
Work�ow Support for
Low-Power Wireless Sensor
and Actuator Networks
Work�ow-Unterstützung für energiesparende drahtlose Sensor- und Aktor-Netze

Vom Fachbereich Informatik der Technischen Universität Darmstadt genehmigte

Dissertation zur Erlangung des akademischen Grades Doktor-Ingenieur (Dr.-Ing.)

von Systemingenieur Pablo E. Guerrero aus San Nicolás, Argentinien

Oktober 2014 � Darmstadt � D 17

Work�ow Support for Low-Power Wireless Sensor and Actuator Networks

Work�ow-Unterstützung für energiesparende drahtlose Sensor- und Aktor-Netze

Genehmigte Dissertation von Systemingenieur Pablo E. Guerrero aus San Nicolás, Argentinien

1. Gutachten: Prof. Alejandro Buchmann

2. Gutachten: Prof. Dr. Kristof Van Laerhoven

3. Gutachten: Prof. Dr. Pedro José Marrón

Tag der Einreichung: 14.10.2014

Tag der Prüfung: 25.11.2014

Darmstadt � D 17

Please cite this document as:

URN: urn:nbn:de:tuda-tuprints-42833

URL: http://tuprints.ulb.tu-darmstadt.de/4283/

This document is made available by tuprints,

the e-publishing service of TU Darmstadt

http://tuprints.ulb.tu-darmstadt.de

tuprints@ulb.tu-darmstadt.de

This work is made available under a Creative Commons license:

Attribution-NonCommercial-NoDerivs 3.0 Unported (Germany)

To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/de/

To Luciana, Zoe and Dana,
from whom I draw inspiration every day.

i

ii

Abstract

A decade ago, the advances in the miniaturization of electronic components made it possible to integrate
three fundamental functions into a tiny, battery-operated device, namely sensing, processing and wireless
communication. This gave rise to a new family of computers that, when connected with each other in
masses, are known as low-power, wireless sensor and actuator networks (WSANs). These networks are
the enabling technology of the Internet of Things, a market that is predicted to encompass ∼14 billion
devices by 2020 [69]. As the initial challenges of the technology are overcome, such as identifying
adequate medium access control protocols, localization techniques, and network standards, the range of
possible applications has grown up.

To date, however, there is general consensus that the existing node-level programming languages do
not provide adequate abstractions to implement user applications. Indeed, the predominant approach is
very close to the hardware and involves the C programming language (or a variant of it). This makes
it dif�cult for domain experts to employ the technology without a sensor network specialist. The re-
search community has proposed a number of middleware approaches to simplify the development effort.
However, these macroprogramming languages mainly focus on data extraction, and not on in-network
actuation.

In this work we advocate the usage of work�ows as a means to de�ne the logic that orchestrates the
network activity. With this abstraction, the loop of event-sensing, decision and actuation can be closed,
leading to a reduced need for slow and error-prone human intervention in the process. In this way, the
whole WSAN loop can be shifted to the network.

Our main contribution consists of the conception of a holistic work�ow modeling and execution platform
for WSANs, together with the design and implementation of ukuFlow, a work�ow platform for low-
power nodes, that runs entirely in-network, not requiring an external server infrastructure. Secondly, we
present the ongoing work on the development of TUDµNet, a metropolitan-scale federation of sensor
network testbeds, with which the empirical evaluation of ukuFlow, among many other research projects,
was carried out.

We have identi�ed a set of operators to compose work�ows, and provided a lightweight architecture
that controls the �ow of such processes with an in-network execution algorithm. We present a detailed
evaluation of various performance indicators for each major component of the architecture, including
the data manager, command execution, and complex event detection modules. The results of the eval-
uation show the feasibility of the approach, in spite of the adverse resource constraints and the tough
network settings employed. We strongly believe that this abstraction is of practical relevance to WSAN
practitioners, while still holding promise to an in-network operation.

iii

iv

Zusammenfassung

Durch den Fortschritt bei der Miniaturisierung elektronischer Komponenten in den letzen Jahren wurde
die Integration von drei grundlegenden Funktionen in kleine batteriebetriebene Geräte ermöglicht: Da-
tenerfassung, -verarbeitung und drahtlose Kommunikation. Dies ließ eine neue Familie von Computern
entstehen, die, wenn sie in großer Anzahl miteinander verbunden werden, als Low-Power-, drahtlose
Sensor- und Aktor-Netze (engl. WSAN, wireless sensor and actuator network) bezeichnet werden. Diese
Netze sind die Schlüsseltechnologie des �Internet der Dinge�, ein Markt, der bis 2020 geschätz etwa
14 Milliarden Geräte umfassen wird [69]. Nachdem die ersten Herausforderungen dieser Technologie
überwunden worden sind, wie zum Beispiel die Identi�zierung von geeigneten Medium-Access-Control-
Protokollen, Techniken zur Knotenlokalisierung, und die Spezi�kation von ersten Netzwerkstandards, ist
das Spektrum der möglichen Anwendungen stark gewachsen.

Es besteht allgemeiner Konsens darüber, dass die verfügbaren Programmiersprachen, die auf Ebene
einzelner Knoten abzielen, keine ausreichenden Abstraktionen zur Implementierung von Benutzeran-
wendungen bieten. Der vorherrschende Ansatz setzt umfassende Kenntnisse in der hardwarenahen Pro-
grammierung bspw. mit C (oder eine Variante davon) voraus. Dies macht es für Domänen-Experten
sehr schwierig, diese Technik ohne die Hilfe von Sensornetz-Spezialisten anzuwenden. Die aktuelle For-
schung hat bereits eine Reihe von Middleware-Ansätze vorgeschlagen, um den Entwicklungsaufwand zu
reduzieren. Diese Ansätze fokussieren sich jedoch hauptsächlich auf die Datenextraktion mittels Makro-
programmiersprachen und nicht auf die Ausführung der Anwendungslogik im Netz (engl. �in-network
actuation�).

In dieser Arbeit werden Work�ows als Mechanismus vorgeschlagen, um den Ablauf der Aktivitäten im
Netz zu de�nieren. Mit dieser Abstraktion kann der Zyklus der Ereignis-Erfassung, der Entscheidung und
der Ausführung kombiniert werden. Dies führt zu einem verringerten Bedarf an langsamen und fehler-
anfälligen menschlichen Eingriffen in den Prozess. Auf diese Weise kann die Ausführung des gesamten
Zyklus in das Netz verlagert werden.

Der Hauptbeitrag dieser Arbeit besteht aus zwei Aspekten. Zum einen wurde eine ganzheitliche
Work�ow-Modellierungs- und Laufzeitplattform für WSANs konzipiert. Zum anderen wurde ukuFlow
entworfen und umgesetzt, eine Work�ow-Plattform für Low-Power-Knoten, die vollständig im Netz läuft
und keine externe Server-Infrastruktur erfordert. Darüber hinaus werden die laufende Aktivitäten an der
Entwicklung von TUDµNet vorgestellt, ein auf ein Stadtgebiet angelegter Zusammenschluß von Testum-
gebungen für Sensornetze. Mit TUDµNet wurde die empirische Auswertung von ukuFlow und einigen
anderen Forschungsprojekten durchgeführt.

Um die Komposition von Work�ows zu ermöglichen, wurde eine Menge von Operatoren identi�ziert.
Dazu wurde auch eine leichtgewichtige Architektur vorgeschlagen, die den Kontroll�uss von Work�ows
mit einem für ein Sensornetz ausgelegten Ausführungsalgorithmus steuert. Es wird eine detaillierte Aus-
wertung der verschiedenen Leistungsindikatoren für jede Hauptkomponente der Architektur präsentiert.
Diese beinhalten die Module des Datenmanagers, der Befehlsausführung und der komplexen Ereigniser-
kennung.

Trotz der Ressourceneinschränkungen, der harten Netzwerkbedingungen und der zusätzlichen Heraus-
forderungen von der Ausführung im Netz, stellen die vorgelegten Ergebnisse die Umsetzbarkeit des
Ansatzes dar und zeigen, dass die Abstraktion für WSAN-Anwender eine hohe praktische Relevanz hat.

v

vi

Acknowledgments

I am immensely grateful to my research advisor, Professor Alejandro Buchmann, for his faith in my
ability to succeed in completing my PhD studies. Prof. Buchmann guided me through all aspects of
this dissertation, from helping shape the right research topic, through concise technological critiques, to
detailed corrections in technical writing. He always supported and encouraged me to pursue my own
research and teaching activities. I have also learned much from his person's humility and simplicity.

I feel very privileged for having joined the Databases and Distributed Systems research group. Dr. Mari-
ano Cilia did not only inspire me to pursue this dissertation, he also was an excellent mentor during the
undergraduate and �rst doctoral year, and helped me to get initial research results published. The work
with Dr. Christof Bornhövd opened an exciting avenue in the industrial world. I deeply thank Marion
Braun, Ursula Paeckel, Gabriele Ploch and Maria Tiedemann for converting all types of logistic hurdles
into non-problems.

I am fortunate to have received guidance and feedback from Prof. Dr. Kristof van Laerhoven during
my PhD studies. His collaboration in pushing teaching activities around sensor networks, and his advice
during the last phase of my research, greatly contributed in expanding my knowledge. I also thank Prof.
Dr. Pedro Marrón for taking the time to participate in the dissertation committee. I am thankful for the
endorsement from Prof. Dr. Oskar von Stryk, PD Dr. Stefan Schneckenburger, and Prof. Manfred Hegger,
with which the work on some of the most interesting testbeds out there was possible.

Special thanks go to Dr. Kai Sachs and Dr. Patric Kabus for their support in so many aspects, during
all these years in Darmstadt. The frequent discussions we had provided me with a critical and practical
view of research. Unraveling the complexities of sensor networks together with Daniel Jacobi and Arthur
Herzog was a lot of fun. Prof. Dr. Ilia Petrov greatly helped me to structure my research activities. It was
very pleasant to work with Dr. Christian Seeger and Eugen Berlin. And working with Iliya Gurov in the
�nal years was awesome. It is a pleasure to have become a personal friend of all of you.

At DVS, I got enormous help in intellectual, technical, and personal aspects. These individuals include
Dr. Christof Leng, Max Lehn, Robert Rehner and Wesley Terpstra, in topics around peer-to-peer systems;
Dr. Stefan Appel, Sebastian Frischbier and Tobias Freudenreich, on event-based systems; and Daniel
Bausch and Robert Gottstein regarding �ash storage technologies. Teamwork and collaboration was
straightforward with you. Working alongside students like Nacho, Guillermo and Hien, was a very
enjoyable experience.

The research carried out for this dissertation has been funded by a number of projects. Chronolog-
ically, these are the DFG PhD Research Training Program (GRK) Nr. 492, Enabling Technologies for

Electronic Commerce (GKEC), as well as GRK Nr. 1362, Cooperative, Adaptive and Responsive Monitoring

in Mixed Mode Environments (GKmM); the hessian LOEWE Center for Advanced Security Research Darm-

stadt (CASED), as well as the LOEWE Research Priority Program on Cooperative Sensor Communication

(COCOON), and the TU Darmstadt.

Last, but most important, I thank my entire family for being continuously supportive throughout these
years. I am eternally grateful to my wife, Luciana, for her love, emotional support, and patience. She
constantly motivated me to carry on with the thesis, and guided me when off-track. Our beautiful
daughters, Dana and Zoe, are two dreams come true.

vii

viii

Contents

1. Introduction 1

1.1. Problem Statement . 2
1.2. Proposed Approach and Contributions of this Thesis . 3
1.3. Dissertation Roadmap . 4

2. Background and Related Work 7

2.1. Low-Power Wireless Sensing Systems . 7
2.2. Sensors and Actuators . 8
2.3. Pervasive Applications and Work�ows . 8

2.3.1. Enhanced Airport Management Case Study . 9
2.4. Application Development with Operating Systems - and WSAN Libraries 10
2.5. Programming Abstractions, System Services and WSAN Middleware 11

2.5.1. Node Grouping Abstractions . 13
2.5.2. Holistic Solutions . 15

2.6. Summary . 20

3. Macroprogramming Work�ows with ukuFlow 21

3.1. Work�ow Model . 22
3.1.1. Control Structures . 22
3.1.2. Work�ow Concurrency and Looping . 26

3.2. Data Model . 27
3.3. Scoping Model . 28
3.4. Actuation Model . 29

3.4.1. Putting it all Together . 31
3.5. Event Model . 33

3.5.1. Event Concepts . 33
3.5.2. Event Generation . 34
3.5.3. Event Filtering and Composition . 38
3.5.4. Combining Event Operators . 42
3.5.5. Event-based Diagrams - Graphical Notation . 43

3.6. Summary . 44

4. ukuFlow Design and Implementation 45

4.1. System Requirements and High Level Architecture . 45
4.2. The BPMN2uku Editor . 46

4.2.1. Work�ow Editor . 47
4.2.2. Event Script Diagram Editor . 48
4.2.3. Work�ow Validation . 49
4.2.4. The ukuFlow Bytecode . 50

4.3. The ukuFlow Runtime Architecture . 52
4.3.1. Work�ow Management and the ukuFlow Engine . 52

4.4. Data Management . 56
4.5. Networking with the Scopes Framework . 57

4.5.1. Scopes Optimizations for ukuFlow . 58

ix

4.6. Command Runner Engine . 59
4.6.1. Synchronous vs. Asynchronous Command Execution 60

4.7. Event Management . 61
4.7.1. Event Composition Mechanisms . 63
4.7.2. Event Composition in ukuFlow . 65
4.7.3. Event Script Deployment Plan . 65
4.7.4. Event Generation and Processing Mechanism . 69

4.8. Reliability Considerations . 71
4.9. System Code Distribution and Work�ow Upload . 72
4.10.Summary . 72

5. Empirical Evaluation of Sensor Network Systems 75

5.1. Simulations vs. Real-World Deployments . 75
5.2. TUDµNet Overview . 76

5.2.1. Testbed Sites . 77
5.3. Implementation . 82
5.4. Challenges of the USB Backchannel . 84

5.4.1. USB in Sensor Network Testbed Backchannels . 84
5.4.2. USB Backchannel Issues . 87
5.4.3. Backchannel Evaluation . 88

5.5. Job De�nition and Scheduling . 96
5.6. TUDµNet's Impact on Users and the Research Community . 97
5.7. Summary . 97

6. System Evaluation 99

6.1. System Footprint . 99
6.2. Data Management . 101
6.3. Work�ow Execution . 103
6.4. Work�ow Parallelism . 104
6.5. Network Characterization . 107
6.6. Scoping Performance . 109

6.6.1. Scope Membership Ef�cacy . 110
6.6.2. Scope Membership Stability . 113
6.6.3. Scope Data Traf�c . 113

6.7. Actuation . 115
6.8. Event Detection . 117
6.9. Complex Event Detection . 120
6.10.Summary . 122

7. Conclusions 123

7.1. Contributions . 123
7.2. Future Work . 124

A. The ukuFlow Bytecode 139

B. Detailed Event Composition Performance 145

x

List of Figures

1.1. Approach . 4

2.1. Zolertia Z1 node and example Phidget . 9
2.2. Application types . 10
2.3. Applications in different domains modeled with work�ows 11
2.4. Surface management operations work�ow for handling an aircraft departure at an airport . 11
2.5. Approaches in developing WSAN applications . 12
2.6. Geographical extension of tasks in surface management operations work�ow 13

3.1. Abstract BPMN elements . 22
3.2. BPMN sequence �ows in uWDL . 23
3.3. BPMN events in uWDL . 23
3.4. BPMN activities in uWDL . 24
3.5. Collapsed and expanded representations of a work�ow . 24
3.6. BPMN gateways in uWDL . 24
3.7. Split and synchronization parallel gateways . 25
3.8. Choice and merge exclusive decision gateways . 25
3.9. Multi-choice and merge inclusive decision gateways . 26
3.10.Event-based exclusive decision gateway . 26
3.11.Cardinality of concurrent work�ow entities . 27
3.12.BPMN concurrency and looping characteristics . 27
3.13.Geographical scope . 29
3.14.ukuFlow extensions to BPMN for script tasks . 29
3.15.Text annotation with scope speci�cation . 30
3.16.Geographical scope selecting nodes in Frankfurt airport's west runway (nr. 18) 31
3.17.Complete surface management operations work�ow for handling aircraft stops 32
3.18.Traditional publish/subscribe approach to dealing with events 34
3.19.WSAN-oriented approach to events . 35
3.20.Example of a gaussian functional event generator . 36
3.21.Event operator hierarchy - event generators section . 38
3.22.Event operator hierarchy - section on event �lters and composers 39
3.23.Examples of monotonically increasing event magnitudes . 40
3.24.Event-based diagrams . 43
3.25.Expression to detect CO2 concentrations . 43
3.26.Expression to detect �re hazards . 43
3.27.Summary of uWDL . 44

4.1. ukuFlow high level architecture . 46
4.2. BPMN2uku work�ow editor . 48
4.3. BPMN2uku event script editor . 49
4.4. ukuFlow WDL's compression properties . 51
4.5. ukuFlow bytecode structure . 51
4.6. ukuFlow high level architecture . 52
4.7. ukuFlow long-term work�ow scheduler's �nite-state machine 54

xi

4.8. Two-level work�ow scheduling . 55
4.9. The Scopes framework routing stack . 59
4.10.Command dissemination through a scope . 60
4.11.Event �ow through channels . 62
4.12.Energy tradeoff in TelosB node . 62
4.13.Rolling, tumbling and disjoint window mechanisms . 63
4.14.Subscription dissemination on an overlay tree . 67
4.15.Event script diagram and operator placement for original CO2 example 68
4.16.Event script diagram and operator placement for modi�ed CO2 example 68
4.17.Event script diagrams and event channels connecting local and remote operators. 70

5.1. Comparison between testbeds and simulations . 76
5.2. TUDµNet's architecture . 77
5.3. Example of�ce in the Piloty building site . 78
5.4. Map of 1st. �oor of the TUDµNet deployment in the Piloty building 79
5.5. Images of the TIZ site . 80
5.6. RoboCup Rescue Arena, and assembled CO/CO2/temperature sensor 80
5.7. Deployment activities at the surPLUShome . 81
5.8. Botanical garden's map, and G-node . 82
5.9. Deployment activities at botanical garden . 83
5.10.Logical structure . 83
5.11.USB topology . 85
5.12.USB reprogramming failures . 87
5.13.Correlation between node manufacturer and reprogramming time 89
5.14.Single-node reprogramming tests . 89
5.15.Multi-node grid deployments and underlying USB topologies. 92
5.16.Microbenchmark on reprogramming behavior . 93
5.17.Comparison of gateway platforms . 94
5.18.Exploiting parallelism for reprogramming nodes . 94
5.19.Effects of HPPC on the reliability within the testbed . 95
5.20.TUDµNet web interface for job scheduling . 96
5.21.TUDµNet's testbed usage since early deployment . 97

6.1. Organization of the evaluation chapter . 99
6.2. The ukuFlow runtime modules binaries' size . 101
6.3. Two-level lists organization of the data manager . 102
6.4. Relationship between repositories and name-value pair entries 102
6.5. Completion times for the data manager's repository operations 103
6.6. Completion times for the data manager's name-value pair operations 103
6.7. In-memory objects for process management . 105
6.8. Support for parallelism in a single-work�ow scenario. 106
6.9. Completion times for parallel scenarios . 108
6.10.Distribution of link lengths . 109
6.11.Organization of an iteration for testing scopes . 110
6.12.Scope membership performance . 111
6.13.Scope ef�cacy in both TIZ and Piloty deployments . 112
6.14.Scope creation cost in both TIZ and Piloty deployments . 112
6.15.Quanti�cation of scope instability . 113
6.16.Scope instability . 114
6.17.Data goodput for both studied sites . 115
6.18.Actuation performance for the Piloty site . 116

xii

6.19.Test using an event-based exclusive decision gateway and periodic event generators 117
6.20.Test work�ow with a periodic event generator and a simple �lter 119
6.21.24-hour temperature pro�le . 119
6.22.Evaluation of a simple event �lter . 120
6.23.Event expression using the count composite event operator 121
6.24.Event composition performance results . 121

B.1. Evaluation of the count event composer . 145

xiii

xiv

List of Tables

2.1. Device classes and relevant properties . 8

3.1. Example data expressions . 28
3.2. Example simple temperature event with payload 28 degrees Celsius 35
3.3. Classi�cation of ukuFlow event operators . 42

4.1. Speci�cation of work�ow instances . 53
4.2. ukuFlow engine con�guration parameters . 55
4.3. Result computation of ukuFlow event operators . 63

5.1. Approaches to doing sensor network experimentation . 76
5.2. TUDµNet testbed sites . 82
5.3. Universal Serial Bus (USB) interfaces of various sensor nodes. 85
5.4. Common gateways: Linksys NSLU2, Buffalo WZR-HP, and PC. 86
5.5. testbeds with gateway-node ratio comparison for their USB backchannels 86
5.6. Single-node topologies tested to reach a certain length between gateway and node 90
5.7. Multi-node grid topologies in detail. 91

6.1. Mote-class devices' memory properties . 100
6.2. Execution times for several CPU-bound expressions . 104
6.3. Properties of selected TUDµNet Sites . 107
6.4. Node degree of the two sites for different transmission power levels 109
6.5. Statistics on event detection for the work�ow of Fig. 6.19 on the two testbed sites 118

xv

xvi

List of Acronyms
AD Activity Diagram. 19, 22
ADC analog to digital converter. 8, 56
AML acute myeloid leukemia. 9
API application programming interface. 57
ASN.1 Abstract Syntax Notation One. 51
ATM air traf�c management. 9

BPEL Business Process Execution Language. 19, 22
BPMN Business Process Model and Notation. 19, 22, 23, 27, 33, 43, 44, 123

CASE computer-aided software engineering. 21

DAC digital to analog converter. 30

EPC Event-driven Process Chain. 22

GUI graphical user interface. 45

HPPC hub port power control. 94, 95
HVAC heating, ventilation, and air conditioning. 77, 79

I2C Inter-Integrated Circuit. 8
IDE integrated development environment. 3, 21, 46
ISO International Organization for Standardization. 51

LQI link quality indicator. 107

MAC medium access control. 12, 58
MCU micro-controller unit. 77, 99�101
MtR Members-to-Root. 57�59, 113, 114

NOTAM notices to airmen. 10

OASIS Organization for the Advancement of Structured Information Standards. 19
OMG Object Management Group. 19, 47
OS operating system. 10, 11, 87, 102

PDA personal digital assistant. 7
PoE Power-over-Ethernet. 81, 82
PRR packet reception ratio. 107

RCBF reprogramming cycles between failures. 89, 90, 95
RFID radio-frequency identi�cation. 3, 7
RSSI received signal strength indication. 107
RtM Root-to-Members. 57�59, 113, 114, 116

SPI Serial Peripheral Interface bus. 8, 61

UART universal asynchronous receiver/transmitter. 8, 84

xvii

ULD unit load device. 26
UML Uni�ed Modeling Language. 19
USB Universal Serial Bus. xv, 84�86, 88, 94
uWDL ukuFlow Work�ow De�nition Language. 22, 123

WDLWork�ow De�nition Language. 22
WfMCWork�ow Management Coalition. 45, 46, 72
WfMS work�ow management system. 3, 19, 21, 45, 122
WSAN wireless sensor and actuator network. iii, v, 2�5, 7�12, 17, 19�23, 26�30, 33�35, 37, 39, 43�47,
56, 57, 60, 63, 76, 99, 123�125
WSN wireless sensor network. 1, 75, 80, 84

YAWL Yet Another Work�ow Language. 22

xviii

1 Introduction

If we knew what it was we were doing, it would not

be called research, would it?

