
H2oloo at TREC 2020: When all you got is a
hammer... Deep Learning, Health Misinformation,

and Precision Medicine

Ronak Pradeep, Xueguang Ma, Xinyu Zhang, Hang Cui, Ruizhou Xu,
Rodrigo Nogueira, and Jimmy Lin

David R. Cheriton School of Computer Science
University of Waterloo

Abstract

The h2oloo team from the University of Waterloo participated in the TREC 2020
Deep Learning, Health Misinformation, and Precision Medicine Tracks. Our
primary goal was to validate sequence-to-sequence based retrieval techniques that
we have been working on in the context of multi-stage retrieval dubbed “Expando-
Mono-Duo” [6, 10] comprising a candidate document generation stage (driven by
“bag of words” techniques) followed by a pointwise and then a pairwise reranking
stage built around T5 [11], a powerful sequence-to-sequence transformer language
model. For the Health Misinformation task, we also employ learnings from our
fact verification system, VerT5erini [9].
All of our experiments employed the open-source Anserini IR toolkit [14, 16],
which is based on the popular open-source Lucene search library, for initial retrieval
that feeds the T5-based rerankers. Besides being the state of the art in various other
collections (e.g., Robust04 and TREC-COVID), we found our models achieved
much better effectiveness compared to the BM25 baselines as well as the median
scores in all three tracks, demonstrating the versatility and the zero-shot transfer
capabilities of our multi-stage ranking system.

1 Introduction

The h2oloo team from the University of Waterloo participated in multiple tracks at TREC 2020. This
notebook paper describes our approach in the Deep Learning, Health Misinformation, and Precision
Medicine Tracks.

We use a two-stage ranking architecture coupled with pre-indexing document expansion, all of which
use the T5 sequence-to-sequence transformer [11]. This earns it the name, “Expando-Mono-Duo
T5” [10]. The general strategy involves an initial BM25-based keyword retrieval that is refined by a
pointwise and then pairwise ranking. Document expansion is used when feasible to enrich keyword
representations in the inverted index.

2 Multi-Stage Ranking with T5

In our formulation, a multi-stage ranking architecture comprises a number of stages, denoted H0 to
HN . Except for H0, which retrieves k0 candidates from an inverted index, each stage Hn receives a
ranked list Rn−1 comprising kn−1 candidates from the previous stage. Each stage, in turn, provides
a ranked list Rn comprising kn candidates to the subsequent stage, with the obvious requirement
that kn ≤ kn−1. The ranked list generated by the final stage HN is designated for consumption by
the (human) searcher. However, prior to building the inverted index that feeds H0, we first perform



d1

d2

d3

d4

Expanded 
Corpus

d5

BM25 monoT5 duoT5

d3

d2

d5

di

q
d2

d3

di

q

dj

R0 R1 R2

d5

q

H0 H1 H2

d2

d3

mono
T5

pi,jduo
T5

d2

d5

d3

d2

d3

d5

d5

d2

d5

d3

Doc Pairwise

si
docT5query

Corpus

H-1

Figure 1: Illustration of our multi-stage ranking architecture. Prior to indexing, we (optionally)
perform document expansion, denoted H−1. In stage H0, given a query q, the top-k0 (= 5 in
the figure) candidate documents R0 are retrieved using BM25. In stage H1, monoT5 produces a
relevance score si for each pair of query q and candidate di ∈ R0. The top-k1 (= 3 in the figure)
candidates with respect to these relevance scores are passed to stage H2, in which duoT5 computes a
relevance score pi,j for each triple (q, di, dj). The final list of candidates R2 is formed by reranking
the candidates according to these scores.

document expansion on the input corpus to enrich its representation (we denote this as the H−1 stage).
We describe each component of the overall architecture (see Figure 1) in detail below.

2.1 H−1: Doc Expansion with docT5query

The idea behind document expansion is to enrich each document with additional terms that are
representative of its content. In our particular implementation, we take a corpus of (question, relevant
document) pairs and train a sequence-to-sequence model to predict, given a document, questions
that it can potentially answer. These questions are then directly appended to the document; once this
expansion has been performed for every document, the collection is indexed, as before.

