
OptimalComplexityReduction of

PolyhedralPiecewiseAffineSystems ⋆

Tobias Geyer 1,2, Fabio D. Torrisi 3, Manfred Morari

Automatic Control Laboratory, ETH Zurich, 8092 Zurich, Switzerland

Abstract

This paper focuses on the NP-hard problem of reducing the complexity of piecewise polyhedral systems (e.g. polyhedral
piecewise affine (PWA) systems). The results are fourfold. Firstly, the paper presents two computationally attractive algorithms
for optimal complexity reduction that, under the assumption that the system is defined over the cells of a hyperplane
arrangement, derive an equivalent polyhedral piecewise system that is minimal in the number of polyhedra. The algorithms
are based on the cells and the markings of the hyperplane arrangement. In particular, the first algorithm yields a set of
disjoint (non overlapping) merged polyhedra by executing a branch and bound search on the markings of the cells. The
second approach leads to non-disjoint (overlapping) polyhedra by formulating and solving an equivalent (and well-studied)
logic minimization problem. Secondly, the results are extended to systems defined on general polyhedral partitions (and not
on cells of hyperplane arrangements). Thirdly, the paper proposes a technique to further reduce the complexity of piecewise
polyhedral systems if the introduction of an adjustable degree of error is acceptable. Fourthly, the paper shows that based on
the notion of the hyperplane arrangement PWA state feedback control laws can be implemented efficiently. Three examples,
including a challenging industrial problem, illustrate the algorithms and show their computational effectiveness in reducing
the complexity by up to one order of magnitude.

Key words: Optimal complexity reduction; Model reduction; Controller reduction; Piecewise affine system; Hybrid system;
Boolean minimization; Hyperplane arrangement

1 Introduction

This paper focuses on the problem of finding a minimal
representation of polyhedral piecewise systems. More
specifically, for a given polyhedral piecewise system, we
solve the problem of deriving a polyhedral piecewise sys-
tem that is both equivalent to the former and minimal
in the number of polyhedra. We refer to this as optimal
complexity reduction.

Polyhedral piecewise systems are defined by partitioning
a (polyhedral) input-space into polyhedra and associat-
ing with each polyhedron a function. Major subclasses
of polyhedral systems are polyhedral piecewise polyno-
mial systems (with polynomial functions) and polyhe-
dral piecewise affine (PWA) systems (Sontag, 1981),

⋆ This paper was not presented at any IFAC meeting.
1 Corresponding author. Tel.: +49-89-5528-3435; fax: +49-
89-5528-3180; email address: geyer@control.ee.ethz.ch
2 T. Geyer is currently with GE Global Research Europe,
Munich, Germany
3 F.D. Torrisi is currently with McKinsey & Company,
Zurich, Switzerland

where the functions are affine. In particular, PWA sys-
tems represent a universal modelling framework to de-
scribe hybrid systems (systems with continuous and dis-
crete components and variables). Concerning synthesis,
constrained optimal control problems, which tradition-
ally could be solved only on-line, can be pre-solved off-
line, too. If the underlying (prediction) model is of PWA
form (and a linear objective function is used), this leads
to an explicit state-feedback control law that is also
PWA (Borrelli, 2003; Borrelli et al., 2005).

In the sequel, we will mostly consider PWA models and
PWA state-feedback control laws. The motivation for de-
riving a PWA model minimal in the number of polyhedra
is twofold. When pre-computing the optimal control law
off-line to derive the state-feedback controller, an inter-
nal PWA model is required. Due to the combinatorial na-
ture of the problem, both the computation time and the
controller complexity are (in the worst case) exponential
in the number of polyhedra of the PWA model (Borrelli,
2003).

On the other hand, once the PWA state-feedback con-
trol law has been derived, the memory requirement and

5 November 2007

the on-line computation time are linear in the number
of polyhedra of the feedback law when using standard
brute force search. When using a binary search tree as
proposed in Tøndel et al. (2003), the computational bur-
den can be reduced at the expense of enlarging the mem-
ory requirement. More precisely, the computation time
becomes sublinear in the number of polyhedra, while the
memory requirement becomes superlinear.

If the number of polyhedra with the same function is
large, the number of possible polyhedral combinations
for merging explodes; as shown in Chazelle (1984) and
references therein this task is NP-hard. Since most of
these unions are not convex or even not connected and
thus cannot be merged, trying all combinations using
standard techniques based on linear programming (LP)
as suggested in Bemporad et al. (2001) is prohibitive.
Furthermore, our objective here is not only to reduce
the number of polyhedra but rather to find the minimal
and thus optimal number of polyhedra. To the best of
our knowledge, the derivation of such algorithms is still
an open problem.

The problem can be tackled by using the notion of cells
and markings in a hyperplane arrangement. The cells
are the polyhedra generated by the hyperplane arrange-
ment. These cells can be uniquely identified by their
markings, i.e. their relative positions with respect to the
hyperplanes. Using the markings enables us to deter-
mine a priori – i.e. without solving any LP – if a given
combination of polyhedra is convex.

Exploiting this fact, we propose in this paper two al-
gorithms that yield the minimal number of polyhedra
without solving any LP. The first algorithm executes a
branch and bound search on the markings yielding a set
of disjoint (non-overlapping) merged polyhedra. Addi-
tional heuristics on the branching strategy are used to
reduce the computation time. The second approach re-
lies on the fact that the optimal complexity reduction
problem can be reformulated as a logic minimization
problem by replacing the markings by Boolean variables
and minterms. Logic minimization is a fundamental is-
sue in digital circuit design, and efficient tools have been
developed to successfully tackle these problems, which
often encounter hundreds or thousands of variables. The
resulting polyhedra, however, are not disjoint in general,
but overlapping. We would like to stress that – since
both algorithms refrain from solving additional LPs –
they are not only optimal but also computationally fea-
sible. In many cases, the hyperplane arrangement and
its markings are available. This is the case, for exam-
ple, when a PWA model has been derived using the
mode enumeration algorithm (Geyer et al., 2003). Nev-
ertheless, the applicability of the algorithms can be ex-
tended to polyhedral piecewise systems lacking the hy-
perplane arrangement (like PWA state-feedback control
laws) by first computing the hyperplane arrangement
and the markings. For this, standard and efficient tech-

niques are available including reverse search (Avis and
Fukuda, 1996).

This paper is organized as follows. Section 2 recalls
basic terminology, defines polyhedral PWA systems,
introduces hyperplane arrangements, and summarizes
the concept of cell enumeration. The (disjoint and non-
disjoint) optimal complexity reduction problems are
formally stated in Section 3. The key lemma to evaluate
convexity of polyhedra (using only their markings) is
proven in Section 4. Algorithms for optimal complexity
reduction based on branch and bound, and logic mini-
mization are proposed in Sections 5 and 6, respectively.
Section 7 summarizes an algorithm to derive the hy-
perplane arrangement. By simplifying the hyperplane
arrangement the complexity of the solution can be fur-
ther reduced at the expense of an adjustable degree of
error. The optimality of the algorithms is shown and
further elaborated on in Section 8. In Section 9, the ef-
fectiveness of the approaches is demonstrated by three
examples including a large industrial problem. Tech-
niques to efficiently implement PWA state-feedback
control laws are outlined in Section 10, and conclusions
are drawn in Section 11.

In the sequel, we will often abbreviate optimal com-
plexity reduction with OCR. The OCR algorithms have
been implemented in Matlab and are included in the
multi-parametric toolbox (MPT) developed by Kvas-
nica et al. (2004). The toolbox is freely available from
http://control.ee.ethz.ch/~mpt/.

2 Preliminaries

2.1 Basic Terminology

Definition 1 (Polyhedron) A convex set P in the d-
dimensional Euclidian space Rd given by P = {x ∈Rd | aT x ≤ b} is called a polyhedron with a ∈ Rd×n

and b ∈ Rn. The operator ≤ denotes an element-wise
comparison of two vectors.

