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Andy Schürr who acted as examiners and chair in the PhD defense committee.

I wish to especially thank my friend Weaam Alkhaldi, who directed me to this

opportunity, I will always be grateful. Special gratitude goes to Dr.Christian Debes

and Gökhan Gül for their participation and help in my journals. My office room

mates and my friends Waqas Sharif, Fiky Suratman, Arezki Younsi and Toufik

Boukabba, you really made my days. My thanks go to my colleagues at the Signal

Processing Group at TU Darmstadt. I was, and still am, very happy to work in

such a sociable and friendly environment. Thanks to Stefan Leier, Michael Muma,

Yacine Chakhchoukh, Zhihua Lu, Nevine Demitry, Sara Al-Sayed, Mouhammad

Alhumaidi, Michael Fauss, Jürgen Hahn, Michael Leigsnering, Feng Yin, Christian

Weiss and Gebremichael Teame, as well as Renate Koschella and Hauke Fath. I

would also like to thank the former PhD students Raquel Fandos, Uli Hammes,

and Marco Moebus. Special thanks go to my friends Ahmed Abdelkader, Mohamed

Morsy, Mohamed Said, Wael Said, and Mohamed Youssef for making my stay here

in Germany more fruitful and easier.

The author would also like to convey thanks to the Graduate school for computa-

tional engineering at TU-Darmstadt for providing the financial means and facilities

and its remarkable staff for their help during my stay at Germany.



II

I wish to thank my parents AbdelsalamMostafa & Samia Hassaan and my Aunt Thu-

raya for their unconditional love, support and patience throughout my life, whatever

I say will never be enough. I would also like to thank the rest of my family, especially

Zeyad, Yasmin, Mohamed, Shady, Asser, Enas, Eman and Dina for believing in me

more than myself.

A heart-felt gratitude to my wife Eman and my sons Abdelrahman and Youssef for

their love, encouragement, understanding, support and joy, you are the start and

the end, I dedicate this work for you.

Finally, before and above all, I thank GOD for all the blessings I have, and for

answering my prayers and giving me the faith and well to continue despite all the

obstacles and the hard times I faced during this thesis project.

Darmstadt, 25.05.2012



III

Kurzfassung

In dieser Doktorarbeit wird das Problem der stationären Zielerfassung, Segmen-

tierung und Klassifikation in Through-the-Wall Radar Imaging (TWRI) betrachtet.

In der stationären Zielerfassung sind Techniken, die auf dem Doppler effekt oder

auf Veränderungen in der Szene besuchen, nicht anwendbar. Eine neue Menge von

Merkmalen wird verwendet, die von polarimetrischen Signaturen und so genannter

co-occurrence Matrizen, die gleichzeitiges Auftreten bestimmer Eigenschaften reflek-

tieren, abhängig ist. Algorithmen für die 2D- und 3D-Segmentierung und Klassi-

fikation werden angepasst, untersucht und getestet.

Die Anwendung dieser Algorithmen in TWRI wird mit besonderem Fokus auf die

Merkmalsextraktion und Klassifikation der Ziele untersucht. Eine Kombination aus

polarimetrischen Signaturen und Merkmalen, die aus den co-occurrence Matrizen

extrahiert wurden, werden vorgeschlagen.

Zwei unterschiedliche Systeme, die für 2D- und 3D Anordnungen ausgelegt sind,

werden präsentiert. Die erste Methode basiert auf einer Verschmelzung der zwei-

dimensionalen Segmentierung und der Klassifikation. Hier werden Merkmale von

polarimetrischen B-Scans zur Segmentierung und Klassifikation des beobachteten

Bildes in Ziel, Stördaten und Rauschen verwendet. Polarimetrische Signaturen des

Zieles von kopolarisierten und kreuzpolarisierten Zielechos werden Pixel für Pixel in

den Merkmalsraum abgebildet. Das Bild wird hierdurch über-segmentiert, um ho-

mogene Regionen, so genannte Superpixel, zu erhalten. Homogene Superpixel wer-

den wahlweise im Anschluss gruppiert und dann entsprechenden Klassen zugewiesen.

Diese Methode beruht auf neuen Features und den Beziehungen zwischen den ver-

schiedenen Bildpunkten.

Die zweite Methode befasst sich direkt mit der 3D-Szene anstatt der zweidimen-

sionalen B-Scans. Im ersten Schritt werden Gruppierungen nach Intensität und

räumlichen Merkmalen für jedes Voxel durchgeführt. Gruppen, die hauptsächlich

Rauschen beinhalten, werden ausgeschlossen. Aus den Voxeln der verbleibenden

Gruppen werden weitere Merkmale extrahiert, die aus der co-occurrence Matrix

und der polarimetrische Signaturen erzeugt werden. Anschließend werden die Voxel

mit verschiedenen Klassifikatoren klassifiziert, um die Nützlichkeit der Features zu

prüfen. Diese Methode wurde für praktische Anwendungen, bei denen die Erfas-

sung der Ziele in Echtzeit durchgeführt werden soll, entworfen. Die Gruppierung

im ersten Schritt wird verwendet, um die Positionen der Ziele schnell zu erkennen.

Weitere Schritte werden angewandt, um genauere Schätzungen der Zielpositionen
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und Formen zu erhalten und die gruppierten Voxel mit einer höheren Genauigkeit

klassifizieren zu können.

Alle vorgeschlagenen Methoden werden anhand realer Daten ausgewertet.

Die Daten wurden durch dreidimensionale Messungen eines Breitband-Radar-

Bildgebungssystems mittels Beamforming erfasst.
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Abstract

In this thesis, the problem of stationary target detection, segmentation and classi-

fication in Through-the-Wall Radar Imaging (TWRI) is considered. In stationary

target detection, Doppler and change-detection-based techniques are inapplicable.

A new feature-set that depends on polarimetric signatures and co-occurrence ma-

trices are employed. Algorithms for 2D and 3D segmentation and classification are

adapted, investigated and tested.

The utilization of these algorithms to the application of TWRI is investigated, with

special focus on the feature extraction and target classification phases. A combina-

tion of polarimetric signatures and features extracted from co-occurrence matrices

is proposed.

Two different schemes that deal with 2D and 3D arrangements are proposed. The

first scheme is based on a fusion of two dimensional segmentation and classification.

The proposed scheme uses features from polarimetric B-scan images to segment

and classify the image observations into target, clutter, and noise segments. Tar-

get polarimetric signatures from co-polarized and cross-polarized target returns are

mapped to a pixel-by-pixel feature space. The image is then over-segmented to

homogeneous regions called super-pixels. Homogeneous super-pixels are optionally

grouped into clusters and then assigned to corresponding classes. This scheme relies

on novel features and the relations between the different pixels.

The second scheme deals with the 3D scene directly instead of 2D B-Scans. The

proposed scheme uses clustering as an initial phase using intensity and spatial fea-

tures for each voxel. Clusters that contain mostly noise are ruled out. Further

feature extraction using features from the multivariate co-occurrence matrices and

polarimetric signatures is applied to the voxels of the remaining cluster(s). Subse-

quently, the voxels are classified using different classifiers to test the usefulness of

the features. This method is designed for practical applications in which the target

detection should be performed in real time. The clustering step is used to detect the

target positions quickly. Further steps are used to obtain more accurate estimates

of the target positions and shapes, and further classify the clustered voxels.

All proposed methods are evaluated using real data measurements. The data are col-

lected using three dimensional imaging measurements in a wideband radar imaging

scanner exploiting wideband delay-and-sum beamforming.
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Chapter 1

Introduction and Motivation

Through-the-Wall Radar Imaging (TWRI) is a research field of increasing inter-

est [1–6]. The ability to sense through visually opaque material and man made

structures, has numerous applications. Applications in civil engineering, search and

rescue operations, cultural heritage diagnostics, law enforcement, and military ap-

plications [1, 3, 7–9] make it a highly desirable tool. TWRI can be used in military

and homeland security purposes to detect and classify concealed weapons and explo-

sives [10,11]. It can also detect buried people after natural (or man-made) disasters,

e.g. earthquakes, or after a bomb or missile hit. In hostage crisis situations, it might

allow police units to detect and locate hostages, hostage-takers and weapons before

entering the building. In all these applications, radio frequency (RF) emission and

reception are exploited to gain vision into scenes that are inaccessible physically,

optically, acoustically, or thermally. TWRI is faced with many challenges regard-

ing detection and classification. Among these challenges, a large variety of possible

indoor targets may exist in the presence of multi-path and unwanted wall signal

attenuation and dispersive effects [8, 9, 12, 13]. In addition, Doppler signatures and

change detection techniques become ineffective when considering stationary targets.

One has to perform detection and classification in the image domain, as a post-

processing step to beamforming.

Robust computer-based systems that use automatic target detection and classifi-

cation frameworks are of high practical interest in this area. This thesis aims to

introduce new TWRI target classification methods that exploit new feature-sets

and need no or only marginal prior knowledge on scene statistics.

1.1 Motivation

TWRI is an evolving technology that gained much attention in the last decade.

Tasks like automatic detection of objects of interest, target classification and track-

ing, image interpretation and understanding are of high practical interest [3,8]. The

variance of target size, shape, electric properties, and surroundings, among other

things, highly influence the image statistics. With several possible indoor targets

such as human, furniture, and appliances, as well as the influence of wall impairing
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and multipath propagation effects, robust detection in which the detector adapts it-

self to the changing and unknown characteristics of the data is crucial [11]. Targets

with different geometrical and physical properties generate different polarizations of

the scattered field. Since the polarization signatures are different, they can be used

to discriminate between different classes in TWRI scenes [10,14]. A feature-set that

will depend on a combination of polarimetric signatures can enhance the perfor-

mance of detection and classification techniques [15–21]. The target pixels and the

closely surrounding noise and clutter pixels usually exhibit small variations between

each other which make the target hard to detect. Algorithms that measure texture

are built to deal with such small variations even in the case of non-optical images

like SAR and MRI images [22]. The Gray level co-occurrence matrix is one of the

most well-known texture features [23–25], containing texture, histogram and edge

information [26]. The use of features extracted from co-occurrence matrices can aid

in the discrimination between target and the closely surrounding non-target pixels.

Incorporating the information provided by the third dimension will also enhance

the overall performance. Jointly or sequentially combining these two feature-sets

may further enhance the performance of target classification algorithms. Practi-

cal methods should take into account the time and computational complexity as

a critical factor regarding the nature of TWRI applications. Often a better result

can be obtained by a reduced (optimized) feature set relieving also computational

load. Techniques that determine and exploit such an optimized set of features is of

great practical interest. Also, Multi-level algorithms that will produce preliminary

information about targets then allow for fine tuning of this information are highly

desirable.

1.2 State-of-the-Art

Due to the complexity of TWRI, different cross-disciplinary research areas are in-

vestigated. In the area of electromagnetic propagation and modeling, the factors

governing the signal propagation in the indoor environment and in different ma-

terial mediums are examined [12, 27–29]. Estimation of the location and physical

parameters of the targets by solving the inverse problem after estimating the initial

conditions is investigated in [9, 30, 31] among others. In [32–36], the antenna and

waveform design is analyzed and optimized to achieve high quality images. Beam-

forming and image formation is a main area of research in TWRI [2, 31, 37–46].

In [2,31,40,41,47–50], wall compensation considering the effect of wave propagation

and wall reflections is investigated in [9, 51, 52]. Preprocessing in the sense of clut-

ter removal and noise reduction is investigated in [53–55]. The use of compressive
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sensing to reduce or use fewer measurements is considered in [56–59]. In [60–64]

among others, general image processing techniques such as interpretation, align-

ment, and reconstruction to produce high quality images and test quality measures

are investigated. Most contributions in the area of target detection in TWRI deal

with detecting and tracking moving targets, where Doppler shifts and change de-

tection can be employed [12, 65–71]. In stationary target detection, in the image

domain, most of the work is done by Debes et al. [72–80]. Other work in stationary

target detection in the image domain includes [2, 81–83]. On target classification,

there is the work of Debes et al. [11, 84, 85] where resolution independent statisti-

cal and geometrical features are used for target classification, but images need to

be segmented and classified to (target /non-target) classes first. Rosenbaum and

Mobasseri [86] also investigated target classification for TWRI where the principal

component analysis (PCA) is applied. However, this approach is practically limited

as the authors provide features which are not resolution-independent [11].

1.3 Contributions

The contributions of this thesis are as follows:

• New Feature-set: Two feature-sets are introduced for TWRI imaging ap-

plications. The first depends on a combination of polarization features con-

sidering both values for each pixel or voxel by itself or spatially concerning

the neighborhood of each voxel. The second feature-set makes use of the es-

timated probabilities or relative frequencies from the co-occurrence matrices

and texture features extracted from them.

• Segmentation by classification: A target classification framework that

is based on polarimetric signatures, super-pixels and decision trees is intro-

duced [87]. The algorithm classifies between target /non-target, target types

and metal / non-metal classes in different phases. It proves comparable per-

formance to the current state-of-the-art techniques in target detection and

classification.

• 3D Target Classification: A 3D target classification framework, consisting

of feature extraction, clustering and classification by exploiting polarimetric

signatures and co-occurrence matrices is formulated and adapted to the appli-

cation of TWRI. Here, the features incorporate three dimensional information

and relations between voxels.
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1.4 Publications

The following publications have been produced during the period of PhD candidacy.

Internationally Refereed Journal Articles

• Ahmed A. Mostafa, C. Debes and A.M. Zoubir Segmentation by Classifica-

tion for Through-the-Wall Radar Imaging Using Polarization Signatures, IEEE

Transactions on Geoscience and Remote Sensing, September 2012.

Internationally Refereed Conference Papers

• Ahmed A. Mostafa and A. M. Zoubir, 3D Target Detection for Through the

Wall Radar Imaging, SPIE Defense, Security, and Sensing Volume 7697 of

Signal Processing, Sensor Fusion, and Target Recognition XIX, page 76971F-

76971F-8. 2010.

1.5 Thesis overview

The outline of the thesis is as follows: Chapter 2 describes the image formation and

beamforming process used to obtain three-dimensional TWRI images. It further

introduces the experimental setup that is used throughout the thesis.

Chapter 3 introduces the feature-sets used for target detection, segmentation and

classification.

In Chapter 4, a segmentation by classification framework is introduced which makes

use of polarimetric signatures to find the homogeneity between neighboring pixels

helping to generate super-pixels. The super-pixels are further classified to different

classes by means of decision trees.

3D target classification is considered in Chapter 5. A classification framework that

exploits the spatial features between voxels through polarimetric signatures and co-

occurrence matrices is presented. Further, these features are used to classify the

voxels to different classes.

Conclusions and future work are presented in Chapter 6.
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Chapter 2

Image formation and Experimental Setup

Image formation and experimental setup for TWRI that is used throughout the

thesis are discussed in this chapter. The radar images used throughout this thesis are

generated using a wideband delay-and-sum beamformer (DSBF) [2, 41]. For TWRI

data examples treated in this paper, perfect knowledge or correctly estimated values

of the wall parameters are assumed. Estimation techniques of the wall thickness and

dielectric constant can be found in [4, 5] and references therein.

