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Abstract

The interest in neuronal networks originates for a good part in the option not to construct, but to train them. The mechanisms governing
synaptic modifications during such training are assumed to depend on signals locally available at the synapses. In contrast, the performance
of a network is suitably measured on a global scale. Here we propose a learning rule that addresses this conflict. It is inspired by recent
physiological experiments and exploits the interaction of inhibitory input and backpropagating action potentials in pyramidal neurons. This
mechanism makes information on the global scale available as a local signal. As a result, several desirable features can be combined: the
learning rule allows fast synaptic modifications approaching one-shot learning. Nevertheless, it leads to stable representations during
ongoing learning. Furthermore, the response properties of the neurons are not globally correlated, but cover the whole stimulus space.
q 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The origin and plasticity of the highly specific connec-
tivity of neuronal networks are central topics in neuro-
biology. The pattern of synaptic connections defines the
processing and memory storage properties. Many studies
indicate that the specification of wiring is partly genetic
and partly due to epigenetic factors (Singer, 1986). The
latter, i.e. learning and adaptation in the environment is
implemented by synaptic plasticity: the efficacy of synapses
is not constant but a function of many variables. On one
hand, it seems plausible to utilize only locally available
information for such a process, making the presynaptic
action potential and the postsynaptic membrane potential
a first choice. As a consequence, most learning rules investi-
gated are modifications of the classic rule proposed by Hebb
(1949) (Artola, Bröcher & Singer, 1990; Bienenstock,
Cooper & Munro, 1982; Sejnowski, 1977; Stent, 1973).
He proposed, that synaptic efficacy is increased upon corre-
lated pre- and postsynaptic activity. On the other hand, the
performance of the system is measured not on the level of
individual synapses, but on the network level (Atick and
Redlich, 1990; Barlow, 1989; Barlow, Kaushal & Mitchison,
1989; Comon, 1994; Dan, Atick & Reid, 1996; Deco &
Obradovic, 1996). Interesting measures being the total

amount of information transmitted or the quality of the
reconstruction of a stimulus. This difference in scope of
the definition of a learning rule, and its evaluation creates
the problem, how to make relevant information available to
the local process of synaptic modifications. A number of
solutions have been proposed, but as a tradeoff of interfering
with the dynamics of the system and the performance of the
learning rule has to be made, or strong physiological
assumptions are involved, no commonly accepted solution
is known.

A particularly well investigated example is the develop-
ment of receptive fields in primary sensory areas. Several
aspects characterize such systems. Firstly, the afferent fibers
have “simple” response properties (e.g. spatially concentric
on and off zones in the visual field or responding to sound
within a narrow frequency band only). Secondly, the
afferent fibers are topographically ordered. Thirdly, the
receiving neurons have qualitatively more complex recep-
tive fields (e.g. orientation selectivity or AM-modulation
selectivity). The receptive field properties of the receiving
neurons are at least in part determined by the pattern of
synaptic connection with the afferent fibers. These connec-
tions presumably are formed according to some learning
rule (cf. Katz & Callaway, 1992). In such a system the
performance of a “local” learning rule governing the modi-
fication of these synapses has to be evaluated according to
several global measures.Firstly, all possible stimuli should
specifically activate some neurons in the network, i.e. the
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union of all receptive fields should cover the stimulus space.
This implies, that the receptive fields are not globally
correlated and the neurons may not all learn the same
pattern. Obviously, this makes some form of interaction
between the neurons necessary (Barlow, 1989).Secondly,
rules of synaptic plasticity should allow quick learning.
Performance of biological system indicates extremely fast
performance, reaching one-shot learning in extreme cases.
This requirement precludes extensive sampling using a long
iterative procedure to determine the space of stimuli to be
covered. In contrast, a decision has to be made on the spot,
when a particular stimulus is presented (Buhmann, 1989;
Wendemuth & Sherrington, 1993).Thirdly, the system
should allow ongoing learning and be stable simultaneously.
Within the capacity of the network later learning should not
diminish old memories. Thus, repeated presentation of one

stimulus should not induce an increase of the respective
representation without bounds.Last, but not least, a learning
rule should be compatible with known physiological
properties of cortical neurons. The mechanisms should not
interfere with the processing of stimuli by the network as
such. Each of these problems has been addressed by
different studies using individually tailored learning rules.
However, none seems suited to solve all of these issues.