Equivalently, the polyhedron P can be considered as the
intersection of a finite number (here n) of half spaces
{x ∈ Rd | aT

i x ≤ bi} induced by the hyperplanes Hi =
{x ∈ Rd | aT

i x = bi}. In particular, a and b hold the n

hyperplanes, i.e. a = [a1, . . . , an] and b = [b1, . . . , bn]T .

Definition 2 (Facet) If P ∩Hi is (d− 1)-dimensional
then P ∩ Hi is called a facet of the polyhedron P.

Definition 3 (Polyhedral Partition) A collection of
polyhedra Pi ⊆ R, i ∈ I ⊂ N, is a polyhedral partition

2

of the polyhedron R, iff

(i)
⋃

i∈I

Pi = R , (1a)

(ii) Pi ∩ Pj is lower-dimensional ∀i, j ∈ I, i 6= j
(1b)

2.2 Polyhedral Piecewise Affine Systems

Polyhedral Piecewise Affine (PWA) systems (Sontag,
1981; Heemels et al., 2001) are defined by partitioning
the polyhedral input-space X into polyhedra and asso-
ciating with each polyhedron an affine output function

y = fj(x) (2a)

with j such that x ∈ Pj , (2b)

where x ∈ X and y ∈ Y denote the (vector-valued) input
and output, respectively, the polyhedra Pj define a set
of polyhedra {Pj}j∈J on X , and fj is a vector-valued
affine function. We refer to j ∈ J , with J finite, as the
mode of the system and to #J as the number of modes.

Remark 4 Strictly speaking (1b) gives rise to double
definitions of the PWA function (2) over the boundaries
of the polyhedra. This issue can be accommodated by us-
ing a disambiguation rule for the cases where there ex-
ist i, j such that fi(x) 6= fj(x) for x ∈ Pi ∩ Pj. In any
case, merging is only possible when fi(x) = fj(x) for
x ∈ Pi ∪ Pj. Therefore, since Pi ∩ Pj ⊂ Pi ∪ Pj holds,
boundaries that would require disambiguation are clearly
preserved by the algorithms presented in the remainder of
the paper and can be handled by trivial modifications to
the algorithms. These modifications are omitted for ease
of reading.

Throughout this paper, we will consider two forms of
polyhedral PWA systems. PWA models are dynamical
system representations with a PWA state and a PWA
output equation, which are functions of the state and
the input. PWA state-feedback control laws are a con-
troller representation, where the control input is a PWA
function of the state.

Since our line of research is mostly concerned with poly-
hedral PWA systems, we (artificially) restrict ourselves
in this paper to such systems. Nevertheless, the whole
framework including the proposed algorithms and theo-
rems also holds for polyhedral piecewise systems in gen-
eral including e.g. polyhedral piecewise polynomial sys-
tems. Specifically, fj in (2a) is not required to be affine.

2.3 Hyperplane Arrangements

Let A be a collection of n distinct hyperplanes
{Hi}i=1,...,n in the d-dimensional Euclidian space Rd.
We say that the hyperplanes of A are in general posi-
tion, if there exists no pair of parallel hyperplanes, and

+ + + −

+ + + +

+ + − −

+ − − −

− − − −
− + + +

− − + +− − − +

+ − − +

+ + − +

1

2
3

4

Fig. 1. Arrangement of four hyperplanes (lines) in R = R2

with the corresponding markings m ∈ M(R). Regarding
Example 16, the polyhedra corresponding to Mw are white
and the polyhedra corresponding to M ′

b are grey shaded,
respectively

if any point of Rd belongs at most to d hyperplanes.
Let SV : Rd → {−, +}n be the simplified sign vector 4

defined as

SVi(x) =

{

− if aT
i x ≤ bi,

+ if aT
i x ≥ bi

for i ∈ {1, 2, . . . , n} . (3)

Consider the setPm = {x ∈ Rd | SV(x) = m} for a given
sign vector m. This set is called a cell of the arrangement
and is according to Definition 1 a polyhedron as it is
defined by linear inequalities. We will refer to m as the
marking of the polyhedron (or cell)Pm in the hyperplane
arrangement A (see Fig. 1). Let M(R) be the image
of the function SV(x) for x ∈ R ⊆ Rd, namely the
collection of all possible markings of all points in R.

Let the ’∗’ element extend the sign vector in the sense
that it denotes the union of cells, where the correspond-
ing hyperplane is not a facet of the associated polyhedron
Pm. As an example, consider in Fig. 1 the two polyhe-
dra with the markings m1 = −−−− and m2 = +−−−.
Then, m = ∗−−− is equivalent to {m1,m2} and refers
to Pm1

∪ Pm2
.

2.4 Cell Enumeration in Hyperplane Arrangements

The cell enumeration problem in a hyperplane arrange-
ment amounts to enumerate all the elements of the set
M(R). Let #M(R) be the number of cells identified by
M(R). For n hyperplanes in a d-dimensional space Buck

4 Note that in general, the sign vector is defined such that
its image is {−, 0, +}, where the ’0’ element corresponds to
aT

i x = bi. As noted in Remark 4 complexity reduction will
only attempt to remove hyperplanes separating polyhedra
such that fi(x) = fj(x) for x ∈ Pi∪Pj . Therefore, the double
definition of SVi(x) for aT

i x = bi is not an issue.

3

(1943) defines the upper bound

#M ≤
d

∑

i=0

(n
i) = O(nd), (4)

with the equality satisfied if the hyperplanes are in gen-
eral position and R = Rd.

Edelsbrunner (1987) showed that the cell enumeration
problem admits an optimal solution with time and space
complexity O(nd). An alternative approach based on re-
verse search was presented by Avis and Fukuda (1996),
improved by Ferrez et al. (2001) and implemented by
Ferrez and Fukuda (2002). Reverse search is an exhaus-
tive search technique that can be considered as a special
graph search. This search technique has been used to de-
sign efficient algorithms for various enumeration prob-
lems such as enumeration of all spanning trees and cells
in hyperplane arrangements.

Proposition 5 (Ferrez et al. (2001, Theorem 4.1))
There exists a reverse search algorithm for enumerating
hyperplane arrangements that runs in O(n lp(n, d)#M)
time and O(nd) space, where lp(n, d) denotes the com-
plexity of solving a Linear Program (LP) with n con-
straints and d variables.

Note that in many cases of interest, the hyperplanes are
not in general position and #M is considerably smaller
than the theoretical upper bound. Moreover, reverse
search is a standard search algorithm for which efficient
parallel implementations exist (Brungger et al., 1999).

From the definition of Pm and (3) follows directly that
the collection of polyhedral sets {Pm}m∈M(R) is a poly-
hedral partition of R.

3 Problem Statement

In the following, we assume that besides the PWA rep-
resentation a corresponding hyperplane arrangement A
is available together with the markings M(R) 5 . Specif-
ically, we assume the following.

Assumption 1 The polyhedra of the given PWA sys-
tem are cells in a hyperplane arrangement, of which the
markings are available.

For a given PWA representation the aim of the OCR al-
gorithms is to derive an equivalent representation that is
minimal in the number of polyhedra by replacing polyhe-
dra with the same (affine) function by new sets of poly-
hedra of minimal cardinality. For clarity of exposition,

5 In Section 7, we will relax this assumption and extend
the OCR algorithms to general PWA system not defined in
hyperplane arrangements.

we associate with each (affine) function a different color,
and we collect the polyhedra with the same color. Then,
for a given color, we pose the following three problems,
where we distinguish between results formed by disjoint
and non-disjoint polyhedra.