2.1 Beamforming in Through-the-Wall Radar

Imaging

The signals received by antenna arrays need to be processed in order to obtain

an intensity image. This process is called ’beamforming’. Many approaches ex-

ist for beamforming for TWRI applications [11, 88]. This includes tomographic

approaches [31, 37, 38] where the beamforming is considered as an inverse scatter-

ing problem, differential SAR [52], constrained minimization radio frequency (RF)

multisensor processing as in minimum variance distortion-less response (MVDR)

beamforming [46], MIMO processing [45] and adaptive beamformers [41,89]. In this

thesis, wideband delay-and-sum beamforming [2] is used. All algorithms mentioned

in the following chapters are independent of the beamforming method and can be

applied to output images of any beamforming algorithm.

We hereby follow the same scheme as in [2]. We consider a uniform array of N

transceivers using a wideband pulse, approximated by a stepped frequency approach.

Stepped frequency implies M monochromatic signals with regularly spaced frequen-

cies that cover the desired bandwidth. Assuming that the scene of interest can be

described by P discrete targets with reflectivity σp, p = 0, ..., P − 1, the received

signal, which is a function of the sensor element n, n = 0, ..., N − 1 and frequency

m, m = 0, ...,M − 1, can be written as

y[m,n] =
P−1
∑

p=0

σpwme
−j2πfmτpn (2.1)

where fm denotes the m-th step frequency, τpn is the round trip delay between the p-

th target and the n-th receiver and wm is the weighting factor for them-th frequency.
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A derivation can be found in [2,90]. Assuming the region of interest is identified by

Q = Nx ·Ny ·Nz voxels, where Nx is the number of points in crossrange, Ny is the

number of points in downrange and Nz is the number of points in height (number

of B-Scans), one can steer the beam at every voxel q with q = 0, ..., Q − 1 and the

complex valued scene can be obtained by [2]:

I(q) =
1

MN

N−1
∑

n=0

M−1
∑

m=0

y[m,n]ej2πfmτqn (2.2)

where τqn is the delay compensation for the n-th receiver (incorporating the prop-

agation through the wall), steering the beam at position q. At a certain height h,

the delay compensation τqn can be represented on a local coordinate system (u, v)

where q = (uq, vq, h) as:

τn,wall(q) = (Rn,air,1(q) +
√
ǫRn,wall(q) +Rn,air,2(q))/c (2.3)

where ε is the dielectric constant of the wall and Rn,air,1(q), Rn,wall(q) and Rn,air,2(q)

represent the traveling distances of the electromagnetic wave from the n-th antenna

to point (q) before, through and beyond the wall respectively [11] as shown in Figure

2.1.

The distances Rn,air,1(q), Rn,wall(q) and Rn,air,2(q) can be estimated as in [2]

Rn,air,1(q) =
uoff

cos(ϕn,I(q))
(2.4)

Rn,wall(q) =
d

cos(ϕn,R(q))
(2.5)

Rn,air,2(q) =
uq − uoff − d

cos(ϕn,I(q))
(2.6)

where uoff is the standoff distance from the system to the wall, uq is the down

range distance from the system to the imaged point (q), d is the wall thickness, and

ϕn,I(q) and ϕn,R(q) are the angles of incidence and refraction, respectively. It should

be noted that the above equations hold only when the imaged point (q) and the

transceiver are at the same height h. For the general case, a rotation transformation

as in [2] has to be performed.

Samples of B-Scan images at the height of the target centers are shown in Figure

2.2.
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Figure 2.1. Propagation before, through and beyond a homogeneous wall

(a) One target (b) Two targets

Figure 2.2. Sample beamformed images using DSBF beamforming.
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2.2 Experimental Setup

We consider the scenario presented in Section 2.1 for the evaluation of the proposed

techniques. The imaging system used throughout this thesis is a synthetic aperture

radar system [91], where a single horn antenna, in motion, synthesizes a 57× 57 ele-

ment planar array. The inter-element spacing is 0.875". The array standoff distance

from the wall is 41.5". As described above, a continuous-wave stepped-frequency

signal is used to approximate a wideband pulse. The background subtraction tech-

nique [2] is used to increase the signal to clutter power ratio. Background subtraction

has been performed by making use of reference or background data (in this case: a

room without objects) and coherent subtraction. This reference data may be secured

in long-term surveillance operations where new targets emerge over time.

Figure 2.3. Indoor scene for an experiment with one dihedral at the radar imaging
lab at Villanova university, USA.

A photo of the indoor scene with a dihedral in the radar imaging lab is shown at

Figure 2.3. The experimental setup is depicted in Figure 2.4, which involves seven

experiments. The first four experiments involve one target from the following: metal

dihedral, metal sphere, metal trihedral and a salt water jug placed at a height of

47.5". The fifth experiment involves two dihedrals and the sixth experiment includes

a metal sphere and a salt water jug. The heights of the objects on the fifth and sixth

experiments are 39" and 47.5". The last experiment contains four targets: metal

dihedral, metal sphere, metal trihedral and a salt water jug placed at heights of

69.5", 47.5", 63.5" and 39" respectively. The targets are placed on a high foam
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column behind a concrete wall of thickness 5.622". All the experiments are taken

from a single side. All images are acquired at the Radar Imaging Lab at Villanova

University, Villanova, PA, USA.
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(a) Experiments 1-4: one target.

(b) Experiments 5-6: two targets.

(c) Experiment 7: four targets.

Figure 2.4. Experiment arrangements, with respect to platform depth (pd) d0= 1
4

pd, d1=1
2
pd, d2=1

6
pd, d3=1

3
pd, d4=1

4
pd and d5=3

4
pd .
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Chapter 3

Feature-sets

In this chapter, the features used throughout the thesis are reviewed. Compensation

for target resolution and location effects can be implemented based on the concepts

in [85], for simplicity we use the features without compensation.

The material presented in this chapter is partly taken from [87].

3.1 Motivation

Detection and classification for TWRI need to have reliable features that can be

used at the pixel or voxel level. Using only a single polarization channel intensity as

in [73,75,76], one can detect the targets to a certain level. In [84,85] statistical and

geometrical features are exploited to enhance the classification performance, but the

approach used, make the classification result depend heavily on the first phase of

target / non-target detection. This can lead to many false positives due to the small

changes between the target pixels and its surroundings. Using multiple views [7,72]

or different polarization channel intensities [80] can enhance the target detection. As

it is reasonable to assume that the more information or features are exploited, the

better is the result, as long as sufficient training data is available so that the curse

of dimensionality does not take any effect. Then providing more features about

the pixels can enhance target detection and classification. Different polarimetric

signatures are used in SAR applications [92–94] which implies they might be useful

in TWRI as well. In SAR image analysis, many techniques have been developed

that exploit spatial information [95–97]. The use of spatial models is mostly based

on either textural features [98], contextual methods, like the Markov Random Field

(MRF) model [99]. This motivates the use of features or methods that employ MRF

neighborhood model, and can be used to extract texture features, like co-occurrence

matrices [25, 99–101].

3.2 Polarization Signatures Sets

Polarimetric SAR images carry more information than the usual single polarized

channel images [92–94]. Attempts to find an optimal combination of the information

available from different polarimetric channels include [15–21].
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Let Xq, denote the vector of the complex polarimetric measurements at voxel site

q. The full polarimetric vector for a reciprocal medium has three unique elements

and is usually defined as [20] :

Xq =







SqHH

SqHV

SqVV






(3.1)

where SHV is the complex amplitude of the H- (horizontal) polarized return given

that the transmitted signal is V - (vertically) polarized. For a homogeneous region

of a uniformly distributed scatterer, the fully polarimetric target properties can be

described by the polarimetric covariance matrix [21]:

Cq = E[XqXq
−H ] =





E(SqHHS
∗
qHH) E(SqHHS

∗
qHV) E(SqHHS

∗
qVV)

E(SqHVS
∗
qHH) E(SqHVS

∗
qHV) E(SqHVS

∗
qVV)

E(SqHHS
∗
qVV) E(SqVVS

∗
qHV) E(SqVVS

∗
qVV)



 (3.2)

where E(·) is the expected value and H defines the complex conjugate and transpose

(Hermitian) operation. Hence, a feature vector that is derived from the parameters

in the matrix Cq can represent different classes on the imaged scenes [102]. For a

practical implementation, the expected value E(·) is replaced by the sample mean. In

this section, we will discuss some of the polarization signatures used in the literature

and considered in our algorithms.

(a) Thresholded intensity features : The automatic level thresholding algorithm [54]

is used to threshold each complex component. The lower part is set to zero and

the voxels with values above the threshold remain the same. The thresholded

absolute value vector for all complex components is given as

Tq =







TqHH

TqHV

TqVV






(3.3)

(b) Normalized phase difference: The phase difference between any two complex

polarized components is computed as [93]:

Ψq = arg(SqiSqj
∗) (3.4)

Usually the components considered are the two co-polarized components HH

and VV [93].
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(c) Normalized intensity ratio: The intensity ratio between any two complex polar-

ized components. [93]. We define the vector

IRq =













|S
qHH

|2

|S
qVV

|2

|S
qHH

|2

|S
qHV

|2

|S
qHV

|2

|S
qVV

|2













(3.5)

for which the three features are referred to as IRqHHVV, IRqHHHV and IRqHVVV

respectively.

(d) Odd and even bounce: The odd-bounce channel corresponds to the radar return

from a flat plate or a trihedral; the even-bounce channel corresponds to the radar

return from a dihedral. Few dihedral structures exist in natural clutter, but these

structures are sufficient to describe most of the man-made targets [103–105].

Natural clutter tends to exhibit more odd bounce reflected energy,

Eq(odd) =
|SqHH + SqVV|2

2
, (3.6)

than even-bounce reflected energy [103],

Eq(even) =
|SqHH − SqVV|2

2
+ 2|SqHV|2. (3.7)

(e) Real part and imaginary part of the normalized product : In [21], many repre-

sentations for the covariance matrix that characterize fully polarimetric data

are introduced. These include features that mainly consist of intensities, phase

differences, normalized or averaged products and the real and imaginary parts

of the averaged product of different polarizations:

APq(RI) =























Re[E[SqHHS
∗
qVV]]

Im[E[SqHHS
∗
qVV]]

Re[E[SqHHS
∗
qHV]]

Im[E[SqHHS
∗
qHV]]

Re[E[SqHVS
∗
qVV]]

Im[E[SqHVS
∗
qVV]]























(3.8)

We will refer to these features as ReqHHVV∗ , ImqHHVV∗ , ReqHHHV∗ , ImqHHHV∗ ,

ReqHVVV∗ and ImqHVVV∗ respectively.

(f) Logarithmic features : in [102], the logarithm of the intensities, product magni-

tude and phase difference of different polarizations are suggested as character-
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izing features:

IPq(log) =















10 log10(E[|SqHH|2])
10 log10(E[|SqVV|2])
10 log10(E[|SqHV|2])

10 log10(|E[SqHHS
∗
qVV]|)

10
arg(SqHHS

∗
qVV)

log(10)















(3.9)

The first three coefficients represent the backscatter cross sections of the sur-

face element in decibel (dB) at three different linear polarizations. The fourth

component measures the magnitude of the HH-VV correlation function, and the

fifth one is proportional to the HH-VV phase difference. We will refer to these

features as logHH , logHV , logV V , logHHV V ∗ , and logPHHV V ∗ respectively. The

advantages of operating in the log domain instead of the linear domain are two-

fold. First, in the log domain, image speckle has the statistical characteristics of

additive noise with a power level not varying much across the image, therefore,

rendering clustering robust to the presence of image speckle. Second, the cross-

polarized terms (i.e., HV) are often several orders of magnitude smaller than the

co-polarized terms (i.e., HH or VV), which requires arbitrary weighting of the

different channels. In the log-domain, the difference between the co-polarized

and the cross-polarized terms is measured in dB and hence, is independent of

the difference in absolute magnitude between each channel. Weighting of the

different channels is thus not necessary [102].

(g) Spatial intensity features : All the aforementioned features were suggested as

features for TWRI on a previous work of the authors [87]. These features do not

consider information about the pixel neighborhood. In this work, we introduce

a new set of nonlinear features. This set exploits the output of a 3D median,

maximum and minimum filters of the directly connected pixels neighborhood.

This means the use of a [3×3×3] window over each component of a polarization

image.

SPq =





































med(|SqHH|)
max(|SqHH|)
min(|SqHH|)
med(|SqHV|)
max(|SqHV|)
min(|SqHV|)
med(|SqVV|)
max(|SqVV|)
min(|SqVV|)





































(3.10)

This results in 9 features. We will refer to these features as medHH , maxHH ,

and minHH for features based on the HH polarization intensity. Features from
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HV and V V polarizations will follow the same notation. We will refer to the

vector of spatial intensity features as SP.

The proposed feature vector at each voxel q will contain the thresholded intensity

features, logarithmic features, intensity ratio, real and imaginary parts of the aver-

aged products, odd and even bounce returns and the spatial intensity features as

follows:

FP(q) =



























Tq

IPq(log)

IRq

APqRI

Eq(odd)

Eq(even)

SPq



























(3.11)

which contains 28 features in total. Table 3.1 list the features in brief.

3.3 Co-occurrence matrix

Due to the small variation between the target pixels and the closely surrounding

noise and clutter pixels, targets become hard to detect. Algorithms that measure

texture are built to deal with such small variations even in the case of non-optical

images like SAR and MRI images [22]. Gray level co-occurrence matrix (GLCM),

also known as co-occurrence distribution or gray-tone spatial dependence, is one of

the well-known methods for texture features extraction [23–25]. The co-occurrence

matrix contains texture, histogram and edge information [26] and was first proposed

by Haralick et al. [106]. This matrix corresponds to the relative frequencies of gray

level of pairs of pixels separated by a displacement vector Λ = (λx, λy). With this

representation the co-occurrence matrix is a G × G matrix where G is the total

number of gray levels for a given image, and the gray level function for each pixel

is g(x, y). Thus, for an image I of size Nx × Ny , the co-occurrence matrix can be

generated as [107]:

C(i1, i2) =
1

Nx ×Ny

Nx
∑

x=0

Ny
∑

y=0

{

1, if {g(x, y) = i1 & g(x+ λx, y + λy) = i2}
0, otherwise

(3.12)

Where i1 and i2 are gray levels that take values from 0 to G − 1. A sample co-

occurrence matrix for a 4 x 6 image with 4 gray levels is shown in Figure 3.1.



16 Chapter 3: Feature-sets

Table 3.1. Polarization features, their corresponding position in the feature vector
and the abbreviations to be used in the remainder of the thesis

Feature No. Feature Definition and Symbol

1-3 Thresholded intensities THH , THV and TV V

4-6 Logarithmic intensities logHH , logHV and logV V

7 Logarithmic absolute of the product HH VV* −→ logHHV V ∗

8 Logarithmic phase of the product HH VV* −→ logPHHV V ∗

9-11 Intensity ratios IRHHV V , IRHHHV and IRV V HV

12, 14, 16 Real part of the normalized products ReHHV V ∗ , ReHHHV ∗ and
ReHV V V ∗

13, 15, 17 Imaginary part of the normalized products ImHHV V ∗ , ImHHHV ∗ and
ImHV V V ∗

18-19 Odd and even bounce energies Eodd and Eeven

20-28 Spatial intensity features medHH , maxHH , minHH , medHV , maxHV ,
minHV , medV V , maxV V , and minV V

0 1 0 3 2 1
1 1 2 3 1 1
3 2 0 1 2 2
2 3 3 2 1 0

(a)

0 1 2 3
0 0 2 0 0
1 2 2 2 0
2 1 2 1 1
3 0 1 3 1

(b)

Figure 3.1. Sample co-occurrence matrix in (b) for a 4 x 6 image in (a) with 4 gray
levels using a bivariate clique with distance vector Λ = (1, 0).

