 10.6, 𝐼 (𝜕) =
(𝐼 (𝑑1), 𝐼 (𝑑2)). Thus 𝐼 (𝜕) ∈ ÈeÉF𝐼 (𝜌) .

2. 𝜕 = Ω where Ω ∈ Èe1É𝜌 . By induction hypothesis, Ω ∈ Èe1ÉF𝐼 (𝜌) , thus Ω ∈
ÈeÉF𝐼 (𝜌) .

3. 𝜕 = Ω where Ω ∈ Èe2É𝜌 and Èe1É𝜌 ≠ ∅. By induction hypothesis, Ω ∈ Èe2ÉF𝐼 (𝜌)
and Èe1ÉF𝐼 (𝜌) ≠ ∅. Thus Ω ∈ ÈeÉF𝐼 (𝜌) .

• e = 𝜋𝑖 e′. Let 𝜕 ∈ È𝜋𝑖 e′É𝜌 . We distinguish three cases:

1. There exists (𝑑1, 𝑑2) ∈ Èe′É𝜌 such that 𝜕 = 𝑑𝑖 . By induction hypothesis,
𝐼 ((𝑑1, 𝑑2)) ∈ Èe′ÉF𝐼 (𝜌) . By Denition 10.6, 𝐼 ((𝑑1, 𝑑2)) = (𝐼 (𝑑1), 𝐼 (𝑑2)). Thus
𝐼 (𝜕) = 𝐼 (𝑑𝑖) ∈ ÈeÉF𝐼 (𝜌) .

2. 𝜕 = Ω where Ω ∈ Èe′É𝜌 . By induction hypothesis, Ω ∈ Èe′ÉF𝐼 (𝜌) , thus Ω ∈
ÈeÉF𝐼 (𝜌) .

3. 𝜕 = Ω where there exists 𝑑 ∈ Èe′É𝜌 such that 𝑑 ∉ D × D . By induction hypoth-
esis, 𝐼 (𝑑) ∈ Èe′ÉF𝐼 (𝜌) . By Denition 10.6, 𝐼 (𝑑) ∉ DF × DF. Thus Ω ∈ ÈeÉF𝐼 (𝜌) .

�

Theorem A.34 (Type soundness for _F). For every type environment Γ ∈ TEnvs and every

term e ∈ Terms, if Γ ` e : 𝑡 then for every 𝜌 ∈ ÈΓÉF, ÈeÉF𝜌 ⊆ È𝑡ÉF.

Proof. The proof is done by structural induction on e ∈ Terms, supposing Γ ` e : 𝑡 . The
induction hypothesis is generalized over Γ.

• e = 𝑐 . By inversion of the typing rules, 𝑏𝑐 ≤ 𝑡 , therefore 𝑐 ∈ È𝑡ÉF.

• e = 𝑥 . By inversion of the typing rules, Γ(𝑥) = 𝑡 ′ where 𝑡 ′ ≤ 𝑡 . By application of
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Denition 10.13, 𝜌 (𝑥) ⊆ È𝑡 ′ÉF ⊆ È𝑡ÉF.

• e = _𝑥 :𝑡𝑥 . e′. By inversion of the typing rules, Γ, 𝑥 : 𝑡𝑥 ` e′ : 𝑡e and 𝑡𝑥 → 𝑡e ≤ 𝑡 .
Let 𝑅 ∈ È_𝑥 :𝑡𝑥 . e′ÉF𝜌 , and let (𝑆, 𝜕) ∈ 𝑅 such that 𝑆 ∩ È𝑡𝑥ÉF ≠ ∅. By denition of
È_𝑥 :𝑡𝑥 . e′ÉF𝜌 , either 𝑆 ⊆ È𝑡𝑥ÉF or 𝑆 ⊆ È¬𝑡𝑥ÉF. Since 𝑆 ∩ È𝑡𝑥ÉF ≠ ∅, this ensures
that 𝑆 ⊆ È𝑡𝑥ÉF. Now, by denition, 𝜕 ∈ Èe′ÉF𝜌,𝑥 ↦→𝑆 . Since (𝜌, 𝑥 ↦→ 𝑆) ∈ ÈΓ, 𝑥 : 𝑡𝑥ÉF,
we can apply the induction hypothesis to deduce that Èe′ÉF𝜌,𝑥 ↦→𝑆 ⊆ È𝑡eÉF. Therefore,
𝜕 ∈ È𝑡eÉF, and this proves that 𝑅 ∈ È𝑡𝑥 → 𝑡eÉF, hence the result.

• e = e1 e2. By inversion of the typing rules, Γ ` e1 : 𝑡1 → 𝑡2, Γ ` e2 : 𝑡1, and 𝑡2 ≤ 𝑡 .
By induction hypothesis, Èe1ÉF𝜌 ⊆ È𝑡1 → 𝑡2ÉF and Èe2ÉF𝜌 ⊆ È𝑡1ÉF. Therefore, Ω ∉

Èe1ÉF𝜌 ∪ Èe2ÉF𝜌 . Moreover, Èe1ÉF𝜌 ⊆ P𝑓 (F × DF
Ω). Thus, we deduce that Ω

𝜌
e1 e2 = ∅.

Now let 𝜕 ∈ Èe1 e2ÉF𝜌 . By inversion, there exists 𝑅 ∈ Èe1ÉF𝜌 and 𝑆 ⊆ Èe2ÉF𝜌 such that
(𝑆, 𝜕) ∈ 𝑅. The induction hypothesis yields that 𝑅 ∈ È𝑡1 → 𝑡2ÉF and 𝑆 ⊆ È𝑡1ÉF. Thus,
by denition of È𝑡1 → 𝑡2ÉF, this yields that 𝜕 ∈ È𝑡2ÉF, hence the result.

• e = (e1, e2). By inversion of the typing rules, Γ ` e1 : 𝑡1 and Γ ` e2 : 𝑡2, and 𝑡1 × 𝑡2 ≤ 𝑡 .
Moreover, by induction hypothesis, Èe1ÉF𝜌 ⊆ È𝑡1ÉF and Èe2ÉF𝜌 ⊆ È𝑡2ÉF. We deduce
from this fact that Ω ∉ Èe1ÉF𝜌 ∪ Èe2ÉF𝜌 , thus Ω

𝜌

(e1,e2) = ∅. This also yields that, by
denition, È(e1, e2)ÉF𝜌 = Èe1ÉF𝜌 × Èe2ÉF𝜌 ⊆ È𝑡1ÉF × È𝑡2ÉF, hence the result.

• e = 𝜋𝑖 e′. By inversion of the typing rules, Γ ` e′ : 𝑡1 × 𝑡2 and 𝑡𝑖 ≤ 𝑡 . Moreover, by
induction hypothesis, Èe′ÉF𝜌 ⊆ È𝑡1 × 𝑡2ÉF. Thus, this ensures that Èe′ÉF𝜌 ⊆ DF × DF

and that Ω𝜌

𝜋𝑖 e′ = ∅.
Now let 𝑑 ∈ È𝜋𝑖 e′ÉF𝜌 . By inversion, there exists (𝑑1, 𝑑2) ∈ Èe′ÉF𝜌 such that 𝑑 = 𝑑𝑖 . The
induction hypothesis yields that 𝑑𝑖 ∈ È𝑡𝑖ÉF, and the result follows by subtyping.

�

Lemma A.35. For every term e ∈ Terms, 𝑥 ∈ Vars, 𝜌 ∈ EnvsF, and 𝑆1, 𝑆2 ∈ P (DF), if 𝑆1 ⊆ 𝑆2

then ÈeÉF𝜌,𝑥 ↦→𝑆1
⊆ ÈeÉF𝜌,𝑥 ↦→𝑆2

Proof. The proof is done by structural induction on e ∈ Terms, generalized over 𝜌 .

• e = 𝑐 . Immediate since 𝑥 does not appear in e.

• e = 𝑦. If 𝑦 ≠ 𝑥 then the result is immediate. Otherwise, È𝑥ÉF𝜌,𝑥 ↦→𝑆1
= 𝑆1 ⊆ 𝑆2 =

È𝑥ÉF𝜌,𝑥 ↦→𝑆2
which gives the result.

• e = _𝑦:𝑡 . e′. Let 𝑅 ∈ ÈeÉF𝜌,𝑥 ↦→𝑆1
. Let (𝑆, 𝜕) ∈ 𝑅. If 𝑆 ⊆ È𝑡ÉF then 𝜕 ∈ Èe′ÉF𝜌,𝑥 ↦→𝑆1,𝑦 ↦→𝑆 .

By generalized induction hypothesis, 𝜕 ∈ Èe′ÉF𝜌,𝑥 ↦→𝑆2,𝑦 ↦→𝑆 . Moreover, if 𝑆 * È𝑡ÉF then
𝜕 = Ω independently of 𝑆1 and 𝑆2. Therefore, 𝑅 ∈ ÈeÉF𝜌,𝑥 ↦→𝑆2

.

• e = e1 e2. Let 𝜕 ∈ ÈeÉF𝜌,𝑥 ↦→𝑆1
. We distinguish four cases.

1. There exists 𝑅 ∈ Èe1ÉF𝜌,𝑥 ↦→𝑆1
and 𝑆 ⊆ Èe2ÉF𝜌,𝑥 ↦→𝑆1

such that (𝑆, 𝜕) ∈ 𝑅. By induc-
tion hypothesis, 𝑅 ∈ Èe1ÉF𝜌,𝑥 ↦→𝑆2

and 𝑆 ⊆ Èe2ÉF𝜌,𝑥 ↦→𝑆2
, thus 𝜕 ∈ ÈeÉF𝜌,𝑥 ↦→𝑆2

.

2. 𝜕 = Ω and Ω ∈ Èe1ÉF𝜌,𝑥 ↦→𝑆1
. By induction hypothesis, Ω ∈ Èe1ÉF𝜌,𝑥 ↦→𝑆2

and the
result follows.
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3. 𝜕 = Ω and Ω ∈ Èe2ÉF𝜌,𝑥 ↦→𝑆1
and Èe1ÉF𝜌,𝑥 ↦→𝑆1

≠ ∅. By induction hypothesis, Ω ∈
Èe2ÉF𝜌,𝑥 ↦→𝑆2

and Èe1ÉF𝜌,𝑥 ↦→𝑆2
≠ ∅. Thus, the result follows.

4. 𝜕 = Ω and there exists 𝑑 ∈ Èe1ÉF𝜌,𝑥 ↦→𝑆1
such that 𝑑 ∉ P𝑓 (F × DF

Ω) and
Èe2ÉF𝜌,𝑥 ↦→𝑆1

≠ ∅. By induction hypothesis, 𝑑 ∈ Èe1ÉF𝜌,𝑥 ↦→𝑆2
and Èe2ÉF𝜌,𝑥 ↦→𝑆2

≠ ∅.
This yields the result.

• e = (e1, e2). Let 𝜕 ∈ ÈeÉF𝜌,𝑥 ↦→𝑆1
. We distinguish three cases.

1. There exists 𝑑1 ∈ Èe1ÉF𝜌,𝑥 ↦→𝑆1
and 𝑑2 ⊆ Èe2ÉF𝜌,𝑥 ↦→𝑆1

such that 𝜕 = (𝑑1, 𝑑2). By
induction hypothesis, 𝑑1 ∈ Èe1ÉF𝜌,𝑥 ↦→𝑆2

and 𝑑2 ⊆ Èe2ÉF𝜌,𝑥 ↦→𝑆2
, thus 𝜕 ∈ ÈeÉF𝜌,𝑥 ↦→𝑆2

.

2. 𝜕 = Ω and Ω ∈ Èe1ÉF𝜌,𝑥 ↦→𝑆1
. By induction hypothesis, Ω ∈ Èe1ÉF𝜌,𝑥 ↦→𝑆2

and the
result follows.

3. 𝜕 = Ω and Ω ∈ Èe2ÉF𝜌,𝑥 ↦→𝑆1
and Èe1ÉF𝜌,𝑥 ↦→𝑆1

≠ ∅. By induction hypothesis, Ω ∈
Èe2ÉF𝜌,𝑥 ↦→𝑆2

and Èe1ÉF𝜌,𝑥 ↦→𝑆2
≠ ∅. Thus, the result follows.

• e = 𝜋𝑖 e′. Let 𝜕 ∈ ÈeÉF𝜌,𝑥 ↦→𝑆1
. We distinguish three cases.

1. There exists (𝑑1, 𝑑2) ∈ Èe′ÉF𝜌,𝑥 ↦→𝑆1
such that 𝜕 = 𝑑𝑖 . By induction hypothesis,

(𝑑1, 𝑑2) ∈ Èe′ÉF𝜌,𝑥 ↦→𝑆2
thus 𝜕 ∈ ÈeÉF𝜌,𝑥 ↦→𝑆2

.

2. 𝜕 = Ω and Ω ∈ Èe′ÉF𝜌,𝑥 ↦→𝑆1
. By induction hypothesis, Ω ∈ Èe′ÉF𝜌,𝑥 ↦→𝑆2

and the
result follows.

3. 𝜕 = Ω and there exists 𝑑 ∈ Èe′ÉF𝜌,𝑥 ↦→𝑆1
such that 𝑑 ∉ DF × DF. By induction

hypothesis, 𝑑 ∈ Èe′ÉF𝜌,𝑥 ↦→𝑆2
, which yields the result.

�

Lemma A.36. For every term e ∈ Terms, v ∈ Values, 𝑥 ∈ Vars, 𝜌 ∈ EnvsF,

Èe [v/𝑥]ÉF𝜌 =
⋃

𝑆 ∈P𝑓 (ÈvÉF𝜌 )

ÈeÉF𝜌,𝑥 ↦→𝑆

Proof. The proof is done by structural induction on e ∈ Terms.

• e = 𝑐 . Immediate since 𝑥 does not appear in 𝑐 .

• e = 𝑦. If𝑦 ≠ 𝑥 the result is immediate. Otherwise, if𝑦 = 𝑥 we have Èe [v/𝑥]ÉF𝜌 = ÈvÉF𝜌
and we reason by double inclusion.

– Consider 𝑑 ∈ ÈvÉF𝜌 . Then we immediately have the result taking 𝑆 = {𝑑}:
È𝑥ÉF𝜌,𝑥 ↦→{𝑑 } = {𝑑}.

– Let 𝑆 ∈ P𝑓 (ÈvÉF𝜌 ) and consider 𝑑 ∈ ÈeÉF𝜌,𝑥 ↦→𝑆 . Since ÈeÉF𝜌,𝑥 ↦→𝑆 = 𝑆 , we have
𝑑 ∈ 𝑆 . And since 𝑆 ⊆ ÈvÉF𝜌 , 𝑑 ∈ ÈvÉF𝜌 .

• e = _𝑦:𝑡 . e′. By denition, Èe [v/𝑥]ÉF𝜌 = È_𝑦:𝑡 . (e′ [v/𝑥])ÉF𝜌 . We proceed by double
inclusion.

– Let 𝑅 ∈ Èe [v/𝑥]ÉF𝜌 , and let us write 𝑅 = {(𝑆𝑖 , 𝜕𝑖) | 𝑖 ∈ 𝐼 }. Let 𝑖 ∈ 𝐼 . If 𝑆𝑖 ⊆
È𝑡ÉF, then by denition this means that 𝜕𝑖 ∈ Èe′ [v/𝑥]ÉF𝜌,𝑦 ↦→𝑆𝑖

. By induction
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hypothesis, there exists 𝑆v𝑖 ⊆ ÈvÉF𝜌 such that 𝜕𝑖 ∈ Èe′ÉF𝜌,𝑦 ↦→𝑆𝑖 ,𝑥 ↦→𝑆v
𝑖
. Moreover, if

𝑆𝑖 * È𝑡ÉF then 𝜕 = Ω by denition. So in this case, we just pose 𝑆v𝑖 = ∅.
Now consider 𝑆v =

⋃
𝑖∈𝐼 𝑆

v
𝑖 . It is immediate that 𝑆v ∈ P𝑓 (ÈvÉF𝜌 ). Moreover,

by Lemma A.35, we deduce that ∀𝑖 ∈ 𝐼 , if 𝑆𝑖 ⊆ È𝑡ÉF, then 𝜕𝑖 ∈ Èe′ÉF𝜌,𝑦 ↦→𝑆𝑖 ,𝑥 ↦→𝑆v .
Thus, this proves that 𝑅 ∈ ÈeÉF𝜌,𝑥 ↦→𝑆v .

– Let 𝑆 ∈ P𝑓 (ÈvÉF𝜌 ) and 𝑅 ∈ ÈeÉF𝜌,𝑥 ↦→𝑆 . Let (𝑆𝑖 , 𝜕𝑖) ∈ 𝑅. Note that if 𝑆𝑖 * È𝑡ÉF

then 𝜕 = Ω by denition, so this part is immediate. Now suppose that 𝑆𝑖 ⊆
È𝑡ÉF. By denition, 𝜕 ∈ Èe′ÉF𝜌,𝑥 ↦→𝑆,𝑦 ↦→𝑆𝑖

. By induction hypothesis, this yields
𝜕 ∈ Èe′ [v/𝑥]ÉF𝜌,𝑦 ↦→𝑆𝑖

and thus 𝑅 ∈ Èe [v/𝑥]ÉF𝜌 .

• e = e1 e2. We prove the result by double inclusion. Let 𝜕 ∈ Èe [v/𝑥]ÉF𝜌 . We distinguish
several cases.

1. There exists 𝑅 ∈ Èe1 [v/𝑥]ÉF𝜌 and 𝑆 ∈ P𝑓 (Èe2 [v/𝑥]ÉF𝜌 ) such that (𝑆, 𝜕) ∈ 𝑅. By
induction hypothesis, we deduce that there exists 𝑆1, 𝑆2 ∈ P𝑓 (ÈvÉF𝜌 ) such that
𝑅 ∈ Èe1ÉF𝜌,𝑥 ↦→𝑆1

and 𝑆 ⊆ Èe2ÉF𝜌,𝑥 ↦→𝑆2
. Taking 𝑆 = 𝑆1∪𝑆2 and applying LemmaA.35

yields that 𝑅 ∈ Èe1ÉF𝜌,𝑥 ↦→𝑆 and 𝑆 ⊆ Èe2ÉF𝜌,𝑥 ↦→𝑆 , thus 𝜕 ∈ ÈeÉF𝜌,𝑥 ↦→𝑆 .

2. 𝜕 = Ω where Ω ∈ Èe1 [v/𝑥]ÉF𝜌 . By induction hypothesis, there exists 𝑆 ∈
P𝑓 (ÈvÉF𝜌 ) such that Ω ∈ Èe1ÉF𝜌,𝑥 ↦→𝑆 and the result follows.

3. 𝜕 = Ω where Ω ∈ Èe2 [v/𝑥]ÉF𝜌 and Èe1 [v/𝑥]ÉF𝜌 ≠ ∅. By induction hypothesis,
there exists 𝑆1, 𝑆2 ∈ P𝑓 (ÈvÉF𝜌 ) such that Ω ∈ Èe2ÉF𝜌,𝑥 ↦→𝑆1

and Èe1ÉF𝜌,𝑥 ↦→𝑆2
≠ ∅.

Taking 𝑆 = 𝑆1 ∪ 𝑆2 and applying Lemma A.35 yields that Ω ∈ Èe2ÉF𝜌,𝑥 ↦→𝑆 and
Èe1ÉF𝜌,𝑥 ↦→𝑆 ≠ ∅, hence the result.

4. 𝜕 = Ω where there exists 𝑑 ∈ Èe1 [v/𝑥]ÉF𝜌 such that 𝑑 ∉ P𝑓 (F × DF
Ω) and

Èe2 [v/𝑥]ÉF𝜌 ≠ ∅. By induction hypothesis, there exists 𝑆1, 𝑆2 ∈ P𝑓 (ÈvÉF𝜌 ) such
that 𝑑 ∈ Èe1ÉF𝜌,𝑥 ↦→𝑆1

and Èe2ÉF𝜌,𝑥 ↦→𝑆2
≠ ∅. Taking 𝑆 = 𝑆1 ∪ 𝑆2 and applying

Lemma A.35 yields that 𝑑 ∈ Èe1ÉF𝜌,𝑥 ↦→𝑆 and Èe2ÉF𝜌,𝑥 ↦→𝑆 ≠ ∅. Hence the result.

The same reasoning proves the other inclusion.

• e = (e1, e2). We prove the result by double inclusion. Let 𝜕 ∈ Èe [v/𝑥]ÉF𝜌 . We distin-
guish three cases.

1. 𝜕 = (𝑑1, 𝑑2) where ∀𝑖 ∈ {1, 2}, 𝑑𝑖 ∈ Èe𝑖 [v/𝑥]ÉF𝜌 . By induction hypothesis, ∀𝑖 ∈
{1, 2}, there exists 𝑆𝑖 ∈ P𝑓 (ÈvÉF𝜌 ) such that 𝑑𝑖 ∈ Èe𝑖ÉF𝜌,𝑥 ↦→𝑆𝑖

. Taking 𝑆 = 𝑆1 ∪ 𝑆2

and applying Lemma A.35 yields that ∀𝑖 ∈ {1, 2}, 𝑑𝑖 ∈ Èe𝑖ÉF𝜌,𝑥 ↦→𝑆 . Thus, 𝜕 =
(𝑑1, 𝑑2) ∈ ÈeÉF𝜌,𝑥 ↦→𝑆 .

2. 𝜕 = Ω where Ω ∈ Èe1 [v/𝑥]ÉF𝜌 . By induction hypothesis, Ω ∈ Èe1ÉF𝜌,𝑥 ↦→𝑆 for
some 𝑆 ∈ P𝑓 (ÈvÉF𝜌 ) and the result follows.

3. 𝜕 = Ω where Ω ∈ Èe2 [v/𝑥]ÉF𝜌 and Èe1 [v/𝑥]ÉF𝜌 ≠ ∅. By induction hypothesis,
there exists 𝑆1, 𝑆2 ∈ P𝑓 (ÈvÉF𝜌 ) such that Ω ∈ Èe2ÉF𝜌,𝑥 ↦→𝑆1

and Èe1ÉF𝜌,𝑥 ↦→𝑆2
≠ ∅.

Taking 𝑆 = 𝑆1 ∪ 𝑆2 and applying Lemma A.35 yields that Ω ∈ Èe2ÉF𝜌,𝑥 ↦→𝑆 and
Èe1ÉF𝜌,𝑥 ↦→𝑆 ≠ ∅, hence the result.

The second inclusion is proven using the same reasoning.
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• e = 𝜋𝑖 e′. We prove the result by double inclusion. Let 𝜕 ∈ Èe [v/𝑥]ÉF𝜌 . We distinguish
three cases.

1. 𝜕 = 𝑑𝑖 where (𝑑1, 𝑑2) ∈ Èe′ [v/𝑥]ÉF𝜌 . By induction hypothesis, there exists 𝑆 ∈
P𝑓 (ÈvÉF𝜌 ) such that (𝑑1, 𝑑2) ∈ Èe′ÉF𝜌,𝑥 ↦→𝑆 . Hence, 𝑑𝑖 ∈ È𝜋𝑖 e′ÉF𝜌,𝑥 ↦→𝑆 .

2. 𝜕 = Ω where Ω ∈ Èe′ [v/𝑥]ÉF𝜌 . By induction hypothesis, there exists 𝑆 ∈
P𝑓 (ÈvÉF𝜌 ) such that Ω ∈ Èe′ÉF𝜌,𝑥 ↦→𝑆 , and the result follows.

3. 𝜕 = Ω where there exists 𝑑 ∈ Èe′ [v/𝑥]ÉF𝜌 such that 𝑑 ∉ DF × DF. By induction
hypothesis, there exists 𝑆 ∈ P𝑓 (ÈvÉF𝜌 ) such that𝑑 ∈ Èe′ÉF𝜌,𝑥 ↦→𝑆 , hence the result.

The other inclusion is proven using the same reasoning.

�

A.2.2. A denotational semantics for CDuce

Lemma A.37. For every type 𝑡 ∈ Types and every mark 𝔪 ∈ M , if 𝑑 ∈ È𝑡ÉC then [𝑑]𝔪 ∈ È𝑡ÉC.

Proof. Immediate by induction on (𝑑, 𝑡) and Denition 11.3. �

Theorem A.38 (Type soundness for _C). For every type environment Γ ∈ TEnvs and every

term e ∈ TermsC, if Γ ` e : 𝑡 then for every 𝜌 ∈ ÈΓÉC, ÈeÉC𝜌 ⊆ È𝑡ÉC.

Proof. The proof is done by structural induction on e ∈ TermsC, supposing Γ ` e : 𝑡 . The
induction hypothesis is generalized over Γ.

Note that if Γ(𝑥) = 0 for some 𝑥 ∈ dom(Γ), then ÈΓÉC = ∅, and the result holds vacu-
ously. Therefore, we consider that Γ(𝑥) ≠ 0 for every 𝑥 ∈ dom(Γ), which ensures that the
derivation of Γ ` e : 𝑡 comes from a structural rule and an application of [TC

Sub], and not
[TC

Efq].

• e = 𝑐 . By inversion of the typing rules, 𝑏𝑐 ≤ 𝑡 , therefore 𝑐Y ∈ È𝑡ÉC.

• e = 𝑥 . By inversion of the typing rules, Γ(𝑥) = 𝑡 ′ where 𝑡 ′ ≤ 𝑡 . By denition of ÈΓÉC,
we have 𝜌 (𝑥) ⊆ È𝑡 ′ÉC ⊆ È𝑡ÉC.

• e = _
∧

𝑖∈𝐼 (𝑠𝑖→𝑡𝑖 )∧
∧

𝑛∈𝑁 ¬(𝑠𝑛→𝑡𝑛)𝑥 . e′. By inversion of the typing rules, we have∧
𝑖∈𝐼 (𝑠𝑖 → 𝑡𝑖) ∧

∧
𝑛∈𝑁 ¬(𝑠𝑛 → 𝑡𝑛) ≤ 𝑡 , and for every 𝑖 ∈ 𝐼 , Γ, 𝑥 : 𝑠𝑖 ` e′ : 𝑡𝑖 . Note

that, by Denition 11.5, it immediately holds that ÈeÉC𝜌 ⊆ È∧𝑛∈𝑁 ¬(𝑠𝑛 → 𝑡𝑛)ÉC. We
just have to show that ÈeÉC𝜌 ⊆ È∧𝑖∈𝐼 (𝑠𝑖 → 𝑡𝑖)ÉC, and the result will follow by deni-
tion of subtyping.
Let 𝑅Y ∈ ÈeÉC𝜌 , 𝑖 ∈ 𝐼 , and let (], 𝜕) ∈ 𝑅. Suppose that ] ∩ È𝑠𝑖ÉC ≠ ∅. By Denition 11.5,
necessarily 𝑆 ⊆ È𝑠𝑖ÉC, and 𝜕 ∈ Èe′ÉC𝜌,𝑥 ↦→] . Since (𝜌, 𝑥 ↦→ ]) ∈ ÈΓ, 𝑥 : 𝑠𝑖ÉC, we can apply
the induction hypothesis to deduce that Èe′ÉC𝜌,𝑥 ↦→] ⊆ È𝑡𝑖ÉC. Therefore, 𝜕 ∈ È𝑡𝑖ÉC.
Now, if ] = Ω

𝑑 where 𝑑 ∈ È𝑠𝑖ÉC, by Denition 11.5, we have 𝜕 ∈ È𝑡𝑖ÉC. Hence,
𝑅Y ∈ È𝑠𝑖 → 𝑡𝑖ÉC for every 𝑖 ∈ 𝐼 , and the result follows.

• e = e1 e2. By inversion of the typing rules, Γ ` e1 : 𝑡1 → 𝑡2, Γ ` e2 : 𝑡1, and 𝑡2 ≤ 𝑡 .
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By induction hypothesis, Èe1ÉC𝜌 ⊆ È𝑡1 → 𝑡2ÉC and Èe2ÉC𝜌 ⊆ È𝑡1ÉC. Therefore, Ω ∉

Èe1ÉC𝜌 ∪ Èe2ÉC𝜌 . Moreover, this ensures that for every 𝑑 ∈ Èe1ÉC𝜌 , 𝑑 = 𝑅𝔪 where
𝑅 ∈ P𝑓 (I C × DC

Ω). Thus, we deduce that Ω
𝜌
e1 e2 = ∅.

Now let 𝜕 ∈ Èe1 e2ÉC𝜌 . By inversion, there exists 𝔪1,𝔪2 ∈ M , 𝑅𝔪1 ∈ Èe1ÉC𝜌 and
𝑆 ⊆ Èe2ÉC𝜌

��
𝔪2

such that (𝑆, 𝜕′) ∈ 𝑅, and 𝜕 = [𝜕′]𝔪1 .𝔪2 . The induction hypothesis

yields that 𝑅𝔪1 ∈ È𝑡1 → 𝑡2ÉC and 𝑆 ⊆ È𝑡1ÉC. Thus, by Denition 11.3, this yields that
𝜕′ ∈ È𝑡2ÉC, and it immediately follows that 𝜕 ∈ È𝑡2ÉC by Lemma A.37.

• e = (e1, e2). By inversion of the typing rules, Γ ` e1 : 𝑡1 and Γ ` e2 : 𝑡2, and 𝑡1 × 𝑡2 ≤ 𝑡 .
Moreover, by induction hypothesis, Èe1ÉC𝜌 ⊆ È𝑡1ÉC and Èe2ÉC𝜌 ⊆ È𝑡2ÉC. We deduce
from this fact that Ω ∉ Èe1ÉC𝜌 ∪ Èe2ÉC𝜌 , thus Ω

𝜌

(e1,e2) = ∅. This also yields immediately
that È(e1, e2)ÉC𝜌 ⊆ È𝑡1 × 𝑡2ÉC, hence the result.

• e = 𝜋𝑖 e′. By inversion of the typing rules, Γ ` e′ : 𝑡1 × 𝑡2 and 𝑡𝑖 ≤ 𝑡 . Moreover, by
induction hypothesis, Èe′ÉC𝜌 ⊆ È𝑡1 × 𝑡2ÉC. Thus, this ensures that for every 𝑑 ∈ Èe′ÉC𝜌 ,
𝑑 = (𝑑1, 𝑑2)𝔪, thus Ω𝜌

𝜋𝑖 e′ = ∅.
Now let 𝑑 ∈ È𝜋𝑖 e′ÉC𝜌 . By inversion, there exists (𝑑1, 𝑑2)𝔪 ∈ Èe′ÉC𝜌 such that 𝑑 = [𝑑𝑖]𝔪.
The induction hypothesis yields that𝑑𝑖 ∈ È𝑡𝑖ÉC, which yields𝑑 ∈ È𝑡ÉC by LemmaA.37
and denition of subtyping.

• e = (𝑥 = e′ ∈ 𝑡𝑐)? e1 : e2. By inversion of the typing rules, Γ ` e′ : 𝑡 ′, thus, by induc-
tion hypothesis, Èe′ÉC𝜌 ⊆ È𝑡 ′ÉC. This ensures that Ω ∉ Èe′ÉC𝜌 , and thus Ω𝜌

e = ∅.
Now let 𝜕 ∈ ÈeÉC𝜌 . We distinguish two cases.

– ∃𝔪 ∈ M such that 𝑆 = Èe′ÉC𝜌
��
𝔪
⊆ È𝑡𝑐ÉC and ∃𝑆 ′ ∈ P𝑓 (𝑆), 𝜕′ ∈ Èe1ÉC𝜌,𝑥 ↦→𝑆′ such

that 𝜕 = [𝜕′]𝔪. Since 𝑆 ′ ⊆ È𝑡𝑐ÉC∩È𝑡 ′ÉC, we have (𝜌, 𝑥 ↦→ 𝑆 ′) ∈ ÈΓ, 𝑥 : 𝑡𝑐 ∧ 𝑡 ′ÉC.
And by inversion of the typing rules, Γ, 𝑥 : 𝑡𝑐 ∧ 𝑡 ′ ` e1 : 𝑠 where 𝑠 ≤ 𝑡 . Thus, by
IH, we have 𝜕′ ∈ È𝑠ÉC ⊆ È𝑡ÉC. By Lemma A.37, we have 𝜕 ∈ È𝑡ÉC.

– ∃𝔪 ∈ M such that Èe′ÉC𝜌
��
𝔪
* È𝑡𝑐ÉC and ∃𝑆 ′ ∈ P𝑓 (𝑆), 𝜕′ ∈ Èe2ÉC𝜌,𝑥 ↦→𝑆′ where

𝑆 = Èe′ÉC𝜌
��
𝔪
∩ È¬𝑡𝑐ÉC.

Since 𝑆 ′ ⊆ È¬𝑡𝑐ÉC ∩ È𝑡 ′ÉC, we have (𝜌, 𝑥 ↦→ 𝑆) ∈ ÈΓ, 𝑥 : ¬𝑡𝑐 ∧ 𝑡 ′ÉC. And by
inversion of the typing rules, Γ, 𝑥 : ¬𝑡𝑐 ∧ 𝑡 ′ ` e1 : 𝑠 where 𝑠 ≤ 𝑡 . Thus, by IH, we
have 𝜕′ ∈ È𝑠ÉC ⊆ È𝑡ÉC. By Lemma A.37, we have 𝜕 ∈ È𝑡ÉC.

• e = choice(e1, e2). By inversion of the typing rules, Γ ` e1 : 𝑠 and Γ ` e2 : 𝑠 where
𝑠 ≤ 𝑡 . By IH, this ensures Èe1ÉC𝜌 ⊆ È𝑠ÉC and similarly for e2. Thus, we have Ω ∉

Èe1ÉC𝜌 ∪ Èe2ÉC𝜌 , which ensures that Ω ∉ ÈeÉC𝜌 .
Now let 𝑑 ∈ ÈeÉC𝜌 . Either ∃𝑑 ′ ∈ Èe1ÉC𝜌 such that 𝑑 = [𝑑 ′]𝑙 , or ∃𝑑 ′ ∈ Èe2ÉC𝜌 and
𝑑 = [𝑑 ′]𝑟 . In both cases, 𝑑 ′ ∈ È𝑠ÉC by IH, and 𝑑 ∈ È𝑠ÉC follows by Lemma A.37. Thus
𝑑 ∈ È𝑡ÉC by subtyping.

�

Lemma A.39. For every value v ∈ ValuesC and every 𝑑 ∈ ÈvÉC𝜌 , mark(𝑑) = Y.

Proof. Immediate by Denition 11.5 and cases on v. �
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Lemma A.40. For every term e ∈ TermsC, 𝑥 ∈ Vars, 𝜌 ∈ Envs, and 𝑆1, 𝑆2 ∈ P (DC) such that

Ω ∉ ÈeÉC𝜌,𝑥 ↦→𝑆1
, if 𝑆1 ⊆ 𝑆2 then ÈeÉC𝜌,𝑥 ↦→𝑆1

⊆ ÈeÉC𝜌,𝑥 ↦→𝑆2

Proof. The proof is done by structural induction on e ∈ TermsC, generalized over 𝜌 .

• e = 𝑐 . Immediate since 𝑥 does not appear in e.

• e = 𝑦. If 𝑦 ≠ 𝑥 then the result is immediate. Otherwise, È𝑥ÉC𝜌,𝑥 ↦→𝑆1
= 𝑆1 ⊆ 𝑆2 =

È𝑥ÉC𝜌,𝑥 ↦→𝑆2
which gives the result.

• e = _
∧

𝑖∈𝐼 (𝑠𝑖→𝑡𝑖 )∧
∧

𝑛∈𝑁 ¬(𝑠𝑛→𝑡𝑛)𝑦. e′. Let 𝑅Y ∈ ÈeÉC𝜌,𝑥 ↦→𝑆1
. Let (], 𝜕) ∈ 𝑅. There are three

cases.

1. There exists 𝑖 ∈ 𝐼 such that ] ⊆ È𝑠𝑖ÉC then 𝜕 ∈ Èe′ÉC𝜌,𝑥 ↦→𝑆1,𝑦 ↦→] . By generalized
induction hypothesis, 𝜕 ∈ Èe′ÉC𝜌,𝑥 ↦→𝑆2,𝑦 ↦→] .

2. ∀𝑖 ∈ 𝐼 , ] ⊆ È¬𝑠𝑖ÉC then 𝜕 = Ω independently of 𝑆1 and 𝑆2.

3. ] = Ω

𝑑 for some 𝑑 ∈ DC. Then 𝜕 satises ∀𝑖 ∈ 𝐼 , 𝑑 ∈ È𝑠𝑖ÉC =⇒ 𝜕 ∈ È𝑡𝑖ÉC

which is independent of 𝑆1 and 𝑆2.

Therefore, 𝑅Y ∈ ÈeÉC𝜌,𝑥 ↦→𝑆2
.

• e = e1 e2. Let 𝑑 ∈ ÈeÉC𝜌,𝑥 ↦→𝑆1
. By Denition 11.5, there exists 𝔪1,𝔪2 ∈ M , 𝑅𝔪1 ∈

Èe1ÉC𝜌,𝑥 ↦→𝑆1
and 𝑆 ⊆ Èe2ÉC𝜌,𝑥 ↦→𝑆1

��
𝔪2

such that (𝑆, 𝑑 ′) ∈ 𝑅 where 𝑑 = [𝑑 ′]𝔪1 .𝔪2 . By

induction hypothesis, 𝑅𝔪1 ∈ Èe1ÉC𝜌,𝑥 ↦→𝑆2
and 𝑆 ⊆ Èe2ÉC𝜌,𝑥 ↦→𝑆2

��
𝔪2

thus 𝑑 ∈ ÈeÉC𝜌,𝑥 ↦→𝑆2
by

Denition 11.5.

• e = (e1, e2). Let 𝑑 ∈ ÈeÉC𝜌,𝑥 ↦→𝑆1
. By Denition 11.5, there exists 𝑑1 ∈ Èe1ÉC𝜌,𝑥 ↦→𝑆1

and
𝑑2 ⊆ Èe2ÉC𝜌,𝑥 ↦→𝑆1

such that 𝑑 = (𝑑1, 𝑑2)Y . By induction hypothesis, 𝑑1 ∈ Èe1ÉC𝜌,𝑥 ↦→𝑆2
and

𝑑2 ⊆ Èe2ÉC𝜌,𝑥 ↦→𝑆2
, thus 𝑑 ∈ ÈeÉC𝜌,𝑥 ↦→𝑆2

.