Here we present a learning rule which addresses—not
necessarily providing the final solution to—the issues listed
above. It is inspired by physiological experiments which
indicate that action potentials which are elicited in a neuron
propagate not only anterogradely along the axon, but also
retrogradely invade the dendritic tree (Stuart & Sakmann,
1994). If such a “backpropagating” action potential arrives
at a synapse simultaneously (i.e. within a small temporal
window), with an action potential in the presynaptic afferent
fiber the efficacy of the respective synapse is increased
(Magee, Hoffman, Colbert & Johnston, 1998; Markram,
Lubke, Frotscher & Sakmann, 1997). The modifications of
synaptic efficacy are dependent on the precise temporal
relationship of pre- and postsynaptic activity (Markram et
al., 1997) which had been predicted for theoretical reasons
(Gerstner, Ritz & van Hemmen, 1993). Recent experimental
results give an interesting twist to this scheme. Strong
activation of inhibitory synapses located at the proximal
dendritic tree may block or attenuate the retrograde propa-
gation of the action potential in the dendritic tree (Spruston,
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Nomenclature

v , Dv , DvLTP, DvLTD, DvNorm synaptic efficacy,
change of synaptic efficacy, and the its
different constituents

aLTP, aLTD rate parameters of the change of synaptic
efficacy

D t, t difference of the arrival time of pre- and post-
synaptic action potential and the time constant
ruling such detection of coincidences

Fig. 1. The architecture of the network: (a) The neurons are arranged in a stack of three 2-dimensional layers. One stimulus is projected as a gray levelpicture
onto the input layer (top). The large arrow indicates the direction of movement of this stimulus orthogonal to its orientation. The small arrows indicate
implemented connections with the size of projection zones. (b) Time trace of the activity of 10 input units (top), excitatory units (middle) and inhibitory units
(bottom) during stimulation. (c) Correlation function of the excitatory neurons and excitatory neurons (solid line) and inhibitory neurons (dashed line),
respectively.



Schiller, Stuart & Sakmann, 1995; Tsubokawa & Ross,
1996). Thus, the arrival of a retrogradely propagating action
potential at the synapse gives information not only on the
activation of the postsynaptic neurons, but also on the level
of inhibitory activity in the network. Thus, the synaptic
plasticity is contingent on locally available variables only,
which, however, represent a global measure of network
activity. In the following we formulate a learning rule,
which captures these effects, and demonstrate how it
addresses the performance criteria listed above.

2. Methods

2.1. The units and the network

We study the formation of receptive fields in a minimal
model. It consists of excitatory, inhibitory and input units
arranged in a 2-dimensional network (Fig. 1a). The activity
of the input units follows a Poisson distribution and the
instantaneous rate is set by the “visual” stimuli. Thus,
they produce a noisy activity pattern with slowly varying
density of spikes (Fig. 1b, upper row). The input units
project to a square area in the next layer of neurons, the
excitatory neurons. These connections are subject to the
learning rule as described below. The excitatory units are

reciprocally coupled to the inhibitory neurons forming a
negative feedback loop. Furthermore, the inhibitory neurons
are coupled back onto themselves. For simulations, a
conductance based leaky integrate and fire model was
implemented in GENESIS. Synaptic conductance had a
rise and fall time-course of 1 ms. Initial synaptic weights
were chosen with a Gaussian profile and 5% noise level for
the afferent connections and 10% noise level for all internal
connections. All transmission delays were set to 3 ms.

2.2. The stimuli

The stimuli are similar to conventional “light bars” used
in physiological experiments on the visual system (Hubel &
Wiesel, 1962). Their luminance is constant in one direction
and has a Gaussian profile in the orthogonal direction
(Fig. 1a). In most simulations described below the stimuli
are moving slowly across the map of input units. In some
cases, where noted, static stimuli or stimuli with different
geometrical properties were used.

