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Abstract

Böhm trees are historically the first notion of λ-calculus approximation, and were in-
troduced in [Barendregt, 1977] for the Call-by-Name λ-calculus. They enjoy an inter-
esting link with the other notion of approximation that is the Taylor expansion from
[Ehrhard and Regnier, 2003]: the normal form of the Taylor expansion of a λ-term corre-
sponds to the Taylor expansion of its Böhm tree.

The theory of program approximation in the Call-by-Value λ-calculus is far less devel-
oped. We present the first notion of Böhm tree in this context, using the Call-by-Value
setting enhanced with permutation rules from [Carraro and Guerrieri, 2014]. We observe
that the λ-terms with the same Böhm tree are observationally equivalent and we provide
a characterisation on a set of approximants for it to be the Böhm tree of some λ-term. A
refinement of those approximants allows to characterise solvability.

The connection between our Böhm trees and the Taylor expansion is slightly different
than for the Call-by-Name case: here the normal form of the Taylor expansion of a λ-term
corresponds with the normalised Taylor expansion of the Böhm tree of this term.

In the second part of this work, we focus on the Call-by-Name case. We introduce a
class of categorified graph models in a distributor-induced bicategorical semantics. Those
models can be seen as a categorification of traditional relational models and they can
similarly be presented as intersection type systems. We prove an approximation theo-
rem for them: the interpretation of a λ-term corresponds to the filtered colimit of the
interpretations of its approximants i.e. the interpretation of its Böhm tree.

Our models are actually proof-relevant: the interpretation does not contain only typings
but whole type derivations. This additional information, compared to traditional models,
allows to prove a commutation theorem: the normal form of the denotation of a λ-term
coincides with the denotation of its Böhm tree.

From a derivation we can reconstruct a minimal approximant with the desired type in
the same environment and we demonstrate that any derivation in the interpretation of a
λ-term M but not in the interpretation of another λ-term N induces an approximant of
M but not of N . From this, we deduce the characterisation of the theory of categorified
graph models: this theory is B, two λ-terms have isomorphic interpretations if and only
if their Böhm trees are the same.
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Résumé

Les arbres de Böhm sont historiquement la première notion d’approximation pour le λ-
calcul, ils ont été introduit dans [Barendregt, 1977] pour le λ-calcul en Appel-par-Nom. Ils
jouissent d’un lien intéressant avec l’autre notion d’approximation qu’est le développement
de Taylor ([Ehrhard and Regnier, 2003]): la forme normale du développement de Taylor
d’un λ-terme correspond au développement de Taylor de son arbre de Böhm.

La théorie de l’approximation des programmes est beaucoup moins developpée pour le
λ-calcul en Appel-par-Valeur. Nous présentons la première notion d’arbre de Böhm dans
ce contexte, en utilisant le λ-calcul Appel-par-Valeur étendu par les règles de permuta-
tion de [Carraro and Guerrieri, 2014]. Nous constatons que les λ-termes avec les mêmes
arbres de Böhm sont équivalents observationnellement, et nous caractérisons les ensem-
bles d’approximants qui correspondent aux arbres de Böhm de λ-termes. Ensuite nous
caractérisons la solvabilité en utilisant des approximants plus précis.

La connexion entre nos arbres de Böhm et le développement de Taylor est légèrement
différente du cas Appel-par-Nom: ici la forme normale du développement de Taylor d’un
λ-terme correspond à une version normalisée du développement de Taylor de l’arbre de
Böhm de ce terme.

Dans la seconde partie de ce travail, nous nous intéressons au λ-calcul en Appel-par-
Nom. Nous introduisons les modèles de graphe catégorifiés dans une sémantique bi-
catégorique basée sur les distributeurs. Ils peuvent être vus comme une catégorification
des modèles relationnels traditionnels et pareillement ils peuvent être présentés comme
des systèmes de type intersection.

Dans ce cadre, nous prouvons un théorème d’approximation: l’interprétation d’un
λ-terme correspond à la colimite filtrée de l’interprétation de ses approximants i.e. à
l’interprétation de son arbre de Böhm.

Nos modèles sont sensibles aux preuves: l’interprétation ne contient pas seulement les
typages mais les dérivations de type. De cette information supplémentaire, comparé aux
modèles traditionnels, nous déduisons un théorème de commutation: la forme normale de
la dénotation d’un λ-terme cöıncide avec la dénotation de son arbre de Böhm.

D’une dérivation nous trouvons un approximant minimal avec les bons types et envi-
ronnement et nous montrons qu’une dérivation dans l’interprétation d’un terme M mais
pas dans celle d’un autre terme N induit un approximant de M qui n’approxime pas N .
Nous en déduisons la caractérisation de la théorie de nos modèles: cette théorie est B,
les interprétations de deux λ-termes sont isomorphes si et seulement si ces termes ont le
même arbre de Böhm.
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5.1. Link Between Taylor Expansion and Böhm Trees . . . . . . . . . . . . . . 55
5.2. Consequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.3. Solvability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6. Conclusion 65

II. Semantics 68

7. Category Theory 69
7.1. Categorical Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
7.2. The Coend Calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
7.3. Algebras of Cat Endofunctors . . . . . . . . . . . . . . . . . . . . . . . . . 78
7.4. Bicategorical Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

8. 2-dimensional Semantics 84
8.1. Bicategorical Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4



Contents

8.2. Distributors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

9. Intersection Type Distributors 91
9.1. Categorified Graph Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
9.2. System R→: Categorified Graph Models in Logical Form . . . . . . . . . . 93
9.3. Intersection Type Distributor . . . . . . . . . . . . . . . . . . . . . . . . . 99

10.A Semantic Approximation Theorem 103
10.1. Typed Reductions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
10.2. Reconstructing Approximants . . . . . . . . . . . . . . . . . . . . . . . . . 123

11.Characterisation of the Theory 127
11.1. Some Formal Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
11.2. The Induced Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

12.Decategorification of the Semantics 131
12.1. The Category Polr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
12.2. Decategorification Pseudofunctor . . . . . . . . . . . . . . . . . . . . . . . 134

13.Conclusion 137

List of Figures 140

14.Bibliography 143

5



1. Introduction

Logic was at first, a long time ago in Greece, the study of reasoning and language. In
the end of the XIXth century it became about mathematical languages and no longer
about human ones. From that time we can praise the work of Frege, Russell, Peano,
Hilbert,. . . In the 20’s and 30’s the mathematical understanding of algorithms and com-
putation had become the focus point. Even before the creation of computers, this was a
golden age for computer science.

Many different equivalent systems arose, trying to capture the essence of computation:
Turing machines, partial recursive functions by Gödel, rewriting systems by Post, combi-
natory logic by Schönfinkel and Curry. . . Among them was one that will be widely used
in theoretical computer science and that is central in the present work: the λ-calculus.

The λ-calculus. The λ-calculus was created by Church in the 30’s with the idea of be-
ing a “formal calculus” based on functions rather than on traditional sets ([Church, 1932,
Church, 1941]).

The λ-calculus and the famous Turing machine are computationally equivalent
([Kleene, 1936, Turing, 1937]). However, even though Turing machines are visually great
and easily understandable tools to represent algorithms, they are not really satisfying
from a mathematical perspective: a Turing machine basically follows a sequence of in-
structions using a given space to write, akin to assembly code. Other equivalent structures
such as partial recursive functions are, conversely, too abstract and lose the principle of
computation. The λ-calculus reduction is a key to symbolise it:

(λx.M)N →β M [N/x]

the rule (β) corresponds to the rewriting of the λ-term (λx.M)N by replacing the λ-term
N for all free occurrences of the variable x inside the λ-term M . We can also use it to
rewrite subterms inside a λ-term.

The underlying idea is to see the λ-term λx.M as a function f(x) depending on the
variable x and N as the argument of this function. As an example, consider a function
representing a polynomial: f(x) = x2 − 3x + 42, then f(4) = 42 − 3× 4 + 42. Basically,
f(4) corresponds to the replacement of the occurrences of x by 4. In λ-notation, this
could informally be denoted (λx.(x2 − 3x+ 42))4→β 42 − 3× 4 + 42.

This simple but powerful reduction rule is the core of λ-calculus.

Applying it can also be seen as executing a step in a program. In fact, the λ-calculus is
the kernel of many functional programming languages and has been throughout the years
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a major subject of study for computer scientists.

Regarding functions or programs it is natural to be interested in the “meaning” of indi-
vidual λ-terms. If a λ-term cannot be reduced then it is called a normal form, and λ-terms
reaching normal forms by reduction are called normalisable. Since λ-calculus is a consis-
tent rewriting system and the reduction rule is confluent (due to [Church and Rosser, 1936]),
each λ-term has at most one normal form, reached after a sequence of reductions. We
can take as example:

λw.(((λx.xx)(λz.yz))u)→β λw.(((λz.yz)(λz.yz))u)→β λw.((y(λz.yz))u).

One could then consider those normal forms as the meaning of λ-terms, akin the mean-
ing of results of functions. However not all λ-terms have normal forms: some of them lead
to infinite chains of reductions. We could at first consider those terms as meaningless. But
λ-terms are not mathematical functions, where only the extensional definition matters.
In the same way that a program computing the decimals of π has a purpose but never
ends, non-normalisable λ-terms are not meaningless in general. Still, some of them are,
for example: Ω = (λx.xx)(λx.xx)→β Ω endlessly reduces to itself.

Solvability. Meaningful terms are usually considered to be the solvable ones. A term
is solvable if it can be reduced to a fully defined result (traditionally, the identity λx.x)
when used as subterm of some λ-term with a specific shape. More precisely, M is solvable
if there are variables x1, . . . xn and λ-terms N0, . . . Nl such that

(. . . ((λx1(λx2(. . . (λxn.M) . . . ))N0) . . . )Nl)→β · · · →β λx.x.

The notion of solvability was first studied in [Wadsworth, 1971, Wadsworth, 1976,
Barendregt, 1971, Barendregt, 1977].

A λ-term may be solvable even with unsolvable subterms, if those can be erased in
the right environment (without erasing the whole λ-term). A classical example of an
unsolvable λ-term is Ω. However (λyx.x)Ω is solvable, since (λyx.x)Ω →β λx.x. In this
case, the subterm Ω has no influence on the whole λ-term and could be replaced by any
other subterm without altering the reduction properties.

Solvable terms may be seen as the terms producing some information, even if they
sometimes have no normal form.

They have been characterised in various ways. Among them, in [Wadsworth, 1976] this
characterisation is performed operationally, by the mean of a specific reduction called
head reduction: the solvable terms are the ones with a head normal form. Solvability also
have a strong link with the famous notion of Böhm tree.

Böhm trees. Böhm introduced a separability theorem stating that two normalisable λ-
terms whose normal forms are distinguished modulo η-equivalence (and renaming of bound
variables) whenever they can be separated by an applicative context ([Böhm, 1968]).
Equivalently, looking at the contrapositive, if two terms behave in the same way when
applied to any λ-terms, then their normal forms must be similar. In other words, the
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1. Introduction

extensional equivalence on λ-calculus normal forms is definable in terms of syntactic
equivalences.

This result is particularly appealing because the proof is constructive and inspired a
tree representation of normal forms. In [Barendregt, 1977], this representation was ex-
tended to terms with no normal forms, calling it Böhm tree. The Böhm tree of a λ-term
is constructed by successively reducing the term and collecting parts of it that will never
change again during following reductions.

Different equivalent methods for defining Böhm trees exist, famous ones comes from
[Lassen, 1999] and [Amadio and Curien, 1998]. They respectively use coinduction and a
language of approximants.

Those approximants are λ-terms in normal forms but possibly containing a special sub-
term used to represent the indefiniteness: ⊥. A pre-order is defined on them, considering
⊥ smaller than any subterm. The approximants of a given λ-term may be infinitely many
but they are all of finite size and comparable. They have a similar external shape and ⊥
is used in deeper subterms for more precise approximants. The Böhm tree of a λ-term is
given by the supremum of its approximants.

The labels on the tree representation consist of the external subterms that are settled
during reductions and the study of the behaviour of the λ-term corresponds to the study of
finite parts of the tree. Unsolvable λ-terms, such as Ω, have just ⊥ as approximant, since
they do not produce any information and no subterm become permanent while reducing.

Models. A whole world is devoted to the meaning associated with the terms of a theory:
the semantics. The aim is to introduce the interpretation of the syntax of a language,
such as the λ-calculus, in a suitable model.

In particular, denotational semantics are based on the thought that programs and terms
are symbolic representations of abstract mathematical concepts. Thus the principle is to
associate the appropriate mathematical object (number, function, tuple...) with the ob-
jects of the syntax. Moreover the interpretation should be stable under reduction: indeed
a term and its reducts have the same “meaning”.

The notion of denotational semantics is mainly issued from the work of Strachey and
Scott in [Scott, 1970, Scott and Strachey, 1971].

The first model of λ-calculus, D∞, was introduced in [Scott, 1972] in the category of
complete lattices and Scott-continuous functions. What is formally a model of λ-calculus?
A categorical definition states that models of λ-calculus are reflexive objects living in some
Cartesian Closed Category. They can also equivalently be seen as combinatory algebras
satisfying some axioms.

After D∞, a lot of other models of λ-calculus were created (see [Barendregt, 1984,
Plotkin, 1993]). In [Coppo and Dezani-Ciancaglini, 1980], a type assignment system was
introduced: intersection types. This framework assigns types to λ-terms, with the speci-
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ficity that such a system takes into account that a term can be typed in several ways by
means of the intersection constructor ∩. Typing the λ-term M with a ∩ b means that M
can be typed both with a and with b. The intuition derives from realisability semantics,
where programs that realise a∩ b are programs that realise a and b, individually. In such
a model the interpretation of a λ-term is given by the set of its typings:

JMK = {(Γ, a) | Γ `M : a}

where Γ ` M : a means that M can be typed with a in an environment Γ (setting the
types of the free variables of M).

In the same way that, in programming, types are used to ensure that a string is not
given as an entry to a program needing a number, they are here assigned to a λ-term
through the use of diverse rules depending of the types of its subterms. For example, in a
given environment, a λ-term λx.M , representing a function, has a type of the form a→ b,
and can only be applied to λ-terms N of type a. The “result” of the function M [N/x] is
(then) of type b. And since the “meaning” does not change while rewriting, (λx.M)N is
also of type b.

Major properties of normalisation in λ-calculus can be characterised using intersection
types, like head normalisation, β-normalisation and strong normalisation ([Krivine, 1993],
[Bernadet and Lengrand, 2013, Bucciarelli et al., 2017]). Solvability can also be charac-
terise using them: a λ-term is solvable if and only if it is typable with intersection types
([Coppo and Dezani-Ciancaglini, 1980]).

If the operator ∩ is non-idempotent (a∩a 6= a), then the type system becomes resource
sensitive ([Gardner, 1994, de Carvalho, 2007]). Now a type a1∩ · · · ∩ an ⇒ b captures the
exact number of resources needed during computations, no argument can be duplicated
nor deleted. This is a really capital property when one is interested in programs. Indeed
when performing (λx.M)N →β M [N/x] we duplicate N (or delete it) the number of times
x appears in M and make the replacement in one unique step, which is highly unnatural
from a computational point of view. Taking into account the resources with types is a
real improvement.

Resources allow to prove operational properties such as β-normalisation by combinato-
rial means [Bucciarelli et al., 2017], and give quantitative operational information about
solvable terms: the number of head reduction steps in [Accattoli and Dal Lago, 2012] and
the size of the head normal form in [de Carvalho, 2007, de Carvalho, 2018].

λ-theories. Models are strongly linked to λ-theories. The λ-theories are essential if the
focus is on the equivalence between terms rather than on their computational process.
Formally, they are defined as congruences on λ-terms containing β-conversion (two terms
are β-convertible if we can reach one from the other by following a sequence of β-rules
where we forget the direction of the arrows). Each denotational model generates a λ-
theory, by equating the terms having the same interpretation in the model:

Th(D) = {(M,N) | JMKD = JNKD}.
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1. Introduction

They can also be designed to capture a given operational behaviour. Famous examples
are H axiomatised by equating unsolvable λ-terms, B equating λ-terms with the same
Böhm tree, and H∗ equating all observationally indistinguishable λ-terms.

Scott’s model D∞ equates all unsolvable terms, in fact its theory is exactly H∗.

We aim at defining fully abstract models. By fully abstract models we mean models
whose induced theories capture some observational equivalence between λ-terms: two
terms are observationally equivalent if and only if they have the same interpretation in
the model. A mandatory but not sufficient step toward full abstaction is equating the
λ-terms that have the same Böhm tree.

Linear Logic. Another groundbreaking invention concerning resources is Linear Logic
(in [Girard, 1987]). Independently from intersection type systems, and inspired by the
coherence spaces category, Girard decomposed the intuitionistic arrow a⇒ b into (!a)( b
using two new constructors:

! means “as much as we want” and allows to duplicate or erase.

( is a linear implication sensitive to the amount of resources.

A program typed with a ( b uses its input of type a exactly once during computation
in order to produce an output of type b. But a program typed with (!a)( b can use the
input as much as needed.

In terms of denotational models it is a refinement of the intuitionistic interpretation,
Cartesian Closed Categories are replaced by Symmetric Monoidal Closed Categories.

The most emblematic semantics of Linear Logic is the relational semantics in the cat-
egory Rel of Set and Relations. Its coKelisli MRel originated from [Girard, 1988] but
was first studied in [de Carvalho, 2007, Hyland et al., 2006, Bucciarelli et al., 2007]. It
constitutes the simplest quantitative model of linear logic, where a ( b is given by the
Cartesian product a× b and !a by the set of all finite multisets over a.

The semantics induced by the category Rel can be presented as a non-idempotent
intersection type system (System R) with a non-idempotent operator [de Carvalho, 2007].

Categorification. Relational Semantics has been generalised in many ways. A promis-
ing one is categorification: set-theoretic concepts are replaced by categorical ones and
the traditional models in Cartesian closed categories are transposed in 2-categories or
bicategories. The first work on this topic is [Seely, 1987], where the author sketched a
connection between 2-categories equipped with a (lax) Cartesian closed structure and
the rewriting rules of the simply-typed λ-calculus. Following this idea, it is showed in
[Hilken, 1996] that 2-categories can be used to model rewriting via 2-cells between terms
denotations. In [Hirschowitz, 2013], the author constructed 2-dimensional type theories
to describe 2-categorical structures in rewriting theory.
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In [Melliès and Zeilberger, 2015] the authors gave a categorification of type systems,
representing them as functors between a category of type derivations and a category of
terms. Following those works and [Hyland, 2017], a higher categorical approach to in-
tersection types and linear approximation, based on the setting of multicategories and
discrete distributors, was introduced in [Mazza et al., 2017].

The passage from 2-categories to bicategories consists in a weakening of the structure:
some equalities become equivalences “up to isomorphism”. This allows to adopt a term-
rewriting perspective when studying denotational semantics. Now, the interpretations of
λ-terms M and N such that M →β N are only equal up to isomorphism:

β : JMK ∼= JNK.

In [Tsukada et al., 2017] the authors showed that this isomorphism can be interpreted
with a reduction relation on some approximants of the λ-calculus. This inspired the author
of [Olimpieri, 2021, Olimpieri, 2020], where models of λ-calculus living in distributors-
based bicategories are introduced, and syntactically presented as intersection type sys-
tems. In addition, this semantic is proof-relevant in the sense that the interpretation of
a term is the whole set of its typing derivations, and not only its typings as in classical
models:

JMK(Γ, a) ∼=


π
...

Γ `M : a


where π is a derivation of Γ `M : a.

Among the bicategorical constructions, it is natural to work with distributors, which
can be seen as a categorification of relations between sets. They had been used multiple
times: in [Cattani and Winskel, 2005] for a bicategorical model of linear logic generalising
Scott’s domains, in [Fiore et al., 2008] for introducing the bicategory of generalised species
of structures, and then in [Olimpieri, 2021, Olimpieri, 2020].

Taylor expansion. It is often convenient to see λ-terms as functions, they even have
an equivalent of the major tool that is differentiation! Differential λ-calculus was in-
troduced in [Ehrhard and Regnier, 2003]. This followed previous works ([Ehrhard, 2005,
Ehrhard, 2002]), where linear logic and λ-calculus were extended with differential con-
structions.

The differential extension of λ-calculus is called resource calculus ([Tranquilli, 2009]).
It is similar to λ-calculus except that the reduction is sensitive to the amount of needed
resources: they are explicitly represented and consumed linearly. Thus the size of a re-
source term strictly decreases during reduction and the calculus is strongly normalising.

An essential ingredient of classical analysis is the Taylor expansion: a way of approx-
imating a function near a point as an infinite sum of terms depending of the function’s
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1. Introduction

derivatives at this point. Near 0, The expansion of f(x) is given by:

f(x) =
∞∑
n=0

f (n)(0)xn

n!

where f (n) corresponds to the n-th derivative of f . We can notice that a term of rank n
“uses” exactly n times x.

This notion has been captured for λ-calculus in [Ehrhard and Regnier, 2003]. The Tay-
lor expansion translates λ-terms into a (possibly) infinite linear combination of resource
terms. Since resource calculus is strongly normalising, the Taylor expansion of a λ-term
can always be normalised. The infinitary behaviour of a λ-term with no normal form is
captured by the infinite number of resource terms in its Taylor expansion even if each one
of them has a normal form.

The non-idempotent intersection type assignment system R is also strongly linked to the
Taylor expansion ([Ehrhard and Regnier, 2008, de Carvalho, 2007]): the interpretation of
a λ-term in the relational model can be recovered straightforwardly from the normal form
of its Taylor expansion.

There is a really strong result, relating Taylor expansion (denoted here by T (−)) and
Böhm tree (denoted BTβ(−)):

for any λ-term M : NF(T (M)) = T (BTβ(M)).

The normal form of the Taylor expansion of a λ-term is the Taylor expansion of the Böhm
tree of this term ([Ehrhard and Regnier, 2008, Ehrhard and Regnier, 2006a]). Thus the
Taylor expansion can be seen as a quantitative version of the Böhm tree.

Call-by-Value. On a whole different level, when approaching λ-calculus with a more
practical point of view, the β-reduction leads to some problems. Indeed, we can perform
β-reduction with arguments being λ-terms not in normal forms, while in real programming
languages the steps have a specific order: subprograms are computed before being used
as arguments.

The choice of the order in which subterms are reduced in a λ-term is named reduction
strategy. The classical β-reduction introduced by Church corresponds to the Call-by-
Name reduction strategy.

Here we will focus on Call-by-Value: some λ-terms are called values and only values
can be used as arguments. This strategy is actually used in many modern functional
programming languages, like OCaml.

The terminology “Call-by-Value” seems to have first appeared in the report defining
ALGOL 60 (see [Backus et al., 1960]). ALGOL 60 is a computer programming language
of the ALGOL family, born in 1960. It is the first language implementing nested function
definitions with lexical scope.

The first appearance of “Call-by-Value” is in Section 4.7.3.1:

12



4.7.3.1. Value assignment (call by value)

All formal parameters quoted in the value part of the procedure
declaration heading are assigned the values (cf. section 2.8. VALUES
AND TYPES) of the corresponding actual parameters, these assign-
ments being considered as being performed explicitly before entering the
procedure body. These formal parameters will subsequently be treated as
local to the procedure body.

Landin noticed strong connection between ALGOL 60 and λ-calculus and he formalised
the principle of mapping values to variables in [Landin, 1964]. The first formalisation of
Call-by-Value λ-calculus appeared in [Plotkin, 1975], together with a method for simulat-
ing Call-by-Value with Call-by-Name, and vice versa.

Sadly, there are way less results for Call-by-Value than for Call-by-Name. In particular,
the Call-by-Value theory of program approximation is not as developed. For instance, it
was unclear what should be the Böhm tree of a λ-term because some redexes may get stuck
while waiting for a value (see [Ronchi Della Rocca and Paolini, 2004], and the discussion
in [Accattoli and Guerrieri, 2016]). For example, the term (λy.(λx.xx))(xx)(λx.xx) is in
normal form in Call-by-Value, since xx is not a value and cannot be used as argument,
while (λy.(λx.xx))(xx)(λx.xx)→β (λx.xx)(λx.xx) = Ω in Call-by-Name.

In [Ronchi Della Rocca and Paolini, 2004] the authors show that the continuous model
built in [Egidi et al., 1992] does satisfy an Approximation Theorem stating that the in-
terpretation of a λ-term in the model is given by the supremum of the interpretations
of its finite approximants. But the considered approximants turn out to be too weak for
capturing any interesting operational property.

And while a plethora of adequate models — models which equate all λ-terms that are
observationally equivalent — has been constructed, e.g., in the Scott continuous and in the
stable semantics [Egidi et al., 1992, Pravato et al., 1999, Honsell and Lenisa, 1993], none
is fully abstract. Since one of the main interests of denotational models is to supply tools
for proving equivalence between terms, full abstraction is often researched and adequacy
needed.

But there is hope: a possible solution has been proposed in [Carraro and Guerrieri, 2014].
They introduced permutation reductions inspired by linear logic, allowing to unblock stuck
redexes without altering fundamental operational properties of the calculus, such as the ca-
pability of a program to reduce to a value or such as the notion of (Call-by-Value) solvabil-
ity (as shown in [Guerrieri et al., 2017]). Equivalently, in [Accattoli and Paolini, 2012],
the authors introduced a refinement of Call-by-Value where the substitution is explicit
and can be delayed. This setting has allowed to internally characterise Call-by-Value
solvability for the first time.

In recent years there has been a renewal of interest in the Call-by-Value λ-calculus:
the interested reader may consult [Accattoli and Guerrieri, 2016, Guerrieri et al., 2017,
Accattoli and Guerrieri, 2018, Manzonetto et al., 2019a, Bucciarelli et al., 2020] as well
as [Kesner and Peyrot, 2022, Arrial et al., 2023].

13



1. Introduction

Relational models for Call-by-Value λ-calculus also exist, and were introduced in
[Ehrhard, 2012]. The author was inspired by the relational semantics of Linear Logic
([Girard, 1988]) and he exploited Girard’s “boring” translation of intuitionistic arrow in
linear logic, sending A → B into !(A ( B). In the same paper and exploiting the
same translation, Ehrhard also introduced a resource calculus and a Taylor expansion
for the Call-by-Value λ-calculus. This opens the door to the development of a theory of
approximation similar to the one in Call-by-Name.

1.1. Content

My work is divided in two parts, the first one is about syntax and comes from a conjoint
work with Giulio Manzonetto and Michele Pagani in [Kerinec et al., 2020] and with Giulio
Manzonetto and Simona Ronchi Della Rocca in [Kerinec et al., 2021]. The second part
is about semantics and presents results obtained with Giulio Manzonetto and Federico
Olimpieri and published in [Kerinec et al., 2023].

PART I: Syntax

Chapter 2 This chapter recalls some definitions used for the rest of this thesis: first of the
Call-by-Name λ-calulus and then of the Call-by-Value one.

Chapter 3 The first part of this chapter is devoted to an introduction to the classical Böhm
trees for Call-by-Name λ-calculus, with both the coinductive and the inductive
definitions. Then an original definition of Böhm trees for Call-by-Value is given.
We define the Böhm tree of a term as the supremum of appropriate approximants.
We then provide necessary and sufficient conditions on sets of approximants for
them to correspond to Böhm trees of some λ-terms.

Chapter 4 This chapter is purely in a Call-by-Value framework, it contains the definitions of
the resource calculus and the Taylor expansion. We also characterise those sets of
resource terms arising as the Taylor expansion of some λ-term.

Chapter 5 This chapter is still in a Call-by-Value framework. We present investigations of our
Böhm tree definition, in particular of the relation between Böhm trees and Taylor
approximation. We also prove that the normal form of the Taylor expansion of a
λ-term coincides with the Taylor expansion of its Böhm Tree.

From this theorem we deduce a characterisation of the potential valuability. Finally
we present a study of Call-by-Value solvability.

Chapter 6 This chapter is a conclusion of Part I.

PART II: Semantics

Chapter 7 This chapter sums-up basic definitions and theorems for categories and bicategories.

14



1.1. Content

Chapter 8 This chapter and the following ones consider the Call-by-Name setting. We present
bicategorical models, and show how to explicitly model the computation with the
help of the second dimension. Then, we introduce the bicategory of distributors
which will be the framework of our investigations.

Chapter 9 This chapter presents a generalisation of relational graph models in categorified
graph models. They allow to extend the notion of bicategorical model and can be
presented as intersection type assignment systems, where the intersection is non-
idempotent. In fact the interpretation of a λ-term can be seen as an intersection
type distributor. We also give a definition for the interpretation of Böhm trees.

Chapter 10 This chapter introduces a notion of reduction on intersection type distributors, and
the normal form of the interpretation of a λ-term. We prove a commutation theorem:
for any λ-term the normal form of its interpretation equates the interpretation of
its Böhm tree. Such a theorem recalls us the crucial one between Böhm trees and
Taylor expansion.

We construct for each derivation an associated minimal approximant. Using those
minimal approximants we prove inductively an approximation theorem.

Chapter 11 This chapter is devoted to the study of the λ-theory associated to the bicategorical
model, and this is in fact B.

Chapter 12 In this chapter we perform a decategorification and adapt the previous results in
the 1-dimensional setting, in particular the approximation theorem.

Chapter 13 This chapter is a conclusion of Part 2.
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Part I.

Syntax
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2. λ-calculus

In this chapter we will present basic definitions, examples and theorems about λ-calculus,
first Call-by-Name and then Call-by-Value. Even if both of them are well known, we
believe it is interesting to recall those notions since they constitute the starting point of
our work.

2.1. Rewriting Systems

A rewriting system is a set of objects X = {X1, X2, . . . } together with a binary relation
R on X 2. The underlying meaning behind (X1, X2) ∈ R is “X1 is rewritten in X2 using
the rule R”. In respect to the rewriting systems tradition we will write X1 →R X2 when
(X1, X2) ∈ R.

Definition 2.1.1. Given a binary relation R ⊆ X 2 we define:

• the reflexive closure of →R:

→R ∪ {(X1, X1) | X1 ∈ X};

• the transitive closure →R:

{(X1, X
′
1) | X1, X

′
1 ∈ X ,∃X2, . . . , Xn ∈ X , n ≥ 1,

X1 →R X2 →R · · · →R Xn →R X
′
1};

• the multistep R-reduction as the reflexive-transitive closure of →R i.e. the smallest
transitive and reflexive binary relation containing →R, denoted �R;

• the symmetric closure of →R:

→R ∪ {(X1, X
′
1)|X1, X

′
1 ∈ X , X ′1 →R X1};

• the R-conversion as the reflexive, transitive and symmetric closure of →R i.e. the
symmetric closure of �R, denoted =R.

Definition 2.1.2. An object X1 ∈ X is:

• R-normal if there is no X2 ∈ X such that X1 →R X2;

• R-normalisable if there is a R-normal X2 ∈ X such that X1 �R X2;

• strongly R-normalising if there is no sequence (Xi)i∈N∗ ∈ X such that Xi →R Xi+1

for every i ∈ N∗.
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2. λ-calculus

Definition 2.1.3. A rewriting system (X ,→R) is:

• strongly normalising if all objects of X are strongly R-normalising;

• locally confluent if for all X1, X2, X
′
2 ∈ X such that X2 ←R X1 →R X

′
2, there exists

X3 ∈ X such that X2 �R X3 �R X
′
2;

• confluent if for all X1, X2, X
′
2 ∈ X such that X2 �R X1 �R X

′
2, there exists X3 ∈ X

such that X2 �R X3 �R X
′
2.

Two rules →1 and →2 commute if for all X, Y1, Y2 ∈ X having X �1 Y1 and X �2 Y2

imply there exists Y ∈ X such that Y2 �1 Y and Y1 �2 Y .

If a rule R is confluent then X1 ∈ X reduces to at most one R-normal X2, if so we call
X2 the R-normal form (R-nf) of X1 and write X2 = NFR(X1).

Lemma 2.1.4 (Newman’s Lemma). If a rewriting system is strongly normalising and
locally confluent then it is confluent.

Lemma 2.1.5 (Hindley-Rosen). If→1 and→2 are confluent and commute then→1 ∪ →2

is confluent.

2.2. Call-by-Name

Concerning the syntax of λ-calculus, we mainly use the notations of [Barendregt, 1984]
and explicitly specify when it is not the case. We consider fixed a countably infinite set
V of variables denoted x, y, z, . . . (possibly with indices).

Definition 2.2.1. The set Λ of λ-terms is defined by the following grammar:

(Λ) M,N,L ::= x | MN | λx.M (for x ∈ V)

We call λx.M an abstraction, it represents a traditional function depending of the
variable x. On the other side MN is called an application and symbolises a function M
applied to an argument N .

Application associates to the left, and has higher precedence than abstraction.

Example 2.2.2.

• λxyz.xyz = λx.(λy.(λz.((xy)z)));

• λxy.z(xy)λz.zyy = λx.(λy.((z(xy))(λz.((zy)y))))).

Notation 2.2.3. Given x1, . . . , xn ∈ V, we let λ~x.M stands for λx1 . . . λxn.M , and given
M1, . . . ,Mn ∈ Λ, ~M stands for M1 . . .Mn. We write MNn for M N · · ·N︸ ︷︷ ︸

n times

.
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2.2. Call-by-Name

I = λx.x the identity;
1 = λxy.xy an η-expansion of I;
B = λfgx.f(gx) the composition;
∆ = λx.xx the self-applicator;
Ω = ∆∆ the paradigmatic looping;
K = λxy.x the first projection;
F = λxy.y the second projection;
Pn = λx0 . . . xn.xn erases n arguments;
Y = λf.(λx.f(xx))(λx.f(xx)) Curry’s fixed point combinator;
Z = λf.(λy.f(λz.yyz))(λy.f(λz.yyz)) Plotkin’s recursion operator;
K∗ = ZK produces an increasing amount of external abstractions.

Figure 2.1.: Some useful combinators.

The set FV(M) of free variables of M and the α-conversion are defined as usual
(see [Barendregt, 1984, §2.1]):

Definition 2.2.4 (Free variables and α-conversion). Given M ∈ Λ:

• for N = λx.M we say that x is a bound variable of N ;

• the set of free variables of a λ-term M is denoted by FV(M), namely:

FV(x) = {x}, FV(λx.M) = FV(M)/{x} and FV(MN) = FV(M) ∪ FV(N);

• a λ-term M is called closed or a combinator if FV(M) = ∅. The set of all combi-
nators is denoted by Λo;

• the α-conversion identifies two λ-terms which only differ by the name of bound
variables.

Example 2.2.5.

• In λx.yzx variables y and z are free, but x is bound;

• In (λx.yzx)(xy) variables y, z and x are free, since x is free in the subterm (xy);

• λx.yzx =α λk.yzk 6=α λx.kzx;

• (λx.yzx)(xy) =α (λw.yzw)(xy) only the bound x is renamed, the one in the subterm
(xy) represents a different variable and is unchanged.

Hereafter, λ-terms will be considered up to α-conversion, except when otherwise spec-
ified. Classical examples of combinators are given in Figure 2.1.

Definition 2.2.6 (Context).

1. A (single-hole) context CL−M is a λ-term containing an occurrence of an algebraic
variable, called hole and denoted by L−M. Formally, CL−M is generated by the gram-
mar:

C ::= L−M | CM |MC | λx.C (for M ∈ Λ and x ∈ V)
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2. λ-calculus

2. Given M ∈ Λ, we write CLMM for the λ-term obtained by replacing M for the hole
L−M in CL−M, possibly with capture of free variables.

3. An occurrence of a subterm N in a λ-term M is identified by a context CL−M such
that M = CLNM.

4. Given R ⊆ Λ2, its contextual closure R′ is the least relation containing R and
satisfying:

M R′ N ⇒ ∀CL−M, CLMM R′ CLNM.

By “possibly with capture of free variables” we mean that we did not use α-conversion
before the replacement of the hole of CL−M by a λ-term M . Some free variables of M may
become bound in CLMM.

Remark 2.2.7. In [Barendregt, 1984] a hole is represented by [−], but here we use L−M in
order to avoid confusion with the bags [v1, . . . , vn] of resource calculus present in Chapters
4 and 5.

Example 2.2.8.

• λfz.f(gx) = CLgxM with CL−M = λfz.fL−M and gx is a subterm of λfz.f(gx) with
an occurrence λfz.fL−M;

• Let CL−M = λx.yzL−M and M = xy. In M , x is free, but not in CLMM = λx.yz(xy):
it has been captured.

The set Λ of λ-terms is endowed with notions of reduction turning the λ-calculus into
a higher-order term rewriting system.

Definition 2.2.9. The β- and η-reductions are defined as the contextual closures of the
following relations:

(β) (λx.M)N 7→ M [N/x]
(η) λx.Mx 7→ M (if x /∈ FV(M))

where M [N/x] denotes the capture-free substitution of N for all free occurrences of x in
M . This is the λ-term obtained by substituting N for every free occurrence of x in M ,
subject to the renaming of bound variables in M to avoid capture of free variables in N .

More generally, given variables x1, . . . , xn and λ-terms N1, . . . , Nn, a substitution
θ : Λ → Λ is a finite map substituting Ni to xi for i = 1, . . . , n. Given a λ-term M ,
we write M θ for M [x1/N1] · · · [xn/Nn].

Example 2.2.10.

• (λy.xyz(xz))[yz/x] = λy.(xyz(xz))[wz/x] = λy.wzyz(wzz);

• (zzy(λz.xz))[yx/z] = (yx)(yx)y(λz.xz).
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2.2. Call-by-Name

The λ-term on the left-hand side of the arrow is called redex, the one on the right-hand
side is its reduct.
For a relation R, a λ-term is in R-normal form if and only if it contains no R-redexes.

Example 2.2.11. Using combinators defined in Figure 2.1.

1. Ix→β x;

2. I(xy)→β xy;

3. Ω→β Ω, whence Ω is a looping combinator;

4. I(∆(xx))→β ∆(xx)→β (xx)(xx);

5. For all λ-terms M , we have ZM =β M(λx.ZMx) with x /∈ FV(M);

6. K∗ =β K(λy.K∗y) =β λx0x1.K
∗x1 =β λx0x1x2.K

∗x2 =β · · · =β λx0 . . . xn.K
∗xn;

7. ZB =β B(λz.ZBz) =β λgx.(λz.ZBz)(gx) =β λgx.(λfy.(λz.ZBz)(fy))(gx) · · ·

Remark 2.2.12. Looking at λ-terms as functions and taking their extensional definitions
(only considering inputs and outputs), we may want to consider terms that reduce in the
same way when applied to any argument as equal. This principle is called extensionality
and is captured by the η-equivalence. Observe that, if x does not occur in M , then λx.Mx
and M have the same behavior on any input, since (λx.Mx)N →β MN .

Theorem 2.2.13 ([Church and Rosser, 1936]). The reductions→β and→η are confluent.

In consequence the normal form of a λ-term, if any, is well defined. Moreover, M =β N
(or M =η N) holds, if and only if M and N have a common β-reduct (or η-reduct) Z:
M �β Z and N �β Z (resp. M �η Z and N �η Z) for some Z.

Lemma 2.2.14. A λ-term M is in β-normal form if and only if M = λ~x.xM1 · · ·Mm

with M1, . . . ,Mm being in β-normal form.

Note that in the lemma above the number of abstractions as well as the number m can
possibly be 0.

The λ-terms are classified into solvable/unsolvable, depending on their capability of
interaction with the environment:

Definition 2.2.15. A λ-term M is:

• CbN-solvable if there exist ~x ∈ V, ~N ∈ Λ such that (λ~x.M) ~N �β I;

• CbN-unsolvable, if it is not solvable.
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2. λ-calculus

Example 2.2.16.

• xΩ is CbN-solvable, with the use of a context CL−M = (λx.L−M)(λxy.y), indeed
(λx.xΩ)(λxy.y)→β (λxy.y)Ω→β I;

• λx.Ω is CbN-unsolvable since Ω →β Ω and we cannot erase the subterm Ω without
erasing the whole term.

Historically solvable terms are considered to be the meaningful terms of λ-calculus,
we can see them as the λ-terms that can produce information. Therefore characterising
which specific λ-terms are solvable is a key question.

Head Normal Form. Here we introduce a method due to Wadsworth to characterise
solvable λ-terms (see [Wadsworth, 1976]).

Definition 2.2.17 (Head normal form and head reduction).

• A head normal form (HNF) is a λ-term M , such that for some M1, . . . ,Mm ∈ Λ
and ~x, x ∈ V, M = λ~x.xM1 · · ·Mm.

• A λ-term M has a head normal form if M reduces to N in a finite number of
reductions and N is a head normal form.

• In a λ-term of the form λx1 . . . xn.(λy.N)LM1 · · ·Mm we call head redex the sub-
term (λy.N)L.