Albert Einstein (1879-1955)

Bell's Law states that a new class of computing devices is formed roughly every decade [8]. The timeline
of the �rst computer classes was composed of mainframes, supercomputers, personal workstations, and
notebooks. Mark Weiser's work on ubiquitous computing in the late 1980's triggered a new class, which
encompassed devices that "weave themselves into the fabric of everyday life until they are indistinguishable

from it" [138]. When, in the early 2000's, researchers began pursuing the idea of integrating three
fundamental functions into a tiny device, namely sensing, processing and wireless communication [110],
a new family of computers was born. These computers were collectively called wireless sensor networks
(WSNs). The �rst sensor node prototypes were built with small 8-bit microcontrollers, a few kilobytes
of RAM, a simple wireless radio (around 10kbps) and integrated sensors. Despite their simplicity, these
served to kick off the technology and develop novel applications that captured information from the
physical world at an unprecedented high resolution.

One of the earliest sensor network deployments was carried out at Great Duck Island [91], where re-
searchers in the life sciences aimed at unobtrusively learning about seabirds and their environment by
installing sensor nodes in and around burrows during nesting periods. Through sensor nodes placed
in glaciers [93], geologists were able to monitor and better understand dynamics of glacier behavior.
In dutch potato �elds, sensor networks aided precision agriculture in protecting crops against fungal
diseases, strongly associated to the climatological conditions [79]. While the development and deploy-
ment of applications in this �rst group encountered problems such as power conservation for network
longevity and administration of the remote site, the high-level logic of these applications was simple:
push the (mostly) raw observed data out of the sensor network. The parameters of this logic, e.g., the
sampling rates, were speci�ed by the domain experts.

A second group of applications goes beyond the continuous observation of the environment: an event of
interest must be detected, afterwards followed by an observation of the phenomena. One such deploy-
ment was carried out with volcanologists at Ecuador's Volcán Reventador [141]. Nodes waited for their
seismometer readings to exceed a certain threshold, and then noti�ed a base station, which triggered a
data collection phase. Structural health monitoring systems like Wisden [145] or the one deployed on
the Golden Gate Bridge [75] have been built together with civil engineers. The detection of vibration
events was followed by local data storage and posterior progressive coding (compression) for ef�cient
data transmission. The parameters of the application logic, i.e., the sampling rates and the thresholds,
were also given by the experts in the domain, who may vary them to adjust or re�ne the experiment.

A third type of applications enables a more complicated interaction. The habitat monitoring system
deployed at the Coastal Redwood Forests of California [89], for example, allowed relational queries
to be injected into the network, whose results were aggregated as they were streamed back to a base
station. In the industrial scenario of the EU CoBIs project [127], nodes attached to chemical drums
cooperated with each other, without using an external infrastructure, to check for hazardous situations
and violations of safety regulations. Again, the logic behind these applications was precisely stated by
domain experts, now in the shape of SQL-like queries or inference rules, respectively.

1

A common denominator observed across all these systems are the dif�culties in developing application
software. This is evidenced, for instance, by the interest from the research community to report at
scienti�c venues about deployment experiences (and mentioned, e.g., in [125]). Application developers
must typically counter the processing, storage and energy constraints of the sensor nodes, while coping
with their massive network scale and the complexities of the wireless environment on which they are
deployed. To this purpose, many middleware approaches have been proposed and discussed in the
literature [62, 114, 98]. Reportedly, however, very few applications have been developed exploiting
high-level programming constructs [100]. The question of which programming abstractions are best
suited for sensor network applications indeed remains open.

The described evolution of applications, in addition, shows that in the last years the research focus has
been placed on extracting data from the network, reaching an extremely low-power operation lasting
months or years. An aspect that, to a certain extent, has not received suf�cient attention is that sensor
network nodes can be easily enhanced to perform actuation, forming a wireless sensor and actuator
network (WSAN) [2]. In essence, actuators open or close a switch, or drive more complex actuators via
scalar values [73]. Individual actuators can be as diverse as sensors. A WSAN can thus not only monitor
but also affect the physical environment, closing the loop between sensing and actuation. Applications
exploiting actuators include �rst attempts at controlling irrigation and applying pesticides at vineyards
[16], and adaptive light control in tunnels [19].

While a considerable amount of logic has been effectively moved into the networked nodes' software, the
decision on how, when and where to perform certain actuation is only taken off the network, either by
a human, or with the help of a decision support system. Such an approach corresponds to an interactive

computing model (as described by Tennenhouse [131]), where humans are placed in the loop. This is a
logical �rst stage, since only after data had been consolidated in a central database and understood, was
it possible to reason about it and decide what to do next.

Much of the application logic carried out by humans, however, can also be pushed into the WSAN,
potentially reducing the need for unnecessary, slow and error-prone human intervention in the process.
Intuitively, this approach presents a number of bene�ts, namely:

� faster reaction to phenomena in the environment, since the decision is taken closer to the point of
interest,

� enhanced reliability, due to the lower chance of losing messages, and

� energy savings (i.e., extended network lifetime) derived from the reduced number of messages
exchanged between event sources, sinks and actuation nodes.

Application developers thus need a system that enables in-network operation, shifting the whole WSAN
loop to the network. Such systems correspond to the proactive computing model, where humans are
placed above the loop.

Apart from exploiting actuation capabilities, we observe that many sensor networks are highly optimized
but typically limited to a single application. From a user perspective, however, it is highly conceivable
that the deployed sensor/actuator infrastructure is exploited for multiple, concurrent applications [126,
137, 101]. In this work we adhere to the premise of multi-purpose sensor networks and consider the
aforementioned aspects as a whole.

1.1 Problem Statement

As noted from the previously cited application groups, it is the domain experts who have the knowledge
of the behavior of the target environment and what is needed to do with it as a response. They have

2

the detailed information of what is expected to happen, either from what they have observed, learned
or suspect and want to corroborate. However, the existing tools to develop and deploy applications are
too low-level for most domain experts. A central goal of our work is �nding out how to simplify the
de�nition of the application logic that orchestrates the WSAN activity by identifying adequate high-level
programming abstractions.

Currently, applications are mostly written using a combination of an imperative approach, like the C
language, and a number of (low-level) interrupt-driven state machines that react to incoming messages
or sensed data, like nesC [46]. This is employed in all mainstream sensor network operating systems
like Contiki, SOS and TinyOS [33, 59, 83]. The application logic of such programs is speci�ed at a
node-level, i.e., it describes what an individual node should do. As the applications get more complex
and non-functional requirements such as reliability (uninterrupted data delivery) or system longevity
(power management) come into play, these state machines become too complex to develop [35], and
extending them becomes cumbersome and error-prone.

In this dissertation we argue that high-level application behavior can be naturally expressed by domain
experts through work�ows with relative ease. In their more general sense, work�ows are collections of

interrelated work tasks, initiated in response to an event, achieving a result for the stakeholder [121]. As
such, work�ows are an essential concept in many scienti�c and engineering disciplines, and a common
tool to experts in most domains. The overall goal of this work is thus the investigation of the feasi-
bility of a holistic work�ow approach that enables domain experts to develop applications and their
deployment on these WSAN devices. Given the multitude of contexts in which the concept of work�ows
is employed, a �rst challenge consists in identifying the right work�ow modeling abstractions and

their applicability to WSANs.

Unfortunately, current work�ow management systems (WfMSs) were not designed to target WSAN ap-
plications. Typical strategies simply attempt to extend work�ow engines �originally built to operate on
electronic documents� to interact with pervasive devices, retrieving information from networked sensors
or radio-frequency identi�cation (RFID) tags, and instructing actuators to perform an action. In contrast,
we advocate pushing the work�ow engine down into the sensor network for an autonomous operation.
Existing work�ow engines, however, do not have a footprint that is small enough to �t on state-of-the-
art sensor nodes. While a current work�ow engine (e.g., IBM's WebSphere MQ Work�ow) minimally
requires a 300MHz processor with at least 64 MB of RAM and 1.5 GB of hard drive space, a state-of-the-
art sensor node typically offers a 10MHz microcontroller with less than 128KB of RAM. A second (and
resulting) challenge tackled by this thesis is thus the design and development of a runtime system

that supports the identi�ed work�ow programming abstractions while simultaneously considering
resource constraints, energy ef�ciency, communication unreliability, and self-organization.

1.2 Proposed Approach and Contributions of this Thesis

Much work has already focused on simplifying the development of applications for WSANs (e.g.,
[46, 89, 6, 40]). However, less attention has been paid to offering approaches accessible to domain
experts not necessarily familiar with programming languages and concepts common for computer sci-
entists and traditional software developers. The approach proposed in this work, depicted in Fig. 1.1,
consists in employing work�ows as �rst-class citizens in the development of applications. Our approach
is divided in 4 steps. In themodeling step, domain experts can de�ne the application logic by means of an
integrated development environment (IDE) especially designed to support work�ows. In a second step,
this work�ow model is veri�ed against a number of conditions for its correctness, and then converted into
an intermediate representation that the WSAN system can handle. Once ready, the third step consists
in registering the work�ow with the network. The WSAN performs a number of checks, (e.g., whether

3

resources are available) and provides the user with feedback about the completion of the registration.
From that point on, the sensor network takes care of the instantiation and execution of the work�ow.

domain expert sensor network

workflow definition

c) registrationa) modeling d) instantiation & executionb) verification
 & conversion

0100
1110
1001
1101...

Figure 1.1.: Approach

The contributions of this work are:

� The conception and de�nition of a holistic work�ow modeling and execution platform for sensor
networks that enables domain experts to develop and deploy sensor network applications, abstract-
ing from low-level issues such as medium access control, routing, task synchronization and node
group construction, among others.

� The design and implementation of ukuFlow, a work�ow platform for resource-constrained, low-
power wireless devices, which runs entirely in-network, not requiring an external server infrastruc-
ture.

� The development of TUDµNet, a metropolitan-scale federation of sensor network testbeds that
enables experimentation and systematic evaluation of sensor network systems, in general, and is
also used to evaluate networking aspects of the ukuFlow platform, in particular.

We present ukuFlow's macroprogramming model, which enables domain experts to describe high-level
application logic, as well as its runtime work�ow engine, which interprets and executes work�ows within
the WSAN, reducing latency and energy consumption.

1.3 Dissertation Roadmap

This dissertation is structured as follows.

In Chapter 2, we present the background for this work, and discuss the related work. We provide an
overview of the targeted hardware platforms and their components, describe ubiquitous applications and
elaborate a case study that is used in many parts of the thesis to exemplify several of the macroprogram-
ming constructs. We discuss well-known approaches suggested in the literature, and provide arguments
that support the usage of work�ows for the development of WSAN applications.

Chapter 3 goes straight into the mixed graphical/declarative/imperative models used in this work: the
work�ow model, the data model, the scoping model, the actuation model, and the event model. We
exemplify each of these constructs, and also present a comprehensive work�ow based on an airport
scenario, which includes the majority of the model elements.

We present the design and implementation of ukuFlow in Chapter 4. We elicit the requirements and
derive the high-level architecture. We describe an Eclipse plug-in that enables the modeling of work�ow

4

and event diagrams, as well as the mechanism to upload work�ows to a connected node. We then provide
details of the runtime architecture of ukuFlow, including extensions to the networking mechanisms and
the event generation and composition algorithms.

In order to carry out a realistic evaluation of the approach, in Chapter 5 we digress from the main topic
and discuss means to evaluate empirically sensor network systems. We describe the ongoing efforts in
building a series of testbeds that enable a repeatable experimental evaluation of WSAN software. Then,
in Chapter 6 we give a detailed evaluation of ukuFlow, which we split into a micro evaluation, dedicated
to single-node aspects, and a macro evaluation, targeted at the more complex aspects of this work that
involve network interactions. We conclude and provide pointers to future work in Chapter 7.

5

6

2 Background and Related Work

If you steal from one author, it's plagiarism; if you

steal from many, it's research.

Wilson Mizner (1876-1933)

In this chapter we elaborate on the context of this thesis, and describe applications targeted by our
approach. We provide a concrete example revolving around an airport scenario. The application is
modeled by means of an abstract work�ow, which motivates the use of this programming method. Then
we present the necessary building blocks leading to the approach that tackles the challenges of modeling
application work�ows and designing a work�ow execution environment for low-power WSANs. Finally,
we discuss the related approaches existing in the literature.

2.1 Low-Power Wireless Sensing Systems

Ever since their initial conception, a sensor node has been de�ned as a unit with a microcontroller,
memory, a radio communication unit, a number of sensors (and/or actuators), and a (usually limited)
power supply. Both informally, as well as in the literature, the term sensor network has been overly
abused, spanning different classes of devices such as:

� Simple RFID tags that are able to store a few bytes of data and reply with short messages. Being
powered by microwaves sent by an RFID reader, these have a potentially unlimited lifetime.

� Mote-class devices that exhibit potentially years-long lifetime in typical sense-store-send-sleep applica-
tions, when adequately operated, thanks to their 8/16-bit processors with low active power draws
and deep sleep modes. Example nodes are the Mica2 [97], the TelosB [109] and the Z1. More
recently, 32-bit nodes have appeared such as the Econotag, jNode [120], Opal and Egs [76], that are
much faster and promise to only incur a small overhead in the power budget.

� High-performance nodes, targeted at high-resolution signal processing applications, that employ
ARM-based 32-bit processors. Platforms such as the SunSPOT [122] and the Imote2 [103] offer
a higher �exibility at the cost of an increased energy consumption that leads to shorter network
lifetimes.

� High-precision, custom-made sensing equipment that also provides wireless connectivity. These are
used in specialized scienti�c equipment, or are embedded into large trucks or aircraft machinery
(e.g., [148]).

� Smartphones, personal digital assistants (PDAs), tablets and the like, used as sensing devices and
other sensor-enriched, Ethernet-based devices, commonly acting as sensor network gateways, such
as the Stargate [108].

We summarize these devices in Table 2.1. While, as described by Hill et al. [64], a heavily heterogeneous
system could encompass devices from all these classes interacting with each other in a hierarchy, in many
applications, such as those described in Section 2.3, a simpler organization composed of sensing devices
together with a limited number of gateways suf�ces. In this work, we use the acronym WSAN to refer

7

Table 2.1.: Device classes and relevant properties

Device Class Processing Memory Examples Power Battery

(GHz) RAM ROM active sleep Lifetime

(mA) (µA)

- tags n/a < 100 B RFID, NFC n/a unlimited

- mote-class nodes < 0.03 < 32 KB < 256 KB TelosB, Econotag 2 1 months to years

- high perf. nodes < 0.5 256 KB 32 MB SunSPOT, Imote2 7 500 weeks to months

- custom hardware ∼0.1 to ∼1 KB to MB U-Mote 70 84 weeks to months

- smartphones ∼0.5 to ∼1.5 2 GB 64 GB Nexus 4, 137 5400 days to weeks

(multicore) iPhone 5

strictly to mote-class devices. While this enables a longer system lifetime, it simultaneously sets an
upper bound on the footprint of the software stack, requiring a careful design to ensure low-power
operation.

2.2 Sensors and Actuators

Hardware miniaturization techniques, together with reduced manufacturing costs, have made a large
variety of sensors and actuators available that, depending on the target application at hand, can be
used to sense and actuate upon environmental phenomena. Many of these sensors offer a low power
consumption and require no additional calibration.

Most WSAN nodes are built with integrated, standard sensors (e.g., to measure temperature, humidity,
sound or light) connected to analog to digital converter (ADC) ports; other sensors or actuators (such as
LEDs, servos, buzzers or relays), can be added with relative ease.

To date, much more versatile sensors and actuators are available than there were in the �rst years of
sensor network research. Using more elaborate bus interfaces such as universal asynchronous receiver/-
transmitter (UART), Inter-Integrated Circuit (I2C) and Serial Peripheral Interface bus (SPI), sensors and
actuators such as the well-known Phidgets1 [49] can be simply plugged into, e.g., the Z1 nodes (cf. Fig.
2.1a). Besides providing raw sensor data, these can deliver very valuable high-level information. This is
the case, for example, of the ADXL345, a 3-axis accelerometer built into the Z1 that can detect high-level
events such as tapping or double-tapping it. This is typically achieved in a more energy-ef�cient manner
than it would through a software driver.

2.3 Pervasive Applications and Work�ows

There are innumerable scenarios where pervasive, WSAN technologies come into play. Examples include
urban waste management, emergency/response scenarios, supply chain management, smart metering
and grid, home automation, and health/elderly care, to name a few (the reader is referred to [94] and
to [112] for an illustrated selection of applications).

As presented in the introduction, pervasive applications are of varied nature, which we illustrate in Fig.
2.2. The most commonly envisioned type are known as sense-collect applications: nodes sample their

1 Phidgets, Inc., http://www.phidgets.com/, last visited October 2014.

8

http://www.phidgets.com/
http://www.phidgets.com/

sensors and send data to a sink through multi-hop routes. An example application is the environmental
monitoring system described in [91]. More elaborated versions of this type of application require de-
tecting events of interest by applying �lter and aggregation operations on the sampled raw data. At the
other extreme of the spectrum there are inform-actuate applications, where a central entity commands
nodes to perform a certain action. One example of this application type is a traf�c light control system
[140]. There exist specialized, ef�cient protocols to support these types of applications (e.g., CTP [48]
for collection applications, Glossy [37] for data dissemination).

WSAN applications, in general, combine requirements from the previous two, and are known as sense-
and-respond applications [24]. Many of the sense-and-respond applications can be modeled using work-
�ows. Figure 2.3 presents two examples. Figure 2.3a presents a supply chain management scenario,
adapted from [54], which models business logic to be executed at a warehouse when a truck arrives.
Fig. 2.3b illustrates the guidelines of a healthcare scenario to manage acute myeloid leukemia (AML) in
children, adapted from [29].

While some processes have not been originally modeled with pervasive technologies �sensors and
actuators� in mind, they can easily be enhanced with these, as is the case in the AML treatment,
e.g., by networking medical laboratory devices to automate data processing. Other processes, as in
the supply chain management scenario, have been built with WSAN technologies from the ground up,
e.g., to monitor the cold chain during a shipment's distribution activities.

2.3.1 Enhanced Airport Management Case Study

We now turn to a scenario concerned with airport operations. Motivated by the ever increasing cargo
and passenger air traf�c, the optimization of air traf�c management (ATM) procedures has become
imperative. One way to alleviate this situation is by reducing the inter-aircraft (temporal) separation,
i.e., �tting more planes in the arrival-departure sequence, as well as by minimizing the time aircraft
spend on ground (known as turn-round time).

ATM organizations have well-de�ned, strict processes for their various traf�c control activities. To model
these operations, work�ow technologies have been used for years [86], and controllers in the airport
tower employ various technical facilities to monitor and guide approaching, on-ground and airborne
aircraft, using work�ow engines to keep track of (aircraft) state changes [67].

(a) Zolertia Z1 node with two Phidget ports (repro-

duced with permission from Advancare, SL.)