2.3. The learning rule

For the learning rule we make the following assumptions:
when an action potential is triggered at the axon hillock
(Fig. 2a, 1) it propagates not only outwards along the
axon, but additionally retrogradely through the dendrites
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Fig. 2. The learning rule: (a) The diagram shows a small part of the network with events influencing synaptic plasticity. An action potential triggeredin a
pyramidal neurons at the axon hillock (1) propagates anterogradely and retrogradely (2). Synapses of inhibitory interneurons are located on the proximal
dendrite (3) and affect the backpropagating action potential. The learning rule evaluates the coincidence of backpropagating and afferent action potential at the
respective synapse (4). See text for details. (b) A series of events leads to an increase of synaptic efficacy in a pyramidal neuron. If an action potential is
triggered in this neuron (1) before other neurons are active (2), it passes the inhibitory synapses at the proximal dendritic tree (3). Then at those locations where
pre- and postsynaptic action potentials coincide (4) synaptic efficacy is increased (LTP). (c) The diagram shows a series of events leading to a decrease of
synaptic efficacy in a pyramidal neuron. If other neurons in the network respond earliest to the stimulus (1), inhibitory neurons (2) are activated before or only
shortly after the pyramidal neuron under consideration is activated (3). Thus, the inhibitory synapses attenuate or block the backpropagating action potential (4)
and a decrease of synaptic efficacy in the distal synapses results (5). (d) The probability of inducing a decrease of synaptic efficacy is plotted against the firing
frequency of the neuron.



(Fig. 2a, 2). On its way into the dendrite, the action potential
may be attenuated or throttled by inhibitory input from other
neurons (Fig. 2a, 3). Changes in synaptic efficacy of the
distal synapse are affected by the relative timing of pre-
and postsynaptic action potentials (Fig. 2a, 4):

1. If the backpropagating action potential is coincident with
the presynaptic action potential and its retrograde propa-
gation is not impeded by inhibitory input within 3 ms
(termed “winning”), then the efficacy of the respective
synapse is increased (Fig. 2b).DvLTP � aLTPt=ut 1 Dtu;
with aLTP a constant defining the learning rate,t � 5 ms,
andDt the temporal difference of firing between pre- and
postsynptic neuron.

2. If the backpropagating action potential arrives is coinci-
dent with the presynaptic action potential, but it is
attenuated by inhibitory input within 3 ms (termed
“loosing”), then the efficacy of the respective synapse
is decreased (Fig. 2c).DvLTD � aLTDt=ut 1 Dtu, with
aLTD a constant defining the learning rate,t � 5 ms,
and Dt the temporal difference of firing between pre-
and postsynptic neuron.

3. Furthermore, to guarantee the stability of the system, a
decay term proportional to the synaptic efficacy was
included. Its effect is smaller than the primary effects
of the learning rule by a factor of 20 and therefore is
mostly modulatory (Horn Levy & Ruppin, 1998;
Turrigiano, Leslie, Desai, Rutherford & Nelson, 1998).
DvNorm � 2aNormv 2 aDecay with aNorm and aDecay

constants defining the rate of weight decay.
4. For biological realism the weights were bound to be

nonnegative.v � max�v 1 DvLTP=LTD 1 DvNorm;0�:
In summary, this learning rule acts as a “soft winner takes

all” algorithm modulating the type of learning without
directly interfering with the activity of the neurons.

2.4. Data analysis

The performance of the learning rule is analyzed using
several standard measures, time series diagrams (dot
displays) and cross-correlation functions. Furthermore, we
found it useful to look at the tuning of neurons in “stimulus
space”. This allows a comprehensive representation of the
tuning of all neurons. To specify any particular stimulus its
orientation and position on a one-dimensional axis orthogo-
nal to its orientation must be given. Thus, we can display the
response of a neuron to all stimuli in a two dimensional
graph with stimulus orientation and position as axes. Simi-
larly, the coverage of all possible stimuli by neurons is
displayed in such graphs.

3. Results

Here we proceed in several steps, starting with the basic
dynamics of the neuronal network, and then investigating

the performance of the learning rule for sets of stimuli with
increasing complexity.

3.1. Network dynamics

Firstly, we characterize the basic properties of network
and learning rule. Presenting a slowly moving “light bar” as
a stimulus, which is typically used in physiological experi-
ments, the activity of the input units can be characterized by
a non-stationary Poisson process. The instantaneous firing
frequency increases when the stimulus enters the receptive
field of an input unit (Fig. 1b). Due to the negative feedback
by the inhibitory units and with the parameters chosen, the
network shows an oscillatory dynamics (Fig. 1b). Neurons
firing at low rates show oscillatory activity at the same
fundamental frequency, but miss individual cycles. Further-
more, within each oscillatory cycle their action potentials
are systematically delayed with respect to the optimally
stimulated neurons. The delay is of the order of few milli-
seconds, and thus is small compared to the period time of
the oscillation. This property matches well experimental
results (König, Engel, Roelfsema & Singer, 1995). In the
present context it is decisive, as it translates differences in
average firing rate on a time scale of hundreds of milli-
seconds into differences in timing of individual action
potentials on a millisecond time scale. Thus, the relative
strength of stimulation of different neurons is available
locally in time.

