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ABSTRACT
In our participation to the TREC 2020 Fair Ranking Track, as Naver
Labs Europe, we focused on the re-ranking task and we investigated
the performance of a controller as a way to minimize unfairness
over time, with minimal loss of utility.

We used a two-step approach, based on (1) a relevance probability
estimator, and (2) a controller that aims to bring the actual exposure
close to the target exposure.

This paper describes the components we designed in more detail.
It contains a comparison of the performance of the controller to a
baseline, which consists of a Plackett-Luce sampler. It also analyses
the effect of the quality of the estimated relevance probabilities
(closeness to the true binary relevance values) on the controller
performance.

1 INTRODUCTION
This year, the TREC 2020 Fair Ranking Track introduces a new
fairness metric, based on the differences between the system group
expected exposures and the target group expected exposures, which
has the particularity to mix fairness and utility into a single non-
conflictual metric. Indeed, for a given query, if the relevance values
of documents are known, an optimal policy exists that simulta-
neously offers maximum utility in the PRP (Probability Ranking
Principle) sense and optimal fairness according to this year’s fair-
ness metric, at least after a periodic number of repetitions. In case
of binary relevance values, this policy consists in cycling over all
𝑛𝑟 !(𝑁 − 𝑛𝑟 )! rankings for the given query, where 𝑛𝑟 is the number
of relevant documents and 𝑁 is the total number of documents (see
[1]).

Overall, in this year’s TREC Fair Ranking Track, the main idea
we wanted to test and evaluate in a realistic setting was the design
of a controller that optimizes at any time the system fairness (as
defined by the metric of this year), while dealing with the fact
that the relevance values are actually unknown and can only be
approximated based on an effective retrieval algorithm. We focused
on the re-ranking task, leaving the full retrieval task for future
work.

In a nutshell, our solution is made of two independent modules:
§2 Indexing and Re-ranking: This module estimates for each

query the relevance probabilities, i.e. the probabilities of a
document being relevant for the query.

§3 Fairness Controller: This module uses the relevance prob-
abilities to bring the expected actual exposure close to the
expected target exposure.

Note that, since the unfairness is defined by the TREC guidelines
as an average over the query-level metric, we do not have to worry
about amortization over different queries and can treat each query
independently.

In the following, we describe our document indexing and re-
ranking process. Then, we present our fairness controller, followed
by an analysis of our obtained results.

2 INDEXING & RE-RANKING
The main goal of this component is to estimate accurately the rele-
vance probabilities of every document with respect to the query. As
far as implementation choices are concerned, we decided to rely on
rather simple indexing and retrieval techniques. This decision was
taken assuming that the training set information (queries, document
subsets and relevance signals) was representative of the evaluation
set. The motivations for these choices are the following: (1) we are
dealing with a re-ranking task, which is much less complicated than
providing a full ranking across the whole collection; (2) queries and
documents are multi-lingual and, even if we could have relied on
a language detector and have separate pre-processing chains per
language, we preferred to adopt a language-agnostic approach; (3)
we observed that the relevance signals seem to come from click
data, for which we had no knowledge about the context (rank of
the document in the initial SERP, time of the query, etc.), so that
we can consider these signals as biased and noisy, with little hope
that a complex retrieval algorithm will be robust enough to give
results significantly better than a standard method such as BM251 .

In practice, as we didn’t rely on any query expansion and as we
were targeting only the re-ranking task, we only indexed the subset
of the collection that contains the documents to be re-ranked. To
be as language-agnostic as possible, we used a simple tokenizer
based on usual white space characters and punctuation, without
any stop-word removal.

As retrieval model, we used a combination of BM25 [5] and word
embedding-based approaches [3] for computing basic relevance
scores. In a first retrieval model (called ModelB hereafter), we sim-
ply used a linear combination of the two scores to compute a fused
score; the corresponding weight is determined by a line search in a
cross-validation setting. In a second retrieval model (called ModelA
hereafter), these intermediate relevance scores were combined with
metadata (recency and number of citations) through a Gradient-
Boosted-Tree classifier, trained with a pointwise log-likelihood
objective function. The hyper-parameters used to train this classi-
fier were identified by cross-validation on the training queries. The
output of these two retrieval models provides us with estimated
relevance scores that we have to transform into relevance proba-
bilities. This calibration step is realised by Isotonic Regression, as
described in [4]. After this calibration step, the retrieval component
output consists then of a vector of estimated relevance probabilities,

1Actually, we tried some BERT-based retrieval models, pre-trained on the MS-MARCO
dataset and fine-tuned with the (rather small) training set of this track, but the retrieval
performance was disappointing with respect to a simple BM25 model.



denoted as 𝜌 = (𝜌𝑖 )𝑖∈{1,𝑁 } , for each of the 𝑁 documents associated
to the considered query.