(b) Example winch servo Phidget (reproduced with

permission from Phidgets Inc.)

Figure 2.1.: State-of-the-art WSAN hardware

9

sink

WSAN node

Figure 2.2.: Application types. Left: sense-collect, middle: inform-actuate, right: sense-and-respond

Figure 2.4 illustrates a process in an airport setting, concretely the tasks an aircraft goes through for
departure in the case of positive progress (exceptions are not shown), adapted from [134]. The process
includes a number of activities (actual operations or commands to be performed, such as De-ice or
Line-up), as well as updates to aircraft state (such as the clearances). State changes, or transitions, are
performed by the pilot through an automated �ight service station (shortened AFSS), which provides
pilot brie�ngs, receives and processes �ight plans, originates notices to airmen (NOTAM), and broadcasts
aviation weather brie�ngs. In the rest of this work we will return to this scenario (and subparts of it) to
discuss several aspects of the approach proposed in this thesis.

2.4 Application Development with Operating Systems - and WSAN Libraries

WSAN applications are mostly developed and written using a programming language such as C (or
a dialect thereof, like nesC [46]). While not as abstruse as binary and assembly languages, WSAN
languages are still very low-level. With them, developers resort to collections of libraries that provide
essential operating system (OS) functionality such as CPU scheduling and hardware access (e.g., radio
and sensors). The research community has developed a number of OSs speci�c to resource-constrained
networked sensors (e.g., TinyOS [65], Contiki [33], SOS [59] or Mantis [9]). To date, sensor network
research, as well as �rst WSAN prototypes and products, are based mostly on TinyOS and Contiki.
Despite the popularity reached by TinyOS as OS for WSANs in the �rst years, the fact that Contiki is
written entirely in C, among other features, has made its adoption much simpler for WSAN researchers
and system developers [80].

Contiki is an open source OS, ported to a large number of 8/16 bit platforms such as the TelosB, Z1 and
MicaZ, and some 32 bit nodes such as the Econotag, to name a few. At runtime, Contiki is a multi-tasking
system composed of a core event-driven kernel and a set of modules. A Contiki application can make
use of traditional threads, or resort to light-weight threads called protothreads [35].

In Contiki, two communication stacks are available: uIP and Rime. uIP [32] is a small-footprint TCP-
UDP/IP stack (typical con�gurations require ∼5KB of code and ∼2KB of RAM). This makes it possible
to communicate, through the Internet, with Contiki nodes. Rime [34] is a set of communication proto-
cols ranging from local broadcast to reliable network �ooding, organized as a strict stack of thin layers
that applications can connect to. Contiki applications can use either stack, or these two stacks may be
connected (transmitting uIP data over Rime or vice versa).

The resource constraints imposed by the hardware platforms have limited considerably the services of-
fered by a WSAN OS, leaving out advanced aspects such as memory protection, persistent data storage or
network transport protocols. Similarly to other WSAN OS for mote-class nodes, Contiki applications are
cross-compiled to generate a program image with which nodes are later reprogrammed (i.e., �ashed).

10

Truck
Arrives

Fetch
Shipping
Notice

Generate
ReportQuery

Sensor
History

Collect
EPCs Verify

Collected
Data

(a) Work�ow for handling arrival of a truck with a shipment, adapted from [54]

Bone Marrow
Aspirate

Wait 3
days

Chemotherapy
2nd Cycle
(2+3+7)

PLT and
PMN count

Chemotherapy
2nd Cycle
(3+5+10)

Wait 3
days
Wait 7
days

BM state
not available

BM state is
 NormoCellular,

Blast > 10%

BM state is
 NormoCellular,
Blast <= 10%

PLT<80.000 or
PMN<1000

PLT>80.000 and
PMN>1000

(b) Work�ow for handling acute myeloid leukemia in children, adapted from [29]

Figure 2.3.: Applications in di�erent domains modeled with work�ows

Register
Flight De-ice

Make 1st.
Contact

Airways
Clearance

Startup Pushback
Leave
Apron

Taxi
Departure
Clearance

Line-up Take off
Reach

Cruising
Altitude

Reach
VFR

Reporting
Point

Leave
Control
Zone

Figure 2.4.: Surface management operations work�ow for handling an aircraft departure at an airport

While Contiki was the �rst OS that explored the idea of compilation of modules that can be dynamically
loaded and unloaded at runtime [33], and after several research attempts to increase program modu-
larity, state-of-the-art OSs still fail to offer a reliable mechanism to support module dissemination and
dynamic linking, a feature that has a major impact in the design of WSAN systems.

2.5 Programming Abstractions, System Services and WSAN Middleware

Developing a meaningful WSAN application becomes a challenging endeavour as soon as it has to ful-
�ll certain requirements such as scaling up beyond a dozen nodes, being fault-tolerant with respect to
environmental conditions, or supporting network dynamics (i.e., churn). Figure 2.5 compares several
approaches to tackle these problems. The traditional approach of writing applications (cf. Fig. 2.5a)
using the bare operating system functions �the simple CPU scheduling and sensor drivers� has the ben-
e�t that it allows a high degree of customizability, but has been shown to be very complex and time
consuming. Components developed within the Application block will most likely not be reused in other
similar applications due to their level of specialization and intertwining.

11

Node Hardware

Operating System

Application

Node Hardware

Operating System

MAC

Routing

Transport

Ti
m

e
Sy

nc
h

Lo
ca

liz
at

io
n

Application

Node Hardware

Operating System

Application

Node Hardware

Operating System

Application

Middleware
PlatformMiddleware

Service(s)

(a) Entire app. built on

bare operating system

Node Hardware

Operating System

Application

Node Hardware

Operating System

MAC

Routing

Transport

Ti
m

e
Sy

nc
h

Lo
ca

liz
at

io
n

Application

Node Hardware

Operating System

Application

Node Hardware

Operating System

Application

Middleware
PlatformMiddleware

Service(s)

(b) App. built on ex-

tended set of services

Node Hardware

Operating System

Application

Node Hardware

Operating System

MAC

Routing

Transport

Ti
m

e
Sy

nc
h

Lo
ca

liz
at

io
n

Application

Node Hardware

Operating System

Application

Node Hardware

Operating System

Application

Middleware
PlatformMiddleware

Service(s)

(c) App. using a middleware approach. Left: with a

high-level service, right: holistic solution

Figure 2.5.: Approaches in developing WSAN applications

Following a divide and conquer approach, and reusing existing blocks such as medium access control
(MAC) and routing protocols, time synchronization or localization services, it is possible to simplify the
application development (cf. Fig. 2.5b, arrangement of components is rather schematic). Prior work on
these individual research areas has enabled understanding their essential tradeoffs and led to relatively
stable libraries, some of which are integrated into OS libraries. While reusing these building blocks
indeed might reduce the development effort, the decision of which combination of the available building
blocks would satisfy the application requirements, at best, remains complex. This is exempli�ed already
through MAC protocols, for which a database has been collected2 (parodically called the MAC Alphabet

Soup, due to the names that authors give to their protocols, like B-MAC, S-MAC, T-MAC, etc.). A catalog
of routing protocols presents the same situation [1]. Together with the problems of resolving interface
incompatibilities between these blocks, it becomes a barrier for WSAN non-experts to follow this second
approach.

A third alternative, which has been previously suggested [62, 114, 98] and to which we adhere in this
work, is to resort to middleware, i.e., �software that provides a programming model above the basic
building blocks of processes and message passing� [26]. Middleware can be seen as a block that sits
atop the OS and leverages from its simpler functions to provide developers with higher-level, distributed
programming abstractions.

Abstractly speaking, the central idea behind middleware is to use a generic block that implements and
offers more elaborated services, thus simplifying the development of applications. While the �nal solu-
tion would not be optimal for all conceivable applications, it is targeted at serving well many scenarios.
The research community has proposed a number of middleware approaches, each of which inevitably
�ts better a different subset of applications or goals. There exist various perspectives from which these
approaches can be classi�ed; a detailed evaluation is presented in [128, 100].

We distinguish, primarily, between high-level services and holistic solutions (cf. Fig. 2.5c). A high-level
service is one that needs to be used as extension to (or must be invoked from) the programming language,
and is conceived to simplify one aspect of the application development. High-level services have been
proposed to deal with different aspects of WSAN application development. Examples of such services
include routing, security, node localization, sensor calibration and object tracking. A holistic solution, in
contrast, offers self-contained means to de�ne the entire application logic, typically with less intention
to interact with other approaches. In the next subsections we �rst describe one broadly used service,
namely node grouping, and later provide an overview of relevant holistic solutions.

2 The MAC Alphabet Soup website, www.st.ewi.tudelft.nl/ koen/MACsoup/, last visited October 2014.

12

http://www.st.ewi.tudelft.nl/~koen/MACsoup/

2.5.1 Node Grouping Abstractions

In many systems, the network nodes are not expected to all perform the same task. While some nodes
are busy executing one function, others might be idle (and saving energy) or performing another task in
parallel. Returning to our airport scenario work�ow (cf. Fig. 2.4), for example, we can associate tasks
to geographical areas in the airport's space. In Fig. 2.6 we extend the work�ow with labels and colored
backgrounds of the various areas an aircraft moves through, such as the apron, taxiway, or runway. Each
of these areas could be utilized for different tasks simultaneously, and hint at the need to de�ne spatial

aspects of the execution of the tasks. Besides a node's physical position (or its distance to a certain
coordinate), there are other criteria that can be used to specify a group, such as:

� nodes within a maximum number of hops from another node

� proximity to an event-detecting node

� nodes with certain type of sensors or actuators (e.g., in networks with heterogenous nodes)

� nodes reading particular sensor values (e.g., between certain thresholds), and logical combinations
among these

� nodes with certain characteristics (e.g., CPU speed, communication interfaces, or battery level).

One approach to realize this functionality is pursued by Generic Role Assignment (GRA) [115, 42]. In
GRA, the user submits a role speci�cation, that is, a list of the possible roles and the rules for the nodes to
decide which roles to adopt. For instance, when building a topology for a clustering routing algorithm,
nodes could choose between being `cluster heads', `gateway' or `slaves'. The role speci�cation for this
example is presented in Listing 2.1. At runtime, the role speci�cation is distributed throughout the
network, and each node picks one or more roles out of the speci�cation depending on conditions such as
its internal state. Further revisions of the initial concept have extended the capabilities, e.g., by adding
security considerations [4].

Another system offering a similar functionality is Abstract Regions [139], which extends the concepts in
an earlier platform (Hood [143]) by considering multi-hop neighbors. An abstract region establishes a
relationship between a particular node and other nodes in the network. There are four operations to be
carried out on an abstract region. The �rst is neighbor discovery, which identi�es the set of candidate
neighbor nodes of an abstract region by exchanging messages via broadcast. Enumeration returns the
set of nodes that are members of the abstract region. Data sharing is employed to share variables in the
form of name-value pairs within a region through the functions get(v,n) and put(v,n), where v is the
value and n is the id of the node in the abstract region. The last operation is data reduction, which, given

Register
Flight De-ice

Make 1st.
contact

Airways
Clearance

Startup Pushback
Leave
Apron

Taxi
Departure
Clearance

Line-up Take off
Reach

Cruising
Altitude

Reach
VFR

Reporting
Point

Leave
Control
Zone

de-icing pad apron

taxiway runway airborne

Figure 2.6.: Geographical extension of tasks in surface management operations work�ow

13

1 CH :: {

2 count(1 hop) {
3 role == CH
4 } == 0

5 }

6 GW :: {

7 clusterheads == retrieve(1 hop, 2) {
8 role == CH
9 } &&

10 count(2 hops) {
11 role == GW &&
12 clusterheads == super.clusterheads
13 } == 0

14 }

15 SLAVE :: else

Listing 2.1: A role speci�cation in the Generic Role Assignment approach

an associative operator, like sum or min, reduces a variable in the member nodes in the region and stores
it in a shared variable. Abstract Regions was implemented and evaluated on TinyOS.

Based on previous work [38] in the area of publish/subscribe systems, in the context of this thesis we
have developed a related grouping abstraction called Scopes [71, 72]. A scope is a high-level abstraction,
provided to applications, to organize nodes into groups. A scope is de�ned through a logical expression,
which must be satis�ed by a node in order for it to become member. Scopes can be nested, and thus are
organized in a hierarchy. We provide two example scope de�nitions: Listing 2.2 presents the speci�cation
of scope HVAC_Outlier, where nodes must ful�ll the conditions of being attached to HVAC (humidity,
ventilation and air conditioning) equipment, having temperature sensors connected to them, and reading
temperature sensor values less than or equal to 20 ◦C or greater than or equal to 25 ◦C. The property
ATTACHED_TO is application-speci�c; corresponding nodes set it to hvac, e.g., at deployment time. Listing
2.3 exempli�es the specialization, or re�nement, of a scope called Room22 by selecting only those that
have an accelerometer sensor.

1 CREATE SCOPE HVAC_Outlier AS (
2 ATTACHED_TO = ’hvac’ AND
3 EXISTS SENSOR_TEMPERATURE AND
4 (SENSOR_TEMPERATURE_CELSIUS <= 20 OR
5 SENSOR_TEMPERATURE_CELSIUS >= 25)
6);

Listing 2.2: De�nition of an HVAC scope

1 CREATE SCOPE Room22MotionNodes (
2 EXISTS SENSOR_ACCELEROMETER
3) AS SUBSCOPE OF Room22;

Listing 2.3: De�nition of a subscope through specialization

Once a scope is created, it continues to exist until it is explicitly removed. The framework takes care of
reliably maintaining the scope membership, even as nodes fail, temporarily leave and rejoin again, or as
nodes' properties vary. A scope is created at a node, called scope root node, that takes the administrative
role of maintaining the scope. Once a scope has been created, the framework enables a bidirectional
communication channel between the scope root and the scope's member nodes. Different routing algo-

14

rithms have been used to implement the Scope functionality; these will be described closer in Section
4.5. In this work we resort to the usefulness of node grouping abstractions by exploiting the Scopes
framework.

2.5.2 Holistic Solutions

The previously described systems are conceived to be used, or invoked from, applications written in
another lower-level programming language such as C. We now turn to holistic solutions, which, as we
will see, offer an integrated environment to de�ne and execute the application logic. We classify these
approaches from a programmer's perspective, i.e., from the set of programming abstractions and run-
time mechanisms offered. Note that this is a non-exclusive classi�cation, since one approach might share
some of its concepts with others.

Virtual Machines

Following the observation that a wide range of WSAN applications is composed of a small number of
high-level primitives, one approach is to identify these primitives and offer a concise way to represent
these programs. Virtual machines, in the form of bytecode interpreters, are a natural �t for this task: given
a bytecode instruction set, a system interprets at runtime the programs by translating and executing the
necessary low-level instructions.

Maté [81] is one such virtual machine, implemented on top of TinyOS. In Maté, programs are composed
of platform-independent, 1-byte wide instruction bytecodes. Programs are furthermore broken into
capsules with a maximum of 24 instructions, a limit chosen so that a capsule �ts in a TinyOS packet
when using RFM's TR1000 radios. The Maté virtual machine makes use of two stacks, one for operands
and one for return addresses; most operations operate on elements of the operand stack, which makes
operations short. The bytecode instruction set contains instructions of different granularity (i.e., different
number of clock cycles). Listing 2.4 presents an example capsule that replicates the TinyOS program
cnt_to_leds, and contains simple instructions like copy or putled, which take a couple hundred clock
cycles. Other instructions are of a much higher granularity, like send, which invokes an ad-hoc routing
algorithm and takes thousands of clock cycles.

1 pushc 1 # Push one onto operand stack
2 add # Add the one to the stored counter
3 copy # Copy the new counter value
4 pushc 7
5 and # Take bottom three bits of copy
6 putled # Set the LEDs to these three bits

7 halt

Listing 2.4: A Maté capsule to show the bottom 3 bits of a counter on a node's LED (adapted

from [81]).

The interface exposed by Maté is of higher-level than that of the system it is built on, TinyOS, in that
it hides asynchrony: capsules are suspended when an instruction is invoked and until its execution is
�nished. For example, when the sense instruction is invoked to retrieve data from a sensor, the capsule
is blocked until sensor data is ready for its reading. This makes capsules simpler than TinyOS programs
because the developer does not need to deal with asynchronous event noti�cations (e.g., implementing
a handler for the reception of sensor data).

In order to execute code in remote nodes, bytecode capsules need to be sent through the network. For
this purpose, an application must invoke the forw instruction, which transmits the capsule to a node's
neighbors. This brings extra complexity which needs to be managed in the capsule's code.

15

Mobile Agents

The forwarding of Maté capsules is known as weak code mobility: a capsule's code is executed from
a �xed start address once it is installed on a neighbor node. A more sophisticated approach to code
mobility is achieved by strong code mobility, which enables code to clone itself �or migrate� to other
nodes, thereby resuming execution on the instruction where it was stopped. This is achieved by not only
forwarding the code but also any necessary process data and execution state (such as registers). This is
the approach followed by mobile agents.

The Agilla system [40, 39, 41], which is based on Maté and was developed with TinyOS, implements
the mobile agent functionality for sensor networks. An Agilla application is conformed by a number of
mobile agents distributed throughout the network. Multiple agents can exist, in parallel, on a single
node; these resort to a shared memory model (in the form of a tuple-space) to communicate with each
other. In addition, each Agilla node maintains a list of all its one-hop neighbors (and their positions).
This allows an agent to decide where to migrate or clone to. Agents can be much larger than capsules:
these can occupy up to 440 bytes (20 TinyOS packets). Since most Agilla instructions are one byte wide,
agents can have up to 440 instructions.

While the idea of employing a bytecode interpreter indeed is an effective way that leads to more compact
programs, the most important factor that restricts a broader adoption of these systems is that domain

experts are typically not familiar with their assembly-like, bytecode language. Other systems have been
proposed that integrate some of the concepts of the virtual machine approach, such as SwissQM [102]
and MoteRunner [18], and which provide users with a toolchain to convert code written in a higher-
level language, like SQL and a Java dialect, respectively, into an intermediate bytecode that the VM can
interpret. We discuss these approaches in the next subsections.

Databases

Researchers from the database community have explored the idea of using relational abstractions
as interface to sensor networks, de�ning application logic in terms of SQL-like statements in the
SELECT-FROM-WHERE form [47, 7].

Two examples in this category are Cougar [12, 147] and TinyDB [88, 89]. In these systems, the main
difference to the traditional relational model is that queries are continuous, i.e., are periodically executed
against a data stream originated at the sensor nodes. In TinyDB, for instance, the data model is con-
formed by a virtual table called sensors that contains one column for each sensor type connected to the
nodes, and one row for each node in the network. The periodicity of the evaluations is speci�ed by the
SAMPLE PERIOD clause (cf. Listing 2.5).

1 SELECT nodeid, temperature , humidity
2 FROM sensors
3 WHERE floor = 4
4 SAMPLE PERIOD 5 SEC

Listing 2.5: A TinyDB query to obtain temperature and humidity readings from nodes on a 4th

�oor (adapted from [47])

Queries are submitted to a central server that is connected to a base station node. The server-side
software parses the queries and performs a number of query optimizations before sending it through
the WSAN. For instance, conditions in the WHERE clause can be rearranged so that sensors with lower
sampling costs are evaluated �rst (e.g., a light sensor vs. a CO2 sensor). The server is also in charge
of collecting the query results as they are received. Once a query has been disseminated, nodes in the

16

sensor network begin with the query processing by acquiring data from (i.e., sampling) attached sensors
as speci�ed in the attributes of the SELECT clause.

A technique suggested for saving power that has been studied in the context of sensor databases is
�ltering and aggregation of data along its multi-hop path to the sink node [146, 87]. Given that, in
terms of power consumption, computation is much cheaper than communication in a sensor network,
considerable gains can be achieved. With this, it is possible to support operations like AVG, MIN or COUNT,
providing a more complete SELECT-FROM-WHERE-GROUPBY-HAVING SQL system, as Listing 2.6 depicts.

1 SELECT room, AVG(temperature)
2 FROM sensors
3 WHERE floor = 4
4 GROUP BY room
5 HAVING AVG(temperature) > threshold
6 SAMPLE PERIOD 20 SEC

Listing 2.6: TinyDB query to �nd out rooms on the 4th �oor with average temperature exceed-

ing a certain threshold.

Recently, the idea of sensor databases has been resumed from a different perspective: that of having each
node as a database [133]. This work partially re�ects the advances in non-volatile storage: increased size
(on-board, megabyte chips and external SD cards of various gigabytes), ever decreasing cost (a 16GB
SD-card can be obtained as of 2014 for €4), and shorter access times. By contrast, communication
bandwidth has remained low when retaining the same power budget. The proposed system, Ante-
lope, provides a SQL variant called AQL and implements ef�cient algorithms for realizing fundamental
database operations: creation and removal of relations and indices; insertion, removal and selection of
tuples; and joining relations.

While, in general, the database approach is very practical for managing, accessing and retrieving sensor
data, its drawback is that it was not conceived to de�ne actuation logic. This approach could be expanded
by using triggers, and TinyDB indeed does offer a limited type of actuation, but this usage does not result
naturally suitable for WSAN applications.