The inhibitory units are driven by the excitatory units and,
therefore, fire delayed. The phase shift is observed to be
about 5 ms (Fig. 1c). Whether such a regular relationship
between the firing of excitatory and inhibitory neurons
exists in the cortex is not resolved. Nevertheless, pre-
liminary data in favor of this hypothesis do exist (Gray,
Engel, König & Singer, 1991). Within the context of the
present model, the slightly delayed inhibition has the impor-
tant function of separating “winning” and “loosing”
neurons. The strongly stimulated neurons, firing at high
rates, fire early within the oscillatory cycles, and thus, the
probability of blocking the backpropagating action potential
by the rising inhibition in the network is low (Fig. 2d). In
contrast, in those neurons, which fire at moderate or low
rates, the backpropagating action potential is blocked
more often. As a result the synaptic efficacies are increased
on those neurons responding best and earliest, and the
respective neurons “learn” that stimulus even better. Other
neurons may respond to the stimulus and contribute to its
coarse coded representation (Lehky & Sejnowski, 1990),
but may not further tune the pattern of their afferent
synapses in favor of that stimulus. Thus, although for a
given stimulus many neurons respond, the described learn-
ing rule implements a soft winner take all mechanism acting
on the mechanisms of synaptic plasticity.

3.2. Dynamic recruitment

Among the properties the network acquires with the
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described learning rule, the number of neurons that repre-
sent one stimulus is of particular importance. Here an upper
boundary to this number is determined. We start out with a
network of neurons with unspecific receptive fields and
study the effects of presenting the same stimulus over and
over again. The trained stimulus is taken to have 458
orientation and is flashed on the input array along the
main diagonal. Initially many neurons respond with moder-
ate strength, as their unspecific receptive fields happen to be
partly overlapping with the stimulus (Fig. 3a, open bars).
After 50 stimulus presentations a limited number of neurons
responds vigorously, whereas the remaining did not change
the magnitude of their response (Fig. 3a, gray bars). These
neurons have changed their receptive fields according to the
stimulus properties. Upon each stimulus presentation they
“win” and the number of spikes eliciting LTP at the
synapses of the respective neurons stays constant (Fig. 3b,
diamonds). After some iterations, the effective tuning does
not change anymore and a steady state is reached. Indeed,
also the number of neurons “loosing”, i.e. where active
synapses are weakend, is reduced and approaches a steady
state with very low numbers of loosing neurons (Fig. 3b,
circles). The development of receptive field properties of a
tuned neuron is monitored in Fig. 3c. Here the response of
one neuron is plotted on a gray scale for all stimuli. Initially
(left panel) the membrane potential increases for stimuli of
all orientation of a suitable location. After training, the
response of the membrane potential (middle panel) is

more specific and spikes are triggered for a limited range
of orientations only (right panel). It now covers an area in
stimulus space where the stimulus selected for training is
localized.

The size of the representation of a stimulus is determined
by the parameters of the learning rule. In particular the ratio
of the strength of LTP and LTD has a profound influence.
We compare the size of the representation of a stimulus for
different strength of the LTD effect, keeping theaLTP term
constant. To determine the number of committed neurons,
we plot the cumulative distribution function of the response
strength. A bimodal distribution is found with a clear
separation of weakly and strongly responding neurons
(Fig. 3d, inset). The number of strongly responding neurons
is determined in repeated runs of the simulation and the 95%
confidence intervals are plotted in Fig. 3d. For smallaLTD

the effect of “loosing” is small, and thus a stimulus can
support a large representation in the steady state (Fig. 3d).
For largeraLTD the average size decreases approximately
with the inverse of this parameter (Fig. 3d, red line). The
dependence of the size of the representation onaLTD is well
described by a hyperbola. In summary, it is possible to tune
the desired size of the representation of a stimulus by the
choice of the relative strength of LTP and LTD.