As the first stage of our pipeline, we expand all documents in the MS MARCO corpus with queries
predicted with docT5query [7]. The model was trained with a constant learning rate of 10−3 for 4k
iterations with batches of 256, which corresponds to 2 epochs with the MS MARCO passage ranking
training set. We use a maximum of 512 input tokens and 64 output tokens. In the MS MARCO
passage ranking dataset, none of the inputs or outputs have to be truncated when using these lengths.
Similar to Nogueira et al. [8], we find that the top-k sampling decoder [2] produces more effective
queries than beam search. We use k = 10 and sample 40 queries per document.

We use T5-base as we did not notice any improvement in retrieval effectiveness with the large model.
We did not experiment with T5-3B and T5-11B due to their computational cost. We use Google’s
TPU v3s to train and run inference. Training takes less than 1.5 hours on a single TPU. For inference,
sampling 5 queries per document for 8.8M documents requires approximately 40 hours on a single
TPU, costing $96 USD (40 hours × $2.40 USD/hour) using preemptible TPUs. Note that inference
is trivially parallelizable and linear with respect to the number of samples. All expanded documents
are then indexed with the Anserini IR toolkit [15] (post-v0.9.2); the expanded queries are appended
to the original documents, but not specially delimited.

2.2 H0: “Bag of Words” BM25

The stage H0 receives as input the user query q and produces top-k0 candidates R0. In our implemen-
tation, the query is treated as a “bag of words” for ranking documents from the corpus using a standard
inverted index based on the BM25 scoring function [12]. We use the Anserini IR toolkit [14, 16],1
which is built on the popular open-source Lucene search engine.

1http://anserini.io/
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2.3 H1: Pointwise Reranking with monoT5

In general, the task of a reranking stage Hn is to estimate a score si quantifying how relevant a
candidate di ∈ Rn−1 is to a query q. Naturally, we expect that the ranking induced by these scores
yields a higher metric (e.g., MAP or MRR) than the scores from the previous stage.

In stage H1, the documents retrieved in H0 are reranked by a pointwise reranker, which we call
monoT5. Our reranking method is based on Nogueira et al. [6], which uses T5 [11], a sequence-
to-sequence model that uses a similar masked language modeling objective as BERT to pretrain its
encoder–decoder architecture. In this model, all target tasks are cast as sequence-to-sequence tasks.
We adapt the approach to document ranking by using the following input sequence:

Query: q Document: d Relevant:

where q and d are the query and document texts, respectively. The model is fine-tuned to produce the
words “true” or “false” depending on whether the document is relevant or not to the query. That is,
“true” and “false” are the “target words” (i.e., ground truth predictions in the sequence-to-sequence
transformation).

At inference time, to compute probabilities for each query–document pair (in a reranking setting), we
apply a softmax only on the logits of the “true” and “false” tokens. Hence, we rerank the documents
according to the probabilities assigned to the “true” token. We arrived at this particular approach
after some trial and error. Other approaches, for example, reranking documents according to the logit
of the “true” token or using logits of all tokens to compute the softmax, were not effective, i.e., the
retrieval metrics were close to zero.

We note that while H0 uses a corpus enriched by document expansion, documents in R0 consist of
original texts that are not expanded; this is due to the input length restrictions of T5.

We train our models on MS MARCO passage [1], which is a passage ranking dataset with 8.8M
passages obtained from the top 10 results retrieved from the Bing search engine. The training set
contains approximately 500K pairs of query and relevant documents. Each query has one relevant
passage, on average. Non-relevant documents for training are also provided as part of the training
dataset.

We fine-tuned our monoT5-3B model on the MS MARCO passage ranking training set with a constant
learning rate of 10−3 for 100K iterations with class-balanced batches of size 128. We use a maximum
of 512 input tokens and one output token. In the MS MARCO passage ranking dataset, none of the
inputs have to be truncated when using this length. Training monoT5-3B take approximately 160
hours overall on a single Google’s TPU v3-8.