Problem 6 (Disjoint Optimal Complexity Re-
duction (DOCR)) Given an initial set of polyhedra
{Pi}i=1,...,p with the same color satisfying Assump-
tion 1, the disjoint optimal complexity reduction problem
amounts to deriving a new set of polyhedra {Qi}i=1,...,q

with the following properties: (i) the union of the new
polyhedra is equal to the union of the original ones,
i.e. (

⋃q
i=1 Qi) = (

⋃p
i=1 Pi), (ii) q is minimal, i.e. there

exists no set {Q′
i}i=1,...,q′ with a smaller number of poly-

hedra, (iii) the new polyhedra are mutually disjoint, i.e.
Qi ∩ Qj is lower-dimensional for all i, j ∈ {1, . . . , q},
i 6= j, and (iv) the new polyhedra are formed as unions of
the old ones, i.e. for each Qj , j ∈ {1, . . . , q}, there exists
an index set I ⊆ {1, . . . , p}, such that Qj =

⋃

i∈I Pi.

This problem is equivalent to an optimal merging prob-
lem. Next, we remove Requirements (iii) and (iv) thus
allowing overlaps in the resulting polyhedra. Addition-
ally, we require that each polyhedron is represented by
a minimal number of facets.

Problem 7 (Non-Disjoint Optimal Complexity
Reduction (NOCR)) Given an initial set of polyhedra
{Pi}i=1,...,p with the same color satisfying Assumption 1,
the non-disjoint optimal complexity reduction problem
amounts to deriving a new set of polyhedra {Qi}i=1,...,q

with Properties (i) and (ii) as in Problem 6. A secondary
objective is to (iii) minimize the number of facets on Qi.

Strictly speaking, the second problem is not a merging
problem, but a more general optimal set covering prob-
lem, which is (as shown later) equivalent to logic mini-
mization frequently used in digital circuit design.

Problem 8 (General Non-Disjoint Optimal Com-
plexity Reduction (GNOCR)) Given an initial set
of polyhedra {Pi}i=1,...,p with the same color, the gen-
eral non-disjoint optimal complexity reduction problem
amounts to deriving a new set of polyhedra {Qi}i=1,...,q

with Properties (i), (ii) and (iii) as in Problem 7.

All three tasks are non-trivial, because the union of poly-
hedra with the same color is in general non-convex and
we are aiming at deriving the optimal solution, or more
specifically, the set of polyhedra with the minimal cardi-
nality. Indeed, the problems are NP-hard (see Chazelle
(1984) and references therein). As a direct consequence,
fast algorithms are unlikely to exist leaving us either with
rather long computation times or suboptimal solutions.
Our goal is to design algorithms that are applicable to
problems of meaningful size but nevertheless yield the
global optimum.

4

4 Convexity and Connectivity of Polyhedral
Sets

Definition 9 (Separating Hyperplane) Suppose P1

and P2 are two (convex) polyhedra that do not inter-
sect, i.e. P1 ∩ P2 is lower-dimensional. A hyperplane
{x | cT x = d} with c 6= 0 and d, such that cT x ≤ d for all
x ∈ P1 and cT x ≥ d for all x ∈ P2 is called a separating
hyperplane for the polyhedra P1 and P2.

The proof of the following lemma follows directly from
the definition of the markings.

Lemma 10 (Separating Hyperplane) Given the hy-
perplane arrangement {Hi}i=1,...,n consisting of n dis-
tinct hyperplanes, the set of markings M(R), and the
two polyhedra P1 and P2 with the corresponding mark-
ings m1,m2 ∈ M(R) that differ in the j-th component,
then Hj is a separating hyperplane for P1 and P2.

Definition 11 (Envelope) Given two polyhedra P1

and P2, the envelope env(P1,P2) of the two polyhedra
is defined as the intersection of half spaces that contain
both polyhedra, where the half spaces are induced by the
facets of the polyhedra.

Lemma 12 (Envelope) Consider the hyperplane
arrangement {Hi}i=1,...,n consisting of n distinct hyper-
planes, the set of markings M(R), and the two polyhedra
P1 and P2. Let these two polyhedra have the markings
m1,m2 ∈ M(R), where m1(i) = m2(i) for i ∈ I and
m1(i) 6= m2(i) for i ∈ I ′ with I ′ = {1, . . . , n} \ I. We
construct the marking me as follows: me(i) = m1(i)
for i ∈ I and me(i) =’∗’ for i ∈ I ′. Then the envelope
env(P1,P2) of the two polyhedra is given by me.

Proof Recall that a ’∗’ in a marking means that the
corresponding hyperplane does not define the polyhe-
dron. As all the facets of P1 and P2 are subsets of the
hyperplanes in the arrangement, and as the hyperplanes
with indices I ′ are separating hyperplanes for P1 and
P2 according to Lemma 10, the proof follows from the
definition of the envelope. 2

The proof can be easily generalized to envelopes of more
than two polyhedra.

Theorem 13 (Convexity, Bemporad et al. (2001,
Theorem 3)) Given the two polyhedra P1 and
P2, their union P1 ∪ P2 is convex if and only if
P1 ∪ P2 = env(P1,P2).

The following lemma allows us to determine the con-
vexity of two polyhedra by only evaluating their mark-
ings. This lemma constitutes the basis for the OCR al-
gorithms.

Lemma 14 (Convexity) Given the collection of mark-
ings M(R), the union of the two polyhedra P1 and P2

with the markings m1,m2 ∈ M(R), m1 6= m2, is convex,
if and only if the markings differ in exactly one compo-
nent.

Proof As we have Theorem 13 at our disposal, we only
need to prove thatP1∪P2 = env(P1,P2) if and only if m1

and m2 differ in exactly one component. The ”⇐” part
follows directly from Lemma 12. The ”⇒” part follows
by contradiction. Recall, that P1 ∪ P2 ⊆ env(P1,P2),
and assume that P1 ∪ P2 6= env(P1,P2), i.e. there are
points x ∈ env(P1,P2) \ (P1 ∪P2). Then there exists at
least one hyperplane that is separating x from P1 or x
from P2 besides the one that is separating P1 from P2.
Thus m1 and m2 differ in at least two components. 2

The concept of markings in a hyperplane arrangement
allows us to evaluate the convexity of polyhedra by ap-
plying Lemma 14 to their associated set of markings.
The algorithms refrain from solving LPs – in fact, they
extract the information from the markings that in turn
summarize the result of the LPs solved to compute the
cells of the hyperplane arrangement. Even though we will
design algorithms assuring optimality, the computation
times to solve the OCR problems are rather small (pro-
vided that Assumption 1 holds) making the algorithms
applicable to problems of meaningful size.

Definition 15 (Connectivity) Two polyhedra are
called neighboring polyhedra if they share a common
facet. A set of polyhedra {Pi}i∈I is connected if for each
Pi, i ∈ I, there exists a Pj, i 6= j, j ∈ I such that Pi

and Pj are neighboring polyhedra.

Obviously, a necessary condition for the convexity of a
union of a set of polyhedra is that the set of polyhedra is
connected. Connectivity can be easily determined using
the markings. Given the set of markings M(R) and the
set of polyhedra {Pmi

}mi∈M(R) with markings in the
set M(R), the polyhedra are connected if and only if for
each polyhedron Pmi

with marking mi ∈ M(R), there
exists a polyhedron Pmj

with marking mj ∈ M(R),
such that mi and mj differ in exactly one component.
To reduce the computation time of the OCR algorithms,
we will exploit this fact by further partitioning the set of
polyhedra with the same color into connected subsets.

5 Disjoint Optimal Complexity Reduction

Let the set Mw denote the markings of a connected sub-
set with the same color. We refer to the corresponding
polyhedra as white polyhedra. As the color of the re-
maining polyhedra is not relevant at this stage, we as-
sume that the remaining markings M ′

b = M(R)\Mw

correspond to black polyhedra. The basic concept of the
algorithm is to derive a minimal representation of the
white polyhedra by dividing their envelope sequentially

5

into polyhedra using the hyperplanes of the hyperplane
arrangement.

