A Journey through Algorithm Unrolling for Inverse Problems

Thomas Moreau INRIA Saclay - MIND Team

Inverse Problems

Neuroimaging - M/EEG

Neuroimaging - MRI

Astrophysics

Imaging

Super-Resolution, Inpainting, Deblurring, ...

Seismology - Prospection

Inverse Problem: Source Localization for M/EEG

Forward model: $\mathbf{x} = \mathbf{G}\mathbf{z} + \varepsilon$

- **Inverse problem:** find **z** from **x**
- lackbox Noisy problem: need to account for arepsilon
- Ill-posed problem: many solutions z such that Gz = x, need to select one.

MAP estimate as a regularized regression problem

$$\mathbf{z}^{*}(\mathbf{x};\theta) = \underset{\mathbf{z}}{\operatorname{argmin}} \underbrace{\frac{1}{2} \|\mathbf{x} - \mathbf{G}\mathbf{z}\|_{2}^{2}}_{-\log p(\mathbf{x}|\mathbf{z})} + \underbrace{\mathcal{R}(\mathbf{z};\theta)}_{-\log p(\mathbf{z};\theta)}$$

where ${\cal R}$ encodes prior information to select a good/plausible solution.

MAP estimate as a regularized regression problem

$$\mathbf{z}^{*}(\mathbf{x};\theta) = \underset{\mathbf{z}}{\operatorname{argmin}} \frac{1}{2} \|\mathbf{x} - \mathbf{G}\mathbf{z}\|_{2}^{2} + \underbrace{\mathcal{R}(\mathbf{z};\theta)}_{-\log p(\mathbf{z};\theta)}$$

where \mathcal{R} encodes prior information to select a good/plausible solution.

Common framework:

- ▶ Efficient solvers: Forward backward, ADMM, ...
 - \Rightarrow But might require many iterations to get quality estimate.
- ▶ Flexible: Can choose many priors handpicked, learned, implicit, . . .
 - \Rightarrow Quality of the solution depends on the prior's choice $p(z; \theta)$

Prior learning as a bilevel problem

Evaluate the quality of a solution with \mathcal{L} , and try to find the best prior:

$$\min_{\boldsymbol{\theta}} \mathcal{L}(\mathbf{z}^*(\mathbf{x}; \boldsymbol{\theta})) \quad s.t. \quad \mathbf{z}^*(\mathbf{x}; \boldsymbol{\theta}) = \operatorname{argmin} \underbrace{-\log \ p(\mathbf{z}|\mathbf{x}; \boldsymbol{\theta})}_{F(\mathbf{z}, \boldsymbol{\theta})}$$

Prior learning as a bilevel problem

Evaluate the quality of a solution with \mathcal{L} , and try to find the best prior:

$$\min_{\theta} \mathcal{L}(\mathbf{z}^*(\mathbf{x}; \theta)) \quad s.t. \quad \mathbf{z}^*(\mathbf{x}; \theta) = \operatorname{argmin} \underbrace{-\log p(\mathbf{z}|\mathbf{x}; \theta)}_{F(\mathbf{z}, \theta)}$$

How to solve such problem:

▶ Random search: sample some θ and keep the "best one".

 \Rightarrow Slow for θ in high dimension.

▶ Gradient based method: use first order information:

$$\frac{d\mathcal{L}(\mathbf{z}^*(\mathbf{x};\theta))}{d\theta} = \frac{d\mathbf{z}^*(\mathbf{x};\theta)}{d\theta}^{\top} \frac{\partial \mathcal{L}}{\partial z}(\mathbf{z}^*(\mathbf{x};\theta))$$

 \Rightarrow Expensive to compute $\mathbf{z}^*(\mathbf{x}; \theta)$ and its Jacobian.

Idea:

- ▶ Replace $\mathbf{z}^*(\mathbf{x}; \theta)$ by $\mathbf{z}^N(\mathbf{x}; \theta, \psi)$ with hyperparameter ψ .
- ► Compute the Jacobian using backpropagation through the network.