3.3. Decorrelation

As a next step we investigate the properties of the
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Fig. 3. Training with one stimulus: (a) The distribution of the strength of neuronal responses is shown in the initial condition (open bars) and after 50 stimulus
presentations of one stimulus (gray bars). The horizontal bar indicates the range of response strength for square receptive fields with parameters asused in the
simulation. (b) The number of spikes inducing LTP (diamonds) and LTD (circles) is shown for 50 stimulus presentations. (c) The induced response, averaged
over all neurons, is shown on a gray scale for all stimuli. The stimuli are arrange according to their orientation and the position orthogonal to their long axis. On
the left and in the middle the induced currents are shown in the initial state and after 50 stimulus presentations respectively. On the right the current has been
multiplied with the I/F curve of the neurons to obtain the firing rate for each stimulus. (d) The number of committed neurons is shown for several values of
aLTD. The mean̂ the standard error of the mean of the size of the representation is plotted as black bars. The red line shows the one-parameter fit of a
hyperbola. The normalized scalar products of the receptive fields of the best tuned neuron and of all the others have a bimodal distribution as demonstrated by
the cumulative distribution in the inset. This allows a robust definition of “committed” neurons. The dashed vertical line indicates the threshold of0.75.



proposed learning rule when many different stimuli are
presented. Stimuli with randomly chosen orientations are
presented to the same network as above. Initially, due to
the nearly isotropic structure of the receptive fields the
specificity of the neuronal responses is low (Fig. 4a, open
bars). As a consequence, few stimuli are represented by

specific responses (Fig. 4c, left). These few specific
responses are due to edge effects, where receptive fields
are truncated and thus acquire orientation selective
response. With increasing network size these effects dimin-
ish and become irrelevant. During the first few stimulus
presentations the number of spikes generating LTP and
LTD events is high. This implies that each stimulus
shown has a large effect on the shaping of the receptive
fields. After about 10 stimuli, however, the system settles
into a steady state and the number of spikes inducing a
strengthening or weakening of synapses is constant on a
low level. The specificity of the neurons is significantly
increased (Fig. 4b, gray bars). As a next step we investigate
the tuning of these specific neurons (Fig. 4c, right). Their
receptive fields cover the whole stimulus space rather homo-
geneously. This implies that all possible stimuli will elicit a
response of a comparable number of specifically tuned
neurons. As the stimuli shown are only weakly correlated
(the correlation is not zero because many stimuli share the
central part) this property is transferred to the distribution of
receptive fields. In Fig. 4d the temporal development of the
correlation of receptive fields is shown. Initially all neurons
have circular receptive fields and the correlation of their
receptive fields is therefore high. After only 20 stimulus
presentations the correlation has drop significantly. The
residual correlation is due to the center of the receptive
field which is common to all stimuli, and thus to all
receptive fields.
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Fig. 4. Training with a set of stimuli with different orientations: (a) The distribution of the strength of neuronal responses is shown in the initial condition (open
bars) and after 50 presentations of stimuli with different orientations (gray bars). The horizontal bar indicates the range of response strength forsquare
homogeneous receptive fields. (b) The number of spikes inducing LTP (diamonds) and LTD (circles) is shown for 50 stimulus presentations. (c) The number of
neurons responding specifically to a stimulus is coded on a gray scale from black to white. The initial state of the network is shown on the left. The stimuli are
arranged according to their orientation and the position orthogonal to their long axis. After 50 stimulus presentations (right) all stimuli are represented by
specifically tuned neurons. The residual inhomogeneities are due to finite size effects. On the border receptive fields are truncated giving rise to somewhat
orientation selective receptive fields without training. On the other the number of neurons that can be recruited by a stimulus at high eccentricity issmaller than
in the center. (d) The cross-correlation of receptive fields is shown over time. All receptive fields have been aligned and the pair-wise cross-correlation
coefficient averaged over all pairs. The point to the right denotes the steady state value reached after about 50 iterations together with the standarddeviation.

Fig. 5. Training with an inhomogenous set of stimuli. On the horizontal axis
examples of stimuli used are shown. During the first 180 iterations moving
bars of random orientations were used. Then a circular stimulus is presented
20 times. The properties of the neuronal receptive fields are investigated at
the start of the simulation and after 100, 180 and 200 iterations (arrows). At
each time they are classified as either unspecific (upper row), or as
committed to bars (middle row) or the ring (lower row). For each class a
typical receptive field is shown together with the number of neurons in that
class.