3 FAIR CONTROLLER
We consider the true unknown relevance values to be realizations
of Bernoulli random variables with parameters 𝜌 , computed as in
section 2. Given a query, with 𝑁 documents and relevance probabil-
ities 𝜌 = (𝜌𝑖 )𝑖∈{1,𝑁 } , we assume the actual relevance 𝑟𝑖 ∼ Ber(𝜌𝑖 )
independently for each document 𝑖 . As the document relevance
values are unknown, their target exposures E∗

𝑖
as defined in [1] are

unknown as well. But we can compute their expected values, given
the relevance probabilities. More precisely, the expected target ex-
posure of a document 𝑖 can be expressed as

E𝑟∼Ber(𝜌)
[
E∗𝑖

]
=

𝑁−1∑
𝑠=0

PB(𝑠 |𝜌−𝑖 ) (𝜌𝑖𝜇𝑠+1 + (1 − 𝜌𝑖 )𝜈𝑠 ) , (1)

where 𝜌−𝑖 denotes the vector of parameters 𝜌 excluding its 𝑖th
element, PB(·|𝜌) denotes the density of a Poisson-Binomial distri-
bution with parameters 𝜌 , and where 𝜇𝑠 , 𝜈𝑠 respectively denote the
target exposure of a relevant document and the target exposure
of an irrelevant document, given that 𝑠 amongst 𝑁 documents are
relevant (see [1] for details of their computation). The exact com-
putation of the probability mass function of a Poisson-Binomial
is no trivial matter. We used a pre-coded method described in [2]
and implemented in [6]. The quantities E[E∗

𝑖
] need to be computed

once for each query. Document expected target exposures are then
propagated to expected target exposures per producer by simple
summation, as defined in the track guidelines. Then they need only
to be multiplied by 𝑡 to get their value after 𝑡 repetitions of the
query. We will denote the producer expected target exposure after
𝑡 repetitions as Ê∗𝑝,𝑡 , and we have:

Ê∗𝑝,𝑡 = 𝑡
∑

𝑖 produced by 𝑝
E[E∗𝑖 ] (2)

Due to the lack of knowledge of the true relevance values, the
actual exposures are unknown as well. The computation of the
expected actual exposure E[E𝑖 ] is more straightforward than the
one of the expected target exposure. Indeed, assuming the linearity
of 𝑓 – the function that maps the relevance value into a probability
of the user being satisfied, as defined in the track guidelines –, one
can show that given a ranking 𝜋 mapping a document to its rank,
we have

E𝑟∼Ber(𝜌) [E𝑖 |𝜋] = 𝛾𝜋 (𝑖)−1
𝜋 (𝑖)−1∏
𝑗=1

(
1 − 𝑓 (𝜌𝜋−1 ( 𝑗) )

)
. (3)

Expected document exposures are then propagated to expected
producer exposures by simple summation, as defined in the track
guidelines. Since the group memberships are unknown, we decide
to control for the exposure at producer level. Indeed a low unfair-
ness at producer level implies a low unfairness at group level. After
𝑡 repetitions of the query, as each repetition uses in general a dif-
ferent ranking 𝜋𝑡

′
(𝑡 ′ ∈ {1, . . . , 𝑡}), the actual expected exposure of

producer 𝑝 at repetition/time 𝑡 is simply:

Ê𝑝,𝑡 =
𝑡∑

𝑡 ′=1
E𝑟∼Ber(𝜌) [E𝑝 |𝜋𝑡

′
] (4)

Algorithm 1 shows the layout of our simple controller. Given a
query and a history of delivered rankings, we define the advantage
𝐴𝑡 (𝑝) of a producer 𝑝 at repetition 𝑡 as

𝐴𝑡 (𝑝) = (Ê𝑝,𝑡−1 − Ê∗𝑝,𝑡−1)
2 sign(Ê𝑝,𝑡−1 − Ê∗𝑝,𝑡−1), (5)