• The head reduction →h corresponds to the contraction of the head redex:

λx1 . . . xn.(λy.N)M0M1 · · ·Mm →h λx1 . . . xn.N [M0/y]M1 · · ·Mm.

Notice that any β-normal form is a head normal form.

Remark 2.2.18. If M has a head normal form, then such a normal form can be reached
by performing head reductions.

Theorem 2.2.19 ([Wadsworth, 1976]). A λ-term M is CbN-solvable if and only if M
has a head normal form.

2.3. Call-by-Value

Here we present the Call-by-Value paradigm, first originated in [Plotkin, 1975]. The
fundamental point is to use only a subset of λ-terms, called values, as arguments of
applications.

Definition 2.3.1. We consider fixed an infinite countable set V of variables. The set Λ
of λ-terms and the set ΛV of values are defined inductively by:

(Λ) M,N,L ::= V | MN
(ΛV ) U, V ::= x | λx.M (for x ∈ V)
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2.3. Call-by-Value

Variables and abstractions are special λ-terms, called values. They are not necessarily
in normal form, since λx.M may contain redexes inside M .

As usual, we assume that application associates to the left and has higher precedence
than abstraction (see Example 2.2.2). In the following, λ-terms are considered up to α-
conversion, and we use the usual definition of free variables (see Definition 2.2.4).

We use the same contexts as in the Call-by-Name case (Definition 2.2.6(1)). And we
call head context a context of the shape (λx1 . . . xn.L−M)V1 · · ·Vm, with x1, . . . , xn ∈ V and
V1, . . . , Vm ∈ ΛV .

Classically the Call-by-Value λ-calculus λv is endowed with one standard notion of
reduction: the βv-reduction defined in [Plotkin, 1975].

Definition 2.3.2. The βv-reduction is the contextual closure (Definition 2.2.6(4)) of the
following rule:

(βv) (λx.M)V 7→ M [V/x] (for V ∈ ΛV )

Issue. Since the βv-reduction only applies when arguments are values, some λ-terms can
get stuck in premature normal forms. The λ-term L = (λy.∆)(xx)∆ is a paradigmatic
example of this kind of situation (see [Paolini and Ronchi Della Rocca, 1999] and
[Accattoli and Guerrieri, 2017]). This term is a Call-by-Value normal form because the
argument xx is not a value and blocks the evaluation, however one would expect M to be-
have as the divergent term Ω = ∆∆→βv Ω, similarly as in Call-by-Name where L→β Ω.
The βv-reduction has been shown, in [Ronchi Della Rocca and Paolini, 2004], too weak
to characterise some important properties such as solvability and potential valuability
(Definition 2.3.8).

Inspired by [Herbelin and Zimmermann, 2009] and [Accattoli and Kesner, 2012] - which
both present alternative versions of Call-by-Value λ-calculus - Accattoli and Paolini in-
troduced the value-substitution calculus λsub in [Accattoli and Paolini, 2012]. The major
idea is to add a new term representing an explicit substitution M [N/x] and delay the
effective substitution by means of two reduction rules. This setting has allowed to in-
ternally characterise Call-by-Value solvability for the first time. Solvable terms are the
λ-terms having normal forms for a reduction called stratified-weak-reduction.

Another equivalent way of fixing the Call-by-Value λ-calculus was introduced in
[Carraro and Guerrieri, 2014] where the authors, inspired by Regnier’s work in the Call-
by-Name setting ([Regnier, 1994]), defined permutations rules, naturally arising from the
translation of λ-terms into Linear Logic proof-nets. Those rules are called σ-rules. Using
them, the aforementioned λ-term L can be rewrite in (λy.∆∆)(xx), which in turn rewrites
to itself, thus giving rise to the desired infinite reduction sequence.
In [Guerrieri et al., 2017], Guerrieri, Paolini and Ronchi Della Rocca showed that this ex-
tended calculus λσv still enjoys nice properties like confluence, and that adding the σ-rules
preserves the operational semantics of Plotkin’s Call-by-Value λ-calculus as well as the
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2. λ-calculus

observational equivalence (Definition 2.3.12). As a consequence, the calculus λσv can be
used as a tool for studying the original calculus λv.

In the following of this work, when reasoning about Call-by-Value λ-calculus, we will
consider λσv .

Definition 2.3.3. The σ-reductions→σ1 and→σ3 are the contextual closures (Definition
2.2.6(4)) of the following rules:

(σ1) (λx.M)NL 7→ (λx.ML)N with x /∈ FV(L)
(σ3) V ((λx.M)N) 7→ (λx.V M)N with x /∈ FV(V )

We also set →σ=→σ1 ∪ →σ3 and →v=→βv ∪ →σ.

Notice that the condition for contracting a σ1- (resp. σ3-) redex can always be satisfied
by performing appropriate α-conversions. In the following we will always consider those
conditions satisfied.

Lemma 2.3.4. The set ΛV is closed under substitution of values for free variables.
Namely U, V ∈ ΛV and x ∈ V entail V [U/x] ∈ ΛV .

Proof. Simple by induction on V . In particular, if V = λy.M then V [U/x] = λy.(M [U/x])
= λy.M ′ ∈ ΛV for M ′ = M [U/x].

Example 2.3.5. Using combinators defined in Figure 2.1. And referring to Definition
2.1.1 for =v.

1. Ix→βv x;

2. I(xy) is a V -normal form;

3. Ω→βv Ω, whence Ω is a looping combinator;

4. I(∆(xx)) is a βv-nf, but I(∆(xx))→σ3 (λz.I(zz))(xx);

5. For all values V , we have ZV =v V (λx.ZV x) with x /∈ FV(V );

6.
K∗ = ZK =v K(λy.K∗y) =v λx0x1.K

∗x1 =v λx0x1x2.K
∗x2 =v · · ·

=v λx0 . . . xn.K
∗xn;

7. Let Ξ = ZN for N = λf.(λy1.fI)(zz), then we have:

Ξ =v N(λw.Ξw) by ZV =v V (λw.ZV w)
=v (λy1.(λw.Ξw)I)(zz) by (βv)
=v (λy1.ΞI)(zz) by (βv)
=v (λy1.((λy2.ΞI)(zz))I)(zz) by (βv)
=v (λy1.((λy2.ΞII)(zz)))(zz) by (σ1)
=v (λy1.((λy2.((λy3.ΞIII)(zz)))(zz)))(zz) = · · · ;

8. ZB =v B(λz.ZBz) =v λgx.(λz.ZBz)(gx) =v λgx.(λfy.(λz.ZBz)(fy))(gx) · · · .
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2.3. Call-by-Value

One can check the differences with the β-reduction in Call-by-Name: Example 2.2.11.

The next lemma was already used implicitly in [Guerrieri et al., 2017].

Lemma 2.3.6. A λ-term is in v-normal form if and only if it is a G-term defined by:

G ::= E | F
F ::= x | λx.G | xFG1 · · ·Gk (for k ≥ 0)
E ::= (λx.G)(yHG1 · · ·Gk) (for k ≥ 0)

Proof.

(⇒) Assume that M is in v-nf and proceed by structural induction. Observe that every
λ-term M can be uniquely written as λx1 . . . xm.M

′N1 · · ·Nn where m,n ≥ 0 and
either M ′ = x or M ′ = (λx.L1)L2. Moreover, the λ-terms M ′, N1, . . . , Nn must be
in v-nf’s since M is v-nf.

– If m > 0 then M is of the form λx.L1 with L1 in v-nf and the result follows
from the induction hypothesis.

– Otherwise we assume m = 0 and split into cases depending on M ′:

∗ M ′ = x for some x ∈ V:

· if n = 0 then we are done since x is an F -term.

· if n > 0 then M = xN1 · · ·Nn where all the Ni’s are G-terms by
induction hypothesis. Moreover, N1 cannot be an E-term for otherwise
M would have a σ3-redex. Whence, N1 must be an F -term and M is
of the form xFG1 · · ·Gk for k = n− 1.

∗ M ′ = (λx.L1)L2 for some variable x and λ-terms L1, L2 in v-nf. In this
case we must have n = 0 because M cannot have a σ1-redex. By induction
hypothesis, L1, L2 are G-terms, but L2 cannot be an E-term or a value
for otherwise M would have a σ3- or a βv-redex, respectively. The only
possibility for the shape of L2 is yFG1 · · ·Gk, whence M must be an R-
term.

(⇐) By induction on the grammar generating M :

– M = x is obvious.

– M = λx.G by induction hypothesis on G.

– M = xFG1 · · ·Gk could have a σ3-redex if H = (λy.L1)L2, but this is impos-
sible by definition of an H-term. As H,G1, . . . , Gk are in v-nf by induction
hypothesis, so must be M .

– M = (λx.G)(yFG1 · · ·Gk) where G,F,G1, . . . , Gk are in v-nf by induction
hypothesis. In the previous item we established that yFG1 · · ·Gk is in v-nf.
Thus, M could only have a βv-redex if yFG1 · · ·Gk ∈ ΛV , but this is not the
case by definition of ΛV .
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2. λ-calculus

Property 2.3.7 (Properties of reductions [Plotkin, 1975, Carraro and Guerrieri, 2014]).

1. The reduction →σ is strongly normalising.

2. The reduction →βv and →v are confluent.

Proof.

1. The proof comes from [Carraro and Guerrieri, 2014]: define two sizes s(M) and #M
by induction on the λ-term M :

s(x) = 2 #x = 1
s(λx.M) = s(M) + 1 #λx.M = # M + s(M)

s(MN) = s(M) + s(N) # MN = # M + # N + 2s(M)s(N) - 1

Observe that if N →σ N
′ then s(N) = s(N ′) and #N > #N ′.

2. βv is known to be confluent from [Plotkin, 1975].

The proof for →v comes from [Carraro and Guerrieri, 2014]: they prove the local
confluence for σ by easy induction. Using Lemma 2.1.4 we obtain that σ is confluent.
It is easy to see by induction that σ and βv commute and conclude using Lemma
2.1.5.

Since →v is confluent, the v-normal form of a λ-term, if any, is well defined.

There are some properties of λ-terms that we aim at characterising:

Definition 2.3.8. A λ-term M is called:

• valuable if it reduces to a value, namely M �v V for some V ∈ ΛV ;

• potentially valuable if there exists a substitution ϑ : V→ ΛV such that Mϑ is valu-
able, or equivalently there exists a head context CL−M = (λx1 . . . xn.L−M)V1 · · ·Vm,
where FV(M) = {x1, . . . , xn}, such that CLMM is valuable;

• CbV-solvable if there exist sequences ~x ∈ V, ~V ∈ ΛV such that (λ~x.M)~V �v I
(similar to Call-by-Name case: Definition 2.2.15);

• CbV-unsolvable, if it is not solvable.

CbV-solvability is also stronger than potential valuability, but is orthogonal to valua-
bility.

Example 2.3.9. Some discriminating examples (using combinators defined in Figure
2.1):

• I,∆,Pn,∆(II),P1(λx.Ω) are (potentially) valuable and CbV-solvable;
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2.3. Call-by-Value

• P1x(λx.Ω), xyI∆ and ∆(xy) are not valuable, but potentially valuable and CbV-
solvable;

• λx.Ω,ZB and K? are valuable, but CbV-unsolvable. The λ-term K? is called an
ogre because of its capability of eating any ~V while remaining valuable:

K?~V �βv . . .�βv λx1 . . . xn.K
?~V ;

• Ω,Ω(xy), (λy.∆)(xI)∆, IΩ,ZI are not potentially valuable nor CbV-unsolvable. The
same holds for YM , where Y is a Call-by-Name fixed point combinator.

Remark 2.3.10. The original definitions of valuability, potential valuability and CbV-
solvability are given in terms of βv-reduction (see respectively [Plotkin, 1975] and
[Ronchi Della Rocca and Paolini, 2004]). In the articles [Carraro and Guerrieri, 2014]
and [Guerrieri et al., 2017], it is shown that extending the original Call-by-Value λ-calculus
[Plotkin, 1975] with the σ-rules does not alter those operational properties. In particular,
for all λ-terms M , we have that M �βv I holds exactly when M �v I does.

Property 2.3.11. If M = (λx1 . . . xk.L)N1 · · ·Nn �v I then each Ni is valuable, say
Ni �v Vi. Moreover, we must have k ≤ n+ 1.

Proof. By the above remark, M �v I entails M �βv I. The Nis will give arguments for
the βv-reductions, they obviously need to be valuable.

If k > n+ 1 then M �βv (λ~x.L)~V �βv λxn+1 . . . xk.L
′ 6=βv I.

In general M valuable entails M potentially valuable and for M ∈ Λo the two notions
coincide.

Observational Equivalence. In order to capture the equivalence of behaviour of λ-terms,
[Plotkin, 1975] introduced an observational equivalence analogous to the following one:

Definition 2.3.12. The CbV-observational equivalence ≡ is defined by (for M,N ∈ Λ):

M ≡ N ⇐⇒ ∀CL−M, CLMM, CLNM ∈ Λo

[ ∃V ∈ ΛV , CLMM�βv V ⇐⇒ ∃U ∈ ΛV , CLNM�βv U ]

Example 2.3.13. I ≡ λxy.xy and Ξ ≡ Ω (see Example 2.3.5), but Ω 6≡ λx.Ω.

Remark 2.3.14. It is well known that, in order to check whether M ≡ N holds, it is
enough to consider head contexts (cf. [Ong, 1997, Paolini, 2008]). In other words, M 6≡ N
if and only if there exists a head context CL−M such that CLMM is valuable, while CLNM
is not.
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3. Böhm Trees

In the first part of this chapter, 3.1, we recall the definition of classical Call-by-Name Böhm
trees originated from [Barendregt, 1977]. There are several equivalent ways of defining
Böhm trees, the most famous one is coinductive and from [Lassen, 1999], while the original
one in Barendregt’s book exploits the principle of “effective Böhm-like trees” which is not
easy to handle in practice. The definition given in [Amadio and Curien, 1998, Def. 2.3.3]
does not require coinductive techniques: the idea is to first define the set Aβ(M) of ap-
proximants of a λ-term M , then show that it is directed with respect some preorder vβ
and, finally, define the Böhm tree of M as the supremum of Aβ(M). We present both the
coinductive definition in Subsection 3.1.1 and the one using approximants in Subsection
3.1.2.

In the second part of this chapter, we consider Böhm trees in a Call-by-Value setting.
In Call-by-Value the theory of program approximation is still unsatisfactory and consti-
tutes an ongoing line of research, explored in [Ehrhard, 2012, Carraro and Guerrieri, 2014,
Manzonetto et al., 2019b]. To our knowledge, no satisfying theory of Böhm tree has ever
been developed for this reduction strategy before.

However, some work has been done on theories of program approximation arising from
denotational models. In [Ronchi Della Rocca and Paolini, 2004], the authors study a fil-
ter model of Call-by-Value λ-calculus and, in order to prove an Approximation Theorem,
define sets of upper and lower approximants of a λ-term. Sadly, the authors admit that
this approach is not satisfying, because it leads to an ”over” (resp. ”under”) approxima-
tion of the behaviour of the λ-term.

Our contribution, which is the focus of this chapter, consists in producing an inter-
esting definition for Call-by-Value Böhm trees. This result has already been published
in [Kerinec et al., 2020]. We follow the methodology of [Amadio and Curien, 1998]: we
provide an appropriate notion of approximants, and obtain the Böhm trees as the ”limit”
of those approximants. Finding a Call-by-Value coinductive definition of Böhm trees re-
mains an open problem.

In Section 3.2, we introduce a constant ⊥ representing an undefined value, and ap-
proximants correspond to λ-terms possibly containing ⊥ and in normal form w.r.t. the
reduction rules of λσv (Definition 3.2.3). In this context we define a preorder vv between
approximants which is generated by ⊥ vv V , for all approximated values V .

We associate to every λ-term M the set Av(M) of its approximants and verify that
they enjoy the following properties:

• the “external shape” of an approximant of M is stable by reduction (Lemma 3.2.11);
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3.1. Call-by-Name

• two interconvertible λ-terms share the same set of approximants (Lemma 3.2.12);

• the set of approximants of M is directed (Lemma 3.2.13).

Once this preliminary work is accomplished, it is possible to define the Böhm tree of M as
the supremum of Av(M) (Definition 3.2.14), the result being a possibly infinite labelled
tree BTv(M), as expected.

In Subsection 3.2.2 we define the Call-by-Value “Böhm-like” trees as those labelled
trees that can be obtained by arbitrary superpositions of compatible approximants. The
Böhm-like trees corresponding to Call-by-Value Böhm trees of λ-terms have specific prop-
erties, that are due to the fact that λ-calculus constitutes a model of computation. Indeed,
since every λ-term M is finite, BTv(M) can only contain a finite number of free variables
and, since M represents a program, the tree BTv(M) must be computable. In Theo-
rem 3.2.23 we demonstrate that these conditions are actually sufficient for a Böhm-like
tree to actually be the Böhm tree of some λ-term.

3.1. Call-by-Name

Böhm trees in the Call-by-Name framework, introduced in [Barendregt, 1977], have a very
long and rich history. We recall here some basic definitions and theorems.

3.1.1. Coinductive Definition of Böhm Trees

In this section we will present the coinductive definition of Böhm trees, which was for-
malised in [Lassen, 1999].

We introduce a new symbol: ⊥. It will be used as a subterm in order to represent
indefiniteness.

Definition 3.1.1. The Böhm tree of a λ-term M is defined coinductively, in term of
head reduction (see Definition 2.2.17), as follows:

• if M �h λx1 . . . xn.xiM1 · · ·Mk (for n, k ≥ 0), then

BTβ(M) = λx1 . . . xn.xi

BTβ(M1) BTβ(Mk),· · ·

• otherwise
BTβ(M) = ⊥.

Since having a head normal form corresponds to being CbN-solvable (Theorem 2.2.19),
there is a very strong connection between Böhm trees and CbN-solvability. In particular
the CbN-unsolvable λ-terms are exactly the λ-terms with Böhm trees equal to ⊥.
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BTβ(Ω)
q
⊥

BTβ(λx.Ω)
q
⊥

BTβ(YI)
q
⊥

BTβ(I)
q
λx

x
BTβ(1)

q
λx

λy

x y

BTβ(∆)
q
λx

x x

BTβ(Y)

q
λf

f

f

f

Figure 3.1.: Examples of Call-by-Name Böhm trees.

Notation 3.1.2. For simplicity reason we will often omit the tree representation and
write λx1 . . . xn.xiBTβ(M1) · · ·BTβ(Mk) for BTβ(M).

Example 3.1.3. The following are examples of Böhm trees (using combinators defined
in Figure 2.1):

1. BTβ(I) = λx.x;

2. BTβ(1) = λxy.xy;

3. BTβ(∆) = λx.xx;

4. BTβ(Ω) = ⊥ since Ω is unsolvable;

5. BTβ(λx.Ω) = ⊥;

6. BTβ(YI) = ⊥ since YI is unsolvable;

7. BTβ(Y) = λf.f(f(f(f(f(· · · ))))), each step of reduction produce a new f which is
stable in following reductions.

You can see them as actual trees in Figure 3.1.

Remark 3.1.4. More generally, if M is in β-nf then BTβ(M) = M .

Since BTβ(M) is defined coinductively, so is the equality between Böhm trees:

BTβ(M1) = BTβ(M2) iff


M1,M2 have both no HNF

or

for i = 1, 2 : Mi �h λ~x.yN
i
1 · · ·N i

k

and ∀j ∈ 1, . . . k,BTβ(N1
j ) = BTβ(N2

j ).
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3.1. Call-by-Name

3.1.2. Theory of Program Approximation

At the time when the notion of Böhm tree was introduced in [Barendregt, 1977] researchers
also proposed an inductive theory of program approximation based on Scott-continuity
and finite trees. The possibly infinite behaviour of a λ-term, represented by its Böhm tree,
is then retrieved by performing a ”limit” of its finite approximants that are potentially
infinitely many.

Definition 3.1.5.

• The set Λ⊥ of λ⊥-terms over V is inductively defined by the grammar:

(Λ⊥) M,N,L ::= ⊥ | x | MN | λx.M (for x ∈ V)

• The ⊥-contexts CL−M are an extended version of the previous contexts (Definition
2.2.6) using ⊥:

C ::= L−M | CM |MC | λx.C (for M ∈ Λ⊥ and x ∈ V)

Definition 3.1.6. Let vβ⊆ Λ⊥ × Λ⊥ denotes the least contextual closed preorder (see
Definition 2.2.6(4)) generated by setting:

for all M ∈ Λ⊥, ⊥ vβ M.

We can extend the β-reduction to this setting in the obvious way. And the λ⊥-terms
are endowed with the reduction →β⊥, which is the β-reduction extended with:

λx.⊥ 7→⊥ ⊥
⊥M1 · · ·Mn 7→⊥ ⊥ (for n > 0)

Definition 3.1.7. The set Aβ ⊆ Λ⊥ of finite approximants is defined by:

(Aβ) A ::= ⊥ | λx1 . . . xn.yA1 · · ·Ak (for n, k ≥ 0 and x1, . . . xn, y ∈ V)

We said that two approximants A1, A2 ∈ Aβ are compatible if there exists A ∈ Aβ such
that A1 vβ A wβ A2.

Definition 3.1.8. Given a λ-term M , the set Aβ(M) of finite approximants of M is
defined as follows:

Aβ(M) = {A ∈ Aβ | ∃N ∈ Λ , M �β N and A vβ N}.

Intuitively, the finite approximants of a λ-term M are obtained by cutting its Böhm
tree into finite pieces, replacing the removed subtrees with ⊥.
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3. Böhm Trees

Example 3.1.9. See Figure 2.1 for a definition of the useful combinators:

1. Aβ(I) = {⊥, λx.x};

2. Aβ(1) = {⊥, λxy.x⊥, λxy.xy};

3. Aβ(Ω) = Aβ(YI) = {⊥};

4. Aβ(λx.xΩ) = {⊥, λx.x⊥} = Aβ(λx.x(YI));

5. Aβ(Y) = {⊥} ∪ {λf.fn(⊥) | n > 0}.

The following properties are well established (see [Amadio and Curien, 1998]).

Definition 3.1.10. A set is an ideal if it is non-empty, downward closed and directed.

Lemma 3.1.11 ([Amadio and Curien, 1998]).

1. M ∈ Λ⊥ is in β⊥-normal form if and only if M ∈ Aβ.

2. For M ∈ Λ, the set Aβ(M) is an ideal and admits a supremum.

The (syntactic) Approximation Theorem below shows that infinite Böhm trees can be
recovered by taking the supremum of their finite approximants.

Theorem 3.1.12 (Approximation Theorem, [Amadio and Curien, 1998]). For any
λ-term M :

BTβ(M) =
⊔
Aβ(M)

Such a supremum always exists by Lemma 3.1.11(2).

We deduce that for M,N ∈ Λ, BTβ(M) = BTβ(N)⇔ Aβ(M) = Aβ(N).

3.2. Call-by-Value

In this section we introduce an original definition for Call-by-Value Böhm trees.

3.2.1. Theory of Program Approximation

We will develop a theory of approximants similar at the one in Subsection 3.1.2 but in
the Call-by-Value framework.

Similarly to the Call-by-Name case, we introduce ⊥. However here ⊥ is a constant
representing an undefined value and not anymore a general λ-term.

Definition 3.2.1.

• Let Λ⊥ be the set of λ-terms extended with ⊥, and ΛV
⊥ the set of values extended

with ⊥:

(Λ⊥) M,N ::= V | MN
(ΛV
⊥) U, V ::= ⊥ | x | λx.M (for x ∈ V)
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3.2. Call-by-Value

• The ⊥-contexts CL−M are an extended version of the previous contexts (Definition
2.2.6) using ⊥:

C ::= L−M | CM |MC | λx.C (for M ∈ Λ⊥ and x ∈ V)

They are the same as in the Call-by-Name case.

Definition 3.2.2. The reduction →v (from Definitions 2.3.2 and 2.3.3) generalises to
terms in Λ⊥ in the obvious way, with V ∈ ΛV

⊥,M,N, L ∈ Λ⊥:

(βv) (λx.M)V 7→ M [V/x]
(σ1) (λx.M)NL 7→ (λx.ML)N with x /∈ FV(L)
(σ3) V ((λx.M)N) 7→ (λx.V M)N with x /∈ FV(V )

The set of free variables FV(−) is extended to approximants by setting FV(⊥) = ∅.

Definition 3.2.3. The set of approximants contains the terms A ∈ Λ⊥ generated by the
grammar:

(Av) A ::= H | R
H ::= x | λx.A | ⊥ | xHA1 · · ·Ak (for k ≥ 0 and x ∈ V)
R ::= (λx.A)(yHA1 · · ·Ak) (for k ≥ 0 and y, x ∈ V)

Approximants of shape H are called head approximants as they remind those used for
building Call-by-Name Böhm trees, while approximants of shape R are called redex-like
because they look like a β-redex. Let H (resp. R) be the set of all head (resp. redex-like)
approximants.

Definition 3.2.4. Let vv⊆ Λ⊥ × Λ⊥ be the least contextual closed preorder on Λ⊥ (see
Definition 2.2.6(4)) generated by setting:

∀V ∈ ΛV
⊥, ⊥ vv V.

Example 3.2.5.

• λx.xy⊥ vv λx.xyx;

• λx.xy⊥ 6vv λx.x⊥x and λx.x⊥x 6vv λx.xy⊥.

Remark 3.2.6. Notice that, contrary to the Call-by-Name case, ⊥ is only used to ap-
proximate values, not general λ-terms like Ω.

Definition 3.2.7. Given M ∈ Λ, the set of approximants of M is defined as follows:

Av(M) = {A ∈ Av | ∃N ∈ Λ,M �v N and A vv N}.
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3. Böhm Trees

Example 3.2.8. See Figure 2.1 for a definition of useful combinators:

1. Av(I) = {⊥, λx.⊥, λx.x} since both λx.x and x are values;

2. Av(Ω) = Av(Ξ) = ∅ since those terms never reduced to λ-terms that can be compared
to an approximant;

3. Av(λx.Ω) = {⊥} since the term is a value we can compared it to ⊥, but due to
Av(Ω) = ∅ we cannot have any other approximant;

4. Av(I(∆(xx))) = {(λz.(λy.Y )(zZ))(xX) | Y ∈ {y,⊥} ∧ Z ∈ {z,⊥} ∧ X ∈ {x,⊥}}.
Notice that neither (λz.⊥)(xx) nor (λz.⊥)(x⊥) belong to this set, since ⊥ 6vv I(zz);

5.
Av(Z) =

⋃
n∈N{λf.f(λz0.f(λz1.f · · · (λzn.f⊥Zn) · · ·Z1)Z0) | ∀i, Zi ∈ {zi,⊥}}
∪{⊥};

6. Av(K∗) = {λx1 . . . xn.⊥ | n ≥ 0};

7. Av(ZB) = {⊥, λf0.⊥}
∪{λf0x0.(· · · (λfn−1xn−1.(λfn.⊥)(fn−1Xn−1)) · · · )(f0X0)

| n > 0,∀i , Xi ∈ {xi,⊥}}.

Lemma 3.2.9. A Λ⊥-term M is in v-normal form if and only if M ∈ Av.

Proof. Proof analogous to the one of Lemma 2.3.6.

We will show that the external shape of an approximant is fixed under reduction. For
instance, if A = (λx.A0)(yHA1 · · ·Ak) vv M then all approximants A′ ∈ Av(M) have
shape (λx.A′0)(yH ′A′1 · · ·A′k) for some H ′, A′0, . . . , A

′
k ∈ Av.

Lemma 3.2.10. Let CL−M be a (single-hole) ⊥-context and V ∈ ΛV . Then CL⊥M ∈ Av
and CLV M→v N entails that there exists a value V ′ such that V →v V

′ and N = CLV ′M.

Proof. Let A = CL⊥M ∈ Av. By Lemma 3.2.9, A cannot have any v-redex. Clearly,
substituting V for an occurrence of ⊥ in A does not create any new βv-redex, so if
CLV M →βv N then the contracted redex must occur in V . As V is a value, it can only
v-reduce to a value V ′.

We have also to check by induction on CL−M that such an operation does not intro-
duce any σ-redex. Most cases are direct due to the peculiar shape of approximants. In
particular we can observed that:

• if CL⊥M = (λx.A′)(xHA1 · · ·C ′L⊥M · · ·Ak) with C ′L⊥M ∈ Av, direct by induction
hypothesis. Indeed no matter the shape of C ′LV M no rule will apply.

• if CL⊥M = (λx.A′)(xC ′L⊥MA1 · · ·Ak) where C ′L⊥M is in H. Since x ∈ ΛV , xC ′LV M
would be a σ3-redex for C ′LV M = (λy.M)N but this is impossible since C ′L⊥M is in
H so it cannot have this shape.
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Lemma 3.2.11. For M ∈ Λ and A ∈ Av, A vv M and M →v N entails A vv N .

Proof. If A vv M then M can be obtained from A by substituting each occurrence of
⊥ for the appropriate subterm of M , and such subterm must be a value. Hence, the
redex contracted in M to obtain N must occur in a subterm V of M corresponding to
an occurrence CL−M of ⊥ in A. So we have CL⊥M = A and CLV M →v N

′ implies, by
Lemma 3.2.10, that N ′ = CLV ′M for a V ′ such that V →v V

′. So we conclude that
A = CL⊥M vv N , as desired.

Lemma 3.2.12. For M,N ∈ Λ, M →v N entails Av(M) = Av(N).

Proof. Straightforward from Definition 3.2.7 and Lemma 3.2.11.

Proposition 3.2.13. For all M ∈ Λ, the set Av(M) is either empty or an ideal with
regards to vv (Definition 3.1.10).

Proof. Assume Av(M) is non-empty. We check the remaining two conditions:

• To show that Av(M) is directed, we need to prove that every A1, A2 ∈ Av(M) have
an upper bound A3 ∈ Av(M). We proceed by induction on A1:

– In case A1 = ⊥ (resp. A2 = ⊥) simply take A3 = A2 (resp. A3 = A1).

Let us assume that A1, A2 6= ⊥.

– Case A1 = x, then M = A3 = A2 = x.

– Case A1 = λx.A′1 use the induction hypothesis.

– Case A1 = xH1A1
1 · · ·A1

k. In this case we must have M �v N1 for
N1 = xN ′0 · · ·N ′k with H1 vv N ′0 and A1

i vv N ′i for i = 1, . . . , k.

As A2 ∈ Av(M), there exists a λ-term N2 such that M �v N2 and A2 vv N2.

By Proposition 2.3.7, N1 and N2 have a common reduct N .

Since A1 vv N1, by Lemma 3.2.11 we get A1 vv N thus N = xN0 · · ·Nk, with
H1 vv N0 and A1

i vv Ni for i = 1, . . . , k.

By Lemma 3.2.11 again, A2 vv N whence A2 = xH2A2
1 · · ·A2

k for some ap-
proximants H2 vv N0 and A2

i vv Ni for i = 1, . . . , k.

Now, by definition, H1, H2 ∈ Av(N0) and A1
i , A

2
i ∈ Av(Ni) for i = 1, . . . , k.

By induction hypothesis, there exist H3 ∈ Av(N0) and A3
i ∈ Av(Ni) such that

H1 vv H3 w H2 and A1
i vv A3

i w A2
i from which it follows that the upper

bound xH3A3
1 · · ·A3

k of A1, A2 belongs to Av(xN0 · · ·Nk).

By Lemma 3.2.12, we conclude that xH3A3
1 · · ·A3

k ∈ Av(M), as desired.

– Case A1 = (λx.A′1)(yH1A1
1 · · ·A1

k). In this case we must have M �v N1 for
N1 = (λx.M ′)(yM0 · · ·Mk) with A′1 vv M ′, H1 vv M0 and A1

i vv Mi for
i = 1, . . . , k.

Reasoning as above, A2 ∈ Av(M) implies there exists a λ-term N2 such that
M �v N2 and A2 vv N2.
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3. Böhm Trees

By Proposition 2.3.7, N1 and N2 have a common reduct N .

Since A1 vv N1, by Lemma 3.2.11 we get A1 vv N thus
N = (λx.N ′)(yN0 · · ·Nk), with A′1 vv N ′, H1 vv N0 and A1

i vv Ni for i =
1, . . . , k.

By Lemma 3.2.11 again, A2 vv N whence A2 = (λx.A′2)(yH2A2
1 · · ·A2

k) where
A′2 vv N ′, H2 vv N0 and A2

i vv Ni for i = 1, . . . , k.

By induction hypothesis we get A′3 ∈ Av(N ′) such that A′1 vv A′3 w A′2,
H3 ∈ Av(N0) such that H1 vv H3 w H2 and A3

i ∈ Av(Ni) such that
A1
i vv A3

i w A2
i for i = 1, . . . , k.

It follows that the upper bound (λx.A′3)(yH3A3
1 · · ·A3

k) of A1, A2 belongs to
Av((λx.N ′)(yN0 · · ·Nk)).

By Lemma 3.2.12, we conclude that (λx.A′3)(yH3A3
1 · · ·A3

k) ∈ Av(M).

• To prove that Av(M) is downward closed, we need to show that for all A1, A2 ∈ Av,
if A1 vv A2 ∈ Av(M) then A1 ∈ Av(M), but this follows directly from the definition.

The supremum of a set Av(M) of approximants of a λ-term M , might not belong to
Av. This is the case for Av(λx.K∗) = {⊥, λx0.⊥, λx0x1.⊥, λx0x1x2.⊥, . . . }. In fact, such a
supremum only exists in the ideal completion of Av, that we describe below coinductively.

Definition 3.2.14.

1. The set Bv of Call by Value Böhm-like trees is generated by the following grammar,
where inductive and coinductive non-terminal symbols coexist:

(Bv) T ::= ∅ | A
A ::= H | R
H ::= x | Lco−ind | ⊥ | xHA1 · · ·Ak (for k ≥ 0 and x ∈ V)
Lco−ind ::= λx.A
R ::= Lco−ind(xHA1 · · ·Ak) (for k ≥ 0 and x ∈ V)

Intuitively, this means that in the construction of a production T ∈ Bv one can
apply the rule Lco−ind ⇒ λx.A infinitely many times, while all other rules remain
inductive as usual. It is easy to check that Av ( Bv.

2. The order vv is extended from Av to Bv in the obvious way.

3. The (Call-by-Value) Böhm tree of a λ-term M , is defined as follows (where the
supremum is taken in Bv, and we assume that

⊔
∅ = ∅):

BTv(M) =
⊔
Av(M).

Therefore, the resulting structure is a possibly infinite labelled tree T .
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3.2. Call-by-Value

BTv(Ω)
q
∅

BTv(λx.Ω)
q
⊥

BTv(Z)
q
λf

f λz0

f λz1 z0

f λz2 z1

BTv(I(zz))
q

λx

x

zz

BTv(K
∗)

q
λx0

λx1

λx2

λx3

BTv(ZB)
q
λf0

λx0

f0 x0

λf1

λx1

f1 x1

λf2

λx2

Figure 3.2.: Examples of Call-by-Value Böhm trees.

Given a λ-term M , the free variables of its Böhm tree are generated by

FV(BTv(M)) =
⋃

A∈Av(M)

FV(A).

Remark 3.2.15.

• Notice that Av(M) = Av(N) if and only if BTv(M) = BTv(N).

• FV(BTv(M)) ⊆ FV(M) and the inclusion can be strict:
FV(BTv(λx.Ωy)) = FV(⊥) = ∅ but FV(λx.Ωy) = {y}.

Example 3.2.16. Notable examples of Böhm trees of λ-terms are given in Figure 3.2.
The λ-term Ξ (from Example 2.3.5(7)) satisfying

Ξ =v (λy1.((λy2.(· · · (λyn.ΞIn)(zz) · · · ))(zz)))(zz) (3.1)

is such that BTv(Ξ) = ⊥. Indeed, substituting ⊥ for a λyn.ΞIn in (3.1) never gives an
approximant belonging to Av by Definition 3.2.3.

Property 3.2.17. For M,N ∈ Λ, if M =v N then BTv(M) = BTv(N).

Proof. By Proposition 2.3.7, M =v N if and only if there exists a λ-term L such that
M �v L and N �v L. By an iterated application of Lemma 3.2.12 we get
Av(M) = Av(L) = Av(N), so we conclude BTv(M) = BTv(N).

3.2.2. Characterisation of Böhm Trees

In this subsection we will provide a characterisation of sets of approximants that corre-
spond to the Böhm trees of λ-terms.
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3. Böhm Trees

Remark 3.2.18. A Böhm-like tree T is determined by any X ⊆ Av directed and down-
ward closed such that T =

⊔
X . In this case, we say that T is generated by X .

All Böhm trees are Böhm-like trees, but not the opposite. It is natural to wonder which
characteristics on a Böhm-like tree T ensure that T is a Böhm tree, meaning there exists
M ∈ Λ such that BTv(M) = T . In the spirit of [Barendregt, 1984, Thm. 10.1.23] we will
provide such a characterisation in Theorem 3.2.23.

To achieve this result, it will be convenient to consider a tree as a set of sequences
closed under prefix.

Notation 3.2.19.

• We denote by N∗ the set of finite sequences of natural numbers.

• Given n1, . . . , nk ∈ N, the corresponding sequence σ ∈ N∗ of length k is represented
by σ = 〈n1, . . . , nk〉. In particular, 〈〉 represents the empty sequence of length 0.

• Given σ ∈ N∗ as above and n ∈ N, we write n :: σ for the sequence 〈n, n1, . . . , nk〉
and σ;n for the sequence 〈n1, . . . , nk, n〉.

Given a tree T , the sequence i :: σ possibly determines a subtree that can be found
going through the (i+ 1)-th children of T (if it exists) and then following the path σ. Of
course this is only the case if i :: σ actually belongs to the domain of the tree. We will
use the symbol ↑ in case we try to reach an nonexistent node and need to backtrack in
the tree.

Definition 3.2.20. Let σ ∈ N∗, A ∈ Av. The subterm of A at σ, written Aσ, is defined
by:

A〈〉 = A (λx.A)σ =

{
Aτ if σ = 0 :: τ,

↑ otherwise,

⊥σ = ↑ (xA0 · · ·Ak)σ =

{
(Ai−1)τ if 1 ≤ i ≤ k + 1 and σ = i :: τ,

↑ otherwise,

((λx.A′)(yA0 · · ·Ak))σ =


A′τ if σ = 0 :: 0 :: τ,

(Ai−1)τ if 1 ≤ i ≤ k + 1 and σ = 1 :: i :: τ,

↑ otherwise.

As a matter of notation, given an approximant A′, a subset X ⊆ Av and a sequence
σ ∈ N∗, we write ∃Aσ 'X A′ whenever there exists A ∈ X such that Aσ is defined and
Aσ = A′.

Notation 3.2.21. Given a Böhm-like tree T generated by X , we set

FV(T ) = FV(X ) =
⋃
A∈X

FV(A).
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3.2. Call-by-Value

Definition 3.2.22. Let E be a set of natural numbers.

• E is recursively enumerable if it is the domain of a partial recursive function.

• If both E and its complement are recursively enumerable then E is called decidable.

Equivalently E is recursively enumerable (or semi-decidable) if there is an algorithm
with input numbers that halts if and only if the input is in E.

The quote of Mogensen ([Mogensen, 1992]). An encoding of λ-terms as λ-terms in
normal forms is introduced, using the representation schema:

• pxq = λabc.ax;

• pMNq = λabc.bpMqpNq;

• pλx.Mq = λabc.c(λx.pMq);

where variables a, b, c do not occur free in the λ-term on the left-hand side of the equation.

This representation schema is injective and the representation is linear in the size of
the represented λ-terms. For all M , we have FV(M) = FV(pMq).

Originally, the encoding was defined in Call-by-Name. In particular there is an evalu-
ator : Eβ = YR where R = λem.m(λx.x)(λmn.(em)(en))(λmv.e(mv)) and Y is Curry’s
Call-by-Name fixed point combinator (defined in Figure 2.1).
Eβ is such that for any λ-term M , EβpMq =β M .

However, using the Call-by-Value fix-point operator Z (also defined in Figure 2.1), we
can define a Call-by-Value evaluator: Ev = ZR and we have EvpMq =v M . We can
observe that the codings are not only normal forms, but values.

Theorem 3.2.23. Let X ⊆ Av be a set of approximants. There exists M ∈ Λ such that
Av(M) = X if and only if the following three conditions hold:

1. X is directed and downward closed w.r.t. vv;

2. X is recursively enumerable;

3. FV(X ) is finite.

Proof.

(⇒) Let M ∈ Λ be such that X = Av(M), then (1) is satisfied by Proposition 3.2.13
and (3) by Remark 3.2.15.

Concerning (2) let us fix an effective bijective encoding # : Λ⊥ → N.