In the literature, the 3D co-occurrence matrix or the 3D GLCM is used with different

meanings. In [108], 3D refers to the image not to the co-occurrence matrix. In other

works as in [101,109], 3D refers to the co-occurrence matrix itself, meaning that the
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gray level relative frequency of co-occurrence is calculated using three pixels instead

of two as in the classical way. In our algorithm we extend the co-occurrence matrix

to calculate the relative frequencies of gray levels between 2 to 5 pixels, meaning

that we are dealing with two to five dimensional co-occurrence matrices. The relative

frequencies are calculated for 3D images with different scanning arrangements of the

pixels, or in this case, the voxels. We can consider the gray level of each voxel as

a sample from a random variable, this leads to better representation of the joint

probability of co-occurrence between neighboring voxels by the concept of Markov

Random Fields (MRF). In [110] MRF is proposed as a distribution of conditional

probabilities over elements in a lattice. This concept was introduced in [99,111–113]

in the image processing context.

The voxels in a lattice L of a 3D image are defined as a set of random variables

X = {X1, X2, · · · , XR}, where each random variable Xr, r = 1, 2, · · · , R, is defined

on a set V = {0, 1, · · · , G−1}. A field is called MRF if it satisfies two conditions; the

Markovianity, where the probability of an element having a certain value depends

only on its neighbors P (vq|vL−{q}) = P (vq|vNq
) for a neighborhood system N of

an element q, Nq, and the positivity where the joint probabilities of all realizations

must have a positive value, P (X)>0 ∀ X ∈ X . The joint probabilities are calculated

over a subset of sites of the lattice L called cliques. The cliques are governed by the

neighborhood system used. The neighborhood system with the cliques that will be

used throughout this thesis is the third-order Markov neighborhood [22] as shown

in Figure 3.2 . The considered neighborhood system has the configuration:

Nq = {q′ ∈ L|dist(vq, vq′) ≤ 2, q′ 6= q} (3.13)

where dist corresponds to the Euclidean distance.

The extension of the cliques shown in Figure 3.2 to 3D space are shown in Figure

3.3. The set Φ = {ϕ1, ϕ2, · · ·ϕR} include all the cliques used, where ϕr represents

the clique ϕ with index r and R is the total number of cliques. In our set, there are

altogether 54 cliques.

3.3.1 Multivariate Co-occurrence Matrices

The co-occurrence matrices can be considered as multivariate or k-variate p.d.f esti-

mates (p.d.f.s), and according to the neighborhood system that we mentioned earlier,

k ∈ {2, 3, 4, 5} is the number of voxels in each clique. Each clique has a center or

reference voxel, where the distance vector of all the other voxels in the arrangement
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(a) Neighborhood System N

(b) Bivariate Cliques

(c) 3-variate Cliques

(d) 4-variate Cliques

(e) 5-variate Cliques

Figure 3.2. Directly connected MRF cliques for a third order neighborhood system.
Figure redrawn from [22]

is calculated with reference to it. Let g(x, y, z) denotes the gray level function of

the reference voxel, then the extension of the co-occurrence matrix from bivariate

to k-variate can be written as:

Cϕr
(i1, · · · , ik) =

1

Ξ

∑

∀x,y,z

{

1, if {g(x, y, z) = i1, · · · , g(x+ λk
x, y + λk

y, z + λk
z) = ik}

0, otherwise

(3.14)

where Ξ is a normalizing factor such that
∑

∀i1,··· ,ik
C(i1, · · · , ik) = 1, ik is the gray

level of the voxel k on the clique ϕr, Λk = (λk
x, λ

k
y, λ

k
z) is the distance of the voxel k

from the reference voxel on the clique ϕr.

The k-variate co-occurrence matrices can be used to discriminate between different

classes. For example, if we build separate co-occurrence matrices for target and

clutter, we can use these matrices to classify between the two classes.
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(a) Bivariate Cliques on 3D space

(b) 3-variate Cliques on 3D space

(c) 4-variate Cliques on 3D space

(d) 5-variate Cliques on 3D space

Figure 3.3. k-variate MRF cliques for a third order neighborhood system in 3D
space.

3.3.2 Texture features from the multi-variate co-occurrence
matrices

In [100,106,114], different texture features from the bivariate co-occurrence matrices

were extracted. Here, we present modified equations that can be used to extract
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some of these features from different k-variate co-occurrence matrices. The co-

occurrence matrices here are not calculated one-time for the image as a whole,

instead they are calculated through a moving window. Many variations for the size

of the moving window can be implemented. In our case a 3D (5× 5× 5) window is

used which is small enough not to be computationally expensive and large enough to

allow the chosen cliques to move inside. At each transition of the moving window,

the co-occurrence matrix is calculated for the voxels inside the window with all

the different clique arrangements. For each k, we average all the calculated co-

occurrence matrices, the resulting matrix is denoted by C. The texture features are

then extracted from C and assigned to the feature vector for the image voxel at the

center of the window. In this paper, we extended 9 conventional measures [106,115]

from bivariate to multi-variate co-occurrence matrices. A novel formulation for

extracting these features from k-variate co-occurrence matrices are shown in Table

3.2.

In the following we will use µ, σ2 as the mean and variance of the normalized k-

variate co-occurrence matrix, and µm, σ
2
m as the mean and variance of the marginal

co-occurrence matrix

Cm(im) =
G−1
∑

i1,··· ,ik=0|iu 6=m

C(i1, · · · , ik). (3.15)

These features measure [115]:

1. Auto-correlation (ACOR): Measures the similarity between the gray level

relative frequencies of the voxels.

2. Contrast (CON): Measures the differences between the highest and smallest

gray level values of the set of voxels.

3. Correlation (COR): Measures the linear relationship between the gray levels

of the voxels.

4. Dissimilarity (DSM): Measures the heterogeneity between gray level values

of the voxels.

5. Angular second moment (ASM): Evaluates consistency of textural informa-

tion.

6. Entropy (ENT ): Measures the disorderliness or complexity of the texture.
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Table 3.2. Extended equations for k-variate co-occurrence matrix texture features

Measure for 2 variate co-occurrence matrix for k-variate co-occurrence matrix

Auto-
Correlation
(ACOR)

G−1
∑

i1=0

G−1
∑

i2=0

i1i2 C(i1, i2)
G−1
∑

i1=0

· · ·
G−1
∑

ik=0

k
∏

u=1

iu C(i1, · · · , ik) (3.16)

Contrast
(CON)

G−1
∑

i1=0

G−1
∑

i2=0

(i1 − i2)
2C(i1, i2)

G−1
∑

i1=0

· · ·
G−1
∑

ik=0

C(i1, · · · , ik)
[

∑

∀u 6=v

(iu − iv)
2

]

(3.17)

Correlation
(COR)

G−1∑

i1=0

G−1∑

i2=0

(i1i2)C(i1,i2)−µ1µ2

σ1σ2

G−1∑

i1=0

···
G−1∑

ik=0

k∏

u=1

iuC(i1,··· ,ik)−
k∏

u=1

µu

k∏

u=1

σu

(3.18)

Dissimilarity
(DSM)

G−1
∑

i1=0

G−1
∑

i2=0

|i1 − i2|C(i1, i2)
G−1
∑

i1=0

· · ·
G−1
∑

ik=0

C(i1, · · · , ik)
[

∑

∀u 6=v

|iu − iv|
]

(3.19)

Angular Second
Moment (ASM)

G−1
∑

i1=0

G−1
∑

i2=0

C(i1, i2)
2

G−1
∑

i1=0

· · ·
G−1
∑

ik=0

C(i1, · · · , ik)2 (3.20)

Entropy (ENT )
G−1
∑

i1=0

G−1
∑

i2=0

C(i1, i2) logC(i1, i2)
G−1
∑

i1=0

· · ·
G−1
∑

ik=0

C(i1, · · · , ik) logC(i1, · · · , ik) (3.21)

Homogeneity
(HOM)

G−1
∑

i1=0

G−1
∑

i2=0

C(i1,i2)
1+(i1−i2)2

G−1
∑

i1=0

· · ·
G−1
∑

ik=0

C(i1,··· ,ik)
1+

∑

∀u 6=v

(iu−iv)2
(3.22)

Maximum Prob-
ability (MP )

max
i1,i2

C(i1, i2) maxi1,··· ,ik C(i1, · · · , ik) (3.23)

Standard Devia-
tion (SD)

√

G−1
∑

i1=0

G−1
∑

i2=0

(i1 µ− C(i1, i2))2

√

G−1
∑

i1=0

· · ·
G−1
∑

ik=0

(i1 µ− C(i1, · · · , ik))2 (3.24)

7. Homogeneity (HOM): Measures the homogeneity between gray level values

of the voxels.

8. Maximum probability (MP ): Measures the maximum gray level relative fre-

quency

9. Standard deviation (SD): Measures the degree of the gray level values distri-

bution.

The vector of the texture features from the k-variate co-occurrence matrices contain

(9×4 = 36) features in total, which represent a set of nine features for each averaged

k-variate co-occurrence matrix, where k ∈ {2, 3, 4, 5}. For k = 2 the feature vector,

FCk, at voxel q is

FC2(q) = (ACORq CONq CORq DSMq ASMq ENTq HOMq MPq SDq)
T

(3.25)
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and the whole vector of the texture features at voxel q is:

FC(q) =









FC2(q)
FC3(q)
FC4(q)
FC5(q)









(3.26)

3.4 Conclusion

In this chapter, features for target detection and classification in TWRI are de-

fined. Some polarimetric signatures that proved to provide effective representation

on Synthetic Aperture Radar (SAR) applications are implemented. A New set of

spatial polarimetric signatures is introduced. The estimated probabilities of co-

occurrence matrices and co-occurrence matrices based texture features gave a good

performance in remote sensing and radar applications. In this chapter, features

based on co-occurrence matrices are extended to k-variate representation. The in-

troduced feature-sets will be tested in the following chapters.
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Chapter 4

Segmentation by classification

The contribution of this chapter is a framework for target detection using segmenta-

tion by classification, including exploitation of target polarization signatures. Each

B-Scan of the 3D TWRI image is over-segmented to homogeneous regions without

restriction on the shape of the region or the number of regions. These regions can be

clustered together using agglomerative clustering to form three clusters correspond-

ing to targets, clutter and noise classes. The resulting clustered or super-pixels data

set is divided into a training set and a testing set. The training set is used to build

a classifier that is based on the random forests algorithm [116], which is then tested

using the testing data set. A diagram summarizing the general steps of the proposed

algorithm is shown in Figure 4.1.

The material presented in this chapter is partly taken from [87].

Received 
Observations

Beamforming
Build 

Polarimetric 
Features

Super 
Pixels 

generation

Hierarchical 
Clustering

Classification

logHHVV

IRHHVV
.

.

.

Figure 4.1. The general steps of Segmentation by classification.

4.1 Motivation

All existing image-domain target detection algorithms in TWRI use a pixel-grid

as the underlying representation, cf. [7, 73, 75, 76, 84]. However, the pixel-grid is

not a natural representation of visual scenes. It is rather an “artifact” of a digital

imaging process [117, 118]. It would be more natural, and more efficient, to work
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with perceptually meaningful entities, obtained from a low-level grouping process

[117, 119]. For that, we apply over-segmentation to segment the image into regions

with homogeneous characteristics. Subsequently, for classification of super-pixels,

decision trees are considered. Decision trees are one of the most popular classification

algorithms used in data mining and machine learning to create knowledge structures

that guide the decision making process [120–122]. Thus, they have the ability to

handle high-dimensional data well and to ignore irrelevant features [123]. These are

desirable properties for the problem at hand.

4.2 Segmentation

In this section, we present a pre-processing stage to group pixels into homogeneous

regions called ‘super-pixels’. To create the super-pixels for our TWRI B-Scans, we

used the quick shift algorithm [124] for segmentation. Unlike other super-pixelization

schemes, such as the ones based on normalized cuts [117], quick shift produces super-

pixels that are not fixed in approximate size or number. A complex image with many

fine scale image structures may have many more super-pixels than a simple one, and

there is no parameter which puts a penalty on the boundary, leading to super-pixels

which are quite varied in size and shape [118].

From Equation (2.2) of Section 2.1, we can get the complex B-Scan image I for each

height. Combining the different B-Scans for all heights will give a 3D image for the

whole scene. Each pixel has an associated vector of features as described in Section

3.2. The feature vector includes all the proposed polarimetric signatures except the

spatial ones. The feature vector associated with each pixel as in Equation (3.11) can

be identified as Fq(d) where d = 0, ..., D− 1 and D is the number of features. Quick

shift is a mode seeking algorithm which links each pixel to its nearest neighbor which

has an increase in the estimate of the density. These links form a tree where the root

of the tree is the pixel, which corresponds to the highest mode in the image [124].

Figure 4.2 shows a simple illustration of how quick shift forms the tree. Quick shift

regards each pixel q, q = 0, ..., Q− 1, as a sample from a D + 2 dimensional vector

space. It then calculates the Parzen density estimate (with a Gaussian kernel of

standard deviation σ) [125]:

E(q) = P (xq, yq,Fq) =
J−1
∑

j=0

1

(2πσ)D+2
exp






− 1

2σ2





xq − xj

yq − yj
Fq − Fj





T 



xq − xj

yq − yj
Fq − Fj











(4.1)
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Figure 4.2. Tree forming illustration using quick shift. The black dots represent
(some of) the data points, and the intensity of the image is proportional to the
Parzen density estimate E(q) from equation (4.1). Redrawn from [124]

where j = 0, 1, ..., J − 1 denotes the neighboring pixel j, J is the number of neigh-

boring pixels, x and y are the physical coordinates of the pixel. Then quick shift

constructs a tree of pixels, connecting each image pixel to its nearest neighbor which

has a greater density value. Formally, E(j) > E(q) if, and only if [124,125]

P (xj, yj,Fj) > P (xq, yq,Fq). (4.2)

Each pixel (xq, yq) is connected to the closest higher density pixel parent(x′
q, y

′
q) that

achieves the minimum distance in:

dist(q) = min
P (j)>P (q)

(

(xq − xj)
2 + (yq − yj)

2 + ‖Fq − Fj‖22
)

(4.3)

The algorithm connects all the points into a single tree. Modes are then recovered

by breaking the branches of the tree that are longer than a threshold τ . We used

the quick shift implementation in the library VLFeat [125]. A typical segmentation

result using quick shift applied to B-Scans of one and two target scenes using the

feature set described in Section 3.2 is shown in Figure 4.3.
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(a) One target (b) Two targets

Figure 4.3. Typical results for quick shift segmentation of the images from Figure
2.2

4.3 Clustering

The aim is to cluster the super-pixels resulting from the previous stage to a maximum

of three clusters for each B-Scan, corresponding to targets, clutter and noise. We

note that clustering is an optional step and may not be used if the number of super-

pixels is low. In this case, the super-pixels can be used directly for training and

testing of the classifier presented in the next section. To achieve clustering, we first

calculate a single feature vector for each super-pixel based on the features of all

underlying pixels contained in a super-pixel. We take the median for each feature

throughout all pixels that belong to this super-pixel to be the new value of this

feature for this super-pixel. If ξs is the set of pixels belonging to super pixel s, then

the new value for the feature d in the super-pixel feature vector FSs is:

FSs(d) = F̃q∈ξs(d) (4.4)

where s is the super-pixel index, s = 0, ..., S − 1, S is the number of super-pixels,

q ∈ ξs denotes the group of pixels that belong to super-pixel s, F̃(d) is the median

of feature d over this group of pixels, and d = 0, 1, ..., D − 1 is the feature index.