At inference time in all but the Deep Learning passage ranking task, the document length is usually
much longer than the length restrictions of the model. Hence, it is not possible to feed the entire text
of the document into our model at once. To address this issue, we first segmented each document into
passages by applying a sliding window of nlength sentences with a stride of nstride. We obtained
a probability of relevance for each segment by performing inference on it independently, and then
selecting the highest probability among the segments as the relevance score of the document.

2.4 H2: Pairwise Reranking with duoT5

The output R1 from the previous stage is used as input to the pairwise reranker we call duoT5. Within
the framework of “learning to rank”, duoT5 can be characterized as a “pairwise” approach, while
monoT5 can be characterized as a “pointwise” approach [4]. In this pairwise approach, the reranker
estimates the probability pi,j of the candidate di being more relevant than dj for query q, where
i 6= j.

This reranker, also using T5, instead takes as input the sequence:

Query: q Document0: di Document1: dj Relevant:

The pairwise sequence-to-sequence model is fine-tuned to produce the words “true” or “false”
depending on whether the document di has higher or lower relevance than dj to the question q.

At inference time, we aggregate the pairwise scores pi,j so that each document receives a single score
si. We ablate over the number of candidates k1 that is reranked by the pairwise ranker. The number
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of inference calls made per query is given by the number of candidate pairs i.e. k1(k1 − 1). We only
run experiments where k1 = 50. We use the following aggregation technique:

SYM-SUM : si =
∑
j∈Ji

(pi,j + (1− pj,i)) (1)

where Ji = {0 ≤ j < k1, j 6= i}.
The candidates in R1 are reranked according to their scores si to get the final list of candidates R2.
The output R2, in our current framework, is provided to the end-user, and serves as the input to
computing the final evaluation metrics.

We fine-tuned duoT5 from the monoT5 model trained on MS MARCO passage ranking dataset
as it serves as a good initial point having learnt the task of pointwise ranking. We use the same
hyperparameters as those used for training monoT5. We initially experiment with duoT5-base and
find that model performance converges at about 50K iterations. Hence, we train duoT5-3B for 50K
iterations which corresponds to 80 hours overall on a single Google TPU v3-8.

At inference time, in all but the Deep Learning Passage Ranking task, we run duoT5 using the
highest monoT5 scoring segment as the representative of the document. We increased the maximum
input tokens for duoT5 from 512 to 1024 to account for pairs of passages that were longer than the
default limit of 512 tokens. We were able to do so in T5 since the models were trained with relative
positional encodings [13] and thus can (hopefully) generalize to contexts larger than those seen during
training. This modification, however, imposed additional computational costs that come from the
model needing to attend to twice the number of tokens; transformers exhibit quadratic complexity in
both time and space with respect to input length [3].2

Note that if more than k1 hits are requested as the output of duoT5, we simply take additional ranked
output from monoT5. For example, if we requires 1000 hits, then the first 50 will come from duoT5
(assuming k1 = 50), while the remaining results (rank positions 51–1000) will be the unaltered
rankings from monoT5. Hence, the goal of the pairwise reranker is to improve the quality of results
high in the ranked list.

3 Deep Learning Track

All inference experiments in the document ranking task are run with nlength = 10 and nstride = 5.
Based on the multi-stage pipeline described in Section 2, we submitted a total of four bag-of-words
baseline runs and three neural runs to the Deep Learning Track for both passage and document
ranking tasks. We first describe each of the baseline runs below.

BM25 (bm25): This is our baseline bag-of-words retrieval, i.e., H0 is the only stage of ranking.
We adopt all the default settings in Anserini’s BM25 implementation.