We have {#A | A ∈ X} = {#A | A ∈ Av(M)} = {#A | ∃N,M �v N,A vv N}.
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3. Böhm Trees

The set {#N |M �v N} is recursively enumerable, we can enumerate the reducts
of M (since the calcul is confluent) and compare their code with the input.

The set {#A | A ∈ Av} is decidable, indeed for a given λ⊥-term we can determine
in finite time if it is an approximant, since its size if finite.

Finally, given A ∈ Av, N ∈ Λ, the question A vv N is decidable since both A and
N are of finite size and can then be compared in finite time.

(⇐) Assume that X is a set of approximants satisfying the conditions (1-3).

If X = ∅ then we can simply take M = Ω since Av(Ω) = ∅.
If X is non-empty then it is an ideal.

Since X is recursively enumerable, if A′ ∈ Av and σ ∈ N∗ are effectively given then
the condition ∃Aσ 'X A′ is semi-decidable and a witness A can be computed.

Let pσq be the numeral associated with σ under an effective encoding and pAq
be the quote of A as defined by Mogensen, using a fresh variable zb /∈ FV(X ) to
represent the ⊥ (such variable always exists because FV(X ) is finite).

The Call-by-Value λ-calculus being Turing-complete, as shown in [Paolini, 2001],
there exists a λ-term PX satisfying:

PXpσqpA
′q =v

{
pAq, if ∃Aσ 'X A′ holds,

not potentially valuable, otherwise.

for some witness A. Using the λ-terms Ev, PX so-defined and the recursion operator
Z (see Figure 2.1 for definition of useful combinators), it is possible to define a λ-
term F (also depending on X ) satisfying the following recursive equations:

F pσq =v

x if ∃Aσ 'X x,
λx.F pσ; 0q if ∃Aσ 'X λx.A1,

x(F pσ; 1q) · · · (F pσ; k + 1q) if ∃Aσ 'X xA0 · · ·Ak,(
λx.Fpσ; 0; 0q

)(
y(Fpσ; 1; 1q) · · · (Fpσ; 1; k + 1q)

)
if ∃Aσ 'X (λx.A)(yA0 · · ·Ak),

not valuable otherwise.

The fact that X is directed guarantees that, for a given sequence σ, exactly one of
the cases above is applicable. It is now easy to see that Av(F p〈〉q) = X .
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4. Taylor Expansion

The Taylor expansion is an alternative way of approximating λ-terms which was intro-
duced in [Ehrhard and Regnier, 2003]. The idea is the same as the classical Taylor ex-
pansion for functions: expressing a function near a point as an infinite sum of terms
depending of that function’s derivatives at this point.

The Taylor expansion translates a λ-term M in a set of multi-linear terms, each one of
those terms approximates a finite part of the behaviour of M . The potentially infinitary
nature of the behaviour of M is captured by the set of multi-linear terms being potentially
infinite.

Those multi-linear terms populate a resource calculus [Tranquilli, 2009] where λ-calculus
application is replaced by the application of a term to a bag of resources that cannot be
erased, nor duplicated and must all be consumed during the reduction. With such a
target language for the Taylor expansion, the amount of resources needed by a λ-term to
produce (a finite part of) a value is explicit. Therefore the Taylor expansion contains a
very useful quantitative information, while approximations such as Böhm trees are only
qualitative.

If those definitions of resource calculus and Taylor expansion are originally in the Call-
by-Name case, the Call-by-Value analogues are unproblematic to define. They are driven
by solid intuitions coming from the translation in Linear Logic. There are two ways to
translate the intuitionistic arrow in Linear Logic: each corresponding respectively to ei-
ther the Call-by-Name and the Call-by-Value λ-calculus. The implication a⇒ b becomes
in Call-by-Name !a ( b and in Call-by-Value !(a ( b). This second transformation is
called “boring” and is suitable for Call-by-Value (see [Ehrhard, 2012]).

In its original definition, the Taylor expansion is a power series of multi-linear terms
taking coefficients in the semiring of non-negative rational numbers. In this work, simi-
larly as in [Manzonetto and Pagani, 2011, Ehrhard, 2012, Boudes et al., 2013], we abuse
language and call “Taylor expansion” the support of the actual Taylor expansion. This is
done because we are interested in the usual observational equivalences between λ-terms
that overlook such coefficients.

In the present chapter, we will introduce in Section 4.1 the Call-by-Value resource
calculus denoted λσr , and in Section 4.2 the Taylor expansion in Call-by-Value. Those two
notions have been defined in [Ehrhard, 2012, Carraro and Guerrieri, 2014].

Then, Section 4.3 contains an original characterisation of sets of resource terms cor-
responding to the Taylor expansion of some λ-term (Theorem 4.3.4): we define, follow-
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4. Taylor Expansion

ing [Boudes et al., 2013], a coherence relation ¨ between resource terms and prove that
a set of such terms corresponds to the Taylor expansion of a λ-term if and only if it is an
infinite clique having finite height.

In Section 4.4, finally, we investigate normal forms of Taylor expansions, those normal
forms can always be calculated since the resource calculus enjoys strong normalisation.

This chapter is derived from [Kerinec et al., 2020].

4.1. Resource Calculus

In this section we introduce the resource calculus from [Carraro and Guerrieri, 2014].

Definition 4.1.1. The sets Λr of resource terms, ΛV
r of resource values, and Λs of

simple terms are generated by the following grammar:

resource terms (Λr) e ::= v | s
resource values (ΛV

r ) u, v ::= x | λx.t (for x ∈ V)
simple terms (Λs) s, t ::= st | [v1, . . . , vk] (for k ≥ 0)

The concepts of α-conversion and free variable are inherited from classical Call-by-Value
(and Call-by-Name) λ-calculus (Definition 2.2.4).

Resource values are analogous to the values of Call-by-Value λ-calculus, namely vari-
ables and λ-abstractions. A simple term of the shape [v1, . . . , vn] is called a bag and the
order of the subterms do not matter.

The idea behind λσr is to have a quantitative notion of resource. A bag [v1, . . . , vn] rep-
resents a finite multiset of linear resources. During a reduction we will see that every
vi must be used exactly once. Indeed, when a singleton bag [λx.t] is applied to a bag
[v1, . . . , vn] of resource values, each vi is substituted for exactly one free occurrence of x
in t. This occurrence is chosen non-deterministically, and all possibilities are taken into
account. Since we have to take different choices into account the result of a reduction
will be presented as a set-theoretical union of resource terms. In case there is a mismatch
between the cardinality of the bag and the number of occurrences of x in t, the result of
the computation is the empty set ∅.

The height ht(e) of e is the height of its syntax tree:

ht(x) = 0,
ht(λx.t) = ht(t) + 1,
ht(st) = max{ht(s), ht(t)}+ 1,
ht([v1, . . . , vk]) = max{ht(vi) | i ≤ k}+ 1.

Let us introduce some notations concerning those sets of resource terms.
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Notation 4.1.2. Sets of resource values, simple terms and resource terms are denoted
by:

U ,V ∈P(ΛV
r ), S, T ∈P(Λs), E ∈P(Λr).

For the sake of simplicity, given S, T ∈ P(Λs) and V1, . . . ,Vk ∈ P(ΛV
r ) we fix the

following notations:

λx.T = {λx.t | t ∈ T } ∈P(ΛV
r ),

S T = {st | s ∈ S, t ∈ T } ∈P(Λs),
[V1, . . . ,Vk] = {[v1, . . . , vk] | v1 ∈ V1, . . . , vk ∈ Vk, k ≥ 0} ∈P(Λs).

From the multi-linearity of λσr -constructors, we have the following equality:

λx.∅ = ∅T = S∅ = [∅,V1, . . . ,Vk] = ∅.

We use [xn] for [x, . . . , x︸ ︷︷ ︸
n times

].

Definition 4.1.3. Let e ∈ Λr and x ∈ V.

1. Define the degree of x in e, written degx(e), as the number of free occurrences of
the variable x in the resource term e.

2. Given e ∈ Λr, v1, . . . , vn ∈ ΛV
r and x ∈ V. The linear substitution of v1, . . . , vn for

x in e, denoted by e〈[v1, . . . , vn]/x〉 ∈Pf(Λr), is defined as follows:

e〈[v1, . . . , vn]/x〉 =

{{
e[vσ(1)/x1, . . . , vσ(n)/xn] | σ ∈ Sn

}
if degx(e) = n,

∅ otherwise.

where Sn is the group of permutations over {1, . . . , n} and x1, . . . , xn is an enumer-
ation of the free occurrences of x in e, so that e[vσ(i)/xi] denotes the resource term
obtained from e by replacing the i-th free occurrence of x in e with the resource value
vσ(i).

The following reductions for λσr correspond to the reductions of Call-by-Value λ-calculus
(Definitions 2.3.2 and 2.3.3).

Definition 4.1.4.

1. The βr-reduction is a relation →βr ⊆ Λr ×Pf(Λr) defined as the contextual closure
(using the first four rules in Figure 4.1) of the following rule:

(βr) [λx.t][v1, . . . , vn] 7→ t〈[v1, . . . , vn]/x〉 (for v1, . . . , vn ∈ ΛV
r )

Similarly, the 0-reduction →0⊆ Λr ×Pf(Λr) is defined by the rule:

(0) [v1, . . . , vn] t 7→ ∅ (for n 6= 1)

The σ-reductions →σ1 ,→σ3 ⊆ Λr × Λr:

(σ1) [λx.t]s1s2 7→ [λx.ts2]s1 (for x /∈ FV(s2))
(σ3) [v]([λx.t]s) 7→ [λx.[v]t]s (for x /∈ FV(v) and v ∈ ΛV

r )
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t →r T
λx.t →r λx.T

s →r S
s t →r S t

t →r T
s t →r s T

v0 →r V0

[v0, v1, . . . , vk] →r [V0, v1, . . . , vk]

e →r E1 e /∈ E2

{e} ∪ E2 →r E1 ∪ E2

Figure 4.1.: Contextual rules for a relation →r ⊆Pf(Λr)×Pf(Λr).

2. The relation →r ⊆Pf(Λr)×Pf(Λr) is the contextual closure of the rules above, in
other words →r is the smallest relation including (βr), (0), (σ1), (σ3) and satisfying
the rules in Figure 4.1.

Example 4.1.5.

1. [λx.[x][x]][λy.[y], z]→βr {[λy.[y]][z], [z][λy.[y]]} →βr {[z], [z][λy.[y]]};

2. [λx.[x, x]][λy.[y], z]→βr {[λy.[y], z], [z, λy.[y]]} = {[λy.[y], z]};

3. [λy.[λx.[x, x][y]]]([z][w])[I, w]→σ1 [λy.[λx.[x, x][y]][I, w]]([z][w])

→βr {[λy.[I, w][y]]([z][w])} →0 ∅. Notice that (σ1) is used to unblock an otherwise
stuck βr-redex;

4. [I]([λx.[λy.[x][y]]][z][w])→βr {[λx.[λy.[x][y]]][z][w]} →βr {[λy.[z][y]][w]} →βr {[z][w]};

5. [I]([λx.[λy.[x][y]]][z][w])→σ3 [λx.[I][λy.[x][y]]][z][w]→σ1 [λx.[I][λy.[x][y]][w]][z]
→βr {[I][λy.[z][y]][w]} →βr {[λy.[z][y]][w]} →βr {[z][w]}.

Remark that (4) and (5) constitute two different reduction sequences originating from the
same simple term.

As shown in [Carraro and Guerrieri, 2014], this notion of reduction enjoys the following
properties.

Property 4.1.6. The reduction →r is confluent and strongly normalising.

Proof.

• Strong normalisation is easy to prove:

– 0-reduction erases the whole term;

– σ-rules are strongly normalising;

– contracting a βr-redex in a resource term e produces a set (of finite size) of
resource terms whose each size is strictly smaller than the one of e (smaller
because no duplication is involved and a λ-abstraction is erased).

• λσr is a restriction of the original resource calculus in [Ehrhard, 2012] using coefficient
in N, from it can be deduced the confluence of the rule βr ∪ 0 in the present case.

σ rules are locally confluent (the proof is simple by induction) and are strongly
normalising, again we use Lemma 2.1.4. It is simple to see that they commute with
βr as well as 0. And using Lemma 2.1.5 we have the confluence.
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4.2. Call-by-Value Taylor Expansion

Now that we have recalled the resource calculus for Call-by-Value, we will present the
Taylor expansion that translates a λ-term in a set of those resource terms.

Definition 4.2.1. The Taylor expansion T (M) ⊆ Λs of a λ-term M is an infinite set of
simple terms defined by induction as follows:

T (x) = {[xn] | n ≥ 0},
T (NL) = {st | s ∈ T (N), t ∈ T (L)},
T (λx.N) = {[λx.t1, . . . , λx.tn] | n ≥ 0, i = 1, . . . , n, ti ∈ T (N)}.

The Taylor expansion is a static object, indeed the resource terms associated with an
abstraction are also all abstractions, the same for an application or a variable.

Remark 4.2.2.

1. [ ] ∈ T (M) if and only if M ∈ ΛV .

2. Each occurrence of a βrσ-redex in t ∈ T (M) corresponds to a v-redex in M .

3. By exploiting Notation 4.1.2, we can rewrite the Taylor expansion of an application
or an abstraction as follows:

T (NL) = T (N)T (L),
T (λx.N) =

⋃
n∈N{[λx.T (N), . . . , λx.T (N)︸ ︷︷ ︸

n times

]}.

Example 4.2.3. Taylor expansion of some λ-terms (combinators are defined in Figure
2.1):

1. T (I) = {[λx.[xn1 ], . . . , λx.[xnk ]] | k ≥ 0,∀i ≤ k, ni ≥ 0};

2. T (∆) = {[λx.[xn1 ][xm1 ], . . . , λx.[xnk ][xmk ]] | k ≥ 0,∀i ≤ k,mi, ni ≥ 0};

3. T (∆I) = {st | s ∈ T (∆), t ∈ T (I)};

4. T (Ω) = {st | s, t ∈ T (∆)};

5.
T (λz.yyz) = {[λz.[y`1 ][ym1 ][zn1 ], . . . , λz.[y`k ][ymk ][znk ]]

| k ≥ 0,∀i ≤ k, `i,mi, ni ≥ 0};

6.
T (λy.f(λz.yyz)) = {[λy.[fn1 ]t1, . . . , λy.[f

nk ]tk]
| k ≥ 0,∀i ≤ k, ni ≥ 0, ti ∈ T (λz.yyz)};

7. T (Z) = {[λf.s1t1, . . . , λf.sktk] | k ≥ 0,∀i ≤ k, si, ti ∈ T (λy.f(λz.yyz))}.

From those examples we can deduce the following remarks and lemma.
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Remark 4.2.4.

• An element t belonging to the Taylor expansion of a v-normal form M might not be
in r-nf, due to the possible presence of 0-redexes.

For example, take [λx.[x, x][x, x], λx.[x][x, x, x]] ∈ T (∆), clearly ∆ is in v-normal
form, but [x, x][x, x]→0 ∅ since the first bag is of size 2, so λx.[x, x][x, x]→0 ∅ and
then [λx.[x, x][x, x], λx.[x][x, x, x]]→0 ∅.

• We can refine the definition of Taylor expansion eliminating all the 0-redexes. It is
sufficient to substitute the application case with the following:

T (VM0 · · ·Mk) = {[v]t0 · · · tk | [v] ∈ T (V ),∀i = 0, . . . , k, ti ∈ T (Mi)}.

Rather than having some resource terms [vn]t0 · · · tk →0 ∅.

However we prefer to keep Ehrhard’s original idea because it has a simpler inductive
definition.

Lemma 4.2.5. For M ∈ Λ, the following are equivalent:

1. M is in v-normal form;

2. every t ∈ T (M) is in βrσ-normal form.

Proof.

(1 ⇒ 2) Using Lemma 2.3.6, we proceed by induction on the normal structure of M :

– If M = x then t ∈ T (M) entails t = [x, . . . , x] which is in v-nf.

– If M = λx.G then t ∈ T (M) implies that t = [λx.t1, . . . , λx.tn] where
ti ∈ T (G) for all i ≤ n. By the induction hypothesis each ti is in βrσ-nf,
hence, so is t.

– If M = xHG1 · · ·Gk then t ∈ T (M) entails t = [xn]st1 · · · tk for some n ≥
0, s ∈ T (H) and for i = 1, . . . , k, ti ∈ T (Gi). By induction hypothesis
s, t1, . . . , tk are in βrσ-nf, so t is in βr-nf. Concerning σ-rules, t could have a
σ3-redex in case s = [λx.s′]t′ but this is impossible since s ∈ T (H) and H
cannot have shape (λx.L1)L2.

– If M = (λx.G)(yHG1 · · ·Gk) and t ∈ T (M) then t = [λx.s1, . . . , λx.sn]t′ for
some n ≥ 0, i = 1, . . . , n,si ∈ T (G), and t′ ∈ T (yHG1 · · ·Gk). By induction
hypothesis, the resource terms s1, . . . , sn and t′ are in βrσ-nf. In principle,
when n = 1, the simple term t might have the shape either of a βr-redex or
of a σ3-redex. Both cases are impossible since t′ ∈ T (yHG1 · · ·Gk) entails
t′ = [ym]st1 · · · tk which is neither a resource value nor a simple term of shape
[λz.s]s′. We conclude that t is in βrσ-nf.

(2 ⇒ 1) We prove the contrapositive. Assume that M is not in v-nf, then either M itself is
a βv- or σ-redex, or it contains one as a subterm. Let us analyse first the former
case.
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4.3. Characterisation of the Taylor Expansion

(βv) If M = (λx.N)V for V ∈ ΛV then, by Remark 4.2.2(1), the βr-redex [λx.s][ ]
belongs to T (M) for every s ∈ T (N).

(σ1) If M = (λx.N)L1L2 then for all s ∈ T (N), t1 ∈ T (L1), t2 ∈ T (L2) we have
[λx.s]t1t2 ∈ T (M) and this simple term is a σ1-redex.

(σ3) If M = V ((λx.N)L) for V ∈ ΛV then for all [v] ∈ T (V ), s ∈ T (N) and
t′ ∈ T (L) we have [v]([λx.s]t′) ∈ T (M) and this resource term is a σ2-redex.

Otherwise M = CLM ′M where C is a context and M ′ is a v-redex having one of the
shapes above; in this case there is t ∈ T (M) containing a βrσ-redex t′ ∈ T (M ′) as
a subterm.

4.3. Characterisation of the Taylor Expansion

We will now focus on a characterisation of all sets of simple terms that arise as the Taylor
expansion of some λ-term.

We proceed similarly as in [Boudes et al., 2013], which was for the Call-by-Name case.

Definition 4.3.1.

1. The height of a non-empty set E ⊆ Λr, written ht(E), is the maximal height of its
elements, if it exists, and in this case we say that E has finite height.
Otherwise, we define ht(E) = ℵ0 and we say that E has infinite height.

2. Define a coherence relation ¨ ⊆ Λr × Λr as the smallest relation satisfying:

x ¨ x
s ¨ t

λx.s ¨ λx.t

vi ¨ vj (∀i, j ≤ n)

[v1, . . . , vk] ¨ [vk+1, . . . , vn]
s1 ¨ s2 t1 ¨ t2
s1t1 ¨ s2t2

3. A subset E ⊆ Λr is a clique whenever e ¨ e′ holds for all e, e′ ∈ E.

4. A clique E is maximal if, for every e ∈ Λr, E ∪ {e} is a clique entails e ∈ E.

The coherence relation above is inspired by Ehrhard and Regnier’s work in the Call-
by-Name setting [Ehrhard and Regnier, 2008]. Note that ¨ is symmetric, but neither
reflexive as [x, y] 6¨ [x, y] nor transitive since [x] ¨ [ ] ¨ [y] but [x] 6¨ [y].

Example 4.3.2. In Example 4.2.3 all sets are maximal cliques of finite height. For
instance, ht(T (I)) = 3 and by following the rules in Definition 4.3.1(2) we have u ¨ t
for all t ∈ T (I) if and only if u = [λx.[xn1 ], . . . , λx.[xnk ]] for some k, n1, . . . nk ∈ N, and
such a u is in T (I). Therefore T (I) is maximal.

The lemma follows from Definition 4.3.1(1) and Remark 4.2.2(3).
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4. Taylor Expansion

Lemma 4.3.3. For N,L ∈ Λ, we have:

1. ht(T (λx.N)) = ht(T (N)) + 2;

2. ht(T (NL)) = ht(T (N) ∪T (L)) + 1.

Proof. Easy calculations give:

(1) ht(T (λx.N)) = max{ht([λx.t1, . . . , λx.tn]) | n ≥ 0,∀i ≤ n, ti ∈ T (N)},
= max{max {ht(λx.t1), . . . , ht(λx.tn)}+ 1

| n ≥ 0,∀i ≤ n, ti ∈ T (N)},
= max{max {ht(t1), . . . , ht(tn)}+ 2 | n ≥ 0,∀i ≤ n, ti ∈ T (N)},
= max{ht(t) + 2 | t ∈ T (N)},
= ht(T (N)) + 2.

(2) ht(T (NL)) = max{ht([t1t′1, . . . , tnt′n])
| n ≥ 0,∀i ≤ n, ti ∈ T (N), t′i ∈ T (L)},

= max{max {ht(t1t′1), . . . , ht(tnt
′
n)}+ 1

| n ≥ 0,∀i ≤ n, ti ∈ T (N), t′i ∈ T (L)},
= max{max {ht(t1), ht(t′1), . . . , ht(tn), ht(t′n)}+ 1

| n ≥ 0,∀i ≤ n, ti ∈ T (N), t′i ∈ T (L)},
= max{ht(t) + 1 | t ∈ T (N) ∪T (L)},
= ht(T (N) ∪T (L)) + 1.

This concludes the proof.

The next theorem gives a characterisation of those sets of simple terms corresponding
to the Taylor expansion of some λ-terms and constitutes the main result of this section.

Theorem 4.3.4. For E ⊆ Λs, the following are equivalent:

1. E is a maximal clique having finite height;

2. There exists M ∈ Λ such that E = T (M).

Proof.

(1 ⇒ 2) As E maximal entails E 6= ∅, we can proceed by induction on h = ht(E). Depending
on h:

– if h = 0 impossible because no simple term has height 0.

– if h = 1 then t ∈ E implies t = [x1, . . . , xn] since variables are the only resource
terms of height 0. Now, t ¨ t holds since E is a clique so the xi’s must be
pairwise coherent with each other, but xi ¨ xj holds if and only if xi = xj
whence t = [xi, . . . , xi] for some index i. From this, and the fact that E is
maximal, we conclude E = T (xi).

– if h > 1 then split into cases depending on the form of t ∈ E .
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4.4. Normal Forms of Taylor Expansions

∗ Case t = [λx.s1, . . . , λx.sk]. Since ht(E) > 1 we can assume wlog that
t 6= [ ], namely k > 0. Moreover, since E is a clique, all t′ ∈ E must have
shape t′ = [λx.sk+1, . . . , λx.sn] for some n with si ¨ sj for all i, j ≤ n. It
follows that the set S = {s | [λx.s] ∈ E} is a maximal clique, because E
is maximal, and has height h − 2 since ht([λx.s]) = ht(s) + 2. Moreover,
E = {[λx.s1, . . . , λx.sk] | k ≥ 0, ∀i ≤ k . si ∈ S}. By induction hypothesis
there exists N ∈ Λ such that S = T (N), so we get E = T (λx.N).

∗ Otherwise, if t = s1s2 then all t′ ∈ E must be of the form t′ = s′1s
′
2 with

s1 ¨ s′1 and s2 ¨ s′2. So, the set E can be written as E = S1S2 where
S1 = {t | ts2 ∈ E} and S2 = {t | s1t ∈ E}. As E is a maximal clique, the
sets S1,S2 are independent from the choice of s2, s1 (resp.), and they are
maximal cliques themselves. Moreover, ht(E) = ht(S1∪S2)+1, whence the
heights of S1,S2 are strictly smaller than h. By the induction hypothesis,
there exists N,L ∈ Λ such that S1 = T (N) and S2 = T (L), from which
it follows E = T (NL).

(2 ⇒ 1) We proceed by induction on the structure of M .

– If M = x then t, t′ ∈ T (M) entails t = [xk] and t′ = [xn] for some k, n ≥ 0,
whence T (x) is a clique of height 1. It is moreover maximal because it contains
[xi] for all i ≥ 0.

– If M = λx.N then t, t′ ∈ T (M) entails t = [λx.t1, . . . , λx.tk] and
t′ = [λx.tk+1, . . . , λx.tn] with ti ∈ T (N) for all i ≤ n. By induction hy-
pothesis T (N) is a maximal clique of finite height h ∈ N, in particular ti ¨ tj
for all i, j ≤ n which entails t ¨ t′. The maximality of T (M) follows from
that of T (N) and, by Lemma 4.3.3(1), ht(T (M)) has finite height h+ 2.

– If M = NL then t, t′ ∈ T (M) entails t = s1t1 and t′ = s2t2 for s1, s2 ∈ T (N)
and t1, t2 ∈ T (L). By induction hypothesis, s1 ¨ s2 and t1 ¨ t2 hold and
thus t ¨ t′. Also in this case, the maximality of T (M) follows from the same
property of T (N),T (L). Finally, by induction hypothesis, ht(T (N)) = h1

and ht(T (L)) = h2 for h1, h2 ∈ N then ht(T (M)) = max{h1, h2} + 1 by
Lemma 4.3.3(2), and this concludes the proof.

4.4. Normal Forms of Taylor Expansions

We will now observe a dynamic version of the Taylor expansion. We define the normal
form of the Taylor expansion of λ-terms. Finally we observe the link between reductions
on a λ-term and reductions on its Taylor expansion.

Definition 4.4.1. The r-normal form is extended element-wise to any subset E ⊆ Λr by
setting

NF(E) =
⋃
e∈E

NFr(e).
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4. Taylor Expansion

We can now for any M ∈ Λ refer to NF(T (M)) which is a well-defined subset of
NF(Λs), possibly empty.

Example 4.4.2. We calculate the r-normal form of the Taylor expansions from Exam-
ple 4.2.3:

1. NF(T (I)) = T (I) = {[λx.[xn1 ], . . . , λx.[xnk ]] | k ≥ 0,∀i ≤ k, ni ≥ 0};

2. NF(T (∆)) = {[λx.[x][xm1 ], . . . , λx.[x][xmk ]] | k ≥ 0, ∀i ≤ k,mi ≥ 0};

3. NF(T (∆I)) = NF(T (I));

4. NF(T (Ω)) = ∅;

5. NF(T (λx.Ω)) = {[ ]};

6. for A = (λz.(λy.y)(zz))(xx), we obtain:

NF(T (A)) = {[λz.[[λy.[y`1 ]]([z][zm1 ])]([x][xn1 ]), . . . , λz.[[λy.[y`k ]]([z][zmk ])]([x][xnk ])]
| k ≥ 0,∀i ≤ k, `i,mi, ni ≥ 0}.

We need a connection between reductions of resource terms in a Taylor expansion and
reductions of the corresponding λ-term. It is complicated to compute some normal forms
of Taylor expansion without having such a result, for example Z and ZB.

Lemma 4.4.3 (Substitution Lemma). Let M ∈ Λ, V ∈ ΛV and x ∈ V. Then we have:

T (M [V/x]) =
⋃

t∈T (M)

⋃
[v1,...,vn]∈T (V )

t〈[v1, . . . , vn]/x〉.

Proof. Straightforward induction on the structure of M .

Lemma 4.4.4. Let M,N ∈ Λ be such that M →v N . Then:

1. for all t ∈ T (M), there exists T ⊆ T (N) such that t�r T ;

2. for all t′ ∈ T (N) such that t′ 6→0 ∅, there exist t ∈ T (M) and T ∈ Pf(Λs)
satisfying t�r {t′} ∪ T . Moreover such a t is unique.

Proof. We check that both (1) and (2) hold by induction on a derivation of M →v N ,
splitting into cases depending on the reduced redex:

(βv) If M = (λx.L)V and N = L[V/x] then items (1) and (2) follow by Lemma 4.4.3.

(σ1) If M = (λx.M ′)L1L2 and N = (λx.M ′L1)L2 then

T (M) = {[λx.t1, . . . , λx.tn]s1s2

| n ≥ 0, ti ∈ T (M ′), s1 ∈ T (L1), s2 ∈ T (L2)},
T (N) = {[λx.t′1s′1, . . . , λx.t′ns′n]s

| n ≥ 0, t′i ∈ T (M ′), s′i ∈ T (L1), s ∈ T (L2)}.
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4.4. Normal Forms of Taylor Expansions

• For n 6= 1, we have [λx.t1, . . . , λx.tn]s1s2 →0 ∅ ⊆ T (N).

• For n = 1, we get [λx.t1]s1s2 →σ1 [λx.t1s2]s1 for t1 ∈ T (M ′), s1 ∈ T (L1) and
s2 ∈ T (L2), whence [λx.t1s2]s1 ∈ T (N).

So (1) holds. Concerning (2), note that [λx.t′1s
′
1, . . . , λx.t

′
ns
′
n]s 6→0 ∅ entails n = 1.

Moreover, T (M) 3 [λx.t′1]ss′1 →σ1 [λx.t′1s
′
1]s since t′1 ∈ T (M ′), s′1 ∈ T (L2), s ∈

T (L1).

(σ3) If M = V ((λx.L1)L2) for V ∈ ΛV and N = (λx.V L1)L2 then

T (M) = {[v1, . . . , vn]([λx.s1, . . . , λx.sm]s)
| n ≥ 0, [v1, . . . , vn] ∈ T (V ), i ≤ m, si ∈ T (L1), s ∈ T (L2)},

T (N) = {[λx.[v1
1, . . . , v

1
k1

]s1, . . . , λx.[v
n
1 , . . . , v

n
kn

]sn]s
| n ≥ 0, i ≤ n, si ∈ T (L1), s ∈ T (L2), [vi1, . . . , v

i
ki

] ∈ T (V )},

• For m 6= 1 or n 6= 1, we have [v1, . . . , vn]([λx.s1, . . . , λx.sm]s)→0 ∅ ⊆ T (N).

• For m = n = 1, we get [v1]([λx.s1]s)→σ3 [λx.[v1]s1]s ∈ T (N).

So (1) holds.

• For n 6= 1 or ki 6= 1 for some i ≤ n, we have that
[λx.[v1

1, . . . , v
1
k1

]s1, . . . , λx.[v
n
1 , . . . , v

n
kn

]sn]s→0 ∅.
• For n = k1 = 1, we get

T (M) 3 [v1
1]([λx.s1]s)→σ3 [λx.[v1

1]s1]s.

This proves (2).

In the cases above it is easy to check that t is actually unique. The contextual cases follow
straightforwardly from the induction hypothesis.

As a consequence, we obtain the analogue of Property 3.2.17 for Taylor expansions.

Corollary 4.4.5. For M,N ∈ Λ, M =v N entails NF(T (M)) = NF(T (N)).

Proof. It is enough to prove NF(T (M)) = NF(T (N)) for M and N such that M →v N ,
indeed the general result follows by confluence of v-reduction. We show the two inclusions:

(⊆) Consider t ∈ NF(T (M)), then there exists t0 ∈ T (M) and T ∈Pf(Λs) such that
t0 �r {t}∪T . Since λσr is strongly normalising (Proposition 4.1.6), we assume wlog
T in r-nf. By Lemma 4.4.4(1), we have t0 �r T0 ⊆ T (N) so by confluence of →r

we get T0 �r {t} ∪ T which entails t ∈ NF(T (N)) because t is in r-nf.

(⊇) If t ∈ NF(T (N)) then there are s ∈ T (N) and T ∈ Pf(Λs) such that s �r

{t} ∪ T . By Lemma 4.4.4(2), there exists s0 ∈ T (M) and S ∈ Pf(Λs) satisfying
s0 �r {s} ∪ S. Composing the two reductions we get s0 �r {t} ∪ S ∪ T , thus
t ∈ NF(T (M)) as well.

We now prove a Context Lemma for Taylor expansions similar as [Barendregt, 1984,
Cor. 14.3.20]. In the next lemma we consider head contexts, the same reasoning works
for arbitrary contexts.

51



4. Taylor Expansion

Lemma 4.4.6 (Context Lemma). Let M,N ∈ Λ. If NF(T (M)) = NF(T (N)) then, for
all head contexts CL−M, NF(T (CLMM)) = NF(T (CLNM)).

Proof. Consider CL−M = (λx1 . . . xn.L−M)V1 · · ·Vk for n, k ≥ 0.
Let us take t ∈ NF(T (CLMM)) and prove that t belongs to NF(T (CLNM)), the other

inclusion being symmetrical. There exists t0 ∈ T (CLMM) and T ∈Pf(NF(Λs)) such that
t0 �r {t} ∪ T . By definition of CL−M and T (−), t0 must have the following shape:

t0 = [λx1.[ · · · [λxn.s] · · · ]][v1
1, . . . , v

1
n1

] · · · [vk1 , . . . , vknk ]

where s ∈ T (M), [vi1, . . . , v
i
ni

] ∈ T (Vi) where i ∈ {1, . . . , k} and ni = degxi(s) for
otherwise t0 →0 ∅, which is impossible. By confluence and strong normalisation of →r

(Proposition 4.1.6), the reduction t0 �r {t} ∪ T factorises as t0 �r T0 �r {t} ∪ T where

T0 = [λx1.[ · · · [λxn.NFr(s)] · · · ]][v1
1, . . . , v

1
n1

] · · · [vk1 , . . . , vknk ]

and NFr(s) ∈Pf(NF(T (M))). By hypothesis NFr(s) ∈Pf(NF(T (N))), therefore there
are S1 ∈ Pf(T (N)) such that S1 �r NFr(s) ∪ S ′, for some S ′, and S0 ⊆ T (CLNM) of
shape

S0 = [λx1.[ · · · [λxn.S1] · · · ]][v1
1, . . . , v

1
n1

] · · · [vk1 , . . . , vknk ].

So we conclude, for some S ′′, that S0 �r T0∪S ′′ �r {t}∪T ∪NFr(S ′′) ⊆ NF(T (CLNM)).
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5. Investigation of the Böhm Trees

In Chapter 3 we have introduced the Böhm trees of Call-by-Value λ-terms and, in Chapter
4 the Taylor expansion of those same λ-terms. The Taylor expansion has the advantage
to contain the quantitative notion of resource while the Böhm trees only contain qual-
itative information, however there exists a strong connection between those notions of
program approximation. Indeed, in [Ehrhard and Regnier, 2006a], the authors show that
the Taylor expansion can actually be seen as a resource sensitive version of Böhm trees
by demonstrating that the normal form of the Taylor expansion of a λ-term is actually
equal to the Taylor expansion of its Böhm tree.

This relation has been proved in Call-by-Name, therefore it is natural to wonder if such
a link exists in Call-by-Value. The present chapter aim at answering this question and
further investigating the power of the Böhm trees introduced in Section 3.2.

Contrary to the Call-by-Name case, it turns out that for a general λ-term M the normal
form of the Taylor expansion T (M) is different from the Taylor expansion of the Böhm
tree T (BTv(M)). Indeed T (BTv(M)) may contain approximants that are not normal,
but whose normal form is however empty. Such approximants, due to their specific shape,
do disappear along the reduction. In Section 5.1, we define the normalised Taylor expan-
sion T ◦(BTv(M)) of a Böhm tree (Definition 5.1.4) to solve this problem. And although
the result from [Ehrhard and Regnier, 2006a] does not hold verbatim in Call-by-Value,
we prove in Theorem 5.1.8 that for any λ-term M the normal form of T (M) coincide
with T ◦(BTv(M)).

In Section 5.2 we investigate further those notions and the consequences of Theorem
5.1.8. In particular, we investigate potential valuability and solvability.

Solvability is a crucial property, namely a λ-term is solvable if it is capable of gener-
ating a completely defined result, like the identity, when plugged in a suitable context
[Barendregt, 1974, Klop, 1975, Hyland, 1975]. The solvability notion underlines many
fundamental concepts such as approximants, Böhm trees, sensible λ-theories...

In Call-by-Name, solvability has been characterised operationally using head reduction
(see [Wadsworth, 1976]), and also logically by means of intersection types in
[Coppo and Dezani-Ciancaglini, 1978, Coppo and Dezani-Ciancaglini, 1980].
Non-idempotent intersection types have also been used to obtain quantitative informa-
tions about solvable terms in [de Carvalho, 2007, de Carvalho, 2018].

Call-by-Value solvability was also characterised, but through Call-by-Name β-reduction
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5. Investigation of the Böhm Trees

[Paolini and Ronchi Della Rocca, 1999] [Ronchi Della Rocca and Paolini, 2004]. This re-
sult was improved in [Paolini et al., 2005] by using a restriction of Call-by-Name reduc-
tion. It is really unsatisfactory to not get an internal characterisation of Call-by-Value
solvability.

In [Accattoli and Paolini, 2012], the authors extend the Call-by-Value calculus in a cal-
culus with explicit and delayed substitutions: Value Substitution Calculus. In this calculus
they provide a characterisation of solvable terms as terms having a normal form for a re-
duction called stratified weak reduction. In [Accattoli and Guerrieri, 2022], the authors
gave a quantitative analysis of solvability via intersection types in Value Substitution
Calculus.

In Call-by-Name unsolvable terms are contextually equivalent when observing termina-
tion, but this is not the case in Call-by-Value. In [Garćıa-Pérez and Nogueira, 2016], the
authors present the first proof that λ-theories equating all unsolvable terms are inconsis-
tent, this was already mentioned in [Paolini and Ronchi Della Rocca, 1999].

Some of the properties satisfyed in Call-by-Name by solvable terms are in Call-by-Value
satisfied by potentially valuable terms, this is the case for the contextual equivalence. Po-
tentially valuable terms are λ-terms that reduce to a value when plugged in the right con-
text. This notion was introduced in [Paolini and Ronchi Della Rocca, 1999], later studied
in [Ronchi Della Rocca and Paolini, 2004] and is less restrictive than solvability. A first
characterisation of potentially valuable term was given in [Accattoli and Paolini, 2012],
in value substitution calculus as terminating terms with respect a weak reduction.1

In [Carraro and Guerrieri, 2014], the authors provide an operational characterisation
of solvability and potential valuability in λσv using two subreductions of →v. They also
provide a semantical characterisation of solvable and potentially valuable terms using
the relational model of [Ehrhard, 2012]. An interesting consequence of the link between
Taylor expansion and Böhm tree, among others, is that all denotational models satisfying
the Taylor expansion (eg, the one in [Carraro and Guerrieri, 2014]) equate all λ-terms
having the same Böhm tree. From this we can deduce a characterisation of potential
valuability in Theorem 5.2.4.

Our Böhm tree definition is actually meaningful since all the λ-terms having the same
Böhm tree are operationally indistinguishable (Theorem 5.2.6). As usual this theorem
come from the Context Lemma for Böhm trees 5.2.5, but the specificity is that this
lemma is proved as a corollary of the Context Lemma for Taylor expansions.

In 5.3, staying in λσv (see Section 2.3), we provide a partition of the approximants defined
in Section 3.2. We use this partition to give a characterisation of solvability: Theorem
5.3.6.

We recall that most of the results we prove are the Call-by-Value analogues of results
well-known in Call-by-Name and contained in [Barendregt, 1977, Ch. 10] (for Böhm trees),

1In [Accattoli and Paolini, 2012, Accattoli and Guerrieri, 2022] the authors refer at potentially valuable
terms as scrutable terms.
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in [Boudes et al., 2013] (for Taylor expansion) and in [Ehrhard and Regnier, 2006a] (for
the relationship between the two).

The results presented in Sections 5.1 and 5.2 already appeared in [Kerinec et al., 2020]
and those from Section 5.3 in [Kerinec et al., 2021].

5.1. Link Between Taylor Expansion and Böhm Trees

5.1.1. Approximants of Resource Calculus

First let’s define approximants similar to the ones in Subsection 3.2.1 for the resource
calculus (Definition 4.1).

As a consequence of Property 4.1.6, the r-normal form of E ∈Pf(Λr) always exists. We
denote it by NFr(E), so E �r NFr(E) ∈Pf(Λr) and there is no E ′ such that NFr(E)→r E ′.

In such a case there is no need to introduce⊥ for approximation and we will call resource
approximants simple terms in r-nf. They admit the following syntactic characterisation:

Definition 5.1.1. A resource approximant a ∈ Λs is a simple term generated by the
following grammar:

a ::= b | c
b ::= [xn] | [λx.a1, . . . , λx.an] | [x]ba1 · · · ak (with k, n ≥ 0 and x ∈ V)
c ::= [λx.a]([y]ba1 · · · ak) (with k ≥ 0 and y, x ∈ V)

where [xn] is the bag [x, . . . , x︸ ︷︷ ︸
n

].