5.1 Algorithm 1 – Branch and Bound

Let the envelope of the white polyhedra with markings
Mw be denoted by Pme

. It is given by the marking me,
which is constructed as in Lemma 12. Slightly abusing
the notation we will write me = env(Mw). As all white
polyhedra are contained in their envelope, we can for-
mulate an equivalent problem with reduced complexity
that considers only the black polyhedra contained in this
envelope, i.e. Mb = {mb ∈ M ′

b | Pmb
⊆ Pme

}, where
Pmb

denotes the polyhedron with marking mb.

Let I ∈ {1, . . . , n} denote the index set of hyperplanes
in A that are separating hyperplanes for polyhedra in
the envelope Pme

. According to Lemma 10, I is sim-
ply the collection of indices i with me(i) =’∗’. Then,
we can choose any hyperplane Hi, i ∈ I, to divide
Pme

into two polyhedra. Hi also divides the sets of
white and black markings respectively into two subsets.
We denote the subset of Mw that holds those mark-
ings whose i-th element is a ’−’ with Mw|m(i)=−, i.e.
Mw|m(i)=− = {m ∈ Mw | m(i) =’−’}. Mw|m(i)=+ and
the partition of Mb are defined accordingly. Clearly, the
unions of each pair of subset equal the original sets Mw

and Mb, respectively. Next, the algorithm branches on
the i-th hyperplane by calling itself twice – first with the
arguments Mw and Mb restricted to possessing a ’−’ as
i-th element, and then correspondingly with the argu-
ments restricted to a ’+’. Both function calls return sets
of markings Mm corresponding to merged white polyhe-
dra. This is repeated for all the remaining hyperplanes
with indices i ∈ I.

A branch terminates if one of the following two cases
occurs. First, if the set of markings corresponding to
black polyhedra is empty, i.e. Mb = ∅. This implies, that
at this point the envelope contains only white polyhedra.
Hence, the envelope represents the union of the set of
white polyhedra with markings in Mw, and it is convex
by construction. We will refer to this convex set as a
merged white polyhedron. Second, a branch terminates
if the set of markings corresponding to white polyhedra
is empty, i.e. Mw = ∅, as this implies that no more white
polyhedra are available for merging.

The algorithm uses standard bound techniques to cut
off suboptimal branches by using the two variables z
and z̄. z denotes the current number of merged white
polyhedra and z̄ is the local upper bound on z. Initially,
z is set to 0, and z̄ is initialized to the number of original
white polyhedra. Branching is only performed if z < z̄,
as branches with z > z̄ are either equivalent to or worse
than the current optimum.

The above described branch and bound algorithm is

summarized in the following, where #M denotes the
number of elements in the set M .

Algorithm 1
function Mm = mrg(Mw, M ′

b, z, z̄)
me = env(Mw); Mb = {mb ∈ M ′

b | Pmb
⊆ Pme

}
if Mw = ∅ then Mm = ∅
elseif Mb = ∅ then Mm = me

else
I = {i | me(i) = ’∗’}; Mm = ∅
for i ∈ I

if z < z̄ then
Mm1

= mrg(Mw|m(i)=− , Mb|m(i)=− , z, z̄)
Mm2

= mrg(Mw|m(i)=+ , Mb|m(i)=+ , z + #Mm1
, z̄)

if Mm = ∅ or #Mm1
+ #Mm2

< #Mm then
Mm = Mm1

∪ Mm2
; z̄ = min(z̄, z + #Mm)

return Mm

Example 16 As an example with four hyperplanes in a
two-dimensional space consider Fig. 1. The envelope of
the white polyhedra is given by the positive half space of
H4 and the marking me = ∗∗∗+. Thus, only the black
polyhedra with markings Mb = {+−−+,++−+} are con-
sidered, and branching is only performed on the hyper-
planes in I = {1, 2, 3}. Branching on H1 leads in one
step to the two merged (white) polyhedra with Mm =
{−∗∗+,++++}. This is already the optimal solution.
Nevertheless, the algorithm also branches on the two re-
maining hyperplanes in I and finds two additional solu-
tions that are equivalent to the first one in terms of the
number of polyhedra.

Lemma 17 Algorithm 1 solves the Disjoint Optimal
Complexity Reduction Problem 6.

Proof The proof follows in a constructive way from the
algorithm. When branching on the i-th hyperplane Hi,
the set of white markings is divided into the two sets
Mw|m(i)=− and Mw|m(i)=+ according to the two half
spaces induced by Hi. This operation assures that the
merged polyhedra are mutually disjoint. In particular, as
no white polyhedra are discarded during the operation
and since Mw = (Mw|m(i)=−) ∪ (Mw|m(i)=+), the union
of the merged polyhedra equals the union of the white
polyhedra. The minimality of the number of merged
polyhedra is ensured by branching on all hyperplanes un-
less bound techniques cut off suboptimal branches. 2

We conclude that the proposed algorithm is computa-
tional efficient in the sense that the convexity recogni-
tion is performed only by comparing the markings rather
than by solving LPs, it is optimal as the branch and
bound algorithm guarantees that the global minimum is
found, and it is a top down approach based on the no-
tion of the envelope of white polyhedra that is sequen-
tially divided into subsets up to the point where the sub-
set contains either only white polyhedra or where it is
empty.

6

5.2 Branching Heuristics

Apart from bound techniques, additional heuristics
can be used to greatly reduce the computation time.
These heuristics provide the hyperplanes with branch-
ing priorities according to their expected benefit in the
OCR process and allow deciding on which hyperplane
to branch first. The heuristics are intended to quickly
find a solution equal or close to the optimal one thus
allowing the effective pruning of suboptimal branches.

Specifically, we associate with the hyperplanes the fol-
lowing (descending) branching order:

(1) Hyperplanes that separate two non-connected
groups of white polyhedra thus allowing us to divide
the problem into two subproblems. Connectivity
can be easily determined as described in Section 4.

(2) Hyperplanes, such that one half space contains only
white polyhedra. If so, we choose the hyperplane
yielding the maximal number of white polyhedra.

(3) Any remaining hyperplane.

6 Non-Disjoint Optimal Complexity Reduction

In this section, we reformulate the complexity reduction
problem as a logic minimization problem. Thus, instead
of markings with {−, +} elements, we will use Boolean
vectors with {0, 1} components.

Logic minimization is commonly used in digital circuit
design, where a given Boolean function is to be mini-
mized in terms of the number of literals (Boolean vari-
ables or their complement in a Boolean expression) and
the number of product terms (expressions made of lit-
erals and the AND operation). Logic minimization was
initiated in the 1950s by Veitch (1952) and Karnaugh
(1953) who introduced the K-map to manually minimize
(two-level) Boolean functions. In the 1980s, ESPRESSO-
II (Brayton et al., 1984) was designed that allows one
to attain global optimality even for large problems. This
guarantees that the minimum number of product terms
is derived, while the number of literals is also mini-
mized (with second priority). The tool is readily avail-
able from the Departement of EECS, University of Cal-
ifornia, Berkeley (1982), and has been employed for the
examples presented in the remainder of this paper.

6.1 Problem Formulation with Boolean Logic

For a hyperplane arrangement with n hyperplanes Hi =
{x ∈ Rd | aT

i x = bi}, i ∈ {1, . . . , n}, we redefine the sign
vector as the function SV′ : Rd → {0, 1}n that maps x
into a Boolean vector with components

SV′
i(x) =

{

0 if aT
i x ≤ bi,

1 if aT
i x ≥ bi

for i ∈ {1, 2, . . . , n} . (5)

Here, we use the prime to distinguish it from the original
sign vector (3). Accordingly, a polyhedral cell is defined
as Pδ = {x ∈ Rd | SV′(x) = δ} for a given Boolean
vector δ, which replaces the marking m. Let ∆(R) be the
image of SV′(x) for x ∈ R ⊆ Rd, namely the collection
of all the possible Boolean vectors of all the points in R.