Macroprogramming

There exist other approaches that attempt to offer a centralized mechanism to de�ne the logic of the
WSAN as a whole. In Kairos [55], the goal is to extend a procedural language like C with certain
programming abstractions so that the developer can specify the global behavior of the WSAN through a
centralized program. Kairos offers 3 programming constructs: addressing arbitrary nodes, reading and
writing variables at nodes, and iterating through the one-hop neighbors of a node. Listing 2.7 presents a
centralized Kairos C program to calculate the average temperature of the nodes in a given room, which
exempli�es the usage of some of its constructs: in line 3, the list of nodes in the entire network is
requested, while in line 8 the temperature variable at a named node is read.

Kairos programs are taken by a precompiler that identi�es references to the additional constructs and
translates them into node-level code that can be compiled by the standard platform compiler to generate
node binaries. At runtime, Kairos consists of a run-time system that supports the execution of these
special constructs. By means of message-passing, node lists are built and updated, and variable state is
updated (which resembles the shared-memory model of Agilla). With these constructs it is simpler to
implement a �textbook� algorithm; the authors report a double performance overhead in convergence
time and network traf�c (and thus power consumption) compared to explicitly distributed versions of
the evaluated applications.

17

1 int getAvgTemperature (int floor_nr) {
2 int sum=0, num_nodes=0;
3 node_list network_nodes = get_available_nodes();
4 for (node node_ptr = get_first(network_nodes);
5 node_ptr != NULL;

6 node_ptr = get_next(network_nodes)) {

7 if (floor_nr@node_ptr == floor_nr) {
8 sum += temperature@node_ptr;

9 num_nodes++;

10 }

11 }

12 return sum / num_nodes;
13 }

Listing 2.7: A Kairos C program (adapted from [55]).

In addition to being much more readable than their assembler counterparts, procedural programming
languages like C offer a level of expressiveness that is necessary to precisely specify application behavior.
Its usage as main paradigm to organize application logic, however, can still be very complex for domain
experts. We advocate that a more abstract representation of this logic is necessary.

We next discuss two such approaches centered around data �ow and control �ow, respectively. While
these are complementary to each other, as we will see, the latter has reached a level of industrial maturity
which indicates its acceptance as programming paradigm.

Data�ow

The data�ow architecture provides a programming paradigm that can be very practical in many applica-
tions. The central idea behind this architecture is to organize the global application logic by means of a
graph that coordinates the �ow of data between processing elements.

COSMOS [6] is a framework composed of a macroprogramming language (mPL) and an operating sys-
tem (mOS) that follows this philosophy. In COSMOS, the processing elements are called functional com-

ponents -collections of computing primitives written in a subset of C- connected with each other through
interaction assignments -a directed graph that speci�es the distributed data�ow between components-.
The functional components have typed data inputs and outputs, hence the graph can be statically type-
checked. Similarly, in the Abstract Task Graph approach [111], programs consist of two parts. The �rst,
declarative part speci�es the application's tasks and constraints on their distribution (i.e., assignment to
nodes) and communication. The second, imperative part contains the node-level implementation of the
task in a traditional computer language.

The functional programming approach also matches the data�ow category. Flask [90] is a system that
allows embedding nesC code fragments into Haskell, a language where the primary control abstraction
are functions. Flask's runtime environment offers a data collection operation, fold, which operates on
data �owing from a node's own sensors as well as its child nodes'. The concepts in Flask indeed allow
the implementation of a SQL-like functionality, realized in an example application called FlaskDB.

While we consider that analyzing an application from a data �ow perspective is necessary (and we
indeed use one form of it for a particular component, namely that of the event models, as will be
presented in Section 3.5), in this work we advocate that the control �ow view of an application better
helps to understand and manage its overall structure.

18

Work�ow

The complementary view to a data�ow model is that of control �ow. Here, applications are also de�ned
as a graph with processing elements, but their interconnections represent �ow of control. A work�ow
is de�ned by the Work�ow Management Coalition as "the computerized facilitation or automation of a
business process, in whole or part" [68]. 3

The idea of utilizing work�ows to describe application logic is omnipresent in the software development
community, which is evidenced by the usefulness of standards such as Activity Diagrams (ADs), from
the Uni�ed Modeling Language (UML); the Business Process Model and Notation (BPMN), from the
Object Management Group (OMG); or the Business Process Execution Language (BPEL) from the Orga-
nization for the Advancement of Structured Information Standards (OASIS). Applications modeled and
implemented using these technologies, however, are typically executed using a work�ow management
system, which were not designed to run within the resource constraints of mote-class wireless sensors.

In [54], we began exploring the idea of moving selected application logic, i.e., parts of a work�ow, from
its typical execution environment (mainframe and backend servers) towards the network periphery (the
gateways or even the sensors and actuator embedded devices themselves). We showed how the normal
execution �ow of a ubiquitous supply-chain management application can be successfully handled by
these devices, thereby of�oading the servers from this duty and thus enhancing the system scalability.

To the best of the author's knowledge, the idea of utilizing work�ows to de�ne WSAN application's logic
was �rst introduced in a position paper [53]. In that earlier work, we formalized an abstract work�ow
model and presented a work�ow execution algorithm that runs entirely on WSAN hardware. Through
an evaluation of existing work�ow models available in the industry (which is later discussed in Section
3.1), the simple work�ow model proposed in that earlier work was superseded by another work�ow
model and language, BPMN. The latter has evolved as a de-facto standard, which business analysts (i.e.,
domain experts) are becoming familiar with.

This line of work has seen interest from other researchers in recent years (e.g., [123, 43, 17, 132]). In
[123], Spiess et al. describe a mechanism to identify fragments of a work�ow that need to be deployed
and executed using WSANs. They propose using a cost function that considers communication and
processing cost, among other parameters, to decide which deployment scheme to adopt. These ideas
are orthogonal to the approach presented in this thesis, and can thus be used to complement it, e.g. by
using ukuFlow's purely in-network execution engine as a deployment strategy. More recently, the EU
project makesense resumed this idea and began implementing a system that indeed executes application
logic in a sensor network [132]. Similarly to our approach, they make a number of extensions to the
BPMN speci�cation to accommodate WSAN logic into a BPMN work�ow. Their approach, however, still
relies on a backend server to control and execute work�ows, seeing WSAN nodes as devices where only
the so-called local actions can be executed. In our work, in contrast, we demonstrate the possibility of
WSANs to act as work�ow engines, delegating entirely a work�ow (or sub-work�ow) to the runtime
system for its execution.

In [17], Caracaş and Bernauer describe a system with which simpli�ed BPMN work�ows can be con-
verted into executable binaries of suf�ciently small footprint to work on mote-class devices. These
generated binaries are used to reprogram nodes, which either requires physical access to the nodes, or
makes use of a dynamic, over-the-air reprogramming mechanism, which in our targeted platforms has
severe de�ciencies (e.g., unreliable wireless module dissemination and restrictions on module size). This
is a major argument in favor of a runtime platform supporting dynamic work�ow deployment.

3 Depending on the domain, work�ows are also commonly known as processes, business processes or �owcharts, among

others. In this work, we refrain from using these terms exchangeably, adopting simply the term work�ow instead. This

also avoids the confusion with the notion of process established in operating systems' terminology.

19

2.6 Summary

In this chapter we have presented building blocks that are necessary to realize the vision of pervasive
computing. While applications can be realized with different types of embedded devices, in this work
we restrict ourselves to low-power, mote-class devices and matching sensors and actuators. In order
for WSANs to become mainstream tools, application development must be simpli�ed, which can be
achieved through programming abstractions and respective runtime systems. This chapter discusses
existing middleware approaches targeting this goal. In general, it is observed that the required computer
programming abilities remain quite high: Maté and Agilla offer an assembler bytecode instruction set,
Flask requires Haskell. A number of platforms like TinyDB require SQL knowledge; in our experience,
and despite the proliferation of web-based applications based on LAMP stacks (Linux, Apache, MySQL
and PHP), few programmers posses SQL skills. In addition, many of the presented approaches are
conceived as sense only.

In the next chapter we introduce the macroprogramming model of ukuFlow, which adopts many existing
ideas for simplifying programming abstractions: it offers a centralized perspective (cf. network- vs. node-
level logic) to de�ning application logic by means of work�ow abstractions, employing a node grouping
mechanism to de�ne aggregate sensing and actuation behavior.

20

3 Macroprogramming Work�ows with

ukuFlow

Programs must be written for people to read, and

only incidentally for machines to execute.

H. Abelson and G. Sussman

ukuFlow1 is a holistic work�ow management system (WfMS) for low-power wireless sensor and actuator
networks aimed at domain experts. As a WfMS, ukuFlow includes models, tools and mechanisms to
support the end-to-end work�ow development and execution lifecycle:

� Work�ow modeling is performed directly by domain experts through a computer-aided software
engineering (CASE) tool [63] included as a plug-in into a popular IDE, Eclipse.

� Once completely speci�ed, work�ow models need to be veri�ed before they can be converted into
an intermediate representation that is suitable for WSANs. The veri�cation includes checks for, e.g.,
syntactical correctness and well-formedness. The conversion is a type of compilation that transforms
a work�ow into a much more compact representation.

� A work�ow that has been converted successfully is ready for its deployment. A runtime system
offers an interface with which work�ows can be registered for their execution, available work�ows
and instances can be enumerated, and eventually unregistered.

� The ukuFlow runtime system takes care of the work�ow execution. Immediately after a successful
registration, a work�ow is scheduled for execution, following the instantiation semantics provided
by its developer.

This work seeks to offer a steep learning curve (i.e., be learnable in a short time by the domain ex-
pert). For this purpose, ukuFlow features a mixed graphical/declarative/imperative macroprogram-
ming model, which is the topic of this chapter. The next section describes the graphical approach to
modeling work�ows, and provides examples of their composition semantics. Section 3.2 describes the
data model used in these work�ows. In Section 3.3 we explain the declarative approach to de�ne node
groups. Section 3.4 discusses the actuation/command model. Finally, Section 3.5 presents the details on
the generation and �ltering of events.

Throughout this chapter, we present examples related to airport operations that elaborate on the case
study introduced in subsection 2.3.1. These applications were designed in cooperation with researchers
from the Institute of Flight Systems and Automatic Control of the Technische Universität Darmstadt, who
are specialized on cockpit systems and air traf�c management, and illustrate the potential applications
that can be developed using work�ow abstractions.

1 The word 'uku stands for tiny in Hawaiian

21

3.1 Work�ow Model

In ukuFlow, applications are de�ned in terms of simple, arrow and boxes work�ows that follow a graph-
ical Work�ow De�nition Language (WDL). The goal of this macroprogramming language is to abstract
away internal complexities of WSANs such as routing, grouping, data collection, event detection and ac-
tion execution, providing a representation of the modeled application that can be understood quickly.

There are two mainstream graphical work�ow models that can be used to describe an application: UML's
Activity Diagrams (ADs) and OMG's Business Process Model and Notation (BPMN). The virtues of a
given language can be evaluated by checking its support for work�ow patterns [136], a comprehensive
catalog of constructs generally accepted in the community as measuring bar. Both ADs and BPMN have
their strengths, as well as inabilities to support advanced work�ow constructs (discussed, e.g., by Russell
et al. in [118] and Wohed et al. in [144], respectively). In principle, however, both notations could
be chosen for WSAN work�ow modeling. Also, other graphical notations exist, such as �ow charts,
state diagrams and Event-driven Process Chains (EPCs); there exist work�ow languages for which a
graphical notation can be inferred, like the Business Process Execution Language (BPEL) and Yet Another
Work�ow Language (YAWL); work�ow formalisms like process algebras and Petri nets; and domain-

speci�c work�ow models (like the one initially proposed by us in [53]). In many cases, transformations
can be found that convert a work�ow expressed using one model into another model.

For ukuFlow, we have chosen to adopt BPMN 2.0 [104] as graphical notation. The BPMN speci�cation,
however, is very rich and detailed; in particular, work�ow �i.e. process� diagrams (one of the three types
of diagrams) count with more than 100 modeling constructs (63 types of events, 7 types of gateways,
6 types of tasks, and a multitude of markers customizing these). For WSANs, this requires identifying
a minimal subset of constructs that suf�ces to model the targeted applications: this is the goal of the
ukuFlow Work�ow De�nition Language (uWDL) described in this chapter. As such, uWDL does not offer
the full process conformance level but is rather merely �based on� the BPMN speci�cation.

3.1.1 Control Structures

In BPMN, and consequently in uWDL, a work�ow is de�ned in terms of events, activities and gateways,
connected with each other by means of sequence �ows (cf. Fig. 3.1). These elements, to which we gener-
ically refer as work�ow elements, precisely specify how the control must proceed along such work�ow.
The BPMN speci�cation includes an extensive set of event, activity and gateway types, many of which
do not apply to WSAN work�ows. For instance, BPMN activities can be of one of 7 types, such as a
user task (expected to be performed by a human) or a manual task (expected to be executed outside of
the work�ow engine). In uWDL we adopt a subset of BPMN constructs that still allows accommodating
traditional applications; later we describe a number of constructs in BPMN that can be emulated by the
simpler ones adopted.

(a) events (b) activities (c) gateways (d) sequence �ows

Figure 3.1.: Abstract BPMN elements

Similarly to the BPMN speci�cation [104], to explain the semantics of the work�ow elements and their
interconnections we resort to the notion of a token that traverses these elements. (In Chapter 4, we
elaborate on this idea to describe the actual operation of the work�ow engine.) Work�ow elements are
connected with each other through sequence �ows (cf. Fig. 3.2). In its basic, unconditional form (3.2a), a

22

sequence �ow is used to indicate the direction in which a token needs to be routed through the work�ow
diagram. In conjunction with some of the gateways, as we will see later, it is possible to use conditional

(i.e., associated to a boolean condition, 3.2b) or default sequence �ows (3.2c).

Receive
Task

Script
Task

Collapsed
Sub-Process

+

(a) unconditional

Receive
Task

Script
Task

Collapsed
Sub-Process

+

(b) conditional

Receive
Task

Script
Task

Collapsed
Sub-Process

+

(c) default

Figure 3.2.: BPMN sequence �ows in uWDL

BPMN Events

In every uWDL work�ow there are, at least implicitly, two mandatory work�ow elements: the start and
end events (cf. Fig. 3.3). These work�ow elements indicate where a particular work�ow will begin and
conclude, and can be seen as the elements at which tokens are initially created and eventually removed.
It is recommended that work�ows have one start event and only one end event. In practice, however, it
is possible to have a work�ow where the start event is implicit, and also allow there to be multiple end

events. A simple transformation can identify the starting work�ow element and add a start event in front
of it. If there are multiple end events, these can be replaced by a single end event to which all others
converge.

Receive
Task

Script
Task

Collapsed
Sub-Process

+

(a) start event

Receive
Task

Script
Task

Collapsed
Sub-Process

+

(b) end event

Figure 3.3.: BPMN events in uWDL

The start and end events in uWDL unconditionally generate and consume tokens, respectively (i.e., cor-
respond to the BPMN none start event and none end event, respectively). This means that as soon as
a work�ow is deployed, the work�ow might begin with its execution (this aspect is further elaborated
later in Section 4.3.1).

Activities

In a BPMN work�ow, actual work is performed in activities, which are represented with a rounded box
(cf. Fig. 3.1b). Activities can be atomic (i.e., can not be further re�ned) or non-atomic (i.e., represent
an entire work�ow). With this modeling abstraction it is possible to describe work�ows at several levels
of detail, thus enabling focusing attention to individual parts of an application. A compound activity is
represented in a collapsed form with the + sign (cf. Fig. 3.4a). In uWDL, the only atomic activity adopted
is BPMN's script task, which contains a script that can be directly executed by the WSAN (cf. Fig. 3.4b).
(Section 3.4 describes how scripts can be de�ned.) With the aforementioned elements it is possible to
model a linear process. This is exempli�ed in the work�ows of Fig. 3.5. Figure 3.5a describes the steps
to manage the overall cargo (un)loading work�ow; Fig. 3.5b is concerned with aircraft refueling.

Gateways

In most applications, alternative execution paths are necessary. This is the objective of BPMN's gateways,
which are represented with a diamond (cf. Fig. 3.1c). With these constructs it is possible to model splits,
choice, merges and synchronization.

23

Receive
Task

Script
Task

Collapsed
Sub-Process

+

(a) collapsed sub-process activity

Receive
Task

Script
Task

Collapsed
Sub-Process

+

(b) Script task activity

Figure 3.4.: BPMN activities in uWDL

Open
Cargo
Doors

Unload
Bags

& Cargo

Load
Bags

& Cargo

Close
Cargo
Doors

Cargo
(un)loading

+

(a) sequential activities for aircraft cargo unloading/loading

Connect
Electrical
Bonding

Insert
Fuel
Nozzle

Check
Tank
Pressure

Tank
Required
Amount

Remove
Fuel
Nozzle

Disconnect
Electrical
Bonding

Refuel
Aircraft

+

(b) sequential activities for aircraft refueling.

Figure 3.5.: Collapsed sub-processes and expanded representations of linear work�ows. Tokens are cre-

ated in the start event, traverse linearly the script tasks, and are removed at the end events.

Parallel Gateway

The parallel gateway is used to model the split, or divergence, of a branch into two or more parallel
branches. When a token enters this gateway, all of its outgoing branches are activated (i.e., a token
will be generated for them). Parallel gateways are also used to model synchronization between several
activated branches, typically created previously with a parallel gateway as well. These gateways are
represented with the plus symbol inside a diamond (cf. Fig. 3.6a). Figure 3.7 exempli�es these con-
structs: as soon as a token enters the split parallel gateway, two tokens are created and passed through
the outgoing branches Refuel Aircraft and Service Cabin. Tokens arriving at a synchronization parallel
gateway are held until all previously activated tokens have arrived; only then they are consumed and
the outgoing branch is activated.

Exclusive Decision Gateway

The exclusive decision gateway, represented with the x symbol inside the diamond (cf. Fig. 3.6b), is
used to model the exclusive choice of one out of a set of outgoing branches, based on the evaluation of a
logical, boolean expression (details about such expressions are given afterwards together with the data
model, in subsection 3.2). Each outgoing branch is evaluated at once following a pre-speci�ed order.
In addition, one of the outgoing branches can be indicated as default path (with the sequence �ow as
depicted in Fig. 3.2c), which is activated in case none of the other branches' expressions evaluate to
true. Figure 3.8 exempli�es these constructs. Since only one outgoing branch is activated (Fig. 3.8a),

Receive
Task

Script
Task

Collapsed
Sub-Process

+

(a) parallel gateway

Receive
Task

Script
Task

Collapsed
Sub-Process

+

(b) exclusive gateway

Receive
Task

Script
Task

Collapsed
Sub-Process

+

(c) inclusive gateway

Receive
Task

Script
Task

Collapsed
Sub-Process

+

(d) event-based gw.

Figure 3.6.: BPMN gateways in uWDL

24

Deplane
Pax

Refuel
Aircraft

Service
Cabin

Board
Pax

split
parallel
gateway

synchronization
parallel
gateway

Figure 3.7.: Split and synchronization parallel gateways to parallelize operations performed on an aircraft

after deplaning (the procedure to have passengers disembark from the aircraft)

Landing
Clearance

Taxi-in
to Hangar

Taxi-in
to Apron

choice
exclusive
gateway is cargo

default path

(a) exclusive decision choice

Refuel
Aircraft

Close
Cabin
Doors

Startup
Clearance

merge
exclusive
gateway

(b) simple merge

Figure 3.8.: Choice and merge exclusive decision gateways to opt for one out of a set of options: a) to

perform after landing, b) to perform before getting a startup clearance

i.e., receives a token, when a token arrives at a merge exclusive gateway (Fig. 3.8b), it can immediately
be routed through the outgoing branch.

Inclusive Decision Gateway

The inclusive decision gateway, represented with a circle symbol inside the diamond (cf. Fig. 3.6c),
combines the previous types of gateways and is used to model the situation were potentially more than

one out of a set of outgoing branches needs to be chosen based on the evaluation of several logical
expressions. Similarly to the exclusive gateway, one of the branches can be designated as default. Figure
3.9 exempli�es its usage: in a), control is passed to several tasks, depending on the type of aircraft being
tracked, in b), control is passed to the pushback clearance task only after the tokens (dynamically created
at runtime) from the tasks airways clearance and close cargo doors arrive at the simple synchronization
inclusive gateway.

Event-based Exclusive Decision Gateway

Finally, the event-based exclusive decision gateway, represented with a pentagon surrounded by a double
circle (cf. Fig. 3.6d), is used to model exclusive choice. In contrast to the exclusive decision gateway,
whose outgoing branches are associated to logical expressions that refer to work�ow data available at
the time of evaluation, the decision is made according to events that happen after a token arrives at the
gateway (this is why they are also called deferred choice gateways).

Outgoing branches do not have any expressions on the sequence �ows. Instead, these gateways are
always used together with a number of other work�ow elements that concretely specify which events
are of interest and must occur in order to activate a certain outgoing branch. In particular, these elements
are either receive tasks or timer events. (Section 3.5 describes in detail the event model used to specify
the events of interest and provides examples for these expressions.) The timer event is a simple timeout

25

Park
Aircraft

multi-choice
inclusive
gateway

has WC

Flight
Preparation

Open
Cargo
Doors

Service
Lavatory

Water

flight
end

is cargo

(a) inclusive decision choice

Airways
Clearance

Close
Cargo
Doors

Pushback
Clearance

simple synchronization
inclusive
gateway

(b) simple merge

Figure 3.9.:Multi-choice and merge inclusive decision gateways to opt for some out of a set of options

to execute after an aircraft was parked: in a), depending on the state of the aircraft, some

of the tasks (or all) will be executed; in b), parallel tokens created previously will synchronize

before continuing to the pushback clearance task

Raise
ULD

Elevator

deferred choice
event-based

exclusive
gateway

Height
Reached

Weight
Overload

merge
exclusive
gateway

...

