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Inverse Problems

Neuroimaging – M/EEG

Maxwell’s
Equations

Inverse Problem

Astrophysics

Seismology – Prospection

Neuroimaging – MRI

Imaging

Super-Resolution, Inpainting,
Deblurring, ...

2/28



Inverse Problem: Source Localization for M/EEG

Maxwell’s
Equations

xxx

Observed signal

zzz

Electrical activity

GGG

Inverse Problem

Forward model: xxx = GGGzzz + ε Inverse problem: find zzz from xxx

▶ Noisy problem: need to account for ε

▶ Ill-posed problem: many solutions zzz such that GGGzzz = xxx ,
need to select one.
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Inverse Problem Resolution

MAP estimate as a regularized regression problem

zzz∗(xxx ; θ) = argmin
zzz

1

2
∥xxx −GGGzzz∥22︸ ︷︷ ︸
−log p(xxx |zzz)

+ R(zzz ; θ)︸ ︷︷ ︸
−log p(zzz;θ)

where R encodes prior information to select a good/plausible solution.

Common framework:

▶ Efficient solvers: Forward backward, ADMM, . . .

⇒ But might require many iterations to get quality estimate.

▶ Flexible: Can choose many priors – handpicked, learned, implicit, . . .

⇒ Quality of the solution depends on the prior’s choice p(zzz ; θ)
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Prior learning as a bilevel problem

Evaluate the quality of a solution with L, and try to find the best prior:

min
θ

L(zzz∗(xxx ; θ)) s.t. zzz∗(xxx ; θ) = argmin−log p(zzz |xxx ; θ)︸ ︷︷ ︸
F (zzz,θ)

How to solve such problem:

▶ Random search: sample some θ and keep the ”best one”.

⇒ Slow for θ in high dimension.

▶ Gradient based method: use first order information:

dL(zzz∗(xxx ; θ))
dθ

=
dzzz∗(xxx ; θ)

dθ

⊤∂L
∂z

(zzz∗(xxx ; θ))

⇒ Expensive to compute zzz∗(xxx ; θ) and its Jacobian.

5/28



Prior learning as a bilevel problem

Evaluate the quality of a solution with L, and try to find the best prior:

min
θ

L(zzz∗(xxx ; θ)) s.t. zzz∗(xxx ; θ) = argmin−log p(zzz |xxx ; θ)︸ ︷︷ ︸
F (zzz,θ)

How to solve such problem:

▶ Random search: sample some θ and keep the ”best one”.

⇒ Slow for θ in high dimension.

▶ Gradient based method: use first order information:

dL(zzz∗(xxx ; θ))
dθ

=
dzzz∗(xxx ; θ)

dθ

⊤∂L
∂z

(zzz∗(xxx ; θ))

⇒ Expensive to compute zzz∗(xxx ; θ) and its Jacobian.

5/28



Unrolling for prior learning

Idea:

▶ Replace zzz∗(xxx ; θ) by zzzN(xxx ; θ, ψ) with hyperparameter ψ.

▶ Compute the Jacobian using backpropagation through the network.

⇒ Why?

Prior learning: learn θ to get the prior that gives the best reconstruction.

▶ Supervised: L(θ) = E(xxx ,zzz)
1
2∥zzz − zzzN(xxx ; θ, ψ)∥22

▶ Unsupervised: consistency loss, . . .

⇒ What can we say about the learned procedure?
Convergence toward zzz∗(xxx ; θ)?
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Unrolling for prior learning
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A bilevel view on prior learning with unrolling

References

▶ Ablin, P., Peyré, G., and TM (2020). Super-efficiency of automatic
differentiation for functions defined as a minimum, In ICML

▶ Malézieux, B., TM, and Kowalski, M. (2022). Understanding approximate
and Unrolled Dictionary Learning for Pattern Recovery, In ICLR
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Unrolling with min-min problems

Bi-level formulation:

min
θ∈C

h(θ) ≜ F (θ,zzz∗(θ)) s.t. zzz∗(θ) = argmin
z

F (θ, z) .