It is easy to check that resource approximants are r-normal forms.
The structure is extremely similar to the one of our approximants for λ-calculus without

resources, see Definition 3.2.3.

Example 5.1.2. The following are examples of resource approximants:

1. both [λx.[x], λx.[x, x], λx.[x, x, x]] and [λx.[x][x, x], λx.[x][x, x, x]] belong to the Tay-
lor expansions of some λ-terms, respectively I and ∆;

2. [λx.[x, x, x], λx.[y, y, y]] does not, since x and y cannot be approximants of the same
subterm.

Lemma 5.1.3. Let t ∈ Λs be such that t ¨ t (see Definition 4.3.1). Then t is in r-nf if
and only if t is a resource approximant.

Proof. Notice that t ¨ t guarantees that all terms in each bag occurring in t have sim-
ilar shape. The proof of the absence of βr- and σ- redexes, is analogous to the one of
Lemma 2.3.6. The bags occurring in [x]ba1 · · · ak and [λx.a]([y]ba1 · · · ak) must be single-
ton multisets, for otherwise they would have some 0-redexes.
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5.1.2. Taylor Expansion of Böhm Trees

We add T (⊥) = {[ ]} to the rules of definition 4.2.1 to extend the Taylor expansion to
Λ⊥, in fact to Av. And we will use a modify definition of the Taylor expansion to obtain
resource terms in r-normal form, as discussed in Remark 4.2.4.

Definition 5.1.4.

1. Let A ∈ Av. The normalised Taylor expansion of A ∈ Av is defined by induction
following 3.2.3:

T ◦(⊥) = {[ ]},

T ◦(x) = {[xn] | n ≥ 0},

T ◦(λx.A′) = {[λx.t1, . . . , λx.tn] | n ≥ 0,∀i ≤ n, ti ∈ T ◦(A′)},

T ◦(xBA1 · · ·An) = {[x]t0 · · · tn | t0 ∈ T ◦(B),∀i ≤ n, ti ∈ T ◦(Ai)},

T ◦((λx.A′)(yBA1 · · ·An)) = {[λx.s]t | s ∈ T ◦(A′), t ∈ T ◦(yBA1 · · ·An)}.

2. The normalised Taylor expansion of BTv(M), written T ◦(BTv(M)), is defined by
setting:

T ◦(BTv(M)) =
⋃

A∈Av(M)

T ◦(A)

Example 5.1.5.

1. Recall from Example 3.2.8 that Av(I) = {⊥, λx.⊥, λx.x}, therefore

T ◦(Av(I)) = {[ ]}∪{[(λx.[ ])k] | k ≥ 0}∪{[λx.[xn1 ], . . . , λx.[xnk ]] | k, n1, . . . , nk ≥ 0}

By Example 4.4.2(1) this is equal to NF(T (I));

2. Since Av(Ω) = ∅ we have T ◦(Av(Ω)) = ∅ = NF(T (Ω));

3. Also, Av(∆) = {⊥, λx.⊥, λx.xx}, so that

T ◦(Av(∆)) = {[ ]}
∪{[(λx.[ ])k] | k ≥ 0}
∪{[λx.[x][xn1 ], . . . , λx.[x][xnk ]] | k, n1, . . . , nk ≥ 0}

by Example 4.4.2(2) this is equal to NF(T (∆));

4. Finally, examples 3.2.8(4) and 4.4.2(3) and the above item (1) give us

T ◦(Av(∆I)) = T ◦(Av(I)) = NF(T (I)) = NF(T (∆I)).

We will now prove that for any λ-term M , the normal form of its Taylor expansion is
equal to the normalised Taylor expansion of its Böhm tree. This is a key result in the
spirit of [Ehrhard and Regnier, 2006a].
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Lemma 5.1.6. Let M ∈ Λ:

1. If t ∈ T (M) and t →r {t1} ∪ T1, then there exists N ∈ Λ and T2 ∈ Pf(Λs), such
that M →v N and {t1} ∪ T1 �r T2 ⊆ T (N).

2. If t ∈ NF(T (M)) then there exists M ′ such that M �v M
′ and t ∈ T (M ′).

3. If t, s ∈ T (M) then NF(t) ∩ NF(s) 6= ∅ entails t = s.

4. If t ∈ T (M)∩NF(Λs) then there exists A ∈ Av such that A vv M and t ∈ T ◦(A).

Proof.

(1) Note that t →r {t1} ∪ T1 by contracting an r-redex arising from an occurrence of
a v-redex in M , so M →v N where N is obtained by contracting such a redex
occurrence. By Lemma 4.4.4(1) and confluence of→r, there exists T2 ⊆ T (N) such
that t�r {t1} ∪ T1 �r T2.

(2) Assume that t ∈ NF(T (M)), then there are t0 ∈ T (M) and T ∈Pf(Λs) such that
t0 �r {t} ∪ T . Since →r is strongly normalising, we can assume T ⊆ NF(Λs) and
choose such a reduction to have maximal length n. We proceed by induction on n
to show that the λ-term M ′ exists. If n = 0 then t0 is in r-nf so just take t0 = t,
T = ∅ and M = M ′. Otherwise n > 0 and t0 →r {t1} ∪ T1 �r {t} ∪ T where the
second reduction is strictly shorter. By (1) and confluence there exists N such that
M →v N and {t1} ∪ T1 �r T2 �r {t} ∪ T for some T2 ⊆ T (N). So, there are
t2 ∈ T2 and T ′ ∈Pf(Λs) such that t2 �r {t} ∪ T ′ ⊆ NF(T (M)) we then conclude
by applying the induction hypothesis to this reduction shorter than n.

(3) Assume t0 ∈ NF(t) ⊆ NF(T (M)). By (2) there is a reduction M →v M1 →v

· · · →v Mk such that t0 ∈ T (Mk). By an iterated application of Lemma 4.4.4(2),
we get that t is the unique element in T (M) generating t0. Therefore, t0 ∈ NF(s)
entails s = t.

(4) By structural induction on the normal structure of t (characterised in Lemma 5.1.3:
notice that t ¨ t by Theorem 4.3.4).

– If t = [ ] then M ∈ ΛV and there are two subcases: either M = x, or
M = λx.M ′ so we simply take A = ⊥.

– If t = [x, . . . , x] (n > 0 occurrences) then M = A = x.

– If t = [λx.a1, . . . , λx.an] with n > 0 then M = λx.M ′ and ai ∈ T (M ′) for
i ≤ n. By induction hypothesis, there are approximants Ai vv M ′ such that
ai ∈ T ◦(Ai). Then we set A = λx.A′ for A′ = A1 t · · · t An which exists
because the Ai’s are pairwise compatible.

– If t = [x]ba1 · · · ak then M = xM0 · · ·Mk and b ∈ T (M0) and aj ∈ T (Mj) for
j = 1, . . . , k. By induction hypothesis, there are A0, . . . , Ak such that Ai vv Mi

for all i (i = 0, . . . , k), b ∈ T ◦(A0) and aj ∈ T ◦(Aj) for j = 1, . . . , k. Moreover
b ∈ T ◦(A0) entails that A0 is a B-term from the grammar in Definition 3.2.3,
therefore we may take A = xA0 · · ·Ak ∈ Av.
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– Finally, if t = [λx.a]([y]ba1 · · · ak) then M = (λx.M ′)(yM0 · · ·Mk) with
a ∈ T (M ′) and [y]ba1 · · · ak ∈ T (yM0 · · ·Mk). Reasoning as in the previ-
ous case, we get yA0 · · ·Ak ∈ Av such that [y]ba1 · · · ak ∈ T ◦(yA0 · · ·Ak).
Moreover, by induction hypothesis, there is A′ vv M ′ such that a ∈ T ◦(A′).
We conclude by taking A = (λx.A′)(yA0 · · ·Ak).

Lemma 5.1.7. Let M ∈ Λ and A ∈ Av:

1. If A vv M then T ◦(A) ⊆ NF(T (M)).

2. If T ◦(A) ⊆ T ◦(BTv(M)) then A ∈ Av(M).

Proof.

(1) If A = ⊥ then M ∈ ΛV and T ◦(⊥) = {[ ]} ⊆ T (M) ∩ NF(Λr).

Otherwise, it follows by induction on A exploiting the fact that all simple terms in
T ◦(A) belong to T (M) and are already in r-nf.

(2) We proceed by structural induction on A,

– If A = ⊥, then T ◦(A) = {[ ]} ⊆ T ◦(BTv(M)) entails M �v V for some value
V , therefore we get ⊥ ∈ Av(V ) and we conclude by Lemma 3.2.12.

– If A = x then T ◦(x) = {[xn] | n ≥ 0} ⊆ T ◦(BTv(M)) entails M �v x and we
are done.

– If A = λx.A′ then

T ◦(λx.A′) = {[λx.t1, . . . , λx.tn] | n ≥ 0,∀i ≤ k . ti ∈ T ◦(A′)}.
So, T ◦(λx.A′) ⊆ T ◦(BTv(M)) implies that M �v λx.M

′ for some M ′ such
that T ◦(A′) ⊆ T ◦(BTv(M

′)). By induction hypothesis, we get A′ ∈ Av(M ′)
and λx.A′ ∈ Av(λx.M ′). By Lemma 3.2.12 we obtain λx.A′ ∈ Av(M).

– If A = xBA′1 · · ·A′k then

T ◦(A) = {[x]t0 · · · tn | t0 ∈ T ◦(B), i = 1, . . . , k . ti ∈ T ◦(A′i)}. In this case,
we must have M �v xM0 · · ·Mk with T ◦(B) ⊆ T ◦(BTv(M0)) and T ◦(A′i) ⊆
T ◦(BTv(Mi)) for i = 1, . . . , k. By induction hypothesis B ∈ Av(A)(M0) and
A′i ∈ Av(()Mi) ∀i ∈ {1, . . . , k}, thus xBA′1 · · ·A′k ∈ Av(xM0 · · ·Mk) = Av(M)
by Lemma 3.2.12.

– If A = (λx.A′)(yBA′1 · · ·A′k), then

T ◦(A) = {[λx.s]t | s ∈ T ◦(A′), t ∈ T ◦(yBA′1 · · ·A′k)}. In this case we get
M �v (λx.M ′)(yM0 · · ·Mk) with

T ◦(A′) ⊆ T ◦(BTv(M
′)) and T ◦(yBA′1 · · ·A′k) ⊆ T ◦(BTv(yM0 · · ·Mk)). By

applying the induction hypothesis, we obtain A ∈ Av((λx.M ′)(yM0 · · ·Mk))
and once again we conclude by Lemma 3.2.12.

From the two previous lemmas we deduce the following major theorem.
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Theorem 5.1.8. For all M ∈ Λ, we have T ◦(BTv(M)) = NF(T (M)).

Proof.

(⊆) Take t ∈ T ◦(BTv(M)), then there exists an approximant A′ ∈ Av(M) such that
t ∈ T ◦(A′). As A′ ∈ Av(M), there is M ′ ∈ Λ such that M �v M

′ and A′ vv M ′.
We can therefore apply Lemma 5.1.7(1) to conclude that t ∈ NF(T (M ′)), which is
equal to NF(T (M)) by Lemma 4.4.5.

(⊇) Assume t ∈ NF(T (M)). By Lemma 5.1.6(2) there exists M ′ ∈ Λ such that
M �v M ′ and t ∈ T (M ′). By Lemma 5.1.6(4), there is A vv M ′ such that
t ∈ T ◦(A). By the conditions above we have A ∈ Av(M), so we conclude that
t ∈ T ◦(BTv(M)).

5.2. Consequences

In the following we investigate some interesting consequences of Theorem 5.1.8.

Corollary 5.2.1. For M,N ∈ Λ, the following are equivalent:

1. BTv(M) = BTv(N);

2. NF(T (M)) = NF(T (N)).

Proof.

(1⇒ 2) If M,N have the same Böhm tree, we can apply Theorem 5.1.8 to get

NF(T (M)) = T ◦(BTv(M)) = T ◦(BTv(N)) = NF(T (N)).

(1⇐ 2) We assume NF(T (M)) = NF(T (N)) and start showing Av(M) ⊆ Av(N). Take
any A ∈ Av(M), by definition we have T ◦(A) ⊆ T ◦(BTv(M)), so Lemma 5.1.7(2)
entails A ∈ BTv(N).

The converse inclusion being symmetrical, we get Av(M) = Av(N) which in its turn
entails BTv(M) = BTv(N) by Remark 3.2.15.

5.2.1. A Short Semantical Digression

In [Carraro and Guerrieri, 2014] the relational model U of Call-by-Value λ-calculus and
resource calculus introduced in [Ehrhard, 2012] is shown to satisfy the σ-rules, so it is
actually a model of both λσv and λσr .

They also prove that U satisfies the Taylor expansion in the following technical sense
(where [[−]] represents the interpretation function in U):

[[M ]] =
⋃

t∈T (M)

[[t]] (5.1)

As a consequence, we get that the theory of the model U is included in the theory equating
all λ-terms having the same Böhm tree. We conjecture that the two theories coincide.
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Theorem 5.2.2. For M,N ∈ Λ, we have:

BTv(M) = BTv(N) ⇒ [[M ]] = [[N ]].

Proof. Indeed, we have the following chain of equalities:

[[M ]] =
⋃
t∈T (M)[[t]] by Equation (5.1),

=
⋃
t∈NF(T (M))[[t]] as [[t]] =

⋃
s∈NFr(t)

[[s]],

=
⋃
t∈T ◦(BTv(M))[[t]] by Theorem 5.1.8,

=
⋃
t∈T ◦(BTv(N))[[t]] as BTv(M) = BTv(N),

=
⋃
t∈NF(T (N))[[t]] by Theorem 5.1.8,

=
⋃
t∈T (N)[[t]] as [[t]] =

⋃
s∈NFr(t)

[[s]],

= [[N ]] by Equation (5.1).

This concludes the proof.

Remark 5.2.3. Observe that [ ] ∈ T (⊥) and that [[[ ]]]{x1,...,xn} = {([ ]n, [ ])}.

In the paper [Carraro and Guerrieri, 2014], the authors also prove that [[M ]] 6= ∅ exactly
when M is potentially valuable (Definition 2.3.8). From this result, we obtain easily the
theorem below.

Theorem 5.2.4. For M ∈ Λ, the following are equivalent:

1. M is potentially valuable;

2. BTv(M) 6= ∅.

Proof. It is easy to check that all resource approximants t have non-empty interpretation
in U , that is t ∈ NF(Λs) entails [[t]] 6= ∅. Therefore we have the following chain of
equivalences:

M potentially valuable ⇐⇒ [[M ]] 6= ∅ [Carraro and Guerrieri, 2014, Thm. 24],
⇐⇒ ∃t ∈ T (M), [[t]] 6= ∅ by Equation (5.1),
⇐⇒ ∃s ∈ NF(T (M)), [[s]] 6= ∅ as [[t]] =

⋃
s∈NFr(t)

[[s]],

⇐⇒ ∃s ∈ NF(T (M)) since s ∈ NF(Λs)⇒ [[s]] 6= ∅,
⇐⇒ ∃s ∈ T ◦(BTv(M)) by Theorem 5.1.8,
⇐⇒ ∃A ∈ Av(M).

This is equivalent to say that BTv(M) 6= ∅.

5.2.2. About Adequacy

All λ-terms having the same Böhm tree are indistinguishable from an observational point
of view (see Definition 2.3.12). As in the Call-by-Name setting, this result follows from
the Context Lemma for Böhm trees. The classical proof of this lemma in Call-by-Name
is obtained by developing an interesting, but complicated, theory of syntactic continuity
(see [Barendregt, 1984, §14.3] and [Amadio and Curien, 1998, §2.4]). Here we bypass this
problem completely, and obtain such a result as a corollary of the Context Lemma for
Taylor expansions by applying Theorem 5.1.8.
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Lemma 5.2.5 (Context Lemma for Böhm trees). Let M,N ∈ Λ. If BTv(M) = BTv(N)
then, for all head contexts CL−M, we have BTv(CLMM) = BTv(CLNM).

Proof.

Let BTv(M) = BTv(N),
NF(T (M)) = NF(T (N)) by Corollary 5.2.1,

∀CL−M, NF(T (CLMM)) = NF(T (CLNM)) by Lemma 4.4.6,
∀CL−M, BTv(CLMM) = BTv(CLNM) by Corollary 5.2.1.

As mentioned in the discussion before Lemma 4.4.6, both the statement and the proof
generalise to arbitrary contexts. Thanks to Remark 2.3.14, we only need head contexts
in order to prove the following theorem stating that the Böhm tree model we defined is
adequate for Plotkin’s Call-by-Value λ-calculus:

Theorem 5.2.6. Let M,N ∈ Λ. If BTv(M) = BTv(N) then M ≡ N (see Definition
2.3.12).

Proof. Assume, by the way of contradiction, that BTv(M) = BTv(N) but M 6≡ N .
Then, there exists a head context CL−M such that CLMM, CLNM ∈ Λo and, say, CLMM is
valuable while CLNM is not. Since they are closed λ-terms, this is equivalent to say that
CLMM is potentially valuable while CLNM is not. By Theorem 5.2.4, BTv(CLMM) 6= ⊥
and BTv(CLNM) = ⊥. As a consequence, we obtain BTv(CLMM) 6= BTv(CLNM) thus
contradicting the Context Lemma for Böhm trees (Lemma 5.2.5).

Remark 5.2.7. Notice that the converse implication does not hold — for instance it is
easy to check that ∆(yy) ≡ yy(yy) holds, but the two λ-terms have different Böhm trees.

5.3. Solvability

Our previous approximants are useful to characterise potential valuability (Theorem
5.2.4). However in order to study CbV-solvability (Definition 2.3.8) we will refine this
notion.

Definition 5.3.1. The subsets S,U ⊆ Av are defined inductively by the grammars:

(S) S ::= H ′ | R′
H ′ ::= x | λx.S | xHA1 · · ·An (for n ≥ 0 and x ∈ V)
R′ ::= (λx.S)(yHA1 · · ·An) (for n ≥ 0 and x, y ∈ V)

(U) U ::= ⊥ | λx.U
| (λx.U)(yHA1 · · ·An) (for n ≥ 0 and x, y ∈ V)

Note that {S,U} constitutes a partition of Av, namely Av = S ∪ U and S ∩ U = ∅.
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Example 5.3.2.

• x, I, xK⊥, I(zz),∆(zz),K(yI⊥), (λx.(I(yz)))(zy⊥) ∈ S;

• ⊥, λx0 . . . xn.⊥, (λx.⊥)(zz), (λx.⊥)(yII), (λx.(λy.⊥)(wz))(zw) ∈ U ;

• finally, notice that Av(Ω),Av(ZI),Av(λx.Ω),Av(K?) ⊆ U .

We are going to show that the existence of an approximant A ∈ Av(M) of shape S is
enough to ensure the CbV-solvability of M . Conversely, when M is unsolvable, Av(M) is
only populated by approximants of shape U or empty.

Lemma 5.3.3 (Substitution Lemma). Let M ∈ Λ, ~x = {x1, . . . , xi} ⊇ FV(M) and
Av(M) 6= ∅. Then, for all j ≥ 0 large enough and n1, . . . , ni ≥ j, we have

M [Pn1/x1, . . . ,Pni/xi]�v V, for some V ∈ ΛV ∩ Λo.

Moreover, if xmHA1 · · ·An ∈ Av(M) then we can take V = P`, for ` = nm − n− 1 ≥ 0.

Proof. If A ∈ Av(M), then there is N ∈ Λ such that M �v N and A v⊥ N . By Lemma
2.3.4, setting ϑ = [Pn1/x1, . . . ,Pni/xi], we have Mϑ �v N

ϑ ∈ Λo. It suffices to check
Nϑ �v V .

By structural induction on A:

• if A = xm (for some m ∈ {1, . . . , i}), then N = xm, so Nϑ = Pnm and we are done.

• if A = λy.A0, then N = λy.N0 with y /∈ ~x (wlog), whence Nϑ = λy.Nϑ
0 ∈ ΛV .

• if A = ⊥, and since ⊥ v⊥ N entails N ∈ ΛV ,then we have either N = xm or
N = λy.N0. Therefore, we proceed as above.

• if A = xmHA1 · · ·An (for some m ∈ {1, . . . , i}), then A v⊥ N entails
N = xmN0 · · ·Nn with H ∈ Av(N0) and Ar ∈ Av(Nr) for all r (r = 1, . . . , n).
Assuming j > n, we obtain

Nϑ = PnmN
ϑ
0 · · ·Nϑ

n , by definition of ϑ,
�v PnmV0 · · ·Vn, by I.H. (induction hypothesis),
�v Pnm−n−1, with nm − n− 1 ≥ 0, since nm ≥ j > n.

• if A = (λy.A0)(xHA1 · · ·An) with x ∈ ~x and, wlog, y /∈ ~x, then from A v⊥ N ,
we derive N = (λy.N0)N1 where A0 ∈ Av(N0) and xHA1 · · ·An ∈ Av(N1). Easy
calculations give:

Nϑ = (λy.Nϑ
0 )Nϑ

1 since y /∈ dom(ϑ), then for some `1 ≥ 0 we get:
�v (λy.Nϑ

0 )P`1 as the I.H. on N1 and xHA1 · · ·An ∈ Av(N1),
�v Nϑ

0 [P`1/y] by (βv),
�v V by applying the I.H. to N0 and ϑ ◦ [P`1/y].
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Proposition 5.3.4 (Context Lemma). Let M ∈ Λ and {x1, . . . , xi} ⊇ FV(M).
If A ∈ Av(M) ∩ S then, for all j ≥ 0 large enough, there is k ≥ 0 such that for all

n1, . . . , ni+k ≥ j we have

M [Pn1/x1, . . . ,Pni/xi]Pni+1
· · ·Pni+k �v P`, for some ` ≥ 0.

Proof. Since A ∈ Av(M), there exists N ∈ Λ such that M �v N and A v⊥ N . Now,
setting ϑ = [Pn1/x1, . . . ,Pni/xi], we have Mϑ �v N

ϑ. Proceed by structural induction
on A ∈ S:

• Case A = x. Take k = 0 and proceed as in the proof of Lemma 5.3.3.

• Case A = xHA1 · · ·An. Again, take k = 0 and apply Lemma 5.3.3.

• Case A = λy.S. Then N = λy.N0 with y /∈ ~x and S ∈ Av(N0). By induction hy-
pothesis, there is k′ ≥ 0 such that n1, . . . , ni+k′+1 ≥ j entails
Nϑ

0 [Pni+1
/y]Pni+2

· · ·Pni+k′+1
�v P`, for some ` ≥ 0. Taking k = k′ + 1, easy

calculations give (λy.N0)ϑPni+1
· · ·Pni+k �v P`.

• Case A = (λy.S)(xmHA1 · · ·An) with m = 1, . . . , i and, wlog, y /∈ ~x. From
A v⊥ N , we obtain N = (λy.N0)N1 with S ∈ Av(N0), FV(N0) ⊆ {~x, y}, and
xmHA1 · · ·An ∈ Av(N1). By induction hypothesis, for all j′ large enough, there is
k′ such that for all h1, . . . , hi+k′+1 ≥ j′ we have
N0[Ph1/x1, . . . ,Phi/xi,Phi+1

/y]Phi+2
· · ·Phi+k′+1

�v P`, for some ` ≥ 0. Therefore,
taking k = k′+1, we obtain, for all j ≥ j′+n+1 and n1, . . . , ni+k ≥ j, the following:

NϑPni+1
· · ·Pni+k = (λy.Nϑ

0 )Nϑ
1 Pni+1

· · ·Pni+k , as y /∈ dom(ϑ),
�v (λy.Nϑ

0 )Pnm−n−1Pni+1
· · ·Pni+k , by Lemma 5.3.3,

→ Nϑ
0 [P`′/y]Pni+1

· · ·Pni+k , setting `′ = nm − n− 1,
�v P`, by I.H. since ell′ ≥ j′.

Corollary 5.3.5. Let M ∈ Λ and A ∈ Av(M). If A ∈ S then M is CbV-solvable.

Proof. Assume A ∈ Av(M) ∩ S and FV(M) = {~x}. By Proposition 5.3.4, there are

P1, . . . , Pk ∈ Λo such that (λ~x.M)~P �v Pn for some n ≥ 0. By applying the identity n

times, we get (λ~x.M)~P In �v I. We conclude that M is CbV-solvable.

Using the previous corollary, we finally provide a characterisation of Call-by-Value
solvability.

Theorem 5.3.6 (CbV-solvability). For M ∈ Λ, the following are equivalent:

1. M is CbV-solvable.

2. There exists an approximant A ∈ Av(M) ∩ S.
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5. Investigation of the Böhm Trees

Proof.

(1⇒ 2) We will prove the contrapositive : Av(M) ⊆ U or Av(M) = ∅ ⇒ M unsolvable.

We will proceed by induction on M :

– if M = x then Av(M) = {⊥, x}. We have x ∈ S,

– if M = λx.N then Av(M) = {⊥} ∪ {λx.A′ | A′ ∈ Av(N)}. ⊥ ∈ U and
{λx.A′ | A′ ∈ Av(N)} ⊆ U iff Av(N) ⊆ U so by induction hypothesis N is
unsolvable, so is M ,

– if M = N1N2 then

∗ either M �v x and similar to previous case,

∗ either M �v λx.N and similar to previous case,

∗ either M �v N = xN0 . . . Nn with N0 = x or λx.N ′0. So Av(M) =
Av(N) = {xHA1 . . . An | H ∈ Av(N0), A1 ∈ Av(N1), . . . , An ∈ Av(Nn)} ⊆
S.

∗ either M �v N = (λx.N ′)(xN0 . . . Nn) with N0 = x or λx.N ′0. So
Av(M) = Av(N) = {(λx.A′)(xHA1 . . . An) | A′ ∈ Av(N ′), H ∈ Av(N0),
A1 ∈ Av(N1), . . . , An ∈ Av(Nn)}. Av(N) ⊆ U iff Av(N ′) ⊆ U and by
induction hypothesis N ′ is unsolvable. So N and M are unsolvable.

∗ or Av(M) = ∅, so by Theorem 5.2.4, M is not potentially valuable which
implies that M is not solvable.

(2⇒ 1) By Corollary 5.3.5.
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6. Conclusion

In previous chapters we developed a theory of program approximation in Call-by-Value.

We followed Carraro and Guerrieri who have introduced permutation rules, arising
from linear logic proof-nets, in [Carraro and Guerrieri, 2014]. Those rules allow to unblock
premature normal forms, due to the reduction rule βv accepting only values as arguments.
This extended calculus is proved, in [Guerrieri et al., 2017], to have the same operational
semantics as the traditional Plotkin’s Call-by-Value λ-calculus, and can therefore be used
to study it.

In this setting, we proposed an original notion of Böhm tree, the first one for Call-by-
Value. This definition is made in a similar way as the one in [Amadio and Curien, 1998]:

• introduce ⊥, representing here an undefined value subterm, and not a general sub-
term as traditionally;

• define approximants as λ-terms with ⊥ in normal forms for βv and σ-rules;

• define a preorder vv on approximants (generated by considering ⊥ smaller than any
value);

• using the preorder, define approximants of a term as the set of approximants smaller
than this term and its reducts. Such approximants enjoy some properties:

– Lemma 3.2.11: the ”external shape” of an approximant of a given λ-term is
stable under reduction;

– Lemma 3.2.12: two interconvertible λ-terms have the same approximants;

– Lemma 3.2.13: the set of approximants of a λ-term is empty or an ideal with
respect to vv;

• finally, define the Böhm tree of a term as the supremum of its approximants (which
exists due to aforementioned lemma) in Definition 3.2.14.

We showed that sets of approximants Av(M) for some λ-term M are exactly the sets
of approximants that are directed, downward closed, recursively enumerable and with a
finite number of free variables (Theorem 3.2.23).

We compared our approach with Ehrhard’s theory of approximation based on differ-
entiation, where the Taylor expansion translates λ-terms in (potentially) infinite sets of
terms with resources (see [Ehrhard, 2012]). In [Carraro and Guerrieri, 2014], the Call-by-
Value resource calculus was extended with σ-rules to mimic the σ-reductions occurring
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6. Conclusion

in M at the level of its resource approximants. Using this extension of resource calcu-
lus, we provided a characterisation on sets of resource terms corresponding to the Taylor
expansion of a λ-term. To this end, we define a coherence relation ¨ between resource
terms and proved, in Theorem 4.3.4, that a set of such terms corresponds to the Taylor ex-
pansion of a λ-term if and only if it is an infinite clique (with respect to ¨) of finite height.

We investigated the relation between Böhm tree and Taylor expansion. In Call-by-
Name, the normal form of the Taylor expansion of a λ-term is equal to the Taylor
expansion of its Böhm tree (see [Ehrhard and Regnier, 2006a]), this is not the case in
Call-by-Value, due to the presence of resource approximants reducing to 0. To take them
into account, we defined the normalised Taylor expansion of the Böhm tree of a λ-term.
And in Theorem 5.1.8, we proved that it is equal to the normal form of the Taylor expan-
sion: ∀M ∈ Λ, T ◦(BTv(M)) = NF(T (M)).

An interesting consequence, among others, is that all denotational models satisfying
the Taylor expansion (for example the one in [Carraro and Guerrieri, 2014]) equate all
λ-terms with the same Böhm tree.

Another consequence is a characterisation of potential valuability: a term is potentially
valuable if and only if its Böhm tree is not empty (Theorem 5.2.4). Recall that a λ-term is
potentially valuable if and only if it reduces to a value when plugged in the right context,
this is a larger notion than solvability.

We also provided a characterisation on solvable terms, which are traditionally consid-
ered as the meaningful ones. In Call-by-Name they are strongly linked with Böhm trees,
since the unsolvable λ-terms are the λ-terms with Böhm tree equal to ⊥. But the con-
nection is less obvious in Call-by-Value, and in order to characterise solvable terms, we
introduce a refinement of our approximants. We partition them into subsets S and U . A
λ-term is then Call-by-Value solvable if and only if it has (at least) one approximant of
type S (Theorem 5.3.6).

Both Call-by-Value potentially valuable and solvable terms already have characterisa-
tions in [Accattoli and Paolini, 2012] and in [Carraro and Guerrieri, 2014], respectively
using reductions in a version of Call-by-Value with explicit substitutions, and subreduc-
tions of →v in λσv . We believe that our own characterisations bring a new light on those
notions, and that the link with the new definition of Böhm tree is promising.

In particular, the significance of the notion of potential valuability in Call-by-Value is
highlighted by the fact that the non-potentially valuable terms are exactly those with
empty Böhm trees. We can make a parallel between Call-by-Value non-potentially valu-
able terms having the smallest Böhm tree possible in Call-by-Value (the empty tree), and
Call-by-Name unsolvable terms having the smallest Böhm tree possible in Call-by-Name
(a tree containing only ⊥).

Our definition of Böhm trees provides a syntactic model of Call-by-Value λ-calculus
which is adequate: all λ-terms having the same Böhm tree are operationally indistinguish-
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able (Theorem 5.2.6). But this model is not fully abstract. Indeed, there are operationally
indistinguishable λ-terms with different Böhm trees. An example of such terms is ∆(yy)
and yy(yy) with BTv(∆(yy)) = ∆(yy) and BTv(yy(yy)) = yy(yy).
The situation looks similar in Call-by-Name where one needs to consider Böhm trees up
to possibly infinite η-expansions to capture the λ-theory H∗ and obtain a fully abstract
model [Barendregt, 1984, Cor. 19.2.10].

Developing a notion of extensionality for Call-by-Value Böhm trees is certainly inter-
esting and a necessary step, as it might help to describe the equational theory of some
extensional denotational model. However, contrary to what happens in Call-by-Name,
this will not be sufficient to achieve full abstraction. Indeed, in the previous counterex-
ample extensionality plays no role.
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7. Category Theory

The sole aim of this chapter is to introduce a number of categorical and bicategorical
concepts that will be widely used in the remaining chapters. Hence, there is little to no
interest reading it in isolation, and it should be better used as a reference. We refer at
[Johnson and Yau, 2021] for a more general introduction of those notions.

Section 7.1 contains the categorical background that is needed in the rest of the thesis.
We present the principle of coend and a basic theorem of the associated coend calculus, i.e.
the so-called Yoneda Lemma for coends in Section 7.2. We then provide the construction
of a free algebra for an endofunctor in Cat Section 7.3. We conclude this chapter by an
introduction of bicategories in Section 7.4.

7.1. Categorical Preliminaries

We provide the definitions of categories (§7.1.1), functors (§7.1.2), Cartesian closed and
Seely categories (§7.1.4), and conclude with the Kleisli construction (§7.1.5).

7.1.1. Category

In this section we recall basic definitions of categories and morphisms.

Definition 7.1.1. A category C is given by:

• a collection of objects A,B, · · · ∈ C;

• for each pair of objects A,B ∈ C a hom-set: a collection C(A,B) of morphisms
f : A→ B;

• for each triple of objects A,B,C ∈ C, a composition operation:

◦ : C(B,C)× C(A,B)→ C(A,C)

satisfying associativity: for all morphisms f, g, h of the appropriate type:

f ◦ (g ◦ h) = (f ◦ g) ◦ h;

• for every object A ∈ C, a morphism IdA ∈ C(A,A) called the identity of A such
that:

∀f ∈ C(A,B), IdB ◦ f = f = f ◦ IdA.
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7. Category Theory

Notation 7.1.2. When needed to avoid confusion, we will use the notation A,B ∈ Ob(C),
for A,B being objects of C.

A category is called small if its collection of objects is a set and locally small if the
hom-sets are sets.

Example 7.1.3.

• The category Set with objects being sets and morphisms being set-theoretic functions.

• A preorder category: a category such that for any pair of objects (A,B) there is at
most one morphism from A to B. The existence of such a morphism corresponds to
the truth of the relation A ≤ B.

• The category Rel with objects being sets and morphisms being relations, composition
of R ∈ Rel(B,C) and S ∈ Rel(A,B) is given by their relational product:

R ◦ S = {(a, c) ∈ A× C | ∃b ∈ B, (a, b) ∈ R, (b, c) ∈ S}.

Definition 7.1.4. A morphism f : A → B is called an isomorphism if there exists a
morphism f ′ : B → A, such that f ′ ◦ f = IdA and f ◦ f ′ = IdB.

In this case we say:

• that f ′ is the inverse of f , often denoted by f−1;

• that the objects A and B are isomorphic, written A ∼= B;

• that f, f−1 forms an iso-pair.

Given a category C the opposite category Cop is obtained by reversing the morphisms
(and no other change). A dual statement on a category, usually denoted with the prefix
”co” corresponds to the statement in the opposite category.

Definition 7.1.5. An initial object in a category C is an object ⊥∈ C such that any object
A ∈ C there is a unique morphism ⊥→ A.

In a given category, initial objects (if they exists) are equal up to isomorphism, therefore
we can consider them as one unique object: the initial object.

7.1.2. Functors

We can see the different categories as themselves objects of a category. In this case
the notion of morphism becomes the one of functor. A functor is a morphism between
categories preserving the identity and composition.

Definition 7.1.6. Given two categories C,D a functor F : C → D consists of:

• a map F0 from the objects of C to the objects of D;

• for each pair of objects A,B of C, a map FA,B : C(A,B)→ D(F0(A), F0(B));

70



7.1. Categorical Preliminaries

• such that for all f ∈ C(A,B) and g ∈ C(B,C):

– FA,C(g ◦ f) = FB,C(g) ◦ FA,B(f);

– FA,A(IdA) = IdF0(A).

Given functors F : C → D and G : D → E their composition G ◦ F : C → E is defined
by:

• (G ◦ F )0 = G0 ◦ F0;

• (G ◦ F )A,B = GF0(A),F0(B) ◦ FA,B.

We will often omit indexes of functors.

Definition 7.1.7.

• A functor F : C → D is called full and faithful if for each pair A,B ∈ C,

F : C(A,B)→ D(F (A), F (B)) is bijective. (full if surjective and faithful if injective)
“Full and faithful” is sometimes shortened to “fully faithful”.

• A functor going from a category to itself, F : C → C, is called an endofuntor.

• A functor F : C → D is injective on objects if its object function is injective:
F (A) = F (B)⇒ A = B.

• A functor F : C → D is essentially surjective on objects if for every object D ∈ D
there exist an object C ∈ C and an isomorphism F (C) ∼= D in D.

• A functor fully faithful and essentially surjective F : C → D is an equivalence
between categories C and D.

• An embedding is a functor that is both injective on objects and faithful.

Remark 7.1.8. Functors preserve isomorphisms: if (f, g) is an iso-pair in C and

F : C → D is a functor, then (F (f), F (g)) is an iso-pair in D.

Definition 7.1.9.

• A subcategory D of a category C is a category such that Ob(D) ⊆ Ob(C) and for all
f : A → B in D, f also in C. There is a inclusion functor D ↪→ C that is faithful
and injective on objects, so it is an embedding.

• A subcategory D of a category C is a full subcategory if for any A and B in D,
every morphism f : A→ B of C is also in D. In such a case, the inclusion functor
D ↪→ C is full, so it is a full embedding.
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7. Category Theory

We call natural transformations morphisms between functors:

Definition 7.1.10.

• Let C,D be categories and F,G : C → D be functors. A natural transformation
µ : F → G is given by a family of morphisms:

µA : F (A)→ G(A) ∀A ∈ C

such that for all f : A→ B the naturality diagram below commutes:

F (A)
µA //

F (f)

��

G(A)

G(f)

��
F (B) µB

// G(B)

• The composition of natural transformations µ : F → G and ρ : G → H is defined
componentwise: (ρ ◦ µ)A = ρA ◦ µA.

• A natural transformation µ such that µA is an isomorphism for every object A is
called a natural isomorphism.

7.1.3. Colimit

Definition 7.1.11 (Cocone, colimit, filtered colimit and cocomplete category).

• Given a functor F : D → C a cocone to F is an object A ∈ C and a family
ψB : F (B) → A (∀B ∈ C) such that ∀f : B → C ∈ D the following diagram
commutes:

F (B)
F (f) //

ψB ""

F (C)

ψC||
A

• A colimit for F : D → C is a cocone (L, φ) of F such that for any other cocone
(A,ψ) of F , there is a unique morphism u : L→ A such that ∀B ∈ D, u ◦φB = ψB,
that is:

F (B)
F (f) //

φB

""

ψB

��

F (C)

ψC

��

φC

||
L

u

��
A
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7.1. Categorical Preliminaries

• A filtered category C is a category where every functor has a cocone.

• A filtered colimit is a colimit of a functor F : D → C where D is a filtered category.

• A category C is cocomplete if every functor F : D → C with D small has a colimit
in C.

7.1.4. Special Categories

In this subsection we will define, among others, categories that are Cartesian, monoidal,
closed...

Definition 7.1.12. The product category C × D of categories C and D is such that:

• objects are pairs of objects (C,D), where C is an object of C and D of D;

• arrows from (C1, D1) to (C2, D2) are pairs of arrows (f, g), where f : C1 → C2 in C
and g : D1 → D2 in D;

• composition is defined componentwise: (f2, g2) ◦ (f1, g1) = (f2 ◦ f1, g2 ◦ g1);

• identities are pairs of identities from the contributing categories: id(C,D) = (idC , idD).

A bifunctor is a functor whose domain is the product of two categories: F : C×D → E .

Definition 7.1.13.

• A product of two objects A1, A2 in a category C is given by:

– an object A1 × A2 in C;

– together with two projections πi : A1 × A2 → Ai (for i = 1, 2);

such that, for every object B and pair of arrows f1 : B → A1 and f2 : B → A2, there
exists a unique morphism 〈f1, f2〉 : B → A1 × A2 such that the following diagram
commutes:

B

f

��

〈f,g〉

��

g

��
A1 A1 × A2π1
oo

π2
// A2

• A terminal object in a category C is an object 1 such that, for every object A ∈ C,
there exists a unique morphism !A : A→ 1.

• A category C is Cartesian if it has a terminal object and every pair of objects admits
a product.

In this case, for every pair of morphisms f : A → C and g : B → D, the product
map f × g : A×B → C ×D is defined by setting f × g = 〈f ◦ π1, g ◦ π2〉.
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7. Category Theory

Tensor products are similar to categorical products, but are not unique up to isomor-
phism and do not necessarily have projections. They equipe monoidal categories.

Definition 7.1.14. A monoidal category is a 6-tuple 〈C,⊗,1, γ, λ, ρ〉, where C is a cat-
egory, − ⊗ − : C × C → C is a bifunctor called the tensor product, 1 is the unit of the
tensor product, and γ, ρ, λ are natural isomorphisms (called respectively associator, left
unitor and right unitor):

γA,B,C : (A⊗B)⊗ C → A⊗ (B ⊗ C),
λA : 1⊗ A → A,
ρA : A⊗ 1 → A.

such that the following diagrams commute:

(A⊗ 1)⊗B
γA,1,B //

ρA⊗1B ''

A⊗ (1⊗B)

1A⊗λBww
A⊗B

(A⊗B)⊗ (C ⊗D)
γA⊗B,C,D

**
A⊗ (B ⊗ (C ⊗D))

γA,B,C⊗D
44

((A⊗B)⊗ C)⊗D

γA,B,C⊗1D

��
A⊗ ((B ⊗ C)⊗D)

1A⊗γB,C,D

OO

(A⊗ (B ⊗ C))⊗D
γA,B⊗C,Doo

Definition 7.1.15.