...

...

Figure 3.10.: Deferred choice, event-based exclusive decision gateway to opt for one out of a set of op-

tions based on occurring events, and posterior simple merge

which is activated when none of the events in the other receive tasks have occurred, and is analogous to a
default sequence �ow. Similarly to the exclusive decision gateway, only one of the outgoing branches are
activated. Figure 3.10 illustrates its usage: the raise ULD elevator task requests the lifting of the unit load
device (ULD) container. After this request, the elevator might correctly reach the desired height (and
continue with the desired behavior), or might detect a weight overload (and trigger a failure message).
Other problems might occur that prevent a correct operation of the elevator, for which a timeout is
foreseen. These branches ultimately merge with a simple merge exclusive gateway.

3.1.2 Work�ow Concurrency and Looping

An ukuFlow work�ow can be seen as a normal computer program which, instead of being executed on
a single server, runs on an entire WSAN. By design, an ukuFlow WSAN can host multiple work�ows
deployed simultaneously, each serving an individual purpose.

In many applications, a work�ow is modeled as a singleton, i.e., real-world logic that globally relates to a
single main entity. In such a system the focus lies on a central object, for instance, a facility management
application for a building. In other applications, in contrast, work�ows describe logic associated to real-
world activities that occur in parallel. There, the work�ow focus lies on individual objects, for example
in object tracking applications such as aircraft monitoring in an airport management system. In such
cases, multiple instances of a work�ow need to be executed concurrently.

26

Very much like in an operating system, and depending on the application, such work�ows might have one
or more work�ow instances at runtime, all running in parallel within the WSAN, or in pseudo-parallel if
these work�ows (or parts of them) are co-located on individual sensor nodes.

Each of these instances, in turn, will have at least one token, created when the start event of a work�ow
instance is processed. At any point in time during its execution, a work�ow instance can have a varying
number of tokens being processed. Tokens are eventually removed when they reach the end event. A
work�ow instance continues to exist until it has no more tokens, when it is terminated. A cardinality
diagram summarizing these aspects is presented in Fig. 3.11.

WSAN workflow workflow
instance

0..n 0..n
token

1..n

Figure 3.11.: Cardinality of concurrent work�ow entities

In addition, work�ow instances might have to be executed only once, or iterate multiple times (i.e., a
�xed or an unlimited number of times). BPMN accounts for the concurrency and looping aspects of a
work�ow through special markers used in conjunction with activities: Fig. 3.12a illustrates the multi-
instance marker; Fig. 3.12b the looping marker. The speci�cation of these properties is supported by
uWDL as well.

(a) parallelism marker (b) looping marker

Figure 3.12.: BPMN concurrency and looping characteristics

3.2 Data Model

While in a work�ow the emphasis is placed on the �ow of control, data is an important perspective
to consider in a WSAN application. The BPMN standard, however, does not provide a concrete model
for specifying or accessing data. Instead, BPMN makes arrangements for accommodating different data
de�nition, query and access models. In ukuFlow, this is resolved by a simple, WSAN-conscious data
model based on a name-value pairs data structure, and a logical language to access its contents. In this
model, each work�ow instance has its own transient data space where it can store and access data. The
data space is created when the work�ow instance is initialized and allocated resources; remains accessible
during the instance's execution; and is disposed when the instance is terminated. A data space is shared
across all of a work�ow instance's tokens, which can refer to this data at all times. While this feature
simpli�es the storage needs between tokens, it requires careful use since race conditions could occur.

Data spaces contain application-speci�c data belonging to a particular work�ow instance that resemble
standard numeric variables. These data spaces can be accessed and manipulated in the conditional
sequence �ows, as well as in work�ow elements such as script tasks and receive tasks. For this purpose,
logical and arithmetical expressions can be used that evaluate to boolean or integer values. For example,
an instance for the work�ow part presented in Fig. 3.9a could contain data pairs for the names has_wc,
current_segment, num_segments, and airplane_type. With these, it is possible to realize the informal
expressions of the example, as speci�ed in Table 3.1.

Value pairs do not need to be de�ned nor declared. Instead, the �rst appearance at run time will trigger
its initialization and allocation in the data space. Through additional pre-deployment veri�cations, it is
further possible to calculate the maximum size that data spaces can occupy at runtime.

27

Table 3.1.: Example data expressions

informal sequence �ow label actual data expression

has WC has_wc == true

�ight end current_segment == num_segments

is cargo is_cargo == true

3.3 Scoping Model

While the macroprogramming approach through work�ows follows a centralized view, WSANs are in-
herently distributed systems. Pervasive scenarios are characterized by employing large, and variable,
number of nodes during the application lifetime. Many of these nodes are deployed at special positions
to carry out particular functions, thus they vary in type and devices (sensors and actuators) attached to
them. In many cases, applications need to refer to collections of nodes, for instance, to instruct them
with a command or to retrieve data from them. The unique identi�er typically available in WSAN nodes
(e.g., IEEE EUI-64 or IPv6 addresses), therefore, falls short for addressing them.

ukuFlow employs the Scopes network structuring mechanism, previously introduced in Section 2.5.1,
which allows de�ning groups of nodes based on their properties and give them a name -an abstraction
we call a scope. There are several properties with which a scope can be de�ned besides the node ID,
which might include:

� static properties:

� node characteristics (e.g., CPU type and speed)

� populated sensors and actuators

� position (if node is stationary or position is pre-programmed)

� dynamic properties:

� sensor and actuator's current data

� battery level

� position (if node is mobile or position is inferred)

Scopes can be speci�ed through a declarative language, which facilitates their usage for non-experts2.
In the same way as data expressions, a scope speci�cation can refer to node properties and contain
predicates about them. As an example, we can create a scope that groups nodes with magnetometers
on an airport's apron by requiring that the node's geographical position lie inside a polygon de�ned by
(xi,yi) coordinates and that the node is equipped with a magnetometer, whether on-board or external
(cf. Fig. 3.13). For this we would use the expression in Listing 3.1.

The next two sections present how declarative scope expressions are integrated and exploited in the
ukuFlow macroprogramming model.

2 The Scopes speci�cation syntax can be found at www.dvs.tu-darmstadt.de/research/scopes/syntax.html.

28

http://www.dvs.tu-darmstadt.de/research/scopes/syntax.html

(x1,y1)

(x2,y2)

(x3,y3)(x4,y4)

scope
MagnetApron3

nodes with
magnetometer

nodes without
magnetometer

Figure 3.13.: Geographical scope

1 CREATE SCOPE MagnetApron3 AS (
2 EXISTS SENSOR_MAGNETOMETER AND
3 IN_POLYGON((x1,y1), (x2,y2),

4 (x3,y3), (x4,y4)

5)

6)

Listing 3.1: Example scope speci�cation

3.4 Actuation Model

In ukuFlow's WDL, actuation is performed in script tasks through a series of statements. Figure 3.14
summarizes the types of statements mentioned.

In some script tasks, calculations need to be performed, e.g., in order to �rst �nd out the exact param-
eters to other statements. For this purpose, ukuFlow includes the computation statement, which allows
mathematical expressions to be performed on work�ow data. These computation statements read and
write data pairs from/into the work�ow instance's data space.

There is a rich variety of actuation types that a WSAN can invoke to control and in�uence its environ-
ment, including:

� turning LEDs on/off,

� opening/closing a gate or switching a voltage through a relay,

� setting a servo to a particular position,

� opening/closing a solenoid valve to a given degree,

Script Task Statement

Computation
Statement

Function
Statement

ukuFlow extensions

Local
Function

Statement

Scoped
Function

Statement

Figure 3.14.: ukuFlow extensions to BPMN for script tasks

29

� driving a motor with a certain rotational speed, and

� controlling a sounder/buzzer, among others.

A WSAN node can instruct the aforementioned actuators with an analog signal, obtained with a digital to
analog converter (DAC), or through a digital interface, like I2C, UART or SPI. Normally, the functionality
of these actuators is implemented in specialized operating system drivers, which are written by the device
developers.

Together with actions affecting the real world, others exist that mainly consist in communicating infor-
mation (noti�cations and alerts). So are �rst devices that can directly send short emails, tweets, and
IRC messages, issue Telnet, FTP, and other UNIX-like commands, which are usually forwarded through a
serial port to a computer connected to the Internet.

All of these actions are exposed by operating system libraries and can be invoked through a name.
Typically, the actions need to be parameterized, passing constants or variables that re�ne their behavior.
Within ukuFlow, these types of actions are called function statements.

Depending on the application, the actuation can be requested to be executed at an arbitrary location,
or alternatively a group of nodes can be speci�ed by means of a scope name. In the former case, the
WSAN node running the work�ow will execute the action, which is called a local function statement.
Such statements are pre�xed by the local keyword. In the latter case, only WSAN nodes that belong to
the speci�ed scope will execute the action, which is called a scoped function statement. Such statements
are pre�xed by the @<scope_name> identi�er. The actual speci�cation of the scope used is indicated in
a BPMN element called text annotation. These text annotations can be associated to any element in the
uWDL work�ow, but should ideally be connected to the script task where the scoped function statement
takes place. The work�ow should contain only one speci�cation for every scope identi�er. An example
of this annotation is presented in Fig. 3.15. There, the Departure Clearance script task contains a scoped
function statement that refers to the scope runway_18_west, in this case speci�ed as all nodes contained
in the given geometrical area presented in Fig. 3.16.

SCOPE runway_18_west (
 IN_POLYGON (POLYGON([49.99, 8.525];
 [49.99, 8.526];
 [50.03, 8.526];
 [50.03, 8.525]),
 NODE POSITION)

Line-upDeparture
clearance

Figure 3.15.: Text annotation with scope speci�cation

The syntax for function and computation statements is presented in Listing 3.2 and 3.3, respectively. An
example of their usage is provided in Listing 3.4, an application to control an airport's runway light-
ing. First, a node's humidity sensor is read; and its value (in percentage) is reduced to an integer
between 0 and 10. Later, the result is used to calculate the light �ashing rate. Finally, those nodes in
the runway_18_west scope are instructed to execute the flash_lighting function statement with the
speci�ed parameter.

1 local [variable=] <function_name > <parameters >;

2 @<scope_name > <function_name > <parameters >;

Listing 3.2: uWDL function statement syntax

30

Figure 3.16.: Geographical scope selecting nodes in Frankfurt airport's west runway (nr. 18)

1 variable = <expression >;

Listing 3.3: uWDL computation statement syntax

1 num_blinks = SENSOR_HUMIDITY_PERCENT;
2 num_blinks = $num_blinks / 10;

3

4 flash_rate = 60 * $num_blinks;

5 @runway_18_west flash_lighting $flash_rate;

Listing 3.4: uWDL function statement example

To summarize, a script task is a particular type of BPMN activity that includes a script composed by
statements which are executed in an explicit sequential order. The invocation of a script task is simple,
since no parameters are required. Instead, tasks are customized through the work�ow instance data
space. A task's statement can read or write into this space, and thus affect the actual execution of
following work�ow elements.

3.4.1 Putting it all Together

We now present the design of a wider application for surface management operations in an airport setting.
The work�ow, presented in Fig. 3.17, models the complete set of states an aircraft goes through when
stopping at an intermediate airport.

First, the entire process (¬) is represented as a single, collapsed task (+ marker), expected to run re-
peatedly (through the looping marker,

�

). The expanded view of the process reveals 25 activities (script
tasks), connected through 12 gateways and using multiple scopes. As usual, the process has one start

and one end event (­). Some statements within activities refer to individual scopes. For instance, the
task Park Aircraft is annotated with the speci�cation for scope apron_b25 (®). (For the sake of clarity,
not all scope speci�cations are included in the diagram.) The process includes the various gateways
available in uWDL. Both a split parallel gateways and its counterpart for synchronization (¯) model the
parallelism between refueling an aircraft while the cabin is being serviced. A choice exclusive gateway
and its counterpart for merging (°) are used to choose between a cargo aircraft (default path) or a
passenger aircraft, a decision made through static process data. A multi-choice inclusive gateway (±)
is used to parallelize the execution into multiple paths depending on the aircraft/�ight type (e.g., some
aircraft might need servicing the WC while others not, some might need to load/unload cargo, etc.). Fur-
thermore, notice how the counterpart for synchronization (²) is also used for creating multiple choices

31

La
nd

in
g

C
le

ar
an

ce

Surface Management Operations

Ta
xi

-in
C

le
ar

an
ce

Pa
rk

A
ir

cr
af

t
A

ir
cr

af
t

in
-b

lo
ck

A
ir

cr
af

t
M

ai
nt

en
an

ce

Se
rv

ic
e

W
C

 &
Po

ta
bl

e
W

at
er

Fl
ig

ht
Pr

ep
ar

at
io

n

O
pe

n
C

ar
go

 D
oo

rs

R
ef

ue
l

A
ir

cr
af

t

D
ep

lo
y

Je
tw

ay
s

D
ep

la
ne

Pa
x

C
lo

se
C

ab
in

 D
oo

rs

Bo
ar

d
Pa

x

R
ef

ue
l

A
ir

cr
af

t

Se
rv

ic
e

C
ab

in

U
nl

oa
d

Ba
gs

 &
 C

ar
go

Lo
ad

C
ar

go
 &

 B
ag

s
C

lo
se

C
ar

go
 D

oo
rs

A
ir

w
ay

s
C

le
ar

an
ce

Pu
sh

ba
ck

C
le

ar
an

ce

St
ar

tu
p

C
le

ar
an

ce
Ta

xi
 o

ut
C

le
ar

an
ce

Li
ne

up
C

le
ar

an
ce

Ta
ke

of
f

C
le

ar
an

ce

D
e-

ic
e

A
ir

cr
af

t

O
pe

ra
ti

on
al

Te
m

pe
ra

tu
re

R
ea

ch
ed

A
nt

i-i
ce

A
ir

cr
af

t

4

5

6

8

2

Su
rf

ac
e

M
an

ag
em

en
t

O
pe

ra
ti

on
s

1

S
C
O
P
E

r
u
n
w
a
y
_
1
8
_
w
e
s
t

(

I
N
_
P
O
L
Y
G
O
N

(
P
O
L
Y
G
O
N
(
[
4
9
.
9
9
,

8
.
5
2
5
]
;

[
4
9
.
9
9
,

8
.
5
2
6
]
;

[
5
0
.
0
3
,

8
.
5
2
6
]
;

[
5
0
.
0
3
,

8
.
5
2
5
]
)
,

N
O
D
E

P
O
S
I
T
I
O
N
)

S
C
O
P
E

t
a
x
i
w
a
y
_
y

(

I
N
_
S
E
G
M
E
N
T

(
S
E
G
M
E
N
T
(
[
4
9
.
9
9
,

8
.
5
2
8
)
;

[
5
0
.
0
3
,

8
.
5
2
8
]
;

[
5
0
.
0
3
,

8
.
5
5
4
]
;

[
5
0
.
0
4
,

8
.
5
6
8
]
)
,

N
O
D
E

P
O
S
I
T
I
O
N
)

S
C
O
P
E

a
p
r
o
n
_
b
2
5

(

I
N
_
P
O
L
Y
G
O
N

(
P
O
L
Y
G
O
N
(
[
5
0
.
0
4
6
,

8
.
5
7
0
]
;

[
5
0
.
0
4
6
,

8
.
5
7
1
]
;

[
5
0
.
0
4
7
,

8
.
5
7
0
]
;

[
5
0
.
0
4
6
,

8
.
5
7
1
]
)
,

N
O
D
E

P
O
S
I
T
I
O
N
)

3

+

2

4

5

7

8

9

Figure 3.17.: Complete surface management operations work�ow for handling aircraft stops

32

(i.e., it has multiple incoming and outgoing branches). We will come back to the topic of model compila-
tion to deal with this case. Finally, the work�ow has an event-based gateway (³). This is used to detect
the aircraft temperature after execution of the de-icing procedure. In case the operational temperature
(where it is safe to �y the aircraft) is not reached after a certain time (modeled with a timer event, ´),
a second anti-icing procedure is executed. These two alternative branches join with a normal merge
exclusive gateway.

3.5 Event Model

As mentioned when describing BPMN gateways, during the execution of a work�ow not all decisions
are made based on previously existing data. In many situations it is more adequate to pass control to a
branch depending on the detection of a particular event. In this section we describe the concept of event
used in this work, and explain the event model that is employed to specify expressions used in uWDL's
receive tasks.

3.5.1 Event Concepts

As presented in [15], there are several de�nitions of an event. Chakravarthy et al. [21, 22] de�ne it
as an instantaneous, atomic (happens completely or not at all) occurrence of interest at a point in time.
These events are known as status events. Chakravarthy et al. identify several phases when operating with
events, starting with the event occurrence in the physical world, and later event detection and signaling

phases (in the digital world). In contrast to Chakravarthy et al., M. Chandy emphasizes that events
are signi�cant changes in the state of the universe [23]. This implicitly relates an observation with an
expectation or another, previous, observation. We refer to these as change events.

The importance of distinguishing between an event and an interest on an event follows from these two
�rst de�nitions. Assuming there is an entity (which could be a software component or a person) inter-
ested in an event, the latter is packaged into a message, in which case we speak of an event noti�cation.
In traditional publish/subscribe systems, event producers are connected with event consumers by means
of a noti�cation service. Figure 3.18a shows this traditional interaction, where, on one side, data pro-
ducers (pi) publish events to the noti�cation service (NS, ¬), while on the other side event consumers
(c) subscribe to, i.e., express their interest in, events (­). The detected events (®) are converted into
meaningul, higher level events, and are �nally used to notify (¯) the interested parties. Figure 3.18b
presents these traditional phases.

The decoupling between producers and consumers offered by the noti�cation service, however, is costly
in WSANs, since published events that go non-consumed require sampling sensors and potentially rout-
ing data through the network, the two most energy-expensive operations. The de�nition of an event
from Hinze et al. [66], however, nicely complements the previous two, noting that by considering time

as an integral part of the state of the universe, two observations that yielded the same values at different
times can also be considered events. This enables a uniform modeling, where subscribers indicate a
series of parameters about how the data for the events should be acquired (e.g., sampling frequency and
patterns). Following this concept, we simplify the publish/subscribe mechanism (cf. Fig. 3.19a): it is
only after consumers have subscribed to an event (¬) that data producers acquire the data (­) and pub-
lish the events (®), with which consumers are later noti�ed (¯). We extend the event processing phases
with a data acquisition step, where corresponding sensor nodes are tasked to sample the necessary raw
data as speci�ed by the currently interested consumers (depicted in Fig. 3.19b).

The raw data stemming from the WSAN nodes and their sensors can be used to form an event that
is typically denominated a simple, or primitive event. These are events that typically include the time

33

1

p2 cNS

p1

pn

 producers
 publish (notifications
 not consumed)

 consumer
 subscribes

 consumer
 is notified

 producers
 publish

p2 cNS

p1

pn

 consumer
 subscribes

 consumer
 is notified

 producers
 publish

 producers
 requested

4

3

2

4

1

3

2

(a) publish/subscribe mechanism

event occurrence

event detection

event noti�cation

event consumption

physical world

digital world

(b) event processing phases

Figure 3.18.: Traditional publish/subscribe approach to dealing with events

of creation and the actual magnitude measured by the sensor, among others. Events can be further
processed to determine whether they ful�ll certain properties, an operation known as event �ltering.
When the processing is performed on multiple events, we speak of a composite event. Event generators,
�lters and composers are generalized as event operators; the different ways in which these operators are
connected with each other to produce and detect more elaborated events is normally speci�ed in an
event algebra. For uWDL, we have adopted a simple and powerful algebra for operating with events in
WSANs that, as we will see, enables minimizing the power consumption of the network nodes.

Events in ukuFlow are understood as occurring at their time of detection, an interpretation known as
point semantics [22]. This is opposed to the interval semantics [44], which consider the occurrence
interval of the event. Although that interval semantics model enables more sophisticated semantics
for composition operators (e.g., sequences), it comes at the price of an additional system complexity,
and is subject of investigation in future work. As a result, each event in uWDL is associated with a
timestamp. The distributed nature of WSANs invalidates the assumption of the availability of a perfectly
synchronized global clock at each node. However, time synchronization protocols exist that enable an
average accuracy of around δ=20µs [45], which is suf�cient for many sensor network applications. In
practice the developers must consider, thus, that a timestamped event can be offset by ±δ.

3.5.2 Event Generation

In order for events to be detected, the nodes acting as event sources must be tasked to begin with the
necessary generation (i.e., sampling) or computation of data. This data forms the bottom-most elements
of a (more elaborate) event. We model this task through event generators.

