A Journey through Algorithm Unrolling
for Inverse Problems

Thomas Moreau
INRIA Saclay - MIND Team

r d
MIND fzzica —
inventors for the digital world

1/28

Inverse Problems

Neuroimaging — M/EEG Neuroimaging — MRI
Inverse Problem

Maxwell’s { i \\\r
—_—)
i 'Y il
Equations \\:§//

Astrophysics
gaies ol ys apout... Structures
@@ ® o Imaging
© 0
@ «—— redshift z rHE

Seismology — Prospection

Jmmm L

| 7\?’;/) i eitmeoraphic Jéwl;mq; |
ot

Super-Resolution, Inpainting,
Deblurring, ...

2/28

Inverse Problem: Source Localization for M/EEG

Inverse Problem

T

Maxwell's
Equations

Electrical activity Observed signal

Forward model: x = Gz + ¢ Inverse problem: find z from x

» Noisy problem: need to account for €

» lll-posed problem: many solutions z such that Gz = x,
need to select one.

3/28

Inverse Problem Resolution

MAP estimate as a regularized regression problem

1
z*(x; 0) = argmin = ||x — Gz||3 + R(z;6)
V4 2 \—v—/

—log p(x|z) & PF)

where R encodes prior information to select a good/plausible solution.

4/28

Inverse Problem Resolution

MAP estimate as a regularized regression problem

1
z*(x; 0) = argmin = ||x — Gz||3 + R(z;6)
V4 2 \W—/

—log p(xlz) 18 PO

where R encodes prior information to select a good/plausible solution.

Common framework:
» Efficient solvers: Forward backward, ADMM, ...

= But might require many iterations to get quality estimate.

» Flexible: Can choose many priors — handpicked, learned, implicit, . ..

= Quality of the solution depends on the prior's choice p(z;)

4/28

Prior learning as a bilevel problem

Evaluate the quality of a solution with £, and try to find the best prior:

mein L(z*(x;0)) s.t. z*(x;0) = argmin —log p(z|x;)
—_——
F(z.0)

5/28

Prior learning as a bilevel problem

Evaluate the quality of a solution with £, and try to find the best prior:

main L(z*(x;0)) s.t. z*(x;0) = argmin —log p(z|x;)
—_——

F(z,0)

How to solve such problem:

» Random search: sample some 6 and keep the "best one”.

= Slow for 6 in high dimension.
» Gradient based method: use first order information:

(x- z(x; T
L) _ 92" (x6) 92 (" (i)

= Expensive to compute z*(x;) and its Jacobian.

5/28

Unrolling for prior learning

Idea:

» Replace z*(x; 0) by zN(x; 6,v) with hyperparameter .

» Compute the Jacobian using backpropagation through the network.

6/28

Unrolling for prior learning

Idea:

» Replace z*(x; 0) by zN(x; 6,v) with hyperparameter .
» Compute the Jacobian using backpropagation through the network.
= Why?
Prior learning: learn 6 to get the prior that gives the best reconstruction.

» Supervised: L(0) =]E(X,z)%Hz —zV(x;0,9)|13

» Unsupervised: consistency loss, ...

6/28

Unrolling for prior learning

Idea:

» Replace z*(x; 0) by zN(x; 6,v) with hyperparameter .
» Compute the Jacobian using backpropagation through the network.
= Why?
Learned solver: To solve with many x and a single G, learn ¢

» Learning algorithm to resolve the original problem faster.
» With supervised or unsupervised losses.

6/28

Unrolling for prior learning

Idea:

» Replace z*(x; 0) by zN(x; 6,v) with hyperparameter .
» Compute the Jacobian using backpropagation through the network.
= Why?
Learned solver: To solve with many x and a single G, learn

» Learning algorithm to resolve the original problem faster.
» With supervised or unsupervised losses.

= What can we say about the learned procedure?
Convergence toward z*(x; 0)?