BM25 + RM3 (bm25rm3): To examine the effects of query expansion, we employ the strong
BM25 + RM3 baseline described in [17].

docT5query + BM25 (d2q_bm25): To examine the effects of document expansion, we apply the
document expansion stage H−1, followed by BM25 retrieval stage, H0.

docT5query + BM25 + rm3 (d2q_bm25rm3): To examine the effects of both document expansion
and query expansion, we apply the document expansion stage H−1, followed by the BM25 + RM3
query expansion baseline in H0.

We now describe each of the multi-stage neural reranking runs (which we call “Expando-Mono-Duo
T5” runs) below.

BM25 + RM3 + monoT5 + duoT5 (bm25rm3_duo): We first rerank the top-k0 (=1000) docu-
ments retrieved by BM25 + RM3 using our pointwise reranker, monoT5-3B. Then, we rerank the
top-k1 (=50) documents retreived by H1 using our pairwise reranker, duoT5-3B.

2Note that increasing the length to 1024 tokens was sufficient in this case. However, for monoT5, such an
increase would still not have been sufficient to perform inference on a complete document.
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Run MAP nDCG@10 nDCG@1K RR R@1K
(0) Median 0.4413 0.6810 0.6631 0.8443 -

(1) p_bm25 0.2856 0.4796 0.5830 0.6585 0.7863
(2) p_bm25rm3 0.3019 0.4821 0.6046 0.6360 0.8217
(3) p_d2q_bm25 0.4074 0.6187 0.6840 0.7326 0.8452
(4) p_d2q_bm25rm3 0.4295 0.6172 0.7041 0.7424 0.8699

(5) p_bm25rm3_duo 0.5355 0.7583 0.7387 0.8759 -
(6) p_d2q_bm25_duo 0.5609 0.7837 0.7539 0.8798 -
(7) p_d2q_rm3_duo 0.5643 0.7821 0.7732 0.8798 -

Table 1: Results on TREC 2020 Deep Learning Track Passage Ranking Task.

Run MAP nDCG@10 nDCG@1K RR R@1K
(0) Median 0.3902 0.5733 0.5859 0.9444 -

(1) d_bm25 0.3791 0.5271 0.5647 0.8521 0.8085
(2) d_bm25rm3 0.4006 0.5248 0.5726 0.8541 0.8260
(3) d_d2q_bm25 0.4230 0.5885 0.6115 0.9369 0.8403
(4) d_d2q_bm25rm3 0.4228 0.5407 0.5902 0.8147 0.8596

(5) d_bm25rm3_duo 0.5270 0.6794 0.6929 0.9476 -
(6) d_d2q_bm25_duo 0.5422 0.6934 0.7089 0.9476 -
(7) d_d2q_rm3_duo 0.5427 0.6900 0.7122 0.9476 -

Table 2: Results on TREC 2020 Deep Learning Track Document Ranking Task.

docT5query + BM25 + monoT5 + duoT5 (d2q_bm25_duo): Same as BM25 + RM3 + monoT5
+ duoT5 except we use H−1 and H0 as in docT5query + BM25.

docT5query + BM25 + RM3 + monoT5 + duoT5 (d2q_bm25_duo): Same as BM25 + RM3 +
monoT5 + duoT5 except we use H−1 and H0 as in docT5query + BM25 + RM3.

3.1 Results

Results from the Passage Ranking and Document Ranking Tracks are show in Tables 1 and 2
respectively. In both tables, the first row shows the mean of the median per-topic scores, representing
the score of a run that received the median score on all topics. The next four rows (rows 1 - 4) show
the scores of the Anserini baseline runs and the final three rows (row 5 - 7) show the scores of our
neural runs.

In Table 1, we generally find that all our baseline “bag of words” runs fall below the “median” scores.
However, whenever we use document expansion (rows 3 and 4), we find our systems exceed the
median in terms of nDCG@1K which demonstrates the strength of docT5query. We note similar
results in Table 2. except some more scores exceed the median.

In both Tracks, it is clear that document expansion helps both the BM25 baseline (rows 1 and 3) and
the BM25 + RM3 baseline (rows 2 and 4). However, query expansion generally only seems to help in
the BM25 baseline (rows 1 and 2). While the improvements when it is used along with document
expansion is not clear in terms of the official metrics, we still note improvements in terms of R@1K,
the metric H0 aims to maximize, as the resulting candidate set is passed onto neural rerankers.

