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1 INTRODUCTION
The h2oloo team at the University of Waterloo participated in
the Common Core Track in TREC 2018. Our main effort involved
reproducing the cross-collection relevance transfer technique of
Grossman and Cormack [8] from the TREC 2017 Common Core
Track, as captured in their WCrobust0405 run. Their idea was rela-
tively simple: for information needs (topics) that are shared across
more than one test collection, it is possible to train (per topic) rele-
vance classifiers using one or more test collections (in their case,
from the TREC 2004 and 2005 Robust Tracks) and apply the clas-
sifiers to a new document collection (in their case, the New York
Times collection used in the TREC 2017 Common Core Track) to
improve ranking effectiveness. Each classifier, in essence, learns
a relevance model for a specific information need, and the experi-
ments of Grossman and Cormack demonstrate that such models
can generalize across document collections.

According to the TREC 2017 Common Core Track overview pa-
per [2], WCrobust0405 ranked third in terms of average precision of
runs that contributed to the judgment pools. The two runs that were
more effective than WCrobust0405 involved humans who interac-
tively searched the target collection to find relevant documents. In
other words, the relevance transfer technique yielded effectiveness
levels that approach human searchers.

Not only is the technique of Grossman and Cormack effective, it
is also simple: According to their paper, a logistic regression classi-
fier for each topic was trained on the union of relevance judgments
from the TREC 2004 and 2005 Robust Tracks. Documents were rep-
resented using word-level tf-idf features and each logistic regres-
sion classifier was learned using Sofia-ML1 and then applied to the
entire Common Core collection. The top 10000 scoring documents
(per topic), in decreasing order of classifier score, was submitted as
the final run.

We set out to reproduce the work of Grossman and Cormack
described above, but with three main differences:
• Reranking search results. Instead of applying relevance classifiers
over the entire collection, we reranked only the top k = 10000
hits from an initial retrieval run.

• Incorporating retrieval scores. In WCrobust0405, documents were
simply sorted by their classifier scores. Since we were reranking
an initial pool of candidate documents, it made sense to combine
classifier scores with the retrieval scores, which we accomplished
via linear interpolation.

• Leveraging widely-used open-source tools. The original Grossman
and Cormack source code comprised a series of bash scripts that
were not documented. For reusability and to support further

1https://github.com/glycerine/sofia-ml

explorations, we built our implementation on widely-used open-
source tools: the Pythonmachine learning package scikit-learn
and the Anserini IR toolkit built on Lucene [11, 12].2

Our full reproduction effort is detailed in a forthcoming ECIR pa-
per [14]. Our successful reimplementation was then applied to the
Common Core Track in TREC 2018.

Overall, our work involved a collaboration with the Anserini
team, who participated in the CENTRE, Common Core, and News
Tracks separately. Although the team composition had some over-
lap, work on expanding the capabilities of Anserini involved re-
searchers beyond the University of Waterloo. Thus, those efforts
are documented in a separate TREC report [13].

2 RESULTS
We submitted a total of ten runs for the Common Core Track, based
on the code developed for the reproduction effort described in Yu et
al. [14]. Our reranking approach built on runs generated byAnserini.
Of the 50 topics in the evaluation, 25 topics overlapped with topics
from the TREC 2004 Robust Track (Robust04) and the TREC 2017
Common Core Track (Core17). Of those 25 topics, 15 overlapped
with topics from the TREC 2005 Robust Track (Robust05). For these
topics, we used all available relevance judgments from the previous
test collections. For the remaining topics, we simply used the output
of Anserini, unmodified.

The exact configurations of our submitted runs are shown in Ta-
ble 1. There are three main degrees of freedom in our experimental
design: First, we can vary the source of the candidate documents
on which we apply our classifiers. This is shown in the column
denoted “Base”, where we use either BM25 with axiomatic semantic
term matching [5, 10] or BM25 with RM3 [1]; additional details can
be found in the Anserini overview paper [13]. In both cases, we
retrieved the top k = 10000 documents from the collection. The
second is the weight we place on the classifier score when integrat-
ing evidence with the retrieval score (via linear interpolation). This
is shown in the column denoted “Weight”. Details of weight tuning
are described in Yu et al. [14].