6/28

Unrolling for prior learning

1AM ornmzma THE g
 MODEL WITH UNROLLING mm IT CONVERGES

» ll' BI]HUERGES RIGHT?

7/28

A bilevel view on prior learning with unrolling

References

» Ablin, P., Peyré, G., and TM (2020). Super-efficiency of automatic
differentiation for functions defined as a minimum, In /ICML

» Malézieux, B., TM, and Kowalski, M. (2022). Understanding approximate
and Unrolled Dictionary Learning for Pattern Recovery, In ICLR

7/28

Unrolling with min-min problems

Bi-level formulation:

renelg h(0) & F(0,2z*(0)) s.t. z*(0) = argmin F(0,z) .

z

Optimization problem in D solved with projected gradient descent.

= How to estimate the gradient g*(6) = Vh(0) efficiently?

3/28

Unrolling with min-min problems

Bi-level formulation:

renelg h(0) & F(0,2z*(0)) s.t. z*(0) = argmin F(0,z) .

z

Optimization problem in D solved with projected gradient descent.
= How to estimate the gradient g*(6) = Vh(0) efficiently?
Danskin Theorem: [Danskin, 1967]
g (0) = ViF(0,2z%(0))

This is due to the fact that “V,F(0,z*(0)) =0".

3/28

Unrolling with min-min problems

Bi-level formulation:

renelg h(0) £ F(0,2z*(0)) s.t. z*(0) = arg;nin F(0,z) .

Optimization problem in D solved with projected gradient descent.
= How to estimate the gradient g*(6) = Vh(6) efficiently?
Danskin Theorem: [Danskin, 1967]
g"(0) = V1F(0,27(0))

This is due to the fact that “V,F(0,z*(0)) =0".

Issue: computing z*(6) is computationally expansive.

3/28

Unrolling with min-min problems

Unrolled formulation:

inhn(0) 2 F(0,2V(0)) .
min hy(6) = F(6,27(6))
The gradient estimate becomes:
gn(0) = V1F(0,2N(0)) + Jy V2F (0,2V(0))

Estimate the jacobian Jy = % with back-propagation.

9/28

Unrolling with min-min problems

Unrolled formulation:

o A N
min h(9) = F(6,27(6)) .
The gradient estimate becomes:
gn(0) = V1F(0,2N(0)) + Jy V2F (0,2V(0))

Estimate the jacobian Jy = ddLGN with back-propagation.

Question: More efficient to use unrolling than classic AM?)

» Work for smooth problems. [Ablin et al., ICML 2020]

» Improved performances for supervised learning. [Monga et al., 2021]

9/28

Gradient Estimation

Alternate Minimization Unrolling
No Jacobian estimation Account for Jacobian of zV
gk (0) = V1F(0,2"(0)) gn(0) =V1F(0,2"(0))

+ JyVaF(0,2N(9))

10/28

Gradient Estimation

Alternate Minimization Unrolling
No Jacobian estimation Account for Jacobian of zV
gk (0) = V1F(0,2"(0)) gn(0) =V1F(0,2"(0))

+ JyVaF(0,2N(9))

Converges as fast as zV

ey — &"ll2 < Laflz" = z*|2

10/28

Gradient Estimation

Alternate Minimization

No Jacobian estimation

gn(0) = V1F(60,2"(6))

Converges as fast as zV

len — &7ll2 < Lallz" — z*|2

Unrolling

Account for Jacobian of zV

gn(0) =V1F(6,2"(6))
+ JyVaF(0,2N(9))

May converge faster than zV

et — &Il <Ll In — I*[l2llz" — "2

+ LoflzN — "3

= Need to study [|Jy — J*|2.

10/28

Differentiable unrolling of z"

Idea: Compute Jy = %(«9) ~ %(9) using automatic differentiation
through an iterative algorithm.