Idea:

- ► Replace $\mathbf{z}^*(\mathbf{x}; \theta)$ by $\mathbf{z}^N(\mathbf{x}; \theta, \psi)$ with hyperparameter ψ .
- ▶ Compute the Jacobian using backpropagation through the network.

$$\Rightarrow$$
 Why?

Prior learning: learn θ to get the prior that gives the best reconstruction.

- ► Supervised: $\mathcal{L}(\theta) = \mathbb{E}_{(\mathbf{x},\mathbf{z})} \frac{1}{2} \|\mathbf{z} \mathbf{z}^{N}(\mathbf{x};\theta,\psi)\|_{2}^{2}$
- Unsupervised: consistency loss, . . .

Idea:

- ▶ Replace $\mathbf{z}^*(\mathbf{x}; \theta)$ by $\mathbf{z}^N(\mathbf{x}; \theta, \psi)$ with hyperparameter ψ .
- Compute the Jacobian using backpropagation through the network.

\Rightarrow Why?

Learned solver: To solve with many ${\bf x}$ and a single ${\bf G}$, learn ψ

- ▶ Learning algorithm to resolve the original problem faster.
- With supervised or unsupervised losses.

Idea:

- ▶ Replace $\mathbf{z}^*(\mathbf{x}; \theta)$ by $\mathbf{z}^N(\mathbf{x}; \theta, \psi)$ with hyperparameter ψ .
- Compute the Jacobian using backpropagation through the network.

\Rightarrow Why?

Learned solver: To solve with many ${\bf x}$ and a single ${\bf G}$, learn ψ

- Learning algorithm to resolve the original problem faster.
- With supervised or unsupervised losses.
 - \Rightarrow What can we say about the learned procedure? Convergence toward $z^*(\mathbf{x}; \theta)$?

A bilevel view on prior learning with unrolling

References

- ▶ Ablin, P., Peyré, G., and **TM** (2020). Super-efficiency of automatic differentiation for functions defined as a minimum, In *ICML*
- Malézieux, B., TM, and Kowalski, M. (2022). Understanding approximate and Unrolled Dictionary Learning for Pattern Recovery, In ICLR

Bi-level formulation:

$$\min_{\theta \in \mathcal{C}} h(\theta) \triangleq F(\theta, \mathbf{z}^*(\theta)) \quad s.t. \quad \mathbf{z}^*(\theta) = \operatorname*{argmin}_{\mathbf{z}} F(\theta, \mathbf{z}) .$$

Optimization problem in D solved with projected gradient descent.

 \Rightarrow How to estimate the gradient $g^*(\theta) = \nabla h(\theta)$ efficiently?

Bi-level formulation:

$$\min_{\theta \in \mathcal{C}} h(\theta) \triangleq F(\theta, \mathbf{z}^*(\theta)) \quad s.t. \quad \mathbf{z}^*(\theta) = \operatorname*{argmin}_{z} F(\theta, z) \ .$$

Optimization problem in D solved with projected gradient descent.

 \Rightarrow How to estimate the gradient $g^*(\theta) = \nabla h(\theta)$ efficiently?

Danskin Theorem:

[Danskin, 1967]

$$g^*(\theta) = \nabla_1 F(\theta, \mathbf{z}^*(\theta))$$

This is due to the fact that " $\nabla_2 F(\theta, \mathbf{z}^*(\theta)) = 0$ ".

Bi-level formulation:

$$\min_{\theta \in \mathcal{C}} h(\theta) \triangleq F(\theta, \mathbf{z}^*(\theta)) \quad s.t. \quad \mathbf{z}^*(\theta) = \operatorname*{argmin}_{\mathbf{z}} F(\theta, \mathbf{z}) \ .$$

Optimization problem in D solved with projected gradient descent.

 \Rightarrow How to estimate the gradient $g^*(\theta) = \nabla h(\theta)$ efficiently?