34

1

p2 cNS

p1

pn

 producers
 publish (notifications
 not consumed)

 consumer
 subscribes

 consumer
 is notified

 producers
 publish

p2 cNS

p1

pn

 consumer
 subscribes

 consumer
 is notified

 producers
 publish

 producers
 requested

4

3

2

4

1

3

2

(a) acquisitional mechanism

event occurrence

data acquisition

event detection

event noti�cation

event consumption

physical world

digital world

(b) extended event processing phases

Figure 3.19.:WSAN-oriented approach to events

Event Instances

Event generators produce simple event instances composed of a �xed number of �elds: timestamp, ID
of the event operator that generated it, data source, the actual magnitude measured or obtained from
that source, source node ID, and a scope identi�er to which the node belongs and through which the
event was requested (cf. Table 3.2). The data source can refer to a node's sensors, the node's hardware
state (including its clock or battery), or other node-computable information. As we will see in the next
Chapter, limiting an event's contents to these bare essential �elds allows it to typically �t in a single radio
message, which simpli�es the routing protocols considerably and therefore also the power consumption
of the nodes.

Table 3.2.: Example simple temperature event with payload 28 degrees Celsius

field value
EVENT_TYPE simple

EVENT_OPERATOR_ID 3

SOURCE SENSOR_TEMPERATURE_CELSIUS

MAGNITUDE 28

TIMESTAMP 18-03-2013 10:24:40

ORIGIN_NODE 28

ORIGIN_SCOPE heaters

35

Temporal Properties

In essence, there are two types of event generators: non-recurring and recurring. Non-recurring genera-
tors are used when data is requested only once (i.e., to create a single instance of an event). An event
can be produced immediately after the subscription to the event is issued (called immediate event gen-
erator); at a speci�ed, �xed time (absolute); after a certain time offset elapses (offset); or in conjunction
with the occurrence of another event (relative).

More typically, however, an event generator needs to produce data in recurring fashion (i.e., to create
many instances of an event). This recurrence can take place a certain number of times, or repeat forever
until explicitly stopped.

For some special modalities and physical phenomena, it is important to be able to sample sensors follow-
ing particular patterns. Such patterns can be as simple as sampling once regularly at a certain interval
(called periodical), or more elaborated, following a certain pattern or obeying a given function that can
be discretized.

Patterns can be speci�ed in uWDL as a time interval that is split into a sequence of slots; the slot sequence
is speci�ed with a bit string where a 1 denotes a slot in which an event must be generated and 0 the
opposite.

Functional generators are speci�ed with the function name, its speci�c parameters, and the overall
evaluation period and interval needed to discretize it. The gaussian (normal), chi-squared and Pareto
distribution functions are included in uWDL. The chi-squared distribution function is useful, for instance,
when using an ultrasound pulse transmitter and microphone to measure distance, since the expected
bounce times are known in advance. The gaussian function is useful in general situations where real-
world phenomena are bursty and a higher precision is required around the event occurrence; an example
of its usage is presented in Fig. 3.20 with parameters µ= 10s, σ2 = 1 and a = 5.

5

4

3

2

1

01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

0 events 0 ev. 1 ev. 3 ev. 5 ev. 1 ev.3 ev. 0 ev. 0 ev. 0 ev.

μ=10, σ2=1

eval. period = 2s.

eval. interval = 20s.

{

Figure 3.20.: Example of a gaussian functional event generator

Spatial Properties

So far, we have discussed the what and when to generate events. The other important aspect about
event generation is where, that is, which nodes should produce the data. In ukuFlow, this is tackled
also through the Scopes approach. There are three alternatives when specifying the spatial properties.
First, events might be generated by a single, master node, such as the scope's root node. This is useful,
for example, for timer events, where a special node in the network acts as time synchronizer. Second,
events might be generated at a subset of the nodes in the network by associating the event generator
to a scope identi�er. For this purpose, membership expressions, as illustrated in Fig. 3.15, can refer to

36

node properties and their status. Finally, the events might be generated at all nodes (through the world

scope). This is the most expensive case, but useful and necessary under certain scenarios.

Example Usage

A well-de�ned speci�cation of event generators is provided through a declarative script language, which
we exemplify next:

� Generate temperature data once now from all nodes in the WSAN (non-recurring, immediate tem-
perature generator):

IMMEDIATE_EG SENSOR_TEMPERATURE_CELSIUS

� Generate a light event once, on Christmas eve, from nodes in the west runway scope (non-recurring,
absolute generator):

ABSOLUTE_EG SENSOR_LIGHT_RAW 2011-12-24 18:00:00 @s runway_18_west

� Generate temperature once, after 2 hours from all nodes (non-recurring, offset generator):

OFFSET_EG SENSOR_TEMPERATURE_RAW 2:00:00

� Generate humidity every 20 seconds starting now and repeating only 10 times (recurring, periodic
generator):

PERIODIC_EG SENSOR_HUMIDITY_PERCENT ^0:20 x10

� Generate temperature events using the provided pattern with the overall sequence length of 30 sec-
onds, and repeating an in�nite number of times from nodes in the runway_south scope (recurring,
patterned generator):
Pattern:

PATTERN_EG SENSOR_TEMPERATURE_FAHRENHEIT p010100001101 ^0:30 @s runway_south

� Generate light following a gaussian distribution with parameters mean µ = 0:10 seconds, variance
σ2 = 1s2 and a = 5 max events, evaluate every 0:02 s., and use an interval of 0:20 s (recurring,
temperature generator following a normal distribution):

FUNCTIONAL_EG SENSOR_LIGHT_RAW GAUSSIAN_DISTRIBUTION m0:10 v0:01 a5 ^0:02 i0:20

The classes of generators and their relationships are depicted in Fig. 3.21. Note that it is possible to
specify similar event generation behavior in different ways, for example, a non-recurring event generator
produces the same data as a periodic one that repeats only once; a periodic event generator with period,
e.g., 10 seconds, is similar to a patterned generator with the pattern 00001 and a slot length of 2 seconds,
and so on. Which speci�cation is used depends on user preference.

The event generators we discussed produce individual, low-level events. These are usually referred to
as simple events. They can be combined by applying other event operators as described in the next
section.

37

event
operator

event
generator

non-recurring
event generator

recurring
event generator

immediate absolute offset relative periodic pattern functional

abs. time

re
la

ti
ve

 t
o

...

offset period pattern,
slot length

math. function,
parameters,
eval. frequency,
interval

#repeats|∞

scope (@s)

offset

event
operator

event
composerconstraints

operates on

has

logical
composer

and or not

state
event

composer

processing
composer

temporal
composer

sequencestdevmin max count sum avg

increase decrease remain

event
filter

...

change
event

composer

operates on

temporal evaluation windowhas

Figure 3.21.: The ukuFlow event operator hierarchy, section about event generators. The leaf elements

are the concrete event generators; rounded boxes depict their attributes, the black diamond

depicts a reference relation.

3.5.3 Event Filtering and Composition

In most situations, the raw events resulting from the generators are too low-level for a decision to be
made by an event-based gateway. Commonly, a more elaborated event detection is necessary, for instance
to con�rm peaks or smooth out outliers. This is achieved by means of event �lters and composers.

In contrast to the event generators, which (among other things) contain a scope identi�er to specify the
exact subset of nodes that should produce events, these more complex event operators do not require
such a parameter. Instead, these might perform their operations at other nodes of the network, depend-
ing on its type and nested expressions. In general, it is best to perform these operations in the network
as close to the producer nodes as possible, in order to minimize the overall energy consumption. For
the time, assume that all event �lters and composers are deployed in a centralized fashion; in the next
chapter we will describe a mechanism to control the event operator placement.

Event Filter

An event �lter is conceptually similar to a function f that takes events as input and, assuming a positive
evaluation, outputs another event, where f : En → E and E is the set of all events. An input to a �lter,
thus, can be events coming directly from a generator, or other �ltered or composed events.

Simple event �lters are stateless functions that include a set of constraints in the form of logical expres-
sions which apply to the contents of the input event, such as its magnitude or source node ID. In this
way we can specify that, e.g., temperature events interesting to the decision are those with values lower
than 5◦ or greater than 45◦. An example expression takes the following syntax:

SIMPLE_EF [SOURCE == SENSOR_TEMPERATURE_CELSIUS &&
((MAGNITUDE < 5) || (MAGNITUDE > 45))] (<eo1>)

The last element of the simple �lter, <eo1>, refers to the event operator from which this �lter consumes
its input. This could be instantiated with an actual expression such as a periodic event generator that
outputs temperature events. Simple �lters are thus useful to detect status events and act upon them.

38

Note that the output of this �lter is another event with exactly the same content as the original event
(including the original timestamp), and solely the event operator ID is modi�ed to re�ect the ID of the
simple �lter.

Event Composers

In contrast to simple �lters, event composers accept, or might require, multiple inputs in order to gener-
ate their output. The literature presents numerous approaches and models to compose events into more
complex ones (e.g., [28, 95, 22, 21, 36]), each motivated by a variety of applications such as health-
care, logistics, supply chain management, smart cities, and social networks. The types of operations also
vary widely, from aggregation, correlation, logical operations, and sequencing, among others. However,
the targeted platforms for which these operators were conceived (from cloud environment, through
high performance servers to stand-alone, embedded servers) are typically orders of magnitude more
powerful than WSAN environments, in particular with regards to the available memory and processing
capabilities.

We have investigated the feasibility of a range of composite event operators on low-power sensor nodes,
and selected a subset that enable the realization of useful expressions for sensor network applications
for their integration into uWDL. We present these operators in Fig. 3.22.

event
operator

event
generator

non-recurring
event generator

recurring
event generator

immediate absolute offset relative periodic pattern functional

abs. time

re
la

ti
ve

 t
o

...

offset period pattern,
slot length

math. function,
parameters,
eval. frequency,
interval

#repeats|∞

scope (@s)

offset

event
operator

event
composerconstraints

operates on

has

logical
composer

and or not

state
event

composer

processing
composer

temporal
composer

sequencestdevmin max count sum avg

increase decrease remain

event
filter

...

change
event

composer

operates on

temporal evaluation windowhas

Figure 3.22.: The ukuFlow event operator hierarchy, section on event �lters and composers. Both types

are applied to an input set of nested event operators.

Event composers are split into two groups: state event composers and change event composers. While
both operate on a user-speci�ed temporal evaluation window, the former are used to report observations
about the current or aggregated state of the environment, and answer questions of the form "what is the

average temperature in the rooms at the north side today?", while the latter refer to explicit changes in the
environment, addressing questions similar to "did the temperature increase by more than 10 ◦C in the last

hour?".

State event composers are, in turn, subdivided into logical compositions, processing compositions and
temporal compositions. A logical composition is associated to a logical expression such as and, or or not,
producing an output when such expressions evaluate to true. Processing compositions typically operate
over a series of individual, simple events, to identify outliers (max or min), or calculate aggregations
(count, sum, avg or st.dev.). Temporal compositions make emphasis on the timestamps of the input

39

events, as is the case of the seq operator which produces an output event if two input events occur in a
given sequence.

Finally, change event composers look at a sequence of events over a period of time, but additionally anal-
yse the observed magnitudes. Figure 3.23 presents two sequences of events within a time interval. For
these operators, the event detection criteria to produce an output event depends on the type of change
composer. For the increase event composer it is determinant whether the sequence is monotonically
increasing and if the magnitude span, i.e., the difference between the maximum and minimum values
in the interval, exceeds a user-speci�ed threshold (if the magnitude span is below this threshold, it is
considered uninteresting for the user). Analogously, the decrease event composer checks if the sequence
is monotonically decreasing and the difference exceeds the threshold. For the remain composer, in con-
trast, it is not relevant if the values are monotonic; instead it evaluates if all the observed magnitudes
are within the user-speci�ed delta.

m
ag

ni
tu

de
 s

pa
n

time

m
ag

ni
tu

de

event sequence 1
event sequence 2

Figure 3.23.: Two examples of monotonically increasing event magnitudes and their magnitude span

When the conditions are met, or the computation of aggregations is ready, event composers generate
events that re�ect or summarize the situation under which the composite event took place. Following
Madden et al.'s notation [87], we distinguish between exemplary and summary �lters. For instance,
the exemplary nature of the max operator enables including the magnitude and source node address (if
available) and source scope of the individual input event that led to the resulting composite event; the
summary nature of the avg operator creates a new magnitude value resulting from the aggregation or
processing of multiple individual values.

In contrast to simple �lters, the timestamp �eld is updated to signal the time of the composite detection,
and will typically be greater or equal to the timestamp of the last contributing input event (recall that
we resort to event point semantics). Similarly to the behavior of the simple �lter, however, the generated
composite events contain the event operator ID of the composite �lter. Note that the model does not
provide explicit support for data provenance, i.e., help to determine the origins and causes of an event,
since attaching every source event to the output event would make their size prohibitively large. While
compression techniques can be applied for this purpose, this topic requires further investigation.

Example Usage

In the following, we demonstrate the expressiveness of uWDL's composite event operators:

� Detect the occurrence of two events in a time window of 30 seconds, regardless of their temporal
order (logical conjunction event composition):

AND_EC ^0:30 (eo$_1$, eo$_2$)

40

� Detect the occurrence of either one of two events in a time window of 60 seconds (logical disjunction
event composition):

OR_EC ^1:00 (eo$_1$, eo$_2$)

� Identify the non-occurrence of an input event in a time window of 60 seconds (logical negation event
composition):

NOT_EC ^1:00 (eo$_1$)

� Aggregate events within a time window of 60 seconds (count processing composition):

COUNT_EC ^1:00 (eo$_1$)

� Detect occurrence of two events in sequential order in a time window of 2 minutes (sequence tem-
poral composition):

SEQUENCE_EC ^2:00 (eo$_1$, eo$_2$)

� Detect an increase in the magnitude of 200 units in a stream of events, in a window of 30 seconds
(increase change event composer):

INCREASE_EC ^0:30 r200 (eo$_1$)

Event Operator Classi�cation

In Table 3.3 we provide a classi�cation of the event operators included in ukuFlow. We consider the
following criteria:

� The arity of an event operator refers to the number of input event types it accepts.

� The processing cardinality denotes both the number of events (of the types speci�ed as allowed) taken
as input and generated as output. For those event operators that function in time windows (i.e.,
recurrent event generators and composers), the processing cardinality refers to the event exchange
relationship within each time window.

� The exemplary/summary property, as discussed in the previous section, de�nes whether the event
operator returns a representative of the set of input events, or is computed over that set.

� Finally, for the point semantics used in the event algebra we specify the moment when the output
event is timestamped, distinguishing between event creation time (i.e., when the event is generated)
and when a composite event is detected.

41

Table 3.3.: Classi�cation of ukuFlow's event operators

Event Operator

Event Event Event Composer

Generator Filter Logical Processing Function Temporal Change

a
n
d

o
r

n
o
t

m
i
n

m
a
x

c
o
u
n
t

s
u
m

a
v
g

s
t
d
e
v

s
e
q

i
n
c

d
e
c

r
e
m

Arity 0 1 2 2 1 1 1 1 1 1 1 2 1 1 1

Processing

cardinality
0:(1..n) 1:1 n:1 n:1 0:1 n:1 n:1 n:1 n:1 n:1 n:1 2:1 n:1 n:1 n:1

Exemplary/

Summary
n/a E S S S E E S S S S S S S S

Creation/

Detection

timestamp

C C D D D D D D D D D D D D D

3.5.4 Combining Event Operators

The previous subsections introduced the individual event operators modeled in ukuFlow. As indicated,
these event operators can be combined (i.e., nested) with each other recursively, building a more sophis-
ticated overall expression that re�nes the �nal event expected. The obtained combination is known in
the literature as an event detection graph (EDG) [22, 13] or event processing chain [36].

Event expressions can be written in a compact format in a single line. Furthermore, for clarity, it is
also possible to associate identi�ers with sub-expressions that can be referred to from other, higher-level
expressions. A reserved identi�er, TOP, is used for the top-level expression. We illustrate combinations of
several event expressions using the event operators described previously.

� Count the number of nodes in the scope windows:

1 COUNT_EC ^0:30 (IMMEDIATE_EG NODE_ID @windows)

� Detect room with highest CO2 concentration (above 600ppm) in �rst �oor:

1 TOP = SIMPLE_EF [MAGNITUDE > 600] (maxF)
2 maxF = MAX_EC ^0:20 (co2egen)
3 co2egen = PERIODIC_EG SENSOR_CO2_PPM ^0:20 @floor1

� Detect �re hazard situations in room 23, where average temperature exceeds 45◦, while the average
relative humidity is inferior to 70%:

1 TOP = AND_EC ^1:00 (tempf, humidf)
2 tempf = SIMPLE_EF [MAGNITUDE > 45] (tempAvg)
3 humidf = SIMPLE_EF [MAGNITUDE < 70] (humidAvg)
4 tempAvg = AVERAGE_EC ^1:00 (temp)
5 humidAvg = AVERAGE_EC ^1:00 (humid)
6 temp = PERIODIC_EG SENSOR_TEMPERATURE_CELSIUS ^0:20 @windows
7 egen = PERIODIC_EG SENSOR_HUMIDITY_PERCENT ^0:20 @lights

In the last example, the temperature and humidity readings will be buffered and every three events will
be averaged before comparing to the thresholds. These relationships can be adjusted by specifying the
event generation (i.e., sampling) frequency and the width of the averaging window. The conjunction is
satis�ed only when both conditions are met (high temperature and low humidity).

42

3.5.5 Event-based Diagrams - Graphical Notation

In addition to a declarative language to specify event expressions, uWDL offers a graphical notation
to represent them, which we call event-based diagrams. In essence, ukuFlow's event based diagrams
resemble the main BPMN notation as well as that of event processing chains [36]. In this notation,
each event operator is represented by a box, and has at least one outgoing arrow, naturally reading best
from left to right. Figure 3.24a exempli�es two such expressions with event operators (eox). These
expressions are constructed in nested fashion as eo5(eo3(eo1,eo2)) and eo4(eo2).

event
operator1

event
operator3

event
operator2

event
operator4

event
operator5

(a) Generic event diagram

Temp20

Filter5-45

CO2-20 MAX-20 SF-GT600

TEMP-20 SF-G45

HUMID-20 SF-L70

AND

AVG-60

AVG-60

Filter5-45
(b) event generator

Temp20

Filter5-45

CO2-20 MAX-20 SF-GT600

TEMP-20 SF-G45

HUMID-20 SF-L70

AND

AVG-60

AVG-60

Filter5-45

Temp20

Filter5-45

CO2-20 MAX-20 SF-GT600

TEMP-20 SF-G45

HUMID-20 SF-L70

AND

AVG-60

AVG-60

Filter5-45

(c) event �lter (top) and
composer

Figure 3.24.: Event-based diagrams

Event generators are represented through boxes pointing towards the right, adorned with a set of gears,
and typically located leftmost of an event-based diagram. This can be seen in the event operators 1 and
2 of Fig. 3.24a, and with Temp20 in Fig. 3.24b. Event �lters and composers are hexagons, as shown in
event operators 3, 4 and 5 of Fig. 3.24a, and with Filter5-45 in Fig. 3.24c. Filters are adorned with a
funnel, composers with a merging icon.

Temp20

Filter5-45

CO2-20 MAX-20 SF-GT600

TEMP-20 SF-G45

HUMID-20 SF-L70

AND

AVG-60

AVG-60

Filter5-45

Figure 3.25.: Event-based diagram for event expression to detect CO2 concentrations exceeding a thresh-

old of 600 ppm

Temp20

Filter5-45

CO2-20 MAX-20 SF-GT600

TEMP-20 SF-G45

HUMID-20 SF-L70

AND

AVG-60

AVG-60

Filter5-45

Figure 3.26.: Event-based diagram for event expression to detect �re hazards by checking that the aver-

age temperature is greater than 45◦ and that the average humidity is lower than 70%

In the Fig. 3.25 and 3.26 we present the graphical view of the two last examples of the previous
subsection. These views highlight the usefulness of the event-based diagrams, and are an important
contribution to the simpli�cation of the design of WSAN applications for domain experts.

43

Note that this is a centralized view of the overall event expression. As we will see in the next chapter,
at runtime, each node ful�lls a particular role with regard to this expression in order to carry out this
collective event detection.

3.6 Summary

This chapter described ukuFlow's Work�ow De�nition Language, uWDL. The model was designed care-
fully by adopting a subset of BPMN 2.0's notation and extending it, as shown in Fig. 3.27, to suit
WSANs. Under the Work�ow Patterns terminology, ukuFlow includes the work�ow operators known as
basic control-�ow patterns. Despite this simplicity, it is possible to describe a wide range of applications,
as shown with the airport scenario of Section 2.3.1.

Elaborating on the idea of scopes to engineer event-based systems, uWDL resorts to the declarative
nature of the Scopes framework to address network nodes according to spatial properties.

In the literature, approaches can be found that either a) offer a much higher �exibility (i.e., support
more work�ow operators or parameters for these), but are not targeted to the resource-constrained
sensor nodes, or b) carry out individual tasks in highly ef�cient ways on the targeted hardware (e.g.,
power-ef�cient detection of speci�c events), but are not intuitively programmed by average domain-
experts. The mixed graphical/declarative/imperative model proposed in uWDL addresses both aspects
simultaneously, and remains extensible with further work�ow and event operators as required by the
application domains.