11/28

Differentiable unrolling of z"

N * . o o 0 ac
Idea: Compute Jy = %(9) A %(9) using automatic differentiation
through an iterative algorithm.

For the gradient descent algorithm:

The Jacobian reads,

ZN+1 2 1z 2
0= (1855 0.2") 0 - p 0.2

11/28

Differentiable unrolling of z"

Idea: Compute Jy = %(9) ~ 922(0) using automatic differentiation
through an iterative algorithm.

For the gradient descent algorithm:

The Jacobian reads,

(92N+1 0’F N oz 0’F N
6) = (10~ 955 0.2")) 5 0) = p 0.2

= Under smoothness conditions, if zV converges to z*,
this converges toward %(0)

11/28

Analysis for min-min problems [Ablin et al. 2020]

We consider the 3 gradient estimates:

> glN = VyF(0,2z") Analysis
-
> gV = VyF(0,zV) + 35% V.F(0,zN) Automatic
-1
> gl = VoF(0,2%) — 56,258 (0,2")V-F(0,2Y) Implici

12/28

Analysis for min-min problems [Ablin et al. 2020]

We consider the 3 gradient estimates:

> glN = VyF(0,2z") Analysis
T

> gl = VeF(0,zV) + 35% V.F(0,zN) Automatic

> &l = VoF(0,2) ~ 50,2587 (0, 2MVoF@.2Y) Implict

Convergence rates: For G strongly
convex in z,

g’ (x) — g% (x)|
&l (x) — g% (x)]

g3’ (x) — g*(x)|

103

0]

1077

12M(0) — z*(9)|

(
° (|ZN(0) - z*(0)| 0 50 100 150
0 (|z’V(e) _z*(e)|2). ’

9

)

)
.

12/28

What about non-smooth problem?

Very common in inverse problem.

13/28

What about non-smooth problem?

Very common in inverse problem.

= Here, we consider the case of the Lasso.

z* = argmin ||x — GDz||5 + \||z||1

with 6 = D.

13/28

Jacobian Estimation [Malézieux et al., 2022]

Convergence of the Jacobian

lInv — J*||2 < Ay + Bw .

Apn converges linearly towards 0, By is an error term which may
increase for large N and vanishes on the support of z*.

» On the support, the jacobian converges linearly.
» Before reaching the support, By is an error term that can accumulate.

» By can be attenuated with truncated back-propagation.

14/28

Empirical evaluation

— Jr=J"l —15r=5"o

L 20 - 20
20 20
- 10
04— =>=F0 04— k0
10 10% 10* 109 102 10*
Iterations T Iterations T

» Linear convergence once the support S* is reached.

» Possible explosion before reaching S*.

15/28

Empirical evaluation

Max BP depth
— full — 200 50 — 20

20 20
\
0 L T u T u T 0 L T u T 'ﬂtl
100 102 104 100 102 104
Iterations T Iterations T

[Jr—J* ||

» Truncated backpropagation (BP) reduces the explosion.

» Less precise when the support is reached.

16/28

Numerical experiments on gradient

Gaussian dictionary Noisy image

100 -
—~ 10-2 \

7 BP depth
— 20
105 A 50
— full

— AM

T T
10! 103 101 103
Iterations N Iterations N

» First iterations: Stable behavior.

» Too many iterations: Numerical instabilities due to the accumulation
of errors. Truncated back-propagation reduces the errors.

» On the support: Convergence towards g*.

17/28

Unrolling for Jacobian estimation

Not the expected performance boost in the non-smooth case.
» Jacobian estimate stable only for a very low number of iteration.

= What does this mean for unrolling?

» Still interesting to solve the problem:

mein L(z"(x;6,1))
with zV(x;0,1) an unrolled algorithm with N steps.
» But we are not optimizing for z*.

= We are not independent of how we obtain z".