• e = 𝜋𝑖 e′. Let 𝑑 ∈ ÈeÉC𝜌,𝑥 ↦→𝑆1
. By Denition 11.5, there exists (𝑑1, 𝑑2)𝔪 ∈ Èe′ÉC𝜌,𝑥 ↦→𝑆1

such that 𝑑 = [𝑑𝑖]𝔪. By induction hypothesis, (𝑑1, 𝑑2)𝔪 ∈ Èe′ÉC𝜌,𝑥 ↦→𝑆2
thus 𝑑 ∈

ÈeÉC𝜌,𝑥 ↦→𝑆2
.

• e = choice(e1, e2). Let 𝑑 ∈ ÈeÉC𝜌,𝑥 ↦→𝑆1
. By Denition 11.5, there are two cases.

1. There exists 𝑑 ′ ∈ Èe1ÉC𝜌,𝑥 ↦→𝑆1
such that 𝑑 = [𝑑 ′]𝑙 . By IH, 𝑑 ′ ∈ Èe1ÉC𝜌,𝑥 ↦→𝑆2

. There-
fore, 𝑑 ∈ ÈeÉC𝜌,𝑥 ↦→𝑆2

by Denition 11.5.

2. There exists 𝑑 ′ ∈ Èe2ÉC𝜌,𝑥 ↦→𝑆1
such that 𝑑 = [𝑑 ′]𝑟 . By IH, 𝑑 ′ ∈ Èe2ÉC𝜌,𝑥 ↦→𝑆2

. There-
fore, 𝑑 ∈ ÈeÉC𝜌,𝑥 ↦→𝑆2

by Denition 11.5.

• e = (𝑦 = e′ ∈ 𝑡)? e1 : e2. Let 𝑑 ∈ ÈeÉC𝜌,𝑥 ↦→𝑆1
. We distinguish two cases.

1. There exists 𝔪 ∈ M such that 𝑆 ⊆ È𝑡ÉC, 𝑆 ′ ∈ P𝑓 (𝑆) and 𝑑 ′ ∈ Èe1ÉC𝜌,𝑥 ↦→𝑆1,𝑦 ↦→𝑆′

where 𝑑 = [𝑑 ′]𝔪 and 𝑆 = Èe′ÉC𝜌,𝑥 ↦→𝑆1

��
𝔪
. By generalized IH, 𝑆 ′ ⊆ Èe′ÉC𝜌,𝑥 ↦→𝑆2

��
𝔪
.

Thus, by applying the generalized IH on 𝑆1 ⊆ 𝑆2, we have 𝑑 ′ ∈ Èe1ÉC𝜌,𝑥 ↦→𝑆2,𝑦 ↦→𝑆′ .
We deduce that 𝑑 ∈ ÈeÉC𝜌,𝑥 ↦→𝑆2

.
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2. There exists 𝔪 ∈ M such that 𝑆 ≠ ∅, 𝑆 ′ ∈ P𝑓 (𝑆) and 𝑑 ′ ∈ Èe2ÉC𝜌,𝑥 ↦→𝑆1,𝑦 ↦→𝑆′

where 𝑑 = [𝑑 ′]𝔪 and 𝑆 = Èe′ÉC𝜌,𝑥 ↦→𝑆1

��
𝔪

∩ È¬𝑡ÉC. By generalized IH, 𝑆 ′ ⊆
Èe′ÉC𝜌,𝑥 ↦→𝑆2

��
𝔪
∩ È¬𝑡ÉC. Thus, we have 𝑆 ≠ ∅ and by applying the generalized

IH on 𝑆1 ⊆ 𝑆2, we have 𝑑 ′ ∈ Èe2ÉC𝜌,𝑥 ↦→𝑆2,𝑦 ↦→𝑆′ . We deduce that 𝑑 ∈ ÈeÉC𝜌,𝑥 ↦→𝑆2
.

�

Lemma A.41. For every term e ∈ TermsC, v ∈ ValuesC, 𝑥 ∈ Vars, 𝜌 ∈ Envs such that Ω ∉

Èe [v/𝑥]ÉC𝜌 ,
Èe [v/𝑥]ÉC𝜌 =

⋃
𝑆 ∈P𝑓 (ÈvÉC𝜌 )

ÈeÉC𝜌,𝑥 ↦→𝑆

Proof. The proof is done by structural induction on e ∈ TermsC.

• e = 𝑐 . Immediate since 𝑥 does not appear in 𝑐 .

• e = 𝑦. If𝑦 ≠ 𝑥 the result is immediate. Otherwise, if𝑦 = 𝑥 we have Èe [v/𝑥]ÉC𝜌 = ÈvÉC𝜌
and we reason by double inclusion.

– Consider 𝑑 ∈ ÈvÉC𝜌 . Then we immediately have the result taking 𝑆 = {𝑑}:
È𝑥ÉC𝜌,𝑥 ↦→{𝑑 } = {𝑑}.

– Let 𝑆 ∈ P𝑓 (ÈvÉC𝜌 ) and consider 𝑑 ∈ ÈeÉC𝜌,𝑥 ↦→𝑆 . Since ÈeÉC𝜌,𝑥 ↦→𝑆 = 𝑆 , we have
𝑑 ∈ 𝑆 . And since 𝑆 ⊆ ÈvÉC𝜌 , 𝑑 ∈ ÈvÉC𝜌 .

• e = _
∧

𝑖∈𝐼 (𝑠𝑖→𝑡𝑖 )∧
∧

𝑛∈𝑁 ¬(𝑠𝑛→𝑡𝑛)𝑦. e′. By denition, Èe [v/𝑥]ÉC𝜌 =

È_
∧

𝑖∈𝐼 (𝑠𝑖→𝑡𝑖 )∧
∧

𝑛∈𝑁 ¬(𝑠𝑛→𝑡𝑛)𝑦. (e′ [v/𝑥])ÉC𝜌 . We proceed by double inclusion.

– Let𝑅Y ∈ Èe [v/𝑥]ÉC𝜌 , and let uswrite𝑅 = {(] 𝑗 , 𝜕𝑗 ) | 𝑗 ∈ 𝐽 }. Let 𝑗 ∈ 𝐽 . If ] 𝑗 ⊆ È𝑠𝑖ÉC

for some 𝑖 ∈ 𝐼 , then by denition this means that 𝜕𝑗 ∈ Èe′ [v/𝑥]ÉC𝜌,𝑦 ↦→] 𝑗
. By in-

duction hypothesis, there exists 𝑆v𝑗 ∈ P𝑓 (ÈvÉC𝜌 ) such that 𝜕𝑗 ∈ Èe′ÉC𝜌,𝑦 ↦→] 𝑗 ,𝑥 ↦→𝑆v
𝑗
.

Moreover, if ] 𝑗 * È𝑠𝑖ÉC for every 𝑖 ∈ 𝐼 , then 𝜕 = Ω by denition. So in this case,
we just pose 𝑆v𝑗 = ∅.
Now consider 𝑆v =

⋃
𝑗 ∈𝐽 𝑆

v
𝑗 . It is immediate that 𝑆v ∈ P𝑓 (ÈvÉC𝜌 ). More-

over, by Lemma A.40, we deduce that ∀𝑗 ∈ 𝐽 ,∀𝑖 ∈ 𝐼 , if ] 𝑗 ⊆ È𝑠𝑖ÉC, then
𝜕𝑗 ∈ Èe′ÉC𝜌,𝑦 ↦→] 𝑗 ,𝑥 ↦→𝑆v . Thus, this proves that 𝑅Y ∈ ÈeÉC𝜌,𝑥 ↦→𝑆v .

– Let 𝑆 ∈ P𝑓 (ÈvÉC𝜌 ) and 𝑅Y ∈ ÈeÉC𝜌,𝑥 ↦→𝑆 . Let (] 𝑗 , 𝜕𝑗 ) ∈ 𝑅. Note that if ∀𝑖 ∈ 𝐼 . ] 𝑗 *

È𝑠𝑖ÉC then 𝜕𝑗 = Ω by denition, so this part is immediate. Now suppose that
] 𝑗 ⊆ È𝑠𝑖ÉC for some 𝑖 ∈ 𝐼 . By denition, 𝜕𝑗 ∈ Èe′ÉC𝜌,𝑥 ↦→𝑆,𝑦 ↦→] 𝑗

. By induction
hypothesis, this yields 𝜕𝑗 ∈ Èe′ [v/𝑥]ÉC𝜌,𝑦 ↦→] 𝑗

and thus 𝑅Y ∈ Èe [v/𝑥]ÉC𝜌 .

• e = e1 e2. We prove the result by double inclusion.

– Let 𝑑 ∈ Èe [v/𝑥]ÉC𝜌 . By denition, there exists 𝔪1,𝔪2 ∈ M , 𝑅𝔪1 ∈ Èe1 [v/𝑥]ÉC𝜌
and 𝑆 ∈ P𝑓 (Èe2 [v/𝑥]ÉC𝜌

��
𝔪2
) such that (𝑆, 𝑑 ′) ∈ 𝑅 where 𝑑 = [𝑑 ′]𝔪1 .𝔪2 . By

induction hypothesis, we deduce that there exists 𝑆1, 𝑆2 ∈ P𝑓 (ÈvÉC𝜌 ) such
that 𝑅𝔪1 ∈ Èe1ÉC𝜌,𝑥 ↦→𝑆1

and 𝑆 ⊆ Èe2ÉC𝜌,𝑥 ↦→𝑆2

��
𝔪2
. Taking 𝑆 = 𝑆1 ∪ 𝑆2 and ap-
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plying Lemma A.40 yields that 𝑅𝔪1 ∈ Èe1ÉC𝜌,𝑥 ↦→𝑆 and 𝑆 ⊆ Èe2ÉC𝜌,𝑥 ↦→𝑆

��
𝔪2
, thus

𝑑 ∈ ÈeÉC𝜌,𝑥 ↦→𝑆 .

– The same reasoning proves the other inclusion.

• e = (e1, e2). We prove the result by double inclusion.

– Let 𝑑 ∈ Èe [v/𝑥]ÉC𝜌 . By denition, 𝑑 = (𝑑1, 𝑑2)Y where ∀𝑖 ∈ {1, 2}, 𝑑𝑖 ∈
Èe𝑖 [v/𝑥]ÉC𝜌 . By induction hypothesis, ∀𝑖 ∈ {1, 2}, there exists 𝑆𝑖 ∈ P𝑓 (ÈvÉC𝜌 )
such that 𝑑𝑖 ∈ Èe𝑖ÉC𝜌,𝑥 ↦→𝑆𝑖

. Taking 𝑆 = 𝑆1 ∪ 𝑆2 and applying Lemma A.40 yields
that ∀𝑖 ∈ {1, 2}, 𝑑𝑖 ∈ Èe𝑖ÉC𝜌,𝑥 ↦→𝑆 . Thus, 𝑑 = (𝑑1, 𝑑2)Y ∈ ÈeÉC𝜌,𝑥 ↦→𝑆 .

– The second inclusion is proven using the same reasoning.

• e = 𝜋𝑖 e′. We prove the result by double inclusion.

– Let 𝑑 ∈ Èe [v/𝑥]ÉC𝜌 . By denition, 𝑑 = [𝑑𝑖]𝔪 for some (𝑑1, 𝑑2)𝔪 ∈ Èe′ [v/𝑥]ÉC𝜌 .
By induction hypothesis, there exists 𝑆 ∈ P𝑓 (ÈvÉC𝜌 ) such that (𝑑1, 𝑑2)𝔪 ∈
Èe′ÉC𝜌,𝑥 ↦→𝑆 . Hence, [𝑑𝑖]𝔪 ∈ È𝜋𝑖 e′ÉC𝜌,𝑥 ↦→𝑆 .

– The other inclusion is proven using the same reasoning.

• e = choice(e1, e2). We prove the rst inclusion, the second is proven using the same
reasoning. Let 𝑑 ∈ Èe [v/𝑥]ÉC𝜌 By Denition 11.5, there are two cases.

1. There exists 𝑑 ′ ∈ Èe1 [v/𝑥]ÉC𝜌 such that 𝑑 = [𝑑 ′]𝑙 . By IH, there exists 𝑆 ∈
P𝑓 (ÈvÉC𝜌 ) such that𝑑 ′ ∈ Èe1ÉC𝜌,𝑥 ↦→𝑆 . Therefore,𝑑 ∈ ÈeÉC𝜌,𝑥 ↦→𝑆 byDenition 11.5.

2. There exists 𝑑 ′ ∈ Èe2 [v/𝑥]ÉC𝜌 such that 𝑑 = [𝑑 ′]𝑟 . By IH, there exists 𝑆 ∈
P𝑓 (ÈvÉC𝜌 ) such that𝑑 ′ ∈ Èe2ÉC𝜌,𝑥 ↦→𝑆 . Therefore,𝑑 ∈ ÈeÉC𝜌,𝑥 ↦→𝑆 byDenition 11.5.

• e = (𝑦 = e′ ∈ 𝑡)? e1 : e2. We prove the rst inclusion, the second is proven using the
same reasoning. Let 𝑑 ∈ Èe [v/𝑥]ÉC𝜌 . We distinguish two cases.

1. There exists𝔪 ∈ M such that 𝑆 ⊆ È𝑡ÉC, 𝑆 ′ ∈ P𝑓 (𝑆) and 𝑑 ′ ∈ Èe1 [v/𝑥]ÉC𝜌,𝑦 ↦→𝑆′

where 𝑑 = [𝑑 ′]𝔪 and 𝑆 = Èe′ [v/𝑥]ÉC𝜌
��
𝔪
. By IH, there exists 𝑆1 ∈ P𝑓 (ÈvÉC𝜌 )

such that 𝑆 ′ ⊆ Èe′ÉC𝜌,𝑥 ↦→𝑆1

��
𝔪
. By IH, there exists 𝑆2 ∈ P𝑓 (ÈvÉC𝜌 ) such that

𝑑 ′ ∈ Èe1ÉC𝜌,𝑦 ↦→𝑆′,𝑥 ↦→𝑆2
. By considering 𝑆 = 𝑆1 ∪ 𝑆2 and applying Lemma A.40 we

rst deduce that 𝑆 ′ ⊆ Èe′ÉC
𝜌,𝑥 ↦→𝑆

��
𝔪
and then that 𝑑 ′ ∈ Èe1ÉC𝜌,𝑦 ↦→𝑆′′,𝑥 ↦→𝑆

where
𝑆 ′′ = Èe′ÉC

𝜌,𝑥 ↦→𝑆

��
𝔪
. Thus, 𝑑 ∈ ÈeÉC

𝜌,𝑥 ↦→𝑆
.

2. There exists 𝔪 ∈ M such that 𝑆 ≠ ∅, 𝑆 ′ ∈ P𝑓 (𝑆) and 𝑑 ′ ∈ Èe2ÉC𝜌,𝑥 ↦→𝑆1,𝑦 ↦→𝑆′

where 𝑑 = [𝑑 ′]𝔪 and 𝑆 = Èe′ÉC𝜌,𝑥 ↦→𝑆1

��
𝔪
∩ È¬𝑡ÉC. This case is proven exactly as

the rst one.

�

LemmaA.42. For every relations 𝑅, 𝑅′ ∈ P𝑓 (I C×DC

Ω), every types 𝑠, 𝑡 ∈ Types, and every mark

𝔪 ∈ M , if 𝑅 ⊆ 𝑅′
and 𝑅′𝔪 ∈ È𝑠 → 𝑡ÉC then 𝑅𝔪 ∈ È𝑠 → 𝑡ÉC.

Proof. Immediate by Denition 11.3. �
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Lemma A.43. For every _-abstraction v = _
∧

𝑖∈𝐼 (𝑠𝑖→𝑡𝑖 )∧
∧

𝑛∈𝑁 ¬(𝑠𝑛→𝑡𝑛)𝑥 . e ∈ ValuesC and every

relation 𝑅 ∈ P𝑓 (I C × DC

Ω), the following holds:

𝑅Y ∈ ÈvÉC𝜌 ⇐⇒
{ Ω(𝑅)Y ∈ È∧𝑖∈𝐼 (𝑠𝑖 → 𝑡𝑖) ∧

∧
𝑛∈𝑁 ¬(𝑠𝑛 → 𝑡𝑛)ÉC

(𝑅 \ Ω(𝑅))Y ∈ È_
∧

𝑖∈𝐼 (𝑠𝑖→𝑡𝑖 )𝑥 . eÉC𝜌

where

Ω(𝑅) = {( Ω

𝑑 , 𝜕) | (

Ω

𝑑 , 𝜕) ∈ 𝑅}

Proof. Suppose that 𝑅Y ∈ ÈvÉC𝜌 . By Theorem 11.6, we have 𝑅Y ∈
È∧𝑖∈𝐼 (𝑠𝑖 → 𝑡𝑖) ∧

∧
𝑛∈𝑁 ¬(𝑠𝑛 → 𝑡𝑛)ÉC which ensures by Lemma A.42 that Ω(𝑅)Y ∈

È∧𝑖∈𝐼 (𝑠𝑖 → 𝑡𝑖) ∧
∧

𝑛∈𝑁 ¬(𝑠𝑛 → 𝑡𝑛)ÉC. The second part is immediate by Denition 11.5.
For the converse, it suces to remark that all the pairs of 𝑅 verify the conditions of
Denition 11.5 by hypothesis. We just have to show that 𝑅Y ∈ È∧𝑛∈𝑁 ¬(𝑠𝑛 → 𝑡𝑛)ÉC.
By Theorem 11.6, we have that (𝑅 \ Ω(𝑅))Y ∈ È∧𝑖∈𝐼 (𝑠𝑖 → 𝑡𝑖)ÉC and by hypothesis

Ω(𝑅)Y ∈ È∧𝑖∈𝐼 (𝑠𝑖 → 𝑡𝑖)ÉC. By Denition 11.3, this ensures that 𝑅Y ∈ È∧𝑖∈𝐼 (𝑠𝑖 → 𝑡𝑖)ÉC.
Since Ω(𝑅)Y ∈ È∧𝑛∈𝑁 ¬(𝑠𝑛 → 𝑡𝑛)ÉC and

∧
𝑛∈𝑁 ¬(𝑠𝑛 → 𝑡𝑛) ' ¬(∨𝑛∈𝑁 𝑠𝑛 → 𝑡𝑛),

by contrapositive of Lemma A.42, we deduce that Ω(𝑅)Y ∉ È∨𝑛∈𝑁 𝑠𝑛 → 𝑡𝑛ÉC implies
that 𝑅Y ∉ È∨𝑛∈𝑁 𝑠𝑛 → 𝑡𝑛ÉC, which ensures that 𝑅Y ∈ È∧𝑛∈𝑁 ¬(𝑠𝑛 → 𝑡𝑛)ÉC. Hence,
𝑅Y ∈ ÈvÉC𝜌 . �

Lemma A.44. For every type 𝑡 ∈ Types and every relation 𝑅 ∈ P𝑓 (I C×DC

Ω), if 𝑅𝔪 ∈ È𝑡ÉC then
𝑅𝔪 ∈ È𝑡ÉC where 𝑅 = {( Ω

𝑑 , 𝜕) | (], 𝜕) ∈ 𝑅 \ Ω(𝑅), 𝑑 ∈ ]} ∪ Ω(𝑅).

Proof. By induction on 𝑡 , which we never apply the induction hypothesis under type con-
structors.

• 𝑡 = 𝑡1 → 𝑡2. Let ( Ω

𝑑 , 𝜕) ∈ 𝑅. There are two cases. Either ( Ω

𝑑 , 𝜕) ∈ Ω(𝑅), in which
case the pair satises the condition of Denition 11.3 by hypothesis. Otherwise, there
exists ] ∈ I C such that 𝑑 ∈ ] and (], 𝜕) ∈ 𝑅 \ Ω(𝑅). Now suppose that 𝑑 ∈ È𝑡1ÉC. This
ensures that ] ∩ È𝑡1ÉC ≠ ∅. By Denition 11.3, this proves that 𝜕 ∈ È𝑡2ÉC, hence the
result.

• 𝑡 = 𝑡1 ∨ 𝑡2. By hypothesis, there exists 𝑖 ∈ 𝐼 such that 𝑅𝔪 ∈ È𝑡𝑖ÉC. By IH, we have
𝑅𝔪 ∈ È𝑡𝑖ÉC, which proves that 𝑅𝔪 ∈ È𝑡ÉC.

• 𝑡 = ¬𝑡 ′. We distinguish the following cases.

– 𝑡 ′ = ¬(𝑡1 → 𝑡2) By hypothesis, we distinguish two cases. Either there exists
( Ω

𝑑 , 𝜕) ∈ 𝑅 such that 𝑑 ∈ È𝑡1ÉC and 𝜕 ∉ È𝑡2ÉC. In that case, ( Ω

𝑑 , 𝜕) ∈ 𝑅

by denition, which ensures that 𝑅𝔪 ∈ È¬(𝑡1 → 𝑡2)ÉC. Otherwise, there exists
(], 𝜕) ∈ 𝑅 such that ] ∩ È𝑡1ÉC ≠ ∅ and 𝜕 ∉ È𝑡2ÉC. Thus, there exists 𝑑 ∈ ] ∩ È𝑡1ÉC.
By denition, ( Ω

𝑑 , 𝜕) ∈ 𝑅, which ensures that 𝑅𝔪 ∈ È¬(𝑡1 → 𝑡2)ÉC.

– 𝑡 ′ = ¬(𝑡1 ∨ 𝑡2) By hypothesis, 𝑅𝔪 ∈ È¬𝑡1ÉC and 𝑅𝔪 ∈ È¬𝑡2ÉC. By IH, this yields
that for every 𝑖 ∈ {1, 2}, 𝑅𝔪 ∈ È¬𝑡𝑖ÉC, hence the result.

– 𝑡 ′ = ¬𝑡 ′′ Immediate by induction on 𝑡 ′′ since ¬¬𝑡 ′′ ' 𝑡 ′′ ' 𝑡 .

– All other cases are immediate since 0 → 1 ≤ 𝑡 and thus any relation belongs to
𝑡 .
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• All other cases are vacuously true since 𝑅𝔪 ∈ È𝑡ÉC cannot hold.

�

Lemma A.45. For every v = _
∧

𝑖∈𝐼 (𝑠𝑖→𝑡𝑖 )∧
∧

𝑛∈𝑁 ¬(𝑠𝑛→𝑡𝑛)𝑥 . e ∈ ValuesC, if 𝑅Y ∈ È_
∧

𝑖∈𝐼 (𝑠𝑖→𝑡𝑖 )𝑥 . eÉC𝜌
then there exists 𝑅′Y ∈ ÈvÉC𝜌 such that 𝑅 \ Ω(𝑅) ⊆ 𝑅′

.

Proof. We write 𝑡 =
∧

𝑖∈𝐼 (𝑠𝑖 → 𝑡𝑖) ∧
∧

𝑛∈𝑁 ¬(𝑠𝑛 → 𝑡𝑛). First, since 𝑡 � 0 by denition of
values and 𝑡 ≤ 0 → 1, there exists 𝑅Y

𝑁
∈ È𝑡ÉC. By Lemma A.44, we deduce that 𝑅Y

𝑁
∈ È𝑡ÉC.

Now by Lemma A.43, we deduce that (𝑅 \ Ω(𝑅))Y ∈ È_
∧

𝑖∈𝐼 (𝑠𝑖→𝑡𝑖 )𝑥 . eÉC𝜌 . If we write 𝑅′ =
(𝑅 \ Ω(𝑅)) ∪ 𝑅𝑁 , by Lemma A.43 again, since Ω(𝑅′) = 𝑅𝑁 , we deduce that 𝑅′Y ∈ È_𝑡𝑥 . eÉC𝜌 ,
hence the result. �

Theorem A.46 (Computational soundness for _C). For every term e ∈ PrgΓ (𝑡) and every

environment 𝜌 ∈ ÈΓÉC, if e { e′ then there exists 𝔪 ∈ M such that Èe′ÉC𝜌 = {𝑑 ∈ DC |
[𝑑]𝔪 ∈ ÈeÉC𝜌 }.

Proof. The proof is done by structural induction on e ∈ PrgΓ (𝑡) and cases over the reduction
rule used for e { e′. Since Γ ` e : 𝑡 , by Theorem 11.6, Ω ∉ ÈeÉC𝜌 . Thus, all cases involving
Ω can be ignored. Note that 𝔪 = Y in all cases except [RC

Choicei
] and [RC

Ctx].

• [RC
App]. (_

∧
𝑖∈𝐼 (𝑠𝑖→𝑡𝑖 )∧

∧
𝑛∈𝑁 ¬(𝑠𝑛→𝑡𝑛)𝑥 . e) v { e [v/𝑥]. We proceed by double inclusion.

– Let 𝑑 ∈ È(_
∧

𝑖∈𝐼 (𝑠𝑖→𝑡𝑖 )∧
∧

𝑛∈𝑁 ¬(𝑠𝑛→𝑡𝑛)𝑥 . e) vÉC𝜌 . By Denition 11.5, there exists
𝑅Y ∈ È_

∧
𝑖∈𝐼 (𝑠𝑖→𝑡𝑖 )∧

∧
𝑛∈𝑁 ¬(𝑠𝑛→𝑡𝑛)𝑥 . eÉC𝜌 and 𝑆 ⊆ ÈvÉC𝜌

��
Y
such that (𝑆, 𝑑 ′) ∈ 𝑅

where 𝑑 = [𝑑 ′]Y.Y = 𝑑 ′. By Denition 11.5, we have 𝑑 ∈ ÈeÉC𝜌,𝑥 ↦→𝑆 and by
Lemma A.41, we deduce that 𝑑 ∈ Èe [v/𝑥]ÉC𝜌 .

– Let 𝑑 ∈ Èe [v/𝑥]ÉC𝜌 . By Lemma A.41, there exists 𝑆 ∈ P𝑓 (ÈvÉC𝜌 ) such
that 𝑑 ∈ ÈeÉC𝜌,𝑥 ↦→𝑆 . Since e is well-typed, we deduce that Γ ` v :

∨
𝑖∈𝐼 𝑠𝑖 .

By hypothesis, (_
∧

𝑖∈𝐼 (𝑠𝑖→𝑡𝑖 )∧
∧

𝑛∈𝑁 ¬(𝑠𝑛→𝑡𝑛)𝑥 . e) v ∈ PrgΓ (𝑡), and by deni-
tion, A→(∨𝑖∈𝐼 𝑠𝑖) ⊆ A→((_

∧
𝑖∈𝐼 (𝑠𝑖→𝑡𝑖 )∧

∧
𝑛∈𝑁 ¬(𝑠𝑛→𝑡𝑛)𝑥 . e) v), which ensures that

WA→ (∨𝑖∈𝐼 𝑠𝑖 ) (v). By Proposition 11.8, this ensures that there exists 𝑖 ∈ 𝐼 such
that Γ ` v : 𝑠𝑖 . By Theorem 11.6, it holds that 𝑆 ⊆ È𝑠𝑖ÉC. Therefore,
the pair (𝑆, 𝑑) satises the conditions of Denition 11.5, and we deduce that
{(𝑆, 𝑑)}Y ∈ È_

∧
𝑖∈𝐼 (𝑠𝑖→𝑡𝑖 )𝑥 . eÉC𝜌 . By Lemma A.45, we then deduce that there ex-

ists 𝑅′Y ∈ È_
∧

𝑖∈𝐼 (𝑠𝑖→𝑡𝑖 )∧
∧

𝑛∈𝑁 ¬(𝑠𝑛→𝑡𝑛)𝑥 . eÉC𝜌 such that (𝑆, 𝑑) ∈ 𝑅′. Hence, by
Denition 11.5, we obtain than 𝑑 ∈ È(_

∧
𝑖∈𝐼 (𝑠𝑖→𝑡𝑖 )∧

∧
𝑛∈𝑁 ¬(𝑠𝑛→𝑡𝑛)𝑥 . e) vÉC𝜌 .

• [RC
Proji

]. 𝜋𝑖 (v1, v2) { v𝑖 . By Theorem 11.6, Ω ∉ Èv1ÉC𝜌 ∪ Èv2ÉC𝜌 . By Denition 11.5,

∀𝑑 ∈ È(v1, v2)ÉC𝜌 , 𝑑 = (𝑑1, 𝑑2)Y . Therefore, Ω𝜌

𝜋𝑖 (v1,v2) = ∅.
We then deduce that by Denition 11.5, È(v1, v2)ÉC𝜌 = {(𝑑1, 𝑑2)Y | 𝑑1 ∈ Èv1ÉC𝜌 ∧ 𝑑2 ∈
Èv2ÉC𝜌 }, which immediately gives that È𝜋𝑖 (v1, v2)ÉC𝜌 = Èv𝑖ÉC𝜌 since for every 𝑑 ∈ DC,
[𝑑]Y = 𝑑 .

• [RC
CaseL]. (𝑥 = v ∈ 𝑡 ′)? e1 : e2 { e1 [v/𝑥] where v ∈ 𝑡 ′. By Lemma 11.13, we have
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Γ ` v : type(v) and by hypothesis, we have type(v) ≤ 𝑡 ′ and Γ, 𝑥 : type(v) ` e1 : 𝑡 .
Therefore, by Theorem 11.6, we deduce that ÈvÉC𝜌 ⊆ type(v) ⊆ È𝑡 ′ÉC. We then
proceed by double inclusion.

– Let 𝑑 ∈ È(𝑥 = v ∈ 𝑡 ′)? e1 : e2ÉC𝜌 . By Denition 11.5, there exists 𝔪 ∈ M and
𝑆 ∈ P𝑓 (ÈvÉC𝜌

��
𝔪
) such that 𝑑 = [𝑑 ′]𝔪 and 𝑑 ′ ∈ Èe1ÉC𝜌,𝑥 ↦→𝑆 . By Lemma A.41, we

deduce that 𝑑 ′ ∈ Èe1 [v/𝑥]ÉC𝜌 . And by Lemma A.39, we deduce that necessarily
𝔪 = Y, and that 𝑑 = 𝑑 ′, hence the result.

– The converse is proven in the exact same way.

• [RC
CaseR]. (𝑥 = v ∈ 𝑡 ′)? e1 : e2 { e2 [v/𝑥] where v ∉ 𝑡 ′. By hypothesis, (𝑥 =

v ∈ 𝑡 ′)? e1 : e2 ∈ PrgΓ (𝑡), and by Proposition 11.8, this ensures that v ∈ ¬𝑡 ′. By
Theorem 11.6, we then deduce that ÈvÉC𝜌 ⊆ type(v) ⊆ È¬𝑡 ′ÉC. The rest of the proof
is exactly the same as for [RC

CaseL].

• [RC
Choicei

]. choice(e1, e2) { e𝑖 . Let 𝑑 ∈ DC and suppose w.l.o.g. that 𝑖 = 1. We have

by Denition 11.5 that [𝑑]𝑙 ∈ Èchoice(e1, e2)ÉC𝜌 ⇐⇒ 𝑑 ∈ Èe1ÉC𝜌 , which is exactly
the result. The same holds for 𝑖 = 2 considering [𝑑]𝑟 .

• [RC
ctx]. E [e] { E [e′]. Straightforward by induction and cases over E , considering

Denition 11.5.

�

LemmaA.47. For every term E ∈ TermsFCB and every valueV ∈ ValuesFCB, if Γ, 𝑥 : 𝑡 ` E e : 𝑡 ′

and Γ ` V v : 𝑡 , then Γ ` E [V/𝑥]  e [v/𝑥] : 𝑡 ′.

Proof. By induction on the derivation of Γ, 𝑥 : 𝑡 ` E e : 𝑡 ′, generalized over Γ.

• [CC
Cst] . Immediate since E = e = 𝑐 .

• [CC
Var] . We have E = e = 𝑥 and E [V/𝑥] = V and e [v/𝑥] = v. The result follows by

hypothesis.

• [CC
Abs] . We have E = _

∧
𝑖∈𝐼 (𝑠𝑖→𝑡𝑖 )𝑦. E′ and e = _

∧
𝑖∈𝐼 (𝑠𝑖→𝑡𝑖 )∧

∧
𝑛∈𝑁 ¬(𝑠𝑛→𝑡𝑛)𝑦. e′ where, by

hypothesis, for every 𝑖 ∈ 𝐼 , Γ, 𝑥 : 𝑡, 𝑦 : 𝑠𝑖 ` E′  e′ : 𝑡𝑖 . By IH, we have Γ, 𝑦 : 𝑠𝑖 `
E′ [V/𝑥]  e′ [v/𝑥] : 𝑡𝑖 . The result follows by application of [CC

Abs].

• [CC
Case] . We have E ≡ (𝑦 = E′ ∈ 𝑠)? E1 : E2 and e ≡ (𝑦 = e′ ∈ 𝑠)? e1 : e2. By

hypothesis, Γ, 𝑥 : 𝑡 ` E′  e′ : 𝑠 ′, and Γ, 𝑥 : 𝑡, 𝑦 : 𝑠 ∧ 𝑠 ′ ` E1  e1 : 𝑡 ′, and Γ, 𝑥 :
𝑡, 𝑦 : ¬𝑠 ∧ 𝑠 ′ ` E2  e2 : 𝑡 ′. By IH, we deduce that Γ ` E′ [V/𝑥]  e′ [v/𝑥] : 𝑠 ′, and
Γ, 𝑦 : 𝑠 ∧ 𝑠 ′ ` E1 [V/𝑥]  e1 [v/𝑥] : 𝑡 ′, and Γ, 𝑦 : ¬𝑠 ∧ 𝑠 ′ ` E2 [V/𝑥]  e2 [v/𝑥] : 𝑡 ′.
The result follows by application of [CC

Case].

• [CC
Sub] . [CC

App] . [CC
Pair] . [CC

Proji
] . [CC

Choice] . [CC
Efq] . All these cases are immediate by

induction (or direct application of [CC
Efq] for the last case).

�
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Theorem A.48 (Soundness and completeness of compilation). For every term E ∈
TermsFCB, if ` E : 𝑡 then there exists e ∈ Prg∅ (𝑡) such that ` E  e : 𝑡 and the follow-

ing holds:

1. E { E′ =⇒ ∃e′ ∈ TermsC. e { e′ and ` E′ e′ : 𝑡

2. e { e′ =⇒ ∃E′ ∈ TermsFCB. E { E′
and ` E′ e′ : 𝑡

Proof. By Lemma 11.19, there exists e′ ∈ TermsC such that ` E  e′ : 𝑡 . Now by
Lemma 11.25 and Corollary 11.24 taking 𝑆 = A→(e′), if we note e = Le′M𝑆 , we obtain that
` E e : 𝑡 and e ∈ Prg∅ (𝑡). We now prove the two properties.

1. Suppose that E { E′ for some E′. We reason by cases over the reduction rule, with
the hypothesis that ` E e : 𝑡 .

• [RFCB
App ] . We have (_

∧
𝑖∈𝐼 (𝑠𝑖→𝑡𝑖 )𝑥 . Ê) V { Ê [V/𝑥]. By inversion of the system

of Figure 11.2, we have ` V  v : 𝑠 and e = (_
∧

𝑖∈𝐼 (𝑠𝑖→𝑡𝑖 )∧
∧

𝑛∈𝑁 ¬(𝑠𝑛→𝑡𝑛)𝑥 . ê) v
where for every 𝑖 ∈ 𝐼 , , 𝑥 : 𝑠𝑖 ` Ê  ê : 𝑡𝑖 . Additionally, we have

∧
𝑖∈𝐼 (𝑠𝑖 →

𝑡𝑖)∧
∧

𝑛∈𝑁 ¬(𝑠𝑛 → 𝑡𝑛) ≤ 𝑠 → 𝑡 . By Proposition 2.22, we have that 𝑠 ≤ ∨
𝑖∈𝐼 𝑠𝑖 . By

hypothesis, we have e ∈ Prg∅ (𝑡), which means that, if we write 𝑆 = A→(∨𝑖∈𝐼 𝑠𝑖),
W𝑆 (v) holds. By Proposition 11.8, this yields that there exists 𝑖 ∈ 𝐼 such that `
v : 𝑠𝑖 . By Lemma A.47, we obtain that ` Ê [V/𝑥]  ê [v/𝑥] : 𝑡𝑖 . Proposition 2.23
yields that 𝑡𝑖 ≤ 𝑡 , and the result follows since e { ê [v/𝑥].

• [RFCB
Proji

] . Immediate by inversion of rules [CC
Proji

] and [CC
Pair].

• [RFCB
Choicei

] . Immediate by inversion of rule [CC
Choice].

• [RFCB
CaseL] . We have (𝑥 = V ∈ 𝑠)? E1 : E2 { E1 [V/𝑥] and ` V : 𝑠 . By inversion of

the system of Figure 11.2, we have e = (𝑥 = v ∈ 𝑠)? e1 : e2 where ` V v : 𝑠 ′,
and 𝑥 : 𝑠 ∧ 𝑠 ′ ` E1 e1 : 𝑡 and 𝑥 : ¬𝑠 ∧ 𝑠 ′ ` E2 e2 : 𝑡 .
By Lemma 11.21, we have that 𝑠 ∧ 𝑠 ′ � 0. By hypothesis, we have e ∈ Prg∅ (𝑡),
which means that, if we write 𝑆 = A→(𝑠), W𝑆 (v) holds. By Proposition 11.8, this
yields that either v ∈ 𝑠 or v ∈ ¬𝑠 . However, since ` v : 𝑠 ′ and 𝑠 ∧ 𝑠 ′ � 0, we have
necessarily v ∈ 𝑠 by Lemma 11.13. Thus, we deduce that e { e1 [v/𝑥] and the
result follows by Lemma A.47.

• [RFCB
CaseR] . Wehave (𝑥 = V ∈ 𝑠)? E1 : E2 { E2 [V/𝑥] and 0 V : 𝑠 . By Lemma 11.16,

we have ` V : ¬𝑠 , and from there we can follow the same reasoning as in the
previous case.