The advantage 𝐴𝑡 (𝑖) of a document 𝑖 is defined to be the arith-
metic mean of the advantages of its producers. The advantage is
a signed real number expressing how much a producer has been
advantaged (if 𝐴𝑡 (𝑝) > 0) or disadvantaged (if 𝐴𝑡 (𝑝) < 0) in the
past (i.e. up to repetition 𝑡 − 1). The advantage is the equivalent of
the error (between the system output and the target) in standard
control theory. When the history is empty, both target and actual
exposure coincide (both are 0), so all advantages are zero. Given
a query and a history of delivered rankings, we define the output
of our controller at repetition/time 𝑡 by the scores (ℎ𝑖,𝑡 )𝑖∈{1,𝑁 } for
each document as

ℎ𝑖,𝑡 = 𝜃𝜌𝑖 + (1 − 𝜃 )𝐴𝑡 (𝑖), (6)

with 𝜃 ∈ (0, 1). In standard control theory, this corresponds to a
𝑃-controller (or proportional controller), as only the term propor-
tional to the error is included in the control signal. Note that we
have one controller per query, as the task defines fairness metric
at the individual query level. Our ranking policy simply consists
in ordering the documents by decreasing score, as output by the
controller at each repetition 𝑡 . Ties are broken randomly.

Algorithm 1Outline of the controller for a unique query 𝑞. 𝑃 is the
set of producers, 𝐷 is the set of documents, Ê𝑝,𝑡 (resp. Ê∗𝑝,𝑡 ) denotes
the total expected actual (resp. target) exposure at repetition 𝑡

1: procedure Fair_Controller
2: 𝐴1 (𝑝) ← 0, ∀𝑝 ∈ 𝑃 ⊲ Initialise producer advantages to 0
3: ∀𝑝 ∈ 𝑃, Ê𝑝,0 ← 0, Ê∗

𝑝,0 ← 0 ⊲ Initialise exposures to 0
4: for 𝑡 = 1 to 𝑡 = 𝑛 do
5: ∀𝑑 ∈ 𝐷, 𝐴𝑡 (𝑑) ← mean{𝐴𝑡 (𝑝) |𝑝 produces 𝑑} ⊲

Compute the document advantages

6: (ℎ𝑖,𝑡 )𝑖∈{1,𝑁 } ←
©«
𝜌1 −𝐴𝑡 (1)
.
.
.

.

.

.

𝜌𝑁 −𝐴𝑡 (𝑁 )

ª®®¬
(

𝜃

1 − 𝜃

)
⊲ Compute

the adjusted scores
7: 𝜋 ← (ℎ1,𝑡 , . . . , ℎ𝑁,𝑡 ) ⊲ Sort the scores
8: ∀𝑝 ∈ 𝑃, Ê𝑝,𝑡 ← Ê𝑝,𝑡−1 +

∑
𝑖 produced by𝑝 E[E𝑖,𝑡 |𝜋] ⊲

Update the expected actual exposures using equation (3)
9: ∀𝑝 ∈ 𝑃, Ê∗𝑝,𝑡 ← Ê∗𝑝,𝑡−1 +

∑
𝑖 produced by𝑝 E

[
E∗
𝑖,𝑡

]
⊲

Update the expected target exposure using equation (1)
10: ∀𝑝 ∈ 𝑃, 𝐴𝑡+1 (𝑝) ← (Ê𝑝,𝑡 − Ê∗𝑝,𝑡 )2 sign(Ê𝑝,𝑡 − Ê∗𝑝,𝑡 ) ⊲

Update the producer advantages
11: end for
12: end procedure

4 SUBMITTED RUNS
We submitted five runs to the TREC Fair Ranking Track (re-ranking
task):
• ModelA_99_1: Retrieval Model A (with recency and citation
metadata) combined with the fair controller with 𝜃 = 0.99
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• ModelA_9_1: Retrieval Model A using the fair controller with
𝜃 = 0.9
• PL 𝜏 = 0.05: This is our baseline method: it consists in
sampling rankings from a Plackett-Luce distribution with
parameters (𝜌𝑖 )𝑖∈{1,𝑁 } and with temperature 𝜏 = 0.05
• ModelB_99_1: Retrieval Model B (without recency and ci-
tation metadata) combined with the fair controller with
𝜃 = 0.99
• ModelB_9_1: Retrieval Model B using the fair controller with
𝜃 = 0.9

5 RESULTS
In this section, we provide a concise analysis of the performance
of our 5 submitted runs as reported by the official track metrics.
Each query is repeated 𝑇 = 150 times and we report performances
averaged over 200 queries.