The third degree of freedom is the actual classifier that we de-
ployed, shown in Table 1 under the column “Classifier”. We exper-
imented with different classifiers and ensembles, but in all cases
each classifier was trained using all available data from Robust04,
Robust05, and Core17, where the feature vectors are terms with tf-
idf weights. The feature space is shown under the column “Vocabu-
lary”: we tried using only the vocabulary of the Robust04 collection
as well as the combined vocabulary of all three collections (All). For
logistic regression, we actually experimented with two different

2http://anserini.io/
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Run Base Weight Classifier Vocabulary AP NDCG P@10 Pool

1 h2oloo_LR2AX0.6 BM25 + Ax 0.6 LR2 Robust04 0.3256 0.6145 0.5800 N
2 h2oloo_LR2_rm3 BM25 + RM3 0.6 LR2 Robust04 0.3273 0.6113 0.5800 N
3 h2oloo_LRax0.6 BM25 + Ax 0.6 LR2 All 0.3227 0.6123 0.5800 Y

4 h2oloo_e7ax0.6 BM25 + Ax 0.6 7 classifier ensemble All 0.3310 0.6215 0.5840 Y
5 h2oloo_e7ax0.7 BM25 + Ax 0.7 7 classifier ensemble All 0.3274 0.6209 0.5880 N
6 h2oloo_e7rm30.6 BM25 + RM3 0.6 7 classifier ensemble All 0.3333 0.6143 0.5820 N
7 h2oloo_e7rm30.7 BM25 + RM3 0.7 7 classifier ensemble All 0.3361 0.6177 0.5940 N

8 h2oloo_enax0.6 BM25 + Ax 0.6 3 classifier ensemble All 0.3341 0.6233 0.5860 Y
9 h2oloo_enax0.7 BM25 + Ax 0.7 3 classifier ensemble Robust04 0.3351 0.6218 0.5920 Y
10 h2oloo_enrm30.6 BM25 + RM3 0.6 3 classifier ensemble All 0.3382 0.6193 0.5920 Y

anserini_bm25 BM25 - - - 0.2284 0.5064 0.4500 Y
anserini_ax BM25 + Ax - - - 0.2734 0.5582 0.4960 Y
anserini_rm3 BM25 + RM3 - - - 0.2680 0.5422 0.4680 Y

Table 1: The configuration and effectiveness of our submitted runs; results from Anserini provided for reference.

configurations, what we call LR1 and LR2. The primary difference
is that LR2 uses the so-called “balanced” mode in scikit-learn to
automatically adjust class weights to be inversely proportional to
class frequencies.

The first three rows of Table 1 describe submissions that used
only one classifier (LR2) to rerank the documents. The second block
of the table (rows 4–8) describes submissions that deployed both LR1
and LR2 as part of a seven-classifier ensemble. The seven classifiers
are as follows: LR1, LR2, SVM, gradient boosting trees, stochastic
gradient descent classifier, stochastic gradient descent regressor,
and ridge regressor. Finally, we tried a three-classifier ensemble,
with only LR2, SVM, and gradient boosting trees; this is shown
in the third block of the table (rows 8–10). For the ensembles, the
score from each classifier is averaged and then interpolated with
the original retrieval score.

For each configuration, Table 1 also shows effectiveness in terms
of standard ranked retrieval metrics. The final column denotes
whether or not the run contributed to the judgment pool. We see
that classifier ensembles yield better effectiveness over using only
logistic regression, but it is unclear whether the seven-classifier
ensemble beats the three-classifier ensemble, since the scores are
all quite close. Nevertheless, given the greater complexity of a
seven-classifier ensemble, the three-classifier ensemble should be
preferred. In terms of the initial retrieval, axiomatic semantic term
matching and RM3 yield comparable end-to-end results, although
we achieve a higher AP (by a small margin) with BM25 + RM3.
We do not believe any firm conclusions can be drawn about the
relative merits of these query expansion techniques due to the lack
of parameter tuning.

For reference, the final block of Table 1 reports results from
baseline Anserini runs: BM25, BM25 with axiomatic semantic term
matching, and BM25 with RM3 (respectively). We see that relevance
transfer leads to large gains in effectiveness.

3 REPEATABILITY ANALYSIS
Given growing interest in reproducibility in information retrieval [3,
6, 7, 9], here we document a case study that highlights some of the

challenges researchers face today. To provide a common vocabulary,
we adopt the definitions of the terms repeatable, replicable, and
reproducible as follows, per recent ACM guidelines:3

• Repeatable: a researcher can reliably repeat her own computation.
• Replicable: an independent group can obtain the same result
using the author’s own artifacts.

• Reproducible: an independent group can obtain the same result
using artifacts which they develop completely independently.