3.4. Combined effects

Here we show that the effects of dynamic recruitment and
decorrelation of receptive fields may coexist in a neuronal
network. First randomly oriented moving bars are used as
stimuli as above. After presentation of 100 stimuli, a set of
neurons has acquired specific receptive fields (Fig. 5). For
the choice ofaLTP and aLTD a representation of each
stimulus by about four neurons is expected. Given that the
orientation of the stimulus may take any value in the interval
between 0 and 1808 a direct comparison is not possible.
However, taking into account that the orientation tuning
of the neurons is about 208 and the retinal area is about
twice the size of a receptive field the 78 specific neurons
are representing about�180=20� × 2� 18 “different”
stimuli. Thus, the data observed 78=18� 4:33 fit the expec-
tation of four neurons per stimulus well enough. Another set
of neurons remains unspecific, i.e. is not orientation tuned.
Presenting oriented bars 80 more times has little influence
on the tuning properties of the neurons. Introducing a new
stimulus, a ring, a number of neurons, which had previously
unspecific receptive fields, is recruited and develops recep-
tive fields matching the ring shaped stimulus. Again, the
recruitment of three neurons is compatible with the expec-
tations given by the choice of the relative strength of LTP
and LTD. These studies demonstrate that decorrelation and
dynamic recruitment are properties of the proposed learning
rule, which can be exploited simultaneously in the develop-
ment of a neuronal network.

4. Discussion

In this study we investigate the properties of a learning
rule which is inspired by physiological results. Firstly, these
studies demonstrate that when an action potential is trig-
gered at the axon hillock (Fig. 2a, 1) it propagates not
only anterogradly along the axon, but additionally retro-
gradely through the dendrites (Stuart & Sakmann, 1994).
Secondly, on its way into the dendrite the action potential
may be attenuated or throttled by inhibitory input from other
neurons (Tsubokawa & Ross, 1996). Recently, the direct
interaction of the backpropagating action potential, inhibi-
tory input and the calcium dynamics in the apical dendritic
tree has been demonstrated (Larkum et al., 1999). And
finally, they suggest that changes in synaptic efficacies are
affected by the relative timing of pre- and postsynaptic
action potentials (Gerstner et al., 1993; Markram et al.,
1997). The learning rule that formalizes these results leads
to several desirable properties. First, it leads to a decorrela-
tion of receptive field properties. Second, new stimuli are
learned within a few iterations. Third, it leads to stable
representations during ongoing learning. It might be viewed
as an instance, where the incorporation of physiological
results into a neural network simulation leads to interesting
new insights.

Nevertheless, for the sake of clarity and ease of imple-
mentation several simplifications were used in the present
work.

Most notably, we neglected in this paper the effect of the
sequence of pre- and postsynaptic potentials (Markram et
al., 1997). In these in vitro experiments the synaptic efficacy
was increased only if the presynaptic action potential
preceded the action potential in the postsynaptic neuron.
Here we use a symmetric window and the synapse is
strengthened as long as the two action potentials co-occur
within a small temporal window. Thus, the sequence of pre
and postsynaptic action potentials is not relevant. It should,
however, be noted that the activity of the presynaptic
neurons is described by a Poisson process. Thus, there is
no information in the precise temporal structure of the
afferent spike train and we did not observe any effect of
including an asymmetric temporal window (data not
shown). Furthermore, this phenomenon can not replace
the mechanism proposed here. In all neurons, which are
activated by a stimulus, whether strongly or moderately
so, some afferent action potentials have to precede the post-
synaptic action potential, and thus, will be learned. There-
fore, an asymmetric window for the coincidence of pre- and
postsynaptic action potentials cannot replace the infor-
mation whether the neuron under consideration is among
those responding best and earliest to the stimulus or not.
Interestingly, the mechanism analyzed here is closely
related to the rank-order coding scheme used by (Van
Rullen et al., 1998). In this simulation the spike timing
carries the information on the visual stimulus and allows
rapid processing in a feed-forward network. Extending the
learning rule analyzed here with an asymmetric window, i.e.
making synaptic plasticity dependent on the sequence of
pre- and postsynaptic action potentials, might lead to
interesting applications in such a network architecture.

We are working with a set of parameters leading to oscil-
latory activity in the network. This establishes a reference
frame making the distinction between early and late activity
unambiguous (Hopfield, 1995). However, it does not seem
to be a necessary condition. In the visual cortex of the cat a
systematic lag of suboptimally driven neurons with respect
to optimally driven neurons was found which was not tied to
an oscillatory process (Ko¨nig et al., 1995). For a more
extensive discussion see also Wennekers and Palm (1999).