• A monoidal category is strict if γ, ρ, λ are identity natural transformations (i.e. the
natural transformations that map each object to the appropiate identity morphism).

• An object A∗ in a monoidal category is called the dual of A if it is equipped with two
morphisms called the unit and the counit:

ηA : 1→ A∗ ⊗ A εA : A⊗ A∗ → 1

such that:

λA ◦ (εA ⊗ A) ◦ γ−1
A,A∗,A ◦ (A⊗ ηA) ◦ ρ−1

A = idA

ρA∗ ◦ (A∗ ⊗ εA) ◦ γA∗,A,A∗ ◦ (ηA ⊗ A∗) ◦ λ−1
A∗ = idA∗ .
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7.1. Categorical Preliminaries

Definition 7.1.16. A Symmetric Monoidal Category is a monoidal category 〈C,⊗,1, γ, λ, ρ〉
having a natural isomorphism:

σA,B : A⊗B ∼= B ⊗ A

and and that satisfies the usual conditions on a braiding, which are the commutation of
the following diagrams:

(A⊗B)⊗ C

σA,B⊗IdC

��

γA,B,C// A⊗ (B ⊗ C)
σA,B⊗C// (B ⊗ C)⊗ A

γB,C,A

��
(B ⊗ A)⊗ C γB,A,C

// B ⊗ (A⊗ C)
IdB⊗σA,C

// B ⊗ (C ⊗ A)

A⊗ 1
σA,1 //

λA %%

1⊗ A
ρA
��
A

A⊗B
σA,B // B ⊗ A

σB,A
��

A⊗B

If each oject in a symmetric monoidal category C has a dual, C is called a compact
closed category.

Definition 7.1.17. A Monoidal Closed Category is a monoidal category (C,⊗,1) such
that for all objects A,B:

• there exists an object A( B that internalised C(A,B);

• there exists a morphism evA,B : A⊗ (A( B)→ B called evaluation;

such that, for every morphism f : A ⊗ X → B there exists a unique morphism
h : X → (A( B) making the next diagram commutes

A⊗X

f

$$

IdA⊗h

��
A⊗ (A( B) evA,B

// B

Definition 7.1.18. A Cartesian Closed Category C is a category with finite products
which is closed with respect to its Cartesian monoidal structure (C,×,1):

• for each A,B ∈ C there is A×B ∈ C;

• there is a terminal object 1;

• for each A,B ∈ C there is an exponential object internalising C(A,B) and denoted
by AB;
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• for each A,B ∈ C there is an evaluation morphism evA,B : (AB) × A → B similar
as the one in Definition 7.1.17.

Given f : C × A → B, we denote by Λ(f) : C → (AB) the currying of f , namely
the unique morphism such that evA,B ◦ 〈Λ(f) ◦ π1, π2〉 = f .

In a cartesian closed category a reflexive object is an object U equipped with morphisms
app : U → UU and lam : UU → U such that app ◦ lam = 1.

7.1.5. Kleisli Category

In the following, we will use & for the Cartesian product and > for the terminal object to
respect the tradition concerning Seely category. Kleisli categories are naturally associated
to a monad T and equivalent to the the categories of free T -algebras (see Section 7.3).

Definition 7.1.19. A comonad over a category C is a triple (!, der, dig) where:

• ! : C → C is an endofunctor;

• dereliction der : ! → IdC and digging dig : ! →!2 are natural transformations, such
that the following diagrams commute:

!A
digA //

digA
��

!!A

!derA
��

!!A
der!A

// !A

!A
digA //

digA
��

!!A

!digA
��

!!A
dig!A

// !!!A

Remark 7.1.20. A monad is similar but with natural transformations idC →! and !2 →!.

Definition 7.1.21. A Seely category is a symmetric monoidal closed category (C,⊗,1)
with finite products (C,&,>) with:

• a comonad (!, der, dig);

• two natural isomorphisms:

m2
A,B : !A⊗!B ∼= !(A&B),

m0 : 1 ∼= !>,

making (!,m) : (C,&,>)→ (C,⊗,1) a symmetric monoidal functor;

• such that the following coherence diagram commutes

!A⊗!B

derA⊗derB

m // !(A&B)

derA⊗B
��

!!(A&B)

!〈!π1,!π2〉
��

!!A⊗!!B m
// !(!A&!B)

76



7.2. The Coend Calculus

Given a comonad (!, der, dig) over a category C you can define for all g : !A → B, a
morphism g! : !A→!B by setting g! = !f ◦ dig!A.

Definition 7.1.22. The coKleisli category C! of a comonad (!, der, dig) over a category C
is defined by:

• C! has the same objects as C;

• for all objects A,B ∈ C!: C!(A,B) = C(!A,B);

• the composition of C! is given by f ◦! g = f ◦ g!.

Theorem 7.1.23 ([Seely, 1989]). Given a Seely category C with a comonad (!, der, dig),
its coKleisli category C! is Cartesian closed.

7.2. The Coend Calculus

Coends are a universal categorical construction which is at the foundation of several
structures. In the particular case we will consider, coends correspond to appropriate
quotient sums of sets.

Definition 7.2.1. Given f, g : A→ B two morphisms in a category C, their coequaliser,
if it exists, is the colimit of the diagram formed by these two morphisms.

Given f, g : A→ B in a category C, we say that they are parallel, since they are both
in C(A,B).

Definition 7.2.2. Given a category C and a functor F : Cop × C → Set, the coend of F
is the coequaliser of the following diagram:∑

A,B∈C

C(A,B)× F (A,B)⇒
∑
A∈C

F (A,A)→
∫ A∈C

F (A,A)

where the parallel arrows ⇒ are given by left and right actions of F on morphisms
f ∈ C(B,A).

Since we work with coends in the category of sets, we have that this coequaliser is actually
given by the quotient

∑
A∈C F (A,A)/ ∼ where the equivalence relation ∼ is generated by

the rule
C ∼ D ⇐⇒ F (f,B)(C) = F (A, f)(D), for some f : B → A.

We denote the coend of F as
∫ c∈C

F (c, c).
We refer to [Loregian, 2021] for a more detailed presentation of this calculus.

A basic theorem of coend calculus is the Yoneda Lemma for coends :

Theorem 7.2.3 (Yoneda, Density Theorem). Let K : Cop → D and H : C → D be two
functors. We have canonical natural isomorphisms:

K(−) ∼=
∫ A∈C

K(A)× C(−, A) H(−) ∼=
∫ A∈C

H(A)× C(A,−).
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7.3. Algebras of Cat Endofunctors

We will present a construction of free algebra.

Definition 7.3.1. Let F : Cat→ Cat be an endofunctor.

• An algebra for F consists of a small category A equipped with a functor F : FA→ A.

• A partial F-algebra on a small category A consists of a pair of a functor and a full

embedding A
F← H

G
↪→ F(A).

Definition 7.3.2 (Free F-Algebras [Kelly, 1980]). Given a functor F : Cat → Cat that
preserves colimits of ω-chains and a small category A, we construct a canonical F-algebra
as follows. Given a coproduct A tB, we denote by inA and inB the associated injections.

• First, we define an inductive family of small categories:

D0 = A, Dn+1 = FDn t A.

• Then, we construct a family of functors ιn : Dn ↪→ Dn+1, again by induction:

ι0 = inA, ιn+1 = F(ιn) t A.

• Finally, we define
DA = lim−→

n∈N
Dn.

We obtain a canonical algebra map ιA : F(DA)→ DA.
The small category DA is in particular the free F-algebra on A.

7.4. Bicategorical Preliminaries

We recall the definitions of bicategories (§7.4.1) and of pseudoreflexive objects living in
a Cartesian closed bicategory (§7.4.2). We refer to [Borceux, 1994] for a more complete
introduction of those notions.

7.4.1. Bicategory

Intuitively, bicategories are categories with “morphisms between morphisms”. The asso-
ciativity and identity laws for composition of morphisms in a bicategory hold just up to
coherent isomorphisms, for this reason we associate the prefix ”pseudo” to usual categor-
ical notions.

Definition 7.4.1. A bicategory C consists of:

• a collection ob(C) of objects (denoted by A,B,C, . . . ), also called 0-cells;

• for all A,B ∈ ob(C), a category C(A,B):
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7.4. Bicategorical Preliminaries

– objects F in C(A,B), also written F : A→ B, are called 1-cells or morphisms
from A to B;

– arrows in C(A,B) are called 2-cells or 2-morphisms and denoted γ : A⇒ B;

– composition of 2-cells is denoted by −•− and generally called vertical compo-
sition;

• for every A,B,C ∈ ob(C), a bifunctor called horizontal composition:

◦A,B,C : C(B,C)×C(A,B)→ C(A,C)

(often the indices A,B,C in ◦A,B,C are omitted).

• for every A ∈ ob(C), a functor 1A : 1 → C(A,A), where 1 is the category with
one object ∗ and one arrow. We slightly abuse notation and identify 1A(∗) with the
identity 1A of A;

• for all A,B,C,D ∈ ob(C) a natural isomorphism γA,B,C,D such that:

C(C,D)×C(B,C)×C(A,B)

◦B,C,D×1A

��

1D×◦A,B,C // C(D,C)×C(A,C)

◦A,C,D

��

γA,B,C,D

px
C(B,D)×C(A,B) ◦A,B,D

// C(A,D)

• for every 1-cell F : A→ B, two families of invertible 2-cells expressing the identity
law:

λF : 1B ◦ F ∼= F, ρF : F ∼= F ◦ 1A.

Such that:

C(A,B)× 1 C(A,B)

C(A,B)×C(A,A)

1×1A ρA

◦A,A,B

1×C(A,B) C(A,B)

C(B,B)×C(A,B)

1B×1
λA

◦A,B,B

Moreover two additional coherence axioms similar to the ones for monoidal categories
Definition 7.1.14 should be satisfied.

Given a bicategory C, we name opposite bicategory the bicategory obtained by revers-
ing only the 1-cells, we denote it Cop.

A 2-category is a bicategory where associativity and unit 2-cells are identities.

Example 7.4.2. A famous example of 2-category is Cat: the 2-category where 0-cells are
the small categories, 1-cells are the functors and 2-cells are the natural transformations.
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Definition 7.4.3. Let C, D be two bicategories. A lax functor φ : C→ D is:

• A function φ : ob(C)→ ob(D).

• For each pair of objects A,B ∈ ob(C) a functor φA,B : C(A,B)→ D(φ0(A), φ0(B)).

• For all A,B,C ∈ ob(C) a natural transformation φA,B,C:

C(B,C)×C(A,B)

◦A,B,C

��

φA,B×φB,C //D(φB, φC)×D(φA, φC)

◦φA,φB,φC

��

φA,B,C

qy
C(A,C)

φA,C
//D(φA, φC)

with components φF,G : φ(G) ◦ φ(F )→ φ(G ◦ F ).

• For all A ∈ ob(C) a natural transformation φA such that:

1
1A // C(A,A)

◦φA,A
��

φA

v~
1

1φA
//D(φA, φA)

with components φA : φ(1A)→ 1φA

• It also respects some coherence axioms (see [Leinster, 1998]).

If the two natural transformation are isomorphisms, φ is called a pseudofunctor.

Definition 7.4.4. Let ψ, ξ : C → D be two pseudofunctors. A pseudonatural transfor-
mation P : ψ ⇒ ξ is the collection of the following data:

• A family of 1-cells (PA : ψA→ ξA)A∈ob(C).

• for each 1-cell F : A→ B an invertible 2-cell PF :

ψA

ψF

��

PA // ξA

ξF

��

PF ⇓

ψB
PB

// ξB
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• for all F : A→ B and G : B → C:

ψA

ψF

��

PA // ξA

ξF

��

PF ⇓

ψB

ψG

��

PB // ξB

ξG

��

⇓PG

ψC
PC

// ξC

= ψA

ψG◦F

��

PA // ξA

ξG◦F

��

PG◦F ⇓

ψC
PC

// ξC

• for all A ∈ ob(C):

ψA

ψ1A

��

PA // ξA

ξ1A

��

P1A
⇓

ψB
PB

// ξB

= ψA

1ψA

��

PA // ξA

1ξA

��
ψB

PB
// ξB

Definition 7.4.5. Let P,Q : ψ ⇒ ξ be two pseudo-natural transformations. A modifica-
tion σ : P ⇒ Q consists in a family of 2-cells σA : P (A)→ Q(A) such that:

ψA

ψF

��

PA

))

QA

55σ ⇓ ξA

ξF

��

QF ⇓

ψB

QB

55 ξB

= ψA

ψF

��

PA

))
ξA

ξF

��

PF ⇓

ψB

PB

))

QB

55σ ⇓ ξB

Definition 7.4.6. Let C be a bicategory, C,D ∈ ob(C) and i : C → D a 1-cell, then:

• A pseudoretraction for i consists of a 1-cell j : D → C with an invertible 2-cell
γ : 1C ∼= j ◦ i.

• A pseudosection for i consists of a 1-cell j : D → C with an invertible 2-cell
β : i ◦ j ∼= 1D.
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• A 1-cell j : D → C is right adjoint to i when there exist 2-cells η : 1C ⇒ j ◦ i and
ε : i ◦ j ⇒ 1D, satisfying (εi) ◦ (iη) = 1C and (jε) ◦ (ηj) = 1D.

In this case, we say that i is left adjoint to j and that the tuple 〈i, j, η, ε〉 is an
adjunction.

• If j is both a pseudoretraction and a pseudosection for i, we say that 〈i, j〉 is an
equivalence (this is similar to the Definition 7.1.6).

• An equivalence that is also an adjunction is called an adjoint equivalence.

Definition 7.4.7. A pseudomonad over a bicategory C is constructed by:

• A triple 〈T, η, µ〉 where T : C → C is a pseudofunctor, and η : 1 → T and µ :
T 2 → T are pseudonatural transformations, called the multiplication and unit of the
pseudomonad.

• Invertible modifications:

T 3

µT

��

Tµ // T 2

µ

��

σ ⇓

T 2
µ

// T

T

ηT

��

Tη // T 2

µ

��

τ1

z�

T 2
τ2

:B

µ
// T

• And satisfying two additional coherence conditions from [Lack, 2000].

Every pseudomonad has also an associated Kleisli bicategory, which can be defined in
complete analogy with the one-dimensional case (see [Cheng et al., 2003]).

In [Fiore et al., 2017], the authors introduce relative pseudomonads which are a gener-
alisation of pseudomonads, and admits Kleisli bicategories.

7.4.2. Cartesian Closed Bicategories

We will give a short insight about Cartesian closed bicategories, for a more detailed ver-
sion of this kind of structures we refer to [Saville, 2020].

Given bicategories C1, . . . ,Cn with n ∈ N there exists the finite product bicategory
Πn
i=1Ci, defined in the natural way. Given a bicategory C, we define the n-ary diagonal

pseudo-functor:
∆n : C→ C× · · · ×C︸ ︷︷ ︸

n

such that:

• on objects ∆n(C) = 〈C, . . . ,C〉;
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• for all C,D ∈ ob(C):

∆n
C,D : C(C,D)→ C×C(∆n(C),∆n(D))

(F,G) 7→ ((F, . . . , F ), (G, . . . , G))
(α, β) 7→ ((α, . . . , α), (β, . . . , β)).

The natural isomorphisms ∆n
F,G and ∆n

A are the identities.

Definition 7.4.8. We say that a bicategory admits all finite products if for every n ∈ N
the pseudofunctor ∆n admits a right pseudoadjoint, this means:

• a function Πn(−) : ob(Cn)→ ob(C);

• for every A1, . . . , An ∈ ob(C), a 1-cell πn,i : Πn〈A1, . . . , An〉 → Ai the i-th projection;

• for every B ∈ ob(C) an adjoint equivalence:

Πn
i=1C(B,Ai) ⊥ C(B,Πn

i=1〈A1, . . . , An〉)

(−)

〈πn,1◦−,...,πn,n◦−〉

where the right adjoint (−) is called the tupling.

Notation 7.4.9. We use notations:

• if n = 2, then Π2(A,B) = A&B;

• otherwise Πn〈A1, . . . , An〉 = &n
i=1Ai.

Definition 7.4.10. A Cartesian Closed Bicategory is a bicategory that admits all finite
products and is closed, that corresponds to the pseudofunctor −&B : C→ C admitting a
right pseudoadjoint −B i.e.:

• for every B ∈ ob(C) function −B : ob(C)→ ob(C);

• for every A,B ∈ ob(C), a 1-cell evA,B : AB&A→ B called the evaluation morphism;

• for every A,B,C ∈ ob(C) an adjoint equivalence:

Πn
i=1C(A&B,C) ⊥ C(A,CB)

Λ(−)

evB,C◦(−×B)

where Λ(−) denotes the currying functor.

Definition 7.4.11. A pseudoreflexive object in a Cartesian closed bicategory C is given
by a tuple 〈D, i : DD → D, j : D → DD, γ〉, where D is an object and 〈j, γ〉 a pseudore-
traction for i.
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A possible generalisation of well known relational semantics is given by categorification,
where set-theoretic notions are replaced by categorical ones. The concept of a bidimen-
sional semantics for λ-calculus was first presented in [Seely, 1987] and further studied in
[Hirschowitz, 2013]. This refines the denotational semantics viewpoint and allows to cat-
egorically model rewriting (as a 2-cell) ([Fiore and Saville, 2019, Hilken, 1996]).

Here we are interested in a bicategorical model (see Definition 7.4.1), in particular in the
bicategory of distributors ([Bénabou, 2000]) where sets are replaced with small categories
and relations with distributors. Distributors are a natural choice since they can be seen
as a categorification of relations between sets. A relation R ⊆ A× B is equivalent to its
characteristic function:

XR : A×B → {0, 1}

(a, b) →

{
1 if aRb,

0 otherwise.

The former function naturally induces a functor from A × B to the 2 elements cat-
egory. It is then natural to relax the hypothesis and consider functors of the shape
F : Bop × A → Set where A and B are arbitrary small categories (see Section 7.1.1).
These functors are what we call distributors.

Distributors are proof-relevant, in the sense that two objects a, b are mapped to the set
F (a, b) of ”witnesses” of their relationship. They determine a weak 2-dimensional cate-
gorical structure in the sense that many former equalities now hold only up to coherent
isomorphisms. This is the case for the interpretation of two β-convertible λ-terms.

In [Cattani and Winskel, 2005], the authors presented a distributor induced model of
linear logic. Inspired from that work, Fiore, Gambino, Hyland, and Winskel introduced,
in [Fiore, 2005, Fiore et al., 2008], the generalized species of structure (also studied in
[Gambino and Joyal, 2017]). This is a Kleisli bicategory of distributors categorifying the
standard multiset-based semantics of λ-calculus as well as Joyal’s species of structures
([Joyal, 1986]).

Then in [Tsukada et al., 2017] was presented a syntactic counterpart: the rigid Taylor
expansion of λ-terms which refines the usual Taylor expansion. The target language of
the rigid Taylor expansion is the rigid resource calculus, where a permutation of resource
terms in a bag leads to a bag distinct but isomorphic to the first one. In particular, this
semantics is used to enumerate the reduction paths to normal forms for non-deterministic
programs (subsequently, generalised to other effects in [Tsukada et al., 2018]).
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Independently, [Mazza et al., 2017] presents a higher categorical approach of intersec-
tion types systems using multicategories and discrete distributors, building on the work
done in [Melliès and Zeilberger, 2015] and [Hyland, 2017].

Following those works, in [Olimpieri, 2021, Olimpieri, 2020], the author considered a
class of bicategories generalising the construction of [Fiore et al., 2008]. He proved that
they actually determine categorical models of λ-calculus and can be syntactically pre-
sented via intersection types.

Our work builds on the semantic techniques introduced by [Olimpieri, 2021] and should
be seen as a step further towards the categorification of the classical theory of λ-calculus,
in the sense of [Hyland, 2017].

In this chapter, we aim at setting the scene for the investigations that will happen
in future chapters. We introduce some general definitions and results of 2-dimensional
categorical semantics of untyped λ-calculus in Section 8.1.

We also present the bicategory of distributors in Section 8.2, originally introduced in
[Bénabou, 1973], which will constitute the core of our bicategorical investigations.

The notions presented in this chapter and the followings are issued from a conjoint
work with Federico Olimpieri and Giulio Manzonetto, published in [Kerinec et al., 2023].

8.1. Bicategorical Interpretation

Traditionally models of λ-calculus are given in a 1-dimensional categorical framework: a
model being a reflexive object of a Cartesian Closed Category (see Definition 7.1.18).

Definition 8.1.1. Let U = (U,Ap, λ) be a categorical model in the category C. For any
λ-term M and adequate x1, . . . , xn ∈ V, the interpretation of M (in x1, . . . , xn) is a
morphism:

JMK{x1,...,xn} ∈ C(Un, U) (where Un = U × · · · × U︸ ︷︷ ︸
n

)

defined by structural induction on M :

JxK{x1,...,xn} = π
{x1,...,xn}
x

Jλy.NK{x1,...,xn} = λ ◦Λ(JNK{x1,...,xn}∪{y}) (wlog y /∈ {x1, . . . , xn}),
JNP K{x1,...,xn} = evU,U ◦ 〈Ap ◦ JNK{x1,...,xn}, JP K{x1,...,xn}〉.

For more details you can refer to [Amadio and Curien, 1998, §4.6].

Here we explore the counterpart in a 2-dimensional setting. The categorical framework
for our semantic investigations is a Cartesian closed bicategory C (see Definition 7.4.10),
where each hom-category C(A,B) admits all filtered colimits and an initial object ⊥A,B.
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Definition 8.1.2.

• A bicategorical model of λ-calculus, similarly to a categorical one, is given by any
pseudoreflexive object D = 〈D, i, j, α〉 in C, where 〈i, j〉 represents the retraction
pair and α : idDD ∼= j ◦ i (see Definition 7.4.11).

• An extensional bicategorical model is a bicategorical model where the pseudoretrac-
tion carries the structure of an adjoint equivalence (see Definition 7.4.6):

DD ⊥ D

i

j

In this setting, λ-terms are interpreted by mimicking the standard 1-dimensional cate-
gorical definition.

Fix a bicategorical model D = 〈D, i, j, γ〉 living in the bicategory C. For x1, . . . , xn ∈ V,
define Λo(x1, . . . , xn) = {M ∈ Λ | FV(M) ⊆ {x1, . . . , xn}} and len({x1, . . . , xn}) = n.

Definition 8.1.3. The interpretation of a λ-term M ∈ Λo(~x) in D is a 1-cell:

JMK~x : D&len(~x) → D (= (D & · · ·&D︸ ︷︷ ︸
len(~x)

)→ D)

defined by induction on M as follows:

JxiK~x = πni ,
Jλy.NK~x = i ◦Λ

(
JNK~x,y

)
(wlog assume y /∈ ~x),

JNP K~x = evD,D ◦ 〈j ◦ JNK~x, JP K~x〉.

The definition of the interpretation extends to λ⊥-terms (see Chapter 3, more precisely
Definition 3.1.5) by setting J⊥K~x = ⊥D&n,D.

Since we are dealing with Cartesian closed bicategories, the denotation of a λ-term is
invariant under β-conversion only up to canonical coherent isomorphisms. The following
lemma and theorem are proved in [Olimpieri, 2021].

Lemma 8.1.4 ((de)Substitution). Consider M ∈ Λo(~x, y) and N ∈ Λo(~x), where
y /∈ ~x = x1, . . . , xn. The following canonical invertible 2-cell is built out of the Carte-
sian closed structure:

subM,y,N : JM [N/y]K~x ∼= JMK~x,y ◦ 〈1D&n , JNK~x〉

Theorem 8.1.5 (Soundness). Let M,N ∈ Λo(~x) and D = 〈D, i, j, γ〉 be a bicategorical
model.

• If M →β N then we have a canonical invertible 2-cell (interpreting the β-reduction
step):

JM →β NK~x : JMK~x ∼= JNK~x
which is built out of the Cartesian closed structure and the 2-cell α.
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• If M →η N and the model D is extensional, then we also have a canonical invertible
2-cell:

JM →η NK~x : JMK~x ∼= JNK~x

built out of the Cartesian closed structure and the 2-cell α.

8.2. Distributors

For now and in following chapters our investigations will take place in the bicategory
of symmetric categorical sequences. It is the Kleisli bicategory associated to a pseudo-
comonad over the bicategory of distributors. We will present its construction in this
section.

Definition 8.2.1. The bicategory Dist of distributors (following [Bénabou, 1973] and see
Definition 7.4.1):

• 0-cells are small categories A,B,C, . . .

• 1-cells F : A9 B are functors F : Aop ×B → Set called distributors.

• 2-cells α : F ⇒ G are natural transformations.

• For fixed 0-cells A and B, the 1 and 2-cells are organised as a category Dist(A,B).

• For A ∈ Dist, the identity 1A : A9 A is defined by 1A(a, a′) = A(a, a′).

• For 1-cells F : A9 B and G : B 9 C, the horizontal composition is given by

(G ◦ F )(a, c) =

∫ b∈B
G(b, c)× F (a, b).

Associativity and identity laws for this composition are only up to canonical isomor-
phism. For this reason Dist is a bicategory [Borceux, 1994].

• There is a symmetric monoidal structure on Dist given by the Cartesian product of
categories: A⊗B = A×B.

• The bicategory of distributors is compact closed and orthogonality is given by taking
the opposite category A⊥ = Aop.

• The linear exponential object between two objects A and B is then defined as Aop×B.

• Dist(A,B) = Cat(Aop ×B, Set) is a locally small cocomplete category.

For A,B ∈ Dist the initial object ⊥A,B ∈ Dist(A,B) is given by the zero distributor
defined by: for all 〈a, b〉 ∈ A×B,⊥A,B(a, b) = ∅.
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8. 2-dimensional Semantics

Definition 8.2.2.

1. Given a functor F : A → B we can define distributors F : A 9 B and F : B 9 A
by setting

F (a, b) = B(F (a), b),
F (b, a) = B(b, F (a)).

They are adjoint 1-cells in the bicategory Dist.

2. Given a distributor F : A9 B the web of F is the set

|F | =
⊔

〈a,b〉∈A×B

F (a, b).

Given distributors F,G : A 9 B, we write F ⊆ G if there is a pointwise inclusion
F (a, b) ⊆ G(a, b).

Integers and permutations. Given n ∈ N, define [n] = {1, . . . , n}. In particular, we
have [0] = ∅. We denote by Sn the set of permutations over [n].

Definition 8.2.3. The category P of integers and permutations is defined as follows:

• the objects of P are sets of the form {[n] | n ∈ N};

• the morphisms from [n] to [m] are given by

P([n], [m]) =

{
Sn if n = m,

∅ otherwise;

• composition of P is simply composition of functions and the identity on [n] is denoted
by 1n.

The category P is symmetric strict monoidal, with tensor product given by addition:
[n]⊕ [m] = [n+m] meaning:

given k1, k2 ∈ N, σ ∈ Sk1 and τ ∈ Sk2 , we define σ ⊕ τ ∈ Sk1+k2 as

(σ ⊕ τ)(i) =

{
σ(i) if 1 ≤ i ≤ k1,

τ(i− k1) + k1 otherwise.

Given k1, . . . , kn ∈ N and σ ∈ Sn, define:

σ : [
∑

i∈[n] ki]→ [
∑

i∈[n] kσ(i)] as σ(
∑l−1

r=1 kr + p) =
∑l−1

r=1 kσ(r) + p,

where l ∈ [n] and 1 ≤ p ≤ kσ(l).
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Symmetric strict monoidal completion. Given two lists ~a and ~b over a set A, their
concatenation is denoted by ~a⊕~b.

Let A be a small category. For each object a ∈ ob(A), the identity morphism on a is
denoted by 1a. The symmetric strict monoidal completion !A of A is the category:

• ob(!A) = {〈a1, . . . , an〉 | ai ∈ A and n ∈ N};

• !A[〈a1, . . . , an〉, 〈a′1, . . . , a′n′〉] =

{
{〈σ, fi〉i∈[n] | fi : ai → a′σ(i) , σ ∈ Sn} if n = n′,

∅ otherwise;

• for f = 〈σ, fi〉i∈[n] : ~a→ ~b and g = 〈τ, gi〉i∈[n] : ~b→ ~c their composition is defined as
follows

g ◦ f = 〈τσ, gσ(1) ◦ f1, . . . , gσ(n) ◦ fn〉,

• for ~a = 〈a1, . . . , an〉 ∈ ob(!A), the identity on ~a is given by 1~a = 〈1n, 1a1 , . . . , 1an〉;

• the monoidal structure is given by list concatenation. The tensor product is sym-
metric, with symmetries given by the morphisms of the shape (for σ ∈ Sn):

〈σ,~1〉 : 〈a1, . . . , an〉 → 〈aσ(1), . . . , aσ(n)〉.

Definition 8.2.4. Given σ ∈ Sn and ~a1, . . . ,~an ∈ ob(!A) with len(~ai) = ki, define

σ? :
n⊕
i=1

~ai →
n⊕
i=1

~aσ(i) as 〈σ, 1a1 , . . . , 1ak〉 (where k =
∑
i∈[n]

ki).

Notation 8.2.5. We introduce the following abbreviations:

!An = (!A)n and !Aop = (!A)op.

The former construction naturally determines an endofunctor ! : Cat→ Cat (i.e. the 2-
monad on Cat for strict monoidal categories). We denote by CatSym the Kleisli bicategory
of the pseudocomonad over Dist, obtained by lifting ! as shown in [Fiore et al., 2008,
Gambino and Joyal, 2017]. This is the bicategory of symmetric categorical sequences.

Definition 8.2.6. The bicategory of symmetric categorical sequences, CatSym:

• objects of CatSym are the small categories;

• for A,B ∈ Dist, we have CatSym(A,B) = Dist(B, !A);

• the identity 1A(~a, a) =!A(~a, 〈a〉);

• For F : A9 B and G : B 9 C, composition is given by

(G ◦ F )(~a, c) =

∫ ~b∈!B

G(~b, c)× F#(~a,~b)

where

F#(~a,~b) =

∫ ~a1,...,~alen(~b)
len(~b)∏
i=1

F (~ai, bi)×!A(

len(~b)⊕
i=1

~ai, a);
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8. 2-dimensional Semantics

• CatSym is Cartesian, with Cartesian product the disjoint union A tB.

The terminal object is the empty category,

and the projections are: πi(~c, a) =!(A tB)(~c, 〈ρi(a)〉);

• CatSym is Cartesian closed, the exponential object being given by BA = !Aop ×B.

Remark 8.2.7. This bicategory is biequivalent to the generalised species of structures
[Fiore et al., 2008, Fiore et al., 2017]. Generalised species of structures is a powerful con-
struction used to categorify, among others, Joyal’s Combinatorial Species [Joyal, 1986].

A functor F : A→ B determines also a pair of distributors:

F ? : !A9 B, F? : !B 9 A

defined by precomposing F , F (see Definition 8.2.21) with the counit of !.

Proposition 8.2.8 (Seely equivalence). For all A,B ∈ Cat, we have an equivalence of
categories (see Definition 7.4.6)

!(A tB) ' !A× !B.

The proposition above extends to finite products and coproducts of categories
!(A1 t · · · t An) ' !A1 × · · · × !An. We denote the two components of this equivalence
respectively as:

µ0 : !(A1 t · · · t An) → !A1 × · · · × !An,
µ1 : !A1 × · · · × !An → !(A1 t · · · t An).
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9. Intersection Type Distributors

Relational Graph Models, introduced in [Manzonetto and Ruoppolo, 2014], constitute a
subclass of relational models, an important class of “traditional” semantics (see
[Berline, 2000] for an overview). Their definition is similar to that of usual graph models
inside Scott-continuous semantics ([Engeler, 1981]). They allow to characterise qualitative
properties such as termination, as well as quantitative ones like the amount of resource
needed during computations. In [de Carvalho, 2018], the author showed that, from an
element in the interpretation of a λ-term M it is possible to deduce if M is solvable and
an upper bound on the number of head reductions needed to reach the principal head
normal form.

Inspired by this result, the authors of [Breuvart et al., 2018] proved by simple induction
that relational graph models satisfy an Approximation Theorem. It follows that the the-
ory of any relational graph models includes B. They also constructed a relational graph
model E whose theory is exactly B: the proof of Th(E) ⊆ B relies on the fact that E has
countably many atoms, thus the system admits a kind of principal typings. Relational
graph models also contains models of H+ and H? ([Manzonetto and Ruoppolo, 2014]),
and a characterisation on relational graph models that are fully abstract for H+ and H?

was given in [Breuvart et al., 2018].

Since the pioneering work of [de Carvalho, 2007] it is clear that relational models can
be presented as intersection type assignment systems where the type operator is associa-
tive, commutative but not idempotent (see [Bucciarelli et al., 2017, Paolini et al., 2017]).
The relational interpretation of a λ-term M is usually given by the set of pairs (Γ, a),
composed by an environment Γ and a type a and, such that the model assigns a to M in
the environment Γ by following a bunch of rules.

Our present work builds on the semantic techniques introduced in [Olimpieri, 2021].
In that paper, the author presents a type-theoretic bicategorical semantics of λ-calculus,
where the models under consideration are free-algebra constructions for an appropriate
endofunctor. We extend this approach to a considerably more general notion of bicat-
egorical models by introducing categorified graph models (Definition 9.1.1), which are a
generalisation of relational graph models (see Section 9.1). The free-algebra models are
then just particular (non-extensional) instances of our construction. Categorified graph
models can possibly be extensional and we provide some canonical examples, categorify-
ing classical filter models of λ-calculus (see Remark 9.2.7).

In Section 9.2, we observe that, similarly as in [Olimpieri, 2021], those models can be
presented via an intersection type system where the intersection is neither commutative
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9. Intersection Type Distributors

nor idempotent. However, permutative actions on the type derivations allow to restore
commutativity “up to isomorphism”.

In Section 9.3, we prove that the interpretation of a λ-term can be seen as an inter-
section type distributor. We then observe that the semantics defined by our models is
proof-relevant: the interpretation of a λ-term can be thought of as the set of its type
derivations and not only its typings. We can see those derivations as witnesses of the
reality of the typing judgements. In Subsection 9.3.1, we define the interpretation of a
Böhm tree by taking the filtered colimit of the denotations of its finite approximants,
which is available in the bicategory Dist.

The results presented in this chapter have been published in [Kerinec et al., 2023]. Our
line of thought follows a well-established tradition ([Olimpieri, 2020, Olimpieri, 2021])
that is rooted in De Carvalho’s type theoretic presentation of relational semantics
([de Carvalho, 2007]) and, ultimately, in the pioneering work on filter models from
[Barendregt et al., 1983].

9.1. Categorified Graph Models

In this section we will introduce categorified graph models, a generalisation of relational
graph models (see [Manzonetto and Ruoppolo, 2014]) which are themselves inspired from
graph models (see [Engeler, 1981]).

Definition 9.1.1 (Categorified graph pre-models). A categorified graph pre-model con-
sists of a non-empty small category D ∈ Cat equipped with a full embedding ι : !Dop×D ↪→
D (see Definition 7.1.1).

Theorem 9.1.2. Let 〈D, ι〉 be a categorified graph pre-model, the canonical pair of sym-
metric categorical sequences 〈ι?, ι?〉 induces a pseudoreflexive object structure on D in the
bicategory CatSym (Definition 7.4.11).

If moreover ι is essentially surjective on objects, then 〈ι?, ι?〉 is an adjoint equivalence.

Proof. We use the following notations:

• A,B,C for objects in !Dop ×D: A ::= (~a, a) and ~a ::= 〈a1, . . . , an〉,

• Γ,∆ are objects in !(!Dop ×D), Γ ::= 〈A1, . . . , An〉,

• ι〈A1, . . . , An〉 = 〈ι(A1), . . . , ι(An)〉,

• ~a( a corresponds to ι(~a, a).

ι?(Γ, a) =
∑

B s.t. Γ=〈B〉

D(ι(B), a) ι?(~a,A) =!D(~a, 〈ι(A)〉)
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(ι? ◦ ι?)(∆, A) =
∫ ~c

!D(~c, 〈ι(A)〉)×
∫ ∆1...∆len(~c) !(!Dop ×D)(∆,

∑
i ∆i)

×
∏

i ι
?(∆i, ci)

∼=
∫ ~c

!D(~c, 〈ι(A)〉)×
∫ A1...Alen(~c) !(!Dop ×D)(∆, 〈A1, . . . , Alen(~c)〉)

×
∏

iD(ι(Ai), ci)
∼=

∫ B
!(!Dop ×D)(∆, 〈B〉)×D(ι(B), ι(A))

∼=
∫ B

!(!Dop ×D)(∆, 〈B〉)× (!Dop ×D)(B,A)
∼= !(!Dop ×D)(∆, 〈A〉)
∼= 1!Dop×D(∆, A).

Definition 9.1.3. We call the bicategorical model 〈D, ι?, ι?, γ〉 obtained in Theorem 9.1.2
a categorified graph model.

If ι is essentially surjective on objects, then the induced model is extensional (i.e. the
pseudoretraction carries the structure of an adjoint equivalence, Definition 8.1.2).

9.2. System R→: Categorified Graph Models in Logical
Form

We now show that the model induced by a categorified graph pre-model can be presented
as a non-idempotent intersection type system. We fix an arbitrary categorified graph
pre-model 〈D, ι〉.

The syntactic presentation of categorified graph models is based on the intuition that,
given a simple type A, the elements of !JAK can be seen as resource approximations of the
type !A.

Now, while !A represents the type of a resource that can be used ad libitum, a list
〈a1, . . . , ak〉 ∈ !JAK should be thought of as a choice of exactly k copies of resources
of type A. In fact, the list 〈a1, . . . , ak〉 corresponds to a type itself, in the form of an
intersection type where the intersection operator is not idempotent: a ∩ a 6= a. The
intersection constructor a ∩ b is indeed given by the tensor product of !A, that is, list
concatenation (denoted here by ⊕):

a1 ∩ · · · ∩ ak := 〈a1〉 ⊕ · · · ⊕ 〈ak〉 = 〈a1, . . . , ak〉.

Similarly, the elements populating J!A( BK = !JAKop × JBK can be seen as arrow types
~a( b.

We shall prove that this type-theoretic correspondence is more than just an analogy:
the interpretation of a λ-term in a categorified graph model living in CatSym actually
corresponds to the collection of its type derivations in the associated intersection type
system (cf. Theorem 9.3.5). Such a type system is strict in the sense of [Bakel, 2011],
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9. Intersection Type Distributors

hence the intersections only appear on the left hand-side of an arrow—not as independent
types. This reflects the position of the promotion !(−) in the linear logic translation of
intuitionistic arrow A → B = !A ( B in [Girard, 1987]. Strictness is also needed to
obtain a syntax-directed type system, as λ-calculus does not have a syntactic constructor
corresponding to the introduction of an intersection type.

This line of thought can be extended to the untyped setting, by looking at cate-
gorified graph models as categories of types. Indeed, we can understand the embed-
ding ι : !D × D ↪→ D as a way of defining “arrow types” in D, by simply letting
〈a1, . . . , ak〉 ( a := ι(〈a1, . . . , ak〉, a). The intersection type constructor will be given
again by the tensor product of !D.

Standard intersection type systems usually come equipped with a subtyping preorder �,
which in our setting becomes a category. Our categorical subtyping is given by morphisms
between elements of D, thus we prefer the notation →, rather than �. These morphisms
are witnesses of the subtyping relation. Our approach gives then a sort of operational
subtyping: morphisms in the category of types D specify which operations are allowed on
a list of resources.

Definition 9.2.1. We define System RD
→, which is parametric on a categorified graph

pre-model D:

• The objects of D are seen as intersection types and given 〈~a, a〉 ∈ !Dop ×D, we set
~a( a = ι(〈~a, a〉).

As usual, we assume that the operation ( is right-associative:

a( b( c = a( (b( c).

• Subtyping in System RD
→ is given by morphisms in the category of types D.

• Finite lists of intersection types are called (type) environments and denoted by Γ,∆.
Formally, type environments of length n are objects of the category !Dn, the n-fold
product of !D.

• Since !D is monoidal, the category !Dn of type environments has a tensor product:

〈~a1, . . . ,~an〉 ⊗ 〈~b1, . . . ,~bn〉 = 〈~a1 ⊕~b1, . . . ,~an ⊕~bn〉

This tensor product inherits all the structure from ⊕: it is symmetric strict.