Although one might imagine repeatability to be achievable in a
fairly straightforward manner, in practice it is non-trivial and in-
volves quite a number of complexities and nuances (nevermind
replicability or reproducibility). The fundamental problem is that
computational artifacts are always evolving, and even if they re-
mains static, their execution environments can change in unantici-
pated ways. We detail our experiences below:

The deadline of the TREC 2018 Common Core Track was in
August 2018, and our submitted runs were generated before then.
Since Anserini is an open-source project, all code changes are pub-
licly documented; however, code for relevance transfer was kept in
a separate private repository. While it would have been possible to
snapshot the code that generated our official submitted runs (e.g.,
by commit ids), unfortunately we did not do this.

The relevance transfer code was not contributed to the Anserini
code repository until December 2018. However, the Anserini code-
base itself had evolved from the summer, such that the contributed
code targeted the most recent state of the codebase at the time (as
opposed to the state of the code in August). At commit acf4c87
(dated 12/15/2018), when we were ready to repeat the previously
submitted TREC runs, we obtained different results. This point is
worth emphasizing:

We, as the authors, were unable to repeat the results of
our own submitted runs!

In other words, the exact state of the computational artifact that
generated our official TREC runs had been lost forever and cannot

3https://www.acm.org/publications/policies/artifact-review-badging
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Run AP (official) AP (12/15) AP (12/18)

h2oloo_LR2_rm3 0.3273 0.3539 0.3569
h2oloo_enrm30.6 0.3382 0.3652 0.3670

Table 2: Results of our repeatability analysis, comparing our
official submissions with code at two other points in time.

be recreated. We did more rigorously document the relevance trans-
fer code that was actually contributed to the Anserini repository,4
and in Table 2 we provide two points of comparison. Our attempts
to recreate h2oloo_enrm30.6, our most effective submitted run,
yielded AP shown in the third column, under 12/15. For reference,
we also provide AP scores for the comparable baseline with only
logistic regression, h2oloo_LR2_rm3. We see that, for reasons that
we were not able to identify, the effectiveness improved—likely as
the result of general improvements to the codebase.

Shortly after incorporating the relevance transfer code, we up-
graded the underlying Lucene dependency of Anserini from version
6.3 to version 7.6 (commit e71df7a, 12/18). This changed the effec-
tiveness of our runs again, which is shown in the rightmost column
in Table 2. Effectiveness increased again (slightly).

Our story has a happy ending because in each case, effectiveness
improved. However, imagine the alternative where the effectiveness
decreased. Would it have been “legitimate” (for example, from an
ethical perspective) to report a result that is no longer achievable
even though it had been gotten under some unknown conditions?
By definition, an unrepeatable result is unscientific. We shudder
to ponder how many results “enshrined” in the literature are not
repeatable, but have gone unnoticed.

Although to some extent we are at fault for this state of affairs:
for example, better record keeping could have allowed us to recover
exactly the code that was used to submit the runs. However, even
meticulous documentation efforts might not have been sufficient.
For example, changes to underlying libraries such as scikit-learn
might cause our runs to be non-repeatable. While it is possible to
document and capture underlying libraries, where do we stop?
In the context of neural question answering, Crane [4] recently
documented a litany of details that complicate repeatability, down
to compliance issues of math libraries with the IEEE 754 floating
point specification. Increasingly low-level capture techniques (e.g.,
virtual environments, Docker, virtual machines, etc.) can address
more and more of these issues, but at greater costs, slowing down
progress. As an example, there are known hardware differences
that affect floating point computations,5 and hence might introduce
minor perturbations in the ranked lists that in turn yield small
differences in scores. How do we deal with such issues? There is a
tension between repeatability (no doubt desirable) and the pace of
progress. The optimal balance is difficult to find.

The fundamental challenge is that computational artifacts and
execution environments are never static. It’s not merely a matter of
“document everything”, because “everything” involves an unreason-
able number of variables. Of course, we only want to document the

4https://github.com/castorini/Anserini/blob/master/docs/runbook-trec2018-h2oloo.
md
5https://stackoverflow.com/questions/11832428/windows-intel-and-ios-arm-
differences-in-floating-point-calculations

variables that have a direct bearing on the experiment at hand, but
often we don’t actually know what they are—since that’s the point
of the inquiry to begin with. Furthermore, variables can change
between experimental trials unbeknownst to researchers (for exam-
ple, a system-wide upgrade of a core library by an administrator).
Repeatability, as it turns out, isn’t trivial.

4 CONCLUSIONS
This report documents our experiences reproducing the cross-
collection relevance transfer technique proposed by Grossman and
Cormack [8] and then applying it in TREC 2018. Along the way, we
identified repeatability challenges, highlighting issues that likely
affect other researchers in the computational sciences. We hope
that our experiences contribute lessons on “how to do good science”
(both positive and negative).
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