The runs that employ multi-stage neural reranking (rows 5 - 7) show large improvements in ef-
fectiveness over their respective Anserini baselines (rows 2 - 4) as expected. Upon looking at the
impact of document expansion and query expansion in the multi-stage ranking pipeline, we find that
document expansion clearly helps our neural rerankers (rows 5 and 7) in terms of MAP, nDCG@10
and nDCG@1K. However, it is not clear if query expansion helps on top of document expansion
(rows 6 and 7) as both sets of scores are very similar.
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4 Health Misinformation Track

Macavaney et al. [5] demonstrates that fine-tuning the classifiers on Med-MARCO, a medical subset
of MS MARCO, helps with biomedical-domain relevance ranking. We note similar results in the
TREC-COVID task in [18]. Hence, we choose to use monoT5-3B and duoT5-3B models that were
fine-tuned on MS MARCO passage ranking dataset then fine-tuned (again) on Med-MARCO. All
inference experiments are run with nlength = 6 and nstride = 3.

For this Track only, we added to our pipeline the label prediction model from VerT5erini [9]. We call
this model LabelT5 and describe it next.

4.1 Label Prediction-based Reranking with LabelT5

Given the topic q and the highest monoT5 scoring segment si from a document di, the model is
tasked to predict a label ŷ(q, si) ∈ {true, weak, false}. Here, we use the following input sequence:

Query: q Document: si Relevant:

We train the label prediction model using the effective judgements from the 2019 Decision (Medical
Misinformation) Track. We map effective and ineffective judgements to “true” and “false” respectively.
The documents judged as inconclusive, no info or not relevant are all labelled “weak” label.

We fine-tuned our LabelT5-3B model with a constant learning rate of 10−3 for 500 iterations with
batches of size 128. We use a maximum of 512 inputs tokens and one output token. Training
LabelT5-3B takes approximately 40 minutes on a single Google’s TPU v3-8.

At inference time, to compute probabilities for each query–document pair (in a reranking setting), we
apply a softmax only on the logits of the “true”, “weak”, and “false” tokens. Then, we rerank the
documents according to the probabilities assigned to the “true” token if the answer field is “yes” and
the probabilities assigned to the “false” token if the answer field is “no”.

4.2 Runs

We submitted a total of nine runs to the Health Misinformation Track Ad-hoc Retrieval Task, which
are described below.

BM25 (m1): This is our baseline bag-of-words retrieval, i.e., H0 is the only stage of ranking. We
adopt all the default settings. We index all the news articles found in the CommonCrawl News
crawl from January 1st, 2020 to April 30th, 2020. At inference time, we retrieve the top-k0 (=1000)
documents per query. We do not use doc2query expansions (stage H−1) in this track due to the high
costs of expanding the very large corpus.

BM25 + monoT5 (m2): We rerank the top-k0 (=1000) documents retrieved by BM25 using our
pointwise reranker, monoT5-3B.

BM25 + monoT5answer (m3): We employ BM25 + monoT5 but we modify the query based on the
answer field in the topic prior to neural reranking. We rephrase the question “Can X Y COVID-19?”
(where X is a treatment and Y is one of five effect terms) to “X can Y COVID-19” if the answer field
is “yes” and “X can not Y COVID-19” if the answer field is “no”. The goal of this submission was to
see if there are any improvements brought by aligning the query with the answer field.

BM25 + monoT5 + duoT5 (m4): We rerank the top-k1 (=50) documents returned by BM25 +
monoT5 using our pairwise reranker, duoT5-3B.

BM25 + monoT5answer + duoT5answer (m5): We rerank the top-k1 (=50) documents returned by
BM25 + monoT5answer using our pairwise reranker, duoT5-3B. duoT5-3B uses the rephrased query
as that in BM25 + monoT5answer.