• [RFCB
Ctx ] . Immediate by case analysis over the context E and application of the

induction hypothesis.

2. The second part is proven using the same reasoning, except there is no need to use the
hypothesis that the value is well-annotated in the cases [RC

App], [R
C
CaseL], and [RC

CaseR].

�

A.2.3. Denotational semantics of a cast calculus
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A.2 Denotational semantics

Proposition A.49. For every types 𝜏, 𝜏 ′ ∈ GTypes, 〈〈𝜏〉〉 ⊆ 〈〈𝜏 ′〉〉 ⇐⇒ 𝜏 ≤ 𝜏 ′.

Proof. For every 𝑑 ∈ DG, 𝜏, 𝜏 ′ ∈ GTypes, we prove the following two results by induction
on the pair (𝑑, 𝜏) lexicographically ordered.

1. 〈〈𝜏〉〉 ⊆ 〈〈𝜏 ′〉〉 and (𝑑 : 𝜏)G =⇒ (𝑑 : 𝜏 ′)G. By cases on 𝜏 .

• 𝜏 = 𝑏. By Denition 12.5, we have𝑑 = 𝑐𝑔 such that 𝑐 ∈ B(𝑏). By Denition 12.16,
we have 𝑐! ∈ 〈〈𝜏〉〉. By hypothesis, we deduce that 𝑐! ∈ 〈〈𝜏 ′〉〉. By Denition 12.16,
we have that necessarily 𝜏 ′ = 𝑏 ′ such that 𝑐 ∈ B(𝑏). And by Denition 12.5, we
conclude that (𝑑 : 𝜏 ′)G.

• 𝜏 = ?. By Denition 12.16, we have {}? ∈ 〈〈𝜏〉〉. By hypothesis, we have {}? ∈
〈〈𝜏 ′〉〉. Necessarily, by Denition 12.16, 𝜏 ′ = ? since ? is the only type whose
interpretation contains values tagged with ?. Hence, 𝜏 = 𝜏 ′ = ? and the result
follows.

• 𝜏 = 𝜏1 → 𝜏2. By Denition 12.16, {}! ∈ 〈〈𝜏〉〉. By hypothesis, we have {}! ∈ 〈〈𝜏 ′〉〉.
Necessarily, by Denition 12.16, we obtain that 𝜏 ′ = 𝜏 ′1 → 𝜏 ′2. Now suppose that
〈〈𝜏 ′1〉〉 * 〈〈𝜏1〉〉. There exists 𝑑 ′ ∈ 〈〈𝜏 ′1〉〉 \ 〈〈𝜏1〉〉. By Denition 12.16, we have that
{{𝑑 ′},Ω}! ∈ 〈〈𝜏〉〉 \ 〈〈𝜏 ′〉〉 , which contradicts the hypothesis. Hence, 〈〈𝜏 ′1〉〉 ⊆
〈〈𝜏1〉〉. Similarly, suppose that 〈〈𝜏2〉〉 * 〈〈𝜏 ′2〉〉. There exists 𝑑2 ∈ 〈〈𝜏2〉〉 \ 〈〈𝜏 ′2〉〉.
By Denition 12.16, we have that {{ Ω}, 𝑑2}! ∈ 〈〈𝜏〉〉 \ 〈〈𝜏 ′〉〉, which once again
contradicts the hypothesis. Hence, 〈〈𝜏2〉〉 ⊆ 〈〈𝜏 ′2〉〉.
Now by Denition 12.5, we have that 𝑑 = {(𝑆𝑖 , 𝜕𝑖) | 𝑖 ∈ 𝐼 }𝑔 such that for every
𝑖 ∈ 𝐼 , (∃𝑑 ′ ∈ 𝑆𝑖 . (𝑑 ′𝑔 : 𝜏1)

G) =⇒ (𝜕𝑔
𝑖
: 𝜏2)

G. Let 𝑖 ∈ 𝐼 and suppose that there
exists 𝑑 ′ ∈ 𝑆𝑖 . (𝑑 ′𝑔 : 𝜏 ′1)

G. By IH, we deduce that (𝑑 ′𝑔 : 𝜏1)
G. By hypothesis, we

have (𝜕𝑔
𝑖
: 𝜏2)

G. And by IH again, we have (𝜕𝑔
𝑖
: 𝜏 ′2)

G. Hence (𝑑 : 𝜏 ′)G.

2. 𝜏 ≤ 𝜏 ′ and 〈𝑑 : 𝜏〉 =⇒ 〈𝑑 : 𝜏 ′〉. By cases on 𝜏 .

• 𝜏 = 𝑏. By Denition 12.16, we have 𝑑 = 𝑐! such that 𝑐 ∈ B(𝑏). By Denition 12.5,
we have that 𝑐! ∈ È𝜏ÉG ⊆ È𝜏 ′ÉG, hence necessarily 𝜏 ′ = 𝑏 ′ where 𝑐 ∈ B(𝑏).
Hence the result by Denition 12.16.

• 𝜏 = ?. By Denition 12.5, for every 𝑐 ∈ C , we have 𝑐? ∈ È𝜏ÉG as well as {}? ∈
È𝜏ÉG. Thus, we have {𝑐?, {}?} ⊆ È𝜏 ′ÉG. We deduce that necessarily 𝜏 ′ = ? by
inversion of Denition 12.5 in the absence of union types. Hence the result since
𝜏 = 𝜏 ′ = ?.

• 𝜏 = 𝜏1 → 𝜏2. By Denition 12.5, {}! ∈ È𝜏ÉG. By hypothesis, we have {}! ∈
È𝜏 ′ÉG. Necessarily, by Denition 12.5, we obtain that 𝜏 ′ = 𝜏 ′1 → 𝜏 ′2. Now

suppose that È𝜏 ′1É
G * È𝜏1ÉG. There exists 𝑑 ′ ∈ È𝜏 ′1É

G \ È𝜏1ÉG. By Propo-
sition 12.6, we have 𝑑 ′? ∈ È𝜏 ′1É

G \ È𝜏1ÉG. By Denition 12.5, we have that
{{𝑑 ′?},Ω}! ∈ È𝜏ÉG \ È𝜏 ′ÉG , which contradicts the hypothesis. Hence, È𝜏 ′1É

G ⊆
È𝜏1ÉG. Similarly, suppose that È𝜏2ÉG * È𝜏 ′2É

G. There exists 𝑑2 ∈ È𝜏2ÉG \ È𝜏 ′2É
G.

By Proposition 12.6, we have 𝑑?
2 ∈ È𝜏2ÉG. By Denition 12.5, we have that

{{ Ω}, 𝑑?
2}! ∈ È𝜏ÉG \È𝜏 ′ÉG, which once again contradicts the hypothesis. Hence,

È𝜏2ÉG ⊆ È𝜏 ′2É
G.

Now by Denition 12.16, we have that 𝑑 = {(]𝑖 , 𝜕𝑖) | 𝑖 ∈ 𝐼 }! such that for every
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𝑖 ∈ 𝐼 , ]𝑖 = 𝑆𝑖 =⇒ (∃𝑑 ′ ∈ 𝑆𝑖 . 〈𝑑 ′ : 𝜏1〉) =⇒ 〈𝜕𝑖 : 𝜏2〉 and ]𝑖 =

Ω

=⇒ 〈𝜕𝑖 : 𝜏2〉.
Let 𝑖 ∈ 𝐼 and suppose that ]𝑖 = 𝑆𝑖 and there exists 𝑑 ′ ∈ 𝑆𝑖 . 〈𝑑 ′ : 𝜏 ′1〉. By IH, we
deduce that 〈𝑑 ′ : 𝜏1〉. By hypothesis, we have 〈𝜕𝑖 : 𝜏2〉. And by IH again, we have
〈𝜕𝑖 : 𝜏 ′2〉. Now if ]𝑖 =

Ω, we have 〈𝜕𝑖 : 𝜏2〉 by hypothesis, which yields 〈𝜕𝑖 : 𝜏 ′2〉 by
IH. Hence 〈𝑑 : 𝜏 ′〉.

�

Lemma A.50. For every cast 〈𝜏 ⇒𝑝 𝜏 ′〉 and every 𝜕 ∈ DG

Ω , if 𝜕 ∈ 〈〈𝜏〉〉 then 𝜕〈𝜏 ⇒𝑝 𝜏 ′〉 ⊆ 〈〈𝜏 ′〉〉.

Proof. By induction on 𝜕 and cases on 𝜏, 𝜏 ′. In every case, we consider a 𝜕′ ∈ 𝜕〈𝜏 ⇒𝑝 𝜏 ′〉
and prove that 𝜕′ ∈ 〈〈𝜏 ′〉〉.

• 𝜕 = 𝑐𝑔 . We distinguish the following cases on 𝜏 ′.

– 𝜏 ′ = ?. In that case, 𝑐𝑔〈𝜏 ⇒𝑝 ?〉 = {𝑐?} by Denition 12.18, and the result follows
since 𝑐? ∈ 〈〈?〉〉.

– 𝑏𝑐 ≤ 𝜏 ′, in which case 𝑐𝑔〈𝜏 ⇒𝑝 𝜏 ′〉 = {𝑐!}, and by Denition 12.16, we have
𝑐! ∈ 〈〈𝑏𝑐〉〉, and the result follows by Proposition 12.17.

– 𝑏𝑐 � 𝜏 ′. We have 𝑐𝑔〈𝜏 ⇒𝑝 𝜏 ′〉 = {blame 𝑝} by Denition 12.18, and the result is
immediate by Denition 12.16.

• 𝜕 = {(𝑆𝑖 , 𝜕𝑖) | 𝑖 ∈ 𝐼 }𝑔 . We distinguish the following cases.

– 𝜏 = 𝜏1 → 𝜏2 and 𝜏 ′ = 𝜏 ′1 → 𝜏 ′2. By hypothesis and Denition 12.16, necessarily
𝑔 = !. By Denition 12.18, 𝜕′ is necessarily a nite relation, hence we can write
𝜕′ = {(𝑆 𝑗 , 𝜕𝑗 ) | 𝑗 ∈ 𝐽 }!. Let 𝑗 ∈ 𝐽 such that 𝑆 𝑗 ∩ 〈〈𝜏 ′1〉〉 ≠ ∅. By Denition 12.18,
we obtain that necessarily 𝑆 𝑗 ⊆ 〈〈𝜏 ′1〉〉 and we distinguish two cases.

1. ∃𝑖 ∈ 𝐼 such that 𝑆𝑖 ⊆ 𝑆 𝑗 〈𝜏 ′1 ⇒𝑝 𝜏1〉 and 𝜕𝑗 ∈ 𝜕𝑖 〈𝜏2 ⇒𝑝 𝜏 ′2〉. By IH, we deduce
that 𝑆𝑖 ⊆ 〈〈𝜏1〉〉. By Denition 12.16, we obtain that 𝜕𝑖 ∈ 〈〈𝜏2〉〉. By IH, this
yields that 𝜕𝑗 ∈ 〈〈𝜏 ′2〉〉.

2. blame 𝑞 ∈ 𝑆 𝑗 〈𝜏 ′1 ⇒𝑝 𝜏1〉 and 𝜕𝑗 = blame 𝑞. By Denition 12.16, we immedi-
ately have 𝜕𝑗 ∈ 〈〈𝜏 ′2〉〉. Hence, 𝜕′ ∈ 〈〈𝜏 ′1 → 𝜏 ′2〉〉.

– 𝜏 = 𝜏1 → 𝜏2 and 𝜏 ′ = ?. By hypothesis and Denition 12.16, necessarily 𝑔 = !.
By Denition 12.18, we have that 𝜕′ = 𝜕′′? for some 𝜕′′ ∈ 𝜕〈𝜏1 → 𝜏2 ⇒𝑝 ? → ?〉.
By applying the same reasoning as in the previous case, we deduce that 𝜕′′ ∈
〈〈? → ?〉〉, which yields that 𝜕′ ∈ 〈〈?〉〉 by Denition 12.16.

– 𝜏 = ? and 𝜏 ′ = 𝜏 ′1 → 𝜏 ′2. By hypothesis and Denition 12.16, necessarily 𝑔 = ?,
and we have that 𝜕! ∈ 〈〈? → ?〉〉. Thus, by Denition 12.18, we deduce that
𝜕′ ∈ 𝜕!〈? → ? ⇒𝑝 𝜏 ′1 → 𝜏 ′2〉, and by IH, this yields 𝜕′ ∈ 〈〈𝜏 ′1 → 𝜏2〉〉.

– 𝜏 = ? and 𝜏 ′ = ?. Immediate by Denition 12.18.

– 𝜏 = ? and 𝜏 ′ = 𝑏. By Denition 12.18, we have 𝜕′ = blame 𝑝 and the result
follows immediately by Denition 12.16.

• 𝜕 = blame 𝑞. . We have blame 𝑞〈𝜏 ⇒𝑝 𝜏 ′〉 = {blame 𝑞} by Denition 12.18, and the
result follows by Denition 12.16.

• 𝜕 = Ω. . Impossible since we cannot have Ω ∈ 〈〈𝜏〉〉.
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�

Theorem A.51 (Type soundness for _G). For every type environment Γ ∈ TEnvs and every

term E ∈ TermsG, if Γ ` E : 𝜏 then for every 𝜌 ∈ ÈΓÉG, ÈEÉG𝜌 ⊆ 〈〈𝜏〉〉.

Proof. By induction on E, generalized on Γ. All cases are proven by inversion of the typing
rules.

• E = 𝑐. By inversion of the typing rules, 𝑏𝑐 ≤ 𝜏 . By Denition 12.19, È𝑐ÉG𝜌 = {𝑐!} ⊆
〈〈𝑏𝑐〉〉, and the result follows by Proposition 12.17.

• E = 𝑥 . . By inversion of the typing rules, Γ(𝑥) ≤ 𝜏 . The result follows immediately by
Denition 12.22 and Proposition 12.17.

• E = _𝑥 :𝜏 ′. E′. By inversion of the typing rules, Γ, 𝑥 : 𝜏 ′ ` E′ : 𝜏 ′′ where 𝜏 ′ → 𝜏 ′′ ≤ 𝜏 .
Now let 𝑑 ∈ ÈEÉG𝜌 . By inversion of Denition 12.19, we have 𝑑 = 𝑅! where for every
(𝑆, 𝜕) ∈ 𝑅, Ω

∉ 𝑆 and either 𝑆 ⊆ 〈〈𝜏 ′〉〉 and 𝜕 ∈ Èe′ÉG𝜌,𝑥 ↦→𝑆 , or 𝑆 ∩ 〈〈𝜏 ′〉〉 = ∅ and 𝜕 = Ω.
Consider (𝑆, 𝜕) ∈ 𝑅 such that ∃𝑑 ∈ 𝑆 , 𝑑 ∈ 〈〈𝜏 ′〉〉. This ensures that 𝑆 ∩ 〈〈𝜏 ′〉〉 ≠ ∅,
thus, necessarily, we have 𝑆 ⊆ 〈〈𝜏 ′〉〉 and 𝜕 ∈ Èe′ÉG𝜌,𝑥 ↦→𝑆 . We have, by Denition 12.22,
(𝜌, 𝑥 ↦→ 𝑆) ∈ ÈΓ, 𝑥 : 𝜏 ′ÉG. Hence, by IH, we deduce that 𝜕 ∈ 〈〈𝜏 ′′〉〉, which proves that
𝑅! ∈ 〈〈𝜏 ′ → 𝜏 ′′〉〉 by Denition 12.16, and the result follows by Proposition 12.17.

• E = E1 E2. By inversion of the typing rules, Γ ` E1 : 𝜏 ′′ → 𝜏 ′, Γ ` E2 : 𝜏 ′′, and
𝜏 ′ ≤ 𝜏 . Let 𝜕 ∈ ÈEÉG𝜌 . If 𝜕 ∈ Blame, the result is immediate since Blame ⊆ 〈〈𝜏〉〉
by Denition 12.16. Moreover, by induction hypothesis, Ω ∉ ÈE1ÉG𝜌 ∪ ÈE2ÉG𝜌 , and by
IH, ÈE1ÉG𝜌 ⊆ 〈〈𝜏 ′′ → 𝜏 ′〉〉. This ensures by Denition 12.16 and Denition 12.21 that
Ω ∉ Ω

𝜌

E1 E2
.

The only case left is when there exists 𝑅! ∈ ÈE1ÉG𝜌 and 𝑆 ⊆ ÈE2ÉG𝜌 such that (𝑆, 𝜕) ∈ 𝑅.
By induction hypothesis, 𝑅 ∈ 〈〈𝜏 ′′ → 𝜏 ′〉〉 and 𝑆 ⊆ 〈〈𝜏 ′′〉〉. By Denition 12.16, we
deduce that 𝜕 ∈ 〈〈𝜏 ′〉〉, hence the result by Proposition 12.17.

• E = E′〈𝜏 ′ ⇒𝑝 𝜏 ′′〉. Suppose that 𝑝 = ℓ . The case 𝑝 = ℓ is proven identically. By

inversion of the typing rules, Γ ` E′ : 𝜏 ′ and 𝜏 ′ 4 𝜏 ′′. By IH, we obtain that ÈE′ÉG𝜌 ⊆
〈〈𝜏 ′〉〉. Let 𝜕 ∈ ÈEÉG𝜌 . By Denition 12.19, there exists 𝜕′ ∈ ÈE′ÉG𝜌 such that 𝜕 ∈

𝜕′〈𝜏 ′ ⇒𝑝 𝜏 ′′〉. By Lemma A.50, we deduce that 𝜕 ∈ 〈〈𝜏 ′′〉〉, and the result follows by
Proposition 12.17.

�

Lemma A.52. For every term E ∈ TermsG, 𝑥 ∈ Vars, 𝜌 ∈ Envs, and 𝑆1, 𝑆2 ∈ P (DG), if 𝑆1 ⊆ 𝑆2

then ÈEÉG𝜌,𝑥 ↦→𝑆1
⊆ ÈEÉG𝜌,𝑥 ↦→𝑆2

Proof. The proof is done by structural induction on E ∈ TermsG, generalized over 𝜌 .

• E = 𝑐 . Immediate since 𝑥 does not appear in E.

• E = 𝑦. If 𝑦 ≠ 𝑥 then the result is immediate. Otherwise, È𝑥ÉG𝜌,𝑥 ↦→𝑆1
= 𝑆1 ⊆ 𝑆2 =

È𝑥ÉG𝜌,𝑥 ↦→𝑆2
which gives the result.
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• E = _𝑦:𝑡 . E′. Let 𝑅! ∈ ÈEÉG𝜌,𝑥 ↦→𝑆1
. Let (𝑆, 𝜕) ∈ 𝑅. If 𝑆 ⊆ 〈〈𝑡〉〉 then 𝜕 ∈ ÈE′ÉG𝜌,𝑥 ↦→𝑆1,𝑦 ↦→𝑆 .

By generalized induction hypothesis, 𝜕 ∈ ÈE′ÉG𝜌,𝑥 ↦→𝑆2,𝑦 ↦→𝑆 . Moreover, if 𝑆 * 〈〈𝑡〉〉 then
𝜕 = Ω independently of 𝑆1 and 𝑆2. Therefore, 𝑅! ∈ ÈEÉG𝜌,𝑥 ↦→𝑆2

.

• E = E1 E2. Let 𝜕 ∈ ÈEÉG𝜌,𝑥 ↦→𝑆1
. We distinguish the following cases.

1. There exists 𝑅! ∈ ÈE1ÉG𝜌,𝑥 ↦→𝑆1
and 𝑆 ⊆ ÈE2ÉG𝜌,𝑥 ↦→𝑆1

such that (𝑆, 𝜕) ∈ 𝑅. By
induction hypothesis, 𝑅! ∈ ÈE1ÉG𝜌,𝑥 ↦→𝑆2

and 𝑆 ⊆ ÈE2ÉG𝜌,𝑥 ↦→𝑆2
, thus 𝜕 ∈ ÈEÉG𝜌,𝑥 ↦→𝑆2

.

2. 𝜕 = Ω and Ω ∈ ÈE1ÉG𝜌,𝑥 ↦→𝑆1
. By induction hypothesis, Ω ∈ ÈE1ÉG𝜌,𝑥 ↦→𝑆2

and the
result follows.

3. 𝜕 = Ω and Ω ∈ ÈE2ÉG𝜌,𝑥 ↦→𝑆1
and ÈE1ÉG𝜌,𝑥 ↦→𝑆1

≠ ∅. By induction hypothesis,
Ω ∈ ÈE2ÉG𝜌,𝑥 ↦→𝑆2

and ÈE1ÉG𝜌,𝑥 ↦→𝑆2
≠ ∅. Thus, the result follows.

4. 𝜕 = Ω and there exists 𝑑 ∈ ÈE1ÉG𝜌,𝑥 ↦→𝑆1
such that �𝑅 ∈ P𝑓 (F ×DG

Ω), 𝑑 = 𝑅!, and
ÈE2ÉG𝜌,𝑥 ↦→𝑆1

≠ ∅. By induction hypothesis, 𝑑 ∈ ÈE1ÉG𝜌,𝑥 ↦→𝑆2
and ÈE2ÉG𝜌,𝑥 ↦→𝑆2

≠ ∅.
This yields the result.

5. 𝜕 = blame 𝑝 and blame 𝑝 ∈ ÈE1ÉG𝜌,𝑥 ↦→𝑆1
. By IH, blame 𝑝 ∈ ÈE1ÉG𝜌,𝑥 ↦→𝑆2

and the
result follows by Denition 12.20.

6. 𝜕 = blame 𝑝 and blame 𝑝 ∈ ÈE2ÉG𝜌,𝑥 ↦→𝑆1
and ÈE1ÉG𝜌,𝑥 ↦→𝑆1

≠ ∅. By IH, blame 𝑝 ∈
ÈE2ÉG𝜌,𝑥 ↦→𝑆2

and ÈE1ÉG𝜌,𝑥 ↦→𝑆2
≠ ∅. The result follows by Denition 12.20.

• E = E′〈𝜏 ⇒𝑝 𝜏 ′〉. Let 𝜕 ∈ ÈEÉG𝜌,𝑥 ↦→𝑆1
. By Denition 12.19, there exists 𝜕′ ∈ ÈE′ÉG𝜌,𝑥 ↦→𝑆1

such that 𝜕 ∈ 𝜕′〈𝜏 ⇒𝑝 𝜏 ′〉. By IH, 𝜕′ ∈ ÈE′ÉG𝜌,𝑥 ↦→𝑆2
and by Denition 12.19, 𝜕 ∈

ÈEÉG𝜌,𝑥 ↦→𝑆2
.

�

Lemma A.53. For every term E ∈ TermsG, v ∈ ValuesG, 𝑥 ∈ Vars, 𝜌 ∈ Envs,

ÈE [v/𝑥]ÉG𝜌 =
⋃

𝑆 ∈P𝑓 (ÈvÉG𝜌 )

ÈEÉG𝜌,𝑥 ↦→𝑆

Proof. The proof is done by structural induction on E ∈ TermsG.

• E = 𝑐 . Immediate since 𝑥 does not appear in 𝑐 .

• E = 𝑦. If𝑦 ≠ 𝑥 the result is immediate. Otherwise, if𝑦 = 𝑥 wehave ÈE [v/𝑥]ÉG𝜌 = ÈvÉG𝜌
and we reason by double inclusion.

– Consider 𝑑 ∈ ÈvÉG𝜌 . Then we immediately have the result taking 𝑆 = {𝑑}:
È𝑥ÉG𝜌,𝑥 ↦→{𝑑 } = {𝑑}.

– Let 𝑆 ∈ P𝑓 (ÈvÉG𝜌 ) and consider 𝑑 ∈ ÈEÉG𝜌,𝑥 ↦→𝑆 . Since ÈEÉ
G
𝜌,𝑥 ↦→𝑆 = 𝑆 , we have

𝑑 ∈ 𝑆 . And since 𝑆 ⊆ ÈvÉG𝜌 , 𝑑 ∈ ÈvÉG𝜌 .

• E = _𝑦:𝑡 . E′. By denition, ÈE [v/𝑥]ÉG𝜌 = È_𝑦:𝑡 . (E′ [v/𝑥])ÉG𝜌 . We proceed by double
inclusion.

– Let 𝑅! ∈ ÈE [v/𝑥]ÉG𝜌 , and let us write 𝑅 = {(𝑆𝑖 , 𝜕𝑖) | 𝑖 ∈ 𝐼 }. Let 𝑖 ∈ 𝐼 . If 𝑆𝑖 ⊆ 〈〈𝑡〉〉,
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then by Denition 12.19 we have 𝜕𝑖 ∈ ÈE′ [v/𝑥]ÉG𝜌,𝑦 ↦→𝑆𝑖
. By induction hypothe-

sis, there exists 𝑆v𝑖 ⊆ ÈvÉG𝜌 such that 𝜕𝑖 ∈ ÈE′ÉG𝜌,𝑦 ↦→𝑆𝑖 ,𝑥 ↦→𝑆v
𝑖
. Moreover, if 𝑆𝑖 * 〈〈𝑡〉〉

then 𝜕 = Ω by denition. So in this case, we just pose 𝑆v𝑖 = ∅.
Now consider 𝑆v =

⋃
𝑖∈𝐼 𝑆

v
𝑖 . Since 𝐼 is nite, it is immediate that 𝑆v ∈ P𝑓 (ÈvÉG𝜌 ).

Moreover, by Lemma A.52, we deduce that ∀𝑖 ∈ 𝐼 , if 𝑆𝑖 ⊆ 〈〈𝑡〉〉, then 𝜕𝑖 ∈
ÈE′ÉG𝜌,𝑦 ↦→𝑆𝑖 ,𝑥 ↦→𝑆v . Thus, this proves that 𝑅! ∈ ÈEÉG𝜌,𝑥 ↦→𝑆v .

– Let 𝑆 ∈ P𝑓 (ÈvÉG𝜌 ) and 𝑅! ∈ ÈEÉG𝜌,𝑥 ↦→𝑆 . Let (𝑆𝑖 , 𝜕𝑖) ∈ 𝑅. Note that if 𝑆𝑖 * 〈〈𝑡〉〉
then 𝜕 = Ω by denition, so this part is immediate. Now suppose that 𝑆𝑖 ⊆
〈〈𝑡〉〉. By denition, 𝜕 ∈ ÈE′ÉG𝜌,𝑥 ↦→𝑆,𝑦 ↦→𝑆𝑖

. By induction hypothesis, this yields
𝜕 ∈ ÈE′ [v/𝑥]ÉG𝜌,𝑦 ↦→𝑆𝑖

and thus 𝑅! ∈ ÈE [v/𝑥]ÉG𝜌 .

• E = E1 E2. We prove the result by double inclusion. Let 𝜕 ∈ ÈE [v/𝑥]ÉG𝜌 . We distin-
guish several cases.

1. There exists 𝑅! ∈ ÈE1 [v/𝑥]ÉG𝜌 and 𝑆 ∈ P𝑓 (ÈE2 [v/𝑥]ÉG𝜌 ) such that (𝑆, 𝜕) ∈ 𝑅.
By induction hypothesis, we deduce that there exists 𝑆1, 𝑆2 ∈ P𝑓 (ÈvÉG𝜌 ) such
that 𝑅! ∈ ÈE1ÉG𝜌,𝑥 ↦→𝑆1

and 𝑆 ⊆ ÈE2ÉG𝜌,𝑥 ↦→𝑆2
. Taking 𝑆 = 𝑆1 ∪ 𝑆2 and applying

Lemma A.52 yields that 𝑅! ∈ ÈE1ÉG𝜌,𝑥 ↦→𝑆 and 𝑆 ⊆ ÈE2ÉG𝜌,𝑥 ↦→𝑆 , thus 𝜕 ∈ ÈEÉG𝜌,𝑥 ↦→𝑆 .

2. 𝜕 = Ω where Ω ∈ ÈE1 [v/𝑥]ÉG𝜌 . By induction hypothesis, there exists 𝑆 ∈
P𝑓 (ÈvÉG𝜌 ) such that Ω ∈ ÈE1ÉG𝜌,𝑥 ↦→𝑆 and the result follows.

3. 𝜕 = Ω where Ω ∈ ÈE2 [v/𝑥]ÉG𝜌 and ÈE1 [v/𝑥]ÉG𝜌 ≠ ∅. By induction hypothesis,
there exists 𝑆1, 𝑆2 ∈ P𝑓 (ÈvÉG𝜌 ) such that Ω ∈ ÈE2ÉG𝜌,𝑥 ↦→𝑆1

and ÈE1ÉG𝜌,𝑥 ↦→𝑆2
≠ ∅.

Taking 𝑆 = 𝑆1 ∪ 𝑆2 and applying Lemma A.52 yields that Ω ∈ ÈE2ÉG𝜌,𝑥 ↦→𝑆 and
ÈE1ÉG𝜌,𝑥 ↦→𝑆 ≠ ∅, hence the result.

4. 𝜕 = Ω where there exists 𝑑 ∈ ÈE1 [v/𝑥]ÉG𝜌 such that �𝑅 ∈ P𝑓 (F ×DG
Ω), 𝑑 = 𝑅!,

and ÈE2 [v/𝑥]ÉG𝜌 ≠ ∅. By induction hypothesis, there exists 𝑆1, 𝑆2 ∈ P𝑓 (ÈvÉG𝜌 )
such that 𝑑 ∈ ÈE1ÉG𝜌,𝑥 ↦→𝑆1

and ÈE2ÉG𝜌,𝑥 ↦→𝑆2
≠ ∅. Taking 𝑆 = 𝑆1 ∪ 𝑆2 and applying

Lemma A.52 yields that 𝑑 ∈ ÈE1ÉG𝜌,𝑥 ↦→𝑆 and ÈE2ÉG𝜌,𝑥 ↦→𝑆 ≠ ∅. Hence the result by
Denition 12.21.

5. 𝜕 = blame 𝑝 where blame 𝑝 ∈ ÈE1 [v/𝑥]ÉG𝜌 . By induction hypothesis, there
exists 𝑆 ∈ P𝑓 (ÈvÉG𝜌 ) such that blame 𝑝 ∈ ÈE1ÉG𝜌,𝑥 ↦→𝑆 , thus blame 𝑝 ∈ ÈEÉG𝜌,𝑥 ↦→𝑆 .

6. 𝜕 = blame 𝑝 where blame 𝑝 ∈ ÈE2 [v/𝑥]ÉG𝜌 and ÈE1 [v/𝑥]ÉG𝜌 ≠ ∅. By induction
hypothesis, there exists 𝑆1, 𝑆2 ∈ P𝑓 (ÈvÉG𝜌 ) such that blame 𝑝 ∈ ÈE2ÉG𝜌,𝑥 ↦→𝑆2

and ÈE1ÉG𝜌,𝑥 ↦→𝑆1
≠ ∅. Taking 𝑆 = 𝑆1 ∪ 𝑆2 and applying Lemma A.52 yields that

blame 𝑝 ∈ ÈE2ÉG𝜌,𝑥 ↦→𝑆 and ÈE1ÉG𝜌,𝑥 ↦→𝑆 ≠ ∅. Thus, we have blame 𝑝 ∈ ÈEÉG𝜌,𝑥 ↦→𝑆 .

The same reasoning proves the other inclusion.

• E = E′〈𝜏 ⇒𝑝 𝜏 ′〉. We have

ÈE [v/𝑥]ÉG𝜌 = ÈE′ [v/𝑥]〈𝜏 ⇒𝑝 𝜏 ′〉ÉG
𝜌
=

⋃
𝜕∈ÈE′ [v/𝑥 ]ÉG𝜌

𝜕〈𝜏 ⇒𝑝 𝜏 ′〉
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By IH, we have ÈE′ [v/𝑥]ÉG𝜌 =
⋃

𝑆 ∈P𝑓 (ÈvÉG𝜌 )
ÈE′ÉG𝜌,𝑥 ↦→𝑆 . Thus, we have

ÈE [v/𝑥]ÉG𝜌 =
⋃

𝑆 ∈P𝑓 (ÈvÉG𝜌 )

⋃
𝜕∈ÈE′ÉG𝜌,𝑥 ↦→𝑆

𝜕〈𝜏 ⇒𝑝 𝜏 ′〉

And by Denition 12.19, this yields exactly

ÈE [v/𝑥]ÉG𝜌 =
⋃

𝑆 ∈P𝑓 (ÈvÉG𝜌 )

ÈE′〈𝜏 ⇒𝑝 𝜏 ′〉ÉG
𝜌,𝑥 ↦→𝑆

�

Lemma A.54. For every value v ∈ ValuesG and every 𝜌 ∈ Envs, ÈvÉG𝜌 ≠ ∅.

Proof. By induction on v.

• v = 𝑐. By Denition 12.19, ÈvÉG𝜌 = {𝑐!}.

• v = _𝑥 :𝜏 . E. By Denition 12.19, {} ∈ ÈvÉG𝜌 .

• v = v′〈[ ⇒𝑝 ?〉. By IH, there exists 𝜕 ∈ Èv′ÉG𝜌 . And for every 𝜏 , 𝜏 ′, by Denition 12.18,
it holds that 𝜕〈𝜏 ⇒≠ 𝜏 ′〉∅. Hence, 𝜕〈[ ⇒𝑝 ?〉 ≠ ∅, and the result follows by Deni-
tion 12.19.

• v = v′〈𝜏1 → 𝜏2 ⇒𝑝 𝜏 ′1 → 𝜏 ′2〉. A reasoning identical to the previous case yields the
result.

�

Lemma A.55. For every value v ∈ ValuesG and every 𝜌 ∈ Envs, ÈvÉG𝜌 ∩ Blame = ∅.

Proof. By induction on v.

• v = 𝑐. By Denition 12.19, ÈvÉG𝜌 = {𝑐!} therefore ÈvÉG𝜌 ∩ Blame = ∅.

• v = _𝑥 :𝜏 . E. Immediate by Denition 12.19.

• v = v′〈[ ⇒𝑝 ?〉. By IH, there exists Èv′ÉG𝜌 ∩ Blame = ∅. And by Denition 12.18,
there is no case where 𝜕〈𝜏 ⇒𝑝 𝜏 ′〉 ∩ Blame ≠ ∅ where 𝜕 ∉ Blame and 𝜏 ′ ≠ ?.

• v = v′〈𝜏1 → 𝜏2 ⇒𝑝 𝜏 ′1 → 𝜏 ′2〉. By IH, there exists Èv′ÉG𝜌 ∩ Blame = ∅. And by Def-
inition 12.18, we immediately have that for every 𝜕 ∉ Blame, 𝜕〈𝜏1 → 𝜏2 ⇒𝑝 𝜏 ′1 →
𝜏 ′2〉 ∩ Blame = ∅.

�

Theorem A.56 (Computational soundness for _G). For every term E ∈ TermsG such that
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Γ ` E : 𝜏 and every environment 𝜌 ∈ ÈΓÉG,

E { E′ =⇒ ÈEÉG𝜌 = ÈE′ÉG𝜌
E { blame 𝑝 =⇒ ÈEÉG𝜌 = {blame 𝑝}

Proof. The proof is done by structural induction on E ∈ TermsG and cases over the reduction
rule used for E { E′.

• [RG
App]. (_𝑥 :𝜏 ′. E) v { E [v/𝑥]. Follows from Lemma 12.26 and Denition 12.19.

• [RG
CApp]. (v〈𝜏1 → 𝜏2 ⇒𝑝 𝜏 ′1 → 𝜏 ′2〉) v′ { (vv′〈𝜏 ′1 ⇒𝑝 𝜏1〉)〈𝜏2 ⇒𝑝 𝜏 ′2〉.

Let 𝜕′ ∈ È(v〈𝜏1 → 𝜏2 ⇒𝑝 𝜏 ′1 → 𝜏 ′2〉) v′É
G
𝜌
. By Theorem 12.24, 𝜕′ ≠ Ω. By Deni-

tion 12.19, we distinguish two cases.

– ∃𝑅′! ∈ Èv〈𝜏1 → 𝜏2 ⇒𝑝 𝜏 ′1 → 𝜏 ′2〉É
G
𝜌
and 𝑆 ′ ⊆ Èv′ÉG𝜌 such that (𝑆 ′, 𝜕′) ∈ 𝑅′. By

Denition 12.19, there exists 𝑅! ∈ ÈvÉG𝜌 such that 𝑅′! ∈ 𝑅!〈𝜏1 → 𝜏2 ⇒𝑝 𝜏 ′1 →
𝜏 ′2〉. By Denition 12.18, there are two more cases.

∗ There exists (𝑆, 𝜕) ∈ 𝑅 such that 𝑆 ⊆ 𝑆 ′〈𝜏 ′1 ⇒𝑝 𝜏1〉 and 𝜕′ ∈ 𝜕〈𝜏2 ⇒𝑝 𝜏 ′2〉.
Since 𝑆 ′ ⊆ Èv′ÉG𝜌 , we have that 𝑆 ⊆ Èv′〈𝜏 ′1 ⇒𝑝 𝜏1〉ÉG𝜌 by Denition 12.19.
Thus, since 𝑅! ∈ ÈvÉG𝜌 , we deduce that 𝜕 ∈ Èvv′〈𝜏 ′1 ⇒𝑝 𝜏1〉ÉG𝜌 , and we
conclude that 𝜕′ ∈ È(vv′〈𝜏 ′1 ⇒𝑝 𝜏1〉)〈𝜏2 ⇒𝑝 𝜏 ′2〉É

G
𝜌
.

∗ 𝜕′ = blame 𝑞 where blame 𝑞 ∈ 𝑆 ′〈𝜏 ′1 ⇒𝑝 𝜏1〉. Since 𝑆 ′ ⊆ Èv′ÉG𝜌 , we have
that blame 𝑞 ∈ Èv′〈𝜏 ′1 ⇒𝑝 𝜏1〉ÉG𝜌 . And by Denition 12.20, since ÈvÉG𝜌 ≠ ∅
by Lemma A.54, we have blame 𝑞 ∈ Èvv′〈𝜏 ′1 ⇒𝑝 𝜏1〉ÉG𝜌 , and we conclude
that 𝜕′ = blame 𝑞 ∈ È(vv′〈𝜏 ′1 ⇒𝑝 𝜏1〉)〈𝜏2 ⇒𝑝 𝜏 ′2〉É

G
𝜌
by Denition 12.18.