We use hierarchical agglomerative clustering [126, 127] to group the super-pixels

into clusters, using the Euclidean distance to calculate the distances between the
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super-pixels, i.e. the distance between two feature vectors FS1 and FS2 is given by

‖FS1 − FS2‖2 =

√

√

√

√

D
∑

d=0

(FS1(d)− FS2(d))2. (4.5)

Subsequently, a linkage function is used to group the super-pixels hierarchically

into clusters, a single linkage [126, 127] (also known as nearest neighbor or shortest

distance) method is used to calculate the distance matrix between elements. The

result of linkage can be represented visually as a dendrogram. The numbers along

the horizontal axis represent the indices of the super-pixels. The upside-down U-

shaped lines represent the links between super-pixels. The height of U indicates the

distance between the super-pixels. A typical dendrogram result from clustering the

two target image from Figure 4.3 is shown in Figure 4.4.

Figure 4.4. A typical dendrogram to visualize clustering for a two target B-Scan.
Different colors represent different clusters. The horizontal dashed line illustrates
where to cut to get 3 clusters

4.4 Classification with Random Forests

In this section, we propose a sequential classification scheme using random forests

ensemble trees classifier [116]. Previous work regarding stationary target classifica-

tion for TWRI includes [62,86] where a minimum Mahalanobis distance classifier is



28 Chapter 4: Segmentation by classification

used to classify targets using 3D statistical models. Further, in [84] Iterative Con-

ditional Modes (ICM) segmentation was considered to divide the TWRI image into

target and noise, then nearest-neighbor classifier and support vector machines were

used for further classification using superquadrics features.

In our classification problem, we are given data on a set ofN super-pixels for training,

χ = {(FS1, O1), ..., (FSN , ON )}, where FSn is a vector of descriptors and On is the

corresponding n-th class label. Our goal is to find a model for predicting the values

of O from new FS values. Classification tree methods yield rectangular sets Aj such

that the predicted value of O is j if FS belongs to Aj for j = 1, 2, ..., J where J is the

number of disjoint sets. By recursively partitioning the data set one variable from

FS at a time, the splits resulting from using each of the predictors are examined.

The best split that maximizes homogeneity for both its parts is chosen. Then this

procedure is repeated until there is no more possible splits or a stopping criterion

is met. Deciding for the ‘best’ split is still an active research area, the most used

method is the Classification And Regression Trees (CART) [120] which measures

the impurities at each split using the Gini [128] impurity algorithm. Let tp be a

parent node, tl, tr the left and right child nodes respectively, χ a data set with

D descriptors, N the number of observations, and K the number of classes. At

each split, we have FSR
d which is the best threshold for the descriptor FSd that

gives maximum homogeneity for each part. At the parent node tp, the impurity is

constant for all possible splits, so the change of impurity for the left and right nodes

is calculated as follows [129]:

∆i(t) = i(tp)− Pl(tl)− Pr(tr) (4.6)

where Pl and Pr are the probabilities of the left and the right nodes. The objective

is to solve for

argmax
FSd6FSR

d

∆[i(t)] = argmax
FSd6FSR

d

[i(tp)− Pl(tl)− Pr(tr)] (4.7)

This means that all possible values of the descriptors will be searched for the best

split FSd 6 FSR
d that will maximize the change of impurity ∆i(t). As mentioned

before, the Gini function [128] will be used as impurity function here, which is given

by:

i(t) = 1−
K
∑

k=1

p2(k|t) (4.8)

where k = 1, 2, ..., K is the class index and p(k|t) is the probability of class k given

node t. Substituting Equation (4.8) in Equation (4.7) gives:

argmax
FSd6FSR

d

∆[i(t)] = argmax
FSd6FSR

d

[−
K
∑

k=1

p2(k|tp) + Pl

K
∑

k=1

p2(k|tl) + Pr

K
∑

k=1

p2(k|tr)] (4.9)
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which is the problem to be solved at each split throughout all possible values of

tested descriptors. A block diagram illustrating the process is shown in Figure 4.5. A

typical decision tree built on a database of around 200 B-Scans for scenes that contain

one target (different types of targets) is shown in Figure 4.6. The major drawback,

however, is that decision trees usually have relatively low prediction accuracy [123].

One of the best ways to improve the performance of Decision Tree-based algorithms

is to use ensembles of trees [130] and Random Forests are one of the methods to

enhance performance [116,123].
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Figure 4.5. Decision tree growing process

A Random Forest is an ensemble of trees T0(FS), ..., TB−1(FS), where FS is the D-

dimensional vector of features or descriptors associated with a super-pixel (or with

a cluster if clustering is used) and B is the number of trees in the ensemble. The

ensemble produces B outputs Ô0, Ô1, ..., ÔB−1 where Ôb is the prediction by the bth

tree and b = 0, 1, ..., B − 1. Outputs of all trees are aggregated to produce one final

prediction Ô, which is the class predicted by the majority of trees. Given data on a

set of N super-pixels for training, χ = (FS0, O0), ..., (FSN−1, ON−1), where FSn is
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Tvv >= 0.9558Tvv < 0.9558
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Figure 4.6. A typical Decision tree for one-target scene, yellow dots for the noise
class, red is for the clutter class, and green is for the target class.

a vector of descriptors and On is the corresponding class label. Then, the following

steps are implemented for training:

1. From N super-pixels as training data, randomly sample, with replacement

(bootstrap [131]), to create B bootstrap samples (same number of trees).

2. For each bootstrap sample, grow a decision tree using only α randomly selected

features to test for best splitting at each node (rather than all features). The

tree is grown to the maximum size (until no further splits are possible) and

not pruned back.

A typical block diagram illustrating the training and testing process using Random

Forest(s) is shown in Figure 4.7. Random Forests perform a type of cross-validation

in parallel with the training step by using Out-Of-Bag (OOB) samples [132]. Specif-

ically, in the process of training, each tree is grown using a bootstrap sample. Since

bootstrapping is sampling with replacement from the training data, some of the

super-pixels will not be included while others will be repeated on each sample. The

super-pixel samples that were not included are called ’Out-Of-Bag’ samples. Usually

each tree is grown using two-thirds of the training data and one-third is the OOB
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samples. These OOB samples can be used to estimate the ensemble prediction per-

formance by testing the bth tree Tb against χOOB
b and calculating the classification

error as follows:

ER ≈ EROOB =

l
∑

i=1

I(ÔOOB(FSi) 6= Oi)

l
(4.10)

where I(·) is an indicator function, and l is the number of samples used [123]. A

measure of how each feature contributes to the prediction accuracy can be calculated

in the training process too. When a feature is ’noised up’ (e.g., replaced with random

noise), the accuracy of prediction should noticeably degrade if the feature contributes

to the prediction accuracy. On the other hand, it should have little effect on the

performance if it is irrelevant. In classification, the change in prediction accuracy is

usually a less sensitive measure than the change in the margin. The margin is the

difference between the proportion of votes for the correct class and the maximum

of the proportion of votes for the incorrect classes. The tendency of the margin to

become smaller (more negative or less positive) when a feature is ’noised up’ is what

is used to assess the feature importance in classification [123].

The feature importance is calculated as follows: use the OOB data part χOOB
b to

make predictions of the bth tree when this tree is grown. At the same time, each

feature in the χOOB
b data is randomly permuted, one at a time, and predicted by the

tree. At the end of the training process, the margins for each class are calculated

based on both the original OOB and the OOB data with each feature permuted.

Then the measure of importance for the dth feature is simply β − βd where β is the

average margin based on the OOB prediction and βd is the average margin based

on the OOB prediction with the dth feature permuted.

After calculating the features importance, a new ensemble of trees is built upon

the most contributing features only. This can be used to build different ensembles

according to the classes needed, for example, an ensemble can be built to discriminate

between target and non-target super-pixels. Another one can be built to discriminate

between metal and non-metal targets, or between ’dihedral, sphere, and trihedral’

classes. This may require additional types of features like shape features for example,

but here, we restrict ourselves to polarimetric features only. These ensembles could

be used sequentially or in parallel or have mixed architectures. A proposed scheme

for the sequential classifier is shown in Figure 4.8. The decisions for each classifier

could be semantically grouped to provide a better understanding about the target.

Furthermore, a third level could be added on the scheme provided on Figure 4.8 to

deal with the 3D image directly, which could make use of geometrical and shape

features to add more information about the targets detected.
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Figure 4.7. Random forests training and testing process.

4.5 Experimental Results

4.5.1 Experiments description

We consider the scenario presented in Section 2.1 for the evaluation of the proposed

techniques. As mentioned we have four ‘one-target’ 3D images and two ‘two-target’
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Figure 4.8. Block diagram for the multi-level classifier.

3D images, each 3D image is constructed from a set of 57× 57 2D B-Scans. Each of

these images has 3 different polarization data images, ’HH, HV and VV’ resulting

in 18 different sets. Our experiments are arranged as follows (a summary is given

in Table 4.1)

(a) Prepare the polarimetric data of the images.

(b) Get the polarimetric features or signatures for the images. Each pixel will have

a vector of 19 features as mentioned in Section 3.2.

(c) The feature matrix should be checked for outliers and scaled so as to avoid

unexpected behavior.

(d) Use Quickshift to segment the images based on the polarimetric features. Each

image will be segmented to regions called super-pixels as shown in Figure 4.3.

(e) Clean the resulting super-pixels by removing super-pixels that contain only one

pixel.
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(f) For each super-pixel, get the median of the feature vectors of all the super-

pixels contained on this super-pixel. This will be the new feature vector for this

super-pixel as mentioned in Section 4.2.

(g) Optionally use clustering if the number of the super-pixels is large or the number

of super-pixels that contain noise and clutter classes is much larger than super-

pixels that contain target classes as mentioned in Section 4.3. If clustering is

used, then again a median feature vector should be generated for each cluster

based on the super-pixels contained on this cluster.

(h) Separate the data into training and testing sets. The training set is two-thirds,

and the testing set is one-third of the data.

(i) Prepare three training data groups. The first uses the ‘one-target’ data, the

second the ‘two-target’ data and the third is a mixed group between one and

two target data. Also two testing data groups based on ‘one-target’ and ‘two-

target’ data are prepared.

(j) Use the training data to train the first ensemble of trees to classify between

noise, clutter, and target classes. Subsequently re-build the ensemble using the

most effective features only.

(k) For the three groups of the training data, the previous step should be repeated

to create three different ensembles.

(l) The last steps are repeated to build two other groups of ensembles. The first

classifies between generic ’metal’ and ’non-metal’ classes and the second classifies

between the target types ’dihedral’, ’sphere’, ’trihedral’, and ’salt-water jug’.

4.5.2 Target, noise and clutter classification

The first ensemble of 100 trees is trained to classify between three classes (‘target’,

‘noise’, and ‘clutter’) with all the features used. As mentioned before, three different

ensembles depending on the training data (‘one-target’, ‘two-target’, and ‘mixed’)

are grown. We first need to choose the number of features that will be randomly

tested to find the best split at each tree node. We conducted different experiments

to choose the optimum number of features tested to find the best split using the

numbers = (1, 3, 5, 7, 9, 11, 13) as candidates. Both the classification error and the

mean classification margin against the number of grown trees have been checked.

The number of features that gave the lowest OOB classification error and best mean
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Table 4.1. Segmentation by classification algorithm steps.

No. Step

1 Prepare polarimetric images. A set of B-scans for each polarization. Each
B-Scan has Q pixels.

2 Extract feature vector Fq with D features for each pixel q.

5 Generate S super-pixels for each B-Scan using quick shift segmentation.

4 Generate Feature vector FSs for each super-pixel s using the underlying
pixels features.

5 Prepare training and testing data for classification.

6 Do preparatory training for Random forests to choose best number of
features for splitting and most important features.

7 Build RF classifier with these parameters.

8 Repeat for different purpose classifiers (target or not, human or not,
metal or not, ..etc) and arrange in multi-level scheme.

classification margin is used. Figure 4.9 shows the OOB classification error and the

mean classification margin for the three ensembles. The lowest classification error is

gained using 3, 5, 7, and 13 random features at each split on the different ensembles,

and among these numbers, the number of features that resulted in the highest mean

classification margin is chosen for each case. Thus, 7 features for the case of ‘one-

target’ data and 5 features for the other two cases are chosen for testing for best

split. To estimate the feature importance, the features are permuted and tested as

mentioned in Section 4.4. The results are shown in Figure 4.10. As can be seen,

the six most important features for the ensemble trained with ‘one-target’ data are

(1, 3, 4, 6, 10, 15), which are: the thresholded intensity for HH (THH), the thresholded

intensity for VV (TV V ), the logarithmic intensity for HH (logHH), the logarithmic

intensity for VV (logV V ), and the imaginary part of the product of HH and HV*

(ImHHHV ∗). The features with importance above 0.6 are (1, 4, 6). A comparison

between the OOB classification error for both the reduced feature sets and the set

with all features is shown in Figure 4.11, which shows no significant degradation in

performance for both of the reduced feature sets. Thus, a feature set of the 6 most
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important features will be used. Table 4.8 lists the most important features for each

case.
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Figure 4.9. Test for the suitable number of random features at each split. Top is
the OOB classification error, and the bottom is the OOB classification margin, both
versus the number of grown trees. Ensembles are trained on mixed data.
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Figure 4.10. Test for the feature importance for classifying ‘target’, ‘clutter’ and
‘noise’ classes. The green and red line are guide-lines reflect a feature importance of
0.4 and 0.6 respectively. The plot in (a) is for ensemble trained on ‘one-target’ data,
(b) is for ensemble trained on ‘two-target’ data, and (c) is for ensemble trained on
mixed data.



38 Chapter 4: Segmentation by classification

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

Number of Grown Trees

O
u

t-
o

f-
B

ag
 

C
la

ss
if

ic
at

io
n

 E
rr

o
r

 

 

All features
FI>0.4
FI>0.6

Figure 4.11. OOB Classification error for reduced feature set compared to using all
features

Receiver operating characteristics (ROC) [133] performance curves for the reduced

feature set of the ensemble trained on ‘one-target’ data are shown in Figure 4.12.

The left curve depicts the false positive rate against the true positive rate. The value

of the Area Under the Curve (AUC) is 0.9887 and an optimal operating point at

(0.0486,0.9753). The right curve is the ensemble accuracy vs. threshold on the score

for the ‘target’ class. The curve shows a flat region indicating that any threshold

from 0.3 to 0.6 is a reasonable choice. Calculating the maximum accuracy shows

that it is achieved at a threshold around 0.45. Table 4.2 lists the AUC, the optimal

operating point and the optimal threshold for all cases.