Optimization problem in D solved with projected gradient descent.

⇒ How to estimate the gradient g∗(θ) = ∇h(θ) efficiently?
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g∗(θ) = ∇1F (θ,zzz
∗(θ))

This is due to the fact that “ ∇2F (θ,zzz
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Unrolling with min-min problems

Unrolled formulation:

min
θ∈C

hN(θ) ≜ F (θ,zzzN(θ)) .

The gradient estimate becomes:

g2
N(θ) = ∇1F (θ,zzz

N(θ)) + J⊤N∇2F (θ,zzz
N(θ))

Estimate the jacobian JN = dzzzN

dθ with back-propagation.
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Unrolling with min-min problems

Unrolled formulation:

min
θ∈C

hN(θ) ≜ F (θ,zzzN(θ)) .

The gradient estimate becomes:

g2
N(θ) = ∇1F (θ,zzz

N(θ)) + J⊤N∇2F (θ,zzz
N(θ))

Estimate the jacobian JN = dzzzN

dθ with back-propagation.

Question: More efficient to use unrolling than classic AM?

▶ Work for smooth problems. [Ablin et al., ICML 2020]

▶ Improved performances for supervised learning. [Monga et al., 2021]
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Gradient Estimation

Alternate Minimization

No Jacobian estimation

g1
N(θ) = ∇1F (θ,zzz

N(θ))

Unrolling

Account for Jacobian of zzzN

g2
N(θ) =∇1F (θ,zzz

N(θ))

+ J⊤N∇2F (θ,zzz
N(θ))
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N(θ) = ∇1F (θ,zzz

N(θ))

Unrolling

Account for Jacobian of zzzN

g2
N(θ) =∇1F (θ,zzz

N(θ))

+ J⊤N∇2F (θ,zzz
N(θ))

Converges as fast as zzzN

∥g1
N − g∗∥2 ≤ L1∥zzzN − zzz∗∥2

May converge faster than zzzN

∥g2
N − g∗∥ ≤L∥JN − J∗∥2∥zzzN − zzz∗∥2

+ L2∥zzzN − zzz∗∥22

⇒ Need to study ∥JN − J∗∥2.
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Differentiable unrolling of zzzN

Idea: Compute JN = ∂zzzN

∂θ (θ) ≈ ∂zzz∗
∂θ (θ) using automatic differentiation

through an iterative algorithm.

For the gradient descent algorithm:

zzzN+1 = zzzN − ρ
∂F

∂z
(θ,zzzN)

The Jacobian reads,

∂zzzN+1

∂θ
(θ) =

(
Id − ρ

∂2F

∂z2
(θ,zzzN)

)
∂zzzN

∂θ
(θ)− ρ

∂2F

∂z∂θ
(θ,zzzN)

⇒ Under smoothness conditions, if zzzN converges to zzz∗,
this converges toward ∂zzz∗

∂θ (θ)
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Analysis for min-min problems [Ablin et al. 2020]

We consider the 3 gradient estimates:

▶ gN
1 = ∇θF (θ,zzz

N) Analysis

▶ gN
2 = ∇θF (θ,zzz

N) + ∂zzzN

∂θ

⊤
∇zF (θ,zzz

N) Automatic

▶ gN
3 = ∇θF (θ,zzz

N)− ∂2G
∂z∂θ (θ,zzz

N)∂
2G
∂z2

−1
(θ,zzzN)∇zF (θ,zzz

N) Implicit

Convergence rates: For G strongly
convex in z ,

|gN
1 (x)− g∗(x)| = O

(
|zzzN(θ)− zzz∗(θ)|

)
,

|gN
t (x)− g∗(x)| = o

(
|zzzN(θ)− zzz∗(θ)|

)
,

|gN
3 (x)− g∗(x)| = O

(
|zzzN(θ)− zzz∗(θ)|2

)
.

0 50 100 150
t

10−11

10−7

10−3

|g1
t − g∗|
|g2
t − g∗|
|g3
t − g∗|
|zt − z∗|
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What about non-smooth problem?