– 𝜕′ = blame 𝑞 where blame 𝑞 ∈ Èv〈𝜏1 → 𝜏2 ⇒𝑝 𝜏 ′1 → 𝜏 ′2〉É
G
𝜌
or blame 𝑞 ∈ Èv′ÉG𝜌 .

By Lemma A.55, the latter is impossible. For the former to hold, by Deni-
tion 12.18, this would mean that blame 𝑞 ∈ ÈvÉG𝜌 . Once again, this cannot hold
by Lemma A.55.

A similar reasoning proves the second inclusion.

• [RG
Id]. v〈? ⇒𝑝 ?〉 { v. By Theorem 12.24, we have ÈvÉG𝜌 ⊆ 〈〈?〉〉. By Denition 12.18,

it is straightforward to see that for every 𝜕 ∈ 〈〈?〉〉, 𝜕〈? ⇒𝑝 ?〉 = {𝜕}, and the result
immediately follows from this equality.

• [RG
ExpandL]. v〈𝜏1 → 𝜏2 ⇒𝑝 ?〉 { v〈𝜏1 → 𝜏2 ⇒𝑝 ? → ?〉〈? → ? ⇒𝑝 ?〉 where

𝜏1 → 𝜏2 ≠ ? → ?. Let 𝜕 ∈ Èv〈𝜏1 → 𝜏2 ⇒𝑝 ?〉ÉG𝜌 . By Denition 12.19, there exists
𝜕′ ∈ ÈvÉG𝜌 such that 𝜕 ∈ 𝜕′〈𝜏1 → 𝜏2 ⇒𝑝 ?〉. By Theorem 12.24, we have ÈvÉG𝜌 ⊆
〈〈𝜏1 → 𝜏2〉〉. Thus, necessarily 𝜕′ = 𝑅′!, and by Denition 12.18, we have 𝜕 = 𝑅? where
𝑅! ∈ 𝑅′!〈𝜏1 → 𝜏2 ⇒𝑝 ? → ?〉. Thus we have 𝑅! ∈ Èv〈𝜏1 → 𝜏2 ⇒𝑝 ? → ?〉ÉG

𝜌
and we

then deduce that 𝜕 ∈ Èv〈𝜏1 → 𝜏2 ⇒𝑝 ? → ?〉〈? → ? ⇒𝑝 ?〉ÉG𝜌 . The same reasoning
yields the other inclusion.
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• [RG
ExpandR]. v〈? ⇒𝑝 𝜏1 → 𝜏2〉 { v〈? ⇒𝑝 ? → ?〉〈? → ? ⇒𝑝 𝜏1 → 𝜏2〉 where

𝜏1 → 𝜏2 ≠ ? → ?. Let 𝜕 ∈ Èv〈? ⇒𝑝 𝜏1 → 𝜏2〉ÉG𝜌 . By Denition 12.19, there exists
𝜕′ ∈ ÈvÉG𝜌 such that 𝜕 ∈ 𝜕′〈? ⇒𝑝 𝜏1 → 𝜏2〉. By Theorem 12.24, we have ÈvÉG𝜌 ⊆ 〈〈?〉〉,
and by Lemma A.55, we deduce that ÈvÉG𝜌 ∩ Blame = ∅. Thus, we distinguish the
following two cases.

1. 𝜕′ = 𝑐?. By Denition 12.18, we have 𝑐?〈? ⇒𝑝 𝜏1 → 𝜏2〉 = {blame 𝑝} as
well as 𝑐?〈? ⇒𝑝 ? → ?〉 = {blame 𝑝}. Moreover, we have blame 𝑝 〈? →
? ⇒𝑝 𝜏1 → 𝜏2〉 = {blame 𝑝}, which yields that Èv〈? ⇒𝑝 𝜏1 → 𝜏2〉ÉG𝜌 =
Èv〈? ⇒𝑝 ? → ?〉〈? → ? ⇒𝑝 𝜏1 → 𝜏2〉ÉG = {blame 𝑝}.

2. 𝜕′ = 𝑅′?. By Denition 12.18, we have 𝜕 = 𝑅! where 𝑅! ∈ 𝑅′!〈? →
? ⇒𝑝 𝜏1 → 𝜏2〉. And since 𝑅′! ∈ 𝜕′〈? ⇒𝑝 ? → ?〉, we have 𝜕 ∈
Èv〈? ⇒𝑝 ? → ?〉〈? → ? ⇒𝑝 𝜏1 → 𝜏2〉ÉG𝜌 . The same reasoning yields the other
inclusion.

• [RG
Collapse]. v〈[ ⇒𝑝 ?〉〈? ⇒𝑞 [ ′〉 { v where gnd(v) ≤ [ ′. We distinguish two cases

on [.

1. [ = 𝑏. By Theorem 12.24, we have ÈvÉG𝜌 ⊆ 〈〈[〉〉. Thus, the only possibility is
v = 𝑐 such that 𝑏𝑐 ≤ [. Since gnd(v) = 𝑏𝑐 , we have 𝑏𝑐 ≤ [ ′. Moreover, we have
Èv〈[ ⇒𝑝 ?〉ÉG𝜌 = {𝑐?}, thus we deduce that Èv〈[ ⇒𝑝 ?〉〈? ⇒𝑞 [

′〉ÉG
𝜌
= {𝑐!} by

Denition 12.18.

2. [ = ? → ?. By hypothesis, we have Γ ` v : ? → ?, hence gnd(v) = ? → ?.
Since gnd(v) ≤ [ ′, the only possibility is [ ′ = [ = gnd(v) = ? → ?. By
Theorem 12.24, we have ÈvÉG𝜌 ⊆ 〈〈[〉〉. Thus, we deduce by Denition 12.18 that
Èv〈[ ⇒𝑝 ?〉ÉG𝜌 = {𝑅? | 𝑅! ∈ ÈvÉG𝜌 } and then Èv〈[ ⇒𝑝 ?〉〈? ⇒𝑞 [

′〉ÉG
𝜌
= {𝑅! |

𝑅! ∈ ÈvÉG𝜌 } = ÈvÉG𝜌 .

• [RG
Blame]. v〈[ ⇒𝑝 ?〉〈? ⇒𝑞 [ ′〉 { blame 𝑞 where gnd(v) � [ ′. We distinguish two

cases on [.

1. [ = 𝑏. By Theorem 12.24, we have ÈvÉG𝜌 ⊆ 〈〈[〉〉. Thus, the only pos-
sibility is v = 𝑐 such that 𝑏𝑐 ≤ [. Since gnd(v) = 𝑏𝑐 , we have 𝑏𝑐 �

[ ′. We have Èv〈[ ⇒𝑝 ?〉ÉG𝜌 = {𝑐?} and since 𝑏𝑐 � [ ′, we deduce that
Èv〈[ ⇒𝑝 ?〉〈? ⇒𝑞 [

′〉ÉG
𝜌
= {blame 𝑞} by Denition 12.18, hence the result.

2. [ = ? → ?. By hypothesis, we have Γ ` v : ? → ?, hence gnd(v) = ? → ?. Since
gnd(v) � [ ′, the only possibility is [ ′ = 𝑏 for some𝑏 ∈ B. By Theorem 12.24, we
have ÈvÉG𝜌 ⊆ 〈〈[〉〉. Thus, we deduce by Denition 12.18 that Èv〈[ ⇒𝑝 ?〉ÉG𝜌 =
{𝑅? | 𝑅! ∈ ÈvÉG𝜌 } and then Èv〈[ ⇒𝑝 ?〉〈? ⇒𝑞 [

′〉ÉG
𝜌
= {blame 𝑞} by Deni-

tion 12.18 since [ ′ = 𝑏.

• [RG
Ctx]. E [E] { E [E′] where E { E′. Immediate by induction on E and Deni-

tion 12.19.

• [RG
CtxBlame]. E [E] { blame 𝑝 where E { blame 𝑝 . By induction on E .

– E = []. By IH on E, we immediately have that ÈEÉG𝜌 = {blame 𝑝}.
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– E = E ′ E′. We have E ′ [E] { blame 𝑝 by [RG
CtxBlame]. By IH, we have

ÈE ′ [E]ÉG𝜌 = {blame 𝑝}, which yields ÈE [E]ÉG𝜌 = {blame 𝑝} by Deni-
tion 12.20.

– E = vE ′. We have E ′ [E] { blame 𝑝 by [RG
CtxBlame]. By IH, we have

ÈE ′ [E]ÉG𝜌 = {blame 𝑝}. Moreover, by Lemma A.54, we have ÈvÉG𝜌 ≠ ∅ and by
LemmaA.55, ÈvÉG𝜌 ∩Blame = ∅, thus ÈE [E]ÉG𝜌 = {blame 𝑝} by Denition 12.20.

– E = E ′〈𝜏1 ⇒𝑞 𝜏2〉. We have E ′ [E] { blame 𝑝 by [RG
CtxBlame]. By IH, we

have ÈE ′ [E]ÉG𝜌 = {blame 𝑝}. By Denition 12.18, we deduce that ÈE [E]ÉG𝜌 =
{blame 𝑝}.

�
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Appendix B.

A conservative operational semantics for a

set-theoretic cast calculus

In this section of the appendix, we present the full operational semantics of the set-theoretic
cast calculus presented in Chapter 5, as dened by Castagna et al. [18]. We give some additional
explanation, and provide the full proofs of the properties we presented throughout 5.

B.1. Ground types and values

The type system, expressions and reduction contexts of the cast language are dened as in Chap-
ter 4.
We recall the denition of the grounding operator, which we presented in Chapter 5:

Denition B.1 (Grounding and Relative Ground Types). For all types 𝜏, 𝜏 ′ ∈ GTypes such
that 𝜏 ′ 4 𝜏 , we dene the grounding of 𝜏 with respect to 𝜏 ′, noted 𝜏/𝜏 ′, as follows:

(𝜏1 ∨ 𝜏2)/(𝜏 ′1 ∨ 𝜏 ′2) = (𝜏1/𝜏 ′1) ∨ (𝜏2/𝜏 ′2) ¬𝜏 /¬𝜏 ′ = ¬(𝜏/𝜏 ′)
(𝜏1 ∨ 𝜏2)/? = (𝜏1/?) ∨ (𝜏2/?) ¬𝜏/? = ¬(𝜏/?)
(𝜏1 → 𝜏2)/? = ? → ? (𝜏1 × 𝜏2)/? = ? × ?

𝑏/? = 𝑏 0/? = 0
𝛼/? = 𝛼 𝜏/𝜏 ′ = 𝜏 ′ otherwise

A type 𝜏 is ground with respect to 𝜏 ′ if and only if 𝜏/𝜏 ′ = 𝜏 .

Note that 𝜏 ′ 4 𝜏 is a precondition to computing 𝜏/𝜏 ′. Therefore to ease the presentation any
further reference to 𝜏/𝜏 ′ will implicitly imply that 𝜏 ′ 4 𝜏 .

In Chapter 4, ground types are types 𝜌 such that 𝜌/? = 𝜌 . They are “skeletons” of types whose
only information is the top-level constructor. The values of the form𝑉 〈𝜌 ⇒𝑝 ?〉 record the essence
of the loss of information induced by materialization. We extend this denition to match the new
denition of grounding by saying that a type 𝜏 is ground with respect to 𝜏 ′ if 𝜏 /𝜏 ′ = 𝜏 . Then, the
expressions of the form𝑉 〈𝜏 ⇒𝑝 𝜏 ′〉 are values whenever 𝜏 is ground with respect to 𝜏 ′. Intuitively,
casts of this form lose information about the top-level constructors of a type: an example is the
cast 〈(Int → Int) ∧ (? → ?) ⇒𝑝 (Int → Int) ∧ ?〉, where we lose information about the ? → ?

part, which becomes ?. Once again, this kind of cast records the essence of this loss.
We have accounted for one kind of cast value, but we also need to update the denition of

cast values of the form 𝑉 〈𝜏1 → 𝜏2 ⇒
𝑝
𝜏 ′1 → 𝜏 ′2〉 (and similarly for pairs), because function types

are not necessarily syntactic arrows anymore (they can be unions and/or intersections thereof).
This can be done by considering the opposite case of the previous denition, that is, types such
that 𝜏/𝜏 ′ = 𝜏 ′. Intuitively, a cast 〈𝜏 ⇒𝑝 𝜏 ′〉 where 𝜏/𝜏 ′ = 𝜏 ′ does not lose or gain information about
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the top-level constructors of a type: it only acts below the top constructors. That is, both the
origin and target of such a cast have the same syntactic structure “above” constructors, the same
“skeleton”. For example, 〈(Int → Int) ∧ (? → ?) ⇒𝑝 (Int → Int) ∧ (Bool → Bool)〉 is such a cast.
Putting everything together, we obtain the following new denition of values:

𝑉 ::= 𝑐 | _𝜏→𝜏𝑥 . 𝐸 | (𝑉 ,𝑉 ) | Λ®𝛼. 𝐸
| 𝑉 〈𝜏1 ⇒

𝑝
𝜏2〉 where 𝜏1 ≠ 𝜏2 and where 𝜏1/𝜏2 = 𝜏1 or 𝜏1/𝜏2 = 𝜏2 or 𝜏2/𝜏1 = 𝜏1

We say that a value is unboxed if it is not of the form 𝑉 〈𝜏1 ⇒
𝑝
𝜏2〉. We next need to dene a

new operator “type” on values (except type abstractions) to resolve particular casts:

Denition B.2 (Value Type Operator). We dene the operator type on values of the cast

language (except type abstractions) as follows:

type(𝑐) = 𝑏𝑐 type(_𝜏1→𝜏2𝑥 . 𝐸) = 𝜏1 → 𝜏2

type(𝑉1,𝑉2) = type(𝑉1) × type(𝑉2) type(𝑉 〈𝜏1 ⇒
𝑝
𝜏2〉) = 𝜏2

Lemma B.3. For every value 𝑉 that is not a type abstraction, ∅ ` 𝑉 : type(𝑉 ).

Proof. By cases on 𝑉 .

• 𝑉 = 𝑐 . type(𝑉 ) = 𝑏𝑐 . By typing rule [TConst], ∅ ` 𝑉 : 𝑏𝑐 .

• 𝑉 = _𝜏1→𝜏2𝑥 . 𝐸. type(𝑉 ) = 𝜏1 → 𝜏2. By typing rule [TAbstr], ∅ ` 𝑉 : 𝜏1 → 𝜏2.

• 𝑉 = (𝑉1,𝑉2). type(𝑉 ) = type(𝑉1) × type(𝑉2). By induction, for every 𝑖 ∈ {1, 2},
∅ ` 𝑉𝑖 : type(𝑉𝑖). Then by typing rule [TPair], ∅ ` 𝑉 : type(𝑉1) × type(𝑉2).

• 𝑉 = 𝑉 ′〈𝜏1 ⇒
𝑝
𝜏2〉. type(𝑉 ) = 𝜏2. By typing rule [TCast], ∅ ` 𝑉 : 𝜏2.

�

B.2. Operational semantics

The semantics of the cast calculus for set-theoretic types is given in Figure B.1.
The rules [RExpandL] and [RExpandR] are the immediate counterparts of the rules of the same

name presented in Chapter 4, adapted for the new grounding operator. The other rules of this
group use the information provided by the grounding operator to reduce to types that can be
easily compared. For example, consider 𝑉 〈𝜏1 ⇒

𝑝
𝜏2〉〈𝜏 ′1 ⇒

𝑞
𝜏 ′2〉. If 𝜏1/𝜏2 = 𝜏1, then 𝜏1 contains

all the information about type constructors which the cast lost by going into 𝜏2. Likewise, if
𝜏 ′2/𝜏 ′1 = 𝜏 ′2, then all the information about type constructors is in 𝜏 ′2, so the second cast adds
constructor information. Therefore, to simplify the expressions, it suces to compare 𝜏1 and
𝜏 ′2, which is what is done in the rules [RCollapse] and [RBlame] (the set-theoretic counterparts of
their namesakes in Chapter 4). The remaining rules for cast reductions follow the same idea, but
handle cases that only arise because of set-theoretic types. For example, we can give a constant a
dynamic type by subtyping (e.g., Int ≤ Int∨? implies 3 : Int∨?), and thuswe can immediately cast
the type of a constant to a more precise type, as in the expression 3〈Int∨? ⇒𝑝 Int∨(? → ?)〉. The
rules [RUnboxSimpl] and [RUnboxBlame] handle such cases by checking if the cast can be removed.
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Cast Reductions.

[RExpandL] 𝑉 〈𝜏1 ⇒
𝑝
𝜏2〉 ↩→ 𝑉 〈𝜏1 ⇒

𝑝
𝜏1/𝜏2〉〈𝜏1/𝜏2 ⇒

𝑝
𝜏2〉 if 𝜏1/𝜏2 ≠ 𝜏1, 𝜏1/𝜏2 ≠ 𝜏2

[RExpandR] 𝑉 〈𝜏1 ⇒
𝑝
𝜏2〉 ↩→ 𝑉 〈𝜏1 ⇒

𝑝
𝜏2/𝜏1〉〈𝜏2/𝜏1 ⇒

𝑝
𝜏2〉 if 𝜏2/𝜏1 ≠ 𝜏1, 𝜏2/𝜏1 ≠ 𝜏2

[RCastId] 𝑉 〈𝜏 ⇒𝑝 𝜏〉 ↩→ 𝑉 (∗)
[RCollapse] 𝑉 〈𝜏1 ⇒

𝑝
𝜏2〉〈𝜏 ′1 ⇒

𝑞
𝜏 ′2〉 ↩→ 𝑉 if 𝜏1 ≤ 𝜏 ′2, 𝜏 ′2/𝜏 ′1 = 𝜏 ′2

and 𝜏1/𝜏2 = 𝜏1 or 𝜏2/𝜏1 = 𝜏1
[RBlame] 𝑉 〈𝜏1 ⇒

𝑝
𝜏2〉〈𝜏 ′1 ⇒

𝑞
𝜏 ′2〉 ↩→ blame 𝑞 if 𝜏1 � 𝜏 ′2, 𝜏 ′2/𝜏 ′1 = 𝜏 ′2

and 𝜏1/𝜏2 = 𝜏1 or 𝜏2/𝜏1 = 𝜏1
[RUpSimpl] 𝑉 〈𝜏1 ⇒

𝑝
𝜏2〉〈𝜏 ′1 ⇒

𝑞
𝜏 ′2〉 ↩→ 𝑉 〈𝜏1 ⇒

𝑝
𝜏2〉 if 𝜏2 ≤ 𝜏 ′2, 𝜏1/𝜏2 = 𝜏2, 𝜏 ′2/𝜏 ′1 = 𝜏 ′2

[RUpBlame] 𝑉 〈𝜏1 ⇒
𝑝
𝜏2〉〈𝜏 ′1 ⇒

𝑞
𝜏 ′2〉 ↩→ blame 𝑞 if 𝜏2 � 𝜏 ′2, 𝜏1/𝜏2 = 𝜏2, 𝜏 ′2/𝜏 ′1 = 𝜏 ′2

[RUnboxSimpl] 𝑉 〈𝜏1 ⇒
𝑝
𝜏2〉 ↩→ 𝑉 if type(𝑉 ) ≤ 𝜏2, 𝜏2/𝜏1 = 𝜏2, 𝑉 is unboxed

[RUnboxBlame] 𝑉 〈𝜏1 ⇒
𝑝
𝜏2〉 ↩→ blame 𝑝 if type(𝑉 ) � 𝜏2, 𝜏2/𝜏1 = 𝜏2, 𝑉 is unboxed

(∗) to ease the notation and to avoid redundant conditions, the rule [RCastId] takes precedence
over the following ones. All other casts are therefore considered to be non-identity casts.

Standard Reductions.

[RCastApp] 𝑉 〈𝜏 ⇒𝑝 𝜏 ′〉𝑉 ′ ↩→ (𝑉 𝑉 ′〈𝜏 ′1 ⇒
𝑝
𝜏1〉)〈𝜏2 ⇒

𝑝
𝜏 ′2〉 if 𝜏 ′/𝜏 = 𝜏 or 𝜏/𝜏 ′ = 𝜏 ′

where 〈𝜏 ⇒𝑝 𝜏 ′〉 ◦ type(𝑉 ′) = 〈𝜏1 → 𝜏2 ⇒
𝑝
𝜏 ′1 → 𝜏 ′2〉

[RCastProj] 𝜋𝑖 (𝑉 〈𝜏 ⇒𝑝 𝜏 ′〉) ↩→ (𝜋𝑖 𝑉 )〈𝜏𝑖 ⇒
𝑝
𝜏 ′𝑖 〉 if 𝜏 ′/𝜏 = 𝜏 or 𝜏/𝜏 ′ = 𝜏 ′

where 〈𝜏𝑖 ⇒
𝑝
𝜏 ′𝑖 〉 = 𝜋𝑖 (〈𝜏 ⇒𝑝 𝜏 ′〉)

[RFailApp] 𝑉 〈𝜏 ⇒𝑝 𝜏 ′〉𝑉 ′ ↩→ blame p if 〈𝜏 ⇒𝑝 𝜏 ′〉 ◦ type(𝑉 ′) undef.
[RFailProj] 𝜋𝑖 (𝑉 〈𝜏 ⇒𝑝 𝜏 ′〉) ↩→ blame p if 𝜋𝑖 (〈𝜏 ⇒𝑝 𝜏 ′〉) undef.

[RSimplApp] 𝑉 〈𝜏 ⇒𝑝 𝜏 ′〉𝑉 ′ ↩→ 𝑉 𝑉 ′ if 𝜏/𝜏 ′ = 𝜏

[RSimplProj] 𝜋𝑖 (𝑉 〈𝜏 ⇒𝑝 𝜏 ′〉) ↩→ 𝜋𝑖 𝑉 if 𝜏 /𝜏 ′ = 𝜏

[RApp] (_𝜏1→𝜏2𝑥 . 𝐸)𝑉 ↩→ 𝐸 [𝑉 /𝑥]
[RProj] 𝜋𝑖 (𝑉1,𝑉2) ↩→ 𝑉𝑖

[RTypeApp] (Λ®𝛼. 𝐸) [®𝑡] ↩→ 𝐸 [®𝑡/®𝛼]
[RLet] let 𝑥 = 𝑉 in 𝐸 ↩→ 𝐸 [𝑉 /𝑥]

[RContext] E [𝐸] ↩→ E [𝐸 ′] if 𝐸 ↩→ 𝐸 ′

[RCtxBlame] E [𝐸] ↩→ blame 𝑝 if 𝐸 ↩→ blame 𝑝

Figure B.1. Semantics of the cast calculus
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The intuition is that the dynamic part of such casts is useless since it has been introduced by
subtyping.

The rules for applications and projections also need to be updated because function and prod-
uct types can now be unions and intersections of arrows or products. For applications, we dene
a new operator, written ◦, which, given a function cast and the type of the argument, computes
an approximation of the cast such that both its origin and target types are arrows, so that the
usual rule for cast applications dened in Chapter 4 can be applied. More formally, the operation
〈𝜏 ⇒𝑝 𝜏 ′〉 ◦ 𝜏𝑣 computes a cast 〈𝜏1 → 𝜏2 ⇒

𝑝
𝜏 ′1 → 𝜏 ′2〉 such that 𝜏𝑣 ≤ 𝜏 ′1, 𝜏

′
2 = min{𝜏 | 𝜏 ′ ≤ 𝜏𝑣 → 𝜏},

𝜏 ≤ 𝜏1 → 𝜏2, and such that the materialization relation between the two parts of the cast is
preserved. This ensures that the resulting approximation is still well-typed. The denition of
this operator is quite involved, so we dedicate the next two sections to its denition and to
the proofs of its properties. The most important point of this denition is that it requires both
types of the cast to be syntactically identical above their constructors, which explains the pres-
ence of the grounding condition in [RCastApp]. Moreover, this operator can also be undened
in some cases, such as if the origin type of the cast is not an arrow type or if the second type
is empty (e.g. 〈(? → ?) ∧ ¬(Int → Int) ⇒𝑝 (Int → Int) ∧ ¬(Int → Int)〉). Such ill-formed
casts are handled by [RFailApp]. We apply the same idea to projections and dene an operator,
written 𝜋𝑖, that computes an approximation of the rst or second component of a cast between
two product types. This yields the rules [RCastProj] and [RFailProj]. The two remaining rules,
[RSimplApp] and [RSimplProj], handle cases that only appear due to the presence of set-theoretic
types. For instance, it is now possible to apply (or project) a value that has a dynamic type:
𝑉 〈(Int → Int) ∧ (? → ?) ⇒𝑝 (Int → Int) ∧ ?〉𝑉 ′. Here, by subtyping, the function has both
type Int → Int and ?, so it can be applied but it is also dynamic. We show that such casts are
unnecessary and can be harmlessly removed; the rules [RSimplApp] and [RSimplProj] do just that.

B.3. Normal forms and decompositions for type frames

In the following, we use the metavariable 𝑎 to range over the set B ∪ A𝑝𝑟𝑜𝑑 ∪ A𝑓 𝑢𝑛 ∪ V 𝛼 .
We also introduce the following two results from Frisch et al. [27] which we will not prove

here.

Lemma B.4. Let 𝑃 , 𝑁 be two nite subsets of A𝑝𝑟𝑜𝑑 . Then:∧
𝑇1×𝑇2∈𝑃

𝑇1 ×𝑇2 ≤
∨

𝑇1×𝑇2∈𝑁
𝑇1 ×𝑇2 ⇐⇒

∀𝑁 ′ ⊆ 𝑁 .

( ∧
𝑇1×𝑇2∈𝑃

𝑇1 ≤
∨

𝑇1×𝑇2∈𝑁 ′
𝑇1

)
∨

( ∧
𝑇1×𝑇2∈𝑃

𝑇2 ≤
∨

𝑇1×𝑇2∈𝑁 \𝑁 ′
𝑇2

)
(with the convention

∧
𝑇 ∈∅𝑇 = 1 × 1).

Lemma B.5. Let 𝑃 , 𝑁 be two nite subsets of A𝑓 𝑢𝑛 . Then:∧
𝑇1→𝑇2∈𝑃

𝑇1 → 𝑇2 ≤
∨

𝑇1→𝑇2∈𝑁
𝑇1 → 𝑇2 ⇐⇒ ∃(𝑇 1 → 𝑇 2) ∈ 𝑁 .

(
𝑇 1 ≤

∨
𝑇1→𝑇2∈𝑃

𝑇1

)
∧

(
∀𝑃 ′ ( 𝑃 .

(
𝑇 1 ≤

∨
𝑇1→𝑇2∈𝑃 ′

𝑇1

)
∨

( ∧
𝑇1→𝑇2∈𝑃\𝑃 ′

𝑇2 ≤ 𝑇 2

))
(with the convention

∧
𝑇 ∈∅𝑇 = 0 → 1).
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We now dene uniform disjunctive normal forms for type frames, and study their properties.

Denition B.6 (Uniform normal form). A uniform (disjunctive) normal form (UDNF) is a

type frame 𝑇 of the form ∨
𝑖∈𝐼

(∧
𝑎∈𝑃𝑖

𝑎 ∧
∧
𝑎∈𝑁𝑖

¬𝑎
)

such that, for all 𝑖 ∈ 𝐼 , one of the following three condition holds:

• 𝑃𝑖 ∩ B ≠ ∅ and (𝑃𝑖 ∪ 𝑁𝑖) ∩ (A𝑝𝑟𝑜𝑑 ∪ A𝑓 𝑢𝑛) = ∅;

• 𝑃𝑖 ∩ A𝑝𝑟𝑜𝑑 ≠ ∅ and (𝑃𝑖 ∪ 𝑁𝑖) ∩ (B ∪ A𝑓 𝑢𝑛) = ∅;

• 𝑃𝑖 ∩ A𝑓 𝑢𝑛 ≠ ∅ and (𝑃𝑖 ∪ 𝑁𝑖) ∩ (B ∪ A𝑝𝑟𝑜𝑑 ) = ∅;

We dene here a function UDNF(𝑇 ) which, given a type frame𝑇 , produces a uniform normal
form that is equivalent to 𝑇 .

We rst dene two mutually recursive functions N and N ′ on type frames. These are in-
ductive denitions as no recursive uses of the functions occur below type constructors.

N (𝑎) = 𝑎

N (𝑇1 ∨𝑇2) = N (𝑇1) ∨ N (𝑇2)
N (¬𝑇 ) = N ′(𝑇 )

N (0) = 0

N ′(𝑎) = ¬𝑎

N ′(𝑇1 ∨𝑇2) =
∨

𝑖∈𝐼 , 𝑗 ∈𝐽

( ∧
𝑎∈𝑃𝑖∪𝑃 𝑗

𝑎 ∧
∧

𝑎∈𝑁𝑖∪𝑁 𝑗

¬𝑎
)

where N ′(𝑇1) =
∨
𝑖∈𝐼

( ∧
𝑎∈𝑃𝑖

𝑎 ∧
∧
𝑎∈𝑁𝑖

¬𝑎
)
and N ′(𝑇2) =

∨
𝑗 ∈𝐽

( ∧
𝑎∈𝑃 𝑗

𝑎 ∧
∧
𝑎∈𝑁 𝑗

¬𝑎
)

N ′(¬𝑇 ) = N (𝑇 )
N ′(0) = 1

In the denition above, we see 0 as the empty union
∨

𝑖∈∅𝑇𝑖 and 1 as the singleton union of the
empty intersection

∨
𝑖∈{𝑖0 }

∧
𝑎∈∅ 𝑎.

The rst step in the computation of UDNF(𝑇 ) is to compute N (𝑇 ). Then, assuming

N (𝑇 ) =
∨
𝑖∈𝐼

( ∧
𝑎∈𝑃𝑖

𝑎 ∧
∧
𝑎∈𝑁𝑖

¬𝑎︸             ︷︷             ︸
I𝑖

)

we dene
UDNF(𝑇 ) =def

∨
𝑖∈𝐼

I basic
𝑖 ∨

∨
𝑖∈𝐼

I
prod
𝑖

∨
∨
𝑖∈𝐼

I fun
𝑖
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where

I basic
𝑖 =def 1B ∧

∧
𝑎∈𝑃𝑖∩(B∪V 𝛼 )

𝑎 ∧
∧

𝑎∈𝑁𝑖∩(B∪V 𝛼 )
¬𝑎

I
prod
𝑖

=def (1 × 1) ∧
∧

𝑎∈𝑃𝑖∩(A𝑝𝑟𝑜𝑑∪V 𝛼 )
𝑎 ∧

∧
𝑎∈𝑁𝑖∩(A𝑝𝑟𝑜𝑑∪V 𝛼 )

¬𝑎

I fun
𝑖 =def (0 → 1) ∧

∧
𝑎∈𝑃𝑖∩(A𝑓 𝑢𝑛∪V 𝛼 )

𝑎 ∧
∧

𝑎∈𝑁𝑖∩(A𝑓 𝑢𝑛∪V 𝛼 )
¬𝑎

Lemma B.7. Given any type frame 𝑇 , UDNF(𝑇 ) is a uniform normal form and UDNF(𝑇 ) ' 𝑇 .

Moreover, if 𝑇 is strongly polarized, then UDNF(𝑇 ) is strongly polarized.

Proof. Let 𝑇 be a type frame. We can check on the denition of N and N ′ that N (𝑇 )
is a union of intersection of atoms, assuming that we see 0 and 1 as described above and
that atoms are interpreted as singleton unions of singleton intersections. We can check by
induction on 𝑇 that

È𝑇É = ÈN (𝑇 )É = È¬N ′(𝑇 )É .

Moreover, when𝑇 is strongly polarized,N (𝑇 ) is strongly polarized too, because every atom
of 𝑇 appears in N (𝑇 ) with the same polarity.

We now consider UDNF(𝑇 ). It is trivial to check that it is always in disjunctive normal
form. Preservation of strong polarization is also ensured by the fact that we are maintaining
the polarity every atom had in N (𝑇 ). The conditions that every intersection contains at
least one positive atom and that the intersections are uniform are ensured by construction.
It remains to check UDNF(𝑇 ) ' N (𝑇 ). Note that 1 ' 1B ∨ (1 × 1) ∨ (0 → 1). We have

the following equivalences.

I𝑖 ' 1 ∧ I𝑖

'
(
1B ∨ (1 × 1) ∨ (0 → 1)

)
∧ I𝑖

'
(
1B ∧ I𝑖

)
∨

(
(1 × 1) ∧ I𝑖

)
∨

(
(0 → 1) ∧ I𝑖

)
We show the following three results.

1B ∧ I𝑖 ' I basic
𝑖

(1 × 1) ∧ I𝑖 ' I
prod
𝑖

(0 → 1) ∧ I𝑖 ' I fun
𝑖

For the rst implication, we have

1B ∧ I𝑖 = 1B ∧ ∧
𝑎∈𝑃𝑖 𝑎 ∧

∧
𝑎∈𝑁𝑖

¬𝑎
' 1B ∧ ∧

𝑎∈𝑃𝑖∩(B∪V 𝛼 ) 𝑎 ∧
∧

𝑎∈𝑁𝑖∩(B∪V 𝛼 ) ¬𝑎 ∧∧
𝑎∈𝑃𝑖∩(A𝑝𝑟𝑜𝑑∪A𝑓 𝑢𝑛) 𝑎 ∧

∧
𝑎∈𝑁𝑖∩(A𝑝𝑟𝑜𝑑∪A𝑓 𝑢𝑛) ¬𝑎

' 1B ∧ ∧
𝑎∈𝑃𝑖∩(B∪V 𝛼 ) 𝑎 ∧

∧
𝑎∈𝑁𝑖∩(B∪V 𝛼 ) ¬𝑎 ∧

∧
𝑎∈𝑁𝑖∩(A𝑝𝑟𝑜𝑑∪A𝑓 𝑢𝑛) ¬𝑎
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(because 𝑃𝑖∩(A𝑝𝑟𝑜𝑑∪A𝑓 𝑢𝑛) = ∅: otherwise the intersection would be empty because, when
𝑎 ∈ A𝑝𝑟𝑜𝑑 ∪ A𝑓 𝑢𝑛 , È𝑎É ∩ È1BÉ = ∅)

' 1B ∧ ∧
𝑎∈𝑃𝑖∩(B∪V 𝛼 ) 𝑎 ∧

∧
𝑎∈𝑁𝑖∩(B∪V 𝛼 ) ¬𝑎

(because, when 𝑎 ∈ A𝑝𝑟𝑜𝑑 ∪ A𝑓 𝑢𝑛 , since È𝑎É ∩ È1BÉ = ∅, we have È1BÉ ⊆ È¬𝑎É). The
other two implications are shown identically.
To conclude, we observe the following equivalence.∨

𝑖∈𝐼
I𝑖 '

∨
𝑖∈𝐼

( (
1B ∧ I𝑖

)
∨

(
(1 × 1) ∧ I𝑖

)
∨

(
(0 → 1) ∧ I𝑖

) )
' ∨

𝑖∈𝐼
(
1B ∧ I𝑖

)
∨ ∨

𝑖∈𝐼
(
(1 × 1) ∧ I𝑖

)
∨ ∨

𝑖∈𝐼
(
(0 → 1) ∧ I𝑖

)
' ∨

𝑖∈𝐼 I basic
𝑖 ∨ ∨

𝑖∈𝐼 I
prod
𝑖

∨ ∨
𝑖∈𝐼 I fun

𝑖

�

Denition B.8 (Product decomposition and projections). Given a type frame𝑇 ≤ 1×1, we
dene its decomposition 𝜋 (𝑇 ) as

𝜋 (𝑇 ) =def
⋃

𝑖∈𝐼 ,I𝑖�0

{( ∧
𝑇1×𝑇2∈𝑃𝑖

𝑇1 ∧
∧

𝑇1×𝑇2∈𝑁 ′
¬𝑇1︸                         ︷︷                         ︸

𝑇 1

,
∧

𝑇1×𝑇2∈𝑃𝑖

𝑇2 ∧
∧

𝑇1×𝑇2∈𝑁 𝑖\𝑁 ′

¬𝑇2︸                              ︷︷                              ︸
𝑇 2

)
���𝑁 ′ ⊆ 𝑁 𝑖 ,𝑇 1 � 0,𝑇 2 � 0

}
and its 𝑖-th projection 𝜋𝑖 (𝑇 ) as

𝜋𝑖 (𝑇 ) =def
∨

(𝑇1,𝑇2) ∈𝜋 (𝑇 )
𝑇𝑖

where

UDNF(𝑇 ) =
∨
𝑖∈𝐼

︸︷︷︸
(∧
𝑎∈𝑃𝑖

𝑎 ∧
∧
𝑎∈𝑁𝑖

¬𝑎
)
I𝑖

and where 𝑃𝑖 = 𝑃𝑖 ∩ A𝑝𝑟𝑜𝑑 and 𝑁 𝑖 = 𝑁𝑖 ∩ A𝑝𝑟𝑜𝑑 .

Lemma B.9. Let 𝑃 , 𝑁 be two nite subsets of B ∪ A𝑝𝑟𝑜𝑑 ∪ A𝑓 𝑢𝑛 and 𝑃 ′
, 𝑁 ′

be two nite subsets

of V 𝛼
. If 𝑃 ′ ∩ 𝑁 ′ = ∅, then∧

𝑎∈𝑃
𝑎 ∧

∧
𝑎∈𝑁

¬𝑎 ∧
∧
𝑎∈𝑃 ′

𝑎 ∧
∧
𝑎∈𝑁 ′

¬𝑎 ≤ 0 ⇐⇒
∧
𝑎∈𝑃

𝑎 ∧
∧
𝑎∈𝑁

¬𝑎 ≤ 0

Proof. The implication⇐ is trivial. We prove the other direction by contrapositive. Assume
that the subtyping relation on the right does not hold. Then, we have

𝑑 ∈ È∧𝑎∈𝑃 𝑎 ∧
∧

𝑎∈𝑁 ¬𝑎É .