Testing the different ensembles of trees, which was trained using samples from the

‘one-target’, ‘two-target’ and ‘mixed’ data with both the ‘one-target’ data and the

‘two-target’ data gives a classification error between 0.04− 0.072 for matched cases,

around 0.1 for the mismatched case, and between 0.03 and 0.043 for the mixed

training case. The classification error for all cases is listed in Table 4.3 in comparison

to the Mahalanobis distance classifier (using Iterated conditional modes (ICM) and

Levelset (LSM) segmentation methods) [84].

Figure 4.13 demonstrates the distance between the ‘target’, ‘noise’ and ‘clutter’
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(a) Standard ROC (b) Classification accuracy versus ‘target’ return threshold

Figure 4.12. ROC curve and classification accuracy for a reduced feature set

Table 4.2. Performance measures for the first ensemble using OOB samples, classi-
fying ‘target’, ‘noise’, and ‘clutter’ classes

Training
Measure

AUC Optimal threshold Optimal operating point

one target 0.9887 0.45 (0.0486, 0.9753)

two targets 0.9896 0.5279 (0.0280, 0.9247)

mixed 0.9878 0.406 (0.0668, 0.9685)

classes using the most affecting features for the ensemble trained with mixed data.

The three lines for each class represent the median and quantiles at 0.1 and 0.9 of

the observations. It is clear that the first three features discriminate well between

the different classes and the other features could help tuning after the different tree

splits.

4.5.3 Further classification, metal/non-metal and target
type classification

Repeating the previous experiments changing the classification objective as men-

tioned before. First, discriminate between the classes ‘metal’ and ‘non-metal’. Then,

between the classes ‘dihedral’, ‘sphere’, ‘trihedral’, and ‘salt water jug’. Experiments

show that the proposed scheme can be used for such a classification task. Figure

4.14 shows the feature importance when classifying for metal targets. Table 4.4 lists

the AUC, the optimal operating point and the optimal threshold for this case.
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Table 4.3. Classification errors for the first ensemble, classifying ‘target’, ‘noise’, and
‘clutter’ classes. Segmentation by classification, and Mahalanobis distance classifier
(using ICM and LSM segmentation methods) are compared.

Seg. by Class. ICM LSM

Testing
Training

one
tar-
get

two
tar-
get

mixed one
tar-
get

two
tar-
get

mixed one
tar-
get

two
tar-
get

mixed

one target 0.043 0.116 0.0429 0.063 0.176 0.0735 0.0763 0.2263 0.1093

two targets 0.139 0.072 0.0389 0.343 0.0763 0.0459 0.3433 0.2216 0.0863
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Figure 4.13. Parralel co-ordinates plot for the distance between the different classes
using mixed training data.

Testing the different ensembles of trees which were trained using samples from the

‘one-target’, ‘two-target’ and ‘mixed’ data with both the ‘one-target’ data and the

‘two-target’ data. The test gives a classification error between 0−0.037 for matched

cases, around 0.2 for the mismatched case, and between 0 and 0.0556 for the mixed

training case. The classification error for all cases is listed in Table 4.5 in comparison

to Mahalanobis distance classifier (using ICM and LSM segmentation methods).

It is worth noting that the classification error is much higher in mismatched cases

(where training is based on one-target data, and testing is used with two-target data

and vise-versa), which implies a significant change in the features when other targets
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Figure 4.14. Test for feature importance for classifying metal targets. The green
and red line are guide-lines reflect a feature importance of 0.4 and 0.6 respectively.
First, an ensemble trained on ‘one-target’ data is in (a), second, ensemble trained
on ‘two-target’ data is shown in (b), and ensemble trained on mixed data in (c).
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Table 4.4. Performance measures for the second ensemble using OOB samples,
classifying metal target class

Training
Measure

AUC Optimal threshold Optimal operating point

one target 1 0.589 (0, 1)

two targets 0.9995 0.6304 (0.027, 1)

mixed 0.9873 0.55 (0.0462, 0.9947)

Table 4.5. Classification error for the second ensemble. Classifying a metal target
class. Segmentation by classification and Mahalanobis distance classifier (using ICM
and LSM segmentation methods) are compared

Seg. by Class. ICM LSM

Testing
Training

one
tar-
get

two
tar-
get

mixed one
tar-
get

two
tar-
get

mixed one
tar-
get

two
tar-
get

mixed

one target 0.037 0.2593 0.0556 0.6432 0.7584 0.7126 0.5335 0.8522 0.7126

two targets 0.2329 0 0 0.8334 0.6354 0.6635 0.7639 0.4698 0.5646

are present.

Figure 4.15 shows the feature importance when classifying target types. Table 4.6

lists the AUC, the optimal operating point and the optimal threshold for this case.

Testing this case gives a classification error between 0 − 0.1429 for matched cases,

between 0.3−0.94 for mismatched cases, and between 0−0.14 for the mixed training

case. The classification error for all cases is listed in Table 4.7 in comparison to

Mahalanobis distance classifier (using ICM and LSM segmentation methods).

Table 4.8 lists the important features regarding each built ensemble, the most impor-

tant feature has the symbol ’�’ and the features belonging to the six most important

features are marked with ’N’.

4.5.4 General results

The features that were of general significance are (1, 4, 6, 8, 9, 12, 13, 19), which rep-

resent features from the main types mentioned in Section 3.2. It is also worth noting
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Figure 4.15. Test for feature importance for classifying target types. The green
and red line are guide-lines reflect a feature importance of 0.4 and 0.6 respectively.
First, (a) is for ensemble trained on ‘one target’ data, (b) is for ensemble trained on
‘two-target’ data, and (c) is for ensemble trained on mixed data.
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Table 4.6. Performance measures for the third ensemble using OOB samples, clas-
sifying target types classes.

Training
Measure

AUC Optimal threshold Optimal operating point

dihedral

one target 0.9988 0.7917 (0, 0.9394)

two targets 1 0.8333 (0, 1)

mixed 0.9993 0.6579 (0.0073, 0.9915)

sphere

one target 0.9984 0.444 (0.013, 0.9697)

two targets 0.9997 0.8286 (0, 0.96)

mixed 0.9954 0.5714 (0.0152, 0.9828)

trihedral

one target 0.9970 0.7813 (0.01, 0.928)

two targets − − −

mixed 0.9967 0.5135 (0, 0.9286)

saltwater
jug

one target 0.9996 0.6857 (0, 0.9643)

two targets 0.9988 0.675 (0, 0.973)

mixed 0.9956 0.6071 (0, 0.9385)

that all of them are derived from HH and VV polarizations except for feature 19,

the even bounce energy. Also, feature 8 (logPHHV V ) which is the logarithmic phase

between HH and VV polarizations is an important feature in most of the trained en-

sembles. Most effective features for classifying between ‘target’, ‘clutter’, and ‘noise’

classes are (1, 4, 8, 19). For the metal target classification, the most important fea-

tures are (6, 8, 12, 13, 15, 17), we see that features 15 (ImHHHV ∗) and 17 (ImHV V V ∗)

are excellent features in this case. They both involve the HV polarization, and

they were not so important for ‘target’, ‘clutter’, and ‘noise’ classification. For the

target type classification, we can see that feature 12 (ReHHV V ∗) is the most impor-

tant feature for all the trained ensembles on this case. Figure 4.16 and Figure 4.17

show the final segmentation and classification result for the first ensemble group

that classified between ‘target’, ‘clutter’, and ‘noise’ classes using segmentation by

classification compared to segmentation using ICM and LSM. The segmented scene
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Table 4.7. Classification error for the third ensemble, Segmentation by classification,
and Mahalanobis distance classifier (using ICM and LSM segmentation methods) are
compared.

Seg. by Class. ICM LSM

Testing
Training

one
tar-
get

two
tar-
get

mixed one
tar-
get

two
tar-
get

mixed one
tar-
get

two
tar-
get

mixed

dihedral
one target 0 0 0 0.352 0.432 0.214 0.354 0.514 0.5167

two targets 0 0 0 0.626 0.3176 0.312 0.554 0.421 0.621

sphere
one target 0.1176 0.705 0.0588 0.475 0.8864 0.426 0.2841 0.878 0.3365

two targets 0.3846 0 0 0.6276 0.3243 0.2116 0.5543 0.3236 0.4452

trihedral
one target 0 − 0 0.5447 − 0.3447 0.2332 − 0.2332

two targets − − − − − − − − −

saltwater
jug

one target 0.1429 0.0714 0.1429 0.3632 0.4854 0.4362 0.2782 0.5321 0.4325

two targets 0.9444 0 0 0.6387 0.3154 0.2543 0.8854 0.366 0.4265

overall
one target 0.0741 0.3704 0.0556 0.4337 0.6017 0.355 0.2873 0.6417 0.3795

two targets 0.3014 0 0 0.6307 0.3191 0.2593 0.6645 0.3702 0.4977

contained two metal dihedrals at the same distance from the platform and at differ-

ent heights. It can be seen from the figure that using simple segmentation methods

depending only on pixel intensity is able to get the real positions of the targets, but

it suffers from ghost targets as in the case of ICM or from large false positive detec-

tions as in the case of LSM. Taking into account that the three algorithms have the

same initial pixel intensity threshold to begin with, segmentation by classification

leads to better segmentation results than the other algorithms.

4.6 Conclusions

The problem of target segmentation and classification in the image-domain with

application to Through-the-Wall Radar Imaging has been addressed. Perceptually

meaningful entities, obtained from a low-level grouping process, the so-called super-

pixels, are considered in this thesis, overcoming the limitation of pixel-grid based
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algorithms. Further, simple geometrical and statistical descriptors that have been

used as features in previous work are extended to polarimetric descriptors, which

make use of the whole polarimetric information in radar images. A framework

of polarimetric feature extraction, over-segmentation (super-pixels), clustering, and

classification has been presented. An expandable sequential classifier based on ran-

dom forests has been proposed to discriminate targets from clutter returns and to

provide further information about the discriminated targets. The experimental re-

sults demonstrate the usefulness of the proposed methods as desired target returns

are discriminable from clutter returns and a further classification about target type

and its nature is provided. The proposed technique proved better performance than

techniques that depend only on pixel intensity.

Table 4.8. Feature importance for each built ensemble

features

Classify Built on 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Target
or not

1 target N N � N N N

2 targets N � N N N N

mixed N � N N N N

Metal
or not

1 target � N N N N N

2 targets N N � N N N

mixed � N N N N N

Target
types

1 target N N � N N N

2 targets N N � N N N

mixed N N � N N N
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(a) (b)

(c) (d)

Figure 4.16. Front view of final 3D segmentation of a two target scene containing 2
dihedrals, (a)Original scene (b) Segmentation by Classification (c) ICM (d) LSM.
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(a) (b)

(c) (d)

Figure 4.17. Top view of final 3D segmentation of a two target scene containing 2
dihedrals, (a)Original scene (b) Segmentation by Classification (c) ICM (d) LSM.
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Chapter 5

Multi-level 3D classification

In this chapter, 3D classification of stationary targets in the image domain is consid-

ered. The TWRI image is divided into a finite set of segmented regions or objects.

Each of these objects is labeled to a certain class according to the values of the

different extracted features.

Research on TWRI target detection has been developed in two domains, the data-

domain and the image-domain. Data-domain target detection involves waveform

design to improve target detection. This exploits matched illumination with par-

tial or full prior knowledge of the target Radar Cross Section (RCS) over angle

and frequency [32, 134–136]. These techniques work well under specific assump-

tions about the targets and propagation environments. With multiple targets and

unknown target orientation, these techniques become less effective. Image-domain

based target detection [7,54,73,75,76,84,87] handles multiple targets with no prior

assumptions on the target RCS. These techniques face the challenge of operating

with limited bandwidth and insufficient physical or synthesized array aperture, thus

disallowing high resolution based target analysis and classification. Detection in the

image-domain has been proposed using centralized [7] as well as decentralized [74]

approaches. The common aim within both approaches is to deduce a single binary,

three-dimensional, reference image from a set of 3D TWRI images, to detect the

presence or absence of targets. Most of these approaches make use of single polar-

ization data while multi-polarization data can capture different aspects of a target

and is, thus, promising to improve the overall detection result [87, 137,138].

Existing work in polarimetric imaging for TWRI applications includes [10, 14, 80,

87, 139]. In [10], cross- to co-polarization return ratio was used for rifle detection.

In [139], the polarization difference imaging is employed to improve enhancement in

terms of image quality. In [14], the effect of ghost targets, that appear in TWRI

images due to multi-path propagation is reduced using a multiplicative combination

technique of co- and cross-polarized time-difference images. As such, the image qual-

ity is strongly improved which facilitates target detection. In [85], the performance of

the adaptive target detection techniques proposed in [7,73,76] is improved utilizing

the polarization diversity and accounting for changing image intensity distributions

as a function of transmitter-receiver co- and cross-polarizations

In the previous Chapter, target segmentation and classification scheme consisting of

feature extraction, segmentation and classification in TWRI applications has been
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introduced. The scheme involves super-pixels instead of the regular pixel-by-pixel

grid representation. The motivation was to use a more natural representation that

involves homogeneous characteristics of the segmented regions. In this Chapter,

two new schemes are proposed. The first involves classification using estimated

probabilities of co-occurrence matrices (EPCM) and fusion-based log likelihood ra-

tio test. The second involves texture features based on co-occurrence matrices and

polarimetric features (PolTex) combined with state-of-the-art classifiers. The po-

larimetric signatures in the second framework are the features used in the previous

Chapter in addition to new intensity spatial features. Discrimination between tar-

get / non-target classes followed by target type classification is demonstrated. The

organization of this Chapter is as follows. Section 5.2 reviews the features that will

be used throughout this chapter that were introduced in Chapter 3. Section 5.3

presents the clustering phase, where similar voxels are grouped into clusters, and

the unwanted clusters are excluded. Section 5.4 discusses the different schemes for

classifying voxels of the remaining cluster into ‘target’, ‘clutter and noise’ voxels.

Section 5.5 presents experimental results, and conclusions are drawn in Section 5.6.

5.1 Motivation

Target detection in TWRI is a computationally expensive process, due to the large

number of pixels or voxels under test. TWRI applications usually requires fast

results as it mostly deals with life and death situations as in search and rescue

operations, law enforcement, and military applications. To reduce the computational

time, a multi-step approach is needed. The first step uses k-means clustering [140]

exploiting spatial polarization features to produce a reduced set of voxels. This

is achieved by excluding the clusters that mostly contain noise and clutter voxels

which will result in a preliminary view about target positions. The second step

involves calculating polarization signatures and co-occurrence matrix features for

this reduced set of voxels. These features are used in different arrangements to

classify the voxels to target / non-target (clutter and noise) classes. The contribution

in this chapter is a framework for 3D target detection using polarization signatures

and co-occurrence matrix features. A diagram summarizing the general steps of the

proposed algorithms is shown in Figure 5.1.
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Figure 5.1. The general steps of the proposed frameworks.