Statement

Computation
Statement

Function
Statement

ukuFlow extensions

Local
Function

Statement

Scoped
Function

Statement

Script Task Gateway

Parallel
Gateway

Exclusive
Gateway

Inclusive
Gateway

Event-based
Gateway

Event

Start
Event

End
Event

Workflow
ukuFlow's adopted subset

of standard BPMN 2.0

Text (Scope)
Annotations

Timer
Event

Figure 3.27.: Summary of uWDL

44

4 ukuFlow Design and Implementation

Any problem in computer science can be solved

with another level of indirection...

David Wheeler (1927�2004)

...except for the problem of too many layers of

indirection.

Kevlin Henney

In the decade of the 90's, the interest of the research and industrial communities on work�ow sys-
tems led to the conformation of the Work�ow Management Coalition (WfMC), a consortium that aims
to create and contribute to work�ow and business process management. One of their most relevant
contributions, the Reference Architecture [68], is the architectural precursor to most current work�ow
systems: products such as IBM FlowMark[85], JBoss jBPM[77] and Software AG webMethods, etc., have
adhered to this architecture. These systems, however, are targeted at large platforms such as servers and
mainframes. Variations to the reference model have also been proposed, e.g., when the system needs to
consider mobile [58] and disconnected participants [3], but still remain too large to be able to run in
the resource-constrained devices aimed at in this thesis. In this chapter we present the design of a novel
system that re�ects main concepts of WfMC's reference architecture and that still enables its usage on
low-power sensor nodes, and discuss a number of concepts, techniques and implementation details that
deal with WSAN's complexities.

4.1 System Requirements and High Level Architecture

A macroprogramming approach to use work�ows for WSANs poses a number of requirements to its
architecture:

� easy de�nition of application logic (i.e., work�ows) by means of a graphical user interface (GUI)

� reprogrammability, in terms of not needing to reprogram nodes (i.e., physically connect them to a
programmer board) to change their logic every time a new work�ow is deployed or undeployed

� system adaptability to network topology changes (by adding or removing nodes or varying link qual-
ities), as well as extensibility with regards to incorporating new sensors or actuators attached to the
nodes

� in-network execution of work�ows, independently from external servers

� multi-user support, enabling multiple work�ows to run in the network in parallel and/or pseudo-
parallel fashion

As described by the WfMC in the Reference Architecture [68], the high level view of any WfMS is
composed of three areas:

� build-time functions, which are related to the design and modeling of work�ows;

45

workflow
engine

build-time
functions

run-time
control functions interaction functions

Workflow
Definition
and Design

Workflow
Instantiation
and Control

Interaction with
Environment

StorageNavigation

BPMN 2.0

uWDL

command
execution

data
manager

WfMC
Reference

Model

uk
uF

lo
w

 b
yt

ec
od

e

ukuFlow
components

Eclipse IDE

BPMN2uku
plug-in

Scopes

Actuation Sensing

event
manager

Modeling

Figure 4.1.: High level architecture of ukuFlow

� run-time control functions, which concern to the core work�ow engine functionality that make up
the work�ow enactment service; and

� run-time interaction functions, which, in the case of WSANs, relate to sensor and actuator nodes (or
groups thereof).

Figure 4.1 presents the high level architecture of ukuFlow, its components, and their relation to the
concepts of the WfMC's reference model. One important design decision is to make the ukuFlow engine
an interpreted system. This enables a highly dynamic operation at very low node reprogramming cost:
when deploying or undeploying a work�ow, instead of distributing large binaries (i.e., data objects in the
orders of several KBs) wirelessly throughout the affected nodes, only the work�ow speci�cation (which,
as we will see, occupies some hundred bytes) needs to be transmitted.

Work�ow speci�cations follow the ukuFlow bytecode, an instruction set designed to represent uWDL
work�ows in a compact fashion. The bytecode connects the build-time and run-time aspects with each
other. For the build-time functionality, ukuFlow employs a work�ow editor, BPMN2uku, which is inte-
grated into the popular IDE Eclipse. Next, in Section 4.2, we further describe the plug-in extension.
Run-time control can be split into two aspects: navigation and data management. The work�ow engine

in ukuFlow is in charge of controlling the process instantiation in the network, as well as the navigation
(i.e. execution) through the corresponding work�ow operators, and is described in Section 4.3.1. In
turn, the data manager is responsible for storing work�ow instance's data, which can be arbitrary user
variables or might precede from node sensors (further described in Section 4.4). Section 4.5 discusses
the application of Scopes as the network layer required in order to implement the interaction functions
such as the distributed execution of commands (Section 4.6) and event detection (Section 4.7).

4.2 The BPMN2uku Editor

To facilitate the design, composition and editing of work�ows, literally hundreds of tools exist offering
a graphical interface. Among these, BPMN-based work�ow editors can be found, both in open-source
form, such as the Eclipse BPMN2 Modeler or the Oryx Editor, as well as commercial variants, such as
Activiti Eclipse Designer, Signavio Process Editor or ARIS Express. In this work we adopt the Eclipse
BPMN2 Modeler [113] as base system for the uWDL extensions contained in BPMN2uku due to its
openness and extensibility. The BPMN2 Modeler is an Eclipse plug-in in incubation phase built using a

46

number of open-source frameworks such as the BPMN 2.0 Eclipse Modeling Framework meta-model (an
open-source reference implementation of the BPMN 2.0 speci�cation from the OMG) and the Graphiti
graphics framework. Through the integration to Eclipse, services such as project management and source
code version control, among others, are immediately available to the developer.

The most important functions of BPMN2uku are a) a graphical interface for modeling work�ows with
uWDL as described in the previous chapter, which is structured into the main work�ow diagram editor
and an event script diagram editor; and b) the validation and conversion of such models into the ukuFlow
bytecode for their deployment into a WSAN running the ukuFlow middleware.

4.2.1 Work�ow Editor

BPMN2uku's work�ow editor is the main interface to model WSAN application logic. When a new
work�ow model is created, a wizard is presented which requires the work�ow's name and �le location,
and the user is taken to the plug-in's main interface. This interface consists of a canvas, a palette, a
properties pane, and the package (i.e., project) explorer, as shown in a screenshot in Fig. 4.2a. Then, the
canvas is populated with a simple work�ow consisting of a start and an end event connected by sequence
�ow that serves as a starting point.

The canvas is a freehand-drawing area into which the developer can drag and drop elements from the
palette (or copy from other models), and then connect these in a quick and intuitive way. Once on the
canvas, the developer can link work�ow elements with each other through the corresponding connectors
(i.e., sequence �ows or associations). Work�ow elements (tasks, gateways, etc.) available are presented
in the palette. The complete palette available in uWDL, grouped by type, is shown expanded in Fig.
4.2b. In addition, the palette contains a number of work�ow patterns [117] that further facilitate the
composition of work�ows.

The properties pane (at the bottom) is the component through which element properties can be visual-
ized or edited, such as their description or name. Furthermore, this pane is context-sensitive, thus its
contents depend on the currently selected element in the canvas. For example, when a script task is se-
lected, a text �eld is shown where the user can enter the statements that should be executed; if a receive

task is selected, the user can enter the event expression to be detected in that branch of an event-based

exclusive decision gateway. When no element is selected, the properties shown in the pane refer to the
entire work�ow, and thus offer the user the possibility to change the work�ow name, the number of
instances and the looping properties. Alternatively, by double-clicking on a work�ow element, a pop-up
window is presented through which these properties can be modi�ed.

The package explorer is the area where a project's multiple �les are listed, providing an overview of the
types of �les within a project. Each �le's current status is represented by means of a small icon next to
them, signaling that they are correct models, or that they contain warnings or errors or that they are out
of sync with the version control system.

Note that work�ows created with the BPMN2 Modeler, and hence in BPMN2uku, are stored in an XML
format for which a Document Type De�nition (DTD) is available. Pro�cient users can thus streamline
the creation of work�ow models by generating these XML �les themselves, if desired. For this purpose it
is also possible to resort to an XML editor integrated into the plug-in.

47

(a) Main canvas
(b) Expanded

palette

Figure 4.2.: BPMN2uku work�ow editor

4.2.2 Event Script Diagram Editor

While the de�nition of actions in script tasks presents a convenient interface to enter statements, writ-
ing and understanding event scripts manually can quickly become a complex duty. For this purpose,
BPMN2uku complements the work�ow diagram editor with an event script diagram editor.

Similarly to the work�ow editor, the event script diagram editor offers a canvas for freehand positioning
of elements from the palette (Figs. 4.3a and 4.3b). The editor is opened either through a contextual
menu item, or through an icon that appears when hovering over a receive task. This opens a new tab
within the work�ow editor, and creates the necessary graphical representations of event operators and
connections in it, in case that event expressions were available (i.e., entered in the properties pane). The
palette is also grouped by event operators types (event generators, �lters and composers).

The user can graphically edit the properties of each event operator by double-clicking on them, which
opens a pop-up window whose contents depend on the type of operator. The event operators can be
connected, following their cardinality rules. Saving the contents of the event script's diagram will store
the information on a separate XML �le that contains information about the operators as well as the
graphical layout. The core information is parsed and the corresponding event script is generated and
used to update the script found in the corresponding receive task of the work�ow diagram.

48

(a) Main canvas
(b) Expanded

palette

Figure 4.3.: BPMN2uku event script editor

4.2.3 Work�ow Validation

In order to simplify the design of the work�ow engine that runs on the resource-constrained sensor
network, it is crucial to reduce the chances of deploying incorrect work�ows as much as possible. The
BMPN2uku plug-in incorporates several types of validators that further facilitate the development of
correct work�ows.

The majority of the validations are performed on demand, either when the user explicitly requires it,
or indirectly when a work�ow registration is requested. These validations ensure that the work�ow is
well-formed. A work�ow is said to be well-formed if it adheres to the following rules:

1. there is only one start event, and it must have no incoming and one outgoing sequence �ow,

2. there is only one end event, and it must have no outgoing and one incoming sequence �ow,

3. its activities (script task, receive task, timer catch event, etc.) have one incoming and one outgoing
sequence �ow, and

4. each diverging gateway matches with one converging gateway (and vice-versa).

Through these rules, the work�ow engine has considerably fewer checks to perform at run time. This
simpli�es its code base, and reduces the chances of irrecoverable faults, where the autonomous work�ow
execution would need to be halted. In particular, by requiring that work�ows have a single start event it
is simpler for the engine to identify the starting point for the execution of a work�ow instance. Similarly,
one single end event leads to simpler work�ows whose instances must be terminated (and its resources

49

cleaned up) at a single place. Finally, by requiring balanced diverging and converging gateways (of
all types), the possibility of unbounded forking of tokens is avoided, which would lead to uncontrolled
memory utilization.

In order to perform these validations, a parser was generated using JavaCC and a grammar that de-
scribes uWDL. This parser reads the XML representation of the work�ow, and tries to generate a tree
object model from it. Once a tree is successfully constructed, further parsing is performed on work�ow
operators such as script task's statements and receive task's event scripts, and text annotation's scope def-
initions. While these scripts share many elements with each other, separate parsers were built for each
of these, which facilitates the code comprehension and maintenance.

In addition, a number of checks occur early, at design time. For instance, the event script editor does
not allow connections to end at event generators, since these only allow outgoing connections. Another
example in the event script diagram is the avoidance of loops between event operators. For this purpose,
a set of validators running in the background are invoked when the user connects work�ow (or event)
operators with each other. If such connection leads to a loop, the connection is forbidden.

Note that it is possible to build work�ow transformations that convert a ill-formed work�ow into a well-
formed one (e.g., as proposed in [31]). Shifting the validations and transformations to the design time
tools, however, heavily of�oads the sensor network from unnecessary functionality, and contributes to
the requirement of in-network work�ow executing. A detailed description of the well-formedness checks
is provided in [63].

4.2.4 The ukuFlow Bytecode

After successfully parsing the entire work�ow, its representation is ready to be deployed into the network.
Using the native BPMN-XML representation of the EMF underneath the work�ow models, however, is
impractical on sensor nodes. To begin, while these XML �les could typically be stored in a sensor node's
internal memory (i.e., RAM or �ash), they are considerably large. This is depicted in the upper plot
of Fig. 4.4. This plot presents the size of the pure BPMN-XML �les for 20 test work�ows of varying
complexity, de�ned using the BPMN2uku plug-in. Work�ows represented with this format are large
due to their verbosity and because they include information of the graphical layout (position on the
canvas of each element), namespace de�nitions (containing a series of long URLs), element names and
descriptions, and encoding information, all of which are not fundamentally required for the execution of
the work�ow. As presented in the top �gure, reducing the unnecessary information from the BPMN-XML
�les still yields work�ows that require multiple KBytes (cf. the BPMN-Contents bars). Furthermore, this
would require an XML parser running on the sensor network, a functionality that commonly requires
dozens of KB. For instance, Mini-XML [129] can be made to compile to 36 KB, not leaving much out of
the 48 KB available in TelosB or other mote-class devices for other functions.

For this reason, we have designed the ukuFlow bytecode, a compact format that includes the minimal
information required for the work�ow execution. Figure 4.5 presents the general structure of a work�ow
expressed in the ukuFlow bytecode. The structure is divided into the work�ow's metadata, followed by
a series of work�ow operators and �nally the scope speci�cations. A detailed description of ukuFlow's
bytecode is presented in Appendix A. Since most of the platforms employed have 16-bit microcontrollers,
we visualize the ukuFlow bytecode aligned to 16 bits. Note however that this is not a 16-bit instruction
set. Instead, the operators are of variable width and occupy anything from 2 to multiple bytes.

The bottom plot of Fig. 4.4 illustrates the ef�cacy of this representation, showing the size of uWDL
work�ows compiled into the bytecode (note the program sizes speci�ed in bytes). We �nd this savings
to average 2.84% of the BPMN-Contents format. At a gross of around 17 bytes per work�ow element
(i.e., including work�ow metadata and corresponding scope de�nitions), it is possible to deploy multiple

50

 0

 10

 20

 30

 40

 50

p
r
o
c
e
s
s
_
0
1

p
r
o
c
e
s
s
_
0
2
_
1

p
r
o
c
e
s
s
_
0
2
_
2

p
r
o
c
e
s
s
_
0
2
_
3

p
r
o
c
e
s
s
_
0
2
_
4

p
r
o
c
e
s
s
_
0
2
_
5

p
r
o
c
e
s
s
_
0
3

p
r
o
c
e
s
s
_
0
4

p
r
o
c
e
s
s
_
0
5

p
r
o
c
e
s
s
_
0
6

p
r
o
c
e
s
s
_
0
7
_
1

p
r
o
c
e
s
s
_
0
7
_
2

p
r
o
c
e
s
s
_
0
8

p
r
o
c
e
s
s
_
0
9
_
1

p
r
o
c
e
s
s
_
0
9
_
2

p
r
o
c
e
s
s
_
0
9
_
3

p
r
o
c
e
s
s
_
0
9
_
4

p
r
o
c
e
s
s
_
1
0
_
1

p
r
o
c
e
s
s
_
1
0
_
2

p
r
o
c
e
s
s
_
1
1

P
ro

g
ra

m
 S

iz
e
 (

K
B

y
te

s
)

Test Program

BPMN-XML BPMN-Contents

 0

 20

 40

 60

 80

 100

 120

 140

p
r
o
c
e
s
s
_
0
1

p
r
o
c
e
s
s
_
0
2
_
1

p
r
o
c
e
s
s
_
0
2
_
2

p
r
o
c
e
s
s
_
0
2
_
3

p
r
o
c
e
s
s
_
0
2
_
4

p
r
o
c
e
s
s
_
0
2
_
5

p
r
o
c
e
s
s
_
0
3

p
r
o
c
e
s
s
_
0
4

p
r
o
c
e
s
s
_
0
5

p
r
o
c
e
s
s
_
0
6

p
r
o
c
e
s
s
_
0
7
_
1

p
r
o
c
e
s
s
_
0
7
_
2

p
r
o
c
e
s
s
_
0
8

p
r
o
c
e
s
s
_
0
9
_
1

p
r
o
c
e
s
s
_
0
9
_
2

p
r
o
c
e
s
s
_
0
9
_
3

p
r
o
c
e
s
s
_
0
9
_
4

p
r
o
c
e
s
s
_
1
0
_
1

p
r
o
c
e
s
s
_
1
0
_
2

p
r
o
c
e
s
s
_
1
1

P
ro

g
ra

m
 S

iz
e
 (

B
y
te

s
)

Test Program

uWDL Bytecode

Figure 4.4.: Compression properties of the uWDL bytecode representation

work�ows, each with 10's or even 100's of work�ow elements at a single node, and still leave suf�cient
RAM present in mote-class devices such as the TelosB (∼10 KBytes).

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

work�ow id # of wf. elems.

of scope defs. min. # of instances required

max. # of instances required looping info







work�ow
metadata

<work�ow elements>
. . .

<scope de�nitions>
. . .

Figure 4.5.: ukuFlow bytecode structure

The size of a work�ow representation can be further reduced. One approach is to resort to the Abstract
Syntax Notation One (ASN.1), a standard from the International Organization for Standardization (ISO)
for the representation and (de)coding of data. When using the (unaligned) Packet Encoding Rules, it is
possible to make each �eld occupy only as many bits as needed by the available values. Decoding ASN
data on a sensor node, however, requires a specialized library that �again- occupies dozens of KB. An

51

App. (e.g., serial shell)

Workflow Mgr.

Workflow Engine

Command Runner Event Mgr.

Network Mgr.

ScopesData Mgr.

Contiki & Rime

ukuFlow core

ukuFlow runtime

wf.

instances,
tokens

event
buffer

scope
specs.

data
repos.

Figure 4.6.: ukuFlow runtime architecture

alternative approach might be offered by specialized, lightweight compression mechanisms such as LZO
or S-LZW [119], but its application goes beyond this work.

4.3 The ukuFlow Runtime Architecture

Once a work�ow is deployed, it is the duty of the system runtime to deal with its ef�cient execution.
In this section we describe the central aspects related to work�ow management and execution. The
ukuFlow runtime has been designed to operate entirely in-network on low power, 8/16-bit embedded
microcontrollers. Figure 4.6 presents the main modules of the ukuFlow runtime for nodes in the sensor
network.

The overall ukuFlow runtime can be broadly described as a multilayered �stacked� architecture, with
non-strict interactions between layers. At the lowest layer there is the operating system (i.e., Contiki),
offering essential functionality such as process and memory management, as well as primitive commu-
nication mechanisms (the Rime networking stack). Sitting immediately on top of the OS there is the
Scopes framework (further discussed in Section 4.5) and the data management module (Section 4.4).
The ukuFlow core is composed of the work�ow manager and engine modules (described next), the
command runner logic (Section 4.6) and the event manager (Section 4.7).

While the previously described modules strive to realize distributed functionality (group creation, work-
�ow execution, etc.), at the topmost layer, node-level modules can be employed that, e.g., interface with
the serial port in order to accept work�ow (de)registration requests.

4.3.1 Work�ow Management and the ukuFlow Engine

The key service offered by ukuFlow is the in-network execution of work�ows. An important architectural
decision is to make ukuFlow an interpreted system that understands and executes work�ow bytecode.

52

This relieves the system from having to completely reprogram nodes dynamically. As a result, ukuFlow's
design re�ects a virtual machine architecture that can be compiled for various sensor platforms, thus
enabling interaction in a heterogeneous network (assuming a common communication layer such as
IEEE 802.15.4). In order to minimize energy consumption, the entire design of ukuFlow is event-driven
� exploiting the protothread abstraction provided by the operating system.

The work�ow manager is the outermost module that offers the functionality of (de)registering work-
�ows, and listing running ones. On a registration request, the work�ow manager checks whether there
is suf�cient memory available to store the work�ow speci�cation (i.e., the bytecode), and if so it makes
a copy of the speci�cation locally in RAM and serves it to the engine. At the cost of a slightly higher
code complexity, most operations in ukuFlow are then made in-place, i.e., they operate on this single
work�ow bytecode array without requiring having to copy or split it into other objects. This also implies
that memory is accessed in an unaligned fashion in 16-bit microcontrollers (such as the MSP430), to
avoid using 16 bits for data items that require only 8 bits.

Work�ow Instantiation and Token Management

After successful registration, a work�ow is ready to be instantiated and tokens for it allocated. As
introduced in Section 3.1.2, a work�ow can be de�ned as a singleton or require multiple (concurrent)
instances, and be speci�ed to execute once or a �xed or unlimited number of times. This information
is provided in the work�ow's metadata, Table 4.1 provides a summary together with smallest, largest
and default values (note that n ≤ m). While the indication of the maximum number of instances and
the looping property are strict values, the minimum number of parallel instances is a desired value. This
means that ukuFlow attempts to have at least as many instances in parallel as shown, but the system
might not be able to accommodate as many due to engine con�guration parameters (presented later) or
to a lack of resources (e.g. RAM).

Table 4.1.: Speci�cation of work�ow instances

smallest value largest value default value

min. # of instances, n 0 255 1

max. # of instances, m 1 255 1

looping 1 255 or∞ (0) 1

Similarly to modern operating systems, the ukuFlow engine deals with work�ow instantiation by means
of a two-level scheduler: a long-term scheduler that decides which and when registered work�ows are
allowed to be instantiated, and a short-term scheduler that decides which token of a ready work�ow
instance receives CPU cycles.