Therefore 𝑑 ∈ È𝑎É holds for all 𝑎 ∈ 𝑃 and 𝑑 ∈ D \ È𝑁É holds for all 𝑎 ∈ 𝑁 .
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Note that every 𝑎 ∈ 𝑃 ∪𝑁 is of the forms 𝑏,𝑇1×𝑇2, or𝑇1 → 𝑇2. For such types, if 𝑑 ∈ È𝑎É,
then every 𝑑 ′ that diers from 𝑑 only for its outermost set of tags satises 𝑑 ′ ∈ È𝑎É.
We consider the domain element 𝑑 which is 𝑑 changed to have tags(𝑑) = 𝑃 ′. By construc-

tion, it is in the interpretation of all variables in 𝑃 ′ and in none of the interpretations of the
variables in 𝑁 ′. Hence, we have

𝑑 ∈ È∧𝑎∈𝑃 𝑎 ∧
∧

𝑎∈𝑁 ¬𝑎 ∧ ∧
𝑎∈𝑃 ′ 𝑎 ∧

∧
𝑎∈𝑁 ′ ¬𝑎É . �

Lemma B.10. Let 𝑇 be a type frame such that 𝑇 ≤ 1 × 1. Then, for all type frames 𝑇1 and 𝑇2,

𝑇 ≤ 𝑇1 ×𝑇2 ⇐⇒
∨

(𝑇 ′
1 ,𝑇

′
2 ) ∈𝜋 (𝑇 )

𝑇 ′
1 ×𝑇 ′

2 ≤ 𝑇1 ×𝑇2 .

Proof. Given 𝑇 , we have

UDNF(𝑇 ) = ∨
𝑖∈𝐼

(∧
𝑎∈𝑃𝑖 𝑎 ∧

∧
𝑎∈𝑁𝑖

¬𝑎
)︸                      ︷︷                      ︸

I𝑖

and, by Lemma B.7, 𝑇 ' UDNF(𝑇 ). Then, since 𝑇 ≤ 1 × 1, we have

∀𝑖 ∈ 𝐼 . I𝑖 =
∧

𝑎∈𝑃𝑖 𝑎 ∧
∧

𝑎∈𝑁𝑖
¬𝑎 ≤ 1 × 1 .

Consider a 𝑖 such that I𝑖 � 0. Since each 𝑃𝑖 must contain an atom, we have that 𝑃𝑖 contains
a type frame of the form𝑇1×𝑇2. Hence, since intersections are uniform, 𝑃𝑖∪𝑁𝑖 ⊆ A𝑝𝑟𝑜𝑑∪V 𝛼 .
Moreover, V 𝛼 ∩ 𝑃𝑖 ∩ 𝑁𝑖 = ∅, otherwise I𝑖 would be empty.
We have

𝑇 ≤ 𝑇1 ×𝑇2 ⇐⇒ ∨
𝑖∈𝐼

(∧
𝑎∈𝑃𝑖 𝑎 ∧

∧
𝑎∈𝑁𝑖

¬𝑎
)
≤ 𝑇1 ×𝑇2

⇐⇒ ∨
𝑖∈𝐼 ,I𝑖�0

(∧
𝑎∈𝑃𝑖 𝑎 ∧

∧
𝑎∈𝑁𝑖

¬𝑎
)
≤ 𝑇1 ×𝑇2

⇐⇒ ∀𝑖 ∈ 𝐼 ,I𝑖 � 0.
∧

𝑎∈𝑃𝑖 𝑎 ∧
∧

𝑎∈𝑁𝑖
¬𝑎 ∧ ¬(𝑇1 ×𝑇2) ≤ 0

⇐⇒ ∀𝑖 ∈ 𝐼 ,I𝑖 � 0.
∧

𝑎∈𝑃𝑖∩A𝑝𝑟𝑜𝑑
𝑎 ∧ ∧

𝑎∈𝑁𝑖∩A𝑝𝑟𝑜𝑑
¬𝑎 ∧ ¬(𝑇1 ×𝑇2) ≤ 0

(by LemmaB.9, since 𝑃𝑖∩V 𝛼 and𝑁𝑖∩V 𝛼 are disjoint; let 𝑃𝑖 = 𝑃𝑖∩A𝑝𝑟𝑜𝑑 and𝑁 𝑖 = 𝑁𝑖∩A𝑝𝑟𝑜𝑑 )

⇐⇒ ∀𝑖 ∈ 𝐼 ,I𝑖 � 0.
∧

𝑇 ′
1×𝑇 ′

2 ∈𝑃𝑖
𝑇 ′
1 ×𝑇 ′

2 ∧
∧

𝑇 ′
1×𝑇 ′

2 ∈𝑁 𝑖
¬(𝑇 ′

1 ×𝑇 ′
2 ) ∧ ¬(𝑇1 ×𝑇2) ≤ 0

⇐⇒ ∀𝑖 ∈ 𝐼 ,I𝑖 � 0.
∧

𝑇 ′
1×𝑇 ′

2 ∈𝑃𝑖
𝑇 ′
1 ×𝑇 ′

2 ≤
( ∨

𝑇 ′
1×𝑇 ′

2 ∈𝑁 𝑖
𝑇 ′
1 ×𝑇 ′

2
)
∨ (𝑇1 ×𝑇2)

We now apply Lemma B.4 to the above to derive the following equivalence.

𝑇 ≤ 𝑇1 ×𝑇2 ⇐⇒ ∀𝑖 ∈ 𝐼 ,I𝑖 � 0.(
∀𝑁 ′ ⊆ 𝑁 𝑖 .

( ∧
𝑇 ′
1×𝑇 ′

2 ∈𝑃𝑖
𝑇 ′
1 ≤ ∨

𝑇 ′
1×𝑇 ′

2 ∈𝑁 ′𝑇 ′
1

)
∨

( ∧
𝑇 ′
1×𝑇 ′

2 ∈𝑃𝑖
𝑇 ′
2 ≤

( ∨
𝑇 ′
1×𝑇 ′

2 ∈𝑁 𝑖\𝑁 ′𝑇
′
2
)
∨𝑇2

))
∧(

∀𝑁 ′ ⊆ 𝑁 𝑖 .

( ∧
𝑇 ′
1×𝑇 ′

2 ∈𝑃𝑖
𝑇 ′
1 ≤

( ∨
𝑇 ′
1×𝑇 ′

2 ∈𝑁 ′𝑇 ′
1
)
∨𝑇1

)
∨

( ∧
𝑇 ′
1×𝑇 ′

2 ∈𝑃𝑖
𝑇 ′
2 ≤ ∨

𝑇 ′
1×𝑇 ′

2 ∈𝑁 𝑖\𝑁 ′𝑇
′
2

))
We have split the quantication over all 𝑁 ′ into two: we consider the type 𝑇1 × 𝑇2 in the
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second case and not in the rst.
We also have∨

(𝑇 ′′
1 ,𝑇

′′
2 ) ∈𝜋 (𝑇 ) 𝑇

′′
1 ×𝑇 ′′

2 ≤ 𝑇1 ×𝑇2 ⇐⇒ ∀(𝑇 ′′
1 ,𝑇

′′
2 ) ∈ 𝜋 (𝑇 ) . 𝑇 ′′

1 ×𝑇 ′′
2 ≤ 𝑇1 ×𝑇2

⇐⇒ ∀(𝑇 ′′
1 ,𝑇

′′
2 ) ∈ 𝜋 (𝑇 ) . (𝑇 ′′

1 ≤ 𝑇1) ∧ (𝑇 ′′
2 ≤ 𝑇2)

with

𝜋 (𝑇 ) =
⋃

𝑖∈𝐼 ,I𝑖�0

{( ∧
𝑇 ′
1×𝑇 ′

2 ∈𝑃𝑖

𝑇 ′
1 ∧

∧
𝑇 ′
1×𝑇 ′

2 ∈𝑁 ′
¬𝑇 ′

1︸                          ︷︷                          ︸
𝑇 1

,
∧

𝑇 ′
1×𝑇 ′

2 ∈𝑃𝑖

𝑇 ′
2 ∧

∧
𝑇 ′
1×𝑇 ′

2 ∈𝑁 𝑖\𝑁 ′

¬𝑇 ′
2︸                               ︷︷                               ︸

𝑇 2

)
���𝑁 ′ ⊆ 𝑁 𝑖 ,𝑇 1 � 0,𝑇 2 � 0

}
To show

𝑇 ≤ 𝑇1 ×𝑇2 ⇐⇒ ∨
(𝑇 ′′

1 ,𝑇
′′
2 ) ∈𝜋 (𝑇 ) 𝑇

′′
1 ×𝑇 ′′

2 ≤ 𝑇1 ×𝑇2

we rst show the implication from left to right. Let (𝑇 ′′
1 ,𝑇

′′
2 ) ∈ 𝜋 (𝑇 ). Since 𝜋 (𝑇 ) is a union,

(𝑇 ′′
1 ,𝑇

′′
2 ) must be in at least one set in the union; we assume it is the set indexed by 𝑖0 ∈ 𝐼 .

We must show 𝑇 ′′
1 ≤ 𝑇1 and 𝑇 ′′

2 ≤ 𝑇2.
By denition, (𝑇 ′′

1 ,𝑇
′′
2 ) is a pair corresponding to some 𝑁 ′ ⊆ 𝑁 𝑖0 . In that case, we must

check∧
𝑇 ′
1×𝑇 ′

2 ∈𝑃𝑖0
𝑇 ′
1 ∧

∧
𝑇 ′
1×𝑇 ′

2 ∈𝑁 ′ ¬𝑇 ′
1 ≤ 𝑇1

∧
𝑇 ′
1×𝑇 ′

2 ∈𝑃𝑖0
𝑇 ′
2 ∧

∧
𝑇 ′
1×𝑇 ′

2 ∈𝑁 𝑖0\𝑁 ′ ¬𝑇 ′
2 ≤ 𝑇2 ,

which is∧
𝑇 ′
1×𝑇 ′

2 ∈𝑃𝑖0
𝑇 ′
1 ≤

( ∨
𝑇 ′
1×𝑇 ′

2 ∈𝑁 ′𝑇 ′
1
)
∨𝑇1

∧
𝑇 ′
1×𝑇 ′

2 ∈𝑃𝑖0
𝑇 ′
2 ≤

( ∨
𝑇 ′
1×𝑇 ′

2 ∈𝑁 𝑖0\𝑁 ′𝑇
′
2
)
∨𝑇2 .

We know from the condition on the set that∧
𝑇 ′
1×𝑇 ′

2 ∈𝑃𝑖0
𝑇 ′
1 �

∨
𝑇 ′
1×𝑇 ′

2 ∈𝑁 ′𝑇 ′
1

∧
𝑇 ′
1×𝑇 ′

2 ∈𝑃𝑖0
𝑇 ′
2 �

∨
𝑇 ′
1×𝑇 ′

2 ∈𝑁 𝑖0\𝑁 ′𝑇
′
2 .

We can check the two relations in the decomposition above obtained by Lemma B.4 using
the relations that do not hold to eliminate one case in the disjunction.
To check the other direction of the implication, we assume that, for all (𝑇 ′′

1 ,𝑇
′′
2 ) ∈ 𝜋 (𝑇 ),

we have (𝑇 ′′
1 ≤ 𝑇1) ∧ (𝑇 ′′

2 ≤ 𝑇2). We prove that the conditions obtained from the decompo-
sition of subtyping hold. Consider an arbitrary 𝑖 ∈ 𝐼 . As 𝜋 (𝑇 ) is a union, we will consider
the set indexed by the same 𝑖 . For the rst condition, we take an arbitrary 𝑁 ′. If there is a
pair corresponding to the same 𝑁 ′ in 𝜋 (𝑇 ), then we show the second disjunct. If there is no
such pair, it is because 𝑇 1 or 𝑇 2 is empty, which also allows us to conclude. For the second
condition, we consider an arbitrary 𝑁 ′ and proceed analogously. �

Lemma B.11. Let 𝑇 be a type frame such that 𝑇 ≤ 1 × 1. Then 𝑇 ≤ 𝜋1(𝑇 ) × 𝜋2(𝑇 ). Moreover, if

𝑇 ≤ 𝑇1 ×𝑇2, then 𝜋1(𝑇 ) ≤ 𝑇1 and 𝜋2(𝑇 ) ≤ 𝑇2.

Proof. We have
∨

(𝑇 ′
1 ,𝑇

′
2 ) ∈𝜋 (𝑇 ) 𝑇

′
1 ×𝑇 ′

2 ≤ (∨(𝑇 ′
1 ,𝑇

′
2 ) ∈𝜋 (𝑇 ) 𝑇

′
1 )×(

∨
(𝑇 ′

1 ,𝑇
′
2 ) ∈𝜋 (𝑇 ) 𝑇

′
2 ) = 𝜋1(𝑇 )×𝜋2(𝑇 ).

Hence, by Lemma B.11, we have 𝑇 ≤ 𝜋1(𝑇 ) × 𝜋2(𝑇 ).
If 𝑇 ≤ 𝑇1 ×𝑇2, again by Lemma B.11, we have

∨
(𝑇 ′

1 ,𝑇
′
2 ) ∈𝜋 (𝑇 ) 𝑇

′
1 ×𝑇 ′

2 ≤ 𝑇1 ×𝑇2. Hence, for
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every (𝑇 ′
1 ,𝑇

′
2 ) ∈ 𝜋 (𝑇 ), we have𝑇 ′

1 ×𝑇 ′
2 ≤ 𝑇1 ×𝑇2 and, by the denition of subtyping,𝑇 ′

1 ≤ 𝑇1

and 𝑇 ′
2 ≤ 𝑇2, since 𝑇 ′

1 and 𝑇 ′
2 are not empty. As a result, we also have

∨
(𝑇 ′

1 ,𝑇
′
2 ) ∈𝜋 (𝑇 ) 𝑇

′
1 ≤ 𝑇1

and
∨

(𝑇 ′
1 ,𝑇

′
2 ) ∈𝜋 (𝑇 ) 𝑇

′
2 ≤ 𝑇2, that is, 𝜋1(𝑇 ) ≤ 𝑇1 and 𝜋2(𝑇 ) ≤ 𝑇2. �

Lemma B.12. Let 𝑇 be a type frame such that 𝑇 ≤ 1 × 1. If 𝑇 is strongly polarized, then 𝜋1(𝑇 )
and 𝜋2(𝑇 ) are strongly polarized.

Proof. If 𝑇 is strongly polarized, then, by Lemma B.7, UDNF(𝑇 ) is strongly polarized too.
We can check on the denition of 𝜋 (𝑇 ) that, in every (𝑇1,𝑇2) ∈ 𝜋 (𝑇 ), subterms of UDNF(𝑇 )
appear in𝑇𝑖 with the same polarity as in UDNF(𝑇 ). Then, 𝜋𝑖 (𝑇 ) also preserves polarity. �

Denition B.13 (Function domain and decomposition). Given a type frame𝑇 ≤ 0 → 1, we
dene its domain dom(𝑇 ) as

dom(𝑇 ) =def
∧

𝑖∈𝐼 ,I𝑖�0

∨
𝑇1→𝑇2∈𝑃𝑖

𝑇1

and its decomposition 𝜙 (𝑇 ) as

𝜙 (𝑇 ) =def
⋃

𝑖∈𝐼 ,I𝑖�0

{ ( ∨
𝑇1→𝑇2∈𝑃 ′

𝑇1,
∧

𝑇1→𝑇2∈𝑃𝑖\𝑃 ′

𝑇2

) ����� 𝑃 ′ ( 𝑃𝑖

}
where

UDNF(𝑇 ) =
∨
𝑖∈𝐼

(∧
𝑎∈𝑃𝑖

𝑎 ∧
∧
𝑎∈𝑁𝑖

¬𝑎
)

︸                 ︷︷                 ︸
I𝑖

and where 𝑃𝑖 = 𝑃𝑖 ∩ A𝑓 𝑢𝑛 and 𝑁 𝑖 = 𝑁𝑖 ∩ A𝑓 𝑢𝑛 .

Denition B.14 (Application result type). Given two type frames 𝑇 and 𝑇 ′
such that 𝑇 ≤

0 → 1 and 𝑇 ′ ≤ dom(𝑇 ), we dene the application result type 𝑇 ◦𝑇 ′
as

𝑇 ◦𝑇 ′ =def
∨

(𝑇1,𝑇2) ∈𝜙 (𝑇 )
𝑇 ′�𝑇1

𝑇2 .

Lemma B.15. Let 𝑇 be a type frame such that 𝑇 ≤ 0 → 1. Then, for all type frames 𝑇 ′
and 𝑇 ′′

,

𝑇 ≤ 𝑇 ′ → 𝑇 ′′ ⇐⇒


∀(𝑇 ′

1 ,𝑇
′
2 ) ∈ 𝜙 (𝑇 ) . (𝑇 ′ ≤ 𝑇 ′

1 ) ∨ (𝑇 ′
2 ≤ 𝑇 ′′)

∧
𝑇 ′ ≤ dom(𝑇 )

Proof. Given 𝑇 , we have

UDNF(𝑇 ) = ∨
𝑖∈𝐼

(∧
𝑎∈𝑃𝑖 𝑎 ∧

∧
𝑎∈𝑁𝑖

¬𝑎
)
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and, by Lemma B.7, 𝑇 ' UDNF(𝑇 ). Then, since 𝑇 ≤ 0 → 1, we have

∀𝑖 ∈ 𝐼 .
∧

𝑎∈𝑃𝑖 𝑎 ∧
∧

𝑎∈𝑁𝑖
¬𝑎 ≤ 0 → 1 .

For every non-empty intersection I𝑖 , since each 𝑃𝑖 must contain an atom, we have that
𝑃𝑖 contains a type frame of the form 𝑇1 → 𝑇2. Hence, since intersections are uniform,
𝑃𝑖 ∪ 𝑁𝑖 ⊆ A𝑓 𝑢𝑛 ∪ V 𝛼 . Moreover, V 𝛼 ∩ 𝑃𝑖 ∩ 𝑁𝑖 = ∅ otherwise I𝑖 would be empty.

We have

𝑇 ≤ 𝑇 ′ → 𝑇 ′′ ⇐⇒ ∨
𝑖∈𝐼

(∧
𝑎∈𝑃𝑖 𝑎 ∧

∧
𝑎∈𝑁𝑖

¬𝑎
)
≤ 𝑇 ′ → 𝑇 ′′

⇐⇒ ∨
𝑖∈𝐼 ,I𝑖�0

(∧
𝑎∈𝑃𝑖 𝑎 ∧

∧
𝑎∈𝑁𝑖

¬𝑎
)
≤ 𝑇 ′ → 𝑇 ′′

⇐⇒ ∀𝑖 ∈ 𝐼 ,I𝑖 � 0.
∧

𝑎∈𝑃𝑖 𝑎 ∧
∧

𝑎∈𝑁𝑖
¬𝑎 ∧ ¬(𝑇 ′ → 𝑇 ′′) ≤ 0

⇐⇒ ∀𝑖 ∈ 𝐼 ,I𝑖 � 0.
∧

𝑎∈𝑃𝑖∩A𝑓 𝑢𝑛
𝑎 ∧ ∧

𝑎∈𝑁𝑖∩A𝑓 𝑢𝑛
¬𝑎 ∧ ¬(𝑇 ′ → 𝑇 ′′) ≤ 0

(by Lemma B.9, since 𝑃𝑖∩V 𝛼 and𝑁𝑖∩V 𝛼 are disjoint; let 𝑃𝑖 = 𝑃𝑖∩A𝑓 𝑢𝑛 and𝑁 𝑖 = 𝑁𝑖∩A𝑓 𝑢𝑛)

⇐⇒ ∀𝑖 ∈ 𝐼 ,I𝑖 � 0.
∧

𝑇1→𝑇2∈𝑃𝑖
𝑇1 → 𝑇2 ∧

∧
𝑇1→𝑇2∈𝑁 𝑖

¬(𝑇1 → 𝑇2) ∧ ¬(𝑇 ′ → 𝑇 ′′) ≤ 0

⇐⇒ ∀𝑖 ∈ 𝐼 ,I𝑖 � 0.
∧

𝑇1→𝑇2∈𝑃𝑖
𝑇1 → 𝑇2 ≤

( ∨
𝑇1→𝑇2∈𝑁 𝑖

𝑇1 → 𝑇2
)
∨ (𝑇 ′ → 𝑇 ′′)

Now consider the statement of Lemma B.5. Let P𝑖 (𝑇 1,𝑇 2) be the proposition(
𝑇 1 ≤ ∨

𝑇1→𝑇2∈𝑃𝑖
𝑇1

)
∧

(
∀𝑃 ′ ( 𝑃𝑖 .

(
𝑇 1 ≤ ∨

𝑇1→𝑇2∈𝑃 ′𝑇1
)
∨

( ∧
𝑇1→𝑇2∈𝑃𝑖\𝑃 ′𝑇2 ≤ 𝑇 2

) )
By Lemma B.5, we have∧

𝑇1→𝑇2∈𝑃𝑖
𝑇1 → 𝑇2 ≤

∨
𝑇1→𝑇2∈𝑁 𝑖

𝑇1 → 𝑇2 ⇐⇒ ∃(𝑇 1 → 𝑇 2) ∈ 𝑁 𝑖 . P𝑖 (𝑇 1,𝑇 2)

and, since for all 𝑖 such that I𝑖 � 0 the subtyping relation on the left does not hold, we
know that P𝑖 (𝑇 1,𝑇 2) is false for all such 𝑖 and all 𝑇1 → 𝑇2 ∈ 𝑁 𝑖 .
We apply Lemma B.5 again to derive∧

𝑇1→𝑇2∈𝑃𝑖
𝑇1 → 𝑇2 ≤

( ∨
𝑇1→𝑇2∈𝑁 𝑖

𝑇1 → 𝑇2
)
∨ (𝑇 ′ → 𝑇 ′′) ⇐⇒(
∃(𝑇 1 → 𝑇 2) ∈ 𝑁 𝑖 . P𝑖 (𝑇 1,𝑇 2)

)
∨ P𝑖 (𝑇 ′,𝑇 ′′)

and hence P𝑖 (𝑇 ′,𝑇 ′′) must be true for all 𝑖 verifying I𝑖 � 0 in order for subtyping to hold.
We have therefore shown

𝑇 ≤ 𝑇 ′ → 𝑇 ′′ ⇐⇒ ∀𝑖 ∈ 𝐼 ,I𝑖 � 0. P𝑖 (𝑇 ′,𝑇 ′′)
⇐⇒ ∀𝑖 ∈ 𝐼 ,I𝑖 � 0.

(
𝑇 ′ ≤ ∨

𝑇1→𝑇2∈𝑃𝑖
𝑇1

)
∧(

∀𝑃 ′ ( 𝑃𝑖 .
(
𝑇 ′ ≤ ∨

𝑇1→𝑇2∈𝑃 ′𝑇1
)
∨

( ∧
𝑇1→𝑇2∈𝑃𝑖\𝑃 ′𝑇2 ≤ 𝑇 ′′) )
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and we must now show

∀𝑖 ∈ 𝐼 ,I𝑖 � 0.
(
𝑇 ′ ≤ ∨

𝑇1→𝑇2∈𝑃𝑖
𝑇1

)
∧(

∀𝑃 ′ ( 𝑃𝑖 .
(
𝑇 ′ ≤ ∨

𝑇1→𝑇2∈𝑃 ′𝑇1
)
∨

( ∧
𝑇1→𝑇2∈𝑃𝑖\𝑃 ′𝑇2 ≤ 𝑇 ′′) )

⇐⇒


∀(𝑇 ′

1 ,𝑇
′
2 ) ∈ 𝜙 (𝑇 ). (𝑇 ′ ≤ 𝑇 ′

1 ) ∨ (𝑇 ′
2 ≤ 𝑇 ′′)

∧
𝑇 ′ ≤ dom(𝑇 )

where

dom(𝑇 ) = ∧
𝑖∈𝐼 ,I𝑖�0

∨
𝑇1→𝑇2∈𝑃𝑖

𝑇1

𝜙 (𝑇 ) = ⋃
𝑖∈𝐼 ,I𝑖�0

{ (∨
𝑇1→𝑇2∈𝑃 ′𝑇1,

∧
𝑇1→𝑇2∈𝑃𝑖\𝑃 ′𝑇2

) ����� 𝑃 ′ ( 𝑃𝑖

}
We rst prove the implication from left to right. To prove 𝑇 ′ ≤ dom(𝑇 ), note that(

∀𝑖 ∈ 𝐼 ,I𝑖 � 0. 𝑇 ′ ≤ ∨
𝑇1→𝑇2∈𝑃𝑖

𝑇1

)
=⇒ 𝑇 ′ ≤ ∧

𝑖∈𝐼 ,I𝑖�0
∨

𝑇1→𝑇2∈𝑃𝑖
𝑇1 .

To prove the rst condition, consider an arbitrary (𝑇 ′
1 ,𝑇

′
2 ) ∈ 𝜙 (𝑇 ). We have, for some

𝑖 ∈ 𝐼 and 𝑃 ′ ( 𝑃𝑖 (verifying I𝑖 � 0),

(𝑇 ′
1 ,𝑇

′
2 ) =

( ∨
𝑇1→𝑇2∈𝑃 ′𝑇1,

∧
𝑇1→𝑇2∈𝑃𝑖\𝑃 ′𝑇2

)
.

𝑃 ′ is necessarily also one of the 𝑃 ′ considered in the premise of the implication, so the result
follows.
To prove the reverse implication, consider an arbitrary 𝑖 ∈ 𝐼 . The rst condition follows

from 𝑇 ′ ≤ dom(𝑇 ). Moreover, for every 𝑃 ′, a pair exists in 𝜙 (𝑇 ) such that the second
condition holds. �

Lemma B.16. Let 𝑇 be a type frame such that 𝑇 ≤ 0 → 1. Then, 𝑇 ≤ dom(𝑇 ) → 1. Moreover, if

𝑇 ≤ 𝑇 ′ → 1, then 𝑇 ′ ≤ dom(𝑇 ).

Proof. Consider the equivalence of Lemma B.15, with 𝑇 ′ = dom(𝑇 ) and 𝑇 ′′ = 1. The three
conditions on the right-hand side are all veried, the rst two since 1 is the top element of
subtyping and the third by reexivity. Hence, 𝑇 ≤ dom(𝑇 ) → 1.
When 𝑇 ≤ 𝑇 ′ → 1, again by Lemma B.15 we have 𝑇 ′ ≤ dom(𝑇 ). �

Lemma B.17. Let𝑇 be a type frame such that𝑇 ≤ 0 → 1. If𝑇 is strongly polarized, then dom(𝑇 )
is strongly negatively polarized.

Proof. If𝑇 is strongly polarized, then, by Lemma B.7,UDNF(𝑇 ) is strongly polarized too. We
just check on the denition of dom(𝑇 ) that every 𝑇1 appears in positive position, whereas
it appeared in negative position in UDNF(𝑇 ) (because it appeared on the left on an arrow
𝑇1 → 𝑇2 in positive position). �

Lemma B.18. Let 𝑇 and 𝑇 ′
be type frames such that 𝑇 ≤ 0 → 1 and 𝑇 ′ ≤ dom(𝑇 ). Then,

𝑇 ≤ 𝑇 ′ → (𝑇 ◦𝑇 ′). Moreover, if 𝑇 ≤ 𝑇 ′ → 𝑇 ′′
, then 𝑇 ◦𝑇 ′ ≤ 𝑇 ′′

.
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Proof. We prove 𝑇 ≤ 𝑇 ′ → (𝑇 ◦𝑇 ′) by Lemma B.15. We must show the two conditions

∀(𝑇 ′
1 ,𝑇

′
2 ) ∈ 𝜙 (𝑇 ). (𝑇 ′ ≤ 𝑇 ′

1 ) ∨ (𝑇 ′
2 ≤ (𝑇 ◦𝑇 ′)) 𝑇 ′ ≤ dom(𝑇 )

the second of which holds by hypothesis. To show the rst condition, we take an arbitrary
(𝑇 ′

1 ,𝑇
′
2 ) ∈ 𝜙 (𝑇 ). Either 𝑇 ′ ≤ 𝑇 ′

1 holds or not. If it does not hold, then 𝑇 ′
2 ≤ 𝑇 ◦ 𝑇 ′ holds

because 𝑇2 is a summand in the union of 𝑇 ◦𝑇 ′.
Now, assuming 𝑇 ≤ 𝑇 ′ → 𝑇 ′′, we must show 𝑇 ◦𝑇 ′ ≤ 𝑇 ′′. By Lemma B.15, we have

∀(𝑇 ′
1 ,𝑇

′
2 ) ∈ 𝜙 (𝑇 ) . (𝑇 ′ ≤ 𝑇 ′

1 ) ∨ (𝑇 ′
2 ≤ 𝑇 ′′)

Hence, for every (𝑇 ′
1 ,𝑇

′
2 ) ∈ 𝜙 (𝑇 ) such that 𝑇 ′ � 𝑇 ′

1 , we have 𝑇
′
2 ≤ 𝑇 ′′. Then the union of all

such 𝑇 ′
2 is also a subtype of 𝑇 ′′, which shows that 𝑇 ◦𝑇 ′ s a subtype of 𝑇 ′′ as well. �

Lemma B.19. Let𝑇 and𝑇 ′
be type frames such that𝑇 ≤ 0 → 1 and𝑇 ′ ≤ dom(𝑇 ). If𝑇 is strongly

polarized and 𝑇 ′
is strongly negatively polarized, then 𝑇 ◦𝑇 ′

is strongly polarized.

Proof. If 𝑇 is strongly polarized, then, by Lemma B.7, UDNF(𝑇 ) is strongly polarized too.
We can check on the denition of 𝑇 ◦𝑇 ′ that subterms of UDNF(𝑇 ) in it are all in positive
position and they were in positive position also in UDNF(𝑇 ). �

B.4. Normal forms on casts and operators

In this section, we introduce the notion of normal forms for set-theoretic gradual types, and use
it do dene operators on types and casts. The formal denition of the operators are presented
in Denition B.36 and Denition B.40, following the introduction of many preliminary results
about ground types and disjunctive normal forms for gradual types.

Proposition B.20. For all types 𝜏, 𝜏 ′ such that 𝜏 ′ 4 𝜏 , it holds that 𝜏 ′ 4 𝜏/𝜏 ′ 4 𝜏 .

Proof. By induction on the pair (𝜏 ′, 𝜏), and by cases on 𝜏 ′.

• 𝜏 ′ = ?. Note that 𝜏 ′ 4 𝜏/𝜏 ′ always holds. We then reason by cases on 𝜏 to prove the
second materialization.

– 𝜏 = ?. The result is immediate since 𝜏 = 𝜏/𝜏 ′ = ?.

– 𝜏 = 𝛼 . Once again, 𝜏 = 𝜏/𝜏 ′ = 𝛼 .

– 𝜏 = 𝑏. Once again, 𝜏 = 𝜏/𝜏 ′ = 𝑏.

– 𝜏 = 𝜏1 × 𝜏2. Then 𝜏/𝜏 ′ = ? × ?, and it holds that ? × ? 4 𝜏1 × 𝜏2.

– 𝜏 = 𝜏1 → 𝜏2. Then 𝜏/𝜏 ′ = ? → ?, and it holds that ? → ? 4 𝜏1 → 𝜏2.

– 𝜏 = 𝜏1 ∨ 𝜏2. Then 𝜏/𝜏 ′ = 𝜏1/? ∨ 𝜏2/?. For every 𝑖 ∈ {1, 2}, we have ? 4 𝜏𝑖 thus
by induction hypothesis, 𝜏𝑖 /? 4 𝜏𝑖 . Finally, 𝜏1/? ∨ 𝜏2/? 4 𝜏1 ∨ 𝜏2.

– 𝜏 = ¬𝜏0. Then 𝜏/? = ¬(𝜏0/?). By induction hypothesis, 𝜏0/? 4 𝜏0 thus
¬(𝜏0/?) 4 ¬𝜏0.

– 𝜏 = 0. Then 𝜏/𝜏 ′ = 0 and the result is immediate.
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• 𝜏 ′ = 𝜏 ′1∨𝜏 ′2. Then necessarily 𝜏 = 𝜏1∨𝜏2, with 𝜏 ′𝑖 4 𝜏𝑖 for every 𝑖 ∈ {1, 2}. By induction
hypothesis, 𝜏 ′𝑖 4 𝜏𝑖 /𝜏 ′𝑖 4 𝜏𝑖 , and the result follows.

• 𝜏 ′ = ¬𝜏 ′0. Then necessarily 𝜏 = ¬𝜏0 with 𝜏 ′0 4 𝜏0. By induction hypothesis, 𝜏 ′0 4
𝜏0/𝜏 ′0 4 𝜏0 and the result follows.

• Otherwise, 𝜏/𝜏 ′ = 𝜏 ′ and since 𝜏 ′ 4 𝜏 the result is immediate.

�

Lemma B.21. For all types 𝜏, 𝜏 ′ that do not contain type connectives, if 𝜏 4 𝜏 ′ and 𝜏 ′/𝜏 ≠ 𝜏 then

𝜏 = ?.

Proof. Eliminating all cases involving connectives in Denition B.1 as well as the case 𝜏 ′/𝜏 =
𝜏 , the only remaining cases are those were 𝜏 = ?. �

Lemma B.22. For all types 𝜏, 𝜏 ′ that do not contain type connectives such that 𝜏
′/𝜏 = 𝜏 ′, then

𝜏 ′ = 𝜏 or 𝜏 = ?.

Proof. Suppose that 𝜏 ≠ ?. Eliminating all cases involving connectives or where 𝜏 = ? in
Denition B.1, the only remaining case is 𝜏 ′/𝜏 = 𝜏 . However, by hypothesis, 𝜏 ′/𝜏 = 𝜏 ′

therefore 𝜏 = 𝜏 ′. �

Lemma B.23. For all types 𝜏, 𝜏 ′ such that 𝜏
′/𝜏 = 𝜏 ′, the following holds:

∀𝑑𝐿 ∈ È𝜏 ′?É, 𝑑𝐿∪{𝑋1 }\{𝑋0 } ∈ È𝜏?É

∀𝑑𝐿 ∉ È𝜏 ′>É, 𝑑𝐿∪{𝑋1 }\{𝑋0 } ∉ È𝜏>É

Proof. The two results are proved simultaneously by induction over the pair (𝑑𝐿, 𝜏).

• 𝜏 = ?. Since 𝑋1 ∈ tags(𝑑𝐿∪{𝑋1 }\{𝑋0 }), it is immediate that 𝑑𝐿∪{𝑋1 }\{𝑋0 } ∈ È𝜏?É.
Moreover, 𝑋0 ∉ tags(𝑑𝐿∪{𝑋1 }\{𝑋0 }) hence 𝑑𝐿∪{𝑋1 }\{𝑋0 } ∉ È𝜏>É.

• 𝜏 = 𝛼 . By hypothesis, we have 𝜏 = 𝜏 ′ = 𝛼 . Therefore, for every 𝑑𝐿 ∈ È𝜏 ′?É, it holds
that 𝛼 ∈ 𝐿. Thus 𝛼 ∈ tags(𝑑𝐿∪{𝑋1 }\{𝑋0 }), hence the rst result. The second result is
proved using the same reasoning.

• 𝜏 = 𝑏. By hypothesis, since 𝜏 ′/𝜏 = 𝜏 ′, we have 𝜏 = 𝜏 ′ = 𝑏, and the result is immediate
since the interpretation of a constant contains all possible sets of labels.

• 𝜏 = 𝜏1 ×𝜏2. Since 𝜏 ′/𝜏 = 𝜏 ′, necessarily 𝜏 = 𝜏 ′ and the result is immediate for the same
reason as the previous case.

• 𝜏 = 𝜏1 → 𝜏2. Once again, necessarily 𝜏 = 𝜏 ′ and the result is immediate.

• 𝜏 = 𝜏1 ∨ 𝜏2. Let 𝑑𝐿 ∈ È𝜏?É. There exists 𝑖 ∈ {1, 2} such that 𝑑𝐿 ∈ È𝜏?
𝑖
É. Thus,

by induction hypothesis, it holds that 𝑑𝐿∪{𝑋1 }\{𝑋0 } ∈ È𝜏?
𝑖
É. Therefore, we have

𝑑𝐿∪{𝑋1 }\{𝑋0 } ∈ È𝜏?É, which is the result. The same reasoning can be done for the
second case.

• 𝜏 = ¬𝜏 ′. Let 𝑑𝐿 ∈ È𝜏?É. By denition, 𝑑𝐿 ∉ È𝜏 ′>É. By induction hypothesis, we
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therefore have 𝑑𝐿∪{𝑋1 }\{𝑋0 } ∉ È𝜏 ′>É. Thus, 𝑑𝐿∪{𝑋1 }\{𝑋0 } ∈ È𝜏?É. The same reasoning
can be done for the second result.

�

Corollary B.24. For all types 𝜏, 𝜏 ′ such that 𝜏
′/𝜏 = 𝜏 ′, and all types 𝜏𝑙 , 𝜏𝑟 such that 𝜏 ≤ 𝜏𝑙 → 𝜏𝑟 ,

then 𝜏 ′ ≤ 𝜏𝑙 → 𝜏𝑟 .

Proof. Let 𝑑𝐿 ∈ È𝜏 ′?É. By Lemma B.23, we know that 𝑑𝐿∪{𝑋1 }\{𝑋0 } ∈ È𝜏?É. Moreover, by
hypothesis, 𝜏 ≤ 𝜏𝑙 → 𝜏𝑟 , thus, by Theorem 5.18, 𝑑𝐿∪{𝑋1 }\{𝑋0 } ∈ È(𝜏𝑙 → 𝜏𝑟 )?É. However,
the fact that an element of D belongs to È(𝜏𝑙 → 𝜏𝑟 )?É is independent of its set of labels,
therefore 𝑑𝐿 ∈ È(𝜏𝑙 → 𝜏𝑟 )?É. Thus, we obtain that 𝜏 ′? ≤ (𝜏𝑙 → 𝜏𝑟 )? and the result follows
by Theorem 5.18. �

Corollary B.25. For all types 𝜏, 𝜏 ′ such that 𝜏
′/𝜏 = 𝜏 ′, and all types 𝜏𝑙 , 𝜏𝑟 such that 𝜏 ≤ 𝜏𝑙 × 𝜏𝑟 ,

then 𝜏 ′ ≤ 𝜏𝑙 × 𝜏𝑟 .