In its original formulation a Hebb-type learning rule leads
to a positive feedback with a run-away increase of synaptic
efficacy. To solve this problem several mechanisms have
been suggested: the average activity of the postsynaptic
neuron defines a sliding threshold separating regions of
LTP and LTD (Bienenstock et al., 1982). This leads to a
normalization of each neuron’s average firing rate. In recent
years experimental support for this hypothesis has become
available (Bear, 1997; Kirkwood, Rioult & Bear, 1996). An
alternative is to normalize the total afferent synaptic weight
of each neuron (Horn et al., 1998), a mechanism which has
found support by in vitro experiments (Turrigiano et al.,
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1998). Here, we have chosen the second mechanisms for
ease of implementation. Furthermore, these mechanisms are
not exclusive and we would be surprised if not both as well
as other options are used by the biological system.

Given that one of the major reasons to investigate the
properties of neuronal networks is that they may be trained,
the wealth of work on different types of learning rules is not
surprising. Furthermore, as the features listed in the intro-
duction have been individually addressed by previous work,
why do we need yet another learning rule?

One of the major problems of existing learning rules is
that different neurons tend to develop identical properties.
Thus their activity becomes correlated and progressively
less information is transferred to successive structures
(Nadal, Brunel & Parga, 1998). A decorrelation of the
receptive fields by competitive mechanisms between
different neurons is therefore often used in artificial neural
networks (Barlow, 1989; Hemmen 1990). However, no
commonly accepted scheme to achieve that purpose using
a physiologically plausible learning rule exists. Neurons
may interact by lateral connections which are subject to
an anti-Hebbian learning rule (Barlow & Fo¨ldiak, 1989;
Rubner & Schulten, 1990). The inhibitory effects of these
connections forces neurons to develop decorrelated patterns
of afferent synapses, which are learned according to a Hebb-
type learning rule. In the present work the tangential
connections are themselves not subject to synaptic plasti-
city, but they influence modifications of the afferent
synapses. Thus, a comparable effect is achieved with a
physiologically plausible mechanism.

Another aspect of interest is the spatial arrangement of
neurons with different response properties. For many years
it is known that neurons with similar response properties are
clustered in cortex. With modern imaging methods topo-
graphic structure like bands/blobs/stripes/pinwheels have
been demonstrated and a number of studies addressed
these phenomena (Goodhill, 1997). Many of the different
learning rules proposed are actually derived from similar
principles (Erwin, Obermayer & Schulten, 1995). For
example, the competition for a substrate together with the
use of local correlation (Miller, Keller & Stryker, 1989)
leads to patterns as those observed in the mammalian visual
cortex. Nevertheless, a number of problems remain, e.g. the
relation of patterns determined by different features such as
orientation vs. ocular dominance (Erwin et al., 1995), and
the global arrangement of these structures within a cortical
area (Wolf, Bauer, Pawelzik & Geisel, 1996). In the present
work, we did not address these problems and the relation of
the proposed learning rule to other mechanism governing
the topographic order in cortical areas is left for future work.

In the study of artificial neuronal networks “network
growing methods” have been found useful. They may
control hidden layer capacity to achieve optimal fitting
and generalization. An interesting closely related line of
research is the Adaptive-Resonance-Theory by Grossberg
and his coworkers (Carpenter, Cohen & Grossberg, 1987;

Grossberg, 1975). Here a comparable mechanism is imple-
mented on an abstract level, which allows to check whether
a stimulus is already presented (Resonance) and if not, to
establish a new representation upon a single presentation. In
comparison, the learning rule proposed here is formulated in
more physiological terms and does not “create” new cells on
the fly, however it dynamically recruits previously
unspecific neurons for the representation of new stimuli.
As such, it might establish a physiological basis for the
Adaptive-Resonance-Theory or related “network growing”
methods.

In conclusion, a model is presented in which a single
learning rule provides a solution to several central problems
of learning in neural networks architectures. When applied
to the afferent connections it leads to decorrelation of recep-
tive field and dynamic recruitment of neurons by new
stimuli, resulting in efficient representation. Thus, the
usual tradeoff between speed of learning and memory
capacity does not apply, and both stability and one shot
learning are combined.
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