The ’∗’ element, which extends the sign vector by de-
noting hyperplanes that are not a facet of the associated
polyhedron, is translated into Boolean variables that are
removed from the Boolean vector δ. Thus in general, δ
has a variable number of components. Obviously, the de-
finitions and lemmas of Section 4 can be directly applied
to the Boolean problem formulation with SV′(x) and δ.

6.2 Algorithm 2 – Logic Minimization

We start by introducing the Boolean function fW that
– given the Boolean vector δ – evaluates the color of
the polyhedron (white, black or undecided). The color is
undecided if the corresponding polyhedron is not a cell in
the hyperplane arrangement, i.e. the corresponding δ is
not contained in ∆(R) and the polyhedron has an empty
interior. Specifically, fW yields for δ corresponding to
white polyhedra a ’1’, for black ones a ’0’ and for empty
ones (with an empty interior) an ’X’, which is usually
referred to as a don’t care in digital circuit design.

We write fW in disjunctive normal form, which is also
referred to as sum of product form. In fW, each minterm
(product term, in which all variables appear exactly
once) represents a white polyhedron. Each literal refers
to a facet of such a polyhedron, and fW represents the
union of all white polyhedra. Logic minimization can be
used to reduce the number of terms in fW. This is equiv-
alent to reducing the number of white polyhedra. Addi-
tionally the number of literals of each term can be re-
duced. The latter refers to reducing the number of facets
per polyhedron. In general, these objectives lead to over-
lapping polyhedra. This is a desired feature, since – as
will be shown in Section 8 – overlaps allow reducing the
overall number of product terms and literals.

Alternatively, one may represent fW in form of a truth
table. A truth table carries the main advantage that it al-
lows for providing the logic minimization tool with addi-
tional structural information, namely empty polyhedra
can be specified with an ’X’. During the minimization
process, the tool assigns to don’t cares minterms (empty
polyhedra) a color such that the overall number of prod-
uct terms and literals becomes minimal. The result is ei-
ther a simplified truth table or a reduced disjunctive nor-
mal form. Both representations directly translate into
the new set of (overlapping) polyhedra {Qi}i=1,...,q.

We refer to the logic minimization as Algorithm 2. Sum-
ming up, for a given color, the truth table with the
Boolean function fW is built, a logic minimization tool

7

1110

1111

1100

1000

0000 0111
0011

0001

1001

1101

1

2 3 4

(a) Four hyperplanes and the
Boolean vectors δ

δ1 δ2 δ3 δ4 fW

0 0 0 0 0

0 0 0 1 1

0 0 1 0 X

...
...

...
...

...

1 1 1 1 1

(b) Truth table for white
polyhedra

Fig. 2. Revisited Example 16 with the hyperplane arrange-
ment, the Boolean variables and the truth table

(here ESPRESSO-II) is used to derive a reduced dis-
junctive normal form that is minimal in the number of
product terms (which refer to polyhedra) and, with sec-
ond priority, minimal in the number of literals (which
refer to facets).

Example 18 Reconsider Example 16 with the hyper-
planes and markings as in Fig. 1. We associate with each
hyperplane a Boolean variable δi, which we collect in the
Boolean vector δ. As shown in Fig. 2(a), we restate the
problem in terms of δ. The Boolean function for the white
polyhedra follows immediately to

fW = δ̄1δ̄2δ̄3δ4 + δ̄1δ̄2δ3δ4 + δ̄1δ2δ3δ4 + δ1δ2δ3δ4 . (6)

Simplifying this function algebraically and without ex-
ploiting the don’t cares leads to fW = δ̄1δ̄2δ4 + δ2δ3δ4.

Alternatively, we may translate Fig. 2(a) into the truth
table for white polyhedra, which is shown in Table 2(b).
Here, the empty polyhedra are listed with an ’X’. Using
ESPRESSO-II, this additional information allows one to
obtain the representation fW = δ̄1δ4 + δ3δ4 that is mini-
mal in the number of product terms (polyhedra) and the
number of literals (facets). In terms of markings, this re-
sult corresponds to Mm = {−∗∗+, ∗∗++}. Compared to
Example 16, where the disjoint OCR Algorithm based on
the markings yielded Mm = {−∗∗+,++++}, the solution
here is reduced by two facets. In general, as will be seen in
Section 8, allowing non-disjoint polyhedra leads to solu-
tions with fewer polyhedra and fewer facets compared to
the case where we restrict ourself to disjoint polyhedra.

Lemma 19 Algorithm 2 solves the Non-Disjoint Opti-
mal Complexity Reduction Problem 7.

Proof Given the resulting white polyhedra {Qi}i=1,...,q

the proof contains three parts. Firstly, we need to prove
that adding additional hyperplanes to the arrangement
does not improve the solution by reducing q. This follows
directly from the fact that only facets separating black
and white polyhedra are needed as facets for Qi, and
that all these facets are subsets of the hyperplanes con-
tained in the arrangement. Secondly, recall the equiva-
lence between polyhedra and product terms, and facets

and literals, respectively. As the logic minimization tool
yields the minimal number of product terms (assuming
that empty polyhedra are included in the minimization
process as don’t cares), q is minimal, too. Furthermore,
the equivalence ensures that the union of the resulting
polyhedra Qi equals the union of the original white poly-
hedra. Thirdly, the minimization of the number of liter-
als leads to the minimal number of facets.

7 Computation of Hyperplane Arrangement

Algorithms 1 and 2 in the proposed form are only ap-
plicable to PWA systems with a hyperplane arrange-
ment, i.e. PWA systems whose polyhedra are cells in
a hyperplane arrangement of which the markings are
available. In this section, we remove Assumption 1 and
outline two algorithms that compute the hyperplane
arrangement and its cells.

7.1 Algorithm 3 – Computation of Full Hyperplane
Arrangement

The first algorithm, to which we refer as Algorithm 3,
computes the full (as opposed to the simplified) hyper-
plane arrangement. Given a set of polyhedra, the algo-
rithm consists of two major steps.

(1) Hyperplane arrangement: Collect the facets of all
polyhedra and remove all duplicates. This leads to
the hyperplane arrangement.

(2) Markings and Colors: Determine the relative posi-
tion of each polyhedron with respect to each hy-
perplane. This yields a preliminary set of markings,
where an additional symbol is used to denote poly-
hedra whose interior intersects with a hyperplane.
Resolve the latter markings by sequentially divid-
ing the corresponding polyhedra into two. Propa-
gate the color information to the markings.

The first step is computationally very cheap and involves
only vector comparisons. The second operation, how-
ever, involves solving LPs and increases the number of
polyhedra significantly. Therefore, such an algorithm is
computational tractable only for problems with a lim-
ited complexity. Yet, a number of enhancements, namely
the exploitation of parallel hyperplanes and the removal
of redundant hyperplanes reduces the computation time
remarkably. In particular, the reverse search algorithm
(see Proposition 5) can be used advantageously in the
second step.

Example 20 Consider the sets of white and black poly-
hedra in Fig. 3(a). The first step of Algorithm 3 identifies
13 different facets. Since the facets constraining the con-
vex hull of the polyhedra are not considered, the hyper-
plane arrangement encompasses only nine hyperplanes
shown as dashed lines in Fig. 3(b). In the second step, the

8

(a) Original white and black
polyhedra

(b) Modified polyhedra in a
hyperplane arrangement

(c) Polyhedra resulting from
disjoint OCR

(d) Polyhedra resulting from
non-disjoint OCR

Fig. 3. Derivation of cells defined in a hyperplane arrangement and OCR in Example 20

polyhedra are divided into cells in the hyperplane arrange-
ment. As a result, the number of white polyhedra is in-
creased from 6 to 16 (see Fig. 3(b)). OCR restricted to
disjoint polyhedra (Algorithm 1) yields three white poly-
hedra depicted in Fig. 3(c), whereas OCR based on logic
minimization (Algorithm 2) yields only two white poly-
hedra, which are overlapping as indicated by the dashed
lines in Fig. 3(d).