Very common in inverse problem.

⇒ Here, we consider the case of the Lasso.

zzz∗ = argmin ∥xxx −GGGDzzz∥22 + λ∥z∥1
with θ = D.
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Jacobian Estimation [Malézieux et al., 2022]

Convergence of the Jacobian

∥JN − J∗∥2 ≤ AN + BN .

AN converges linearly towards 0, BN is an error term which may
increase for large N and vanishes on the support of zzz∗.

▶ On the support, the jacobian converges linearly.

▶ Before reaching the support, BN is an error term that can accumulate.

▶ BN can be attenuated with truncated back-propagation.
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Empirical evaluation

100 102 104

Iterations T

0

20

0

20

100 102 104
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0
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20

100 102 104
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0

20

Max BP depth
full 200 50 20

kJT ¡ J ¤ k kST ¡S ¤ k0

▶ Linear convergence once the support S∗ is reached.

▶ Possible explosion before reaching S∗.
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▶ Truncated backpropagation (BP) reduces the explosion.

▶ Less precise when the support is reached.
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Numerical experiments on gradient

▶ First iterations: Stable behavior.

▶ Too many iterations: Numerical instabilities due to the accumulation
of errors. Truncated back-propagation reduces the errors.

▶ On the support: Convergence towards g∗.
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Unrolling for Jacobian estimation

Not the expected performance boost in the non-smooth case.

▶ Jacobian estimate stable only for a very low number of iteration.

⇒ What does this mean for unrolling?

▶ Still interesting to solve the problem:

min
θ

L(zzzN(xxx ; θ, ψ))

with zzzN(xxx ; θ, ψ) an unrolled algorithm with N steps.

▶ But we are not optimizing for zzz∗.

⇒ We are not independent of how we obtain zzzN .
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Iteration overfitting with unrolled optimization

References

▶ Ramzi, Z., Ablin, P., Peyré, G., and TM (2023). Test like you Train in
Implicit Deep Learning
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Deqs – Deep Equilibrium Networks

Consider the DEqs framework (more general than bilevel)

min
θ

L(zzz∗(θ)) s.t. zzz∗(θ) = fθ(zzz
∗(θ))

In practice, solved as

θ∗,N = argmin
θ

L(zzzN(θ))

with zzzN(θ) obtained through N iterations of an algorithm.

The promice of these models: you can use M > N during test time to get
performance boost.

⇒ Is this really true?
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Test-time fixed point computation [Ramzi et al., 2023]

If we learn θ∗,N with a given N, what can you say about L(zN+∆N(θ⋆,N))?

Theorem 1 – Iteration overfitting

Under simplifying hypothesis (linear DEqs), if fθ is overparametrized,
we have for all ∆N:

L(zN+∆N(θ⋆,N)) ≥ L(zN(θ⋆,N)), (1)

We also show that the closer to overparametrized fθ is, the less we expect
to see improvement with N +∆N.
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What happens in practice?

Context: Overparametrized DEQs.
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What happens in practice?

Context: Underparametrized Meta-learning.
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Take-home message

▶ Unrolled networks work well for smooth minimization

▶ For non-smooth problems, the jacobian estimate is unstable

▶ When training with fixed number of iterations, it makes sense to use
the same number of iterations at test time.
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Benchopt [Moreau et al. 2022]

Reproducing a scientific comparison from an article can be as easy as:

git clone https :// github.com/benchopt/benchmark_bilevel

benchopt run ./ benchmark_bilevel
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Benchopt: principle

.PDF

.HTML

.CSV

⇒ Each object can be parametrized so multiple scenario can be tested.

Making tedious tasks easy:

▶ Sharing code ▶ Adding methods ▶ Exploring results

▶ Varying hyperparameters ▶ Running in Parallel ▶ Caching

▶ . . .
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Join us!

Benchopt sprint in Paris last July.

⇒ Next sprint in June, stay tuned!
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Thanks for your attention!

Slides are on my web page:

tommoral.github.io @tomamoral
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