• A derivation π of System RD
→, denoted π ∈ RD

→, is constructed via the inference rules
given in Figure 9.1. The λ-terms are not included in the definition of a derivation
(therefore we use a different color for them in the figure) we add them here for a
better understanding.

• Actions of morphisms on derivations are defined in Figure 9.2.
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9.2. System R→: Categorified Graph Models in Logical Form

f : a′ → a

x1 : 〈〉, . . . , xi : 〈a′〉, . . . , xn : 〈〉 ` xi : a
ax

∆, x : ~a `M : a f : (~a( a)→ b

∆ ` λx.M : b
lam

Γ0 `M : 〈a1, . . . , ak〉( a (Γi ` N : ai)
k
i=1 η : ∆→

⊗k
i=0 Γi

∆ `MN : a
app

Figure 9.1.: Derivations and Typing of System RD
→.

Notation 9.2.2.

• We will often keep the parameter D implicit and just write R→ for RD
→.

• If π is a derivation of Γ ` a we write π . Γ ` a (similarly for Γ ` M : a we write
π . Γ `M : a).

Reminder of [Olimpieri, 2021]. Given a non-empty small category A, we will construct
DA as the free-algebra over A for the endofunctor ! −op ×− : Cat → Cat (see Definition
7.3.1).

Let us denote by GA the multigraph where nodes are given by elements of the set TyA,
inductively defined by the grammar:

(TyA) a, b, c ::= o ∈ A | 〈a1, . . . , ak〉( a,

and arrows are inductively generated as shown in Figure 9.3 (a multigraph is composed
by a set of vertices and sets of edges for each pair of vertices).

We construct DA by taking as objects the elements of TyA and as morphisms the arrows
of GA (in Figure 9.3). We define the composition by:

• if f : o→ o′ and g : o′ → o′′ then g ◦ f : o→ o′′,

• if 〈σ, ~f〉( f : (~a( a) → (~a′ ( a′) and 〈θ,~g〉( g : (~a′ ( a′) → (~a′′ ( a′′) then

(〈σ, ~f〉( f) ◦ (〈θ,~g〉( g) : (~a( a)→ (~a′′( a′′).

We denote by iA : A ↪→ DA the canonical inclusion. We also have a canonical full
embedding ιA : !Dop

A ×DA ↪→ DA defined by the map 〈~a, a〉 7→ ~a( a.

The free algebra construction and the associated full embedding determine a pseudore-
flexive object in CatSym – i.e. a categorified graph model – as detailed in [Olimpieri, 2021].
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9. Intersection Type Distributors

(
f : a′ → a

〈〉, . . . , 〈a′〉, . . . , 〈〉 ` a

)
{g : b→ a′} =

f ◦ g : b→ a

〈〉, . . . , 〈b〉, . . . , 〈〉 ` a


π
...

∆,~a ` a f : (~a( a)→ b

∆ ` b

 {η} =

π{η ⊕ 〈1〉}
...

∆′,~a ` a f : (~a( a)→ b

∆′ ` ~a( a


π0
...

Γ0 ` ~a( a

( πi
...

Γi ` ai

)k

i=1 θ : ∆→
⊗k

j=0 Γj

∆ ` a

 {η} =

π0
...

Γ0 ` ~a( a

( πi
...

Γi ` ai

)k

i=1 θ ◦ η
∆′ ` a

where ~a = 〈a1, . . . , ak〉 and η : ∆′ → ∆.

(a) Right action on derivations.

[g : a→ b]

(
f : a′ → a

〈〉, . . . , 〈a′〉, . . . , 〈〉 ` a

)
=

g ◦ f : a′ → b

〈〉, . . . , 〈a′〉, . . . , 〈〉 ` b

[g : a→ b]


π
...

∆,~a ` a′ f : (~a( a)→ a′

∆ ` a

 =

π
...

∆,~a ` a′ g ◦ f : (~a( a′ → b)

∆ ` b

[g : a→ b]


π0
...

Γ0 ` ~a( a

( πi
...

Γi ` ai

)k

i=1 η : ∆→
⊗k

0 Γj

∆ ` a

 =

[1( g]π0
...

Γ0 ` ~a( b

( πi
...

Γi ` ai

)k

i=1 η

∆ ` b

where ~a = 〈a1, . . . , ak〉.

(b) Left action on derivations.

Figure 9.2.: Actions on derivations.
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9.2. System R→: Categorified Graph Models in Logical Form

f ∈ A(o, o′)

f : o→ o′
〈σ, ~f〉 : ~a′ → ~a f : a→ a′

〈σ, ~f〉( f : (~a( a)→ (~a′( a′)

σ ∈ Sk f1 : a1 → a′σ(1) · · · fk : ak → a′σ(k)

〈σ, f1, . . . , fk〉 : 〈a1, . . . , ak〉 → 〈a′1, . . . , a′k〉

Figure 9.3.: Multigraph of Intersection Types GA.

Remark 9.2.3.

• The rules of our system are induced by a fine-grained analysis of the λ-terms in-
terpretations in CatSym. In contrast to what happens in standard intersection type
systems, type derivations of variables in an environment are not unique in the bicat-
egorical setting. Indeed, if we consider the set T〈x〉(x)(〈a〉, a′), for types a, a′ ∈ D, it
contains as many derivations for x as there are morphisms between a and a′. Hence,
a type derivation of a variable corresponds to a particular witness of subtyping.

• Every derivation rule incorporates a subtyping inference. This differs from what
happens in the systems presented in [Olimpieri, 2021], where the abstraction rule
did not contain any additional subtyping. As the models under consideration are
not just the free categories of intersection types, subtyping is needed also at the
abstraction level now. We chose not to separate the subtyping rule from the other
rules in order to keep our system syntax-directed and closer to the semantics.

9.2.1. Completion of partial algebras

By mimicking the free completion of a partial pair which is often used to generate a graph
model (see [Berline, 2000]), we show how to complete a partial (! −op ×−)-algebra by
lifting it to an appropriate algebra (see Definition 7.3.1). We call the resulting algebra its
completion.

Let us consider a partial (!−op ×−)-algebra A
F←↩ H G

↪→ !Aop × A. We denote by GF,G
A

the multigraph whose nodes are elements of TyA and arrows are the ones from Figure 9.3,
plus a family of invertible arrows:

ex : (iA ◦ F )(x) ∼= (ιA ◦ (!iop
A × iA) ◦G)(x),

for x ∈ ob(H), where we recall that iA : A ↪→ DA and ιA : !Dop
A ×DA ↪→ DA.

Definition 9.2.4 (Completion of Partial (! −op ×−)-Algebras). The completion of

A
F←↩ H G

↪→ !Aop × A is the category DF,G
A defined as the categorical quotient of the
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free category over GF,G
A by the following coherence on morphisms:

F (a) G(a) G(b)

F (b)

ea

F (f)

G(f)

eb

for any f : a→ b in the category H.

We remark that we have a canonical functor ιF,G : !(DF,G)op × (DF,G)→ DF,G defined
again by the map 〈~a, a〉 7→ ~a( a.

Examples.

Definition 9.2.5. We construct some partial (!−op×−)-algebras together with their com-
pletions.

• We observe that, given a non-empty small category A, we have a canonical partial
algebra over A defined by A ⊇ ∅ ⊆ !Aop × A. Then the completion of that pair is
exactly DA.

• Let A = {∗}, then we have the following two full embeddings:

k+
A : A+ ↪→ A, 〈〈∗〉, ∗〉 7→ ∗, with A+ = {〈〈∗〉, ∗〉},

k∗A : A∗ ↪→ A, 〈〈〉, ∗〉 7→ ∗, with A∗ = {〈〈〉, ∗〉}.

• Given n > 0, we consider the set [n] = {1, . . . , n} equipped with its linear order
structure. We see [n] as a posetal category (the category associated with the partial
order: objects are elements of the set and morphisms correspond to “less than or
equal to” relation). Now, consider the full subcategory of ![n]op × [n] induced by the
family [n]+ = 〈〈n− (i− 1)〉, i〉i∈[n]. We define a functor k[n] : [n]+ ↪→ [n] as follows:

k[n](〈〈n− (i− 1)〉, i〉) = i.

By construction, if there exists a morphism 〈〈n − (i − 1)〉, i〉 → 〈〈n − (j − 1)〉, j〉
then i ≤n j. It is easy to verify that k[n] is a full embedding.

• We set
D+ = Dk+,in!Aop×A ,
D∗ = Dk∗,in!Aop×A ,

D[n] = Dk[n],in![n]op×[n] ,

and write ι♠, with ♠ ∈ {+, ∗} ∪ N, for the respective algebra maps. Notice that
D[1] = D+.
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π0
...

Γ0 ` ~b( a

 [fi]πσ−1(i)
...

Γσ−1(i) ` bi

k

i=1
(1⊗ (σ−1)?) ◦ η

∆ ` a

∼

[〈σ, ~f〉( 1]π0
...

Γ0 ` ~a( a

( πi
...

Γi ` ai

)k

i=1 η

∆ ` a

π0{θ0}
...

Γ0 ` ~a( a

 πi{θi}
...

Γi ` ai

k

i=1 η : ∆→
⊗k

j=0 Γj

∆ ` a

∼

π0
...

Γ′0 ` ~a( a

( πi
...

Γ′i ` ai

)k

i=1 (
⊗k

j=0 θj) ◦ η

∆ ` a

[g]π{1⊕ 〈σ,~g〉}
...

∆,~a′ ` a′ f : (~a( a)→ b

∆ ` b

∼

π
...

∆,~a ` a f ◦ (〈σ,~g 〉( g) : (~a′( a′)→ b

∆ ` b

where 〈σ, f1, . . . , fk〉 : ~a = 〈a1, . . . , ak〉 → ~b = 〈b1, . . . , bk〉, 〈σ,~g 〉 : ~a′ → ~a, g : a → a′ and
θi : Γi → Γ′i. For (σ−1)?, see Definition 8.2.4.

Figure 9.4.: Congruence on derivations.

Theorem 9.2.6. The functor ι♠ : !(D♠)op × (D♠) → D♠ for ♠ ∈ {+, ∗} ∪ N is an
equivalence of categories (Definition 7.1.6).

Proof. Faithfulness is immediate by definition of ι♠. Moreover ι♠ is essentially surjective
on objects by construction, since each atomic type of D♠ is isomorphic to some arrow
type. The proof of fullness consists of a fine-grained analysis of morphisms between arrow
types.

Remark 9.2.7. The categories D+ and D∗ are categorifications of extensional graph
models living in the relational semantics of λ-calculus [Breuvart et al., 2018]. Intuitively,
they are given by the category D of types, where we add isomorphisms between atomic
types in A and appropriate arrow types.

For instance, in D+ we obtain ? ∼= ι+(〈?〉, ?) = 〈?〉 ( ?, while in D∗ we have
? ∼= ι∗(〈〉, ?) = 〈〉( ?.

In this way, every λ-term which is typed with an atomic type can always be seen as
a “function” and—as a consequence—one obtains extensionality. The category D[2] is a
categorification of Coppo-Dezani-Zacchi’s model, first appeared in [Coppo et al., 1987].

9.3. Intersection Type Distributor

In this section, given a pre-model 〈D, ι : !Dop×D ↪→ D〉, we will introduce the intersection
type distributor T~x(M) : !Dlen(~x) 9 D whose elements are the derivations of intersection
types associated to the λ-term M . We will observe that it may be considered as the
interpretation in our bicategorical models.
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First, we define a congruence on derivations ∼ ⊆ R→ × R→ as the least congruence
generated by the rules given in Figure 9.4. This congruence is the syntactic counterpart
of the one generated by coends in the composition of distributors. It can be seen as the
congruence equating derivations up to permutations that do not affect their computational
information.

Notation 9.3.1. Let π ∈ R→ be a derivation: the ∼-equivalence class of π is denoted by
π̃ = {π′ ∈ R→ | π ∼ π′} ∈ R→/ ∼.

Example 9.3.2. Let k ∈ N, σ ∈ Sk and

π =

π0
...

Γ0 ` 〈a1, . . . , ak〉( a

( πi
...

Γi ` ai

)k

i=1 η

∆ ` a

moreover, let η′ = (1⊗ (σ)?) ◦ η and

π′ =

π0[σ( a]
...

Γ0 ` 〈aσ(1), . . . , aσ(k)〉( a

 πσ(i)
...

Γσ(i) ` aσ(i)

k

i=1
η′

∆ ` a

then π ∼ π′ by the first rule of Figure 9.4. In fact, writing π′0 for π0[σ ( a], we obtain
π0 = π′0[σ−1 ( a]. The two derivations have indeed the same computational meaning i.e.
they only differ by performing the same permutation on inputs and on the list of types in
the implication.

Remark 9.3.3. Left and right actions on derivations are preserved under congruence:

[f ]π̃=[̃f ]π and π̃{η}=π̃{η}.

The above construction naturally leads to the definition of the intersection type distrib-
utors, that will be the syntactic presentation of our bicategorical semantics.

Definition 9.3.4. Let M ∈ Λo(~x). Define the R→-intersection type distributor of M ,
written T~x(M) : !Dlen(~x) 9 D, as follows:

1. on objects:

T~x(M)(∆, a) = {π̃ ∈ R→/∼ | π .∆ `M : a};

2. on morphisms:

T~x(M)(f, η) : T~x(M)(∆, a) → T~x(M)(∆′, a′)

π̃ 7→ ˜[f ]π{η}.
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9.3. Intersection Type Distributor

The bicategorical semantics previously introduced can be presented syntactically, up to
Seely equivalence (Proposition 8.2.8)—via intersection type distributors.

Recall that µ1 : !D × · · · × !D → !(D t · · · tD) is a component of Seely’s equivalence
(see Proposition 8.2.8), thus µ1 : !D ⊗ · · · ⊗ !D 9 !(D & · · · & D) by Definition 8.2.21.
Also, since CatSym (Definition 8.2.6) is a full subcategory of Dist, the interpretation of a
λ-term can be seen as a distributor:

JMK~x : !(D & · · ·&D︸ ︷︷ ︸
len(~x) times

) 9 D.

Theorem 9.3.5. For all M ∈ Λ, there is a natural isomorphism:

itdM~x : T~x(M) ∼= JMK~x ◦Dist µ1.

Proof. By structural induction on M , via lengthy but straightforward coend manipula-
tions.

By Theorem 8.1.5 we also get a natural isomorphism whenever M →β N :

JM →β NK~x ◦Dist µ1 : JMK~x ◦Dist µ1
∼= JNK~x ◦Dist µ1.

This straightforwardly induces an isomorphism:

T~x(M →β N) : T~x(M) ∼= T~x(N).

If D is an extensional model, then we have analogous isomorphisms in the case that
M →η N.

9.3.1. Intersection Type Distributors of Böhm Trees

Now, note that the type assignment system generalises to λ⊥-terms (see Definition 3.1.5)
without adding any rule. It follows that ⊥ is not typable.

We also extend the notion of intersection type distributor to λ⊥-terms in the natural
way, by setting T~x(⊥) = ∅!Dn,D.

Lemma 9.3.6. Let M,N ∈ Λ⊥. If M vβ N then JMK~x ⊆ JNK~x (and T~x(M) ⊆ T~x(N)).

Proof. By an easy induction on the structure of M .

Let us consider 〈Aβ(M),vβ〉 as a preorder category (see Example 7.1.3). By applying
the preceding lemma, for every M ∈ Λo(x1, . . . , xn) there exists an evident functor

J−K{x1,...,xn} : Aβ(M) → Dist(!(Dn), D),
P 7→ JP K{x1,...,xn},

P vβ Q 7→ JP K{x1,...,xn} ⊆ JQK{x1,...,xn}.

101



9. Intersection Type Distributors

Definition 9.3.7. Let M ∈ Λo(~x).

• Since Dist has cocomplete hom-categories, we can define the interpretation of the
Böhm tree of M (Definition 3.1.1) as the following filtered colimit:

JBTβ(M)K~x = lim−→
P∈Aβ(M)

JP K~x.

• We define the R→-intersection type distributor of a Böhm tree:

T~x(BTβ(M)) : !Dlen(~x) 9 D

in the following natural way:

– on objects:

T~x(BTβ(M))(∆, a) =
⋃

P∈Aβ(M)

T~x(P )(∆, a);

– on morphisms: for all η : ∆′ → ∆, f : a→ a′:

T~x(BTβ(M))(η, f)(π̃) = ˜[f ]π{η}.

Theorem 9.3.8. Let M ∈ Λ. we have a natural isomorphism:

JBTβ(M)K~x ◦Dist µ1
∼= T~x(BTβ(M)).

Proof. It follows from an inspection of the definitions and basic category theory, show-
ing that T~x(BTβ(M)) is a presentation of the filtered colimit of the intersection type
distributors of the finite approximants of M :

JBTβ(M)K~x ◦ µ1 = (colimP JP K~x) ◦ µ1 by definition,
= colimP (JP K~x ◦ µ1) by exchange of colimits,
= colimP (T~x(P )) by Theorem 9.3.5,
= T~x(BTβ(M)) by definition.
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10. A Semantic Approximation
Theorem

We have introduced in previous chapters a bicategorical model of λ-calculus (see Chapter
8). We have seen that this model can be represented as a type assignment system where
the intersection is non-idempotent. We have also seen that the interpretation of a λ-term
contains not only its typings but the whole type derivations (see Chapter 9). Now we
want to study the importance of this new additional information. As previously, results
presented in this chapter have been published in [Kerinec et al., 2023].

In Section 10.1 we will study the behaviour of intersection type distributors under re-
duction. In general, in a derivation π of ∆ `M : a, only some of the subterms of M need
to be typed. Therefore only some redexes of M are typed, and contracting them leads
to a derivation π′ having a strictly smaller size than π. Since the size of the derivation
decreases strictly this process terminates in a finite number of steps, giving the normal
form NF(π) of π.

We then define the normal form of the interpretation of a λ-termM . Theorem 10.2.8 is a
commutation theorem stating that the normal form of the denotation of a λ-term coincides
with the denotation of its Böhm tree. The theory of normalisation for our bicategorical
semantics implicitly builds on techniques introduced in [Ehrhard and Regnier, 2008] in
the setting of the Taylor expansion of λ-terms (see Section 4.2). In this context, Theorem
10.2.8 recalls a classical and crucial result: the normal form of the Taylor expansion of a
λ-term coincides with the Taylor expansion of its Böhm tree. The underlying intuition is
indeed that the intersection type derivations can be seen as (typed) linear approximations
of λ-terms. From this perspective, our work can be also seen as a generalisation to the
untyped case of the approach to Böhm trees semantics in [Tsukada et al., 2017].

Moreover in Section 10.2, we show that the normal form of a derivation π, such that
π B ∆ ` M : a, allows to reconstruct a finite approximant Aπ of M such that NF(π) is
a derivation of ∆ ` Aπ : a. The technique for reconstructing an approximant from any
derivation in the associated type system has been introduced in [Bucciarelli et al., 2014].

By combining these properties, we provide a combinatorial proof of the fact that every
categorified graph model satisfies the Approximation Theorem 10.2.9 stating that the in-
terpretation of a λ-term is isomorphic to the interpretation of its Böhm tree.
As in the relational case, the quantitative nature of our models allows to prove this prop-
erty via a simple induction. In relational graph models the relevance of the system and
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10. A Semantic Approximation Theorem

the lack of idempotency allow to extract from a typing an upper bound to the num-
ber of head reductions from a λ-term to its head normal form ([de Carvalho, 2018]). In
[Breuvart et al., 2018], the authors exploited this quantitative information to give the
first combinatorial proof of the Approximation Theorem for relational graph models. The
proof is traditionally much harder, via Tait’s computability predicates, or equivalently
with Girard’s reducibility candidates or with Krivine’s saturated sets (respectively in
[Tait, 1966],[Girard, 1989] and [Krivine, 1993]).

10.1. Typed Reductions

In the following we will work on a given categorified graph model, D.

In this section we observe that contracting redexes typed in a derivation leads to a
derivation of strictly smaller size. A definition of normal forms of derivations follows
naturally and then a definition of normal forms of λ-terms interpretations. The following
technique originates in [Bucciarelli et al., 2014].

Definition 10.1.1.

• Given a derivation π ∈ R→, we call β-redex of π a subderivation of π of shape:

Γ0, 〈c1, . . . , ck〉 ` c g : (~c( c)→ (~b( a)

Γ0 ` 〈b1, . . . , bk〉( a (Γi ` bi)ki=1 η : ∆→
⊗k

i=0 Γi
∆ ` a

• Assume that π.∆ `M : a (for M ∈ Λ⊥). We say that a β-redex of M is informative
in π if it is typed by a redex of π.

• A derivation π is in β-normal form if it has no β-redexes as subderivations.

For simplicity reason we will say normal form instead of β-normal form.

Remark 10.1.2. We can decompose g : (~c ( c) → (~b ( a) as g = 〈α, ~g1〉 ( g2, with

〈α, ~g1〉 : ~b→ ~c and g2 : c→ a. And in such a case [g]π = [g2]π{〈α, ~g1〉}.

x : 〈〈a, a〉( a〉 ` x : 〈a, a〉( a

y : 〈〈〉( a〉 ` y : 〈〉( a

y : 〈〈〉( a〉 ` yz : a

y : 〈〈a〉( a〉 ` y : 〈a〉( a z : 〈a〉 ` z : a

y : 〈〈a〉( a〉, z : 〈a〉 ` yz : a

x : 〈〈a, a〉( a〉, y : 〈〈a〉( a, 〈〉( a〉, z : 〈a〉 ` x(yz) : a

Figure 10.1.: Example of a normal derivation in R→.

Example 10.1.3. In Figure 10.1 we show a derivation in normal form.
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Given a λ⊥-term M , a subterm occurrence N of M is uniquely identified by a single-hole
context CL−M satisfying M = CLNM (see Definition 2.2.6(3)).

Definition 10.1.4. Let π ∈ R→ be such that π̃ ∈ |T~x(M)| (the web of T~x(M) see Defini-
tion 8.2.2(2)).

• Define a measure tsize(), such that tsize(π) = n if and only if the derivation π
contains exactly n applications of the rule (app).

• The set tocc(π,M) of subterm occurrences of M that are typed in π is defined by
induction on π, splitting into cases depending on the last rule applied:

(ax) tocc(π, x) = {L−M};
(abs) tocc(π, λx.M ′) = {L−M} ∪ {λx.CL−M | CL−M ∈ tocc(π′,M ′)}

where M = λx.M ′ and the derivation π′ is the premise of the rule;

(app) tocc(π,M0M1) = {L−M} ∪ {CL−MM1 | CL−M ∈ tocc(π0,M0)}
∪{M0(CL−M) | CL−M ∈

⋃k
i=1 tocc(πi,M1)}

where M = M0M1, the derivation π0 is the premise corresponding to M0, and
π1, . . . , πk are those corresponding to M1 (if any).

• We say that a subterm N of M is typed in π whenever M = CLNM, for some
CL−M ∈ tocc(π,M).

Example 10.1.5. The redex II = (λx.x)(λx.x) is not typed in the following derivation

π =

f : 〈〉( a→ 〈〉( a′

x : 〈〈〉( a〉 ` x : 〈〉( a′

x : 〈〈〉( a〉 ` x(II) : a′

thus, tocc(π, x(II)) = {L−M, L−M(II)}.

Remark 10.1.6. The redex occurrences of a λ⊥-term M that are typed in a derivation π
correspond to the informative redexes of π (Definition 10.1.1). Therefore, π is in normal
form exactly when none of the β-redexes of M is typed in π.

Lemma 10.1.7 (Derivations of Approximants). Let A ∈ Aβ. If π̃ ∈ |T~x(A)| then π is a
normal form.

Proof. Immediate, since A does not contain any redex.

Definition 10.1.8. Given a derivation π such that π B∆1,~b,∆2 ` a with ~b = b1, . . . , bk
and derivations 〈π1, . . . , πk〉 = ~π where for each i (1 ≤ i ≤ k): πiBΓi ` bi, the substitution

of the types ~b by the derivations ~π in π is the derivation π[~π/~b]B(∆1,∆2)⊗(
⊗k

i=0 Γi) ` a,
defined by induction on the last rule of π:

• if π =

f : b→ a

〈b〉 ` a
ax

then we should have ~π = 〈π1〉 with b1 = b and π[~π/〈b〉] = [f ]π1.
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10. A Semantic Approximation Theorem

• if π =

π0

∆1,~b,∆2,~a ` a f : (~a( a)→ b

∆1,~b,∆2 ` b
lam

then by induction hypothesis we

know how to define the derivation

π0[~π/~b]

(∆1,∆2)⊗ ~Γ,~a ` a so we can define

π[~π/~b] =

π0[~π/~b]

(∆1,∆2)⊗ ~Γ,~a ` a f : (~a( a)→ b

(∆1,∆2)⊗ ~Γ ` b
lam

• if π =

π′0

Σ′0,
~b′0,∆

′
0 ` 〈a1, . . . , al〉( a

( π′i

Σ′i,
~b′i,∆

′
i ` ai

)l
i=1

η, f, θ : Σ,~b,∆→ Σ′,~b′,∆′

Σ,~b,∆ ` a
app

With f : ~b→
⊗l

i=0
~b′i = ~b′.

By induction hypothesis we have π′i[([f ]~π)i/~b′i] for i = 0, . . . , l.

We can define
π[~π/~b] =

π′0[([f ]~π)0/~b′0]

(Σ′0 ⊗ ~Γ0
0)⊗ (∆′0 ⊗ ~Γ1

0) ` 〈a1, . . . , al〉( a

( (π′i[([f ]~π)i/~b′i])

(Σ′i ⊗ ~Γ0
i )⊗ (∆′i ⊗ ~Γ1

i ) ` ai
)l
i=1

τ((η, θ)⊗ 1)

(Σ,∆)⊗ ~Γ ` a
app

τ being the permutation that (on each component) does

(~a0 ⊗ ~a1)⊗ (~b0 ⊗~b1) 7→ (~a0 ⊗~b0)⊗ (~a1 ⊗~b1)

so

τ((η, θ)⊗ 1) : (Σ,∆)⊗ ~Γ→ (Σ′ ⊗ ~Γ0)⊗ (∆′ ⊗ ~Γ1).

Definition 10.1.9. Let a derivation π contains a β-redex

π′ =

π0

Γ0, 〈c1, . . . , ck〉 ` c g : (~c( c)→ (~b( a)

Γ0 ` 〈b1, . . . , bk〉( a

( πi
Γi ` bi

)k
i=1

η : ∆→
⊗k

i=0 Γi

∆ ` a

The contraction of this β-redex is the derivation π where we replaced the subderivation π′

by (([g]π0)[〈π1, . . . , πk〉/〈b1, . . . , bk〉]){η}. We name this new derivation a β-reduct of π.
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Example 10.1.10. Given M = (λx.x)y and N = y, we have M →β N.
Consider

π =

1

x : 〈a〉 ` x : a g : (〈a〉( a)→ (〈c〉( b)

` λx.x : 〈c〉( b

1

y : 〈c〉 ` y : c 1

y : 〈c〉 ` (λx.x)y : b
we want to contract the last rule, corresponding to (λx.x)y →β y. So we took the

subderivation π0 =
1

x : 〈a〉 ` x : a
wich is a rule ax.

And we have len(~π) = 1, π1 =
1

y : 〈c〉 ` y : c
.

So ([g]π0)[~π/〈b〉]{1} =
c→ b

x : 〈c〉 ` x : b
[~π/〈b〉] = [c→ b]π1 =

c→ b

y : 〈c〉 ` y : b
.

Notation 10.1.11. We use the notation π[π2/π1] for the derivation π where we replaced
the subderivation π1 by the subderivation π2 (admitting that π1 and π2 have the same
typing).

Theorem 10.1.12. The β-reduction on derivations is strongly normalising (see Definition
2.1.3).

Proof. Given a derivation π containing a β-redex π′ (for the same notation than in Defini-
tion 10.1.9). By contracting π′, we have π →β π[([g]π0)[〈π1, . . . , πk〉/〈b1, . . . , bk〉]{η}/π′].
Since one rule app is deleted and no duplication is done during the substitution, we
have that tsize(([g]π0)[〈π1, . . . , πk〉/〈b1, . . . , bk〉]){η} < tsize(π′). We then deduce that
tsize(π[([g]π0)[〈π1, . . . , πk〉/〈b1, . . . , bk〉]{η}/π′]) < tsize(π) and that the size of the deriva-
tions decreases strictly during their β-reduction.

Theorem 10.1.13. The β-reduction on derivations is locally confluent (see Definition
2.1.3).

Proof. The proof corresponds to the observation of a derivation π containing two different
β-redexes:

π1 =

π1
0

Γ1
0, ~c1 ` c1 g1 : (~c1 ( c1)→ (~b1 ( a1)

Γ1
0 ` 〈b1

1, . . . , b
1
k1
〉( a1

( π1
i

Γ1
i ` b1

i

)k1
i=1

η1 : ∆1 →
⊗k1

i=0 Γ1
i

∆1 ` a1

app.

and

π2 =

π2
0

Γ2
0, ~c2 ` c2 g2 : (~c2 ( c2)→ (~b2 ( a2)

Γ2
0 ` 〈b2

1, . . . , b
2
k2
〉( a2

( π2
i

Γ2
i ` b2

i

)k2
i=1

η2 : ∆2 →
⊗k2

i=0 Γ2
i

∆2 ` a2

app.
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We will observe that the order in which we contract those β-redexes does not matter.
To begin with, if π1 and π2 appear in two different premises of another app rule, the

order in wich the substitutions are made obviously does not matter.
Otherwise wlog we can assume π1 appears in one of the premises of π2. It is sufficient

to observe the substitutions made in the two orders in π2 since the order doesn’t matter
in other subderivations of π. There are two options for the position of π1 in the derivation
π2:

• π1 appears in π2
l for a l ∈ [1, k2]:

– Contacting π1 leads to π1 being replaced by ([g1]π1
0)[ ~π1/~b1]{η1} = π′1 and π2

l by
π2
l [π
′
1/π1], π2

0 is not altered as well as the others π2
i ’s. Then if we contract π2

we replaced it by ([g2]π2
0)[〈π2

1, . . . , π
2
l [π
′
1/π1], . . . , π2

k2
〉/~b2]{η2}.

– On the other way: if we contract π2 we replaced it by ([g2]π2
0)[ ~π2/~b2]{η2}.

During a substitution there is no duplication or deletion of the π2
i ’s, π1 still

apears in the subderivation π2
l , contracting it still leads to π2

l [π
′
1/π1] and we

replaced π2 by ([g2]π2
0)[〈π2

1, . . . , π
2
l [π
′
1/π1], . . . , π2

k2
〉/~b2]{η2}.

• π1 appears in π2
0, we proceed by induction on π1

0:

– π1
0 =

l : b→ c1

〈b〉 ` c1

ax

∗ if b = ch ∈ ~c1 then

· if we contract π1 before then we replaced π1 by [g1 ◦ l]π1
α1(h){η1} (given

g1 = 〈α1, ~g1〉 ( g1), so π2
0 become π2

0[[g1 ◦ l]π1
α1(h){η1}/π1], and then

by contracting π2, we get ([g2]π2
0[[g1 ◦ l]π1

α1(h){η1}/π1])[ ~π2/~b2]{η2}.

· otherwise when we contract π2, π1
0 is not altered since it does not

used any c2, but π1
α1(h) is replaced by ([g2]π1

α1(h))[ ~π2/~b2] and π2 be-

come ([g2]π2
0)[ ~π2/~b2]{η2}. Then contracting π1 leads π1 to be replaced

by ([g1 ◦ l](([g2]π1
α1(h))[ ~π2/~b2])){η1} and we get ([g2]π0

2)[ ~π2/~b2]{η2}[([g1 ◦
l](([g2]π1

α1(h))[ ~π2/~b2])){η1}/π1] = ([g2]π2
0[[g1◦l]π1

α1(h){η1}/π1])[ ~π2/~b2]{η2}.

∗ if b = c2
h ∈ ~c2 then

· if we contract π1 before then it become π1
0{η1} and π2

h is not altered,
when we contract π2 we replace the initial π1

0 by [l◦g2
h]π

2
α2(h){η1} (given

g2 = 〈α2, ~g2〉( g2).

· otherwise we obtain a similar result since the contaction of π1 does not
afect π2

h.

∗ if b /∈ ~c1 ∪ ~c2 the order of the contractions obviously does not matter.

• the two other cases follow easily by induction hypothesis.

Theorem 10.1.14. The β-reduction on derivations is confluent (see Definition 2.1.3).

108



10.1. Typed Reductions

Proof. Using Theorems 10.1.12 and 10.1.13 and by Lemma 2.1.4.

We will now focus on congruences defined in Figure 9.4.

Lemma 10.1.15. Given π1, π2B∆ ` (λx.M)N : a, such that π1 →β π
′
1B∆ `M [N/x] : a,

π2 →β π
′
2 B∆ `M [N/x] : a if π′1 ∼ π′2 then π1 ∼ π2.

Proof. We proceed by induction on M :

• if M = x then for i = 1, 2: πi =

li : ci1 → ci

~ci = 〈ci1〉 ` ci 〈1, ~fi〉( fi : (~ci( ci)→ (~ai( a)

` 〈ai1〉( a

πi1
Γi1 ` ai1 ηi : ∆→

⊗ki
j=0 Γij

∆ ` a

M [N/x] = N and π′i = ([〈1, ~fi〉( fi]π
i
0)[~πi/~ai]{ηi} = ([(〈1, ~fi〉( fi)li]π

i
1){ηi}. So

([(〈1, ~f1〉( f1)l1]π1
1){η1} ∼ ([(〈1, ~f2〉( f2)l2]π2

1){η2}.
π1 ∼

[f1]l1{〈1, ~f1〉}
〈a1

1〉 ` a 1

` 〈a1
1〉( a

π1
1

Γ1
1 ` a1

1 η1 : ∆→ Γ1
1

∆ ` a
∼

1
〈a〉 ` a (〈1, ~f1〉( f1)l1 ( 1

` 〈a1
1〉( a

π1
1

Γ1
1 ` a1

1 η1 : ∆→ Γ1
1

∆ ` a
∼

1
〈a〉 ` a 1

` 〈a〉( a

[(〈1, ~f1〉( f1)l1]π1
1

Γ1
1 ` a η1 : ∆→ Γ1

1

∆ ` a
∼

1
〈a〉 ` a 1

` 〈a〉( a

[(〈1, ~f1〉( f1)l1]π1
1{η1}

∆ ` a 1

∆ ` a
∼

1
〈a〉 ` a 1

` 〈a〉( a

[(〈1, ~f2〉( f2)l2]π2
1{η2}

∆ ` a 1

∆ ` a
∼ · · · ∼ π2
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• if M = y (with y 6= x) then for i = 1, 2

πi =

li : ci1 → ci

〈ci1〉 ` ci 〈〉( fi : (〈〉( ci)→ (〈〉( a)

〈ci1〉 ` 〈〉( a ηi : ∆→ 〈ci1〉
∆ ` a

M [N/x] = M

π′i =

(fi ◦ li)ηi : ∆→ a

∆ ` a
Since π′1 ∼ π′2, we get (f1 ◦ l1)η1 = (f2 ◦ l2)η2 and
π1 ∼

l1 ◦ f1 : c1
1 → a

〈c1
1〉 ` a 〈〉( 1

〈c1
1〉 ` 〈〉( a η1 : ∆→ 〈c1

1〉
∆ ` a

∼
(l1 ◦ f1)η1 : ∆→ a

∆ ` a 〈〉( 1

∆ ` 〈〉( a 1

∆ ` a
=

(l2 ◦ f2)η2 : ∆→ a

∆ ` a 〈〉( 1

∆ ` 〈〉( a 1

∆ ` a
∼ · · · ∼ π2

• if M = λy.M ′ then for i = 1, 2: πi =

ρi

Γi0, ~ci,
~di ` di 〈βi, ~gi〉( gi : (~di( di)→ ci

Γi0, ~ci ` ci 〈αi, ~fi〉( fi

Γi0 ` 〈ai1, . . . , aini〉( a

( πij

Γij ` aij
)ni
j=1

ηi

∆ ` a

π′i =

ρi{1⊕ 〈αi, ~fi〉 ⊕ 1}[~πi/~ai]{ηi ⊕ 1}
∆, ~di ` di 〈βi, ~gi〉( fi ◦ gi : (~di( di)→ a

∆ ` a

and π′1 ∼ π′2 so without loss of generality there exists k and 〈δ,~k〉 such that

(〈β1, ~g1〉( f1 ◦ g1) ◦ (〈δ,~k〉( k) = 〈β2, ~g2〉( f2 ◦ g2 and

ρ1{1⊕ 〈α1, ~f1〉 ⊕ 1}[ ~π1/~a1]{η1 ⊕ 1} ∼ [k](ρ2{1⊕ 〈α2, ~f2〉 ⊕ 1}[ ~π2/~a2]){η2 ⊕ 〈δ,~k〉}.
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We consider ρ′1 = ρ1{D1} with D1 : Γ1
0,
~d1, ~c1 → Γ1

0, ~c1, ~d1 and ρ′2 defined in the same

way. By definition we have ρ1{1⊕ 〈α1, ~f1〉 ⊕ 1}[ ~π1/~a1] = ρ′1{1⊕ 1⊕ 〈α1, ~f1〉}[ ~π1/~a1]
(resp. ρ′2).

By induction hypothesis we get:

R1 =

ρ′1

Γ1
0,
~d1, ~c1 ` d1 〈α1, ~f1〉( 1 : ~c1 ( d1 → ~a1 ( d1

Γ1
0,
~d1 ` ~a1 ( d1

( π1
j

Γ1
j ` a1

j

)n1

j=1

η1 ⊕ 1

∆, ~d1 ` d1

and

R2 =

[k]ρ′2{1⊕ 〈δ,~k〉 ⊕ 1}
Γ2

0,
~d1, ~c2 ` d1 〈α2, ~f2〉( 1 : ~c2 ( d1 → ~a2 ( d1

Γ2
0,
~d1 ` ~a2 ( d1

( π2
j

Γ2
j ` a2

j

)n2

j=1

η2 ⊕ 1

∆, ~d1 ` d1

with R1 ∼ R2. So n1 = n2 we name it n.

By an inspection of the congruence rules, we can consider the existence of 〈σ,~h〉, θ
and 〈γ,~l〉 such that:

– ρ′1 ∼ [k]ρ′2{(1⊕ 〈δ,~k〉 ⊕ 1) ◦ (θ0 ⊕ 1⊕ 1) ◦ (1⊕ 1⊕ 〈γ,~l〉)} ;

– ∀j = 1, . . . , n : π1
j ∼ [hj]π

2
σ−1(j){θj};

– (1⊗ (σ−1)?) ◦ η2 =
⊗n

j=0 θj ◦ η1;

– 〈α2, ~f2〉 = 〈σ,~h〉 ◦ 〈α1, ~f1〉 ◦ 〈γ,~l〉.
(or such that

– ρ′1{(θ0 ⊕ 1⊕ 1) ◦ (1⊕ 1⊕ 〈γ,~l〉)} ∼ [k]ρ′2{1⊕ 〈δ,~k〉 ⊕ 1};
– ∀j = 1, . . . , n : π2

j ∼ [hj]π
1
σ(j){θj};

– (1⊗ (σ−1)?) ◦ η1 =
⊗n

j=0 θj ◦ η2;

– 〈α1, ~f1〉 = 〈σ,~h〉 ◦ 〈α2, ~f2〉 ◦ 〈γ,~l〉.
or

– ρ′1{θ0 ⊕ 1⊕ 1} ∼ [k]ρ′2{(1⊕ 〈δ,~k〉 ⊕ 1) ◦ (1⊕ 1⊕ 〈γ,~l〉)};
– ∀j = 1, . . . , n : π1

j{θj} ∼ [hj]π
2
σ(j);

–
⊗n

j=0 θj ◦ (1⊗ (σ−1)?) ◦ η2 = η1;
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– 〈α2, ~f2〉 = 〈σ,~h〉 ◦ 〈α1, ~f1〉 ◦ 〈γ,~l〉.

. . . or equivalent configurations using congruence rules symmetrically.)