It is particularly interesting to observe that merging
the original white polyhedra in Fig. 3(a) in a optimal
way without using a hyperplane arrangement would lead
to four white polyhedra. In general, such an approach
would require to determine the convexity of each union
(each pair, triple, etc.) of white polyhedra by using the
algorithms of Bemporad et al. (2001), which resort to
solving LPs, and to choose among the convex unions a
combination that yields the minimal number of unions
and covers all white polyhedra. Despite the fact that
such an approach is computationally intractable even
for very small problems, it is also in general inferior to
the OCR algorithms in terms of the number of resulting
polyhedra as the example demonstrates.

Thus deriving the hyperplane arrangement first and re-
ducing the complexity subsequently in an optimal way
yields in general a lower number of polyhedra compared
to the case, where the original polyhedra are merged op-
timally without the notion of a hyperplane arrangement.

The following key lemma follows directly from Lemma 19
and the fact that Algorithm 3 is run first.

Lemma 21 Algorithm 3 followed by Algorithm 2 solves
the General Non-Disjoint Optimal Complexity Reduction
Problem 8.

Clearly, a corresponding lemma could be established for
the combination of Algorithms 3 and 1, too.

7.2 Algorithm 4 – Computation of Simplified Hyper-
plane Arrangement

In this section, we outline a technique to reduce the num-
ber of hyperplanes in the hyperplane arrangement. Since
the complexity of the OCR algorithms depends expo-
nentially on the number of hyperplanes in the arrange-
ment, such a reduction extends the applicability of the
OCR algorithms to problems of larger size. Moreover,
the complexity of the solution can be further reduced at
the expense of an adjustable degree of error.

In many cases, the hyperplane arrangement contains nu-
merous hyperplanes that are almost identical, at least
very similar. Assume that all hyperplanes Hi = {x ∈Rd | aT

i x = bi} are normed, i.e. aT
i ai = 1. Given the

two hyperplanes Hi and Hj , we use µ = ||[aT
i bi]

T −
[aT

j bj]
T ||1 as a measure for similarity. We say that the

hyperplanes Hi and Hj are similar, if µ is below a given
threshold.

Next, we outline Algorithm 4 that derives a simplified
hyperplane arrangement by replacing clusters of similar
hyperplanes by their weighted average. This approach is
an extension of Algorithm 3.

(1) Hyperplane arrangement: Collect the facets of all
polyhedra and remove all duplicates. This leads to
the hyperplane arrangement.

(2) Clusters: For a given µ, identify groups of similar
hyperplanes. Replace the groups by one hyperplane
given by the weighted average of the group. This
yields the simplified hyperplane arrangement.

(3) Markings: Compute the cells and their markings
of the simplified arrangement as in Step 2 of Algo-
rithm 3.

(4) Colors: Identify the color of each cell by intersecting
it with all given initial polyhedra. If all non-empty
intersections are with polyhedra of the same color,
assign this color to the cell. Otherwise, either use
the color of the largest intersection, or assign a don’t
care to the cell.

9

x1x2

x
3

0

0 0

1

1
1

0.5

0.5 0.5

(a) Original sets of white and black
polyhedra

x1x2

x
3

0

0 0

1

1
1

0.5

0.5 0.5

(b) Polyhedra resulting from non-
disjoint OCR with µ = 0

x1x2

x
3

0

0 0

1

1
1

0.5

0.5 0.5

(c) Polyhedra resulting from non-
disjoint OCR with µ = 0.35

Fig. 4. OCR and simplification of the hyperplane arrangement in Example 22

In general, the result will have (small) color errors. We
define the color error as the radius of the largest Cheby-
cheff ball that can be inscribed in the intersection of
the two polyhedra P and Q of different colors, where P
is in the set of original polyhedra and Q is in the set
of resulting polyhedra. Often, small errors in the color
of the resulting polyhedra can be tolerated, particularly
in the presence of model uncertainties (in case of PWA
models) or measurement noise (in case of PWA state-
feedback control laws). Moreover, the complexity of the
solution based on a simplified hyperplane arrangement is
in general significantly reduced and the solution is well-
defined, i.e. each point x ∈ R is included in (at least)
one polyhedron and is associated with exactly one color.
The design parameter µ can be considered as a tuning
knob to reduce the complexity of the solution (while in-
creasing the color error).

Example 22 Consider in the three-dimensional space
the sets of white (yellow) and black (red) polyhedra in
Fig. 4(a), where we aim at minimizing both the 15 white
and the 28 black polyhedra. Thus, after running Algo-
rithm 3 to obtain the hyperplane arrangement, we execute
Algorithm 2 twice. When refraining from simplifying the
hyperplane arrangement, one white and six black polyhe-
dra result as shown in Fig. 4(b). Alternatively, simplify-
ing the hyperplane arrangement with µ = 0.04 leads to
one white and five black polyhedra and a color error be-
low 0.004. Increasing µ to 0.1 and 0.35 reduces the num-
ber of black polyhedra to four and three, respectively, and
increases the maximal color error to 0.01 and 0.037, re-
spectively. As the polyhedra are scaled to [0, 1], even the
absolute error of 0.037 corresponds to an inaccuracy of
only 3.7 percent. Observe that increasing µ not only re-
duces the number of resulting polyhedra, it also greatly
reduces the number of facets per polyhedron.

Summing up this example, the non-disjoint OCR algo-
rithm with µ = 0 reduced the number of polyhedra by 84
percent. Setting µ = 0.35 additionally reduced the num-
ber of polyhedra by another 43 percent while introducing
a color error of 3.7 percent.

8 Optimality of Algorithms

In the following, we compare the OCR Algorithms 1
and 2 with each other. Both are optimal in the sense that
they yield the minimum number of polyhedra for the
specific problem they solve (Problems 6 and 7). Yet, as
the problems differ regarding the property whether the
resulting polyhedra are required to be disjoint or not,
the complexity of the solution in terms of the number of
polyhedra and facets differs in general, too.

Recall that in Problem 6, the resulting polyhedra are
required to be disjoint and unions of the original poly-
hedra. Thus, Problem 6 is an optimal merging problem,
which can be also considered as a specific optimal set par-
titioning problem. The problem is specific in the sense
that the hyperplanes along which the set can be par-
titioned are restricted to the hyperplanes given by the
facets of the original polyhedra to be merged. This issue
is rather subtle, yet we would like to clarify it with the
following example.

Example 23 For given sets of white and black polyhe-
dra, assume we have derived the hyperplane arrangement,
split the polyhedra into cells defined in this arrangement,
and run subsequently Algorithm 1 that yields the three
white polyhedra shown in Fig. 5(a). This solution is op-
timal with respect to Problem 6. Yet, adding to the hy-
perplane arrangement an additional vertical hyperplane
that cuts through the center of the figure would reduce
the solution to only two white polyhedra. On the other
hand, Algorithm 2 leads to the two white polyhedra de-
picted in Fig. 5(b), where the dashed lines indicate the
overlaps. Adding additional hyperplanes to the arrange-
ment before running Algorithm 2 would not improve the
solution. This holds in general due to Lemma 21.

We conclude that even though Algorithm 1 solves Prob-
lem 6 by deriving a solution that is minimal in the
number of merged polyhedra, the number of polyhe-
dra might be further reduced by introducing additional
facets. Thus, in general, the merged polyhedra constitute
only a suboptimal solution to the (more general) opti-
mal set partitioning problem. Nevertheless, even though

10

such a case has been constructed here, they appear to
be rare in practice.