18/28

lteration overfitting with unrolled optimization

References

» Ramazi, Z., Ablin, P., Peyré, G., and TM (2023). Test like you Train in
Implicit Deep Learning

18/28

Deqs — Deep Equilibrium Networks

Consider the DEgs framework (more general than bilevel)

min L(z*(0)) st 2°(6) = fo(z*(6)

10/28

Deqs — Deep Equilibrium Networks

Consider the DEqs framework (more general than bilevel)
mein L(z*(0)) s.t. z*(0) = fr(z*(0))
In practice, solved as
0N = argmin £(z"(9))
9

with zV(6) obtained through N iterations of an algorithm.

The promice of these models: you can use M > N during test time to get
performance boost.

19/28

Deqs — Deep Equilibrium Networks

Consider the DEqs framework (more general than bilevel)
mein L(z*(0)) s.t. z*(0) = fr(z*(0))

In practice, solved as
0N = argmin £(z"(9))
0

with zV(6) obtained through N iterations of an algorithm.

The promice of these models: you can use M > N during test time to get
performance boost.

= s this really true?

10/28

Test-time fixed point computation [Ramzi et al., 2023]

If we learn 0N with a given N, what can you say about L£(zV*AN(g=N))?

20,28

Test-time fixed point computation [Ramzi et al., 2023]

If we learn 0N with a given N, what can you say about L£(zV*AN(g=N))?

Theorem 1 — lteration overfitting

Under simplifying hypothesis (linear DEqs), if fy is overparametrized,
we have for all AN:

L(HEN(0M) > £("(0)), (1)

We also show that the closer to overparametrized fj is, the less we expect
to see improvement with N + AN.

20,28

What happens in practice?

Context: Overparametrized DEQs.

ImageNet Cityscapes WFLW-V
(Image classification) (Image segmentation) (Landmark Detection)
o 0.17 . . 0.38
S |
¢ 1
g 10° |
% 71[)[(: I
3 - 1
Ay -0.01 ——x - -0.05
10 20 30 40 20 40 0 10 20
Wikitext Sintel CBSD68
(Language modeling) (Optical flow estimation) (Super Resolution)
% 0.26 bl i T
0
Q
g
5|
g
8
3
~ -0.04
50 100 150
N+ AN

21/28

What happens in practice?

Context: Underparametrized Meta-learning.

MAML

MSE |
MSE |

107 10t 10°
N+ AN

10°

22/28

Take-home message

» Unrolled networks work well for smooth minimization
» For non-smooth problems, the jacobian estimate is unstable

» When training with fixed number of iterations, it makes sense to use
the same number of iterations at test time.

23/28

22222

Benchopt [Moreau et al. 2022]

Reproducing a scientific comparison from an article can be as easy as:

git clone https://github.com/benchopt/benchmark_bilevel
benchopt run ./benchmark_bilevel

Benchopt Website Github

&, Download data

Result on bilevel benchmark

Bilevel Optimization[model=logreg.n_reg=ull reg=exp task=classif]
Data: jenn1

25/28

Benchopt: principle

(N\ (N\
Benchmark Objectives x Datasets x Solvers Static output for
Objectives: . \ 'S § \ % camera ready paper
> a . a
Datasets: § sa e . N\ . Results saved Dynamic output for
° % & \ g # in log file . interactive exploration
Solvers: @ﬁ 'S a f \ a g -
benchopt pub115h+

A R juﬁa L) ' # \ - g = Reproducible

N J . J ® results online

= Each object can be parametrized so multiple scenario can be tested.

Making tedious tasks easy:

» Sharing code » Adding methods » Exploring results
» Varying hyperparameters » Running in Parallel » Caching
>

26,28

Join us!

Benchopt sprint in Paris last July.

= Next sprint in June, stay tuned!

27/28

Thanks for your attention!

Slides are on my web page:

€ tommoral.github.io O ©@tomamoral

28/28

	A bilevel view on prior learning with unrolling
	Iteration overfitting with unrolled optimization