We deduce that ρ1 ∼ [k]ρ2{(1⊕ 1⊕ 〈δ,~k〉) ◦ (θ0 ⊕ 1⊕ 1) ◦ (1⊕ 〈γ,~l〉 ⊕ 1)}
We can now use this knowlegde into π1 ∼

[k]ρ2{θ0 ⊕ 〈γ,~l〉 ⊕ 〈δ,~k〉}
Γ1

0, ~c1, ~d1 ` d1 〈β1, ~g1〉( g1

Γ1
0, ~c1 ` c1 〈α1, ~f1〉( f1

Γ1
0 ` ~a1 ( a

([hj]π
2
σ−1(j){θj}

Γ1
σ−1(j) ` a1

j

)n
j=1

η1

∆ ` a

∼

[k]ρ2{θ0 ⊕ 〈γ,~l〉 ⊕ 〈δ,~k〉}
Γ1

0, ~c1, ~d1 ` d1 〈β1, ~g1〉( f1 ◦ g1

Γ1
0, ~c1 ` a 〈α1, ~f1〉( 1

Γ1
0 ` ~a1 ( a

([hj]π
2
σ−1(j){θj}

Γ1
σ−1(j) ` a1

j

)n
j=1

η1

∆ ` a
∼
[k]ρ2{1⊕ 〈γ,~l〉 ⊕ 〈δ,~k〉}

Γ2
0, ~c1,

~d1 ` d1 〈β1, ~g1〉( f1 ◦ g1
Γ2
0, ~c1 ` a 〈α1, ~f1〉( 1

Γ2
0 ` ~a1( a

( [hj ]π
2
σ−1(j)

Γ2
σ−1(j) ` a

1
j

)n
j=1

(1⊗ (σ−1)?) ◦ η2

∆ ` a

∼

[k]ρ2{1⊕ 〈γ,~l〉 ⊕ 〈δ,~k〉}
Γ2

0, ~c1, ~d1 ` d1 〈β1, ~g1〉( f1 ◦ g1

Γ2
0, ~c1 ` a 〈σ,~h〉 ◦ 〈α1, ~f1〉( 1

Γ2
0 ` ~a2 ( a

( π2
j

Γ2
j ` a2

j

)n
j=1

η2

∆ ` a

∼

[k]ρ2{1⊕ 1⊕ 〈δ,~k〉}
Γ2

0, ~c2, ~d1 ` d1 〈β1, ~g1〉( f1 ◦ g1

Γ2
0, ~c2 ` a 〈α2, ~f2〉( 1

Γ2
0 ` ~a2 ( a

( π2
j

Γ2
j ` a2

j

)n
j=1

η2

∆ ` a
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∼
ρ2

Γ2
0, ~c2, ~d2 ` d2 〈β2, ~g2〉( f2 ◦ g2

Γ2
0, ~c2 ` a 〈α2, ~f2〉( 1

Γ2
0 ` ~a2 ( a

( π2
j

Γ2
j ` a2

j

)n
j=1

η2

∆ ` a

∼ π2

(for other configurations depending of 〈σ,~h〉 and 〈γ,~l〉 we proceed in the same way).

• if M = M1M2 then for i = 1, 2: πi =

ρi0

T i0,
~bi0 ` ~di( ci

( ρij

T ij ,
~bij ` dij

)oi
j=1

Θi, hi

Γi0, ~ci = 〈ci1, . . . , cini〉 ` ci 〈αi, ~fi〉( fi

Γi0 ` ~ai( a

( πij

Γij ` aij
)ni
j=1

ηi

∆ ` a

with 〈σi, ~hi〉 = hi and Θi, 〈σi, ~hi〉 : Γi0, ~ci →
⊗oi

j=0(T ij ,
~bij) and ∀j = 0, . . . , oi : ~bij =

〈bij,1, . . . , bij,lij〉. We set ~Γij for ([hi ◦ 〈αi, ~fi〉]~Γi)j.

We have M [N/x] = M1[N/x]M2[N/x] and π′i =

[1( fi]ρ
i
0[([hi ◦ 〈αi, ~fi〉]~πi)0/~bi0]

T i0 ⊗ ~Γi0 ` ~di( a

(ρij [([hi ◦ 〈αi, ~fi〉]~πi)j/~bij ]
T ij ⊗ ~Γij ` dij

)oi
j=1

τi(Θi ⊗ (σ−1i ◦ α
−1
i )?) ◦ ηi

∆ ` a

with τi(Θi ⊗ (σ−1i ◦ α
−1
i )?) :

⊗ni

j=0 Γij →
⊗oi

j=0 T
i
j ⊗ ~Γij .

Since π′1 ∼ π′2 we deduce that o1 = o2 named o, and that there exists 〈δ,~k〉 and ~L
such that :

– [(〈δ,~k〉( f1)]ρ1
0[(h1 ◦ 〈α1, ~f1〉] ~π1)0/~b1

0]{L0} ∼ [1( f2]ρ2
0[(h2 ◦ 〈α2, ~f2〉] ~π2)0/~b2

0],

– ∀j = 1, . . . , o:

ρ1
j [(h1 ◦ 〈α1, ~f1〉] ~π1)j/~b1

j ]{Lj} ∼ [kj]ρ
2
δ−1(j)[(h2 ◦ 〈α2, ~f2〉] ~π2)δ−1(j)/~b

2
δ−1(j)],

– (
⊗o

j=0 Lj)◦ (1⊗ (δ−1)?)◦ τ2(Θ2⊗ (σ−1
2 ◦α−1

2 )?)◦η2 = τ1(Θ1⊗ (σ−1
1 ◦α−1

1 )?)◦η1.

(or equivalent configurations depending on 〈δ,~k〉, ~L and using congruence rules
symmetrically.)
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We apply the induction hypothesis on [(〈δ,~k〉 ( f1)]ρ1
0[(h1 ◦ 〈α1, ~f1〉] ~π1)0/~b1

0]{L0}
and [1( f2]ρ2

0[(h2 ◦ 〈α2, ~f2〉] ~π2)0/~b2
0]

R1
0 =

ρ1
0

T 1
0 ,
~b1
0 ` ~d1 ( c1 1( (〈δ,~k〉( f1)

T 1
0 ` ~b1

0 ( (~d2 ( a)

((([h1 ◦ 〈α1, ~f1〉] ~π1)0)j

(~Γ1
0)j ` b1

0,j

)l10
j=1

L0

T 2
0 ⊗ ~Γ2

0 ` ~d2 ( a

R2
0 =

ρ2
0

T 2
0 ,
~b2
0 ` ~d2 ( c2 1( (1( f2)

T 2
0 ` ~b2

0 ( (~d2 ( a)

((([h2 ◦ 〈α2, ~f2〉] ~π2)0)j

(~Γ2
0)j ` b2

0,j

)l20
j=1

1

T 2
0 ⊗ ~Γ2

0 ` ~d2 ( a

and we have R1
0 ∼ R2

0. So l20 = l10 named l0.

Due to congruence rules Figure 9.4 we can say that there exists ~g0 : ~b2
0 → ~b1

0,

L0
0 : T 2

0 → T 1
0 and 〈L0

1, . . . , L
0
l0
〉 : ~Γ2

0 → ~Γ1
0 with L0 =

⊗l0
j=0 L

0
j such that:

– [〈δ,~k〉( f1]ρ1
0{L0

0 ⊕ ~g0} ∼ [1( f2]ρ2
0,

– ∀j = 1, . . . , l0: (([h1 ◦ 〈α1, ~f1〉] ~π1)0)j{L0
j} ∼ [g0

j ](([h2 ◦ 〈α2, ~f2〉] ~π2)0)j.

(or equivalent configurations using congruence rules symmetrically)

Similarly for j = 1, . . . , o :

R1
j =

ρ1
j

T 1
j ,
~b1
j ` d1

j 1( 1

T 1
j ` ~b1

j ( d1
j

((([h1 ◦ 〈α1, ~f1〉] ~π1)j)m

(~Γ1
j)m ` b1

j,m

)l1j
m=1

Lj

T 2
δ−1(j) ⊗ ~Γ2

δ−1(j) ` d1
j

R2
j =

ρ2
δ−1(j)

T 2
δ−1(j),

~b2
δ−1(j) ` d2

δ−1(j) 1( kj

T 2
δ−1(j) ` ~b2

δ−1(j) ( d1
j

((([h2 ◦ 〈α2, ~f2〉] ~π2)δ−1(j))m

(~Γ2
δ−1(j))m ` b2

δ−1(j),m

)l2
δ−1(j)

m=1

1

T 2
δ−1(j) ⊗ ~Γ2

δ−1(j) ` d1
j

with R1
j ∼ R2

j so l1j = l2δ−1(j) named lj and we can consider ~gj and Ljms such that:

– ρ1
j{L

j
0 ⊕ ~gj} ∼ [kj]ρ

2
δ−1(j),

– ∀m = 1, . . . , lj: (([h1 ◦ 〈α1, ~f1〉] ~π1)j)m{Ljm} ∼ [gjm](([h2 ◦ 〈α2, ~f2〉] ~π2)δ−1(j))m.
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(or equivalent configurations using congruence rules symmetrically)

We have (
⊗o

j=0 Lj) ◦ ((1 ⊗ δ−1)? ⊗ (1 ⊗ δ−1)?) ◦ (Θ2 ⊗ (σ−1
2 ◦ α−1

2 )?) ◦ η2 = (Θ1 ⊗
(σ−1

1 ◦ α−1
1 )?) ◦ η1.

We use those informations in π1 ∼

ρ1
0

T 1
0 ,
~b1
0 ` ~d1 ( c1

( ρ1
j

T 1
j ,
~b1
j ` d1

j

)o
j=1

Θ1, h1

Γ1
0, ~c1 ` c1 〈α1, ~f1〉( f1

Γ1
0 ` ~a1 ( a

( π1
j

Γ1
j ` a1

j

)n
j=1

η1

∆ ` a

∼

ρ1
0

T 1
0 ,
~b1
0 ` ~d1 ( c1

( ρ1
j

T 1
j ,
~b1
j ` d1

j

)o
j=1

1, h1⊗o
j=0 T

1
j , c

1
j ` c1 〈α1, ~f1〉( f1⊗o

j=0 T
1
j ` ~a1 ( a

( π1
j

Γ1
j ` a1

j

)n
j=1

(Θ1 ⊗ 1) ◦ η1

∆ ` a

∼

[1( f1]ρ1
0

T 1
0 ,
~b1
0 ` ~d1 ( a

( ρ1
j

T 1
j ,
~b1
j ` d1

j

)o
j=1

(1, h1) ◦ (1, 〈α1, ~f1〉)⊗o
j=0 T

1
j , a

1
j ` a 1⊗o
j=0 T

1
j ` ~a1 ( a

( π1
j

Γ1
j ` a1

j

)n
j=1

(Θ1 ⊗ 1) ◦ η1

∆ ` a

∼

[1( f1]ρ10

T 1
0 ,
~b10 ` ~d1( a

( ρ1j

T 1
j ,
~b1j ` d1j

)o
j=1

1⊗o
j=0 T

1
j , b

1
j ` a 1⊗o

j=0 T
1
j ` ~b1( a

(([h1j ◦ f1j,m]π1
j,m

Γ1
j,m ` b1j,m

)o
j=0

)lj
m=1

(Θ1 ⊗ (σ−11 ◦ α
−1
1 )?) ◦ η1

∆ ` a
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∼

[1( f1]ρ1
0

T 1
0 ,
~b1
0 ` ~d1 ( a

( ρ1
j

T 1
j ,
~b1
j ` d1

j

)o
j=1

1⊗o
j=0 T

1
j , b

1
j ` a 1⊗o

j=0 T
1
j ` ~b1 ( a

(([h1
j ◦ f 1

j,m]π1
j,m

Γ1
j,m ` b1

j,m

)o
j=0

)lj
m=1

B

∆ ` a

with A = (Θ2 ⊗ (σ−1
2 ◦ α−1

2 )?) ◦ η2 and B = (
⊗o

j=0

⊗lj
m=0 L

j
m) ◦ (1⊗ (δ−1)?)⊗ (1⊗

(δ−1)?) ◦ A.

∼

[1( f1]ρ1
0{L0

0 ⊕ 1}
T 2

0 ,
~b1
0 ` ~d1 ( a

( ρ1
j{L0

j ⊕ 1}

T 2
δ−1(j),

~b1
j ` d1

j

)o
j=1

1

T 2
0 ⊗

⊗o
j=1 T

2
δ−1(j),

~b1 ` a 1

T 2
0 ⊗

⊗o
j=1 T

2
δ−1(j) ` ~b1 ( a

(([h1
j ◦ f 1

j,m]π1
j,m{Ljm}

Γ2
δ−1(j),m ` b1

j,m

)o
j=0

)lj
m=1

C

∆ ` a

with C = (((1⊗ δ−1)?)⊗ (1⊗ δ−1)?)) ◦A for simplicity reason we use δ−1(0) = 0 for
Γ2
δ−1(j),m.
∼

[1( f1]ρ10{L0
0 ⊕ 1}

T 2
0 ,
~b10 ` ~d1( a

( ρ1j{L0
j ⊕ 1}

T 2
δ−1(j),

~b1j ` d1j
)o
j=1

1

T 2
0 ⊗

⊗o
j=1 T

2
δ−1(j),

~b1 ` a 1

T 2
0 ⊗

⊗o
j=1 T

2
δ−1(j) ` ~b1( a

(([gjm](([h2 ◦ 〈α2, ~f2〉] ~π2)δ−1(j))m

Γ2
δ−1(j),m ` b

1
j,m

)o
j=0

)lj
m=1

C

∆ ` a

∼

[1( f1]ρ10{L0
0 ⊕ 1}

T 2
0 ,
~b10 ` ~d1( a

( ρ1j{L0
j ⊕ 1}

T 2
δ−1(j),

~b1j ` d1j
)o
j=1

1

(T 2
0 ,
~b20)⊗

⊗o
j=1 T

2
δ−1(j),

~b1 ` a 〈(1⊗ δ), ~g〉( 1

T 2
0 ⊗

⊗o
j=1 T

2
δ−1(j) ` ~b2( a

(((([h2 ◦ 〈α2, ~f2〉] ~π2)j)m

Γ2
j,m ` b2j,m

)o
j=0

)lj
m=1

D

∆ ` a

with D = (((1⊗ δ−1)?)⊗ 1) ◦ A.

116



10.1. Typed Reductions

∼
[1( f1]ρ10{L0

0 ⊕ 〈1, ~g0〉}

T 2
0 ,
~b10 ` ~d1 ( a

( ρ1j{L0
j ⊕ 〈1, ~gj〉}

T 2
δ−1(j)

, ~b2
δ−1(j)

` d1j

)o
j=1

1⊕ (1⊗ (δ−1))?

(T 2
0 ,
~b20)⊗

⊗o
j=1 T

2
δ−1(j)

, ~b2 ` a 1

T 2
0 ⊗

⊗o
j=1 T

2
δ−1(j)

` ~b2 ( a

(((([h2 ◦ 〈α2, ~f2〉] ~π2)j)m

Γ2
j,m ` b2j,m

)o
j=0

)lj
m=1

D

∆ ` a

∼
[1( f1]ρ10{L0

0 ⊕ 〈1, ~g0〉}

T 2
0 ,
~b20 ` ~d1( a

( [kj ]ρ
2
δ−1(j)

T 2
δ−1(j),

~b2δ−1(j) ` d
1
j

)o
j=1

1⊗ (δ−1)?

T 2
0 ⊗

⊗o
j=1 T

2
δ−1(j),

~b2 ` a 1

T 2
0 ⊗

⊗o
j=1 T

2
δ−1(j) ` ~b2( a

(((([h2 ◦ 〈α2, ~f2〉] ~π2)j)m

Γ2
j,m ` b2j,m

)o
j=0

)lj
m=1

A

∆ ` a

∼
[〈δ,~k〉( f1]ρ10{L0

0 ⊕ 〈1, ~g0〉}

T 2
0 ,
~b20 ` ~d2( a

( ρ2j

T 2
j ,
~b2j ` d2j

)o
j=1

1⊗o
j=0 T

2
j ,
~b2 ` a 1⊗o
j=0 T

2
j ` ~b2( a

(((([h2 ◦ 〈α2, ~f2〉] ~π2)j)m

Γ2
j,m ` b2j,m

)o
j=0

)lj
m=1

A

∆ ` a

∼
[1( f2]ρ20

T 2
0 ,
~b20 ` ~d2( a

( ρ2j

T 2
j ,
~b2j ` d2j

)o
j=1

1⊗o
j=0 T

2
j ,
~b2 ` a 1⊗o

j=0 T
2
j ` ~b2( a

(((([h2 ◦ 〈α2, ~f2〉] ~π2)j)m

Γ2
j,m ` b2j,m

)o
j=0

)lj
m=1

(Θ2 ⊗ (σ−12 ◦ α
−1
2 )?) ◦ η2

∆ ` a

∼ · · · ∼ π2.

Theorem 10.1.16 (Injectivity of the semantics). If two derivations type the same λ-term
and β-reduce to congruent derivations then they are congruent.

Proof. Following from Lemma 10.1.15.

Lemma 10.1.17. If π1 ∼ π2 and π1 →β π
′
1, π2 →β π

′
2 by contracting the same redex then

π′1 ∼ π′2.

Proof. If the contracted redex is the subject to one of the Figure 9.4 rules, we proceed by
induction on π1

0 and π2
0 the subderivations corresponding to the abstraction subterm.

Otherwise it is sufficient to observe that for any derivation π and appropriate f and η:
([f ]π{η})′ = [f ]π′{η} (the derivations obtained by contracting a same specific redex).
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We extend the β-reduction on derivations to congruence classes.

Now we will explore the link between the β-reduction on derivations and the intersection
type disctributor T~x() defined in Section 9.3.

In the following, we use n = len(~x) and

SubM,x,N
~x (∆, a) =

∫ ~a,~c∈!D ∫ c∈D ∫ Γ0,...,Γlen(~a)∈!Dn
T~x⊕〈x〉(M)(Γ0 ⊕ 〈~c〉, c)

×Π
len(~a)
i=1 T~x(N)(Γi, ai)×!Dn(∆,

⊗len(~a)
i=0 Γi)×D(~c( c,~a( a).

We use �~b for the unique morphism f : ~b→ 〈〉.

Lemma 10.1.18. Let M ∈ Λ, FV(M) ⊆ ~x, and x ∈ V, we have the following natural
isomorphism:

T~x(M)(∆, a) ∼= T~x⊕〈〈〉〉(M)(∆⊕ 〈〈〉〉, a).

Lemma 10.1.19. Let M ∈ Λ, FV(M) ⊆ ~x, y /∈ ~x and ~b ∈!D, we have a natural
isomorphism:

T~x(M)(∆⊕ 〈�~b〉, a) : T~x⊕〈y〉(M)(∆⊕ 〈〈〉〉, a) ∼= T~x⊕〈y〉(M)(∆⊕ 〈~b〉, a).

Lemma 10.1.20. Let M ∈ Λ, FV(M) ⊆ ~x and y /∈ ~x,

T~x(λy.M)(∆, a) ∼=
∫ b∈D ∫ ~b∈!D

T~x⊕〈y〉(M)(∆⊕ 〈~b〉, b)×D(~b( b, a).

Lemma 10.1.21. Let M ∈ Λ, FV(M) ⊆ ~x and i, j ∈ [n], such that θi,j : [n] → [n] is a
permutation that swapes i and j,

T~x(M)(∆, a) ∼= T~x{θi,j}(M)(∆{θi,j}, a).

Lemma 10.1.22. Given M,N ∈ Λ, (FV(M)/{x}) ∪ FV(N) ⊆ ~x and x /∈ ~x, there is an
isomorphism

SM,x,N
∆,a : SubM,x,N

~x (∆, a) ∼= T~x(M [N/x])(∆, a).

Proof. By induction on M :
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• if M = x then M{N/x} = N and

SubM,x,N
~x (∆, a)

∼=
∫ ~a,~c∈!D ∫ c∈D ∫ ~Γ=〈Γ0,...,Γlen(~a)〉∈!Dn

!Dn(Γ0, 〈〈〉, . . . , 〈〉〉)× Π
len(~a)
i=1 T~x(N)(Γi, ai)

×!D(~c, 〈c〉)×!Dn(∆,
⊗len(~a)

i=0 Γi)×D(~c( c,~a( a)

∼=
∫ ~a,~c ∫ c ∫ ~Γ

!Dn(Γ0, 〈〈〉, . . . , 〈〉〉)×!D(~c, 〈c〉)× Π
len(~a)
i=1 T~x(N)(Γi, ai)

×!Dn(∆,
⊗len(~a)

i=0 Γi)×!Dop(~c,~a)×D(c, a)
applying Yoneda Lemma 7.2.3 on c we get

∼=
∫ ~a,~c ∫ ~Γ

!Dn(Γ0, 〈〈〉, . . . , 〈〉〉)×!D(~c, 〈a〉)× Π
len(~a)
i=1 T~x(N)(Γi, ai)×!Dn(∆,

⊗len(~a)
i=0 Γi)

×!Dop(~c,~a)
then on ~c:

∼=
∫ ~a ∫ ~Γ

!Dn(Γ0, 〈〈〉, . . . , 〈〉〉)×!D(~a, 〈a〉)× Π
len(~a)
i=1 T~x(N)(Γi, ai)×!Dn(∆,

⊗len(~a)
i=0 Γi)

then on ~a:
∼=

∫ Γ0,Γ1 !Dn(Γ0, 〈〈〉, . . . , 〈〉〉)× T~x(N)(Γ1, a)×!Dn(∆,Γ0 ⊗ Γ1)
then on Γ0:
∼=

∫ Γ1 T~x(N)(Γ1, a)×!Dn(∆,Γ1)
finaly on Γ1:
∼= T~x(N)(∆, a)

and we get

SM,x,N
∆,a :

˜〈~a,~c, c, 〈Γi〉len(~a)
i=0 , g, 〈�Γ0 , 〈h〉〉, 〈φi〉

len(~a)
i=1 , η〉 7→ ˜[g(h)]φ1{η};

where the φi’s are classes of congruences of derivations.

• if M = y 6= x then M{N/x} = M and

SubM,x,N
~x (∆, a)

∼=
∫ ~a,~c∈!D ∫ c∈D ∫ ~Γ=〈Γ0,...,Γlen(~a)〉∈!Dn

!Dn(Γ0, 〈〈〉, . . . , 〈c〉, . . . , 〈〉〉)×!D(~c, 〈〉)
×Π

len(~a)
i=1 T~x(N)(Γi, ai)×!Dn(∆,

⊗len(~a)
i=0 Γi)×D(~c( c,~a( a)

∼=
∫ ~a,~c ∫ c ∫ ~Γ

!Dn(Γ0, 〈〈〉, . . . , 〈c〉, . . . , 〈〉〉)×!D(~c, 〈〉)× Π
len(~a)
i=1 T~x(N)(Γi, ai)

×!Dn(∆,
⊗len(~a)

i=0 Γi)×!Dop(~c,~a)×D(c, a)
applying Yoneda Lemma 7.2.3 on c we get

∼=
∫ ~a,~c ∫ ~Γ

!Dn(Γ0, 〈〈〉, . . . , 〈a〉, . . . , 〈〉〉)×!D(~c, 〈〉)× Π
len(~a)
i=1 T~x(N)(Γi, ai)

×!Dn(∆,
⊗len(~a)

i=0 Γi)×!Dop(~c,~a)
then on ~c:

∼=
∫ ~a ∫ ~Γ

!Dn(Γ0, 〈〈〉, . . . , 〈a〉, . . . , 〈〉〉)× Π
len(~a)
i=1 T~x(N)(Γi, ai)×!Dn(∆,

⊗len(~a)
i=0 Γi)

×!Dop(〈〉,~a)
and on ~a:
∼=

∫ Γ0 !Dn(Γ0, 〈〈〉, . . . , 〈a〉, . . . , 〈〉〉)×!Dn(∆,Γ0)
then on Γ0:
∼= !Dn(∆, 〈〈〉, . . . , 〈a〉, . . . , 〈〉〉)
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and we get

SM,x,N
∆,a : ˜〈g,Γ, 〈h〉, η〉 7→ ˜[g]〈h〉{η};

• if M = λy.M ′ then

SubM,x,N
~x (∆, a)

∼=
∫ ~a,~c∈!D ∫ c∈D ∫ ~Γ=〈Γ0,...,Γlen(~a)〉∈!Dn

T~x⊕〈x〉(λy.M
′)(Γ0 ⊕ 〈~c〉, c)× Π

len(~a)
i=1 T~x(N)(Γi, ai)

×!Dn(∆,
⊗len(~a)

i=0 Γi)×!Dop(~c,~a)×D(c, a)

∼=
∫ ~a,~c,~b ∫ c,b ∫ ~Γ

T~x⊕〈x〉⊕〈y〉(M
′)(Γ0 ⊕ 〈~c〉 ⊕ 〈~b〉, b)×D(~b( b, c)

×Π
len(~a)
i=1 T~x(N)(Γi, ai)×!Dn(∆,

⊗len(~a)
i=0 Γi)×!Dop(~c,~a)×D(c, a)

using Lemma 10.1.18

∼=
∫ ~a,~c,~b ∫ c,b ∫ ~Γ

T~x⊕〈x〉⊕〈y〉(M
′)(Γ0 ⊕ 〈~c〉 ⊕ 〈~b〉, b)×D(~b( b, c)

×Π
len(~a)
i=1 T~x⊕〈y〉(N)(Γi ⊕ 〈〉, ai)×!Dn+1(∆,

⊗len(~a)
i=0 Γi)×!Dop(~c,~a)×D(c, a)

∼=
∫ ~a,~c,~b ∫ c,b ∫ ~Γ

T~x⊕〈x〉⊕〈y〉(M
′)(Γ0 ⊕ 〈~c〉 ⊕ 〈~b〉, b)×D(~b( b, c)

×Π
len(~a)
i=1 T~x⊕〈y〉(N)(Γi ⊕ 〈〉, ai)×!Dn+1(∆,

⊗len(~a)
i=0 Γi)×!Dop(~c,~a)×D(c, a)

using Lemma 10.1.21

∼=
∫ ~a,~c,~b ∫ c,b ∫ ~Γ

T~x⊕〈y〉⊕〈x〉(M
′)(Γ0 ⊕ 〈~b〉 ⊕ 〈~c〉, b)×D(~b( b, c)

×Π
len(~a)
i=1 T~x⊕〈y〉(N)(Γi ⊕ 〈〉, ai)×!Dn(∆,

⊗len(~a)
i=0 Γi)×!Dop(~c,~a)×D(c, a)

using Yoneda Lemma 7.2.3

∼=
∫ ~a,~c,~b,~d ∫ c,b ∫ ~Γ

T~x⊕〈y〉⊕〈x〉(M
′)(Γ0 ⊕ 〈~d〉 ⊕ 〈~c〉, b)×D(~b( b, c)× Π

len(~a)
i=1 T~x⊕〈y〉(N)

(Γi ⊕ 〈〉, ai)×!Dn(∆,
⊗len(~a)

i=0 Γi)×!Dop(~c,~a)×D(c, a)×!D(~b, ~d)
using Yoneda Lemma 7.2.3 on c:

∼=
∫ ~a,~c,~b,~d ∫ b ∫ ~Γ

T~x⊕〈y〉⊕〈x〉(M
′)(Γ0 ⊕ 〈~d〉 ⊕ 〈~c〉, b)×D(~b( b, a)

×Π
len(~a)
i=1 T~x⊕〈y〉(N)(Γi ⊕ 〈〉, ai)×!Dn(∆,

⊗len(~a)
i=0 Γi)×!Dop(~c,~a)×!D(~b, ~d)

On the other hand:

T~x((λy.M
′)[N/x])(∆, a)

Using Lemma 10.1.20
∼= T~x(λy.(M

′[N/x]))(∆, a)

∼=
∫ b ∫ ~b

T~x⊕〈y〉(M
′[N/x]))(∆⊕ 〈~b〉, b)×D(~b( b, a)

by induction hypothesis:

∼=
∫ b ∫ ~b

SubM
′,x,N

~x⊕〈y〉 (∆⊕ 〈~b〉, b)×D(~b( b, a)

∼=
∫ ~a,~b,~c, ~b0,..., ~bk,c,b,~Γ T~x⊕〈y〉⊕〈x〉(M ′)(Γ0 ⊕ 〈~b0〉 ⊕ 〈~c〉, c)× Π

len(~a)
i=1 T~x⊕〈y〉(N)(Γi ⊕ 〈~bi〉, ai)

×!Dn(∆,
⊗len(~a)

i=0 Γi)×!Dop(~c,~a)×D(c, b)×!D(~b,
⊕k

i=1
~bi)×D(~b( b, a)

using Yoneda Lemma 7.2.3 on c:

∼=
∫ ~a,~b,~c, ~b0,..., ~bk,b,~Γ T~x⊕〈y〉⊕〈x〉(M ′)(Γ0 ⊕ 〈~b0〉 ⊕ 〈~c〉, b)× Π

len(~a)
i=1 T~x⊕〈y〉(N)(Γi ⊕ 〈~bi〉, ai)

×!Dn(∆,
⊗len(~a)

i=0 Γi)×!Dop(~c,~a)×!D(~b,
⊕k

i=1
~bi)×D(~b( b, a)

using Lemma 10.1.19

∼=
∫ ~a,~b,~c, ~b0 ∫ b ∫ ~Γ T~x⊕〈y〉⊕〈x〉(M ′)(Γ0 ⊕ 〈~b0〉 ⊕ 〈~c〉, b)× Π

len(~a)
i=1 T~x⊕〈y〉(N)(Γi ⊕ 〈〉, ai)

×!Dn(∆,
⊗len(~a)

i=0 Γi)×!Dop(~c,~a)×!D(~b, ~b0)×D(~b( b, a)
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And we can conclude

SM,x,N
∆,a :

˜〈~a,~c,~b, b, c, f1 ( f2, 〈Γi ⊕ 〈〉〉len(~a)
i=0 , φ0, g1 ( g2, 〈φi〉len(~a)

i=1 , η〉

7→ ˜〈~b, b, SM ′,x,N
∆⊕〈~b〉,b

(〈~a, 〈Γi ⊕ 〈〉〉len(~a)
i=0 , φ0{f1}, 〈φi〉len(~a)

i=1 , η〉), g1 ( f2 ◦ g2〉;

• if M = PL then

SubM,x,N
~x (∆, a)

∼=
∫ ~a,~c∈!D ∫ c∈D ∫ ~Γ∈!Dn

T~x⊕〈x〉(PL)(Γ0 ⊕ 〈~c〉, c)× Π
len(~a)
i=1 T~x(N)(Γi, ai)

×!Dn(∆,
⊗len(~a)

i=0 Γi)×!Dop(~c,~a)×D(c, a)
using Yoneda Lemma 7.2.3 on ~c and c:

∼=
∫ ~a ∫ ~Γ

T~x⊕〈x〉(PL)(Γ0 ⊕ 〈~a〉, a)× Π
len(~a)
i=1 T~x(N)(Γi, ai)×!Dn(∆,

⊗len(~a)
i=0 Γi)

developing T~x⊕〈x〉(PL) :

∼=
∫ ~a,~b=〈b1,...,bk〉 ∫ ~Γ ∫ Γ′0⊕〈 ~a0〉,...,Γ′k⊕〈 ~ak〉∈!Dn+1

T~x⊕〈x〉(P )(Γ′0 ⊕ 〈~a0〉,~b( a)

×Πk
i=1T~x(L)(Γ′i ⊕ 〈~ai〉, bi)×!Dn+1(Γ0 ⊕ 〈~a〉,

⊗l
i=0 Γ′i ⊕ 〈~ai〉×!Dn(∆,

⊗len(~a)
i=0 Γi)

×Π
len(~a)
i=1 T~x(N)(Γi, ai)×!Dn(∆,

⊗len(~a)
i=0 Γi)

∼=
∫ ~a,~b ∫ ~a0,..., ~ak

∫ ~Γ, ~Γ′
T~x⊕〈x〉(P )(Γ′0 ⊕ 〈~a0〉,~b( a)× Πk

i=1T~x(L)(Γ′i ⊕ 〈~ai〉, bi)
×!Dn(Γ0,

⊗l
i=0 Γ′i)×!D(~a,

⊗l
i=0〈~ai〉)×!Dn(∆,

⊗len(~a)
i=0 Γi)× Π

len(~a)
i=1 T~x(N)(Γi, ai)

×!Dn(∆,
⊗len(~a)

i=0 Γi)
using Yoneda Lemma 7.2.3 on Γ0 and ~a:

∼=
∫ Γ1,...,Γl

∫ ~b ∫ ~Γ′ ∫ ~a0,..., ~ak T~x⊕〈x〉(P )(Γ′0 ⊕ 〈~a0〉,~b( a)× Πk
i=1T~x(L)(Γ′i ⊕ 〈~ai〉, bi)

×Πl
i=1T~x(N)(Γi, ci)×!Dn(∆,

⊗l
i=1 Γi ⊗

⊗k
i=0 Γ′i) with

⊕k
i=0 ~ai = 〈c1, . . . , cl〉.

we denote ∀j ∈ [k], ~Γj = 〈Γj,1, . . . ,Γj,kj〉 the partition of 〈Γ1, . . . ,Γl〉 induced by

~aj = 〈aj,1, . . . , aj,kj〉 of 〈c1, . . . , cl〉 and T~x(N)(~Γi, ~ai) = Πki
j=1T~x(N)(Γi,j, ai,j).

∼=
∫ Γ1,...,Γl

∫ ~b ∫ ~Γ′ ∫ ~a0,..., ~ak T~x⊕〈x〉(P )(Γ′0 ⊕ 〈~a0〉,~b( a)× Πk
i=1T~x(L)(Γ′i ⊕ 〈~ai〉, bi)

×Πk
i=1T~x(N)(Γi, ai)× T~x(N)( ~Γ0, ~a0)×!Dn(∆,

⊗k
i=0 Γ′i ⊗

⊗l
i=1 Γi)

by symmetry of the tensor product and since functors preserves isomorphisms

∼=
∫ Γ1,...,Γl

∫ ~b ∫ ~Γ′ ∫ ~a0,..., ~ak T~x⊕〈x〉(P )(Γ′0 ⊕ 〈~a0〉,~b( a)× Πk
i=1T~x(L)(Γ′i ⊕ 〈~ai〉, bi)

×Πk
i=1T~x(N)(Γi, ai)× T~x(N)( ~Γ0, ~a0)×!Dn(∆,

⊗k
i=0 Γ′i ⊗ ~Γi)

where we set Γ′i ⊗ ~Γi = Γ′i ⊗ (
⊗ki

j=1 Γi,j)

using Yoneda Lemma 7.2.3 multiple times:

∼=
∫ Γ1,...,Γl

∫ ~b ∫ ~Γ′,~∆=〈∆0,...,∆k〉 ∫ ~a0,..., ~ak T~x⊕〈x〉(P )(Γ′0 ⊕ 〈~a0〉,~b( a)

×Πk
i=1T~x(L)(Γ′i ⊕ 〈~ai〉, bi) × Πk

i=1T~x(N)(Γi, ai)× T~x(N)( ~Γ0, ~a0)

×!Dn(∆,
⊗k

i=1 ∆i)×!Dn(∆0,Γ
′
0 ⊗ ~Γ0)× · · ·×!Dn(∆kj ,Γ

′
kj
⊗ ~Γkj)

by cocontinuouty and commutativity we have:

∼=
∫ ~b, ~a0 ∫ ∆0,...,∆k,Γ

′
0
∫ ~Γ0 T~x⊕〈x〉(P )(Γ′0 ⊕ 〈~a0〉,~b( a)× T~x(N)( ~Γ0, ~a0)

×!Dn(∆0,Γ
′
0 ⊗ ~Γ0)× Πk

i=1(
∫ ~ai,Γ′i, ~Γ′i T~x(L)(Γ′i ⊕ 〈~ai〉, bi)× T~x(N)(Γi, ai)

×!Dn(∆i,Γ
′
i ⊗ ~Γi))×!Dn(∆,

⊗k
i=1 ∆i)

by definition:

∼=
∫ ~b ∫ ∆0,...,∆k SubP,x,N~x (∆0,~b( a))× Πk

i=1Sub
L,x,N
~x (∆i, bi))×!Dn(∆,

⊗k
i=0 ∆i)
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By definition

T~x(PL[N/x])(∆, a) =
∫ ~b ∫ ∆0,...,∆k T~x(P [N/x])(∆0,~b( a))

×Πk
i=1T~x(L[N/x])(∆i, bi))×!Dn(∆,

⊗k
i=0 ∆i)

Using the induction hypothesis we can conclude, since isomorphisms are preserved
by the coend construction.

we get

SM,x,N
∆,a :

˜
〈~a,~c, c, 〈Γi〉len(~a)

i=0 , 〈~b, 〈Γ′i ⊕ 〈~bi〉〉
len(~b)
i=0 , f1 ( f2, 〈φ, ~ξ, θ ⊕ 〈h〉〉〉, ~φ, η〉

7→ 〈~b, 〈Γ′i ⊗ ~Γi〉
len(~b)
i=0 , SP,x,N

Γ′0⊗~Γ0,~b(a
(〈Γ′0 ⊗ ~Γ0, 1( f2, φ, ([h ◦ f1]~φ)0, 1〉),

˜
〈SL,x,N

Γ′i⊗~Γi,bi
(〈Γ′i ⊗ ~Γi, ξi, ([h ◦ f1])~φ)i, 1〉)〉len(~b)

i=1 , τ ◦ (θ ⊗ ((α ◦ β)−1)?) ◦ η〉.

with h = 〈α,~h〉 and f1 = 〈β, ~f1〉, ~Γ = 〈Γi〉len(~a)
i=0 and τ :

⊕len(~b)
j=0 Γ′j ⊗~Γ→

⊗len(~b)
j=0 (Γ′j ⊗

~Γj) and ~Γj = ([h]~Γ)j.

Remark 10.1.23. The isomorphism T~x(M →β N) can be define using the isomorphism
S, by induction on the reduction step M →β N :

• if (λx.M1)M2 →β M1[M2/x] then by definition

T~x((λx.M1)M2 →β M1[M2/x]) = SM1,x,M2 ;

• if λy.M1 →β λy.M
′
1 then by induction hypothesis

T~x(λy.M1 →β λy.M
′
1) =

∫ ~b ∫ b
T~x⊕〈y〉(M1 →β M

′
1)(−⊕ 〈~b〉, b)×D(~b( b,−);

• if M1M2 →β M
′
1M2 then by induction hypothesis

T~x(M1M2 →β M
′
1M2) =

∫ ~a,~Γ
T~x(M1 →β M

′
1)(Γ0,~a( −)× Π

len(~a)
i=1 T~x(M2)(Γi, ai)

×!Dn(−,
⊗len(~a)

i=0 Γi);

• if M1M2 →β M1M
′
2 then by induction hypothesis

T~x(M1M2 →β M1M
′
2) =

∫ ~a,~Γ
T~x(M1)(Γ0,~a( −)× Π

len(~a)
i=1 T~x(M2 →β M

′
2)(Γi, ai)

×!Dn(−,
⊗len(~a)

i=0 Γi).

Lemma 10.1.24 (Substitution). Let π̃ ∈ T~x((λx.M1)M2)(∆, a) if π̃ →β π̃
′ with π̃′ ∈

T~x(M1[M2/x])(∆, a) then T~x((λx.M1)M2 →β M1[M2/x])∆,a(π̃) = π̃′.

Proof. With respect Definitions 10.1.8 and 10.1.9, by induction on M1 we observe that
the substitution corresponds to SM1,x,M2

∆,a .
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Theorem 10.1.25. Let π̃ ∈ T~x(M)(∆, a) and M →β N if π̃ →β π̃
′ ∈ T~x(N)(∆, a) then

T~x(M →β N)∆,a(π̃) = π̃′.

Proof. By induction on M and using Lemma 10.1.24 as base case.

Let π̃ ∈ T~x(M)(∆, a) for some 〈∆, a〉 ∈ !Dlen(~x) ×D and M ∈ Λ. We say that π̃ is nor-
malisable along M if there exists N ∈ Λ such that M �β N and
T~x(M �β N)∆,a(π̃) is a normal form. We get T~x(M �β N) by composition of iso-
morphisms T~x(M →β N).
The unicity of normal forms for typing derivations along a λ-term M is guaranteed by
Theorem 10.1.14.

Definition 10.1.26. For M ∈ Λo(~x), define

NFT~x(M)(∆, a) = {π̃ ∈ NF(R→) | ∃N ∈ Λ, M �β N and π̃ ∈ T~x(N)(∆, a)}.

The previous construction naturally extends to a distributor that we shall call NFT~x(M).

Notice that, by definition of normalisation, π̃ ∈ NFT~x(M)(∆,a) whenever there exists a
λ-term N such that M �β N and π̃ ∈ T~x(N)(∆, a).

For π̃ ∈ |T~x(M)| (the web of T~x(M), Definition 8.2.2(2)) we denote its normal form as
NF(π̃)M . In what follows, we shall keep the parameter M implicit, writing just NF(π̃).
In particular,

NFT~x(M)(∆, a) = {NF(π̃) ∈ R→ | π̃ ∈ T~x(M)(∆, a)}. (10.1)

Theorem 10.1.27. For M ∈ Λo(~x), there is a canonical natural isomorphism

Norm~x(M) : T~x(M) ∼= NFT~x(M)

given by normalisation π̃ 7→ NF(π̃).