In Problem 7, the restriction requiring the resulting poly-
hedra to be disjoint and unions of the original polyhedra
is dropped. Hence, strictly speaking, the second problem
is not a merging problem but a more general optimal set
covering problem. As Problem 7 is less restrictive than
Problem 6, we expect Algorithm 2 to generally yield a
lower number of polyhedra and facets than Algorithm 1.
This is confirmed by Examples 20 and 23. In particular,
as already mentioned above, adding hyperplanes does
not improve the solution.

9 Examples

In this section we present several examples showing how
the OCR algorithms can be applied to PWA models as
well as to PWA state-feedback control laws with the aim
to efficiently derive equivalent minimal representations.
All experiments were run on a Pentium IV 2.8 GHz ma-
chine with Matlab 6.5.

9.1 PWA Model with Hyperplane Arrangement

In Geyer et al. (2003), we have detailed the model of
a paperboy delivering mail items to households within
a PWA neighborhood. The model has a PWA char-
acteristic, and it has two real inputs, four real states
and two binary states. To facilitate the modelling, we
have described the model in a high-level textual form
in the modelling language Hysdel (Torrisi and Bem-
porad, 2004). The mode enumeration algorithm (Geyer
et al., 2003) transforms the textual model description
into the equivalent PWA model. Since this algorithm is
based on the cell enumeration in hyperplane arrange-
ments, it also provides the corresponding hyperplane
arrangement encompassing 11 hyperplanes and the set
of markings. The model encompasses 168 polyhedra in
the eight-dimensional state-input space.

(a) Polyhedra resulting
from disjoint OCR

(b) Polyhedra resulting
from non-disjoint OCR

Fig. 5. OCR in Example 23 visualizing the consequence of
restricting the hyperplane arrangement to hyperplanes given
by facets of the original white polyhedra

The disjoint OCR Algorithm 1 reduces the number of
polyhedra from 168 down to 36 within 0.22 s. This is a
reduction of the complexity by roughly 80 percent. In
particular, both PWA models are equivalent, meaning
that for every given state and input they yield the same
state-updates and outputs.

9.2 PWA State-Feedback Control Law for Toy Example

Next, we perform OCR to a PWA state-feedback con-
trol law. For a PWA model with two modes, Baotić et al.
(2003) have formulated and solved a constrained infinite
time optimal control problem. The resulting polyhedral
partition of the state-space X = [−10, 10] × [−10, 10] is
shown in Fig. 6(a), where each color relates to a differ-
ent affine control law. Note that there exist 19 different
control laws and 252 polyhedra.

For this example, we compare the following three algo-
rithms with each other: (i) general disjoint OCR (Algo-
rithms 3 and 1), (ii) general non-disjoint OCR (Algo-
rithms 3 and 2) and (iii) greedy merging, which we out-
line next. In a first step – to speed up the computations –
the greedy merging algorithm builds a sparse matrix in-
dicating whether two polyhedra are neighbors according
to Definition 15 using the algorithms described in Bem-
porad et al. (2001). Based on this list, it determines in a
second step by solving LPs if a pair of neighboring poly-
hedra forms a convex union. If so, the pair is replaced
by its union and the list is updated accordingly. This is
done sequentially until no pair is left for merging. The
merging procedure is done in a greedy way (optimality
is not pursued) and additional facets are not introduced.

Algorithm 3 derives a hyperplane arrangement with 135
hyperplanes containing 5200 polyhedra within 34 s. The
disjoint OCR Algorithm 1 leads to 39 polyhedra, which
are shown in Fig. 6(c). Compared to the initial 252 poly-
hedra, this is a reduction of 84 percent. The computa-
tion time is 3 min. The non-disjoint OCR Algorithm 2
also leads to 39 polyhedra. Even though these are over-
lapping, the polyhedral partition is very similar to the
one in Fig. 6(c). Yet the computation time is with 5 s
very small. Greedy merging fails to reach similar levels
of simplification. It leads to the result shown in Fig. 6(b)
with 189 polyhedra computed in 17 s.

Based on our experience, we conclude the following. The
disjoint OCR algorithm based on branch and bound
is rather slow limiting its applicability mostly to prob-
lems with a few thousand polyhedra defined in a two-
or three-dimensional space. The non-disjoint OCR al-
gorithm based on logic minimization, however, is gener-
ally faster by two orders of magnitude and it also scales
better as the problem size increases. This is mainly due
to the fact that a state-of-the-art logic minimization
tool (ESPRESSO-II) with advanced heuristics is used.
OCR problems with hyperplane arrangements compris-
ing hundreds of hyperplanes with some 100′000 cells

11

−10 −5 0 5 10
−10

−5

0

5

10

(a) Original set of 252 polyhedra

−10 −5 0 5 10
−10

−5

0

5

10

(b) Set of 189 polyhedra resulting from
greedy merging

−10 −5 0 5 10
−10

−5

0

5

10

(c) Set of 39 polyhedra resulting from
OCR

Fig. 6. Polyhedral partitions of the PWA state-feedback control law, where each color relates to a different affine feedback law,
using different complexity reduction schemes

have been tackled successfully within a few minutes. For
larger problems, the memory requirement for storing the
truth table becomes a limiting factor. The main bottle-
neck, however, is the computation of the cells in the hy-
perplane arrangement, namely Algorithm 3. The main
problem here is the significant increase in the number
of polyhedra when deriving the hyperplane arrangement
(in the above example from 252 to 5200 polyhedra). This
can be overcome by applying the techniques presented
in Section 7.2, namely by simplifying the hyperplane
arrangement or using a divide and conquer strategy as
will be shown in the next example.

9.3 PWA State-Feedback Control Law for Industrial
Problem

In the last example, we apply the non-disjoint OCR al-
gorithm to an industrial problem in the field of power
electronics. We consider a three-phase two-level DC-AC
inverter driving an induction motor using the control
methodology Direct Torque Control. For a comprehen-
sive treatment of this problem, the reader is referred
to Geyer (2005).

For this setup, we have formulated an optimal (direct
torque) control problem. Even though the model in-
volves only three real and three binary states, the control
problem is highly challenging due to the model nonlin-
earities, the large control horizon required and the very
short sampling interval of 25µs. As a result, the PWA
state-feedback control law is very complex and comprises
for each of the eight binary state combinations up to
8500 polyhedra. Taking into account the short sampling
interval such a control law is hardly implementable.

To make our OCR schemes applicable, we employ a di-
vide and conquer strategy. Specifically, we divide the

original large problem sequentially into pairs of smaller
subproblems, which can be solved efficiently by one of
the OCR algorithms. Subsequently, the solutions of the
subproblems are recombined. To assure optimality, an
OCR algorithm is run also on the unions of the solutions
of the subproblems. In general, this is computationally
feasible as the complexity of the subproblems has been
greatly reduced in the first step. Such a scheme is par-
ticularly useful in our context here, since the computa-
tional burden and memory requirement is in the worst
case exponential in the number of hyperplanes. Care has
to be taken when dividing a problem with the hyper-
plane arrangement {Hi}i=1,...,n into two subproblems.
As the computational burden mostly depends on n, it is
beneficial to divide the problem such that the number
of hyperplanes n1 and n2 in the subproblems are both
minimal and balanced (n1 ≈ n2).

As a result, the complexity of the control laws is reduced
by roughly 90 percent. The computation times are in the
range of seven to 11 hours and thus large. Yet, we would
like to recall that the OCR needs to be performed only
once off-line. For the particular application the reduc-
tion of the number of polyhedra by an order of magni-
tude is expected to be decisive for a successful hardware
implementation, given the very short sampling interval.

