
Evaluating Transformer-Kernel Models
at TREC Deep Learning 2020

Sebastian Hofstätter
TU Wien

s.hofstaetter@tuwien.ac.at

Allan Hanbury
TU Wien

hanbury@ifs.tuwien.ac.at

ABSTRACT
We tested multiple hypotheses using the Transformer-Kernel neural
ranking pattern. The TK model family sits between BERT and
previous ranking model in terms of the efficiency-effectiveness
trade-off, faster than BERT albeit less effective.

In the passage re-ranking task we tested the effectiveness of
contextualized stopwords, introduced with TK-Sparse and find that
removing 19% of terms after contextualization even slightly in-
creases the model’s effectiveness. In the document re-ranking task
we tested if a long-text TKL model is better with 2,000 or 4,000 doc-
ument tokens and find that our 2,000 token instance outperforms
the other.

Our results confirm the path for new storage saving methods for
interpretable ranking models, and give an interesting insight into
the questions of how many tokens of a document we need to read
for a relevance assessment.

1 INTRODUCTION
In the 2020 installment of the TREC Deep Learning track, our group
testedmultiple hypotheses centered around the Transformer-Kernel
neural ranking pattern.We introduced the TKmodel last year [5], as
a very efficient alternative to BERT based ranking approaches [6, 7].
The TK pattern fills the gap in the efficiency-effectiveness trade-
off map between BERT and non-Transformer based text ranking
models [2]. Our shallow Transformers are faster than BERT, albeit
less effective. In Table 1 we give a summary of our submitted runs
corresponding to our two research questions.

Last year at TREC-DL’19 [1] we tested the general concept of
our TK family, to understand whether the proposed concept works
in general. For this year’s TREC-DL passage task we tested the
effectiveness of contextualized stopwords, introduced with TK-
Sparse [3], as a way to reduce the number of terms saved when
pre-computing document representations against a full TK model.
We studied the question:
RQ1 How do space-saving contextualized stopwords effect the

re-ranking quality of TK?
We found that the TK-Sparse run is slightly more effective than

the plain TK run, suggesting that not only do space saving methods
improve efficiency, our contextualized stopwords apparently reduce
noise and improve the effectiveness of the TK model.

In the document task we tested our hypothesis of how much of
a document we need to read to effectively train and run a neural
ranking model. For this purpose we submitted two runs of our TKL
model (Transformer-Kernel for Long documents) [4] one receiving
the first 2,000 and the other the first 4,000 tokens of a document
and studied:
RQ2 How effective is the 2K vs. 4K document length TKL model?

Table 1: Summary of our submitted TREC’20 runs

Run Description

Passages
TUW-TK-2Layer A plain TK [5] model with GloVe

embeddings and pre-trained
Transformer layers on the collection

TUW-TK-Sparse TK-Sparse [3] with 19% sparsity of
stored passage representations

Documents
TUW-TKL-2k A TKL model [4] using 2,000 document

tokens
TUW-TKL-4k A TKL model [4] using 4,000 document

tokens

Here we found that the 2K model outperforms the 4K model
in the TREC 2020 evaluation. This an interesting, as we observed
reverse results using the TREC 2019 query set. For efficiency, of
course computing fewer tokens is beneficial, so these TREC 2020
results are encouraging for models using not all available tokens to
locate relevance.

We used our PyTorch [8] implementations available at:
github.com/sebastian-hofstaetter/transformer-kernel-ranking

2 BACKGROUND
In the following we give a quick overview of the methodology, for
more details we refer to the respective papers.

2.1 TK
Our TUW-TK-2Layer run is an instance of the TK model. The
Transformer-Kernel (TK) model [5] is not based on BERT pre-
training, but rather uses shallow Transformers. TK independently
contextualizes query 𝑞1:𝑚 and passage 𝑝1:𝑛 based on pre-trained
word embeddings, where the intensity of the contextualization
(Transformers as TF) is set by a gate 𝛼 :

𝑞𝑖 = 𝑞𝑖 ∗ 𝛼 + TF(𝑞1:𝑚)𝑖 ∗ (1 − 𝛼)
𝑝𝑖 = 𝑝𝑖 ∗ 𝛼 + TF(𝑝1:𝑛)𝑖 ∗ (1 − 𝛼)

(1)

The sequences 𝑞1:𝑚 and 𝑝1:𝑛 interact in a match-matrix with a
cosine similarity per term pair and each similarity is activated by a
set of Gaussian kernels [9]:

𝐾𝑘
𝑖,𝑗 = exp

(
−

(
cos(𝑞𝑖 , 𝑝 𝑗) − 𝜇𝑘

)2
2𝜎2

)
(2)

Kernel-pooling is a soft-histogram, which counts the number of
occurrences of similarity ranges. Each kernel 𝑘 focuses on a fixed
range with center 𝜇𝑘 and width of 𝜎 .

Query

T

Passage

TF TF

Context. Stopwords

TF TF

Offline

Ʃ FF

s

Figure 1: TK-Sparse architecture diagram: The offline pre-
computed document representations are filtered through
the sparse stopword component before being saved and used
in the aggregation.