Proof. Let 𝑑𝐿 ∈ È𝜏 ′?É. By Lemma B.23, we know that 𝑑𝐿∪{𝑋1 }\{𝑋0 } ∈ È𝜏?É. Moreover,
by hypothesis, 𝜏 ≤ 𝜏𝑙 × 𝜏𝑟 , thus, by Theorem 5.18, 𝑑𝐿∪{𝑋1 }\{𝑋0 } ∈ È(𝜏𝑙 × 𝜏𝑟 )?É. However,
the fact that an element of D belongs to È(𝜏𝑙 × 𝜏𝑟 )?É is independent of its set of labels,
therefore 𝑑𝐿 ∈ È(𝜏𝑙 × 𝜏𝑟 )?É. Thus, we obtain that 𝜏 ′? ≤ (𝜏𝑙 × 𝜏𝑟 )? and the result follows by
Theorem 5.18. �

Denition B.26. We dene the function𝑚 recursively on D as follows:

𝑚 : D ∪ {Ω} → D ∪ {Ω}
𝑚(Ω) = Ω

𝑚(𝑐𝐿) = 𝑐𝐿∪{𝑋0 }\{𝑋1 }

𝑚((𝑑𝑙 , 𝑑𝑟 )𝐿) = (𝑚(𝑑𝑙 ),𝑚(𝑑𝑟 ))𝐿∪{𝑋0 }\{𝑋1 }

𝑚((𝑑1, 𝑑 ′
1), . . . , (𝑑𝑛, 𝑑 ′

𝑛)
𝐿) = (𝑚(𝑑1),𝑚(𝑑 ′

1)), . . . , (𝑚(𝑑𝑛),𝑚(𝑑 ′
𝑛))

𝐿∪{𝑋0 }\{𝑋1 }

Lemma B.27. For all types 𝜏, 𝜏 ′ such that 𝜏 4 𝜏 ′, the following holds:

∀𝑑 ∈ È𝜏 ′?É,𝑚(𝑑) ∈ È𝜏?É

∀𝑑 ∉ È𝜏 ′>É,𝑚(𝑑) ∉ È𝜏>É

Proof. The two results are proved simultaneously by induction on the pair (𝑑, 𝜏).

• 𝜏 = ?. For every 𝑑 ∈ D , 𝑋0 ∈ tags(𝑚(𝑑)) by Denition B.26. Therefore 𝑚(𝑑) ∈
È𝑋0É = È𝜏?É. Similarly, 𝑋1 ∉ tags(𝑚(𝑑)), thus𝑚(𝑑) ∉ È𝑋1É = È𝜏>É.

• 𝜏 = 𝛼 . Immediate since, by hypothesis, 𝜏 4 𝜏 ′ therefore 𝜏 = 𝜏 ′ = 𝛼 .

• 𝜏 = 𝑏. Immediate since, by hypothesis, 𝜏 4 𝜏 ′ therefore 𝜏 = 𝜏 ′ = 𝑏.

• 𝜏 = 𝜏1 × 𝜏2. By hypothesis, 𝜏 ′ = 𝜏 ′1 × 𝜏 ′2 with 𝜏1 4 𝜏 ′1 and 𝜏2 4 𝜏 ′2. Let 𝑑 ∈ È𝜏 ′?É. Since
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È𝜏 ′?É = È𝜏 ′?1 × 𝜏 ′?2 É, 𝑑 = (𝑑1, 𝑑2)𝐿 for some 𝑑1, 𝑑2 ∈ D , where 𝑑𝑖 ∈ È𝜏 ′?
𝑖

É, for every
𝑖 ∈ {1, 2}. By induction, it holds that𝑚(𝑑𝑖) ∈ È𝜏?

𝑖
É, thus (𝑚(𝑑1),𝑚(𝑑2))𝐿

′ ∈ È𝜏?
1 ×𝜏?

2 É
for every set of tags 𝐿′. Hence𝑚(𝑑) ∈ È𝜏?É.

Similarly, let 𝑑 ∉ È𝜏 ′>É. If 𝑑 ≠ (𝑑1, 𝑑2)𝐿 for some 𝑑1, 𝑑2 ∈ D , then it is immediate that
𝑚(𝑑) ∉ È𝜏>É since it only contains pairs. Otherwise, if 𝑑 = (𝑑1, 𝑑2)𝐿 for some 𝑑1, 𝑑2 ∈
D , then 𝑑𝑖 ∉ È𝜏 ′>

𝑖
É for some 𝑖 ∈ {1, 2}. By induction, it holds that 𝑚(𝑑𝑖) ∉ È𝜏>

𝑖
É.

Therefore, (𝑚(𝑑1),𝑚(𝑑2))𝐿
′
∉ È𝜏>

1 × 𝜏>
2 É for every set of tags 𝐿′, hence the result.

• 𝜏 = 𝜏1 → 𝜏2. By hypothesis, 𝜏 ′ = 𝜏 ′1 → 𝜏 ′2 with 𝜏1 4 𝜏 ′1 and 𝜏2 4 𝜏 ′2. For every
𝑑 ∈ È𝜏 ′?É, 𝑑 is a relation (𝑑1, 𝑑 ′

1), . . . , (𝑑𝑛, 𝑑 ′
𝑛)𝐿 . Let 𝑖 ∈ {1, 𝑛} such that 𝑚(𝑑𝑖) ∈

È𝜏>
1 É. According to the contrapositive of the second induction hypothesis,𝑑𝑖 ∈ È𝜏 ′>1 É.

Therefore, by denition of È𝜏 ′?É, 𝑑 ′
𝑖 ∈ È𝜏 ′?2 É. Applying the rst induction hypothesis,

𝑚(𝑑 ′
𝑖 ) ∈ È𝜏?

2 É.

To summarize,𝑚(𝑑𝑖) ∈ È𝜏>
1 É =⇒ 𝑚(𝑑 ′

𝑖 ) ∈ È𝜏?
2 É.

Therefore, (𝑚(𝑑1),𝑚(𝑑 ′
1)), . . . , (𝑚(𝑑𝑛),𝑚(𝑑 ′

𝑛))𝐿
′ ∈ È𝜏?É for every set of tags 𝐿, hence

the rst result.

Similarly, for every 𝑑 ∉ È𝜏 ′>É, if 𝑑 is not a relation then it is immediate that𝑚(𝑑) ∉
È𝜏>É since𝑚(𝑑) is also not a relation and È𝜏>É only contains relations. Otherwise,
if 𝑑 = (𝑑1, 𝑑 ′

1), . . . , (𝑑𝑛, 𝑑 ′
𝑛)𝐿 , then, by denition of È𝜏 ′>É, there exists a 𝑖 ∈ {1, 𝑛}

such that 𝑑𝑖 ∈ 𝜏 ′?1 and 𝑑 ′
𝑖 ∉ 𝜏 ′>2 . The induction hypothesis yields 𝑚(𝑑𝑖) ∈ 𝜏?

1 and
𝑚(𝑑 ′

𝑖 ) ∉ 𝜏>
2 . Thus, 𝑑 ∉ È𝜏>É independently of its set of tags, hence the result.

• 𝜏 = 𝜏1 ∨ 𝜏2. By hypothesis, 𝜏 ′ = 𝜏 ′1 ∨ 𝜏 ′2 with 𝜏1 4 𝜏 ′1 and 𝜏2 4 𝜏 ′2. For every 𝑑 ∈ È𝜏 ′?É,
𝑑 ∈ È𝜏 ′?

𝑖
É for some 𝑖 ∈ {1, 2}. Thus, by induction hypothesis,𝑚(𝑑) ∈ È𝜏?

𝑖
É ⊂ È𝜏?É,

hence the result.

Similarly, for every 𝑑 ∉ È𝜏 ′>É, 𝑑 ∉ È𝜏 ′>
𝑖

É for every 𝑖 ∈ {1, 2}. Thus, by induction
hypothesis,𝑚(𝑑) ∉ È𝜏>

𝑖
É for every 𝑖 ∈ {1, 2}, hence the result.

• 𝜏 = ¬𝜏0. By hypothesis, 𝜏 ′ = ¬𝜏 ′0 with 𝜏0 4 𝜏 ′0. Let 𝑑 ∈ È𝜏 ′?É. By denition, 𝑑 ∉ È𝜏 ′>0 É.
By induction, we have 𝑚(𝑑) ∉ È𝜏>

0 É, hence 𝑚(𝑑) ∈ È𝜏?É. We can do the same
reasoning for 𝑑 ∉ È𝜏 ′>É, which concludes this proof.

�

Corollary B.28. For all types 𝜏, 𝜏 ′ such that 𝜏 4 𝜏 ′, if 𝜏 ≤ 0 → 1 then 𝜏 ′ ≤ 0 → 1.

Proof. Let 𝑑 ∈ È𝜏 ′?É. By Lemma B.27, it holds that 𝑚(𝑑) ∈ È𝜏?É. Since 𝜏 ≤ 0 → 1,
Theorem 5.18 yields 𝜏? ≤ 0 → 1. Thus,𝑚(𝑑) ∈ È0 → 1É, which implies that𝑚(𝑑) = 𝑅𝐿

for some relation 𝑅 ⊂ D × D ∪ {Ω}.
By inversion of Denition B.26, 𝑑 = 𝑅′𝐿 for some relation 𝑅′ ⊂ D × D ∪ {Ω}. Thus

𝑑 ∈ È0 → 1É, which yields that 𝜏 ′? ≤ 0 → 1. Theorem 5.18 then gives the result. �

Corollary B.29. For all types 𝜏, 𝜏 ′ such that 𝜏 4 𝜏 ′, if 𝜏 ≤ 1 × 1 then 𝜏 ′ ≤ 1 × 1.

Proof. Let 𝑑 ∈ È𝜏 ′?É. By Lemma B.27, it holds that𝑚(𝑑) ∈ È𝜏?É. Since 𝜏 ≤ 1 × 1, Theo-
rem 5.18 yields 𝜏? ≤ 1 × 1. Thus,𝑚(𝑑) ∈ È1 × 1É, which implies that𝑚(𝑑) = (𝑑𝑙 , 𝑑𝑟 )𝐿 for
some 𝑑𝑙 , 𝑑𝑟 ∈ D .
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By inversion of Denition B.26, 𝑑 = (𝑑 ′
𝑙
, 𝑑 ′

𝑟 )𝐿 for some 𝑑 ′
𝑙
, 𝑑 ′

𝑟 ∈ D . Thus 𝑑 ∈ È1 × 1É,
which yields that 𝜏 ′? ≤ 1 × 1. Theorem 5.18 then gives the result. �

Corollary B.30. For all types 𝜏, 𝜏 ′ such that 𝜏 4 𝜏 ′, if 𝜏 ′ � 0 then 𝜏 � 0.

Proof. Since 𝜏 ′ � 0, by Theorem 5.18, it holds that 𝜏 ′? � 0. Thus, there exists 𝑑 ∈ È𝜏 ′?É.
Applying Lemma B.27 yields𝑚(𝑑) ∈ È𝜏?É, therefore 𝜏? � 0. Theorem 5.18, then yields the
result. �

We now extend the previous denition of atoms to gradual types. That is, we refer to a gradual
type of the form 𝑏, 𝜏1 × 𝜏2, or 𝜏1 → 𝜏2 as an atom. We write B?, A ?

𝑝𝑟𝑜𝑑
, and A ?

𝑓 𝑢𝑛
for the set of

gradual types of the forms 𝑏, 𝜏1 × 𝜏2, and 𝜏1 → 𝜏2, respectively.
In the following, the metavariable 𝑎 ranges over the set B? ∪ A ?

𝑝𝑟𝑜𝑑
∪ A ?

𝑓 𝑢𝑛
∪ V 𝛼 ∪ {?}.

Denition B.31 (Uniform gradual normal form). A uniform gradual (disjunctive) normal
form (UGDNF) is a gradual type 𝜏 of the form∨

𝑖∈𝐼

(∧
𝑎∈𝑃𝑖

𝑎 ∧
∧
𝑎∈𝑁𝑖

¬𝑎
)

such that, for all 𝑖 ∈ 𝐼 , one of the following three condition holds:

• 𝑃𝑖 ∩ B? ≠ ∅ and (𝑃𝑖 ∪ 𝑁𝑖) ∩ (A ?
𝑝𝑟𝑜𝑑

∪ A ?
𝑓 𝑢𝑛

) = ∅;

• 𝑃𝑖 ∩ A ?
𝑝𝑟𝑜𝑑

≠ ∅ and (𝑃𝑖 ∪ 𝑁𝑖) ∩ (B? ∪ A ?
𝑓 𝑢𝑛

) = ∅;

• 𝑃𝑖 ∩ A ?
𝑓 𝑢𝑛

≠ ∅ and (𝑃𝑖 ∪ 𝑁𝑖) ∩ (B? ∪ A ?
𝑝𝑟𝑜𝑑

) = ∅;

For every type 𝜏 , we dene UGDNF(𝜏) = (UDNF(𝜏 ⊕))†.

Lemma B.32. For every type 𝜏 , UGDNF(𝜏) is in uniform gradual normal form and UGDNF(𝜏) '
𝜏 .

Proof. We dene 𝜏 ′ = UGDNF(𝜏). From the denition of UGDNF, it is immediate that 𝜏 ′ is
in uniform gradual normal form.
Lemma B.7 ensures that UDNF(𝜏 ⊕) ' 𝜏 ⊕ . Moreover, since UDNF preserves the

strong polarization, UDNF(𝜏 ⊕) is strongly polarized. By unicity of the strong polarization,
((UDNF(𝜏 ⊕))†)⊕ = UDNF(𝜏 ⊕) ' 𝜏 ⊕ . Theorem 5.18 then yields that (UDNF(𝜏 ⊕))† ' 𝜏 ,
that is, 𝜏 ′ ' 𝜏 . �

Lemma B.33. For every pair of types 𝜏, 𝜏 ′ such that 𝜏/𝜏 ′ = 𝜏 ′, the following results hold:

• 𝜏 ′ ∈ B? ⇐⇒ 𝜏 ∈ B?

• 𝜏 ′ ∈ A ?
𝑓 𝑢𝑛

⇐⇒ 𝜏 ∈ A ?
𝑓 𝑢𝑛

• 𝜏 ′ ∈ A ?
𝑝𝑟𝑜𝑑

⇐⇒ 𝜏 ∈ A ?
𝑝𝑟𝑜𝑑

• 𝜏 ′ = ? ⇐⇒ 𝜏 = ?

• 𝜏 ′ ∈ V 𝛼 ⇐⇒ 𝜏 ∈ V 𝛼
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Proof. The result follows immediately from the denition of 𝜏/𝜏 ′. �

We now prove the following lemma about the function N dened in Subsection B.3.

Lemma B.34. For every pair of type frames 𝑇,𝑇 ′
such that 𝑇

†/𝑇 ′† = 𝑇 ′†
, the following holds:

N (𝑇 )†/N (𝑇 ′)† = N (𝑇 ′)†

N ′(𝑇 )†/N ′(𝑇 ′)† = N ′(𝑇 ′)†

Proof. By induction on the pair (𝑇,𝑇 ′), and by cases on 𝑇 ′. Since ¬𝜏/¬𝜏 ′ = ¬(𝜏/𝜏 ′), most
of the cases are proved similarly for N and N ′, and may be omitted.

• 𝑇 ′ = 𝑋 ′. Then 𝑇 ′† = ?. Thus, by hypothesis, 𝑇 † = ? and therefore 𝑇 = 𝑋 . In this case
N (𝑇 ) = 𝑋 and N (𝑇 ′) = 𝑋 ′, and the result follows.

• 𝑇 ′ = 𝛼 . Then necessarily 𝑇 = 𝛼 and N leaves 𝑇 and 𝑇 ′ unchanged, and the result is
immediate.

• 𝑇 ′ = 𝑏. Same as previous case.

• 𝑇 ′ = 𝑇 ′
1 × 𝑇 ′

2 . By hypothesis, 𝑇 is of the form 𝑇1 × 𝑇2. Thus N leaves 𝑇 and 𝑇 ′

unchanged, and the result follows.

• 𝑇 ′ = 𝑇 ′
1 → 𝑇 ′

2 . Same as previous case.

• 𝑇 ′ = 𝑇 ′
1 ∨ 𝑇 ′

2 . By hypothesis, 𝑇 is of the form 𝑇1 ∨ 𝑇2 where for every 𝑖 ∈ {1, 2},
𝑇𝑖 /𝑇 ′

𝑖
= 𝑇 ′

𝑖 . By induction and denition of N , the rst result is immediate.

For the second result, consider 𝑘 ∈ {1, 2}. We have N ′(𝑇𝑘 ) =
∨

𝑖∈𝐼𝑘

( ∧
𝑝∈𝑃𝑖 𝑎𝑝 ∧∧

𝑛∈𝑁𝑖
¬𝑎𝑛

)
. The induction hypothesis ensures that we also have N ′(𝑇 ′

𝑘
) =∨

𝑖∈𝐼𝑘

( ∧
𝑝∈𝑃𝑖 𝑎

′
𝑝 ∧

∧
𝑛∈𝑁𝑖

¬𝑎′𝑛
)
where for every 𝑖 ∈ 𝐼𝑘 , for every 𝑝 ∈ 𝑃𝑖 , 𝑎

†
𝑝 /𝑎′𝑝† = 𝑎′𝑝

†

and similarly for every 𝑛 ∈ 𝑁𝑖 .

Thus, for every pair (𝑖1, 𝑖2) ∈ (𝐼1 × 𝐼2), noting𝑇𝐼 =
∧

𝑝∈𝑃𝑖1∪𝑃𝑖2 𝑎𝑝 ∧
∧

𝑛∈𝑁𝑖1∪𝑁𝑖2
¬𝑎𝑛 and

𝑇 ′
𝐼
=

∧
𝑝∈𝑃𝑖1∪𝑃𝑖2 𝑎

′
𝑝 ∧

∧
𝑛∈𝑁𝑖1∪𝑁𝑖2

¬𝑎′𝑛 , we have𝑇
†
𝐼 /𝑇 ′

𝐼
† = 𝑇 ′

𝐼
†. Taking the union over all

pairs (𝑖1, 𝑖2) ∈ (𝐼1 × 𝐼2) yields the result.

• 𝑇 ′ = ¬𝑇 ′
0 . By hypothesis, 𝑇 is of the form ¬𝑇0, where 𝑇

†
0 /𝑇 ′

0
† = 𝑇 ′

0
†. By induction

hypothesis, N ′(𝑇0)†/N ′(𝑇 ′
0 )

† = N ′(𝑇 ′
0 )

†. Thus N (¬𝑇0)†/N (¬𝑇 ′
0 )

† = N (¬𝑇 ′
0 )

†,
which yields the result. The same reasoning can be done with N ′.

• 𝑇 ′ = 0. Necessarily𝑇 = 0, thus N leaves𝑇 and𝑇 ′ unchanged, and the result follows.

�

Proposition B.35. For every pair of types 𝜏, 𝜏 ′ such that 𝜏/𝜏 ′ = 𝜏 ′,
UGDNF(𝜏)/UGDNF(𝜏 ′) = UGDNF(𝜏 ′).
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Proof. Let 𝜏, 𝜏 ′ be two types such that 𝜏/𝜏 ′ = 𝜏 ′. Then applying Lemma B.34 to 𝜏 ⊕ and 𝜏 ′⊕

immediately yields that N (𝜏 ⊕)†/N (𝜏 ′⊕)† = N (𝜏 ′⊕)†.
Now, assuming that

N (𝜏 ′⊕) =
∨
𝑖∈𝐼

( ∧
𝑝∈𝑃𝑖

𝑎′𝑝 ∧
∧
𝑛∈𝑁𝑖

¬𝑎′𝑛︸                 ︷︷                 ︸
I ′

𝑖

)

By denition of the grounding operation, we have

N (𝜏 ⊕) =
∨
𝑖∈𝐼

( ∧
𝑝∈𝑃𝑖

𝑎𝑝 ∧
∧
𝑛∈𝑁𝑖

¬𝑎𝑛︸                 ︷︷                 ︸
I𝑖

)

where for every 𝑖 ∈ 𝐼 , for every (𝑝, 𝑛) ∈ 𝑃𝑖 × 𝑁𝑖 , 𝑎
†
𝑝 /𝑎′𝑝† = 𝑎′𝑝

† and 𝑎†𝑛/𝑎′𝑛† = 𝑎′𝑛
†.

Lemma B.33 then guarantees that for every 𝑖 ∈ 𝐼 , 𝑎𝑝 ∈ 𝑃𝑖 ∩ (B ∪ V 𝛼 ) ⇐⇒ 𝑎′𝑝 ∈
𝑃𝑖∩(B∪V 𝛼 ). Therefore, following the denitions of Subsection B.3, posing𝑇1 = I basic

𝑖 and
𝑇2 = I ′basic

𝑖 , it holds that 𝑇 †
1 /𝑇 †

2 = 𝑇 †
2 . The same reasoning can be done for the product and

function intersections, yielding UDNF(𝜏 ⊕)†/UDNF(𝜏 ′⊕)† = UDNF(𝜏 ′⊕)†, and the result
follows by denition of UGDNF. �

Denition B.36 (Function Cast Approximation). For every pair of types 𝜏, 𝜏 ′ such that 𝜏 ′ ≤
0 → 1, and every type 𝜎 , if

UGDNF(𝜏) =
∨
𝑖∈𝐼

∧
𝑝∈𝑃𝑖

𝑎𝑝 ∧
∧
𝑛∈𝑁𝑖

¬𝑎𝑛︸                 ︷︷                 ︸
I𝑖

UGDNF(𝜏 ′) =
∨
𝑖∈𝐼

∧
𝑝∈𝑃𝑖

𝑎′𝑝 ∧
∧
𝑛∈𝑁𝑖

¬𝑎′𝑛︸                 ︷︷                 ︸
I ′

𝑖

∀𝑖 ∈ 𝐼 ,I𝑖 � 0 =⇒ I ′
𝑖 � 0

∀𝑖 ∈ 𝐼 ,∀𝑝 ∈ 𝑃𝑖 , 𝑎𝑝 ∈ A ?
𝑓 𝑢𝑛

⇐⇒ 𝑎′𝑝 ∈ A ?
𝑓 𝑢𝑛

then we dene the approximation of 〈𝜏 ⇒𝑝 𝜏 ′〉 applied to 𝜎 , noted 〈𝜏 ⇒𝑝 𝜏 ′〉 ◦ 𝜎 as follows.

〈𝜏 ⇒𝑝 𝜏 ′〉 ◦ 𝜎 =
〈 ∧

𝑖∈𝐼
I ′

𝑖 �0

∧
𝑆⊆𝑃𝑖

𝜎≤∨
𝑝∈𝑆 𝜎

′
𝑝

∨
𝑝∈𝑆

𝜎𝑝 →
∨
𝑖∈𝐼

I ′
𝑖 �0

∨
𝑆(𝑃𝑖

𝜎�
∨

𝑝∈𝑆 𝜎
′
𝑝

∧
𝑝∈𝑃𝑖\𝑆

𝜏𝑝

𝑝
=⇒∧

𝑖∈𝐼
I ′

𝑖 �0

∧
𝑆⊆𝑃𝑖

𝜎≤∨
𝑝∈𝑆 𝜎

′
𝑝

∨
𝑝∈𝑆

𝜎 ′
𝑝 →

∨
𝑖∈𝐼

I ′
𝑖 �0

∨
𝑆(𝑃𝑖

𝜎�
∨

𝑝∈𝑆 𝜎
′
𝑝

∧
𝑝∈𝑃𝑖\𝑆

𝜏 ′𝑝

〉

where, to ease the notation, we pose 𝑃𝑖 = {𝑝 ∈ 𝑃𝑖 | 𝑎𝑝 ∈ A ?
𝑓 𝑢𝑛

} = {𝑝 ∈ 𝑃𝑖 | 𝑎′𝑝 ∈ A ?
𝑓 𝑢𝑛

} and
for every 𝑝 ∈ 𝑃𝑖 , 𝑎𝑝 = 𝜎𝑝 → 𝜏𝑝 and 𝑎′𝑝 = 𝜎 ′

𝑝 → 𝜏 ′𝑝 .

Otherwise, 〈𝜏 ⇒𝑝 𝜏 ′〉 ◦ 𝜎 is undened.
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In the future, we use 𝑃𝑖 ∩ A ?
𝑓 𝑢𝑛

as a shorthand for both {𝑝 ∈ 𝑃𝑖 | 𝑎𝑝 ∈ A ?
𝑓 𝑢𝑛

} and {𝑝 ∈ 𝑃𝑖 |
𝑎′𝑝 ∈ A ?

𝑓 𝑢𝑛
}, provided the fourth condition of the above denition holds.

Lemma B.37. For every pair of types 𝜏, 𝜏 ′, and every type 𝜎 , if 〈𝜏 ⇒𝑝 𝜏 ′〉◦𝜎 = 〈𝜏1 → 𝜏2 ⇒
𝑝
𝜏 ′1 → 𝜏 ′2〉

then the following holds:

𝜏/𝜏 ′ = 𝜏 ′ =⇒ ∀𝑖, 𝜏𝑖 /𝜏 ′𝑖 = 𝜏 ′𝑖
𝜏 ′/𝜏 = 𝜏 =⇒ ∀𝑖, 𝜏 ′𝑖 /𝜏𝑖 = 𝜏𝑖

Proof. Given two types 𝜏, 𝜏 ′ such that 𝜏/𝜏 ′ = 𝜏 ′, and any type 𝜎 , Proposition B.35 ensures
that

UGDNF(𝜏) =
∨
𝑖∈𝐼

∧
𝑝∈𝑃𝑖

𝑎𝑝 ∧
∧
𝑛∈𝑁𝑖

¬𝑎𝑛

and
UGDNF(𝜏 ′) =

∨
𝑖∈𝐼

∧
𝑝∈𝑃𝑖

𝑎′𝑝 ∧
∧
𝑛∈𝑁𝑖

¬𝑎′𝑛

where, for every 𝑖 ∈ 𝐼 and every 𝑝 ∈ 𝑃𝑖 , 𝑎𝑝 /𝑎′𝑝 = 𝑎′𝑝 . Therefore, for every 𝑝 ∈ 𝑃𝑖 ∩
A ?

𝑓 𝑢𝑛
, we know that 𝑎𝑝 = 𝜎𝑝 → 𝜏𝑝 and 𝑎′𝑝 = 𝜎 ′

𝑝 → 𝜏 ′𝑝 , and we have by denition of the
grounding operator 𝜏𝑝 /𝜏 ′𝑝 = 𝜏 ′𝑝 and 𝜎𝑝 /𝜎 ′

𝑝 = 𝜎 ′
𝑝 . The result then immediately follows from

Denition B.36, and from the denition of the grounding operator. The same reasoning can
be done for 𝜏 ′/𝜏 = 𝜏 . �

Lemma B.38. For every pair of types 𝜏, 𝜏 ′, and every type 𝜎 , if 𝜏 /𝜏 ′ = 𝜏 ′ and 𝜏 ′ ≤ 0 → 1, then
〈𝜏 ⇒𝑝 𝜏 ′〉 ◦ 𝜎 is well-dened.

Proof. Since 𝜏 ′ ≤ 0 → 1 and 𝜏 ′ 4 𝜏 , Corollary B.28 yields that 𝜏 ≤ 0 → 1. Proposition B.35
then immediately ensures that

UGDNF(𝜏) =
∨
𝑖∈𝐼

∧
𝑝∈𝑃𝑖

𝑎𝑝 ∧
∧
𝑛∈𝑁𝑖

¬𝑎𝑛︸                 ︷︷                 ︸
I𝑖

and
UGDNF(𝜏 ′) =

∨
𝑖∈𝐼

∧
𝑝∈𝑃𝑖

𝑎′𝑝 ∧
∧
𝑛∈𝑁𝑖

¬𝑎′𝑛︸                 ︷︷                 ︸
I ′

𝑖

We now prove the third condition of Denition B.36, that is,

∀𝑖 ∈ 𝐼 ,I𝑖 � 0 =⇒ I ′
𝑖 � 0

Let 𝑖 ∈ 𝐼 . By hypothesis, I𝑖 /I ′
𝑖
= I ′

𝑖 , which implies that I ′
𝑖 4 I𝑖 . Applying Corol-

lary B.30 then yields the result.
For the fourth condition of Denition B.36, knowing that 𝜏/𝜏 ′ = 𝜏 ′, we have for every

𝑖 ∈ 𝐼 and every 𝑝 ∈ 𝑃𝑖 , 𝑎𝑝 /𝑎′𝑝 = 𝑎′𝑝 . The result then follows by denition of the grounding
operator. �
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Lemma B.39. For every pair of types 𝜏, 𝜏 ′, and every type 𝜎 , if 〈𝜏 ⇒𝑝 𝜏 ′〉◦𝜎 = 〈𝜏1 → 𝜏2 ⇒
𝑝
𝜏 ′1 → 𝜏 ′2〉

then the following holds:

1. 𝜎 ≤ 𝜏 ′1

2. 𝜏 ′2 = min{𝜏 | 𝜏 ′ ≤ 𝜎 → 𝜏}

3. 𝜏 ≤ 𝜏1 → 𝜏2

Proof. In all the following, we pose

UGDNF(𝜏) =
∨
𝑖∈𝐼

∧
𝑝∈𝑃𝑖

𝑎𝑝 ∧
∧
𝑛∈𝑁𝑖

¬𝑎𝑛︸                 ︷︷                 ︸
I𝑖

and
UGDNF(𝜏 ′) =

∨
𝑖∈𝐼

∧
𝑝∈𝑃𝑖

𝑎′𝑝 ∧
∧
𝑛∈𝑁𝑖

¬𝑎′𝑛︸                 ︷︷                 ︸
I ′

𝑖

as well as 𝑃𝑖 = 𝑃𝑖 ∩ A ?
𝑓 𝑢𝑛

and for every 𝑝 ∈ 𝑃𝑖 , 𝑎𝑝 = 𝜎𝑝 → 𝜏𝑝 and 𝑎′𝑝 = 𝜎 ′
𝑝 → 𝜏 ′𝑝 .

Moreover, we know that, by hypothesis,

∀𝑖 ∈ 𝐼 ,I𝑖 � 0 =⇒ I ′
𝑖 � 0

1. Immediate by denition of 𝜏 ′1, since it is an intersection of supertypes of 𝜎 .

2. Let 𝜏0 a type such that 𝜏 ′ ≤ 𝜎 → 𝜏0. By Theorem 5.18, we have 𝜏 ′⊕ ≤ 𝜎	 → 𝜏 ⊕0 . By
Lemma B.18, this implies that 𝜏 ′⊕ ◦ 𝜎	 ≤ 𝜏 ⊕0 . Plugging in the denition of the result
type, this gives: ∨

𝑖∈𝐼
I ′

𝑖 �0

∨
𝑆(𝑃𝑖

𝜎	�
∨

𝑝∈𝑆 𝜎
′	
𝑝

∧
𝑝∈𝑃𝑖\𝑆

𝜏 ′⊕𝑝 ≤ 𝜏 ⊕0

According to Theorem 5.18, the condition 𝜎	 �
∨

𝑝∈𝑆 𝜎
′	
𝑝 is equivalent to 𝜎 �∨

𝑝∈𝑆 𝜎
′
𝑝 . Applying Theorem 5.18 a second time to the whole inequality then yields∨

𝑖∈𝐼
I ′

𝑖 �0

∨
𝑆(𝑃𝑖

𝜎�
∨

𝑝∈𝑆 𝜎
′
𝑝

∧
𝑝∈𝑃𝑖\𝑆

𝜏 ′𝑝 ≤ 𝜏0

that is, 𝜏 ′2 ≤ 𝜏0, hence the result.

3. • We rst prove that 𝜏 ≤ 𝜏1 → 1. Let 𝑖 ∈ 𝐼 and 𝑆 ⊆ 𝑃𝑖 . It holds that
∨

𝑝∈𝑆 𝜎𝑝 ≤∨
𝑝∈𝑃𝑖 𝜎𝑝 since the union in the left hand side contains fewer elements. This

implies that ∧
𝑆⊆𝑃𝑖

𝜎≤∨
𝑝∈𝑆 𝜎

′
𝑝

∨
𝑝∈𝑆

𝜎𝑝 ≤
∨
𝑝∈𝑃𝑖

𝜎𝑝
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Thus taking the intersection for all 𝑖 ∈ 𝐼 where I ′
𝑖 � 0,∧

𝑖∈𝐼
I ′

𝑖 �0

∧
𝑆⊆𝑃𝑖

𝜎≤∨
𝑝∈𝑆 𝜎

′
𝑝

∨
𝑝∈𝑆

𝜎𝑝 ≤
∧
𝑖∈𝐼

I ′
𝑖 �0

∨
𝑝∈𝑃𝑖

𝜎𝑝

which is
𝜏1 ≤

∧
𝑖∈𝐼

I ′
𝑖 �0

∨
𝑝∈𝑃𝑖

𝜎𝑝

Moreover, since ∀𝑖 ∈ 𝐼 ,I𝑖 � 0 =⇒ I ′
𝑖 � 0, we have

𝜏1 ≤
∧
𝑖∈𝐼

I ′
𝑖 �0

∨
𝑝∈𝑃𝑖

𝜎𝑝 ≤
∧
𝑖∈𝐼

I𝑖�0

∨
𝑝∈𝑃𝑖

𝜎𝑝

since the intersection on the left hand side contains more elements. Now apply-
ing Theorem 5.18 and remarking that the right hand side of the previous inequal-
ity corresponds to the denition of the domain operator, we get 𝜏 	1 ≤ dom(𝜏 ⊕).
Lemma B.16 then yields 𝜏 ⊕ ≤ 𝜏 	1 → 1, and the result follows fromTheorem 5.18.

• We then show that, for every 𝑖 ∈ 𝐼 , and every 𝑆 ( 𝑃𝑖 ,

𝜏1 �
∨
𝑝∈𝑆

𝜎𝑝 =⇒ 𝜎 �
∨
𝑝∈𝑆

𝜎 ′
𝑝 (∗)

Suppose that the left hand side holds. Plugging in the denition of 𝜏1, we have∧
𝑖∈𝐼

I ′
𝑖 �0

∧
𝑆⊆𝑃𝑖

𝜎≤∨
𝑝∈𝑆 𝜎

′
𝑝

∨
𝑝∈𝑆

𝜎𝑝 �
∨
𝑝∈𝑆

𝜎𝑝

This inequality must also hold for every term of the intersections on the left
hand side, and in particular for 𝑖 and 𝑆 :

𝜎 ≤
∨
𝑝∈𝑆

𝜎 ′
𝑝 =⇒

∨
𝑝∈𝑆

𝜎𝑝 �
∨
𝑝∈𝑆

𝜎𝑝

Since the right hand side is always false, the left hand side cannot hold thus
𝜎 �

∨
𝑝∈𝑆 𝜎

′
𝑝 .

• Now consider 𝑖 ∈ 𝐼 . It holds that∨
𝑆(𝑃𝑖

𝜏1�
∨

𝑝∈𝑆 𝜎𝑝

∧
𝑝∈𝑃𝑖\𝑆

𝜏𝑝 ≤
∨
𝑆(𝑃𝑖

𝜎�
∨

𝑝∈𝑆 𝜎
′
𝑝

∧
𝑝∈𝑃𝑖\𝑆

𝜏𝑝

since, according to (∗), the union on the right contains more elements. Now,
taking the union on both sides for every 𝑖 ∈ 𝐼 such that I ′

𝑖 � 0,∨
𝑖∈𝐼

I ′
𝑖 �0

∨
𝑆(𝑃𝑖

𝜏1�
∨

𝑝∈𝑆 𝜎𝑝

∧
𝑝∈𝑃𝑖\𝑆

𝜏𝑝 ≤
∨
𝑖∈𝐼

I ′
𝑖 �0

∨
𝑆(𝑃𝑖

𝜎�
∨

𝑝∈𝑆 𝜎
′
𝑝

∧
𝑝∈𝑃𝑖\𝑆

𝜏𝑝 = 𝜏2
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Using the condition ∀𝑖 ∈ 𝐼 ,I𝑖 � 0 =⇒ I ′
𝑖 � 0, the union on the left contains

more elements than the same union on I𝑖 � 0, yielding∨
𝑖∈𝐼

I𝑖�0

∨
𝑆(𝑃𝑖

𝜏1�
∨

𝑝∈𝑆 𝜎𝑝

∧
𝑝∈𝑃𝑖\𝑆

𝜏𝑝 ≤ 𝜏2

Using Theorem 5.18 and remarking that the left hand side corresponds to the
denition of the result operator, we deduce that 𝜏 ⊕ ◦ 𝜏 	1 ≤ 𝜏 ⊕2 , thus 𝜏 ⊕ ≤ 𝜏 	1 →
𝜏 ⊕ ◦ 𝜏 	1 ≤ 𝜏 	1 → 𝜏 ⊕2 , and applying Theorem 5.18 yields the result.