Danskin Theorem:

[Danskin, 1967]

$$g^*(\theta) = \nabla_1 F(\theta, \mathbf{z}^*(\theta))$$

This is due to the fact that " $\nabla_2 F(\theta, \mathbf{z}^*(\theta)) = 0$ ".

Issue: computing $\mathbf{z}^*(\theta)$ is computationally expansive.

Unrolled formulation:

$$\min_{\theta \in \mathcal{C}} h_N(\theta) \triangleq F(\theta, \mathbf{z}^N(\theta)) .$$

The gradient estimate becomes:

$$g_N^2(\theta) = \nabla_1 F(\theta, \mathbf{z}^N(\theta)) + J_N^\top \nabla_2 F(\theta, \mathbf{z}^N(\theta))$$

Estimate the jacobian $J_N = \frac{dz^N}{d\theta}$ with back-propagation.

Unrolled formulation:

$$\min_{\theta \in \mathcal{C}} h_{N}(\theta) \triangleq F(\theta, \mathbf{z}^{N}(\theta)) .$$

The gradient estimate becomes:

$$g_N^2(\theta) = \nabla_1 F(\theta, \mathbf{z}^N(\theta)) + J_N^\top \nabla_2 F(\theta, \mathbf{z}^N(\theta))$$

Estimate the jacobian $J_N = \frac{dz^N}{d\theta}$ with back-propagation.

Question: More efficient to use unrolling than classic AM?

▶ Work for smooth problems.

- [Ablin et al., ICML 2020]
- ▶ Improved performances for supervised learning. [Monga et al., 2021]

Gradient Estimation

Alternate Minimization

No Jacobian estimation

$$g_N^1(\theta) = \nabla_1 F(\theta, \mathbf{z}^N(\theta))$$

Unrolling

Account for Jacobian of z^N

$$g_N^2(\theta) = \nabla_1 F(\theta, \mathbf{z}^N(\theta)) + J_N^\top \nabla_2 F(\theta, \mathbf{z}^N(\theta))$$

Gradient Estimation

Alternate Minimization

No Jacobian estimation

$$g_N^1(\theta) = \nabla_1 F(\theta, \mathbf{z}^N(\theta))$$

Converges as fast as **z**^N

$$\|g_N^1 - g^*\|_2 \le L_1 \|\mathbf{z}^N - \mathbf{z}^*\|_2$$

Unrolling

Account for Jacobian of z^N

$$g_N^2(\theta) = \nabla_1 F(\theta, \mathbf{z}^N(\theta)) + J_N^\top \nabla_2 F(\theta, \mathbf{z}^N(\theta))$$

Gradient Estimation

Alternate Minimization

No Jacobian estimation

$$g_N^1(heta) =
abla_1 F(heta, \mathbf{z}^N(heta))$$

Converges as fast as z^N

$$\|g_N^1 - g^*\|_2 \le L_1 \|\mathbf{z}^N - \mathbf{z}^*\|_2$$

Unrolling

Account for Jacobian of z^N

$$g_N^2(\theta) = \nabla_1 F(\theta, \mathbf{z}^N(\theta)) + J_N^\top \nabla_2 F(\theta, \mathbf{z}^N(\theta))$$

May converge faster than z^N

$$\|g_N^2 - g^*\| \le L\|J_N - J^*\|_2 \|z^N - z^*\|_2$$

 $+ L_2 \|z^N - z^*\|_2^2$

$$\Rightarrow$$
 Need to study $||J_N - J^*||_2$.

Differentiable unrolling of z^N

Idea: Compute $J_N = \frac{\partial z^N}{\partial \theta}(\theta) \approx \frac{\partial z^*}{\partial \theta}(\theta)$ using automatic differentiation through an iterative algorithm.

Differentiable unrolling of z^N

Idea: Compute $J_N = \frac{\partial z^N}{\partial \theta}(\theta) \approx \frac{\partial z^*}{\partial \theta}(\theta)$ using automatic differentiation through an iterative algorithm.