These kernel activations are then summed, first by the passage
term dimension 𝑗 , log-activated, and then the query dimension is
summed, resulting in a single score per kernel. The final score is
calculated by a weighted sum using𝑊𝑠 :

TK(𝑞1:𝑚, 𝑝1:𝑛) =
(𝑚∑
𝑖=1

log ©«
𝑛∑
𝑗=1

𝐾𝑘
𝑖,𝑗

ª®¬
)
∗𝑊𝑠 (3)

2.2 TK-Sparse
The adaption of contextualized stopwords used in the TUW-TK-
Sparse run augment the TK model with a sparsity component, that
filters out passage terms after the contextualization. We give an
overview of this procedure in Figure 1. Every vector 𝑑 𝑗 is trans-
formed by two feed forward layers, followed by a ReLU activation,
to compute the stopword removal gate 𝑟 𝑗 :

𝑟 𝑗 = ReLU(FF(𝑑 𝑗) (4)

This removal gate is applied to the kernel activations, to filter out
activations that become 0 because of the gate 𝑟 𝑗 .

𝐾𝑘
𝑖,𝑗 = 𝐾

𝑘
𝑖,𝑗 ∗ 𝑟 𝑗 (5)

Now, we only need to store non-zero passage terms for the query-
dependent element-wise kernel activation and aggregation.

The sparsity is trained with an augmented loss and L1-norm
regularization of 𝑟 , forcing 𝑟 to become small and with the ReLu
activation become zero at as many positions as possible without

Table 2: Official TREC’20 passage re-ranking results.

Run nDCG@10 MRR@1K MAP@1K

TUW-TK-2Layer 0.6539 0.7654 0.4179
TUW-TK-Sparse 0.6610 0.7970 0.4164

Table 3: Official TREC’20 document re-ranking results.

Run nDCG@10 MRR@100 MAP@100

TUW-TKL-2k 0.5852 0.9296 0.3810
TUW-TKL-4k 0.5749 0.9185 0.3749

compromising the effectiveness of the model. For the exact proce-
dure and training adaptions we refer to Hofstätter et al. [3].

2.3 TKL
Our document runs TUW-TKL-2k and TUW-TKL-4k are based on
TKL. The TKLmodel utilizes the same building blocks as TK, namely
shallow transformers and an enhanced kernel pooling, but applies
them in sliding windows to form local-attention regions and then
selects the most relevant regions to form the document score. The
exact definitions are detailed in Hofstätter et al. [4].

3 RESULTS
To answer our RQ1 How do space-saving contextualized stopwords
effect the re-ranking quality of TK? we show the passage re-ranking
task results in Table 2. We see that TK-Sparse outperforms TK on
nDCG and MRR, however on MAP TK shows better results. The
main take-away here is that TK-Sparse is at least as effective as TK,
showing the applicability of our contextualized stopwords to save
pre-computation storage. We view this technique as an interest-
ing path forward in combination with other vector compression
techniques.

Our document re-ranking task results concerning RQ2 How
effective is the 2K vs. 4K document length TKL model? are shown in
Table 3. The results are unexpected, yet interesting, as the previous
TREC-DL’19 results for those two model instances showed the
reverse outcome in Hofstätter et al. [4]. The 2K model outperforms
the 4K instance on all metrics. This shows that apparently 2,000
document tokens are enough in the re-ranking scenario. For next
year’s TREC we plan to test this hypothesis also in the retrieval
stage.

4 CONCLUSION
We submitted 4 runs to the TREC-DL’20 campaign, and studied 2
research questions concerning the effectiveness of the TK model
family. We find, that our TK-Sparse model does not negatively
impact the effectiveness when reducing the passage terms with
contextualized stopwords. Furthermore, we observe that 2,000 doc-
ument tokens seem to be enough to re-rank documents with TKL.

REFERENCES
[1] Nick Craswell, Bhaskar Mitra, Emine Yilmaz, and Daniel Campos. 2019. Overview

of the TREC 2019 deep learning track. In TREC.
[2] Sebastian Hofstätter, Sophia Althammer, Michael Schröder, Mete Sertkan, and

Allan Hanbury. 2020. Improving Efficient Neural Ranking Models with Cross-
Architecture Knowledge Distillation. arXiv:cs.IR/2010.02666

http://arxiv.org/abs/cs.IR/2010.02666

[3] Sebastian Hofstätter, Aldo Lipani, Markus Zlabinger, and Allan Hanbury. 2020.
Learning to Re-Rank with Contextualized Stopwords. In Proc. of CIKM.

[4] Sebastian Hofstätter, Hamed Zamani, Bhaskar Mitra, Nick Craswell, and Allan
Hanbury. 2020. Local Self-Attention over Long Text for Efficient Document
Retrieval. In Proc. of SIGIR.

[5] Sebastian Hofstätter, Markus Zlabinger, and Allan Hanbury. 2020. Interpretable &
Time-Budget-Constrained Contextualization for Re-Ranking. In Proc. of ECAI.

[6] Sean MacAvaney, Andrew Yates, Arman Cohan, and Nazli Goharian. 2019. CEDR:
Contextualized Embeddings for Document Ranking. In Proc. of SIGIR.

[7] Rodrigo Nogueira and Kyunghyun Cho. 2019. Passage Re-ranking with BERT.
arXiv preprint arXiv:1901.04085 (2019).

[8] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang,
Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer.
2017. Automatic differentiation in PyTorch. In Proc. of NIPS-W.

[9] Chenyan Xiong, Zhuyun Dai, Jamie Callan, Zhiyuan Liu, and Russell Power. 2017.
End-to-End Neural Ad-hoc Ranking with Kernel Pooling. In Proc. of SIGIR.

	Abstract
	1 Introduction
	2 Background
	2.1 TK
	2.2 TK-Sparse
	2.3 TKL

	3 Results
	4 Conclusion
	References

