SIB Text Mining at TREC 2020 Deep Learning
Track

Julien Knafou!?3, Matthew Jeffryes!?, Sohrab Ferdowsi!, and
Patrick Ruch'?

'HES-SO, University of Applied Sciences and Arts of Western
Switzerland
2SIB, Swiss Institute of Bioinformatics, Geneva, Switzerland
3University of Geneva, Switzerland

February 15, 2021

Abstract

This second campaign of the TREC Deep Learning Track was an op-
portunity for us to experiment with deep neural language models rerank-
ing techniques in a realistic use case. This year’s tasks were the same
as the previous edition: (1) building a reranking system and (2) building
an end-to-end retrieval system. Both tasks could be completed on both a
document and a passage collection. In this paper, we describe how we cou-
pled Anserini’s information retrieval toolkit with a BERT-based classifier
to build a state-of-the-art end-to-end retrieval system. Our only submis-
sion which is based on a RoBERTa,4,¢e pretrained model achieves for (1)
a ncdg@10 of .6558 and .6295 for passages and documents respectively
and for (2) a ndcg@10 of .6614 and .6404 for passages and documents
respectively.

1 Introduction

Last year’s TREC Deep Learning task was the first edition of the track where
both traditional information retrieval tools and newer techniques involving ma-
chine learning performances were compared in a real-world scenario. This was
the most prominent effort to benchmark information retrieval methods in very
large scales. In particular, the aim was to see whether large data could make
certain methods, perhaps those relying on deep learning, excel other methods
used for other data regimes.

This year, the second edition is essentially the same task on the same col-
lections (MS MARCO) [Bajaj et al., 2018]. It brought us a validation set which

is last year’s test set and the opportunity to look back at what has been done
over the last year in and out of the competition.

For this campaign, we tried new information retrieval systems along with
BERT-based models [Devlin et al., 2018]. This paper describes our methodology
for our submission that achieves a ndcg of 0.7186 and 0.6389 for passage and
document reranking, respectively.

2 Related work

A seminal effort in language modeling is BERT, showing significant success in
a wide range of NLP tasks. This is based on bi-directional transformers, and is
pretrained with the tasks of masked language modeling, as well as next sentence
prediction. Ever since BERT was introduced, several works tried to augment its
performance. A successful work in this direction is RoBERTa [Liu et al., 2019],
using larger and more diverse corpora for pretraining, as well as removing the
next sentence prediction task, but using a novel masked language modeling.
While it needs larger compute power, it noticeably improves the performance
of BERT across different tasks.

The information retrieval community has also been using BERT for the
learning-to-rank task. In particular, on the MS MARCO database, the work of
[Nogueira and Cho, 2019] uses BERT for passage reranking by concatenating
the query and the passage, similar to the next sentence prediction setup, but by
obtaining the probability of relevance of a passage to a query. Another recent
effort is [Han et al., 2020] that uses more specialized learning-to-rank losses to
fine-tune BERT. While this work also uses RoBERTa, when we started training
our model, this was absent within the information retrieval communities. Our
motivation was to see whether similar performance improvements for NLP tasks
using RoBERTa can be observed also for reranking.

3 Tasks

The TREC 2020 Deep Learning Track is divided in two tasks; a document
and a passage reranking tasks. Both of them are divided in two sub-tasks.
The first one is the full ranking task where, for a given query, a ranked list of
candidates needs to be retrieved in a corpus. For this, one needs to develop an
end-to-end solution. The maximum returned list length is either 1000 passages
or a 100 documents. The second sub-task is the top-k reranking task where a
list of candidates is provided for each query by the track organizer and only
a reranking is required. In this sub-task too, the number of candidates differ
depending on the task; for the passages, a list of 1000 candidates is provided,
while for documents, a list of 100 candidates is provided.

’ Corpus \ # of items ‘
Passages 8,841,823
Documents | 3,213,835

Table 1: Number of documents and passages in the both corpus

’ \ Split \ # of Queries ‘

Train 808,731

Passages Dev 101,093

SA88S I Validation 101,092
Test (2020) 200

Train 367,013

Documents Dev 5,193
Validation 200
Test (2020) 200

Table 2: Number of passages’ and documents’ queries

4 Data

We can divide the provided data into four categories; first, the corpus where a
huge collection of either passages or documents are listed, second, a list of queries
mapped to either passages or documents in the collections, third, a dataset that
not only map query to passages, but also tells if a passage is irrelevant to a
given query, finally, the ORCAS click data that has been released at the end
of the campaign (which we did not have the opportunity to exploit, due to the
timing of its release).