Proof. Injectivity and naturality of the map follow from Theorems 8.1.5 and 10.1.14.

10.2. Reconstructing Approximants

Consider a derivation π . ∆ ` M : a. We have seen that not all subterms of M need
to be typed in a subderivation of π. Thus we might have π . ∆ ` N : a also for λ⊥-
terms N 6= M , as untyped subterms of M can be replaced by anything (even ⊥) without
affecting the derivation validity.

We are going to show that every derivation π contains enough information to recon-
struct the minimal λ⊥-term Aπ satisfying π . ∆ ` Aπ : a. For any λ-term M , such that
π ∈ T~x(M), we have Aπ vβ M .

We use the notation ↓M for {A | A vβ M}.
In a first time we will consider pairs (π,M) of a derivation and a λ-term, such that

π .∆ `M : a for some environment ∆ and type a.
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10. A Semantic Approximation Theorem

Definition 10.2.1. For each pair (π,M) where π ∈ T~x(M), we define an approximant
A~xπ,M ∈ ↓M by induction on the structure of (π,M) as follows:

• if π is an axiom, then M = xi (for some xi ∈ ~x), define A~xπ,M = xi;

• if π is an abstraction, then M = λy.N , define A~xπ,M = λy.(A~x,yπ′,N), where π′ ∈
T~x,~y(N) is the unique premise of π and we can assume y /∈ ~x (wlog, due to α-
conversion);

• if π is an application, M = NN ′ and there are premises π0 ∈ T~x(N) and π1, . . . , πk ∈
T~x(N

′), for some k ∈ N. By induction we get A~xπ0,N ∈↓ N and for i = 1, . . . , k,

A~xπi,N ′ ∈↓ N
′. We can take

∨k
i=1A

~x
πi,N ′

(since the elements are in Aβ(N ′)). We

define A~xπ = A~xπ0,N(
∨k
i=1 A

~x
πi,N ′

).

Remark 10.2.2. Note that in the last case when k = 0, we have
∨k
i=1A

~x
πi,N ′

= ⊥.

Theorem 10.2.3. For a given π ∈ R→ corresponding to a λ-term, all (π,M) (such that
π ∈ T~x(M)) have the same A~xπ,M , we name it A~xπ.

Proof. By induction on the last rule of π:

• if π is an axiom, then for any suitable M , A~xπ,M = xi, where i is the index of the
only type appearing in the type environment of π;

• if π is an abstraction, there is an unique premise π′ ∈ R→ and by induction hypoth-
esis there is A~x,yπ′ (we can assume y /∈ ~x due to α-conversion). For any suitable M ,

A~xπ,M = λy.(A~x,yπ′ );

• if π is an application, then there are premises π0 ∈ R→ and π1, . . . , πk ∈ R→, for
some k ∈ N. By induction hypothesis we get A~xπ0 and for i = 1 . . . k, A~xπi . For any
suitable M , M = NN ′ with A~xπ0,N = A~xπ0 and for i = 1 . . . k, A~xπi,N ′ = A~xπi . In such

a case, A~xπ,M = A~xπ0(
∨k
i=1 A

~x
πi

).

Notation 10.2.4. For a given π, all M such that π ∈ T~x(M) have the same A~xπ,M . Since

this approximant only depends on the derivation π, we name it A~xπ.

Example 10.2.5.

• If π is

f : a′ → a

x : 〈〈〉( a′〉 ` x : 〈〉( a

x : 〈〈〉( a′〉 ` xΩ : a

then we have tocc(π) = {L−M, L−MΩ}
and Axπ = x⊥.

• Consider the derivation π in Figure 10.1, then we have that:

tocc(π) = {L−M, L−M(yz), xL−M, x(L−Mz), x(yL−M)} and the associated approximant is

A
〈x,y,z〉
π = x(yz) since x(y⊥ ∨ yz) = x(yz).
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10.2. Reconstructing Approximants

Remark 10.2.6. By definition, we have A~xπ = A~xπ{η} and A~x[f ]π = A~xπ. Also, π ∼ π′

implies A~xπ = A~xπ′ . Thus, we can extend A~x− to equivalence classes π̃ and write A~xπ̃ for the
corresponding approximant.

Proposition 10.2.7. Let M ∈ Λo(~x) and π ∈ R→(M):

(i) π ∈ R→(A~xπ) and A~xπ vβ M .

(ii) If π is a normal form then A~xπ ∈ Aβ, whence A~xπ ∈ Aβ(M).

Proof.

(i) By a straightforward induction on the structure of M .

(ii) By structural induction on M , using the fact that π has no β-redexes.

We prove a semantic analogue of Ehrhard’s theorem in [Ehrhard and Regnier, 2006a]
stating that the normal form of the Taylor expansion of a λ-term coincide with the Taylor
expansion of its Böhm tree.

Theorem 10.2.8 (Commutation Theorem). For all M ∈ Λo(~x),

NFT~x(M) = T~x(BTβ(M)).

Proof.

(⊆) Let π̃ ∈ NFT~x(M)(∆, a).

By definition of normalisation along M, there exist ρ̃ ∈ T~x(M)(∆, a) and N ∈ Λ
such that π̃ = NF(ρ̃) and π̃ ∈ T~x(N)(∆, a) with M �β N.

By Proposition 10.2.7, we get π̃ ∈ T~x(A
~x
π) and A~xπ vβ N is a β⊥-normal form.

Thus we have A~xπ ∈ Aβ(N), so we conclude π̃ ∈ T~x(BTβ(M))(∆, a).

(⊇) Let π̃ ∈ BTβ(M)(∆, a).

By definition, there exists a A ∈ Aβ(M) such that π̃ ∈ T~x(A)(∆, a).

By Lemma 10.1.7, such a π̃ is a normal form.

From Lemma 9.3.6 and the definition of Aβ(M), we get T~x(A) ⊆ T~x(N) for some
λ-term N such that M �β N .

By Theorem 8.1.5, we conclude that there exists ρ̃ ∈ T~x(M) such that π̃ is the
normal form of ρ̃.

The following result is a generalisation of the Approximation Theorem for relational
graph models [Breuvart et al., 2018] to categorified graph models.

Theorem 10.2.9 (Bicategorical Approximation Theorem).
Let M ∈ Λo(~x). We have a natural isomorphism

appr~x(M) : T~x(M) ∼= T~x(BTβ(M)).

125



10. A Semantic Approximation Theorem

Proof. We compose the isomorphisms obtained in Theorems 10.1.27 and 10.2.8.

A model is called consistent if it does not equate all λ-terms, and sensible if it is
consistent and equates all unsolvables. From the above Approximation Theorem it follows
the sensibility of the bicategorical model.

Corollary 10.2.10. For all M ∈ Λo(~x), we have:

BTβ(M) = ⊥ ⇐⇒ T~x(M) ∼= ∅!D~x,D.

Proof.

(⇒) If BTβ(M) = ⊥, then Aβ(M) = {⊥}. By the Approximation Theorem 10.2.9, we
have T~x(M) ∼= T~x({⊥}) = ∅!D~x,D.

(⇐) Assume by contradiction that BTβ(M) 6= ⊥.

Then, there is P = λy1 . . . ym.xP1 · · ·Pk ∈ Aβ(M). Suppose that x ∈ FV(M), i.e.
x = xi for some i (i ∈ [n]), otherwise the argument can be easily adapted. For every
type a = 〈〉k ( b with b ∈ D, we can construct the derivation πa as:

1a

x1 : 〈〉, . . . , xi : 〈a〉, . . . , xn : 〈〉, y1 : 〈〉, . . . , ym : 〈〉 ` xi : a

x1 : 〈〉, . . . , xi : 〈a〉, . . . , xn : 〈〉, y1 : 〈〉, . . . , ym : 〈〉 ` xiP1 · · ·Pk : b

x1 : 〈〉, . . . , xi : 〈a〉, . . . , xn : 〈〉 ` λ~y.xiP1 · · ·Pk : 〈〉m( b

By Theorem 10.2.9, we obtain π̃a ∈ T~x(M). Contradiction.
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11. Characterisation of the Theory

The equational theories of λ-calculus: λ-theories are defined as congruences on λ-terms
containing β-conversions (and α ones). They are key objects for the study of the equiva-
lence between terms rather than the study of their computational process.

The λ-theories can come from both the semantic and the syntactic world:

• Semantically: from a denotational model D of λ-calculus we can define λ-theories
by taking the kernel Th(D) of its interpretation function:

Th(D) = {(M,N) | JMKD = JNKD}.

• Syntactically: we defined them by equating λ-terms with a same given operational
behaviour.

Among them, well known theories are:

– H where all unsolvable λ-terms are collapsed together;

– B equating two λ-terms exactly when they have the same Böhm tree;

– extensional theory H∗ equating all observationally indistinguishable λ-terms.

Some classical results are that Plotkin’s model Pω has theory Th(Pω) = B and Scott’s
D∞ has theory Th(D∞) = H∗ ([Hyland, 1976, Wadsworth, 1976]).

In both cases the inclusion B ⊆ Th(D) follows from the fact that D satisfies an Ap-
proximation Theorem stating that the interpretation of a λ-term in the model D is given
by the supremum of the denotations of its finite approximants.

In 1-categorical semantics, the fact that a modelD satisfies the Approximation Theorem
just allows to conclude that B ⊆ Th(D).

For instance, since the relational interpretation of a λ-term M is given by the set of
its typings (Γ, a), and many derivations π of Γ `M : a may exist, one cannot univocally
reconstruct an approximant Aπ ∈ Aβ(M) as we have done in the 2-dimensional case in
Section 10. Indeed since the interpretation of a λ-term in this settings is given by the
”collection” of all its type derivations (see Chapter 9) it contains much more information.

In the present chapter we will characterise the λ-theory of the bicategorical model in-
troduced and studied in previous chapters. In Section 11.2, we show that the additional
information of type derivations is sufficient to obtain the characterisation of the λ-theory
associated with our model as an easy corollary (Corollary 11.2.5) of the Bicategorical
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11. Characterisation of the Theory

Approximation Theorem (see Theorem 10.2.9).

We demonstrate that any derivation π living in the interpretation of a λ-term M , but
not in the interpretation of a λ-term N , implies that Aπ (obtained with the map in Defi-
nition 10.2.3) is an approximant of M but not of N . This leads to a characterisation of
the theory of D, since it allows to conclude in Theorem 11.2.4 that Th(D) = B.

This technique to characterise the theory of a model is original, and the same reasoning
cannot be performed in the relational semantics as typings do not carry enough informa-
tion to uniquely identify an approximant, in general. As previously the results have been
published in [Kerinec et al., 2023].

11.1. Some Formal Definitions

Definition 11.1.1. A λ-theory is any congruence on Λ (that is, an equivalence relation
compatible with abstraction and application) containing the β-conversion.

A λ-theory is called:

• extensional if it contains the η-conversion as well;

• consistent if it does not equate all λ-terms;

• sensible if it does equate all unsolvables.

Notation 11.1.2. Given a λ-theory T , and M,N ∈ Λ we will write T ` M = N , or
simply M =T N , to express the fact that M and N are equal in T .

Definition 11.1.3. The equivalence B is obtained by equating all λ-terms having the same
Böhm tree:

B = {(M,N) | BTβ(M) = BTβ(N)} ⊆ Λ2.

Example 11.1.4.

• B ` Ω = M , for all M unsolvable;

• B ` λx.xΩ = λx.x(YI), since YI is unsolvable;

• B ` Y = Z, for any fixed point combinator Z.

The next proposition follows directly:

Property 11.1.5. The λ-theory B is consistent and sensible.

Proof. The λ-theory B equates all unsolvable λ-terms (by definition of Böhm trees), but
not all the λ-terms.
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11.2. The Induced Theory

11.2. The Induced Theory

In order to define the theory of a model, we focus on isomorphisms that ”behave well”
w.r.t. →β.

We say that a natural isomorphism γ : JMK~x ∼= JNK~x is coherent w.r.t. β-normalisation
when the induced natural isomorphism γ : T~x(M) ∼= T~x(N) satisfies the following prop-
erty:

for all π̃ ∈ T~x(M)(∆, a) we have NF(π̃) = NF(γ∆,a(π̃)).

Definition 11.2.1. The non-extensional theory of a bicategorical model D in CatSym is
defined by

Th(D) = {(M,N) |M,N ∈ Λo(~x) and γ : JMK~x ∼= JNK~x with γ ∈ ISOβ
M,N},

where ISOβ
M,N is the set of natural isomorphisms JMK~x ∼= JNK~x coherent with respect to

β-normalisation.

It is readily proved that Th(D) is a λ-theory. We now show that all categorified graph
models have the same non-extensional theory, namely B.

Remark 11.2.2. Note that the definition of theory induced by a model depends on an
appropriate choice of isomorphisms. This was not the case for the analogous notion in
the 1-categorical setting, since the only possible choice of isomorphisms in that case is the
equality.

Lemma 11.2.3. Let M ∈ Λo(~x) and A ∈ Aβ(M). If A 6= ⊥ then there exists π̃ belonging
to the web |NFT~x(M)| (see Definition 8.2.22 and Equation (10.1)) such that A = A~xπ̃.

Proof. By structural induction on A.
Since A 6= ⊥, we must have A = λy1 . . . ym.xA1 · · ·Ak such that for i = 1, . . . , k,
FV(Ai) ⊆ ~x, ~y for ~y = {y1, . . . , ym}. Without loss of generality, assume len(~x) > 0
and x = x1 ∈ ~x.
By definition, M �β λy1 . . . ym.x1M1 · · ·Mk with Aj ∈ Aβ(Mj), for j = 1, . . . , k.
By induction hypothesis, for all such j, Aj 6= ⊥ entails the existence of a derivation

π̃j ∈ NFT~x,~y(Mj)(∆j, aj) such that Aj = A~x,~yπ̃j .

We define

µj =

{
〈〉 if Aj = ⊥,
〈aj〉 otherwise,

Γj =

{
〈〈〉, . . . , 〈〉〉 if Aj = ⊥,
∆j otherwise,

and b = µ1 ( · · ·( µk ( c with c ∈ D.
From the π̃js, using k times the rule (app), it is easy to construct

π̃′ ∈ NFT~x,~y(x1M1···Mk)(〈〈b〉, 〈〉, . . . , 〈〉︸ ︷︷ ︸
len(~x)+m

〉 ⊗
(⊗k

j=1 Γj
)
, c)

and therefore, by applying m-times the rule (abs) we get the derivation π̃ we are looking
for, by construction π̃ ∈ |NFT~x(M)| and A~xπ = A.
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11. Characterisation of the Theory

Theorem 11.2.4. T~x(M) ∼= T~x(N) ⇐⇒ BTβ(M) = BTβ(N).

Proof.

(⇒) Assume T~x(M) ∼= T~x(N). By definition, this entails NFT~x(M) = NFT~x(N). Assume
BTβ(M) 6= BTβ(N) towards a contradiction.

Say, there is A ∈ Aβ(M) \ Aβ(N).

By Lemma 11.2.3 there is π̃ ∈ |NFT~x(M)| = |NFT~x(N)| such that A~xπ̃ = P . By
definition of normalisation along N , we have π̃ ∈ |T~x(N ′)| for some N ′ such that
N �β N

′. By Proposition 10.2.7 we obtain P vβ N ′, from which it follows P ∈
Aβ(N). Contradiction.

(⇐) Assume BTβ(M) = BTβ(N). Then

T~x(M) ∼= T~x(BTβ(M)) by Theorem 10.2.9,
= T~x(BTβ(N)) by the assumption,
∼= T~x(N) by Theorem 10.2.9.

This concludes the proof.

Corollary 11.2.5. Th(D) = B.

Remark 11.2.6. The reader could be surprised by the prima facie paradoxical result of
Corollary 11.2.5. Our result works for arbitrary categorified graph models, while it is well-
known that in the 1-dimensional case no extensional model can have theory B, since B is
not an extensional theory. However, the 2-dimensional aspect of our semantics consider-
ably refines the situation. At the beginning of the section we restricted our attention to
isomorphisms preserving β-normalisation of type derivations. It is easy to see that, if D
is extensional, the canonical natural isomorphism

JM →η NK~x : JMK~x ∼= JNK~x

does not preserve β-normalisation of type derivations. Indeed, take D = D+, M = λx.yx
and N = y. Now, consider

π =

e−1
〈∗〉(∗ : ∗ → (〈∗〉( ∗)

y : 〈∗〉 ` y : 〈∗〉( ∗ x : 〈∗〉 ` x : ∗
y : 〈∗〉, x : 〈∗〉 ` yx : ∗ e〈∗〉(∗ : (〈∗〉( ∗)→ ∗

y : 〈∗〉 ` λx.yx : ∗

and π′ = y : 〈∗〉 ` y : ∗

We have that T~x(M →η N)(〈∗〉, ∗)(π̃) = π̃′. Clearly, there is no β-reduction chain that
produces NF(π) = NF(π′) so, by λ-abstracting y on both sides, we get that the model
distinguishes J1K and JIK. In fact, our choice of isomorphisms automatically discards the
isomorphisms induced by extensionality.
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12. Decategorification of the Semantics

In this chapter we translate in 1-dimension our previous results. From the perspective of
enriched category theory, we perform a change of base [Kelly, 1982].

We start, in Section 12.1, by defining the target category Polr of preorders and mono-
tonic relations [Ehrhard, 2012, Ehrhard, 2016]. All the constructions in Polr are general-
isations of the ones for Rel, notice that Rel is a full subcategory of Polr, considering sets
as discrete preorders.

In Section 12.2, we define a decategorification pseudofunctor forgetting the bicategorical
structure which is present in the model D and retrieving a relational graph model U living
in the coKleisli of the comonad of finite multisets on the category Polr. We provide a
type-theoretic description of the relational graph models living in Polr (Definition 12.1.5).

We then prove that the Approximation Theorem, for those relational graph models
arising from the decategorification, follows directly from its bicategorical analogue (corol-
lary 12.2.7).

We conclude that the theory of the categorified graph model is included in the theory
of its decategorification (corollary 12.2.8).

12.1. The Category Polr

We shall work within the category Polr of preorders and monotonic relations, already
studied in [Ehrhard, 2012, Ehrhard, 2016].

Definition 12.1.1. Polr category of preorders and monotonic relations:

• objects of Polr are preorders;

• a morphism f : X → Y from X = 〈|X |,≤X 〉 to Y = 〈|Y|,≤Y〉 is a monotonic
relation from |X | to |Y|, namely a relation f ⊆ |X |×|Y| such that 〈x, y〉 ∈ f entails
〈x′, y′〉 ∈ f , for all x′ ≤X x and y ≤Y y′;

• composition is given by relational composition;

• in Polr the product X1 &X2 is the disjoint union of sets |X1| t |X2| with the preorder
≤X1 t ≤X2 defined as 〈i, x〉 ≤X1&X2 〈j, y〉 whenever i = j and x ≤Xi y;

• the terminal object is ∅ with the empty order.

Projections πi : X1 & X2 → Xi are πi = {〈〈i, x〉, x′〉 | x ≤Xi x′};

131



12. Decategorification of the Semantics

• Polr has a symmetric monoidal structure. The tensor X1 ⊗ X2 is the cartesian
product of sets with the product preorder. The endofunctor X ⊗ (−) admits a right
adjoint (−)( Y defined as follows: |X ( Y| = |X | × |Y| and 〈x, y〉 ≤X(Y 〈x′, y′〉
if x′ ≤X x and y ≤Y y′.

The following remark is crucial to properly establish the decategorification.

Remark 12.1.2. The definition above could be equivalently rephrased by taking the char-
acteristic function point of view: considering a monotonic relation R : X → Y as a
monotonic function fR : X op × Y → {0, 1}.

The category Polr extends naturally to a bicategory by considering inclusions f ⊆ g as
2-cells.

12.1.1. Exponential Modality

The exponential modality of Linear Logic is interpreted by exploiting the free commutative
monoid construction over a set. What happens here is again a direct generalisation of the
well-known relational case, where the multiset construction is considered.

Notation 12.1.3.

1. We denote by Mf(X) the free commutative monoid of finite multisets over a set
X. A finite multiset a over X is denoted as an unordered list [a1, . . . , ak], possibly
with repetitions.

2. Given finite multisets a = [a1, . . . , ak], b = [b1, . . . , bn] ∈ Mf(X), their union is
a+ b = [a1, . . . , ak, b1, . . . , bn].

We now detail the action on objects of the comonadic endofunctor that gives the inter-
pretation of the ! modality.

Definition 12.1.4.

(i) The endofunctor ! : Polr→ Polr is given by !X = 〈Mf(|X |),≤X 〉, where

[x1, . . . , xn] ≤!X [x′1, . . . , x
′
n′ ]

holds if and only if n = n′ and there exists σ ∈ Sn such that xi ≤X x′σ(i), for all

i ∈ [n].

(ii) We denote by MPolr the Kleisli category of the comonad defined in (i) (see Definition
7.1.22).

It is worth noting that the construction above strongly recalls the one considered in
Section 8.2. Such a construction can indeed be seen as the decategorification of the free
monoidal completion, as we will detail in the next subsection.
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12.1.2. Relational Graph Models and Their Type-Theoretic
Presentation

In this section we extend the concept of relational graph model introduced in
[Breuvart et al., 2018] to the preordered setting.

Definition 12.1.5 (Relational graph pre-models). A relational graph pre-model consists
of a preorder U equipped with a monotonic injection ι : !Uop × U ↪→ U .

It is easy to see that a relational graph pre-model canonically induces a reflexive object
in MPolr (Definition 7.1.18). We call this object a relational graph model.

Notation 12.1.6. A relational graph model U can be presented as a non-idempotent
intersection type system R≤ (see Fig. 12.1), depending on a preordered set X = 〈|X |,≤X 〉
of atoms (ground types). The types over |X | correspond to the elements of |U|. We let
a( a be another notation for ι(〈a, a〉).

• In this context the “non-idempotent intersection” is assumed to be commutative,
therefore it is represented by finite multisets rather than ordered lists. The preorder
≤U associated with U is obtained by lifting ≤X from atoms to multisets and to higher
types as expected.

• The elements of !Un are called (type) environments (of length n) and are denoted
by Γ,∆.

• The tensor product of two type environments is defined by applying multiset union,
denoted by +, componentwise: 〈a1, . . . , an〉 ⊗ 〈b1, . . . , bn〉 = 〈a1 + b1, . . . , an + bn〉.

• We write `MPolr to denote judgements in the associated type assignment system R≤
(Figure 12.1b).

Remark 12.1.7. Figure 12.1a actually describes a family of reflexive objects UX in
MPolr, since U is parametric over a preordered set X . This construction has been already
explicitly considered in the context of bang calculus [Guerrieri and Olimpieri, 2021]. It
derives from the type theoretic presentation of the Scott semantics in [Ehrhard, 2012].

The underlying set of U is populated by non-idempotent intersection types over the set
|X | of atoms. As in the categorified setting of distributors, U is given by a free algebra
construction, which determines an inclusion of preorders !Uop × U ⊆ U .

Definition 12.1.8.

• The interpretation of a λ-term M ∈ Λo(x1, . . . , xn) in a relational graph model U
living in MPolr is given by a monotonic relation

JMKMPolr
~x : !Un → U ,

JMKMPolr
~x (∆, a) =

{
1 if ∆ `MPolr M : a,

0 otherwise.

We also write (∆, a) ∈ JMKMPolr
~x for JMKMPolr

~x (∆, a) = 1.
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• The interpretation above is extended to approximants A ∈ Aβ in the obvious way,
and to Böhm trees by setting:

(∆, a) ∈ JBTβ(M)KMPolr
~x ⇐⇒ ∃A ∈ Aβ(M) , (∆, a) ∈ JAKMPolr

~x .

We remark that, if X is discretely ordered by =, then the construction boils down to
the standard one performed in the context of relational semantics [de Carvalho, 2007].

Types (for x ∈ |X |):
TyX 3 a := x | [a1, . . . , ak]( a

Free construction of ≤U depending on X :

x ≤X x′

x ≤U x′
a′ ≤U a a ≤U a′

(a( a) ≤U (a′( a′)

σ ∈ Sk a1 ≤U a′σ(1)
k∈N. . . ak ≤U a′σ(k)

[a1, . . . , ak] ≤U [a′1, . . . , a
′
k]

(a) Graph of intersection types GX .
Derivation rules:

a′ ≤U a
x1 : [ ], . . . , xi : [a′], . . . xn : [ ] ` xi : a

Γ0 `M : [a1, . . . , ak]( a (Γi ` N : ai)i∈[k] ∆ ≤Un
⊗k

j=0 Γj

∆ `MN : a

∆, x : a `M : a a( a ≤U b
∆ ` λx.M : b

(b) Non-idempotent intersection type system R≤.

Figure 12.1.: Type theoretic presentation of a relational graph model living in Polr.

12.2. Decategorification Pseudofunctor

We want to define a pseudofunctor Dec : Dist→ Polr. We now take the angle of character-
istic function on monotonic relations. The construction that we shall present corresponds
to a change of base in the sense of enriched category theory [Laird, 2017, Galal, 2020],
passing from Set-enriched distributors to {0, 1}-enriched distributors.
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12.2. Decategorification Pseudofunctor

Definition 12.2.1.

• The preorder collapse Dec(A) of a small category A is defined by setting

|Dec(A)| = ob(A) and a ≤Dec(A) b whenever A(a, b) 6= ∅.

• Given small categories A and B, define a functor

DecA,B : Dist(A,B)→ Polr(Dec(A),Dec(B))

by setting, for all F : A9 B,

DecA,B(F ) = {〈a, b〉 | 〈a, b〉 ∈ |Dec(A)op × Dec(B)| ∧ F (a, b) 6= ∅}.

The data above naturally define a pseudofunctor Dec : Dist → Polr, called the decate-
gorification of Dist to Polr, which also preserves the linear logic structure [Galal, 2020].

Proposition 12.2.2. Let A ∈ Cat. We have an equivalence of categories:
D! : Dec(!A) ' !(Dec(A)) given by the map 〈a1, . . . , ak〉 7→ [a1, . . . , ak].

Proof. D! is a fully faithful functor (functors between preorders are just monotonic func-
tions) by remarking that 〈a1, . . . , ak〉 ≤!A 〈a′1, . . . , a′k〉 whenever there exists σ ∈ Sk and
ai ≤A a′σ(i). Hence ~a ≤ ~a′ iff D!(~a) ≤ D!(~a

′). It is also surjective on objects: by tak-

ing an arbitrary presentation of a multiset [a1, . . . , ak], e.g. 〈a1, . . . , ak〉 we trivially have
D!(〈a1, . . . , ak〉) = [a1, . . . , ak]. Hence the equivalence class of 〈a1, . . . , ak〉 is sent to the
multiset [ã1, . . . , ãk].

We work modulo the equivalence above, so we identify Dec(!A) with the multiset con-
struction over Dec(A). Remark that this equivalence extends to !Dn, with n ∈ N, in the
natural way.

We show that the decategorification of the free category of intersection types DA (as
described in section 9.1) is exactly the free preorder on intersection types UDec(A).

Lemma 12.2.3. Let DA be a categorified graph model. Then Dec(DA) = UDec(A) is a
relational graph model living in MPolr.

Proof. By exploiting the fact that the decategorification pseudofunctor preserve the linear
logic structure. By applying the former proposition, it is easy to see that

Dec(DA) = (!Dec(DA)op × Dec(DA)) t Dec(A)

thus, Dec(DA) is the free algebra construction.

Remark 12.2.4. Note that, if A is a set, we recover the standard construction of non-
extensional models used in the relational setting [de Carvalho, 2007]. The decategorifica-
tions of D∗ and D+ correspond to two extensional models in MRel, studied in
[Breuvart et al., 2018], which can be seen as a relational counterpart of classical filter
models of λ-calculus.
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12. Decategorification of the Semantics

Lemma 12.2.5. Let M ∈ Λ⊥.

• If ∆ `CatSym M : a then D!(∆) `MPolr M : D!(a).

• Considering ∆ `CatSym M : a, η : ∆′ → ∆ and f : a→ a′. We have

D!(∆
′) `MPolr M : D!(a

′).

Proof. Both items follow easily by induction on a derivation of ∆ `CatSym M : a.

Theorem 12.2.6. Let M ∈ Λ⊥, we have Dec(T~x(M)) = JMKMPolr
~x .

Proof. By direct application of Lemma 12.2.5.

We show that the Approximation Theorem for UDec(A) is a direct consequence of the
result above and of the Bicategorical Approximation Theorem 10.2.9.

Corollary 12.2.7 (Approximation Theorem for MPolr).
For all M ∈ Λo(~x), we have JMKMPolr

~x = JBTβ(M)KMPolr
~x , i.e.

(∆, a) ∈ JMKMPolr
~x ⇐⇒ ∃P ∈ Aβ(M), (∆, a) ∈ JP KMPolr

~x .

Proof. Corollary of Theorem 10.2.9 and Theorem 12.2.6. The central point of the proof is
the remark that, by Proposition 12.2.2, (∆, a) = D!(∆

′, a′) for some context and type of
the system R→. Then, one derives that (∆, a) ∈ JMKMPolr

~x if and only if T~x(M)(∆′, a′) 6= ∅.
We can therefore conclude by applying the bicategorical Approximation Theorem.

Note that the theory of the reflexive object Dec(D), for D categorified graph model, is
the standard 1-categorical notion defined as:

Th(Dec(D)) = {(M,N) | JMKMPolr
~x = JNKMPolr

~x }.

Corollary 12.2.8. For all M,N ∈ Λo(~x), we have

T~x(M) ∼= T~x(N)⇒ JMKMPolr
~x = JNKMPolr

~x .

Therefore
B = Th(D) ⊆ Th(Dec(D)).
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13. Conclusion

In this second part, we left the realm of Call-by-Value to explore that of classic Call-
by-Name. We introduced a type-theoretic bicategorical semantics of λ-calculus, build-
ing upon the work presented in [Olimpieri, 2021, Olimpieri, 2020], and extending it. In
the aforementionned articles Olimpieri considered a bicategorical semantics of λ-calculus,
where the models are free-algebra constructions for an appropriate endofunctor, while we
introduced the more general class of categorified graph models (in Section 9.1). The free-
algebra models are then just particular (non-extensional) instances of our construction.
Those categorified graphs models are a generalisation of relational graph models from
[Manzonetto and Ruoppolo, 2014] and graph models from [Engeler, 1981]. Our models
live in a cartesian closed bicategory of distributors: the bicategory of symmetric categor-
ical sequences ([Gambino and Joyal, 2017]). Following [Olimpieri, 2021], we can present
them as intersection type systems, where the intersection is neither commutative nor
idempotent. However commutativity is restored with permutative actions on type deriva-
tions.

We proved that the classical interpretation of a λ-term M in such a model can be seen
as an intersection type distributor T~x(M) that actually corresponds to the collection of
its type derivations (see Theorem 9.3.5). We can consider the semantic as proof-relevant
since the interpretation of a λ-term does not just answer the question ”is this term M
typable with type a in environment Γ?”, but contains the derivations of Γ `M : a as wit-
ness of the statement. We then explored the importance of this additionnal information.

We observed that not all subterms of a term M are typed in a derivation π of M . Thus
only some redexes are typed: they are the ones carrying information. Contracting one
of those redexes leads to a term M ′ such that M →β M

′ and a derivation π′ of M ′ with
strictly small size than π. We can then define a normal form of derivations in Definition
10.1.26. Due to the nature of the intersection type distributor we also define its normal
form. For any λ-term M , there is an isomorphism between T~x(M) and NF(T~x(M)) (see
Theorem 10.1.27).

In Section 9.3.1, we extend the interpretation (and the intersection type distributor)
to approximants and Böhm trees. The untyped subterms in a derivation could as well
be replaced by ⊥ without altering the validity of it. Therefore we defined a map linking
derivations to minimal compatible λ-terms extended with ⊥ (see Definition 10.2.3). In
the case of derivations in normal forms, those are approximants. Using them we proved
the commutation Theorem 10.2.8: the normal form of the interpretation of a λ-term is
equivalent to interpretation of its Böhm tree. This result is similar to the famous one con-
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necting Taylor expansion and Böhm trees: NF(T (M)) = T (BTβ(M)). This highlights
that our intersection type derivations can be seen as linear appoximants.

From the commutation theorem we deduced the approximation Theorem 10.2.9: the
interpretation of the term is isomorphic to that of its Böhm tree.

However the interpretation being proof-relevant provides us with even more information.
Indeed in the proof of Theorem 11.2.4, from a derivation π contained in the interpretation
of a λ-term M but not in the interpretation of another λ-term N , we obtained an ap-
proximant Aπ for M that is not an approximant of N . The theory induced by our model
is then the one that equates λ-terms with same Böhm trees: Th(D) = B (see Corollary
11.2.5).

Similar techniques could not have been possible in usual models where the interpretation
does not contain as much information. In the last chapter we decategorified our results
and observed the consequences in the traditional 1-dimensionnal models.

The models considered are relational graph models in the coKleisli category of the
comonad of finite multisets on the category Polr (the category of preorders and monotonic
relations (Definition 12.1.5)).

Those models can be presented as non-idempotent intersection type systems.

We introduced a pseudofunctor going from Set-enriched distributors to {0, 1}-enriched
distributors, called the decategorification of Dist to Polr in Definition 12.2.1. It preserves
the linear logic structure (see [Galal, 2020]). From the bicategorical approximation the-
orem we then deduced, in corollary 12.2.7, an approximation theorem for the relational
graph models. In corollary 12.2.8), we finally showed that the theory of the categorified
graph model is included in the theory of its decategorification.

13.0.1. Future Developments.

We conclude with some more speculative discussions about possible future developments.

Towards 2-Dimensional λ-Theories

In Section 11.2 we consider isomorphisms that are coherent with respect β-normalisation,
giving them a suitable categorical characterisation could be an interesting step of future
investigations. In order to do so, it seems natural to start from the work of Fiore and Sav-
ille on Cartesian closed bicategories in [Fiore and Saville, 2019, Fiore and Saville, 2020].

One could consider the λ-calculus Λ⊥(X) corresponding to the free Cartesian closed
bicategory with pseudoreflexive object D on a set X, where each hom-category has an
initial object that is preserved by composition and by the Cartesian closed structure in an
appropriate sense. We conjecture that the isomorphisms we characterised syntactically
in Section 11.2 correspond to the ones in the free cocompletion under filtered colimits of
Λ⊥(X)(Dn, D). In this way one could define, in full generality, the free non-extensional
theory of a model as the one that arises from those appropriate structural isomorphisms.
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For the extensional case one could proceed analogously by taking an extensional D. In
particular, this means that an extensional bicategorical model will determine both free
non-extensional and extensional theories, and they will not coincide.

Besides these free constructions, one could also consider other relevant classes of isomor-
phisms between interpretations. Some questions immediately arise, which depend both
on the choice of isomorphisms and on the particular model considered: can these isomor-
phisms be characterised via appropriate structural isomorphisms of some sort? What is
the equational theory associated with those isomorphisms?

Second Dimension and Extensionality

One could study the possible extension of the method introduced in this paper to study
the extensional theory of the models D+, D[n] and D∗, individually introduced in Defini-
tion 9.2.5, and the relationship between these models and other constructions of exten-
sional models introduced in [Fiore et al., 2008, Galal, 2020]. As an approximation theory
one shall consider Lévy’s extensional Böhm trees, as in [Manzonetto and Ruoppolo, 2014,
Breuvart et al., 2018], or Nakajima trees as done for Scott’s D∞ model in [Hyland, 1976].

We conjecture that our technique can be adapted to prove that the extensional models
such as D+ and D[n] do satisfy an approximation theorem with respect Lévy’s exten-
sional approximants and that, as a corollary, one gets Th(D) = H+, where H+ is the
λ-theory equating two λ-terms having the same Böhm tree up to countably many finite
η-expansions.

This conjecture is motivated by analogous results available in the relational setting
[Breuvart et al., 2018]. In Section 11 we presented a direct proof of Th(D) = B, which
constitutes the first characterisation of the λ-theory induced by a bicategorical model.
In [Breuvart et al., 2018] a relational graph model E having theory B is presented, thus, by
Corollary 12.2.8 all bicategorical models D having E as decategorification satisfy Th(D) ⊆
Th(E) = B. Since B ⊆ Th(D) is a corollary of the Approximation Theorem, this gives an
indirect proof of Th(D) = B for these models.

In [Olimpieri, 2021] the construction of the bicategory of distributors is more parametrised
and allows to obtain also Scott-continuous models by decategorification, and many theo-
ries of continuous models are known (see [Berline, 2000], for a survey). Since Th(D) ⊆ T
is usually the difficult direction in proving Th(D) = T , we believe that these results may
be transposed from the categorical to the bicategorical setting using the decategorification
and the above reasoning.
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lambda-value term left behind. Log. Methods Comput. Sci., 12(2).

[Gardner, 1994] Gardner, P. (1994). Discovering needed reductions using type theory. In
Theoretical Aspects of Computer Software, pages 555–574, Berlin, Heidelberg. Springer
Berlin Heidelberg.

[Girard, 1987] Girard, J.-Y. (1987). Linear logic. Theoretical Computer Science, 50(1):1
– 101.

[Girard, 1988] Girard, J.-Y. (1988). Normal functors, power series and lambda-calculus.
Annals of Pure and Applied Logic, 37(2):129.

[Girard, 1989] Girard, J.-Y. (1989). Geometry of interaction 1: Interpretation of system f.
In Ferro, R., Bonotto, C., Valentini, S., and Zanardo, A., editors, Logic Colloquium ’88,
volume 127 of Studies in Logic and the Foundations of Mathematics, pages 221–260.
Elsevier.

147



14. Bibliography

[Guerrieri and Olimpieri, 2021] Guerrieri, G. and Olimpieri, F. (2021). Categorifying
Non-Idempotent Intersection Types. In Baier, C. and Goubault-Larrecq, J., editors,
29th EACSL Annual Conference on Computer Science Logic (CSL 2021), volume 183 of
Leibniz International Proceedings in Informatics (LIPIcs), pages 25:1–25:24, Dagstuhl,
Germany. Schloss Dagstuhl–Leibniz-Zentrum für Informatik.

[Guerrieri et al., 2017] Guerrieri, G., Paolini, L., and Ronchi Della Rocca, S. (2017). Stan-
dardization and conservativity of a refined call-by-value lambda-calculus. Logical Meth-
ods in Computer Science, 13(4).

[Herbelin and Zimmermann, 2009] Herbelin, H. and Zimmermann, S. (2009). An opera-
tional account of call-by-value minimal and classical λ-calculus in “natural deduction”
form. In Curien, P.-L., editor, Typed Lambda Calculi and Applications, pages 142–156,
Berlin, Heidelberg. Springer Berlin Heidelberg.

[Hilken, 1996] Hilken, B. P. (1996). Towards a proof theory of rewriting: the simply typed
2λ-calculus. Theor. Comput. Sci., 170(1-2):407–444.

[Hirschowitz, 2013] Hirschowitz, T. (2013). Cartesian closed 2-categories and permutation
equivalence in higher-order rewriting. Log. Methods Comput. Sci., 9(3).

[Honsell and Lenisa, 1993] Honsell, F. and Lenisa, M. (1993). Some results on the full
abstraction problem for restricted lambda calculi. In Borzyszkowski, A. M. and
Sokolowski, S., editors, Mathematical Foundations of Computer Science 1993, 18th
International Symposium, MFCS’93, Gdansk, Poland, August 30 - September 3, 1993,
Proceedings, volume 711 of Lecture Notes in Computer Science, pages 84–104. Springer.

[Hyland, 1975] Hyland, J. M. E. (1975). A survey of some useful partial order relations
on terms of the lambda calculus. In Lambda-Calculus and Computer Science Theory,
Proceedings of the Symposium Held in Rome, March 25-27, 1975, pages 83–95.

[Hyland, 1976] Hyland, J. M. E. (1976). A syntactic characterization of the equality in
some models for the λ-calculus. Journal London Mathematical Society (2), 12(3):361–
370.

[Hyland, 2017] Hyland, J. M. E. (2017). Classical lambda calculus in modern dress. Math.
Struct. Comput. Sci., 27(5):762–781.

[Hyland et al., 2006] Hyland, J. M. E., Nagayama, M., Power, J., and Rosolini, G. (2006).
A category theoretic formulation for Engeler-style models of the untyped lambda cal-
culus. Electron. Notes Theor. Comput. Sci., 161:43–57.

[Johnson and Yau, 2021] Johnson, N. and Yau, D. (2021). 2-Dimensional Categories.
Oxford University Press.

[Joyal, 1986] Joyal, A. (1986). Foncteurs analytiques et espèces de structures. In Combi-
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