10 Efficient Implementation of PWA State-
Feedback Control Laws

When implementing a PWA state-feedback control law,
one faces the problem of finding the control law for the
given state in an efficient way. The standard solution is
to determine the polyhedron that the state lies in by
cycling through (in the worst case all) the polyhedra
and checking if the corresponding inequalities hold. Even

12

though these operations involve only matrix multiplica-
tions, for small sampling times and/or large numbers of
polyhedra this approach becomes prohibitive.

The OCR algorithms not only allow one to derive a rep-
resentation of the control law that is minimal in the num-
ber of polyhedra, but also provide a simple and efficient
way to implement it. After the OCR step, we propose
to compute again the hyperplane arrangement and the
markings for the reduced problem. Based on the mark-
ings, the controller can be implemented either as a col-
lection of Boolean functions or as a binary search tree.

10.1 Collection of Boolean Functions

Each marking or Boolean vector is associated with a
certain color, where each color represents a feedback
law. Similar to Section 6, we build for each color a
Boolean function with the Boolean vector as argument.
This yields a collection of Boolean functions. Thus on-
line, for a given state, one only needs to determine the
Boolean vector based on the modified sign vector and
evaluate which Boolean function is true. The latter di-
rectly relates to the feedback law. Hence, only the sign
vector together with the Boolean functions needs to
be implemented. In particular, polyhedra do not need
to be stored and evaluated thus reducing the memory
requirement and the on-line computation time. Such an
approach is particularly suitable for a hardware imple-
mentation, since the Boolean functions can be easily
implemented as a two-level disjunctive normal form
using AND, OR and NOT gates.

10.2 Binary Search Tree

Alternatively, one may build a binary search tree similar
to Tøndel et al. (2003), which allows one to determine for
a given state the polyhedron and the associated control
law efficiently. Specifically, given a state, the control law
is found by traversing from the root node to the leafs.
Each node is associated with a hyperplane; branching at
the nodes is done according to the half space (induced by
the hyperplane) the state lies in. Each leaf is associated
with a control law (and a polyhedron).

A non-trivial task is to build a search tree of minimal
depth. Such a search tree minimizes the worst-case com-
putational burden, which is proportional to the maximal
number of hyperplanes to be evaluated. Tøndel et al.
(2003) use heuristics to derive a tree of small depth. Us-
ing the markings, however, enables us to derive a binary
search tree of minimal depth by setting up a branch and
bound algorithm similar to Algorithm 1.

11 Conclusions

Exploiting the markings of the hyperplane arrangement
allowed us to build an equivalent polyhedral piecewise

system minimal in the number of polyhedra by using ei-
ther branch and bound techniques to derive a disjoint
set of polyhedra, or logic minimization to obtain poly-
hedra that are in general overlapping. Compared to the
disjoint OCR approach, in general, logic minimization
leads to solutions with fewer polyhedra (due to the possi-
bility of overlaps) and it performs significantly faster. If
the markings and the hyperplane arrangement are given
(e.g. from a preceding run of the mode enumeration al-
gorithm), it is not necessary to solve additional LPs.
This allows a significant reduction of the computational
requirements while retaining optimality of the resulting
simplified partitions.

By computing the hyperplane arrangement, the applica-
bility of the algorithms was extended to derive minimal
polyhedral piecewise representations of general polyhe-
dral piecewise systems not defined over the cells of a
hyperplane arrangement. To reduce the computational
burden of large problems, a divide and conquer strategy
can be used, and/or the hyperplane arrangement can be
simplified. The latter approach is particularly attractive
if the solution complexity needs to be further reduced
and small errors can be tolerated.

The notion of markings in hyperplane arrangements also
allows an efficient implementation of polyhedral control
laws – either as a collection of Boolean functions or as a
binary search tree of minimal depth.

References

Avis, D., Fukuda, K., 1996. Reverse search for enumer-
ation. Discr. App. Math. 65, 21–46.

Baotić, M., Christophersen, F., Morari, M., Dec. 2003.
Infinite time optimal control of hybrid systems with a
linear performance index. In: Proc. 42nd IEEE Conf.
on Decision and Control. USA, pp. 3191–3196.

Bemporad, A., Fukuda, K., Torrisi, F., Apr. 2001. Con-
vexity recognition of the union of polyhedra. Comp.
Geometry: Theory and Applications 18, 141–154.

Borrelli, F., 2003. Constrained Optimal Control of Lin-
ear and Hybrid Systems. Vol. 290 of LNCIS. Springer.

Borrelli, F., Baotić, M., Bemporad, A., Morari, M., Oct.
2005. Dynamic programming for constrained optimal
control of discrete-time linear hybrid systems. Auto-
matica 41 (10), 1709–1721.

Brayton, R., Hachtel, G., McMullen, C., Sangiovanni-
Vincentelli, A., 1984. Logic Minimization Algorithms
for VLSI Synthesis. Kluwer Academic Publishers.

Brungger, A., Marzetta, A., Fukuda, K., Nievergelt, J.,
1999. The parallel search bench zram and its applica-
tions. Annals of Operations-Research 90, 45–63.

Buck, R., 1943. Partition of space. American Math.
Monthly 50, 541–544.

Chazelle, B., Aug. 1984. Convex partitions of polyhe-
dra: A lower bound and worst-case optimal algorithm.
SIAM J. of Computing 13, 488–507.

13

Departement of EECS, University of California,
Berkeley, 1982. webpage of ESPRESSO-II. on-
line document, http://www-cad.eecs.berkeley.
edu/Software/software.html.

Edelsbrunner, H., 1987. Algorithms in Combinatorial
Geometry. Springer.

Ferrez, J., Fukuda, K., 2002. Implementations of lp-
based reverse search algorithms for the zonotope con-
struction and the fixed-rank convex quadratic maxi-
mization in binary variables using the ZRAM and the
cddlib libraries. Tech. rep., Mcgill.

Ferrez, J., Fukuda, K., Liebling, T., Nov. 2001. Cuts,
zonotopes and arrangements. Tech. rep., EPF Lau-
sanne, Switzerland.

Geyer, T., 2005. Low complexity model predictive con-
trol in power electronics and power systems. Dr.
sc. tech. thesis, Automatic Control Laboratory ETH
Zurich.

Geyer, T., Torrisi, F., Morari, M., 2003. Efficient mode
enumeration of compositional hybrid systems. In:
Pnueli, A., Maler, O. (Eds.), Hybrid Systems: Com-
putation and Control. Vol. 2623 of LNCS. Springer,
pp. 216–232.

Heemels, W., Schutter, B. D., Bemporad, A., Jul. 2001.
Equivalence of hybrid dynamical models. Automatica
37 (7), 1085–1091.

Karnaugh, M., Nov. 1953. A map method for synthesis
of combinational logic circuits. AIEE Transactions on
Communications and Electronics 72, 593–599.

Kvasnica, M., Grieder, P., Baotić, M., Morari, M., 2004.
Multi parametric toolbox (MPT). In: Alur, R., Pap-
pas, G. (Eds.), Hybrid Systems: Computation and
Control. Vol. 2993 of LNCS. Springer, pp. 448–462,
http://control.ee.ethz.ch/~mpt.

Sontag, E., Apr. 1981. Nonlinear regulation: The piece-
wise linear approach. IEEE Trans. Automat. Contr.
26 (2), 346–358.

Tøndel, P., Johansen, T., Bemporad, A., May 2003.
Evaluation of piecewise affine control via binary search
tree. Automatica 39 (5), 945–950.

Torrisi, F., Bemporad, A., Mar. 2004. Hysdel — a tool
for generating computational hybrid models for analy-
sis and synthesis problems. IEEE Trans. Contr. Syst.
Technol. 12 (2), 235–249.

Veitch, E., May 1952. A chart method for simplifying
boolean functions. In: Proceedings of the Association
for Computing Machinery. pp. 127–133.

14