�

Denition B.40 (Cast Projection). For every pair of types 𝜏, 𝜏 ′ such that 𝜏 ′ ≤ 1 × 1 if

(1) UGDNF(𝜏) =
∨
𝑖∈𝐼

∧
𝑝∈𝑃𝑖

𝑎𝑝 ∧
∧
𝑛∈𝑁𝑖

¬𝑎𝑛︸                 ︷︷                 ︸
I𝑖

(2) UGDNF(𝜏 ′) =
∨
𝑖∈𝐼

∧
𝑝∈𝑃𝑖

𝑎′𝑝 ∧
∧
𝑛∈𝑁𝑖

¬𝑎′𝑛︸                 ︷︷                 ︸
I ′

𝑖

(3) ∀𝑖 ∈ 𝐼 ,I𝑖 � 0 =⇒ I ′
𝑖 � 0

(4) ∀𝑗 ∈ 𝐼 ,∀𝑁 ⊆ 𝑁 𝑗 ,∀𝑖 ∈ {1, 2}, 𝜋𝑖 (𝜏 𝑗𝑁 ) � 0 =⇒ 𝜋𝑖 (𝜏 ′𝑗𝑁 ) � 0

(5) ∀𝑖 ∈ 𝐼 ,∀𝑝 ∈ 𝑃𝑖 , 𝑎𝑝 ∈ A ?
𝑝𝑟𝑜𝑑

⇐⇒ 𝑎′𝑝 ∈ A ?
𝑝𝑟𝑜𝑑

(6) ∀𝑖 ∈ 𝐼 ,∀𝑛 ∈ 𝑁𝑖 , 𝑎𝑛 ∈ A ?
𝑝𝑟𝑜𝑑

⇐⇒ 𝑎′𝑛 ∈ A ?
𝑝𝑟𝑜𝑑

then we dene the 𝑖-th projection of 〈𝜏 ⇒𝑝 𝜏 ′〉, noted 𝜋𝑖 (〈𝜏 ⇒𝑝 𝜏 ′〉) as follows.

𝜋𝑖 (〈𝜏 ⇒𝑝 𝜏 ′〉) =
〈 ∨

𝑗 ∈𝐼
I ′

𝑗 �0

∨
𝑁 ⊆𝑁 𝑗

𝜋1 (𝜏′𝑗𝑁 )�0

𝜋2 (𝜏′𝑗𝑁 )�0

𝜋𝑖 (𝜏 𝑗𝑁 )
𝑝
=⇒

∨
𝑗 ∈𝐼

I ′
𝑗 �0

∨
𝑁 ⊆𝑁 𝑗

𝜋1 (𝜏′𝑗𝑁 )�0

𝜋2 (𝜏′𝑗𝑁 )�0

𝜋𝑖 (𝜏 ′𝑗𝑁 )
〉

where

𝑃𝑖 = {𝑝 ∈ 𝑃𝑖 | 𝑎𝑝 ∈ A ?
𝑝𝑟𝑜𝑑

} = {𝑝 ∈ 𝑃𝑖 | 𝑎′𝑝 ∈ A ?
𝑝𝑟𝑜𝑑

}

𝑁𝑖 = {𝑛 ∈ 𝑁𝑖 | 𝑎𝑛 ∈ A ?
𝑝𝑟𝑜𝑑

} = {𝑛 ∈ 𝑁𝑖 | 𝑎′𝑛 ∈ A ?
𝑝𝑟𝑜𝑑

}

𝜏𝑖𝑁 =
( ∧

𝑝∈𝑃𝑖
𝑎𝑝=𝜏1×𝜏2

𝜏1 ∧
∧
𝑛∈𝑁

𝑎𝑛=𝜏1×𝜏2

¬𝜏1,
∧
𝑝∈𝑃𝑖

𝑎𝑝=𝜏1×𝜏2

𝜏2 ∧
∧

𝑛∈𝑁𝑖\𝑁
𝑎𝑛=𝜏1×𝜏2

¬𝜏2
)

𝜏 ′𝑖𝑁 =
( ∧

𝑝∈𝑃𝑖
𝑎′𝑝=𝜏′1×𝜏′2

𝜏 ′1 ∧
∧
𝑛∈𝑁

𝑎′𝑛=𝜏′1×𝜏′2

¬𝜏 ′1,
∧
𝑝∈𝑃𝑖

𝑎′𝑝=𝜏′1×𝜏′2

𝜏 ′2 ∧
∧

𝑛∈𝑁𝑖\𝑁
𝑎′𝑛=𝜏′1×𝜏′2

¬𝜏 ′2
)

otherwise, 𝜋𝑖 (〈𝜏 ⇒𝑝 𝜏 ′〉) is undened.

In the future, we use 𝑃𝑖 ∩ A ?
𝑝𝑟𝑜𝑑

as a shorthand for both {𝑝 ∈ 𝑃𝑖 | 𝑎𝑝 ∈ A ?
𝑝𝑟𝑜𝑑

} and {𝑝 ∈
𝑃𝑖 | 𝑎′𝑝 ∈ A ?

𝑝𝑟𝑜𝑑
}, provided the fourth condition of the above denition holds; and similarly for
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𝑁𝑖 ∩ A ?
𝑝𝑟𝑜𝑑

provided the fth condition above holds.

Lemma B.41. For every pair of types 𝜏, 𝜏 ′, if 𝜋𝑖 〈𝜏 ⇒𝑝 𝜏 ′〉 = 〈𝜏𝑖 ⇒
𝑝
𝜏 ′𝑖 〉 then the following holds:

𝜏/𝜏 ′ = 𝜏 ′ =⇒ 𝜏𝑖 /𝜏 ′𝑖 = 𝜏 ′𝑖
𝜏 ′/𝜏 = 𝜏 =⇒ 𝜏 ′𝑖 /𝜏𝑖 = 𝜏𝑖

Proof. Given two types 𝜏, 𝜏 ′ such that 𝜏/𝜏 ′ = 𝜏 ′, Proposition B.35 ensures that

UGDNF(𝜏) =
∨
𝑖∈𝐼

∧
𝑝∈𝑃𝑖

𝑎𝑝 ∧
∧
𝑛∈𝑁𝑖

¬𝑎𝑛

and
UGDNF(𝜏 ′) =

∨
𝑖∈𝐼

∧
𝑝∈𝑃𝑖

𝑎′𝑝 ∧
∧
𝑛∈𝑁𝑖

¬𝑎′𝑛

where, for every 𝑖 ∈ 𝐼 and every 𝑝 ∈ 𝑃𝑖 , 𝑎𝑝 /𝑎′𝑝 = 𝑎′𝑝 , and for every 𝑛 ∈ 𝑁𝑖 , 𝑎𝑛/𝑎′𝑛 = 𝑎′𝑛 .
Therefore, for every 𝑝 ∈ 𝑃𝑖 ∩ A ?

𝑝𝑟𝑜𝑑
, we know that 𝑎𝑝 = 𝜏1 × 𝜏2 and 𝑎′𝑝 = 𝜏 ′1 → 𝜏 ′2, and

we have by denition of the grounding operator 𝜏1/𝜏 ′1 = 𝜏 ′1 and 𝜏2/𝜏 ′2 = 𝜏 ′2. The result then
immediately follows fromDenition B.40, and from the denition of the grounding operator.
The same reasoning can be done for 𝜏 ′/𝜏 = 𝜏 . �

Lemma B.42. For every pair of types 𝜏, 𝜏 ′, if 𝜏/𝜏 ′ = 𝜏 ′ and 𝜏 ′ ≤ 1 × 1, then 𝜋𝑖 〈𝜏 ⇒𝑝 𝜏 ′〉 is well-
dened.

Proof. Since 𝜏 ′ ≤ 1 × 1 and 𝜏 ′ 4 𝜏 , Corollary B.29 yields that 𝜏 ≤ 1 × 1. Proposition B.35
then immediately ensures that

UGDNF(𝜏) =
∨
𝑖∈𝐼

∧
𝑝∈𝑃𝑖

𝑎𝑝 ∧
∧
𝑛∈𝑁𝑖

¬𝑎𝑛︸                 ︷︷                 ︸
I𝑖

and
UGDNF(𝜏 ′) =

∨
𝑖∈𝐼

∧
𝑝∈𝑃𝑖

𝑎′𝑝 ∧
∧
𝑛∈𝑁𝑖

¬𝑎′𝑛︸                 ︷︷                 ︸
I ′

𝑖

We now prove the third condition of Denition B.40, that is,

∀𝑖 ∈ 𝐼 ,I𝑖 � 0 =⇒ I ′
𝑖 � 0

Let 𝑖 ∈ 𝐼 . By hypothesis, I𝑖 /I ′
𝑖
= I ′

𝑖 , which implies that I ′
𝑖 4 I𝑖 . Applying Corol-

lary B.30 then yields the result.
The fourth condition is proven similarly, by remarking that for every 𝑗 ∈ 𝐼 and every

𝑁 ⊆ 𝑁 𝑗 , 𝜋𝑖 (𝜏 ′𝑗𝑁 ) 4 𝜋𝑖 (𝜏 𝑗𝑁 ).
For the fth condition of Denition B.36, knowing that 𝜏/𝜏 ′ = 𝜏 ′, we have for every

𝑖 ∈ 𝐼 and every 𝑝 ∈ 𝑃𝑖 , 𝑎𝑝 /𝑎′𝑝 = 𝑎′𝑝 . The result then follows by denition of the grounding
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operator.
The sixth condition can be proven using the same reasoning. �

Lemma B.43. For every pair of types 𝜏, 𝜏 ′ such that 𝜏 ≤ 1 × 1, if 𝜋1 〈𝜏 ⇒𝑝 𝜏 ′〉 = 〈𝜏1 ⇒
𝑝
𝜏 ′1〉 then the

following holds:

1. 𝜏 ≤ (𝜏1 × 1)

2. 𝜏 ′1 = min{𝜏 | 𝜏 ′ ≤ 𝜏 × 1}

Proof. In all the following, we pose

UGDNF(𝜏) =
∨
𝑖∈𝐼

∧
𝑝∈𝑃𝑖

𝑎𝑝 ∧
∧
𝑛∈𝑁𝑖

¬𝑎𝑛︸                 ︷︷                 ︸
I𝑖

and
UGDNF(𝜏 ′) =

∨
𝑖∈𝐼

∧
𝑝∈𝑃𝑖

𝑎′𝑝 ∧
∧
𝑛∈𝑁𝑖

¬𝑎′𝑛︸                 ︷︷                 ︸
I ′

𝑖

We also pose 𝑃𝑖 = 𝑃𝑖 ∩ A ?
𝑝𝑟𝑜𝑑

and 𝑁𝑖 = 𝑁𝑖 ∩ A ?
𝑝𝑟𝑜𝑑

.
Finally, as in Denition B.40, we pose, for every 𝑖 ∈ 𝐼 and every set 𝑁 ⊆ 𝑁𝑖 :

𝜏𝑖𝑁 =
( ∧

𝑝∈𝑃𝑖
𝑎𝑝=𝜏1×𝜏2

𝜏1 ∧
∧
𝑛∈𝑁

𝑎𝑛=𝜏1×𝜏2

¬𝜏1,
∧
𝑝∈𝑃𝑖

𝑎𝑝=𝜏1×𝜏2

𝜏2 ∧
∧

𝑛∈𝑁𝑖\𝑁
𝑎𝑛=𝜏1×𝜏2

¬𝜏2
)

𝜏 ′𝑖𝑁 =
( ∧

𝑝∈𝑃𝑖
𝑎′𝑝=𝜏′1×𝜏′2

𝜏 ′1 ∧
∧
𝑛∈𝑁

𝑎′𝑛=𝜏′1×𝜏′2

¬𝜏 ′1,
∧
𝑝∈𝑃𝑖

𝑎′𝑝=𝜏′1×𝜏′2

𝜏 ′2 ∧
∧

𝑛∈𝑁𝑖\𝑁
𝑎′𝑛=𝜏′1×𝜏′2

¬𝜏 ′2
)

1. Since 𝜏 ≤ 1 × 1, Theorem 5.18 yields 𝜏 ⊕ ≤ 1 × 1. Thus, Lemma B.11 gives 𝜏 ⊕ ≤
𝜋1 (𝜏 ⊕) × 1. Plugging in the denition of 𝜋1 on type frames, we obtain:

𝜏 ⊕ ≤
( ∨

𝑖∈𝐼
I𝑖�0

∨
𝑁 ⊆𝑁𝑖

𝜋1 (𝜏⊕𝑖𝑁 )�0

𝜋2 (𝜏⊕𝑖𝑁 )�0

𝜋1 (𝜏 ⊕𝑖𝑁
)
)
× 1

Now, remarking that 𝜋1 (𝜏 ⊕𝑖
𝑁
) = (𝜋1 (𝜏𝑖

𝑁
))⊕ and applying Theorem 5.18, we obtain

that 𝜋1 (𝜏 ⊕𝑖𝑁
) � 0 ⇐⇒ 𝜋1 (𝜏𝑖𝑁 ) � 0. Condition (4) of Denition B.40 then yields

𝜋1 (𝜏 ⊕𝑖𝑁
) � 0 =⇒ 𝜋1 (𝜏 ′𝑖𝑁 ) � 0. The same reasoning for the second projection yields

𝜋2 (𝜏 ⊕𝑖𝑁
) � 0 =⇒ 𝜋2 (𝜏 ′𝑖𝑁 ) � 0. Using this and Condition (3) of Denition B.40, we

deduce ( ∨
𝑖∈𝐼

I𝑖�0

∨
𝑁 ⊆𝑁𝑖

𝜋1 (𝜏⊕𝑖𝑁 )�0

𝜋2 (𝜏⊕𝑖𝑁 )�0

𝜋1 (𝜏 ⊕𝑖𝑁
)
)
≤

( ∨
𝑖∈𝐼

I ′
𝑖 �0

∨
𝑁 ⊆𝑁𝑖

𝜋1 (𝜏′𝑖𝑁 )�0

𝜋2 (𝜏′𝑖𝑁 )�0

(𝜋1 (𝜏𝑖𝑁 ))
⊕
)

Since the unions on the right contain more elements than the unions on the left. Fi-
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nally, we have
𝜏 ⊕ ≤

( ∨
𝑖∈𝐼

I ′
𝑖 �0

∨
𝑁 ⊆𝑁𝑖

𝜋1 (𝜏′𝑖𝑁 )�0

𝜋2 (𝜏′𝑖𝑁 )�0

(𝜋1 (𝜏𝑖𝑁 ))
⊕
)
× 1

And applying Theorem 5.18 yields

𝜏 ≤
( ∨

𝑖∈𝐼
I ′

𝑖 �0

∨
𝑁 ⊆𝑁𝑖

𝜋1 (𝜏′𝑖𝑁 )�0

𝜋2 (𝜏′𝑖𝑁 )�0

𝜋1 (𝜏𝑖𝑁 )
)
× 1

which is the result.

2. Let 𝜏0 such that 𝜏 ′ ≤ 𝜏0 × 1. We show that 𝜏 ′1 ≤ 𝜏0.
By Theorem 5.18, we have 𝜏 ′⊕ ≤ 𝜏 ⊕0 × 1. Thus, by Lemma B.11, we have 𝜋1 ((𝜏 ′)⊕) ≤
𝜏 ⊕0 . Plugging in the denition of the projection of a type frame yields:∨

𝑖∈𝐼
I ′

𝑖 �0

∨
𝑁 ⊆𝑁𝑖

𝜋1 (𝜏′⊕𝑖𝑁
)�0

𝜋2 (𝜏′⊕𝑖𝑁
)�0

𝜋1 (𝜏 ′⊕𝑖𝑁
) ≤ 𝜏 ⊕0

Remarking that, for every 𝑖 ∈ {1, 2} and every 𝑗 ∈ 𝐼 , 𝜋𝑖 (𝜏 ′⊕ 𝑗𝑁
) = (𝜋𝑖 (𝜏 ′𝑗𝑁 ))

⊕ , and
applying Theorem 5.18, we obtain

𝜋𝑖 (𝜏 ′⊕ 𝑗𝑁
) � 0 ⇐⇒ (𝜋𝑖 (𝜏 ′𝑗𝑁 ))

⊕ � 0 ⇐⇒ 𝜋𝑖 (𝜏 ′𝑗𝑁 ) � 0

Thus we have: ∨
𝑖∈𝐼

I ′
𝑖 �0

∨
𝑁 ⊆𝑁𝑖

𝜋1 (𝜏′𝑖𝑁 )�0

𝜋2 (𝜏′𝑖𝑁 )�0

(𝜋1 (𝜏 ′𝑖𝑁 ))
⊕ ≤ 𝜏 ⊕0

Then, applying Theorem 5.18 yields∨
𝑖∈𝐼

I ′
𝑖 �0

∨
𝑁 ⊆𝑁𝑖

𝜋1 (𝜏′𝑖𝑁 )�0

𝜋2 (𝜏′𝑖𝑁 )�0

𝜋1 (𝜏 ′𝑖𝑁 ) ≤ 𝜏0

Remarking that the left hand side corresponds to the denition of 𝜏 ′1 yields the result:
𝜏 ′1 ≤ 𝜏0.

�

Lemma B.44. For every pair of types 𝜏, 𝜏 ′, if 𝜏 ≤ 1 × 1 and 𝜋2 〈𝜏 ⇒𝑝 𝜏 ′〉 = 〈𝜏2 ⇒
𝑝
𝜏 ′2〉 then the

following holds:

1. 𝜏 ≤ (1 × 𝜏2)

2. 𝜏 ′2 = min{𝜏 | 𝜏 ′ ≤ 1 × 𝜏}
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B.5 Soundness results and proofs

Proof. Same proof as Lemma B.43. �

B.5. Soundness results and proofs

Lemma B.45 (Progress for Cast Values). For every value 𝑉 , every label 𝑝 , and all types 𝜏1, 𝜏2, if

∅ ` 𝑉 〈𝜏1 ⇒
𝑝
𝜏2〉 : 𝜏2, then one of the following cases holds:

• 𝑉 〈𝜏1 ⇒
𝑝
𝜏2〉 is a value

• there exists a term 𝐸 such that 𝑉 〈𝜏1 ⇒
𝑝
𝜏2〉 ↩→ 𝐸

• 𝑉 〈𝜏1 ⇒
𝑝
𝜏2〉 ↩→ blame 𝑝

Proof. By hypothesis, ∅ ` 𝑉 〈𝜏1 ⇒
𝑝
𝜏2〉 : 𝜏2. Therefore, by inversion of the typing rules, it

holds that ∅ ` 𝑉 : 𝜏1 and we distinguish two main cases: 𝜏1 4 𝜏2 or 𝜏2 4 𝜏1. The proof is
then done by subcases over 𝜏2/𝜏1 or 𝜏1/𝜏2. The case where 𝜏1 = 𝜏2 is a particular case that is
handled separately.

• 𝜏1 = 𝜏2. In this case, 𝑉 〈𝜏1 ⇒
𝑝
𝜏2〉 ↩→ 𝑉 by rule [RCastId].

• 𝜏1 4 𝜏2 and 𝜏1 ≠ 𝜏2. We distinguish the following subcases:

– 𝜏2/𝜏1 = 𝜏1. Then 𝑉 〈𝜏1 ⇒
𝑝
𝜏2〉 is a value.

– 𝜏2/𝜏1 = 𝜏2. We proceed by case disjunction over 𝑉 :

∗ 𝑉 = 𝑉 ′〈𝜏 ′1 ⇒
𝑞
𝜏 ′2〉 where 𝜏

′
1/𝜏 ′2 = 𝜏 ′1. If 𝜏

′
1 ≤ 𝜏2 then 𝑉 〈𝜏1 ⇒

𝑝
𝜏2〉 ↩→ 𝑉 ′ by

rule [RCollapse]. Otherwise, if 𝜏
′
1 � 𝜏2 then 𝑉 〈𝜏1 ⇒

𝑝
𝜏2〉 ↩→ blame 𝑝 by rule

[RBlame].

∗ 𝑉 = 𝑉 ′〈𝜏 ′1 ⇒
𝑞
𝜏 ′2〉 where 𝜏

′
2/𝜏 ′1 = 𝜏 ′1. This case is identical to the previous one.

If 𝜏 ′1 ≤ 𝜏2 then 𝑉 〈𝜏1 ⇒
𝑝
𝜏2〉 ↩→ 𝑉 ′ by rule [RCollapse]. Otherwise, if 𝜏

′
1 � 𝜏2

then 𝑉 〈𝜏1 ⇒
𝑝
𝜏2〉 ↩→ blame 𝑝 by rule [RBlame].

∗ 𝑉 = 𝑉 ′〈𝜏 ′1 ⇒
𝑞
𝜏 ′2〉 where 𝜏

′
1/𝜏 ′2 = 𝜏 ′2. If 𝜏 ′2 ≤ 𝜏2 then 𝑉 〈𝜏1 ⇒

𝑝
𝜏2〉 ↩→ 𝑉 by

rule [RUpSimpl]. Otherwise, if 𝜏
′
2 � 𝜏2 then 𝑉 〈𝜏1 ⇒

𝑝
𝜏2〉 ↩→ blame 𝑝 by rule

[RUpBlame].

∗ 𝑉 is unboxed. If type(𝑉 ) ≤ 𝜏2 then 𝑉 〈𝜏1 ⇒
𝑝
𝜏2〉 ↩→ 𝑉 by rule [RUnboxSimpl].

Otherwise, 𝑉 〈𝜏1 ⇒
𝑝
𝜏2〉 ↩→ blame 𝑝 by rule [RUnboxBlame].

– ∀𝑖 ∈ {1, 2}, 𝜏2/𝜏1 ≠ 𝜏𝑖 . In this case, 𝑉 〈𝜏1 ⇒
𝑝
𝜏2〉 ↩→ 𝑉 〈𝜏1 ⇒

𝑝
𝜏2/𝜏1〉〈𝜏2/𝜏1 ⇒

𝑝
𝜏2〉 by

rule [RExpandR].

• 𝜏2 4 𝜏1 and 𝜏1 ≠ 𝜏2. We distinguish the following subcases:

– 𝜏1/𝜏2 = 𝜏1. In this case, 𝑉 〈𝜏1 ⇒
𝑝
𝜏2〉 is a value.

– 𝜏1/𝜏2 = 𝜏2. In this case, 𝑉 〈𝜏1 ⇒
𝑝
𝜏2〉 is a value.

– ∀𝑖, 𝜏1/𝜏2 ≠ 𝜏𝑖 . In this case, 𝑉 〈𝜏1 ⇒
𝑝
𝜏2〉 ↩→ 𝑉 〈𝜏1 ⇒

𝑝
𝜏1/𝜏2〉〈𝜏1/𝜏2 ⇒

𝑝
𝜏2〉 by rule

[RExpandL].

�

Lemma B.46 (Progress). For every term 𝐸 such that ∅ ` 𝐸 : 𝑆 , one of the following cases holds:
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• there exists a value 𝑉 such that 𝐸 = 𝑉

• there exists a term 𝐸 ′
such that 𝐸 ↩→ 𝐸 ′

• there exists a label 𝑝 such that 𝐸 ↩→ blame 𝑝

Proof. By complete induction over the expression 𝐸.

• Case 𝑥 . Impossible by hypothesis since a single variable cannot be well-typed in the
empty environment.

• Case 𝑐 . Immediate since 𝑐 is a value.

• Case _𝜏1→𝜏2𝑥 . 𝐸. Immediate since _𝜏1→𝜏2𝑥 . 𝐸 is a value.

• Case 𝐸1 𝐸2. By inversion of the typing rules, we deduce that ∅ ` 𝐸1 : 𝜏1 → 𝜏2 and
∅ ` 𝐸2 : 𝜏1. We can thus apply the induction hypothesis on both 𝐸1 and 𝐸2, which
yields the following subcases.

– ∃𝐸 ′
2 such that 𝐸2 ↩→ 𝐸 ′

2. By rule [RContext] and since 𝐸1 � is a valid reduction
context, 𝐸1 𝐸2 ↩→ 𝐸1 𝐸

′
2.

– 𝐸2 ↩→ blame 𝑝 . By rule [RCtxBlame] and since 𝐸1 � is a valid reduction context,
𝐸1 𝐸2 ↩→ blame 𝑝 .

– 𝐸2 is a value and ∃𝐸 ′
1 such that 𝐸1 ↩→ 𝐸 ′

1. Since 𝐸2 is a value, � 𝐸2 is a valid
reduction context, thus 𝐸1 𝐸2 ↩→ 𝐸 ′

1 𝐸2 by rule [RContext].

– 𝐸2 is a value and 𝐸1 ↩→ blame 𝑝 . Since 𝐸2 is a value, � 𝐸2 is a valid reduction
context, thus 𝐸1 𝐸2 ↩→ blame 𝑝 by rule [RCtxBlame].

– Both 𝐸1 and 𝐸2 are values. Reasoning by case analysis on 𝐸1 and not considering
ill-typed cases:

∗ 𝐸1 = _𝜏
′
1→𝜏′2𝑥 . 𝐸 ′

1 where 𝜏
′
1 → 𝜏 ′2 ≤ 𝜏1 → 𝜏2. In this case, 𝐸1 𝐸2 reduces to

𝐸 ′
1 [𝐸2/𝑥] by rule [RApp].

∗ 𝐸1 = 𝑉 〈𝜏 ′1 ⇒
𝑝
𝜏 ′2〉 where 𝜏 ′2 ≤ 𝜏1 → 𝜏2 and 𝜏 ′2/𝜏 ′1 = 𝜏 ′1 or 𝜏 ′1/𝜏 ′2 = 𝜏 ′2. If

𝜏 ′1 ≤ 0 → 1 then 𝐸1𝐸2 reduces to (𝑉 𝐸2〈𝜏 ′𝑙 ⇒
𝑝
𝜏𝑙 〉)〈𝜏𝑟 ⇒

𝑝
𝜏 ′𝑟 〉 where 〈𝜏 ′1 ⇒

𝑝
𝜏 ′2〉◦

type(𝐸2) = 〈𝜏𝑙 → 𝜏𝑟 ⇒
𝑝
𝜏 ′
𝑙
→ 𝜏 ′𝑟 〉 by rule [RCastApp].

Otherwise, if 𝜏 ′1 � 0 → 1, then 𝐸1 𝐸2 ↩→ blame 𝑝 by rule [RFailApp].

∗ 𝐸1 = 𝑉 〈𝜏 ′1 ⇒
𝑝
𝜏 ′2〉 where 𝜏 ′2 ≤ 𝜏1 → 𝜏2 and 𝜏 ′1/𝜏 ′2 = 𝜏 ′1. Then 𝐸1 𝐸2 ↩→ 𝑉 𝐸2 by

rule [RSimplApp].

• Case Λ®𝛼. 𝐸. Immediate since Λ®𝛼. 𝐸 is a value.

• Case 𝐸 [®𝑡]. By inversion of the typing rule [RTApp], we deduce that ∅ ` 𝐸 : ∀®𝛼.𝜏 . We
can thus apply the induction hypothesis on 𝐸 which yields the following subcases:

– 𝐸 ↩→ 𝐸 ′. Since � [®𝑡] is a valid reduction context, 𝐸 [®𝑡] reduces to 𝐸 ′ [®𝑡] by
[RContext].

– 𝐸 ↩→ blame 𝑝 . Since � [®𝑡] is a valid reduction context, 𝐸 [®𝑡] also reduces to
blame 𝑝 by [RCtxBlame].
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– 𝐸 is a value. In this case, by inversion of the typing rules, 𝐸 is necessarily of the
form Λ®𝛼. 𝐸 ′. Therefore, 𝐸 [®𝑡] ↩→ 𝐸 ′[®𝑡/®𝛼] by [RTypeApp], concluding this case.

• Case (𝐸1, 𝐸2). By inversion of the typing rule [RPair], we deduce that ∅ ` 𝐸𝑖 : 𝜏𝑖 , for
𝑖 ∈ {1, 2}. Thus, we can apply the induction hypothesis on both 𝐸1 and 𝐸2, yielding
the following subcases:

– 𝐸2 ↩→ 𝐸 ′
2. Since (𝐸1,�) is a valid reduction context, (𝐸1, 𝐸2) ↩→ (𝐸1, 𝐸 ′

2) by rule
[RContext].

– 𝐸2 ↩→ blame 𝑝 . Since (𝐸1,�) is a valid reduction context, (𝐸1, 𝐸2) ↩→ blame 𝑝

by rule [RCtxBlame].

– 𝐸2 is a value and 𝐸1 ↩→ 𝐸 ′
1. Since 𝐸2 is a value, (�, 𝐸2) is a valid reduction context,

thus (𝐸1, 𝐸2) ↩→ (𝐸 ′
1, 𝐸2) by rule [RContext].

– 𝐸2 is a value and 𝐸1 ↩→ blame 𝑝 . Since 𝐸2 is a value, (�, 𝐸2) is a valid reduction
context, thus (𝐸1, 𝐸2) ↩→ blame 𝑝 by rule [RCtxBlame].

– Both 𝐸1 and 𝐸2 are values. In this case, (𝐸1, 𝐸2) is itself a value, concluding this
case.

• Case 𝜋𝑖 𝐸. By inversion of the typing rule [RProj], we deduce that ∅ ` 𝐸 : 𝜏1 ×𝜏2. Thus,
we can apply the induction hypothesis to 𝐸, yielding the following subcases:

– 𝐸 ↩→ 𝐸 ′. Since 𝜋𝑖 � is a valid reduction context, 𝜋𝑖 𝐸 ↩→ 𝜋𝑖 𝐸
′ by rule [RContext].

– 𝐸 ↩→ blame 𝑝 . Since 𝜋𝑖 � is a valid reduction context, 𝜋𝑖 𝐸 reduces to blame 𝑝

by rule [RCtxBlame].

– 𝐸 is a value. By cases on 𝐸, not considering the ill-typed cases:

∗ 𝐸 = (𝑉1,𝑉2). In this case, 𝜋𝑖 𝐸 reduces to 𝑉𝑖 by rule [RProj].

∗ 𝐸 = 𝑉 〈𝜏 ′1 ⇒
𝑝
𝜏 ′2〉 where 𝜏 ′2 ≤ 𝜏1 × 𝜏2 and 𝜏 ′2/𝜏 ′1 = 𝜏 ′1 or 𝜏

′
1/𝜏 ′2 = 𝜏 ′2. In this

case, if 𝜏 ′1 ≤ 1 × 1 then 𝜋𝑖 𝐸 reduces to (𝜋𝑖 𝑉 )〈𝜏𝑝 ⇒𝑝 𝜏 ′𝑝〉 where 〈𝜏𝑝 ⇒𝑝 𝜏 ′𝑝〉 =
𝜋𝑖 (〈𝜏 ′1 ⇒

𝑝
𝜏 ′2〉) by rule [RCastProj]. Otherwise, if 𝜏 ′1 � 1 × 1, then 𝜋𝑖 𝐸 ↩→

blame 𝑝 by rule [RFailProj].

∗ 𝐸 = 𝑉 〈𝜏 ′1 ⇒
𝑝
𝜏 ′2〉 where 𝜏 ′2 ≤ 𝜏1 × 𝜏2 and 𝜏 ′1/𝜏 ′2 = 𝜏 ′1. Then 𝐸 ↩→ 𝜋𝑖 𝑉 by rule

[RSimplProj].

• Case let 𝑥 = 𝐸1 in 𝐸2. By inversion of the typing rule [RLet], we deduce that ∅ ` 𝐸1 :
𝜏1. Therefore, we can apply the induction hypothesis to 𝐸1, yielding the following
subcases:

– 𝐸1 ↩→ 𝐸 ′
1. Since let 𝑥 = � in 𝐸2 is a valid reduction context, let 𝑥 = 𝐸1 in 𝐸2 ↩→

let 𝑥 = 𝐸 ′
1 in 𝐸2 by rule [RContext].

– 𝐸1 ↩→ blame 𝑝 . Since let 𝑥 = � in 𝐸2 is a valid reduction context, let 𝑥 =
𝐸1 in 𝐸2 ↩→ blame 𝑝 by rule [RCtxBlame].

– 𝐸1 is a value. We immediately deduce that let 𝑥 = 𝐸1 in 𝐸2 ↩→ 𝐸2 [𝐸1/𝑥] by rule
[RLet].
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• Case 𝐸〈𝜏1 ⇒
𝑝
𝜏2〉. By inversion of the typing rule [RCast], we deduce that ∅ ` 𝐸 :

𝜏1. Therefore, we can apply the induction hypothesis to 𝐸, yielding the following
subcases:

– 𝐸 ↩→ 𝐸 ′. Since�〈𝜏1 ⇒
𝑝
𝜏2〉 is a valid reduction context, 𝐸〈𝜏1 ⇒

𝑝
𝜏2〉 ↩→ 𝐸 ′〈𝜏1 ⇒

𝑝
𝜏2〉

by rule [RContext].

– 𝐸 ↩→ blame 𝑝 . Since �〈𝜏1 ⇒
𝑝
𝜏2〉 is a valid reduction context, 𝐸〈𝜏1 ⇒

𝑝
𝜏2〉 ↩→

blame 𝑝 by rule [RCtxBlame].

– 𝐸 is a value. In this case, we can apply Lemma B.45 to 𝐸〈𝜏1 ⇒
𝑝
𝜏2〉 which yields

the result and concludes the proof.

�

Lemma B.47. If Γ, 𝑥 : 𝑆 ′ ` 𝐸 : 𝑆 , then for every expression 𝐸 ′
such that Γ ` 𝐸 ′ : 𝑆 ′, we have

Γ ` 𝐸 [𝐸 ′/𝑥] : 𝑆 .

Proof. By induction on 𝐸.

• 𝑥 . We have 𝑆 = 𝑆 ′ and the result follows from Γ ` 𝐸 ′ : 𝑆 ′ since 𝐸 [𝐸 ′/𝑥] = 𝐸 ′.

• 𝑦. Immediate since 𝐸 [𝐸 ′/𝑥] = 𝐸.

• 𝑐 . Immediate since 𝐸 [𝐸 ′/𝑥] = 𝐸.

• _𝜏1→𝜏2𝑦. 𝐸𝑦 . By inversion of the typing rules, we have 𝜏1 → 𝜏2 ≤ 𝑆 , and Γ, 𝑥 : 𝑆 ′, 𝑦 :
𝜏1 ` 𝐸𝑦 : 𝜏2. Thus, by induction hypothesis, Γ, 𝑦 : 𝜏1 ` 𝐸𝑦 [𝐸 ′/𝑥] : 𝜏2. This implies
that Γ ` _𝜏1→𝜏2𝑦. (𝐸𝑦 [𝐸 ′/𝑥]) : 𝜏1 → 𝜏2 by rule [TAbstr], and the result follows since
𝐸 [𝐸 ′/𝑥] = _𝜏1→𝜏2𝑦. (𝐸𝑦 [𝐸 ′/𝑥]).

• 𝐸1 𝐸2. By hypothesis, we have Γ, 𝑥 : 𝑆 ′ ` 𝐸1 : 𝜏1 → 𝑆 and Γ, 𝑥 : 𝑆 ′ ` 𝐸2 : 𝜏1. By
induction hypothesis, we deduce that Γ ` 𝐸1 [𝐸 ′/𝑥] : 𝜏1 → 𝑆 and Γ ` 𝐸2 [𝐸 ′/𝑥] : 𝜏1.
Therefore, Γ ` (𝐸1 [𝐸 ′/𝑥]) (𝐸2 [𝐸 ′/𝑥]) : 𝑆 by rule [TApp], hence the result.

• (𝐸1, 𝐸2). By hypothesis, we have Γ, 𝑥 : 𝑆 ′ ` 𝐸1 : 𝜏1 and Γ, 𝑥 : 𝑆 ′ ` 𝐸2 : 𝜏2, where 𝜏1×𝜏2 ≤
𝑆 . By induction hypothesis, we deduce that Γ ` 𝐸1 [𝐸 ′/𝑥] : 𝜏1 and Γ ` 𝐸2 [𝐸 ′/𝑥] : 𝜏2.
Therefore, Γ ` (𝐸1 [𝐸 ′/𝑥], 𝐸2 [𝐸 ′/𝑥]) : 𝜏1 × 𝜏2 by rule [TPair], and the result follows.

• 𝜋𝑖 𝐸𝑝 . By hypothesis, we have Γ, 𝑥 : 𝑆 ′ ` 𝐸𝑝 : (𝜏1 × 𝜏2), where 𝜏𝑖 ≤ 𝑆 . By induction
hypothesis, we deduce that Γ ` 𝐸𝑝 [𝐸 ′/𝑥] : (𝜏1 × 𝜏2). Therefore, Γ ` 𝜋𝑖 (𝐸𝑝 [𝐸 ′/𝑥]) : 𝜏𝑖
by rule [TProj], and the result follows.

• let 𝑦 = 𝐸1 in 𝐸2. By hypothesis, we have Γ, 𝑥 : 𝑆 ′ ` 𝐸1 : ∀®𝛼.𝜏1 and Γ, 𝑥 : 𝑆 ′, 𝑦 : ∀®𝛼.𝜏1 `
𝐸2 : 𝑆 . Therefore, by induction hypothesis, we deduce Γ ` 𝐸1 [𝐸 ′/𝑥] : ∀®𝛼.𝜏1 and
Γ, 𝑦 : ∀®𝛼.𝜏1 ` 𝐸2 [𝐸 ′/𝑥] : 𝑆 . This yields Γ ` let 𝑦 = 𝐸1 [𝐸 ′/𝑥] in 𝐸2 [𝐸 ′/𝑥] : 𝑆 by rule
[TLet], hence the result.

• Λ®𝛼. 𝐸. By hypothesis, Γ, 𝑥 : 𝑆 ′ ` 𝐸 : 𝜏 where ∀®𝛼.𝜏 ≤ 𝑆 . By induction hypothesis, we
deduce Γ ` 𝐸 [𝐸 ′/𝑥] : 𝜏 . Hence, rule [TTAbstr] yields Γ ` Λ®𝛼. 𝐸 [𝐸 ′/𝑥] : ∀®𝛼.𝜏 , hence the
result.
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• 𝐸 [®𝑡]. By hypothesis, Γ, 𝑥 : 𝑆 ′ ` 𝐸 : ∀®𝛼.𝜏 , and 𝜏 [®𝑡/®𝛼] ≤ 𝑆 . The induction hypothesis
then yields Γ ` 𝐸 [𝐸 ′/𝑥] : ∀®𝛼.𝜏 . Applying rule [TTApp] yields Γ ` (𝐸 [𝐸 ′/𝑥]) [®𝑡] :
𝜏 [®𝑡/®𝛼], hence the result.