We used data from tables 1 and 2 only for the information retrieval part,
the first step of our end-to-end solution. Table 1 shows the number of passages
and documents in the corpus for a size of about 2.9GB and 22GB, respectively.
Those corpora are the collections from which we had to retrieve candidates in
the first sub-tasks.

Table 2 shows the number of queries for both documents and passages per
split. The document queries map to a single document. Most passage queries
map to a single passage, but in the development set, 12% map to more than
one passage. The test (2020) split was released later during the campaign. We
currently have only the queries and top-k candidates for this one, the mapping
will come later.

Table 3 shows the number of both positive and negative passages linked to
a set of queries. In order to get comparable results with [Han et al., 2020] and
[Nogueira and Cho, 2019], and also because the dataset size was already big
enough, we only used the small version of it.

In table 4, we see the number of query-candidate pairs for passages and
documents per split. We only used the validation set in order to assess our
models and the test (2020) set for the submission of our run.

query-positive & negative

Dataset .
passage pairs

Train small 39,780,811

Train large 397,756,691

Table 3: Number of positive and a negative passages linked to a set of queries

] \ Split \ # query-candidate pairs ‘
Train 478,002,393
Passages De\./ - 6,668,967
Validation 189,877
Test (2020) 190,699
Train 36,701,116
Documents Dev 519,300
Validation 20,000
Test (2020) 20,000

Table 4: Number of query and candidate pairs

5 Methodology

Our end-to-end method is based on a two-fold strategy. First, we use informa-
tion retrieval methods in order to narrow down a given query to a limited amount
of candidates. Then, we rerank the query-candidate pairs using a BERT-based
classifier. The following subsection will describe in detail both steps.

5.1 Information retrieval

Initial document retrieval used conventional information retrieval methods to
produce a smaller set of candidates to which more computationally intensive
methods could be applied. We used the Anserini toolkit to insert the document
and passage datasets into Lucene indexes, which were then queried to produce
the candidate sets [Yang et al., 2018]. For the document retrieval task, we used
BM25 with k£ = 3.44 and b = 0.87. On the development set, this gave recall at
1000 of 0.933 and on the validation set, this gave recall at 1000 of 0.681. For
the passage retrieval task we used BM25 with £ = 0.9 and b = 0.4. On the
development set, this gave recall at 1000 of 0.857 and on the validation set, this
gave recall at 1000 of 0.738.

5.2 Reranking

As discussed in the data section, for the reranking part, we used the small version
of query-positive and negative passages pairs training dataset. Our reranking
model pipeline is essentially based on [Nogueira and Cho, 2019] where we use
a classifier with a cross-entropy loss that tries to predict if a given passage is

Model Batch size | Learning rate | Total step FP Precision ‘

BERT}bqse 128 3e-5 50000 32
RoBERTa4ge 40 2e-5 300000 Mixed (16 & 32)

Table 5: Fine-tuning setting for both models

relevant to a query. In order to do that, we concatenate each query-passage
pair with a separator token in-between and assigned a positive or a negative
label to it whether the passage is relevant to a query or not. We focused our
fine-tuning on two BERT-based pretrained models [Devlin et al., 2018] namely
BERT}se and RoOBERTa4,4e [Liu et al., 2019]. We fixed the maximum amount
of tokens at 64 and 512 for the query length and the sequence concatenation
length, respectively. We tried to maintained a certain balance of positive and
negative passages for each batch. We used an Adam optimizer [Kingma and
Ba, 2017] for both models.

Table 5 shows the main hyperparameters we set for this experiment. Due
to the limited amount of resources during the first period of this experiment,
we had to make decisions about the size of our training strategy. As this kind
of model training is computationally intense, we first tried to train BERT 44
on only 640k of query-passage pairs. Once we were sure that the setup was
working, we decided to train the RoBERTa;4,4c model on 12M pairs. In order
to increase the batch size and decrease training time, we used mixed precision
floating points (FP), this had an impact on the learning rate we decided to use
as using a bigger rate could result in an unstable optimization.