For the gradient descent algorithm:

$$\mathbf{z}^{N+1} = \mathbf{z}^N - \rho \frac{\partial F}{\partial z}(\theta, \mathbf{z}^N)$$

The Jacobian reads,

$$\frac{\partial \mathbf{z}^{N+1}}{\partial \theta}(\theta) = \left(Id - \rho \frac{\partial^2 F}{\partial z^2}(\theta, \mathbf{z}^N)\right) \frac{\partial \mathbf{z}^N}{\partial \theta}(\theta) - \rho \frac{\partial^2 F}{\partial z \partial \theta}(\theta, \mathbf{z}^N)$$

Differentiable unrolling of z^N

Idea: Compute $J_N = \frac{\partial z^N}{\partial \theta}(\theta) \approx \frac{\partial z^*}{\partial \theta}(\theta)$ using automatic differentiation through an iterative algorithm.

For the gradient descent algorithm:

$$\mathbf{z}^{N+1} = \mathbf{z}^N - \rho \frac{\partial F}{\partial z}(\theta, \mathbf{z}^N)$$

The Jacobian reads,

$$\frac{\partial \mathbf{z}^{N+1}}{\partial \theta}(\theta) = \left(Id - \rho \frac{\partial^2 F}{\partial z^2}(\theta, \mathbf{z}^N) \right) \frac{\partial \mathbf{z}^N}{\partial \theta}(\theta) - \rho \frac{\partial^2 F}{\partial z \partial \theta}(\theta, \mathbf{z}^N)$$

 \Rightarrow Under smoothness conditions, if z^N converges to z^* , this converges toward $\frac{\partial z^*}{\partial \theta}(\theta)$

We consider the 3 gradient estimates:

$$ightharpoonup g_1^N = \nabla_{\theta} F(\theta, \mathbf{z}^N)$$

We consider the 3 gradient estimates:

$$ightharpoonup g_1^N = \nabla_{\theta} F(\theta, \mathbf{z}^N)$$

Automatic

Convergence rates: For G strongly convex in *z*,

$$|g_1^N(x) - g^*(x)| = O\left(|\mathbf{z}^N(\theta) - \mathbf{z}^*(\theta)|\right),$$

$$|g_t^N(x) - g^*(x)| = o\left(|\mathbf{z}^N(\theta) - \mathbf{z}^*(\theta)|\right),$$

$$|g_3^N(x) - g^*(x)| = O\left(|\mathbf{z}^N(\theta) - \mathbf{z}^*(\theta)|^2\right).$$

What about non-smooth problem?

Very common in inverse problem.

What about non-smooth problem?

Very common in inverse problem.

⇒ Here, we consider the case of the Lasso.

$$\mathbf{z}^* = \operatorname{argmin} \|\mathbf{x} - \mathbf{G}D\mathbf{z}\|_2^2 + \lambda \|\mathbf{z}\|_1$$

with $\theta = D$.

Convergence of the Jacobian

$$||J_N - J^*||_2 \le A_N + B_N$$
.

 A_N converges linearly towards 0, B_N is an error term which may increase for large N and vanishes on the support of z^* .

- ▶ On the support, the jacobian converges linearly.
- ightharpoonup Before reaching the support, B_N is an error term that can accumulate.
- \triangleright B_N can be attenuated with truncated back-propagation.

Empirical evaluation

- ▶ Linear convergence once the support S^* is reached.
- ▶ Possible explosion before reaching S^* .

Empirical evaluation

- ▶ Truncated backpropagation (BP) reduces the explosion.
- ▶ Less precise when the support is reached.

Numerical experiments on gradient

- ▶ First iterations: Stable behavior.
- ▶ **Too many iterations:** Numerical instabilities due to the accumulation of errors. Truncated back-propagation reduces the errors.
 - ▶ On the support: Convergence towards g^* .

Unrolling for Jacobian estimation

Not the expected performance boost in the non-smooth case.

▶ Jacobian estimate stable only for a very low number of iteration.

⇒ What does this mean for unrolling?