• 𝐸〈𝜏1 ⇒
𝑝
𝜏2〉. By hypothesis, Γ, 𝑥 : 𝑆 ′ ` 𝐸 : 𝜏1, and 𝜏2 ≤ 𝑆 . The induction hypothesis

then yields Γ ` 𝐸 [𝐸 ′/𝑥] : 𝜏1. Applying rule [TCast] gives Γ ` (𝐸 [𝐸 ′/𝑥])〈𝜏1 ⇒
𝑝
𝜏2〉 : 𝜏2

and the result follows.

�

Lemma B.48. If Γ ` 𝐸 : 𝑆 and Γ ` E [𝐸] : 𝑆 ′ then for every expression 𝐸 ′
such that Γ ` 𝐸 ′ : 𝑆 , we

have Γ ` E [𝐸 ′] : 𝑆 ′.

Proof. By complete induction over E .

• �. Immediate with 𝑆 = 𝑆 ′.

• 𝐸𝑓 E . By hypothesis and inversion of rule [TApp], we have Γ ` 𝐸𝑓 : 𝜏 → 𝑆 ′ and
Γ ` E [𝐸] : 𝜏 . By induction hypothesis, it holds that Γ ` E [𝐸 ′] : 𝜏 . Therefore, by
[TApp], Γ ` 𝐸𝑓 E [𝐸 ′] : 𝑆 ′.

• E 𝑉 . By hypothesis and inversion of rule [TApp], we have Γ ` E [𝐸] : 𝜏 → 𝑆 ′ and
Γ ` 𝑉 : 𝜏 . By induction hypothesis, it holds that Γ ` E [𝐸 ′] : 𝜏 → 𝑆 ′. Therefore, by
[TApp], Γ ` E [𝐸 ′] 𝑉 : 𝑆 ′.

• E [®𝑡]. By hypothesis and inversion of [TTApp], we have Γ ` E [𝐸] : ∀®𝛼.𝜏 where
𝜏 [®𝑡/®𝛼] ≤ 𝑆 ′. By IH, it holds that Γ ` E [𝐸 ′] : ∀®𝛼.𝜏 . Therefore, by rule [TTApp], we have
Γ ` E [𝐸 ′] [®𝑡] : 𝜏 [®𝑡/®𝛼] and the result follows by [TSubsume].

• (𝐸𝑙 , E ). By hypothesis and inversion of [TPair], we have Γ ` 𝐸𝑙 : 𝜏1 and Γ ` E [𝐸] : 𝜏2
where 𝜏1×𝜏2 ≤ 𝑆 ′. By IH, we deduce Γ ` E [𝐸 ′] : 𝜏2. Therefore, it holds by rule [TPair]
that Γ ` (𝐸𝑙 , E [𝐸 ′]) : 𝜏1 × 𝜏2 and the result follows by rule [TSubsume].

• (E ,𝑉 ). By hypothesis and inversion of [TPair], we have Γ ` E [𝐸] : 𝜏1 and Γ ` 𝑉 : 𝜏2
where 𝜏1×𝜏2 ≤ 𝑆 ′. By IH, we deduce Γ ` E [𝐸 ′] : 𝜏1. Therefore, it holds by rule [TPair]
that Γ ` (E [𝐸 ′],𝑉 ) : 𝜏1 × 𝜏2 and the result follows by rule [TSubsume].

• 𝜋𝑖 E . By hypothesis and inversion of [TProj], we have Γ ` E [𝐸] : 𝜏1×𝜏2 where 𝜏𝑖 ≤ 𝑆 ′.
By IH, we deduce Γ ` E [𝐸 ′] : 𝜏1 × 𝜏2 thus [TProj] yields that Γ ` 𝜋𝑖 (E [𝐸 ′]) : 𝜏𝑖 , and
the result follows by subsumption.

• let 𝑥 = E in 𝐸𝑙 . By hypothesis and inversion of [TLet], we have Γ ` E [𝐸] : ∀®𝛼.𝜏 and
Γ, 𝑥 : ∀®𝛼.𝜏 ` 𝐸𝑙 : 𝑆 ′. By IH, we deduce Γ ` E [𝐸 ′] : ∀®𝛼.𝜏 . Therefore, it holds by rule
[TLet] that Γ ` let 𝑥 = E [𝐸 ′] in 𝐸𝑙 : 𝑆 ′.

• E 〈𝜏1 ⇒
𝑝
𝜏2〉. By hypothesis and inversion of [TCast], we have Γ ` E [𝐸] : 𝜏1 and 𝜏2 ≤

𝑆 ′. By IH, it holds that Γ ` E [𝐸 ′] : 𝜏1. Therefore, by rule [TCast], we have Γ `
E [𝐸 ′]〈𝜏1 ⇒

𝑝
𝜏2〉 : 𝜏2, and the result follows by [TSubsume].

�

Lemma B.49. If Γ ` 𝐸 : 𝜏 , then for every type substitution \ , Γ\ ` 𝐸\ : 𝜏\ .
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Proof. By induction on the derivation of Γ ` 𝐸 : 𝜏 and by case on the last rule applied.

• [TVar]. We have Γ ` 𝑥 : ∀®𝛼. 𝜏 and Γ(𝑥) = ∀®𝛼. 𝜏 . We deduce (Γ\ ) (𝑥) = ∀®𝛼. 𝜏\ . Since
𝑥\ = 𝑥 , we apply [TVar] to deduce the result: Γ\ ` 𝑥 : ∀®𝛼. 𝜏\ .

• [TConst]. Immediate since 𝑏𝑐\ = 𝑏𝑐 .

• [TAbstr], [TApp], [TPair], [TProj], [TTAbstr], [TTApp], [TLet]. Direct application of the
induction hypothesis.

• [TSubsume]. By Proposition 5.19, 𝜏
′ ≤ 𝜏 implies 𝜏 ′\ ≤ 𝜏\ for any static type substitution

\ , and the result follows.

• [TCast]. By Proposition 5.3, 𝜏 ′ 4 𝜏 implies 𝜏 ′\ 4 𝜏\ for any type substitution \ , and
the result follows.

�

Lemma B.50 (Subject Reduction). For every terms 𝐸, 𝐸 ′
and every context Γ, if Γ ` 𝐸 : 𝑆 and

𝐸 ↩→ 𝐸 ′
then Γ ` 𝐸 ′ : 𝑆 .

Proof. By case disjunction over the rule used in the reduction 𝐸 ↩→ 𝐸 ′.

• [RExpandL]𝑉 〈𝜏1 ⇒
𝑝
𝜏2〉 ↩→ 𝑉 〈𝜏1 ⇒

𝑝
𝜏1/𝜏2〉〈𝜏1/𝜏2 ⇒

𝑝
𝜏2〉. By inversion of the typing rules,

𝜏2 ≤ 𝑆 . By hypothesis of the reduction rule, 𝜏2 4 𝜏1. By inversion of the typing rule
[TCast], we deduce that Γ ` 𝑉 : 𝜏1 and 𝑝 = 𝑙 . By Proposition B.20, we have 𝜏2 4 𝜏1/𝜏2 4
𝜏1. Therefore, applying the typing rule [TCast] twice yields Γ ` 𝑉 〈𝜏1 ⇒

𝑝
𝜏1/𝜏2〉 : 𝜏1/𝜏2

and then Γ ` 𝑉 〈𝜏1 ⇒
𝑝
𝜏1/𝜏2〉〈𝜏1/𝜏2 ⇒

𝑝
𝜏2〉 : 𝜏2. Since 𝜏2 ≤ 𝑆 , applying [TSubsume] yields

the result.

• [RExpandR]. 𝑉 〈𝜏1 ⇒
𝑝
𝜏2〉 ↩→ 𝑉 〈𝜏1 ⇒

𝑝
𝜏2/𝜏1〉〈𝜏2/𝜏1 ⇒

𝑝
𝜏2〉. By inversion of the typing

rules, 𝜏2 ≤ 𝑆 . By hypothesis of the reduction rule, 𝜏1 4 𝜏2. By inversion of the
typing rule [TCast], we deduce that Γ ` 𝑉 : 𝜏1 and 𝑝 = 𝑙 . By Proposition B.20, we
have 𝜏1 4 𝜏2/𝜏1 4 𝜏2. Therefore, applying the typing rule [TCast] twice yields Γ `
𝑉 〈𝜏1 ⇒

𝑝
𝜏2/𝜏1〉 : 𝜏2/𝜏1 and then Γ ` 𝑉 〈𝜏1 ⇒

𝑝
𝜏2/𝜏1〉〈𝜏2/𝜏1 ⇒

𝑝
𝜏2〉 : 𝜏2. Since 𝜏2 ≤ 𝑆 ,

applying [TSubsume] yields the result.

• [RCastId] 𝑉 〈𝜏 ⇒𝑝 𝜏〉 ↩→ 𝑉 . By inversion of the typing rules, 𝜏 ≤ 𝑆 . By inversion of the
typing rule [TCast], Γ ` 𝑉 : 𝜏 . Applying [TSubsume] yields Γ ` 𝑉 : 𝑆 .

• [RCollapse] 𝑉 〈𝜏1 ⇒
𝑝
𝜏2〉〈𝜏 ′1 ⇒

𝑞
𝜏 ′2〉 ↩→ 𝑉 . By inversion of the typing rules, 𝜏 ′2 ≤ 𝑆 . Invers-

ing the typing rule [TCast] twice yields Γ ` 𝑉 : 𝜏1. Since, by hypothesis of [RCollapse],
𝜏1 ≤ 𝜏 ′2 ≤ 𝑆 , applying [TSubsume] yields Γ ` 𝑉 : 𝑆 .

• [RUpSimpl] 𝑉 〈𝜏1 ⇒
𝑝
𝜏2〉〈𝜏 ′1 ⇒

𝑞
𝜏 ′2〉 ↩→ 𝑉 〈𝜏1 ⇒

𝑝
𝜏2〉. By inversion of the typing rules, 𝜏 ′2 ≤

𝑆 . Inversing the typing rule [TCast] yields Γ ` 𝑉 〈𝜏1 ⇒
𝑝
𝜏2〉 : 𝜏2. By hypothesis of the

reduction rule, 𝜏2 ≤ 𝜏 ′2 ≤ 𝑆 . Therefore, applying [TSubsume] yields Γ ` 𝑉 〈𝜏1 ⇒
𝑝
𝜏2〉 : 𝑆 .

• [RUnboxSimpl]𝑉 〈𝜏1 ⇒
𝑝
𝜏2〉 ↩→ 𝑉 . By inversion of the typing rules, 𝜏2 ≤ 𝑆 . By LemmaB.3,

Γ ` 𝑉 : type(𝑉 ). By hypothesis of [RUnboxSimpl], type(𝑉 ) ≤ 𝜏2 ≤ 𝑆 , thus applying
[TSubsume] yields Γ ` 𝑉 : 𝑆 .
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• [RCastApp] 𝑉 〈𝜏 ⇒𝑝 𝜏 ′〉𝑉 ′ ↩→ (𝑉 𝑉 ′〈𝜏 ′1 ⇒
𝑝
𝜏1〉)〈𝜏2 ⇒

𝑝
𝜏 ′2〉 where 〈𝜏 ⇒𝑝 𝜏 ′〉 ◦ type(𝑉 ′) =

〈𝜏1 → 𝜏2 ⇒
𝑝
𝜏 ′1 → 𝜏 ′2〉.

First of all, Lemma B.37 ensures that the casts 〈𝜏 ′1 ⇒
𝑝
𝜏1〉 and 〈𝜏2 ⇒

𝑝
𝜏 ′2〉 are well-

formed and respect the materialization conditions present in the typing rule [TCast].
Lemma B.39 then ensures type(𝑉 ′) ≤ 𝜏 ′1, thus Γ ` 𝑉 ′〈𝜏 ′1 ⇒

𝑝
𝜏1〉 : 𝜏1 by rule [TCast].

Inversing the typing rules yields Γ ` 𝑉 : 𝜏 and Lemma B.39 gives 𝜏 ≤ 𝜏1 → 𝜏2. There-
fore Γ ` 𝑉 : 𝜏1 → 𝜏2 by rule [TSubsume], and Γ ` 𝑉 𝑉 ′〈𝜏 ′1 ⇒

𝑝
𝜏1〉 : 𝜏2 by rule [TApp].

Finally, we obtain Γ ` (𝑉 𝑉 ′〈𝜏 ′1 ⇒
𝑝
𝜏1〉)〈𝜏2 ⇒

𝑝
𝜏 ′2〉 : 𝜏 ′2 by rule [TCast]. The last thing we

need to prove is 𝜏 ′2 ≤ 𝑆 . By inversing the typing rules, and using Lemma B.3, we have
𝜏 ′ ≤ type(𝑉 ′) → 𝑆 . The result follows by applying Lemma B.39.

• [RCastProj] 𝜋𝑖 (𝑉 〈𝜏 ⇒𝑝 𝜏 ′〉) ↩→ (𝜋𝑖 𝑉 )〈𝜏𝑖 ⇒
𝑝
𝜏 ′𝑖 〉 where 𝜋𝑖 (〈𝜏 ⇒𝑝 𝜏 ′〉) = 〈𝜏𝑖 ⇒

𝑝
𝜏 ′𝑖 〉. First of

all, Lemma B.41 ensures that the cast 〈𝜏𝑖 ⇒
𝑝
𝜏 ′𝑖 〉 is well-formed and respect the mate-

rialization conditions present in the typing rule [TCast].
Now consider 𝑖 = 1 (the case 𝑖 = 2 is proved in the same way). Lemma B.43 then
ensures 𝜏 ≤ (𝜏𝑖 × 1). And, by hypothesis and inversion of the typing rules, we know
that Γ ` 𝑉 : 𝜏 . Therefore, by rule [TSubsume], we have Γ ` 𝑉 : 𝜏𝑖 × 1. Then, by rule
[TProj], we deduce Γ ` 𝜋1 𝑉 : 𝜏𝑖 . Finally, the rule [TCast] allows us to conclude that
Γ ` (𝜋1 𝑉 )〈𝜏𝑖 ⇒

𝑝
𝜏 ′𝑖 〉 : 𝜏 ′𝑖 .

Now, by hypothesis, we have Γ ` 𝜋1 (𝑉 〈𝜏 ⇒𝑝 𝜏 ′〉) : 𝑆 . Thus, by inversion of the
typing rules and subsumption, we deduce Γ ` 𝑉 〈𝜏 ⇒𝑝 𝜏 ′〉 : (𝑆 × 1). That is, by
inversion of [TCast], 𝜏 ′ ≤ 𝑆 × 1. Now, the second part of Lemma B.43 yields
𝜏 ′𝑖 = min{𝜏0 | 𝜏 ′ ≤ 𝜏0 × 1}. From this, we can deduce 𝜏 ′𝑖 ≤ 𝑆 , and we conclude
that Γ ` (𝜋1 𝑉 )〈𝜏𝑖 ⇒

𝑝
𝜏 ′𝑖 〉 : 𝑆 by subsumption.

• [RSimplApp] 𝑉 〈𝜏 ⇒𝑝 𝜏 ′〉𝑉 ′ ↩→ 𝑉 𝑉 ′. By inversion of the typing rules, and using
Lemma B.3, we have 𝜏 ′ ≤ type(𝑉 ′) → 𝑆 . By hypothesis of the reduction rule, we
also have 𝜏/𝜏 ′ = 𝜏 . Applying Corollary B.24 therefore yields 𝜏 ≤ type(𝑉 ′) → 𝑆 . Since
Γ ` 𝑉 : 𝜏 by inversion of the typing rules, we deduce that Γ ` 𝑉 : type(𝑉 ′) → 𝑆 by
rule [TSubsume]. We can then conclude by applying rule [TApp].

• [RSimplProj] 𝜋𝑖 (𝑉 〈𝜏 ⇒𝑝 𝜏 ′〉) ↩→ 𝜋𝑖 𝑉 . By inversion of the typing rules, we have 𝜏 ′ ≤
𝜏1 × 𝜏2 where 𝜏𝑖 ≤ 𝑆 . By hypothesis of the reduction rule, we also have 𝜏/𝜏 ′ = 𝜏 .
Applying Corollary B.24 therefore yields 𝜏 ≤ 𝜏1 × 𝜏2. Since Γ ` 𝑉 : 𝜏 by inversion
of the typing rules, we deduce that Γ ` 𝑉 : 𝜏1 × 𝜏2 by rule [TSubsume]. We can then
conclude by applying rule [TProj] and [TSubsume].

• [RApp] (_𝜏1→𝜏2𝑥 . 𝐸)𝑉 ↩→ 𝐸 [𝑉 /𝑥]. By inversion of the typing rules, we have Γ ` 𝑉 : 𝜏1,
𝜏2 ≤ 𝑆 , as well as Γ, 𝑥 : 𝜏1 ` 𝐸 : 𝜏2. Lemma B.47 immediately yields that Γ ` 𝐸 [𝑉 /𝑥] :
𝜏2, and the result follows by [TSubsume].

• [RProj] 𝜋𝑖 (𝑉1,𝑉2) ↩→ 𝑉𝑖 . By inversion of the typing rules, we have Γ ` (𝑉1,𝑉2) : 𝜏1 ×𝜏2
and 𝜏𝑖 ≤ 𝑆 . Inversing the typing rules a second time yields Γ ` 𝑉1 : 𝜏1 and Γ ` 𝑉2 : 𝜏2,
therefore, by [TSubsume] we obtain Γ ` 𝑉𝑖 : 𝑆 .

• [RTypeApp] (Λ®𝛼. 𝐸) [®𝑡] ↩→ 𝐸 [®𝑡/®𝛼]. We have, by hypothesis, Γ ` Λ®𝛼. 𝐸 : ∀®𝛼.𝜏 where
Γ ` 𝐸 : 𝜏 and 𝜏 [®𝑡/®𝛼] ≤ 𝑆 . Applying Lemma B.49 yields Γ [®𝑡/®𝛼] ` 𝐸 [®𝑡/®𝛼] : 𝜏 [®𝑡/®𝛼].
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However, by hypothesis of the typing rules, ®𝛼 ♯ Γ. Therefore, Γ [®𝑡/®𝛼] = Γ, and we have
Γ ` 𝐸 [®𝑡/®𝛼] : 𝜏 [®𝑡/®𝛼], which is the result.

• [RLet] let 𝑥 = 𝑉 in 𝐸 ↩→ 𝐸 [𝑉 /𝑥]. By hypothesis, we have Γ ` 𝑉 : ∀®𝛼.𝜏 , and Γ, 𝑥 :
∀®𝛼.𝜏 ` 𝐸 : 𝜏 ′ where 𝜏 ′ ≤ 𝑆 . Lemma B.47 immediately yields that Γ ` 𝐸 [𝑉 /𝑥] : 𝜏 ′, and
the result follows by [TSubsume].

• [RContext] E [𝐸] ↩→ E [𝐸 ′] where 𝐸 ↩→ 𝐸 ′. Immediate by Lemma B.48.

�

Theorem B.51 (Soundness). For every term 𝐸 such that ∅ ` 𝐸 : 𝑆 , one of the following cases
holds:

• there exists a value 𝑉 such that 𝐸 ↩→∗ 𝑉

• there exists a label 𝑝 such that 𝐸 ↩→∗ blame 𝑝

• 𝐸 diverges

Proof. Immediate corollary of Lemma B.50 and Lemma B.46. �

Theorem B.52 (Blame Safety). For every term 𝐸 such that ∅ ` 𝐸 : 𝑆 , and every blame label

𝑙 , 𝐸 6↩→∗ blame 𝑙 .

Proof. Given Lemma B.50, and by induction over 𝐸, it is sucient to prove the result for
reductions of length one. The proof is then done by case disjunction over the reduction
rules that can produce a blame.

• [RBlame]𝑉 〈𝜏1 ⇒
𝑝
𝜏2〉〈𝜏 ′1 ⇒

𝑞
𝜏 ′2〉 ↩→ blame 𝑞. By hypothesis of the reduction rule, 𝜏 ′1 4 𝜏 ′2.

Thus, by inversion of the typing rule [TCast], 𝑞 is a positive label.

• [RUpBlame] 𝑉 〈𝜏1 ⇒
𝑝
𝜏2〉〈𝜏 ′1 ⇒

𝑞
𝜏 ′2〉 ↩→ blame 𝑞. By hypothesis of the reduction rule, 𝜏 ′1 4

𝜏 ′2. Thus, by inversion of the typing rule [TCast], 𝑞 is a positive label.

• [RUnboxBlame] 𝑉 〈𝜏1 ⇒
𝑝
𝜏2〉 ↩→ blame 𝑝 . By hypothesis of the reduction rule, 𝜏1 4 𝜏2.

Thus, by inversion of the typing rule [TCast], 𝑝 is a positive label.

• [RFailApp] 𝑉 〈𝜏 ⇒𝑝 𝜏 ′〉𝑉 ′ ↩→ blame 𝑝 . By hypothesis of the reduction rule, the two
possible cases are 𝜏 ′/𝜏 = 𝜏 and 𝜏/𝜏 ′ = 𝜏 ′. Moreover, by inversion of the typing rules,
𝜏 ′ ≤ 0 → 1. Thus, by contradiction, if 𝜏/𝜏 ′ = 𝜏 ′, then 〈𝜏 ⇒𝑝 𝜏 ′〉 ◦ type(𝑉 ′) would be
well-dened according to Lemma B.38. Therefore, we necessarily have 𝜏 ′/𝜏 = 𝜏 , and
by inversion of the typing rule [TCast], 𝑝 is a positive label.

• [RFailProj] 𝜋𝑖 (𝑉 〈𝜏 ⇒𝑝 𝜏 ′〉) ↩→ blame 𝑝 . By hypothesis of the reduction rule, the two
possible cases are 𝜏 ′/𝜏 = 𝜏 and 𝜏/𝜏 ′ = 𝜏 ′. Moreover, by inversion of the typing rules,
𝜏 ′ ≤ 1 → 1. Thus, by contradiction, if 𝜏/𝜏 ′ = 𝜏 ′, then 𝜋𝑖 (〈𝜏 ⇒𝑝 𝜏 ′〉) would be well-
dened according to Lemma B.42. Therefore, we necessarily have 𝜏 ′/𝜏 = 𝜏 , and by
inversion of the typing rule [TCast], 𝑝 is a positive label.
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• [RCtxBlame] E [𝐸] ↩→ blame 𝑝 . Immediate by induction.

�

Theorem B.53 (Conservativity). For every term 𝐸 such that ∅ `Sub 𝐸 : 𝜏 , 𝐸 {HM 𝐸 ′ ⇐⇒
𝐸 {ST 𝐸

′
and 𝐸 {HM blame 𝑝 ⇐⇒ 𝐸 {ST blame 𝑝 .

Proof. By cases over the rule used in the reduction of 𝐸, and induction on 𝐸.

1. First implication, (Sub) =⇒ (Set).

• [RExpandL] 𝑉 〈𝜏 ⇒𝑝 ?〉 {HM 𝑉 〈𝜏 ⇒𝑝 𝜏/?〉〈𝜏/? ⇒𝑝 ?〉. By hypothesis of the re-
duction rule, 𝜏 /? ≠ 𝜏 , and 𝜏 ≠ ?. Therefore, 𝜏/? ≠ ? (since only ?/? =
?). Thus, the rule [RExpandL] can be applied in Set to yield 𝑉 〈𝜏 ⇒𝑝 ?〉 {ST

𝑉 〈𝜏 ⇒𝑝 𝜏/?〉〈𝜏 /? ⇒𝑝 ?〉.

• [RExpandR] 𝑉 〈? ⇒𝑝 𝜏〉 {HM 𝑉 〈? ⇒𝑝 𝜏 /?〉〈𝜏/? ⇒𝑝 𝜏〉. By hypothesis of the reduc-
tion rule, 𝜏/? ≠ 𝜏 , and 𝜏 ≠ ?. Therefore, 𝜏/? ≠ ? for the same reason as
before. Thus, rule [RExpandR] can be applied in Set to yield 𝑉 〈? ⇒𝑝 𝜏〉 {HM

𝑉 〈? ⇒𝑝 𝜏/?〉〈𝜏/? ⇒𝑝 𝜏〉.

• [RCastId] 𝑉 〈𝜏 ⇒𝑝 𝜏〉 {HM 𝑉 . Immediate since [RCastId] is unchanged in Set.

• [RCollapse] 𝑉 〈𝜌 ⇒𝑝 ?〉〈? ⇒𝑞 𝜌 ′〉 {HM 𝑉 . By hypothesis, 𝜌 ≤ 𝜌 ′. Moreover, by
denition of ground types, we have 𝜌/? = 𝜌 and 𝜌 ′/? = 𝜌 ′. All the hypothesis
of rule [RCollapse] in Set are therefore valid, and the rule can be applied to deduce
𝑉 〈𝜌 ⇒𝑝 ?〉〈? ⇒𝑞 𝜌 ′〉 {ST 𝑉 .

• [RBlame] 𝑉 〈𝜌 ⇒𝑝 ?〉〈? ⇒𝑞 𝜌 ′〉 {HM blame 𝑞. We have the same hypothesis as
before except 𝜌 � 𝜌 ′. Therefore, we can apply rule [RBlame] in Set to deduce
𝑉 〈𝜌 ⇒𝑝 ?〉〈? ⇒𝑞 𝜌 ′〉 {ST blame 𝑞.

• [RCastApp] 𝑉 〈𝜏1 → 𝜏2 ⇒
𝑝
𝜏 ′1 → 𝜏 ′2〉𝑉 ′ {HM 𝑉 (𝑉 ′〈𝜏 ′1 ⇒

𝑝
𝜏1〉)〈𝜏2 ⇒

𝑝
𝜏 ′2〉. We pose

𝜏 = 𝜏1 → 𝜏2 and 𝜏 ′ = 𝜏 ′1 → 𝜏 ′2. 𝜏 and 𝜏 ′ are trivially in disjunctive normal
form, and both are not empty (since an arrow cannot be empty). Thus, the cast
〈𝜏 ⇒𝑝 𝜏 ′〉 ◦ type(𝑉 ′) is well-dened (satises the conditions of Denition B.36).
Moreover, by hypothesis, we know that either 𝜏 4 𝜏 ′ or 𝜏 ′ 4 𝜏 . By denition of
the grounding operator, we then either have 𝜏 ′/𝜏 = 𝜏 or 𝜏/𝜏 ′ = 𝜏 ′. Thus, all the
hypothesis of the rule [RCastApp] in Set are valid.
Finally, by inversion of the typing rule [TApp], we deduce that type(𝑉 ′) ≤ 𝜏 ′1. A
simple application of Denition B.36 (case were 𝐼 and 𝑃𝑖 are singletons) shows
that 〈𝜏 ⇒𝑝 𝜏 ′〉 ◦ type(𝑉 ′) = 〈𝜏 ⇒𝑝 𝜏 ′〉, hence the result.

• [RApp] (_𝜏1→𝜏2𝑥 . 𝐸)𝑉 {HM 𝐸 [𝑉 /𝑥]. Immediate since [RApp] is unchanged in
Set.

• [RProjCast] 𝜋𝑖 (𝑉 〈𝜏1 × 𝜏2 ⇒
𝑝
𝜏 ′1 × 𝜏 ′2〉) {HM (𝜋𝑖 𝑉 )〈𝜏𝑖 ⇒

𝑝
𝜏 ′𝑖 〉. Let 𝜏 = 𝜏1 × 𝜏2 and

𝜏 ′ = 𝜏 ′1 × 𝜏 ′2. 𝜏 and 𝜏 ′ are trivially in disjunctive normal form, and both are not
empty (since a product cannot be empty in Sub, as both sides cannot be empty).
Thus, the cast 𝜋𝑖 (〈𝜏 ⇒𝑝 𝜏 ′〉) is well-dened as it satises all the conditions of
Denition B.40. Moreover, by hypothesis (inversion of typing rule [TCast]), we
know that either 𝜏 4 𝜏 ′ or 𝜏 ′ 4 𝜏 . By denition of the grounding operator, this
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yields that either 𝜏 ′/𝜏 = 𝜏 or 𝜏/𝜏 ′ = 𝜏 ′ respectively. Thus, all the hypothesis of
[RCastProj] in Set are veried.
Finally, a simple application of Denition B.40 (case were 𝐼 and 𝑃𝑖 are singletons,
and 𝑁𝑖 = ∅) shows that 𝜋𝑖 (〈𝜏 ⇒𝑝 𝜏 ′〉) = 〈𝜏𝑖 ⇒

𝑝
𝜏 ′𝑖 〉, hence the result.

• [RProj] 𝜋𝑖 (𝑉1,𝑉2) {HM 𝑉𝑖 . Immediate since [RProj] is unchanged in Set.

• [RTypeApp] (Λ®𝛼. 𝐸) [®𝑡] {HM 𝐸 [®𝑡/®𝛼]. Immediate since [RTypeApp] is unchanged in
Set.

• [RLet] let 𝑥 = 𝑉 in 𝐸 {HM 𝐸 [𝑉 /𝑥]. Immediate since [RLet] is unchanged in Set.

• [RContext] E [𝐸] {HM E [𝐸 ′] where 𝐸 {HM 𝐸 ′. By induction hypothesis, 𝐸 {ST

𝐸 ′. Thus, by rule [RContext] in the Set system, E [𝐸] {ST E [𝐸 ′].

• [RCtxBlame] E [𝐸] {HM blame 𝑝 where 𝐸 {HM blame 𝑝 . By induction hypoth-
esis, 𝐸 {ST blame 𝑝 . Thus, by rule [RCtxBlame] in the Set system, E [𝐸] {ST

blame 𝑝 .

2. Second implication, (Set) =⇒ (Sub). We omit the trivial cases where the same rule
is present in both systems.

• [RExpandL] 𝑉 〈𝜏1 ⇒
𝑝
𝜏2〉 ↩→ 𝑉 〈𝜏1 ⇒

𝑝
𝜏1/𝜏2〉〈𝜏1/𝜏2 ⇒

𝑝
𝜏2〉. By hypothesis of the re-

duction rule, 𝜏2 4 𝜏1 and 𝜏1/𝜏2 ≠ 𝜏2. Therefore, by Lemma B.21, we deduce
that 𝜏2 = ?. Since 𝜏1/𝜏2 ≠ 𝜏2, we have 𝜏1 ≠ ?, and by hypothesis of [RExpandL]
𝜏1/𝜏2 ≠ 𝜏1 therefore all the conditions of [RExpandL] in Sub are veried, and the
result follows.

• [RExpandR] 𝑉 〈𝜏1 ⇒
𝑝
𝜏2〉 ↩→ 𝑉 〈𝜏1 ⇒

𝑝
𝜏2/𝜏1〉〈𝜏2/𝜏1 ⇒

𝑝
𝜏2〉. By hypothesis of the re-

duction rule, 𝜏1 4 𝜏2 and 𝜏2/𝜏1 ≠ 𝜏1. Therefore, by Lemma B.21, we deduce
that 𝜏1 = ?. Since 𝜏2/𝜏1 ≠ 𝜏1, we have 𝜏2 ≠ ?, and by hypothesis of [RExpandR]
𝜏2/𝜏1 ≠ 𝜏2 therefore all the conditions of [RExpandR] in Sub are veried, and the
result follows.

• [RCollapse] 𝑉 〈𝜏1 ⇒
𝑝
𝜏2〉〈𝜏 ′1 ⇒

𝑞
𝜏 ′2〉 ↩→ 𝑉 . By hypothesis of the reduction rule,

𝜏 ′2/𝜏 ′1 = 𝜏 ′2 and 𝜏 ′2 ≠ 𝜏 ′1 (by precedence of [RCastId]). Thus, by Lemma B.22, we
have 𝜏 ′1 = ?. By typing hypothesis, we also have 𝜏2 ≤ 𝜏 ′1. By denition of sub-
typing on non-set-theoretic types, we deduce 𝜏2 = ?. And by hypothesis of the
reduction rule, we nally have 𝜏1 ≤ 𝜏 ′2 and 𝜏1/𝜏2 = 𝜏1 (the case 𝜏2/𝜏1 = 𝜏1 being
only possible if 𝜏2 = 𝜏1 = ?). Thus, all the conditions for the rule [RCollapse] in
Sub are veried, and the result follows.

• [RBlame] 𝑉 〈𝜏1 ⇒
𝑝
𝜏2〉〈𝜏 ′1 ⇒

𝑞
𝜏 ′2〉 ↩→ blame 𝑞. Same reasoning as before, except this

time 𝜏1 � 𝜏 ′2 which allows us to apply rule [RBlame] in Sub.

• [RUpSimpl] 𝑉 〈𝜏1 ⇒
𝑝
𝜏2〉〈𝜏 ′1 ⇒

𝑞
𝜏 ′2〉 ↩→ 𝑉 〈𝜏1 ⇒

𝑝
𝜏2〉. By hypothesis, 𝜏 ′2/𝜏 ′1 = 𝜏 ′2 and

𝜏 ′1 ≠ 𝜏 ′2. By Lemma B.22, 𝜏 ′1 = ?. Moreover, by typing hypothesis, 𝜏2 ≤ 𝜏 ′1 thus
𝜏2 = ? by denition of subtyping. By hypothesis, 𝜏1/𝜏2 = 𝜏2 but since 𝜏2 = ?, we
necessarily have 𝜏1 = ? by Denition B.1. Thus, we have a contradiction since
𝜏1 ≠ 𝜏2 by hypothesis, and this rule cannot be applied.

• [RUpBlame] 𝑉 〈𝜏1 ⇒
𝑝
𝜏2〉〈𝜏 ′1 ⇒

𝑞
𝜏 ′2〉 ↩→ blame 𝑞. Same reasoning as before, this rule

cannot be applied.
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B.5 Soundness results and proofs

• [RUnboxSimpl] 𝑉 〈𝜏1 ⇒
𝑝
𝜏2〉 ↩→ 𝑉 . By hypothesis, 𝜏2/𝜏1 = 𝜏2 and 𝜏1 ≠ 𝜏2. Applying

Lemma B.22 yields 𝜏1 = ?. However, by hypothesis, ∅ ` 𝑉 : 𝜏1. A simple case
disjunction on 𝑉 shows that this cannot hold, thus we have a contradiction and
this rule cannot be applied.

• [RUnboxBlame] 𝑉 〈𝜏1 ⇒
𝑝
𝜏2〉 ↩→ blame 𝑝 . Same reasoning as before, this rule cannot

be applied.

• [RCastApp]𝑉 〈𝜏 ⇒𝑝 𝜏 ′〉𝑉 ′ ↩→ (𝑉𝑉 ′〈𝜏 ′1 ⇒
𝑝
𝜏1〉)〈𝜏2 ⇒

𝑝
𝜏 ′2〉where 〈𝜏 ⇒𝑝 𝜏 ′〉◦type(𝑉 ′) =

〈𝜏1 → 𝜏2 ⇒
𝑝
𝜏 ′1 → 𝜏 ′2〉. By hypothesis and inversion of rule [TApp], 𝜏 ′ ≤ 0 → 1.

Since 𝜏 ′ does not contain connectives, 𝜏 ′ = 𝜎 ′
1 → 𝜎 ′

2 for some𝜎 ′
1, 𝜎

′
2. Moreover, by

hypothesis of the reductionwe either have 𝜏 /𝜏 ′ = 𝜏 ′ or 𝜏 ′/𝜏 = 𝜏 , thus necessarily
𝜏 = 𝜎1 → 𝜎2 for some 𝜎1, 𝜎2 by Denition B.1. Moreover, by hypothesis, we have
type(𝑉 ′) ≤ 𝜎 ′

1. A simple application of Denition B.36 then yields 〈𝜏 ⇒𝑝 𝜏 ′〉 ◦
type(𝑉 ′) = 〈𝜎1 → 𝜎2 ⇒

𝑝
𝜎 ′
1 → 𝜎 ′

2〉 = 〈𝜏1 → 𝜏2 ⇒
𝑝
𝜏 ′1 → 𝜏 ′2〉. Applying rule [TApp]

in Sub yields 𝑉 〈𝜏 ⇒𝑝 𝜏 ′〉𝑉 ′ ↩→ (𝑉 𝑉 ′〈𝜎 ′
1 ⇒

𝑝
𝜎1〉)〈𝜎2 ⇒

𝑝
𝜎 ′
2〉, hence the result.

• [RCastProj] 𝜋𝑖 (𝑉 〈𝜏 ⇒𝑝 𝜏 ′〉) ↩→ (𝜋𝑖 𝑉 )〈𝜏𝑖 ⇒
𝑝
𝜏 ′𝑖 〉 where 〈𝜏𝑖 ⇒

𝑝
𝜏 ′𝑖 〉 = 𝜋𝑖 (〈𝜏 ⇒𝑝 𝜏 ′〉).

Same reasoning with product types and Denition B.40.

• [RFailApp] 𝑉 〈𝜏 ⇒𝑝 𝜏 ′〉𝑉 ′ ↩→ blame 𝑝 . Using the same reasoning as for [RCastApp],
we deduce 𝜏 = 𝜏1 → 𝜏2 and 𝜏 ′ = 𝜏 ′1 → 𝜏 ′2. In particular, both 𝜏 and 𝜏 ′ are trivially
in disjunctive normal form and are non-empty, and thus verify all the conditions
of Denition B.36. Therefore, this rule cannot be applied.

• [RFailProj] 𝜋𝑖 (𝑉 〈𝜏 ⇒𝑝 𝜏 ′〉) ↩→ blame 𝑝 . Same reasoning as before but with product
types. This rule cannot be applied.

• [RSimplApp] 𝑉 〈𝜏 ⇒𝑝 𝜏 ′〉𝑉 ′ ↩→ 𝑉𝑉 ′. By hypothesis, 𝜏/𝜏 ′ = 𝜏 , and 𝜏 ≠ 𝜏 ′. Therefore,
by Lemma B.22, we have 𝜏 ′ = ?. But ? � 𝜏1 → 𝜏2 for every 𝜏1 and 𝜏2, therefore
the reducee cannot be well-typed, and this rule cannot be applied.

• [RSimplProj] 𝜋𝑖 (𝑉 〈𝜏 ⇒𝑝 𝜏 ′〉) ↩→ 𝜋𝑖 𝑉 . Same reasoning as before, this rule cannot
be applied.

�
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