As another strategy to reduce the memory requirements for fine-tuning the
BERT models, we freezed the weights of the network and used the latent codes
as fixed inputs. Instead of the usual one fully connected layer, this input was fed
to a fully convolutional network and was trained for reranking using the binary
cross-entropy loss. We noticed a very small drop in performance and did not
report it in our submission. However, this can be an interesting future direction
to economise on resource consumption by decoupling the BERT weights from
those of the task-specific network.

5.2.1 Passage reranking

Once the model is trained, each query-passage pair (candidate) is evaluated and
each passage is assigned a score according to its probability of being a relevant
passage with respect to a query. We then return a list of query-passage pairs
ranked according to their scores.

5.2.2 Document reranking

For the document reranking, we first divide each document to a list of passages.
We then evaluate each passage the same way we did with the passage reranking.
The document score will be equal to the biggest passage score of a given query-
document pair.

Model name \ RR \ndcg@lO\ MAP \ R@100 ‘

Passages LrAuLbase 0.9360 | 0.6677 | 0.4312 | 0.4852
¢ RoBERTa4gc | 0.9291 | 0.7107 | 0.4644 | 0.5148
Documents ~ DERA base 0.9070 [0.6456 | 0.2846 [0.3871
RoBERTa;4,4. | 0.9244 | 0.6566 | 0.2863 | 0.3871

Table 6: Results on the validation set using provided IR; 1000 candidates per
query and 100 candidates for passage and document respectively

’ Run type \ RR \ ndcg@100 \ ndcg@10 \ MAP \ R@100 ‘
Passagos reranking 0.8635 0.6587 0.7169 0.4823 | 0.6986
& end-to-end | 0.8769 | 0.6816 0.7192 | 0.4990 | 0.7438
Documents reranking 0.9185 0.6060 0.6295 0.4199 | 0.5985
end-to-end | 0.9365 0.6390 0.6404 | 0.4423 | 0.6410

Table 7: Official results

6 Results and discussion

Table 6 shows our results for both BERT 4. and RoBERTa,,,4c models on the
validation split using top-k candidates of the second sub-task. Looking at the
ndcg@10, which was the main metric of last year’s leaderboard, we can see that
for both tasks, RoOBERTa;4,4. Obtains the best results by about 5 points in the
passage task. Looking at the document results, it is for the moment unclear
if the small difference between the models is due to the model or the way we
handled the transition from passage to document (see previous section).

Table 7 shows the official results for each sub-task. Our end-to-end solution
outperformed the reranking results which means that our retrieval solution was
better than the baseline provided.

7 Conclusion

Looking at the results, we're unable to draw any concrete conclusion, other than
that a BERT-based reranker is an easy to implement tool that improves top-k
metrics when compared to traditional information retrieval systems.

References

[Bajaj et al., 2018] Bajaj, P., Campos, D., Craswell, N., Deng, L., Gao, J., Liu,
X., Majumder, R., McNamara, A., Mitra, B., Nguyen, T., Rosenberg, M.,
Song, X., Stoica, A., Tiwary, S., and Wang, T. (2018). Ms marco: A human
generated machine reading comprehension dataset.

[Devlin et al., 2018] Devlin, J., Chang, M., Lee, K., and Toutanova, K. (2018).
BERT:: pre-training of deep bidirectional transformers for language under-
standing. CoRR, abs/1810.04805.

[Han et al., 2020] Han, S., Wang, X., Bendersky, M., and Najork, M. (2020).
Learning-to-rank with bert in tf-ranking.

[Kingma and Ba, 2017] Kingma, D. P. and Ba, J. (2017). Adam: A method for
stochastic optimization.

[Liu et al., 2019] Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy,
0., Lewis, M., Zettlemoyer, L., and Stoyanov, V. (2019). Roberta: A robustly
optimized BERT pretraining approach. CoRR, abs/1907.11692.

[Nogueira and Cho, 2019] Nogueira, R. and Cho, K. (2019). Passage re-ranking
with BERT. CoRR, abs/1901.04085.

[Yang et al., 2018] Yang, P., Fang, H., and Lin, J. (2018). Anserini: Repro-
ducible ranking baselines using lucene. J. Data and Information Quality,
10(4).