BM25 + monoT5credible (m6): Same as BM25 + monoT5answer except that while rephrasing we also
prefix the query with the text “Clinical Studies, FDA, CDC, Health Officials, WHO or researchers
say”. Note that in our submission, we called this run m10 but from here on we refer to it as m6.
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BM25 + monoT5answer + LabelT5 (m7): We rerank the top-k1 (=1000) document segments re-
turned by BM25 + monoT5answer using our label prediction model, LabelT5.

BM25 + Average of monoT5answer and LabelT5 (m8): We take the mean of the scores of top-k1
(=1000) documents returned by BM25 + monoT5answer and the scores of the same documents by
LabelT5.

BM25 + Linear Combination of monoT5credible and monoT5answer (m9): We take a linear com-
bination of the score sanswer from BM25 + monoT5answer and the score scredible from BM25 +
monoT5credible. Then, we re-weight the top-1000 documents as s = 2scredible + sanswer, where the
weights 2 and 1 are arbitrarily selected so that we weigh credibility scores higher, while trying to
retain some notion of standard relevance.

4.3 Results

Harmful and helpful compatibility scores are provided in Table 3. First, we notice that all our systems
score higher than the “median” helpful compatibility score. Pointwise reranking helps on top of the
BM25 baseline (rows 1 and 2) and pairwise reranking helps on top of pointwise reranking (rows 2 and
4) as expected. The helpful compatibility score is also improved when the query is rephrased based
on the alignment (rows 2-5). Interestingly, using LabelT5 results in a drop in the helpful compatibility
scores (rows 3 and 7). This is perhaps because the amount of training data we have from the TREC
2019 Health Misinformation Track is limited. Averaging scores with the relevance classifier helps
mitigate some of this (rows 3, 7 and 8). Using query prefix in m6 seems to have a detrimental effect
compared to the standard alignment-based rephrasing (rows 3 and 6). Again in this case, the linear
combination with the relevance classifiers scores helps bridge the gap (rows 3, 6 and 9). Yet, our
zero-shot neural reranking pipeline m5 shines in terms of helpful compatibility scores.

Looking at harmful compatibility scores alone, a quantity we aim to minimize, we find the scores
of m7 and m8 (rows 7 and 8) are much lower than those of the other systems. While having a
low harmful compatibility score doesn’t mean anything in isolation since a system that just outputs
irrelevant information will have a score of 0, we note that both these runs have much higher than
“median” helpful compatibility scores (the system that output irrelevant information would have
a helpful compatibility score of 0 too, which isn’t desirable at all). The improvement in harmful
compatibility is perhaps due to the fact that the label prediction model is trained to specifically look
out for misinformation and hence documents with incorrect information would rarely show up higher
on the list. Averaging scores with the relevance classifier results in a very small loss in terms of
harmful compatibility scores while largely bridging the gap in terms of helpful compatibility scores
(rows 3, 7 and 8). Hence, m8 is a pretty notable run as it succeeds in finding helpful information
while minimizing the exposure of incorrect information. Another trend we notice with harmful
compatibility scores is that using the alignment information to rephrase queries helps a lot (rows 2
and 3 as well as rows 4 and 5).

In Table 4, other metrics based on usefulness, correctness and credibility are provided. Here we again
note that all our runs have better scores than the “median” run. Surprisingly, our zero-shot neural
reranking pipeline m5 outperforms all other systems in terms of the official metrics in this set of
results.

5 Precision Medicine Track

Like the Health Misinformation Track, we use the monoT5-3B and duoT5-3B models that were
fine-tuned on MS MARCO passage ranking dataset then fine-tuned (again) on Med-MARCO since
the task is in the biomedical domain. All inference experiments are run with nlength = 10 and
nstride = 5. We submitted a total of six runs to the Precision Medicine Track, which are described
below.