5.2 Feature Extraction

As explained in Chapter 3, different sets of features are used throughout the pro-

posed algorithms, in Chapter 4 polarimetric signatures were used as features in the
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segmentation by classification algorithm. In this chapter, features are used in a

multi-stage approach to reduce computational complexity and time. In Section 5.3,

the spatial polarimetric signatures from Section 3.2 are exploited to remove most of

the noise and clutter in the image. In Section 5.4.1, the co-occurrence matrices from

Section 3.3 are exploited to obtain estimated probabilities matrices for the different

classes in test. In Section 5.4.2, polarimetric signatures from Section 3.2 and tex-

ture features from Section 3.3 are both used as features for classification. The two

algorithms mentioned only extract the features from the regions remaining after the

clustering phase. To eliminate the dependence of the features on target resolution

and location, the algorithm presented in [85] can be implemented. For simplicity,

we use the features without compensation.

5.3 Clustering

We aim at clustering the voxels to a maximum of four non-overlapping regions. The

four clusters represent 2 noise classes, one clutter class, and one target class. Two

noise classes are assumed due to the high number of noise sources [8, 9, 13, 141] as

mentioned in Chapter 1. We use k-means clustering [140] as it is a simple and fast

algorithm. It has comparable performance to more complex algorithms, and works

well for compact and hyper-spherical clusters. Further, it can be used to cluster

large data sets [142, 143]. The feature vector used as an input to the clustering

algorithm exploits thresholded intensities and the spatial intensity features. These

features are chosen because they are computationally inexpensive and provide spatial

information. Referring to Table 3.1, the chosen features are number 1-3 and 20-28.

Hence, the feature vector of each voxel has 12 features. Figure 5.2 shows a scatter

plot of the clustered voxels in a space of the normalized median of the HH and HV

intensities. Figure 5.3 shows the density function of the four clusters with the mean

of each cluster denoted by a dashed vertical line. The target cluster has the highest

mean, and this is how it is identified in our algorithm. Figure 5.4 shows the chosen

cluster in a 3D scene in black. The green cube is a bounding box for the original

target place. The cluster contains most of the target voxels in addition to clutter

and ghost voxels. The clusters that are expected to contain only noise and clutter

are excluded. Only a negligible part (less than 1%) of target voxels is removed, if

any. We will continue with the highest-mean clusters that are assumed to contain

most of the target voxels in the following experiments. This yields a preliminary

estimation of the target position in a very short time and provides the possibility to

do more extensive computations on the remaining voxels.
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Figure 5.2. Clustered voxels for a scene with one target, cluster with the higher
intensity values contain target voxels (magenta). Other clusters contain clutter
(dark blue) and noise (green and red)
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Figure 5.3. Emperical density function for the four clusters of a one-target scene

5.4 Classification

In this section, we describe how to further classify the group of voxels resulting

from the clustering stage to get a better representation of the target. In [62, 86],
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Figure 5.4. Chosen cluster in a 3D scene in black. The green cube is a bounding
box for the original target place. This shows the arrangement of experiment 1 with
one target (dihedral)

the minimum Mahalanobis distance classifier is used to classify targets exploiting 3D

statistical models in stationary target classification for TWRI. These models depend

only on HH single channel polarization and do not provide a possibility to handle the

resolution change. Further, in [84], Iterative Conditional Modes (ICM) segmentation

was considered to divide the TWRI image into target and noise, then the nearest-

neighbor classifier and support vector machines were used for further classification,

employing super-quadric features. This technique assumes that the pdf of the target

is known and has no measure of segmentation phase performance, although the clas-

sification phase depends on the volume feature of the segmentation results. In [85],

the probability density function (pdf) of the image pixels attributed to the target is

estimated and super-ellipsoids are fitted to imaged targets. The pdf and the super-

ellipsoid parameters were combined into a feature vector and passed to the classifier.

The technique compensates for the variation of system point spread function (PSF)

over the image, which is of practical importance. This technique extracts weibull

model parameters from target candidates which may include clutter and noise. Also,

the super-ellipsoid is highly non-linear and shape fitting can be complicated, com-
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putationally expensive, and problematic [144] especially with partial or insufficient

data. In [87], a scheme for target detection using segmentation by classification is

proposed. The scheme exploits polarimetric signatures to create super-pixels and

then classify them using random forest decision trees. This technique has compa-

rable performance to the aforementioned algorithms, but it has the disadvantage of

averaging the features throughout the whole super-pixel. To avoid feature averaging

among different voxels, we propose two new algorithms that exploit the neighbor-

hood voxels in feature extraction and either use the features directly or through a

feature fusion algorithm. Each of the two classification schemes can be used in dif-

ferent configurations. The first classification algorithm uses only the co-occurrence

matrix estimated probabilities and performs fusion-based log-likelihood-ratio test for

classification. The second method uses the polarimetric signatures and the texture

features from the co-occurrence matrix, combined with state-of-the-art classifiers.

5.4.1 Classification using the estimated probabilities of co-
occurrence matrices (EPCM)

5.4.1.1 Target / non-target classification

As mentioned in Section 5.3, we begin with the highest-mean cluster. The target is

to label voxels as target / non-target voxels. For the training part, two different sets

of co-occurrence matrices are generated. One set is built using the target voxels and

the other using the non-target (clutter and noise) voxels. An important parameter

at calculating the co-occurrence matrix is the number of gray levels used to represent

the image. Having more gray levels will better represent the variation of intensities

in the image, especially in our case where small variations are present. On the other

hand, having more gray levels will result in sparse co-occurrence matrices especially

in higher dimensions. Tests with G ∈ {2, 4, · · · , 16} are conducted to choose the

optimum number of gray levels. Each test has 54 different clique arrangements as

illustrated earlier in Figure 3.3. This results in 432 different co-occurrence matrices

for each set. Note that this high number is just for finding the optimum number

of gray levels. Once it is determined, we will have only 54 configurations. Let

Ω = {ω0, ω1, · · · , ωM} be the set of classes, where M is the total number of classes.

Given a class ωm, the co-occurrence matrix generated using the clique ϕr is denoted

as Cϕr
(i|ωm), where i = [i1, i2, · · · , ik]. In the target / non-target case M = 2, so we

will have 2 sets of co-occurrence matrices for target and non-target. These two sets

of co-occurrence matrices result from the training phase as shown in Figure 5.5.
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Figure 5.5. Training steps to get co-occurrence matrices

The testing phase involves calculating the estimated probabilities using the previ-

ously generated co-occurrence matrices. Figure 5.6 shows a sample co-occurrence

matrix estimated probabilities generated from the training phase. The process of

generating the estimated probabilities of each voxel in a sample image using the co-

occurrence matrix from Figure 5.6 is shown in Figure 5.7. The same MRF cliques

are used to estimate the probability matrices. Note that the estimated probabilities

in the figure are just an example and do not represent any real data. A set of all

configurations of a clique ϕr in a lattice L can be defined as Γ = {γ1, γ2, · · · , γN},
where γn denotes the indices representing a clique at configuration n, and N is total

number of configurations a clique can have in a test image. For each voxel q, the

estimated probability of this voxel belonging to class ωm using clique ϕr is computed

by accumulating the relative frequency values for each voxel as
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p̂ϕr
(q|ωm) =







N
∑

n=1

1{q ∈ γn} · Cϕr
(g(γn)|ωm),

0, otherwise
(5.1)

where g(γn) represent the gray levels of the voxels with indices denoted by the set

γn.

Given the probability estimates, log-likelihood ratios between the two classes ω0 and

ω1 can be calculated per clique as

Lϕr
(q) = log

p̂ϕr
(q|ω1)

p̂ϕr
(q|ω0)

(5.2)

The reliability information measured by |Lϕr
(q)|, and the decision rule, sign(Lϕr

(q)),

specify the likelihood ratio test completely. For a more reliable decision, a decision

fusion scheme can be employed, especially if there are a large number of likelihood

ratios from different sources. In MRFs, the random variables X corresponding to

different cliques are independent. Therefore, the optimum fusion rule is equivalent

to the soft decision fusion with R independent sources [145]

L(q) =
∑

∀r

Lϕr
(q)

ω1

≷
ω0

log τ, (5.3)

where τ is the constant threshold, and in our case, it is set to 1. The reliability

information per clique can be misleading, incorrect, due to an incorrect estimation of

p̂ϕr
(q), or affected by an uncertain event, such as impulsive noise. In such cases, hard

decision fusion can be more suitable because the likelihood ratios are thresholded

and the effect of very large and unreliable Lϕr
in equation (5.2) is circumvented.

The optimum hard decision fusion is defined as the weighted sum of decisions of

each information source [145]

R
∑

r=1

ur log
1− PMr

PFr

+ (1− ur) log
PMr

1− PFr

ur=1

≷
ur=0

log τ, (5.4)

where PFr and PMr are the probabilities of false alarm and miss detection for the

corresponding clique ϕr, and τ is a suitable threshold as mentioned earlier. In our

problem, the information source is parameterized by ϕr, corresponding to the deci-

sion ur. Let log
1−PMr

PFr
= αr and log PMr

1−PFr
= βr. The setting of αr = 1 and βr = −1

correspond to the hard decision fusion stated in our experiments. However, αr and

βr are not necessarily equal to 1 and -1, respectively. They can be also estimated
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0 1 2 3
0 0.15 0.03 0 0.03
1 0.07 0.25 0.1 0.15
2 0 0.04 0.12 0
3 0 0 0.04 0.02

Figure 5.6. A sample co-occurrence matrix for a 4 gray level image, generated in
the training phase

0 1 0 3 2 1
1 1 2 3 1 1
3 2 0 1 2 2
2 3 3 2 1 0

(a)

0.03 0.03 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0

(b)

0 1 0 3 2 1
1 1 2 3 1 1
3 2 0 1 2 2
2 3 3 2 1 0

(c)

0.03 0.1 0.07 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0

(d)

0 1 0 3 2 1
1 1 2 3 1 1
3 2 0 1 2 2
2 3 3 2 1 0

(e)

0.03 0.1 0.1 0.07 0.08 0.04
0.25 0.35 0.1 0.0 0.0 0.25
0.04 0.04 0.13 0.2 0.22 0.1
0.0 0.02 0.06 0.08 0.11 0.07

(f)

Figure 5.7. Sample for generating the estimated probabilities matrix in the testing
phase (based on the sample co-occurrence matrix from Figure 5.6) for a 4 x 6 image.
The left column show the movement of the clique through the test image, while the
right column show the corresponding change in the estimated probabilities matrix.
The estimated relative frequency corresponding to the current 2 gray levels marked
by the clique, is added to the 2 corresponding cells in the estimated probabilities
matrix. A bivariate clique is used with distance vector Λ = (1, 0).

directly from the likelihood ratios at the training phase to benefit from the soft

decisions. Any likelihood ratio based on a clique, which is unreliable or does not

contribute to the detection performance will be assigned a zero weight. To this

end, we use a sequential feature selection (SFS) algorithm [146] to select suitable

likelihood ratios for our problem. The selection procedure can be improved upon
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determining the weights with a better precision. Instead of 0 and 1, each likelihood

ratio can be allowed to be multiplied by a real number κ, e.g κ ∈ {0.1, 0.2, · · · , 1}.
Higher precision clique selection has very minor improvement. Therefore, we con-

strain ourselves only to the binary weights with SFS. A block diagram explaining

the testing process is shown in Figure 5.8. In the case of target / non-target classifi-

cation we have only two classes, so only the first row of calculating the log-likelihood

phase will be implemented.
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Figure 5.8. Testing phase to get classification results

5.4.1.2 Multi-class Classification

In order to classify the voxels to multiple target types, we extend the previous

algorithm to multi-class classification. In this case, we use a voting algorithm to

assign each voxel to its class. The max-wins algorithm [147–149] is chosen for its

low computational complexity and good performance. Assume we have M classes

with labels wi where i = 1, 2, · · · ,M . The max-wins method involves creating a

binary classifier for every distinct pair of classes. This sums to C = M(M − 1)/2

binary classifiers. We used the log-likelihood from equation (5.2) as our binary

classifier between each pair of classes wi and wj. A set of log-likelihood matrices

corresponding to the 54 clique arrangements is generated for each class exactly as

in the target / non-target case. The test will run exactly in the same configuration

for each binary classifier. Soft and hard decision fusion is performed for the output

decisions of all the clique arrangements. For each voxel on the test image, a vote

is given that this voxel belongs to class wi if the value on the decision matrix is

positive and to class wj if the value is negative. For each voxel, there will be C final
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decisions or votes. The voxel is assigned to the class with the highest number of

votes. In case two classes have the same number of votes, the vote of the classifier

comparing these two classes is used to predict the class. A block diagram explaining

the training and testing processes is shown in Figure 5.5 and Figure 5.8.

5.4.2 Classification Using Polarimetric Signatures and Tex-
ture Features (PolTex)

In this part, the polarimetric signatures and texture features extracted from the

co-occurrence matrices are used. Each voxel has a vector of 64 features (28 polari-

metric features and 36 texture features). In this classification problem, we are given

a set of N voxels for training, χ = {(F1, w1), ..., (FN , wM)}, where Fn is a vector

of descriptors and wm is the corresponding m-th class label. Our goal is to find a

model for predicting the class w from new feature vector F. For simplicity, we will

stick to the optimum number of gray levels chosen at the previous stage to com-

pute the texture features. Four classifiers, which include the Linear Bayes Normal

Classifier [126, 150] , Quadratic Bayes Normal Classifier [126], K-Nearest Neighbor

Classifier [126,151], and Fisher Linear Discriminant Classifier [152,153] are used for

target / non-target classification and target type classification. An SFS algorithm

is applied to choose the optimum feature set for each classifier. As the optimum set

of features may vary in size, we test the performance of a small number of features

through all classifiers to compare the performance. In our experiments, classification

performance is compared using the best ten features for each classifier.

5.5 Experimental results

The experimental setup is depicted in Figure 2.4. We consider the scenario presented

in Chapter 2 for the evaluation of the proposed techniques. As mentioned, we have

four one-target 3D images, two two-target, and one four-target 3D image. Each 3D

image is constructed from a set of 57×57 2D B-Scans in three different polarizations,

HH, HV and VV resulting in 21 different sets.

At first, polarimetric intensity and spatial signatures for the images are extracted.

Each voxel will have a vector of 12 features. It is well known that the k-means

clustering method is sensitive to outliers [154,155]. The set of feature vectors should

be checked for outliers (very large values in amplitude) and scaled so as to avoid an
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undesired behavior of the clustering step, such as deviated clusters center or clusters

that contain only an outlier. The images are then clustered to four non-overlapping

regions. The cluster with the highest mean is chosen as an appropriate candidate

for further classification. In the training and testing phases, the used voxels from

the database should be labeled to target and non-target voxels. Also for further

classification, the target voxels are labeled according to target types.

We have two different sets of classification experiments. The first set involves clas-

sification using the estimated probabilities of the co-occurrence matrices (EPCM)

and the second set is exploiting polaremitric signatures and texture features based

on co-occurrence matrices (PolTex).