Still interesting to solve the problem:

$$\min_{\theta} \mathcal{L}(\mathbf{z}^{N}(\mathbf{x};\theta,\psi))$$

with $\mathbf{z}^{N}(\mathbf{x}; \theta, \psi)$ an unrolled algorithm with N steps.

- ▶ But we are not optimizing for z*.
 - \Rightarrow We are not independent of how we obtain \mathbf{z}^N .

Iteration overfitting with unrolled optimization

References

► Ramzi, Z., Ablin, P., Peyré, G., and **TM** (2023). Test like you Train in Implicit Deep Learning

Deqs - Deep Equilibrium Networks

Consider the DEqs framework (more general than bilevel)

$$\min_{\theta} \mathcal{L}(\mathbf{z}^*(\theta))$$
 s.t. $\mathbf{z}^*(\theta) = f_{\theta}(\mathbf{z}^*(\theta))$

Deqs - Deep Equilibrium Networks

Consider the DEqs framework (more general than bilevel)

$$\min_{\theta} \mathcal{L}(\mathbf{z}^*(\theta))$$
 s.t. $\mathbf{z}^*(\theta) = f_{\theta}(\mathbf{z}^*(\theta))$

In practice, solved as

$$\theta^{*,N} = \underset{\theta}{\operatorname{argmin}} \mathcal{L}(\mathbf{z}^{N}(\theta))$$

with $\mathbf{z}^{N}(\theta)$ obtained through N iterations of an algorithm.

The promice of these models: you can use M > N during test time to get performance boost.

Deqs - Deep Equilibrium Networks

Consider the DEqs framework (more general than bilevel)

$$\min_{\theta} \mathcal{L}(\mathbf{z}^*(\theta))$$
 s.t. $\mathbf{z}^*(\theta) = f_{\theta}(\mathbf{z}^*(\theta))$

In practice, solved as

$$\theta^{*,N} = \underset{\theta}{\operatorname{argmin}} \mathcal{L}(\mathbf{z}^{N}(\theta))$$

with $\mathbf{z}^{N}(\theta)$ obtained through N iterations of an algorithm.

The promice of these models: you can use M > N during test time to get performance boost.

$$\Rightarrow$$
 Is this really true?

Test-time fixed point computation [Ramzi et al., 2023]

If we learn $\theta^{*,N}$ with a given N, what can you say about $\mathcal{L}(z^{N+\Delta N}(\theta^{*,N}))$?

If we learn $\theta^{*,N}$ with a given N, what can you say about $\mathcal{L}(z^{N+\Delta N}(\theta^{*,N}))$?

Theorem 1 – Iteration overfitting

Under simplifying hypothesis (linear DEqs), if f_{θ} is overparametrized, we have for all ΔN :

$$\mathcal{L}(z^{N+\Delta N}(\theta^{\star,N})) \ge \mathcal{L}(z^{N}(\theta^{\star,N})),$$
 (1)

We also show that the closer to overparametrized f_{θ} is, the less we expect to see improvement with $N + \Delta N$.

What happens in practice?

Context: Overparametrized DEQs.

What happens in practice?

Context: Underparametrized Meta-learning.

Take-home message

- Unrolled networks work well for smooth minimization
- ► For non-smooth problems, the jacobian estimate is unstable
- ▶ When training with fixed number of iterations, it makes sense to use the same number of iterations at test time.

Reproducing a scientific comparison from an article can be as easy as:

git clone https://github.com/benchopt/benchmark_bilevel
benchopt run ./benchmark_bilevel

Benchopt: principle

⇒ Each object can be parametrized so multiple scenario can be tested.

Making tedious tasks easy:

- ► Sharing code ► Adding methods ► Exploring results
- ▶ Varying hyperparameters
 ▶ Running in Parallel
 ▶ Caching
 - **...**

Join us!

Benchopt sprint in Paris last July.

 \Rightarrow Next sprint in June, stay tuned!

Thanks for your attention!

Slides are on my web page:

O @tomamoral