BM25: This is our baseline bag-of-words retrieval, i.e., H0 is the only stage of ranking. We index
all abstracts in PubMed. We do not use their full texts. At inference time, we retrieve the top-k0
(=1000) documents per query. We do not use doc2query expansions (stage H−1) in this track due to
the high costs of expanding the PubMed corpus.
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Model COMPharmful COMPhelpful

(0) Median 0.0747 0.3337
(1) m1 0.1197 0.3679
(2) m2 0.1132 0.4404
(3) m3 0.0750 0.5107
(4) m4 0.1200 0.4658
(5) m5 0.0800 0.5487
(6) m6 0.0653 0.4832
(7) m7 0.0150 0.4486
(8) m8 0.0163 0.4900
(9) m9 0.0747 0.5017

Table 3: Harmful and helpful compatibility scores on TREC 2020 Health Misinformation Track.

Model CMAPco,cr CMAPus,cr CMAPco,us,cr nDCGus nDCGco nDCGcr nDCGall

(0) Median 0.1003 0.1717 0.1389 0.4699 0.3380 0.3308 0.4471
(1) m1 0.1911 0.2765 0.2369 0.6077 0.4997 0.5774 0.4853
(2) m2 0.2211 0.3149 0.2730 0.6387 0.5341 0.5945 0.5014
(3) m3 0.2534 0.3287 0.2915 0.6443 0.5620 0.6072 0.5306
(4) m4 0.2483 0.3402 0.2971 0.6596 0.5549 0.6185 0.5221
(5) m5 0.2898 0.3560 0.3187 0.6661 0.5901 0.6309 0.5609
(6) m6 0.2800 0.3105 0.2856 0.6281 0.5833 0.6065 0.5596
(7) m7 0.2423 0.2265 0.2216 0.5758 0.5638 0.5486 0.5212
(8) m8 0.2703 0.2633 0.2531 0.6018 0.5805 0.5725 0.5437
(9) m9 0.2733 0.3308 0.2974 0.6439 0.5774 0.6174 0.5553

Table 4: Usefulness, correctness and credibility results on TREC 2020 Health Misinformation Track.

BM25 + monoT5: We rerank the top-k0 (=1000) documents retrieved by BM25 using our pointwise
reranker, monoT5-3B. We transform queries into the natural language questions with the following
template: “is treatment treatment effective for disease disease in patients with gene gene mutation?”,
where the treatment, disease and gene are the given keyword queries.

BM25 + monoT5 + duoT5: We rerank the top-k1 (=50) documents returned by BM25+monoT5
using our pairwise reranker, duoT5-3B. The queries are transformed into natural language questions
in the same way as BM25 + monoT5.

BM25 + monoT5rct : Same as BM25 + monoT5, except prior to reranking we prepend the keywords
“meta-analysis” and “randomized controlled trial (RCT)” to the query. The natural language queries
are prepared in the same way as BM25 + monoT5. The primary goal here is to see if monoT5 can
leverage these additional keywords to prioritize abstracts that belong to the top critical evidence tier
according to the TREC 2020 Precision Medicine Track guidelines.

BM25 + monoT5rct+duoT5rct: Same as BM25 + monoT5 + duoT5, except prior to reranking we
prepend the keywords “meta-analysis” and “randomized controlled trial (RCT)” to the query. The
natural language queries are prepared in the same way as BM25 + monoT5. The goal of this run is to
yet again see if duoT5 can leverage the same additional keywords described in the prior run.

BM25 + monoT5e1: We rerank the top-k1 (=100) documents returned by BM25+monoT5rct by
penalizing the top documents from the BM25 + monoT5. Specifically, we re-weight the top 100
documents as s′ = 5srct − s, where s is the score from BM25 + monoT5, srct is the score from
BM25 + monoT5rct, and the weights 5 and 1 are arbitrarily chosen to downweight by a small amount
the documents that are “relevant” yet show little or no critical evidence.