5.5.1 Classification experiments using the co-occurrence
matrix estimated probabilities

5.5.1.1 Experiments description

This set of experiments are arranged following the EPCM classification part of the

scheme shown in Figure 5.1. To choose the optimum number of gray levels, eight

different numbers of gray levels are tested. The 54 clique arrangements in the set Φ

are used with each number of gray levels tested. The experiments are done in a 5-

fold cross-validation arrangement, the original dataset is randomly partitioned into

5 subsamples. All of the subsamples are equal in size. A single subsample is used

for testing, and the 4 subsamples remaining are put together and used as training

data. The process is repeated 5 times, with each of the 5 subsamples used exactly

once as the testing data. This yields 5 results from the folds, which are averaged to

produce a single estimation. The advantage of this method over repeated random

sub-sampling is that all observations are used for both training and testing, and

each observation is used for testing exactly once.

5.5.1.2 Experiments results: optimum gray level

The results of a 5-fold cross-validation implementation of these experiments show

that using 12 gray levels gives generally the highest performance. Figure 5.9 shows

both the average and the maximum performances for different clique dimensions

through different gray levels. In Figure 5.9, we can see that performance differs

slightly between the levels from 8 to 16. The following results are obtained using

images quantized at 12 gray levels.
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Figure 5.9. Average and maximum performance for different clique dimensions
against the number of gray levels.

5.5.1.3 Experiments results: classification

The results for both target / non-target classification and target type classification

are shown in Table 5.1. Soft and hard decision fusion, forward selection and the
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best 10 arrangements are used to handle the different log-likelihood outputs corre-

sponding to the 54 cliques employed. The performance is compared to the Linear

Bayes Normal Classifier (LBN), the Quadratic Bayes Normal Classifier (QBN), the

K-Nearest Neighbor Classifier (KNN), and Fisher’s Least Square Linear Classifier

(FLS) using thresholded HH intensity (first feature in polarimetric signatures). All

classifiers use the output voxels from the clustering stage, and the results are based

on a 5-fold cross-validation. For target types, we have four classes: dihedral, sphere,

trihedral, and a salt water jug. Classification using co-occurrence matrices for tar-

get / non-target classification has lower error rates compared to the other classifiers.

Although using our method for classifying target types yields lower error rates com-

pared to the other tested classifiers, the overall performance is low. This performance

deterioration is mostly caused by the small amount of samples available to fill the

multi-variate co-occurrence space, where the samples available for each target type

is about 0.25 of the samples available to the ‘target’ class. This can lead to sparse

co-occurrence matrices, where many elements are zero, which in turn does not rep-

resent the differences between the classes. Table 5.2 shows the class error rates for

both target / non-target and target type classification.

Table 5.1. Overall classification error rates for the target / non-target and target
types classification compared to other types of classification algorithms using only
HH polarimetric signature as a feature.

Co-oc matrices. Compared classifiers

Soft
Fusion

Hard
Fusion

Opt.
Set

Best
10

LNB QNB Fisher KNN

Target / non-target 0.0728 0.0784 0.0638 0.0648 0.1697 0.181 0.175 0.163

Target types 0.389 0.382 0.380 0.383 0.4516 0.4606 0.4511 0.4315

As mentioned earlier, a forward selection algorithm is used to choose the optimum

set of features for classification. Optimum performance was achieved by 27 clique

arrangements in the target / non-target classification and 29 clique arrangement in

target type classification. Clique numbers can be viewed in Figure 3.3. Table 5.4

lists the contribution of each clique dimension (considering the number of elements

in a clique) to the optimum set.

From Tables 5.1-5.4, the following can be observed:

- All 5D cliques contribute to the optimum set.
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Table 5.2. Classification error rate for each class for the target / non-target and
target type classification of the proposed algorithm (EPCM) compared to other
types of classifiers using only an HH polarimetric signature as a feature.

Co-oc matrices. Compared classifiers

Soft
Fusion

Hard
Fusion

Opt.
Set

Best
10

LNB QNB Fisher KNN

Target/
non-target

Target 0.183 0.195 0.151 0.164 0.403 0.407 0.369 0.373

Non-target 0.062 0.063 0.053 0.050 0.136 0.148 0.145 0.133

Target
types

Dihedral 0.295 0.296 0.295 0.296 0.274 0.282 0.264 0.182

Sphere 0.403 0.398 0.398 0.399 0.597 0.597 0.593 0.598

Trihedral 0.450 0.439 0.438 0.439 0.557 0.567 0.562 0.555

Water Jug 0.517 0.501 0.481 0.504 0.446 0.450 0.411 0.422

Table 5.3. Optimum clique sets.

Clique numbers.

Dimension Target / Non-target Target Types

2 D 1, 11, 10, 8, 2, 4. 1, 11, 10, 8, 2, 4

3 D 25, 18, 17, 24, 15, 28, 22, 27, 29. 25, 18, 17, 24, 15, 26, 27, 28, 22, 29

4 D 38, 45, 44, 50, 47, 49, 46, 41, 40 38, 45, 50, 47, 44, 49, 51, 46, 41, 40

5 D 52, 53, 54 52, 53, 54

Table 5.4. Optimum clique sets.

- Most contributions of the 2D cliques to the optimum set are diagonal cliques.

- Most of the 3 D cliques contributions to the optimum set are L-shaped cliques.

- 9-10 of the 15 cliques of the 4-variate cliques are in the optimum set.

- 9-10 of the 23 cliques of the 3-variate cliques are in the optimum set.

- 6 out of 13 cliques of the 2-variate cliques are in the optimum set.
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- In the ten best arrangements, 3-variate cliques contributed only in one arrange-

ment.

- The best 10 arrangement performance is slightly less than the optimum set per-

formance.

5.5.2 Classification experiments using polarimetric signa-
tures and texture features (PolTex)

5.5.2.1 Experiments description

This set of experiments follows the PolTex classification part of the scheme shown

in Figure 5.1. The number of gray levels used is 12 as found in the EPCM part of

the experiments. The 54 clique arrangements in the set Φ are considered.

As mentioned earlier, these experiments are performed on the cluster corresponding

to the highest mean chosen after the clustering phase. Polarimetric signatures for

the chosen cluster are extracted, such that each voxel has a vector of 28 polarimetric

features. Texture features based on the moving window co-occurrence matrices are

also computed. Each voxel will have a vector of 36 texture features. The overall

feature vector will contain 64 features for each voxel. The set of all feature vectors

should be checked for outliers and scaled so as to avoid unexpected behavior. This

set is used as an input to the classifiers of choice. Here, we use the same set of

classifiers used for comparison at the previous set of experiments. Two sets of

classifiers are created, one for target /non-target classification and the other for

target types classification. The voxels classified as targets are then classified as

target types. The optimum set of features is sought using SFS algorithm. As the

optimum set of features is different in size (number of features) for each classifier,

another experiment is made using only the best 10 features for each classifier.

5.5.2.2 Experiments results

The previous steps are implemented with a 5-fold cross validation. The results for

both target / non-target classification and target type classification are shown in

Table 5.5. The results show that the new set of features performs much better than

using only the regular HH intensity feature. Table 5.6 shows the class error rate for

both target / non-target and target type classification.
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Table 5.5. Classification errors for the target / non-target and target type classifi-
cation using polarimetric signatures and texture features.

LNB
LNB
Opt.

LNB
Best
10

QNB
QNB
Opt.

QNB
Best
10

Fisher
Fisher
Opt.

Fisher
Best
10

KNN
KNN
Opt.

KNN
Best
10

Target
/ non-
target

0.085 0.084 0.089 0.116 0.087 0.088 0.085 0.083 0.092 0.028 −− 0.120

Target
types

0.063 0.151 0.182 0.018 0.006 0.019 0.080 0.069 0.126 0.023 −− 0.133

Table 5.6. Class error rates for the target / non-target and target type classification
using polarimetric signatures and texture features.

LNB
LNB
Opt.

LNB
Best
10

QNB
QNB
Opt.

QNB
Best
10

Fisher
Fisher
Opt.

Fisher
Best
10

KNN
KNN
Opt.

KNN
Best
10

Target/
non-target

Target 0.196 0.194 0.182 0.219 0.195 0.199 0.173 0.167 0.190 0.068 −− 0.226

Non-
target

0.061 0.060 0.071 0.089 0.066 0.066 0.067 0.067 0.072 0.018 −− 0.095

Target
types

Dihedral 0.002 0.001 0.013 0.013 0.002 0.003 0.008 0.004 0.016 0.006 −− 0.082

Sphere 0.101 0.309 0.216 0.041 0.016 0.042 0.127 0.103 0.229 0.033 −− 0.187

Trihedral 0.124 0.288 0.231 0.005 0.006 0.020 0.156 0.141 0.196 0.045 −− 0.192

Water
Jug

0.019 0.066 0.274 0.002 0.002 0.007 0.014 0.033 0.042 0.010 −− 0.002

From Tables 5.1-5.6, we can notice that the performance of PolTex features is slightly

better than EPCM in target / non-target classification while it is far better in target

type classification. Among the classifiers, the KNN classifier achieves the lowest error

rate (0.028) using all features for target /non-target classification, whereas Fisher’s

classifier is the next with an error rate of 0.084 using 47 features. QNB, which allows

a minimal number of features in its optimum set for both target / non-target and

target type classification, achieves the best performance for target type classification

using 45 features. The performance deterioration of the QNB full set in target /

non-target classification can be caused by some features that are removed on the

SFS process. Last but not least, the class error rate for the target class in target /

non-target classification is relatively high, except for the KNN classifier.

Table 5.7 shows the number of features in the optimum set along with the best 10

features for each classifier. For space considerations, features that didn’t contribute
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to the best 10 features set are omitted.

Table 5.7. Best ten features for each classifier. The best feature has the symbol ❶ ,
the next four features are labeled with the black triangle N and features from 6-10
are labeled with the black square �.

Target / non target. Target types

LNB QNB Fisher KNN LNB QNB Fisher KNN

Optimum Number of features 35 23 47 64 57 45 51 64

Pol. Signatures

1- THH � N N N

4-logHH � �

8- logPHHV V ∗ � � N N �

11-IRV V HV N � �

12-ReHHV V ∗ � � N

13-ImHHV V ∗ N � N � N

18-Eodd N N N N �

19-Eeven N � N

20-medHH N � ❶

21-maxHH � �

22-minHH � N N

23-medHV N

24-maxHV � N

25-minHV � ❶ ❶ ❶

28-minV V �

Texture
features
from co-
occurrence
matrix

2 D

29-ACOR � �

31-COR � � �

34-ENT ❶ ❶ N

35-HOM ❶ N

36-MP N �

3 D

40-COR N

44-HOM � N � �

45-MP N �

46-SD � � �

4 D 49-COR N �

5 D

56-ACOR N N �

58-COR �

59-DSM N ❶ � N �

From Table 5.7, we can notice the following:
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- Three of the texture features are counted as the best feature in target /non-target

classification.

- The odd bounce energy feature is in the top 5 features for all classifiers in target

/non-target classification.

- The minHV spatial feature is the best feature in 3 of the 4 classifiers in target type

classification.

- The KNN classifier depends mostly on the texture features for target / non-target

classification.

- Texture features from 4-Variate co-occurrence matrices do not contribute much to

the best 10 features.

- The correlation texture feature from all k-variate co-occurrence matrices con-

tributes to the best 10 features.

5.6 Conclusions

The problem of 3D classification of stationary targets in image-domain based

Through-the-Wall Radar Imaging (TWRI) is considered. Two schemes that use

the pixel-by-pixel grid and exploit the relations between pixels in 3D, or in this case

voxels, have been introduced. The schemes involve classification using estimated

probabilities of co-occurrence matrices and co-occurrence matrices based texture

features. In addition to the new spatial intensity features, the second framework

also used the polarimetric signatures. Discrimination between target / non-target

classes, followed by target type classification has been demonstrated. The first

framework, which uses estimated probabilities of co-occurrence matrices and fusion-

based log-likelihood-ratio tests, has been proven to provide superior performance

for target/non-target classification compared to state-of-the-art classifiers exploit-

ing regular HH intensity features only. For the case of target type classification, the

performance degraded. The decrease in classification performance for target type

classification may be caused by the small sample size used for generating the co-

occurrence matrices for each class. Small sample sizes cause sparse co-occurrence

matrices, which in turn will result in poorly estimated probabilities. The second

approach involves texture features, extracted by the means of a moving window

co-occurrence matrix and polarimetric signatures. The polarimetric signatures in-

clude new spatial intensity features. The second set of features has been tested

using four well known classifiers and has provided near perfect performance for both
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target/non-target classification and target type classification. The first approach is

computationally less expensive as it involves calculating the co-occurrence matrix

for the whole class, followed by extracting the estimated probabilities at the testing

stage. The second approach involves the computation of the polarimetric signatures,

as well as the co-occurrence matrix based texture features for every voxel. EPCM

method is computationally less expensive and has a run time that is less than 15%

of the run time of the PolTex approach in feature extraction and training, and about

10 % less in testing. For the sake of optimization, a series of tests has been executed

regarding the optimum number of gray levels and optimum set of clique arrange-

ments. Twelve gray levels provide the lowest error rates and an optimum set of

clique arrangements has been introduced. In the second framework, a series of tests

to find the optimum set of features has been executed.
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Chapter 6

Conclusions and Future Work

In this thesis, the problem of detecting and classifying stationary targets in Through-

the-Wall Radar Imaging has been considered. Two feature-sets were introduced for

TWRI imaging applications. The first depends on a combination of polarization

features considering both values for each pixel or voxel by itself or considering the

neighborhood of each voxel. The second feature-set makes use of the estimated prob-

abilities or relative frequencies from the co-occurrence matrices and texture features

extracted from them. A target classification framework based on polarimetric signa-

ture, the concept of super-pixels and decision trees to classify between target /non-

target, target types and metal / non-metal classes in different phases is proposed. A

3D target classification framework, consisting of feature extraction, clustering and

classification with exploiting polarimetric signatures and co-occurrence matrices is

formulated and adapted to the application of TWRI. The features used employ 3D

information and relations between voxels.

A summary and the main conclusions of the work performed in this thesis are pro-

vided in Section 6.1. Finally, Section 6.2 provides an outlook for possible future

work.

6.1 Conclusions

6.1.1 Features

Various features for target detection and classification in TWRI have been inves-

tigated. Polarimetric signatures that proved to provide effective representation on

Synthetic Aperture Radar (SAR) applications are implemented and a new set of

spatial polarimetric signatures is introduced. The estimated probabilities of co-

occurrence matrices and co-occurrence matrices based texture features showed a

good performance in remote sensing and radar applications. The features based on

co-occurrence matrices are extended to k-variate representations. The introduced

feature-sets are tested and proved to be representative and discriminative for target

detection and classification.
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6.1.2 Segmentation by Classification

The problem of target segmentation and classification in the image-domain with

application to Through-the-Wall Radar Imaging has been addressed. We have over-

come the limitations of algorithms based on a pixel-grid, which is not a natural

representation of visual scenes. Perceptually meaningful entities, obtained from a

low-level grouping process, super-pixels, are considered as meaningful entities. Fur-

ther, simple geometrical and statistical descriptors that have been used as features

in the past are extended to polarimetric descriptors, which make use of the whole

polarimetric information in radar images. A framework of polarimetric feature ex-

traction, over-segmentation (super-pixels), clustering, and classification has been

presented. An expandable sequential classifier based on random forests has been

proposed to discriminate targets from clutter returns and to provide further infor-

mation about the discriminated targets. The experimental results demonstrate the

usefulness of the proposed methods as desired target returns are discriminable from

clutter returns and a further classification to assign target types is provided. The

proposed technique proved better performance than techniques that depend only on

pixel intensity.