Table 1 presents the average performance of each of our runs on
the training set in terms of the norm of the controlled differences
∥E[E∗P,𝑇 ] − E[EP,𝑇 ] ∥ and in terms of the actual producer-level
unfairness ∥E∗P,𝑇 −EP,𝑇 ∥. The indexP indicates that the exposures
are considered vectors with one element per producer at time 𝑇 . A
run with 𝜃 = 1 is also provided for comparison; it is equivalent to a
PRP policy using the estimated relevance probabilities 𝜌 .

On the training set the controller performs better than both the
simple 𝑃𝑅𝑃 policy based on the 𝜌𝑖 and the Plackett-Luce policy,
although the difference w.r.t Plackett-Luce is not very big. Amongst
the controller methods, model A slightly outperforms Model B, and
a slight advantage can be obtained by choosing 𝜃 = 0.99 instead of
𝜃 = 0.9.

Table 2 presents the performance of our submitted runs on the
evaluation set in terms of the norm of the controlled difference
∥E[E∗P,𝑇 ] −E[EP,𝑇 ] ∥ and in terms of the actual group-level unfair-
ness. On the evaluation set, no significant performance difference
could be detected between either of our submitted run, although
the TREC mean is clearly outperformed2.

Figure 1 has been obtained by applying the controller and the
Plackett-Luce policy to the true relevance values 𝑟𝑖 blurred towards
the estimated relevance probabilities 𝜌𝑖 by a “blur factor” in [0, 1].
This was done only for the training queries, for which we have the
true relevance information. A blur factor of 𝜆 ∈ [0, 1] means that the
simulated relevance probabilities for each document 𝑖 were taken
to be equal to (1 − 𝜆)𝑟𝑖 + 𝜆𝜌𝑖 . The results show that our controller
does not provide any advantage with respect to a Plackett-Luce
policy except when the relevance probabilities are very certain, i.e.
when they are close enough to their true binary relevance values, in
which case the controller tends to achieving almost zero unfairness.

6 CONCLUSIONS
We separated the problem into two subproblems: (§2) estimation of
the relevance probabilities, and (§3) design of a controller bringing
the expected actual exposures close to the expected target exposures
at the producer-level.

We compared the controller to a baseline Plackett-Luce (PL)
policy. We found that the controller slightly outperformed PL on
2Statistical significance tests based on a paired t-test confirmed this observation with
a 𝑝-value less than 10−12 .

Table 1: Average training results in terms of unfairness
(lower is better). Best values are highlighted in bold. 𝑇 = 150

run (𝜃, 1 − 𝜃 ) ∥E[E∗P,𝑇 ] − E[EP,𝑇 ] ∥ ∥E∗P,𝑇 − EP,𝑇 ∥

Model A (1, 0) 230.8762 274.1540
Model A (0.99, 0.01) 28.3936 156.1653
Model A (0.9, 0.1) 27.5066 156.2799
Model A PL 𝜏 = 0.05 75.8210 168.1693
Model B (1, 0) 236.5348 281.6143
Model B (0.99, 0.01) 28.4934 157.0478
Model B (0.9, 1) 27.7479 158.8281

Table 2: Average evaluation results in terms of unfairness
(lower is better). Best values are highlighted in bold. An in-
dex P (resp. G) means the exposures are computed in the
producer (resp. group) space. 𝑇 = 150

run (𝜃, 1 − 𝜃 ) ∥E[E∗P,𝑇 ] − E[EP,𝑇 ] ∥ ∥E∗G,𝑇 − EG,𝑇 ∥

Model A (0.99, 0.01) 27.9860 87.5628
Model A (0.9, 0.1) 26.9547 87.4756
Model A PL 𝜏 = 0.05 78.0179 87.5225
Model B (0.99, 0.01) 28.1344 88.4720
Model B (0.9, 1) 27.1246 88.5984
TREC mean - 113.5034
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Figure 1: Analysis of the effect of "blurring" the true rele-
vance values towards the relevance probabilities as (1−𝜆)𝑟𝑖 +
𝜆𝜌𝑖 with blur factor 𝜆 ranging from 0 to 1. Note that the 𝑦-
scale is logarithmic.

the training data in terms of producer-level unfairness. But we did
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not find sufficient evidence on the evaluation set to conclude that
the controller outperforms PL in terms of group level fairness.

However, we found that the controller significantly outperforms
PL, when the relevance probabilities tend to be very close to the
true binary relevance values, with the controller tending to a near
perfect fairness performance.
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