All of our submissions are zero-shot, i.e., our models are trained solely on MS MARCO passage
ranking dataset and we do not adjust their hyperparameters based on any of the prior years’ TREC
Precision Medicine Track.
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Model infNDCG P@10 RPrec

(0) Median 0.4316 0.4645 0.3259

(1) BM25 0.4978 0.5355 0.3979
(2) + monoT5 0.5028 0.5000 0.4018
(3) + duoT5 0.5116 0.5290 0.3958

(4) + monoT5rct 0.4039 0.4323 0.2998
(5) + duoT5rct 0.4344 0.4839 0.3289

(6) + monoT5e1 0.3635 0.2710 0.2845

Table 5: Phase 1 (Relevance Assessment) Results on TREC 2020 Precision Medicine Track.

Model nDCG@30 nDCG@5

(0) Median 0.2857 0.2529

(1) BM25 0.3081 0.2793
(2) + monoT5 0.3341 0.2925
(3) + duoT5 0.3643 0.3093

(4) + monoT5rct 0.4193 0.3998
(5) + duoT5rct 0.3989 0.3747

(6) + monoT5e1 0.3276 0.2055

Table 6: Phase 2 (Evidence Assessment) Results on TREC 2020 Precision Medicine Track.

5.1 Results

Table 5 shows the results from Phase 1 (Relevance Assessment) Evaluation of the TREC 2020
Precision Medicine Track. The first row shows the median score of all submitted runs. Our BM25
baseline (row 1) is only slightly worse than monoT5 (row 2) and duoT5 (row 3) with respect to
infNDCG, but it is better than both neural models in terms of P@10. Results in terms of RPrec are
mixed.

The variants monoT5rct (row 4), duoT5rct (row 5), and monoT5e1 (row 6) performed worse than
their respective base models (rows 2 and 3). These results however are not surprising as Relevance
Assessment relies heavily on matching exact keywords from the topics.

Table 6 shows the results from Phase 2 (Evidence Assessment) Evaluation of the TREC 2020 Precision
Medicine Track. Here, we note that most of our submissions score way higher than the median
submission. In this case, we see the same trend from the other tracks where pointwise reranking
helps on top of the BM25 baseline (rows 1 and 2) and pairwise reranking helps on top of pointwise
reranking (rows 2 and 3).

Our experimental submission (row 6) performed poorly compared to all our other systems. This is
perhaps because we penalized too much based on our monoT5 scores (row 2).

Leveraging the additional keywords belonging to the top evidence tier in the TREC 2020 Precision
Medicine Track guidelines clearly helps in the case of the pointwise reranker as we see an 8.5
point improvement in effectiveness (rows 2 and 4). While we still notice a gain in performance
in the pairwise reranker case (rows 3 and 5), we see the unexpected result that duoT5rct reranking
the top segments from monoT5rct results in a drop in effectiveness (rows 4 and 5). We believe
that this is because the additional keywords confuse the pairwise reranker more than it would a
pointwise reranker, since it requires comparison between the two documents on two dimensions:
which document is more relevant for the topic while also comparing based on the type of study. This
is something a pairwise model trained only on a relevance ranking dataset might not capture well.

9



6 Conclusion

We have described our submissions to Deep Learning, Health Misinformation, and Precision Medicine
Tracks of TREC 2020. Our standard pipeline (docT5query + BM25 + monoT5 + duoT5) has
previously demonstrated strong zero-shot transfer capabilities on various domains such as news
articles (Robust04) [6] and COVID-related scientific articles (TREC-COVID) [18]. These results
were once again confirmed on all three tracks, in which our pipeline achieved much better effectiveness
than BM25 baselines as well as the median system performance, while being minimally adapted to
these tasks.

In the Health Misinformation Track, we note that a label prediction model makes the system much less
prone to retrieving harmful documents while minimally decreasing the number of helpful documents
retrieved. Future work improving on robust systems of this sort is critical to better misinformation-free
retrieval.

In the Precision Medicine Track, we see that a simple query expansion model that prepends words
from the top evidence tier, helps improve the quality of the run returned by our pointwise neural
reranker. Further exploration involving aggregating scores across queries designed for multiple
evidence tiers as well as other fields like citation counts and publication type might be important in
building better retrieval systems for the Precision Medicine Track.
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