6.1.3 Multi-level 3D Classification

The problem of 3D classification of stationary targets in image-domain has been

considered. Two schemes that use the pixel grid and exploit the relations between

voxels in 3D were introduced. The schemes involved classification using estimated

probabilities of co-occurrence matrices and co-occurrence matrices based texture

features. The second framework also used the polarimetric signatures, in addition

to new intensity spatial features. Discrimination between target and non-target

classes followed by target type classification is demonstrated. The first framework,

which used estimated probabilities of co-occurrence matrices and a fusion-based

log-likelihood-ratio test, proved comparable performance for target/non-target clas-

sification to state-of-the-art classifiers. For the case of target type classification, the

performance was degraded. The decrease in classification performance for target

type classification may be caused by the small sample size used for generating the

co-occurrence matrix for each class. Small sample sizes cause unfilled co-occurrence

matrices, which in turn will result in poorly estimated probabilities. The second

approach involves texture features extracted from a moving window co-occurrence

matrix and polarimetric signatures. The polarimetric signatures included new spa-

tial intensity features. The second set of features was tested using four well known
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classifiers and yielded near perfect performance for both target/non-target classi-

fication and target type classification. The first approach is computationally less

expensive as it involves calculating the co-occurrence matrix for the whole class fol-

lowed by extracting the estimated probabilities at the testing stage. The second

approach involved extracting texture features from averaged co-occurrence matrices

computed over a moving window for every voxel. Also, it involved extracting po-

larimetric signatures for the involved voxels. EPCM method is computationally less

expensive than the PolTex approach. For the sake of optimization, a series of tests

were executed for both of the frameworks. In the first framework, test experiments

for the optimum number of gray levels for image quantization before computing the

co-occurrence matrices were carried out. Twelve gray levels provided the lowest er-

ror rates. Also, experiments to choose the optimum set of clique arrangement were

executed. In the second framework, a series of tests to find the optimum set of fea-

tures were executed, and a table that points out the best 10 features associated with

each classifier is introduced. The optimum set of clique arrangements or features or

even the optimum number of gray levels may differ when changing the training set

or classifier. We suggest to optimize the experiment parameters according to the

test environment. The algorithms introduced in this section can be adapted to other

image processing applications, especially applications with non-optical nature as in

medical imaging.

6.2 Future Work

6.2.1 Super-voxels

In this thesis, we have exploited super-pixels as homogeneous meaningful entities.

The extension of the super-pixels approach to super-voxels can benefit from the

correlated information between pixels on 3D (voxels) and may better enhance the

performance of detection and classification.

6.2.2 Clutter and noise reduction

In TWRI, the importance of clutter and noise reduction techniques has to be ex-

plored [55]. Clutter reduction techniques are classified among others as statistical

signal processing [156], classical filtering [157, 158] and non linear signal processing

based on neural networks [159]. Automatic clutter reduction based on statistical
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and multilayer perceptrons is described in [160]. Clutter reduction based on statisti-

cal signal processing techniques such as PCA and ICA [161] and SVD is considered

in [55] to remove the clutter. Clutter reduction as a pre-processing step will enhance

the performance of detection and classification algorithms. Thus, a joint detection

and clutter reduction scheme could help to improve the detection result.

6.2.3 Features

Little work has been done in feature extraction for TWRI images. First attempts in

this field include the work by Debes et al. [84,85] and the work by the author of this

thesis [87]. The use of texture features proved to be efficient for target classification

as we tested in this thesis. Other types of texture features [162] may add information

that contribute to target classification. Semantic and relational features [163] can

provide some context to the scene under test exploiting other features like shape,

texture, and material. Shape features, such as superquadrics and its extension

using global deformations [164], sets of concatenated superquadrics [165] or free-

form deformations [166–168] can provide discriminative information between 3D

objects. As we experienced here, a lot of features can be used in target detection and

classification, but increasing the number of features usually comes with a decrease

in the performance which is known as is known as the curse of dimensionality [169].

A feature selection algorithm is desirable to have a discriminant subset of features

without loosing performance.

6.2.4 Classification

In this thesis, although we used unsupervised learning approaches like cluster anal-

ysis, we have restricted ourselves to supervised classification approaches. Unsuper-

vised learning may be more appropriate in some situations than supervised learn-

ing, as in many cases the parameters needed for supervised learning may depend on

knowledge that are not available.

Further, we used simple linear and non-linear classifiers as K-nearest neighbor,

Quadratic Normal Bayes, and Random forests. Using Support Vector Machines

[170, 171] and Neural Networks [172] might be more appropriate for more complex

scenarios. In [84,85], methods for feature compensation that are invariant to trans-

lation and system resolution are proposed. Rotation-invariance is not considered

so far. Training the classifier with data collected from different vantage points can

slightly compensate the effect. An artificially rotated data set can also be used for
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training, but rotated object may belong to different class or sub-class of the original

one in order to decrease misclassification rate. Model-based approaches that model

its parameters as a function of the viewing angle can be considered.

6.2.5 Wall Removal

Having empty room measurements available is an ideal case which may be inappro-

priate in practical scenarios. First studies on the effect of wall removal on detection

are published in [76] and [173]. How wall removal techniques affect detection and

classification results is still an unanswered question [11].
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List of Acronyms

2D Two dimensional

3D Three dimensional

5d MRF 5-variate Markov Random Field

ACOR Auto Correlation

AUC Area Under the Curve

CART Classification And Regression Trees

CON Contrast

COR Correlation

DSBF Delay-and-sum beam former

DSM Dissimilarity

EM Electromagnetic

ENT Entropy

EPCM Estimated probabilities of co-occurrence matrices

FLS Fishers Least Square Linear Classifier

GLCM Gray level co-occurrence matrix

HH Horizontal return, horizontal transmit

HOM Homogeneity

HV Horizontal return, vertical transmit

ICA Independent Component Analysis

ICM Iterated Conditional Modes

KNN K-Nearest Neighbor Classifier [119, 139]

LBN Linear Bayes Normal Classifier [119,138] ,

LSM Levelset Method

MIMO Multiple Input Multiple Output
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MP Maximum Probability

MRF Markov Random Fields

MRI Magnetic Resonance Imaging

MSE Mean Square Error

MVDR Minimum variance distortion-less response

OOB Out-Of-Bag

PCA Principal Component Analysis

pdf probability density function

PolTEX POLarimetric signatures and TEXture features

PSF Point Spread Function

QBN Quadratic Bayes Normal Classifier

RCS Radar Cross Section

RF Radio Frequency

ROC Receiver Operating Characteristic

SAR Synthetic Aperture Radar

SD Standard Deviation

SNR Signal-to-Noise Ratio

SFS Sequential Forward Selection

SVD Singular Value Decomposition

TWRI Through-the-Wall Radar Imaging

VV Vertical return, vertical transmit
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List of Symbols

APRI Vector of real and imaginary parts of normalized product of different
polarimetric channels

Cl Polarimetric covariance matrix

C(i, j) ith row and jth column of the co-occurance matrix

D number of features

ξs set of pixels belonging to a super pixel s

Eeven Even bounce energy

Eodd Odd bounce energy

fm m-th step frequency

Fq feature vector of the qth pixel

FSs feature vector of the super pixel s

FP(q) Polarimetric feature vector at voxel q

G number of gray levels in an image or a co-occurrence matrix

g(x, y, z) Gray level function

ik Gray level of the voxel k on the clique arrangement tested

ImHHV V ∗ Imaginary part of normalized product between two complex polarized
components HH and V V

IPlog Logaritmic features vector

IR Normalized intensity ratio vector

IRHHV V Intensity ratio between two complex polarized components HH and
V V

IRHHHV Intensity ratio between two complex polarized components HH and
HV

IRV V HV Intensity ratio between two complex polarized components V V and
HV

L Lattice

L̂ estimated log-likelihood ratio

Lφr
log-likelihood ratio per clique φr

Λ Displacement vector

λk
x Displacement in x direction of the element k on a clique from the

center voxel

logHH Logarithmic intensity of the HH polarized component

logHHV V ∗ Magnitude of the HH-VV correlation function

logPHHV V ∗ HH-VV phase difference

µ1 Mean of the marginal probability p1 for 2-variate co-occurence matrix
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µm Mean of the marginal probability pm for k-variate co-occurence matrix

N Neighborhood system

Ôb predicted class label by the bth tree

Ob actual class label

Ωb set of classes

ωmb class with index m on the set Ω

p̂i1,··· ,ik Estimated k-variate pdf

P (vi|vNi
) Probability of an element conditioned to its neighbors

PFr
Probability of false alarm per clique φr

PMr
Probability of miss detection per clique φr

Φ Set of cliques

φr clique with index r in the set Φ

Ψ Normalized phase difference

q voxel in the region of interest

R Number of cliques / random variables

Rk(u
′, v′) Distance from the k-th antenna

ReHHV V ∗ Real part of normalized product between two complex polarized com-
ponents HH and V V

ReHHHV ∗ Real part of normalized product between two complex polarized com-
ponents HH and HV

ReHV V V ∗ Real part of normalized product between two complex polarized com-
ponents HV and V V

S number of super-pixels

SHV Complex amplitude of the H- (horizontal) polarized return given that
the transmitted signal is V - (verticaly) polarized

σp reflectivity of discrete targets

SP Spatial intensity features vector

T Thresholded intensity features vector

τpn round trip delay between p-th target and n-th receiver

τqn delay compensation for n-th receiver steering beam at position q

ur decision in fusion

wm weighting factor

χ Set of random variables
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endmember detection,” IEEE Transactions on Geoscience and Remote Sens-
ing, vol. 48, pp. 4023–4033, Nov. 2010.

[120] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone, Classification and
Regression Tress. Wadsworth, 1984.

[121] D. L. Verbyla, “Classification trees: a new discrimination tool,” Canadian
Journal of Forest Research, vol. 17, pp. 1150–1152, Sep 1987.

[122] L. Clark and D. Pregibon, “Tree-based models. statistical models in S,”
Wadsworth, Pacific Grove, 1992.

[123] V. Svetnik, A. Liaw, C. Tong, J. Culberson, R. Sheridan, and B. Feuston,
“Random forest: a classification and regression tool for compound classifi-
cation and qsar modeling,” Journal of Chemical Information and Computer
Sciences, vol. 43, no. 6, pp. 1947–1958, 2003.

[124] A. Vedaldi and S. Soatto, Quick Shift and Kernel Methods for Mode Seeking,
vol. 5305 of Lecture Notes in Computer Science, ch. 52, pp. 705–718. Springer
Berlin Heidelberg, 2008.

[125] A. Vedaldi and B. Fulkerson, “VLFeat: An open and portable library of com-
puter vision algorithms.” http://www.vlfeat.org/, 2008.

[126] R. Duda, P. Hart, and D. Stork, Pattern classification, vol. 2. John Wiley and
Sons, 2001.

[127] T. Hastie, R. Tibshirani, and J. Friedman, The elements of statistical learning:
data mining, inference, and prediction. Springer Verlag, 2009.

[128] C. Gini, “Variability and mutability,” contribution to the study of statistical
distributions and relations, Studi Economico-Giuridici della R. Universita de
Cagliari., 1912.

[129] R. Timofeev, “Classification and regression trees (CART) theory and appli-
cations.” http://edoc.hu-berlin.de/docviews/abstract.php?id=26951,
2004. [Online: Stand 2011-05-23T08:37:58Z].



Bibliography 91

[130] T. Dietterich, Ensemble Learning, Handbook of Brain Theory and Neural Net-
works. MIT Press, Cambridge, 2002.

[131] A. M. Zoubir and D. R. Iskander, Bootstrap Techniques for Signal Processing.
Cambridge University Press, 2004.

[132] L. Breiman, “Out-of-bag estimation,” Technical Report, Department of Statis-
tics, UC Berkeley, 1996.

[133] T. Fawcett, “An introduction to ROC analysis,” Pattern recognition letters,
vol. 27, no. 8, pp. 861–874, 2006.

[134] C.-P. Lai and R. M. Narayanan, “Ultrawideband random noise radar design
for through-wall surveillance,” IEEE Transactions on Aerospace and Electronic
Systems, vol. 46, pp. 1716–1730, Oct 2010.

[135] H. Estephan, M. G. Amin, and K. M. Yemelyanov, “Optimal waveform design
for improved indoor target detection in sensing through-the-wall applications,”
IEEE Transactions on Geoscience and Remote Sensing, vol. 48, pp. 2930–2941,
Jul 2010.

[136] F. Ahmad and M. G. Amin, “Matched-illumination waveform design for a
multistatic through-the-wall radar system,” IEEE Journal of Selected Topics
in Signal Processing, vol. 4, pp. 177–186, Feb 2010.

[137] F. Ahmad and M. Amin, “Through-the-wall polarimetric imaging,” Proceed-
ings of SPIE, Algorithms for Synthetic Aperture Radar Imagery XV, vol. 6970,
pp. 69700N–1–69700N–10, 2008.

[138] Y. Wang, Y. Yang, and A. Fathy, “Experimental assessment of the cross cou-
pling and polarization effects on ultra-wide band see-through-wall imaging
reconstruction,” Microwave Symposium Digest, IEEE MTT-S Int., pp. 9–12,
2009.

[139] K. M. Yemelyanov, N. Engheta, A. Hoorfar, and J. A. McVay, “Adaptive polar-
ization contrast techniques for through-wall microwave imaging applications,”
IEEE Transactions on Geoscience and Remote Sensing, vol. 47, pp. 1362–1374,
May 2009.

[140] J. MacQueen et al., “Some methods for classification and analysis of multi-
variate observations,” in Proceedings of the fifth Berkeley symposium on math-
ematical statistics and probability, vol. 1, pp. 281–297, California, USA, 1967.

[141] P. Setlur, M. Amin, and F. Ahmad, “Multipath model and exploitation in
through-the-wall and urban radar sensing,” IEEE Transactions on Geoscience
and Remote Sensing, vol. 49, no. 10, pp. 4021–4034, 2011.

[142] E. Forgy, “Cluster analysis of multivariate data: efficiency versus interpretabil-
ity of classifications,” Biometrics, vol. 21, pp. 768–769, 1965.

[143] R. Xu, D. Wunsch, et al., “Survey of clustering algorithms,” IEEE Transac-
tions on Neural Networks, vol. 16, no. 3, pp. 645–678, 2005.



92 Bibliography

[144] X. Zhang and P. Rosin, “Superellipse fitting to partial data,” Pattern Recog-
nition, vol. 36, no. 3, pp. 743–752, 2003.

[145] P. Varshney and C. Burrus, Distributed detection and data fusion. Springer
Verlag, 1997.

[146] M. Kudo and J. Sklansky, “Comparison of algorithms that select features for
pattern classifiers,” Pattern Recognition, vol. 33, no. 1, pp. 25–41, 2000.

[147] S. Knerr, L. Personnaz, and G. Dreyfus, “Single-layer learning revisited: A
stepwise procedure for building and training a neural network,” in Neurocom-
puting: Algorithms, Architectures and Applications (F. Fogelman Soulié and
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