In addition to the work�ow speci�cation bytecode (stored by the work�ow manager), at runtime other
data structures are employed to track the work�ow execution, which collectively resemble an operating
system's process control block (PCB). First, work�ow nodes contain a pointer to the respective work�ow
speci�cation, a count of the work�ow's instances, and the work�ow's state. A work�ow instance, in
turn, contains a pointer to its work�ow node, a pointer to a data repository (where work�ow data
variables are stored), and a count of the instance's tokens. Finally, work�ow tokens can be understood
as threads, as they share a common data repository and can operate in parallel on it. Through this
layered process structure, the memory usage requirements are optimized, since common data is not
replicated unnecessarily. Objects of these structures are created and stored dynamically, in the sensor
node's heap. For each work�ow operator being visited by a token, its content is adjusted to store (link
to) operator-dependent state information. In addition, tokens keep a reference to their parent token.

53

The initial token created for a work�ow instance has no parent, and is similar to process 0 in Unix
operating systems. Tokens created as a result of visiting parallel or inclusive gateways reference their
parent token, which is put in the blocked queue until the merging gateway is visited. This information
is used, e.g., to synchronize multiple child tokens of a single work�ow instance upon their arrival at a
merging gateway.

The logic of the long-term scheduler to decide when to create new work�ow instances is realized with
a �nite-state machine, presented in Fig. 4.7. A work�ow node can be in one of the states new, spawn,
running, blocked or terminated. When a new work�ow is registered, a work�ow node is created
and assigned the state spawn. Transitions between states are given by factors such as the work�ow's
speci�cation of minimum and maximum number of instances, its looping properties, and the system
load. Most transitions occur either when the system is ready to create a new instance, or when an
instance terminates. When a work�ow is requested to be unregistered, its running instances must be
stopped. Instead of immediately interrupting their execution, these are allowed to gracefully continue
their current activity and only then they are stopped. Eventually, all of the work�ow instances �nish,
which changes the work�ow's state to terminated, releasing the associated resources.

Figure 4.8 presents the interaction between the two schedulers. Once a work�ow is registered (¬), a
corresponding work�ow node is created and put into the ready work�ows queue, indicating that work-
�ow instances can be created for it. If resources are available, a work�ow instance is spawned (­) and
linked to the work�ow node. If the work�ow node still requires further instances, it is enqueued again in
the ready work�ows queue, otherwise it is moved to the running work�ows queue. Whenever a work�ow
instance is created, the short-term scheduler is noti�ed so that it can create the instance's initial token,
which is associated to the work�ow's (unique) start event (®). This token is inserted in the ready tokens
queue, where it waits until it is dispatched (¯) and receives CPU cycles. If the token's task is completed
quickly, it is put back in the ready tokens queue, otherwise (e.g., it is a long operation involving network-
ing aspects), it is put in the blocked tokens queue (°). Once such a long operation concludes, the token
is put again in the ready queue (±). When a token visits a forking gateway (such as the parallel gateway
or the inclusive decision gateway), further tokens are created, linked to the corresponding (parent) work-
�ow instance, and pushed to the ready tokens queue. Similarly, when a token visits a merging gateway,
tokens are deleted (²). Eventually, the last token of the last work�ow instance is �nished, which causes
the associated running work�ow to be put in the ready queue (³) and later be unregistered (´).

The work�ow engine can be con�gured with a number of parameters that help to control the execution
and memory utilization. These parameters can be tuned at compile-time depending on the processing

spawn

running

terminated

new

blocked

wf_register()
instance created &

still needs at least one
instance created

instance created &
doesn't need more
parallel instances

instance finished &
still needs at least one

instance created

instance finished,
no more instances to spawn &

no more instances running

instance finished,
no more instances to spawn &

still instances running

instance
finished

needs at leaste one
instance created &
no resources free

Figure 4.7.: ukuFlow long-term work�ow scheduler's �nite-state machine

54

wf#3 wf#21

w
f_

t#
2

w
f_

t#
5

w
f_

n#
3 CPU

item flow

data ptr.

w
f_

t#
3 CPU

w
f_

t#
1

register(..)

start, fork

spawned

finished

dispatch
ready

merge, end

block

unregister(..)

sh
or

t-
te

rm
 s

ch
ed

ul
er

lo
ng

-t
er

m
 s

ch
ed

ul
er

w
f_

n#
21

ready tokens

blocked tokens

ready tokens

blocked tokens

workflow
specifications

workflow
nodes

workflow
tokens

ready workflows

w
f_

i#
2

running workflows

w
f_

i#
4

w
f_

i#
8

running workflows

workflow
instances

4

1

3

2

8

5

7

6

9

Figure 4.8.: ukuFlow engine's two-level work�ow scheduling

capabilities and available RAM of the target platform, and are listed in Table 4.2, together with values
for TelosB-type of nodes (Sky, jCreate, Z1 and XM1000).

Table 4.2.: ukuFlow engine con�guration parameters

parameter description TelosB values

MAX_REGISTERED_WORKFLOWS max. # of work�ows registered in a single
node

5

MAX_WORKFLOW_INSTANCES max. # of instances that one node can
execute in parallel

10

MAX_INSTANCES_PER_WORKFLOW max. # of instances per work�ow MAX_WORKFLOW_INSTANCES/2

MAX_ACTIVE_TOKENS max. # of tokens at a single node 20

The implementation of the ukuFlow Manager and Engine components is mainly event- (or interrupt)
based: the system's core remains idle until relevant events occur. The logic of each type of work-
�ow operator (start event, script task, gateways, etc.) is implemented in event handlers which run
till completion. This broad modularization increases code readability, facilitates debugging and im-
proves extensibility (e.g., if further work�ow operators were to be included). The long and short-term
schedulers, in contrast, are realized with protothreads [35], i.e., procedural code that uses conditional
blocking statements to wait until relevant events occur (e.g., until a work�ow or a token is ready, respec-
tively). Waiting protothreads enable the CPU to go to sleep mode, and thus save energy. When these
events occur, the corresponding protothread is dispatched by the operating system, allowed to run (e.g.,

55

invoke the corresponding work�ow operator's event handler), and then sent to the wait state again. The
communication between protothreads is implemented via a lightweight message-passing mechanism of-
fered by the operating system that uses a �rst-come, �rst-served queue to buffer the messages. This
enables an asynchronous operation, for instance, to deploy work�ows or operate on radio messages.

4.4 Data Management

As described in Section 3.2, the ukuFlow macroprogramming framework uses a simpli�ed approach
to data management that builds on the notion of every node in the WSAN being an independent, ad-
dressable entity which owns and manages its data. Similarly to systems such as Agilla [41] or Abstract
Regions [139], data is organized in a repository of name-value pairs. Data management is split into two
functions: a) data storage and access functions, and b) expression evaluation functions.

Data storage and access is accomplished through an API to create and remove (local) data repositories,
as well as to lookup, add/set and remove entries in these repositories. The data manager running on
each node maintains a set of repositories as requested by the calling modules. Conceptually, each data
repository contains two types of name-value pairs: WSAN-speci�c data (such as a node's sensor read-
ings), and repository-speci�c data. This means that sensor (and node) data is accessed indirectly through
the data manager as name-value pairs, i.e., under a name such as SENSOR_TEMPERATURE_CELSIUS.

Since a node's repositories share the sensor data entries, these are internally only allocated once. When
the module is initialized, a hidden shared repository is created. Depending on the actual node platform
and connected sensors and actuators, the necessary common entries are populated. Internally, the data
manager stores two types of entries: those that are manually (i.e., explicitly) updated by the user/reposi-
tory owner, and those that are automatically updated. For the latter, the user speci�es a time-to-live (ttl)
attribute when a repository is created. Whenever a name-value pair is requested, its age is calculated
and, if it exceeds the repository's ttl, the entry is automatically updated. The data manager implements
update functions for all of the sensor-data type of entries. These make use of the low-level sensor drivers
to obtain the necessary samples and eventually convert the raw ADC readings into the corresponding
units. Additionally, the user might create extra name-value pairs and declare them as auto-updateable,
for which a pointer to an updating function must be given.

The ttl of the shared repository is automatically set to the lowest common ttl of all other local reposi-
tories whenever a repository is created or removed. Note that the ttl value is not necessarily the update
interval, since data is only updated when the data of an entry is requested. Data will be updated that
often only if the user module requests data at that (or a higher) frequency. This organization enables
high-level modules to request data asynchronously from each other, and still only update respective en-
tries once per ttl period, thus ensuring that sensor data is as fresh as requested by the repository with
most stringent requirements, and simultaneously avoiding costly sensor sampling that result into new
samples only marginally different from the previous ones.

In the current implementation, data is stored in RAM. This has the advantage of being very fast, at
the cost of being completely volatile and thus not resilient to node crashes. An alternative to this is to
implement the data manipulation operations to store data in the �ash unit. While this has the advantage
of being persistent after node reboots, it incurs a considerable energy penalty with every read/write
operation (∼31 and 44mJ, respectively [133]), as well as an increased latency.

In addition to looking up name-value pairs, the contents of a repository can be used to check the validity
of an entire expression. For this purpose, the data manager implements a simple parser that takes
logic/arithmetical expressions in polish notation and outputs a result. An operand in these expressions
might be any value stored in the repository (either automatically or manually updateable), or an 8/16-bit
integer constant.

56

The services offered by the data manager module are used throughout the ukuFlow system. The Scopes
framework, for instance, uses it to validate membership of a node into a scope speci�cation. The ukuFlow
engine, in turn, uses it within script tasks' statements to calculate mathematical expressions and to
evaluate the expressions contained in conditional sequence �ows. Finally, the event manager uses it to
retrieve data from sensors and evaluate complex event operators.

4.5 Networking with the Scopes Framework

Work�ow execution in a WSAN inherently requires collaboration (and communication) between various
nodes. To this end, ukuFlow implements its services on top of the Scopes framework. The Scopes'
application programming interface (API) offers three network primitives: open (i.e., create) a scope,
close (remove) a scope, and send data between scope members.

A scope is opened from a root node, which disseminates the scope speci�cation throughout the net-
work. Upon reception of a scope open message, nodes decide whether they belong to it by checking
their properties against the provided expression. In addition, the root node takes care of maintaining

the scope membership through a refresh mechanism which periodically resends the scope speci�cation
throughout the network so that newly joined nodes can discover the active scopes, and subsequently join
if necessary. Inversely, nodes that have not heard the refresh messages for a speci�ed period will assume
disconnection from the network (a potential failure of the root node) and leave the scope. Both the
scope refresh frequency as well as the refresh miss threshold can be speci�ed by the upper user modules.
Through this mechanism, transient node failures that cause network topology changes are dealt with by
adjusting routes automatically. Eventually, when a scope is not needed anymore, a scope close message
is disseminated.

Since nodes' properties change dynamically, a node's membership to a scope can change during its
lifetime. There are two alternatives to managing this variability. With a default scope, only nodes that
are members of it retain the scope speci�cation in their memory. Upon reception of a scope refresh
message, the speci�cation is re-evaluated against the current node state. This has the advantage that
scope speci�cations do not unnecessarily occupy memory at nodes that are not member of the scope,
which enables a larger number of open scopes in the network. The alternative to this is a dynamic scope,
which cause all nodes to retain the speci�cations heard regardless of positive membership evaluation.
When a dynamic scope is deployed, an additional protothread is activated that re-evaluates the node's
membership to the scope, at a higher frequency than that of the refresh mechanism. This not only
enables non-member nodes to become members between two refresh cycles, but also allows a �ner
scope membership detection. Dynamic scopes are energy-intensive, since the CPU needs to wake up
more frequently and also sensors might need to be sampled (depending on the ttl attribute of the
associated scope data repository, as described in the previous section).

Sending data through a scope is possible both from the root node towards the member nodes �Root-
to-Members (RtM) traf�c- or vice versa �Members-to-Root (MtR). The initial implementation, by S. Kilb
[74], offers end-to-end messaging for both directions. This means that upper layer applications are
noti�ed of message reception only at member nodes. Nodes which are not member of the scope, but are
located on the route between the sender and the receiver(s), act purely as forwarders, not sharing the
data with upper modules. Together with additional security mechanisms [70], this design policy makes
the Scopes framework adequate for its usage in multi-tenant (i.e., multi-company) environments.

The Scopes framework separates the grouping functionality from the routing layer. In [72] we have
investigated two routing strategies: a gossip-based and a tree-based mechanism. The �rst, gossip-based
strategy uses the idea of polite gossip of the Trickle algorithm [84] to reduce the overall network traf�c
as compared to the pure �ooding mechanism, where the message dissemination cost is linear to the

57

number of nodes in the network. In polite-gossiping, a node is only allowed to rebroadcast a message
if, after a prede�ned interval, that message was not overheard from more than a certain number of
neighbors. At the cost of an increased latency, this optimization reduces considerably the number of
broadcasts required to disseminate a message, and thus lowers the chances of collisions. The gossip-
based mechanism is used for scope creation, maintenance and removal operations, as well as for data
traf�c to and from members to the root. The lack of an overlay structure for MtR traf�c makes the
usage of this routing strategy inadequate for ukuFlow, because it prevents an ef�cient implementation
of in-network, convergecast operations such as data aggregation.

The second, tree-based mechanism builds on the previous one and uses one general routing tree (from
each scope root node) to forward traf�c. Its operation is split into two steps. Initially, there is no network
activity. When a node is instructed to open a scope, it �rst creates a routing tree by disseminating (via
polite-gossiping) a tree construction request. Nodes that receive the tree construction message from
multiple neighbors choose the parent with minimum hop count (ties are broken by order of arrival).
Immediately afterwards, in a second step, the scope speci�cation is disseminated through the overlay
tree built previously in the �rst step. When a node receives a scope speci�cation for which it is member,
it noti�es its parent node (a mechanism called activation) so that it is aware that downstream nodes
are interested in receiving data. To avoid that multiple member child nodes send activation messages,
activated parent nodes broadcast a suppression message. Activation messages are propagated upstream
towards the root, unless a node has been suppressed. Later, when scope data is sent from member nodes
towards the root, this is ef�ciently realized via multi-hop unicast, as the route is (distributedly) known
by all intermediate nodes. The ukuFlow framework employs this tree-based mechanism.

Scopes is implemented on top of a number of Contiki Rime [34] communication stack primitives, as
presented in Fig. 4.9. Tree construction, scope management messages and root to member (RtM) traf�c
is implemented by the best-effort network �ooding module, netflood (which uses the identi�ed polite-
gossiping module, ipolite). Activation messages are sent to the next-hop parent node through reliable
unicast (runicast), while suppression messages use the (identi�ed) broadcast primitive. Finally, mem-
bers to root (MtR) traf�c implements multi-hop routing on top of the normal unicast primitive. In total,
the Scopes framework makes use of 5 (virtual) Rime channels.

4.5.1 Scopes Optimizations for ukuFlow

In this work we have introduced a number of optimizations that enable taking full advantage of the
Scopes framework. First, we introduced the concept of interceptable scope. Instead of offering end-
to-end traf�c, interceptable scopes have the special property that intermediate nodes are both noti�ed
about traf�c (i.e., messages are caught and provided to the upper modules) and also given control of the
forwarding procedure (i.e., modules may decide whether the forwarding should continue or not). As we
will see in Section 4.7, this functionality is vital in order to enable in-network event detection.

Second, we incorporated support for multi-application scope usage. The original design allowed only
one application to use a scope. If, within that application, multiple independent modules need to use
a scope, a mechanism is needed to track whether a scope is already open, or inversely whether no
module requires it anymore, and thus avoid the cost of re-opening the scope (i.e., �ooding), or closing
it while other modules still need it. We have incorporated this functionality into the scopes layer. For
this purpose, a usage counter was added to the scope data structure that resembles a reference counter of
garbage collection techniques. Since scope creation and removal is only allowed at the root node, this is
entirely implemented locally.

Finally, we note that the data transmission primitive offered by Scopes is packet-oriented. If the size of
the data message to be transported is larger than what is supported by the underlying MAC or physical

58

scopes

scopes-selfur

scope-mgmt,
RtM-traffictree-construct

netflood

ipolite

broadcast

abc

netflood

ipolite

broadcast

abc

activation

stunicast

unicast

broadcast

abc

supression

broadcast

abc

MtR-traffic

frag-unicast

unicast

broadcast

abc

Channel 132

Channel 133

Channel 130

Channel 131

Channel 129

Rime
stack

runicast

Figure 4.9.: The complete Scopes routing framework. Components over the gray background are pro-

vided by Rime, the upper modules by Scopes, and the frag-unicast was developed as ex-

tension to support ukuFlow. Each of the 5 stacks uses its own virtual communication channel.

layer, the upper modules have to deal with this issue themselves. For instance, IEEE 802.15.4's physical
layer has a maximum packet size of 127 octets [99]. Subtracting the Rime and Scopes framework
headers, around 100 bytes are left as payload for upper level modules. While this limit is acceptable
for messages sent in RtM traf�c, it falls short in MtR traf�c, specially when collecting data. For this
purpose, we have developed a unicast fragmentation layer, frag-unicast (also shown in Fig. 4.9). This
module builds on the normal unicast primitive of Rime, and implements a hop-by-hop fragmentation and
assembly mechanism. At the sender side, packets are divided into smaller units called fragments and sent
sequentially one after the other, in order. Each fragment contains a sender ID, a packet ID and a fragment
number, which suf�ces for reassembly at the receiver. Upon reception of a fragment, in turn, the receiver
starts a timer and begins assembling the �nal packet by concatenating the received fragment at the
corresponding offset. If two or more nodes simultaneously try to send long packets to the same receiver
node, issues are likely to arise. In case of fragment collisions, it is not simple to reconstruct the packets
(without retransmissions). In case of interleaved fragments, it is technically possible to reconstruct each
packet. However, this would require the ability to keep track of multiple receptions in parallel, which
is expensive in RAM (for example, a single 10-fragment packet requires ∼10% of the node's RAM). For
this reason, fragmentation unicast only keeps track of packets from a single sender at a time. If, during
an assembly process, a fragment is received from another node, the fragments received so far from the
previous sender are discarded and a new packet assembly is begun. This leads to a higher goodput, as
we will see in Chapter 6.

4.6 Command Runner Engine

The command runner engine is an important component in the ukuFlow framework, responsible for
execution of statements in script tasks. The execution of each individual statement depends on its type;
as introduced in Section 3.4, there are two main types of statements.

59

Figure 4.10.: Command dissemination through a scope

Computation statements are composed of an identi�er, the l-value, and an expression, or r-value. These
expressions are simply passed to the expression evaluator of the data manager module (cf. Section 4.4)
running locally on the node where the work�ow has been deployed � the work�ow manager node. The
result of the evaluation is then assigned to the corresponding name-value pair of the work�ow instance's
data repository (the name-value pair is created if it was not already present).

Function statements, in contrast, are executed by the underlying operating system's shell. The Contiki
shell architecture is a compact service to execute commands that has a rich set of around 45 commands
readily implemented (in Contiki 2.6) from which domain experts can choose. Implementing additional
commands is considerably simple for WSAN experts, since these operate on the device's local resources.
Execution of function statements works in two steps. First, the command name is veri�ed for availability
and the parameters are resolved (which involves evaluating expressions and variables). The output of
this step is an alphanumeric string that contains the actual invocation to be passed to the shell. In the
second step, the corresponding node's (or nodes') shell instance is instructed to execute the command
string. Local function statements are passed directly to the Contiki shell engine running locally on the
work�ow manager node, while scoped function statements are disseminated by the work�ow manager
via the corresponding scope to its member nodes and then passed to the shell (cf. Fig. 4.10).

The message arrangement used to disseminate scoped function statements through Scopes over the
network allows us to handle a large variety of command names and their parameters in a single net-
work packet. For instance, when running on a IEEE 802.15.4 radio, the Scopes implementation leaves
around 100 bytes of net data payload. In the current catalog of Contiki shell commands, the largest
command name consists of 17 characters, which leaves considerable space for the variable-length list of
parameters.

Since a lengthy task could prevent other tokens (belonging to the same or to other work�ow instances)
from doing progress, the command runner partitions the execution of a script task into its atomic state-
ments, returning control to the work�ow engine. This leads to an interleaved execution or processing of
tasks and gateways. Next we look at how each of these statements are actually executed.

4.6.1 Synchronous vs. Asynchronous Command Execution

Abstractly speaking, statements can be executed in one of two ways: synchronously or asynchronously.

Computation statements are CPU-bound operations that perform calculations on work�ow data (the ex-
ception to this are operations requiring sensor data that was not previously available or whose cached
value is outdated). For this reason, computation statements are always executed in synchronous fash-
ion.

Most commands used in function statements, in contrast, are IO-bound operations. The execution of a
statement can be split into: 1) the command dissemination, and 2) the actual execution of the command.
Each of these can become an important bottleneck:

60

1. Dissemination time:
This depends on whether the function statement is local or scoped. Local statements communicate
with the peripheral device very quickly �in the order of microseconds� since this communication is
realized through a local bus such as SPI. Scoped commands, in contrast, require multiple seconds

to be communicated, since multiple nodes need to be contacted over the lossy wireless connection
through Scopes.

2. Actual execution time:
Consider, for example, an operation that makes a servo rotate to a certain position. Depending on
the start and end positions of the servo, alone the execution of this operation might take anywhere
from dozens to some hundred milliseconds to complete.

As a consequence, function statements are always executed in asynchronous fashion. Due to the inability
of the Scopes framework to send multiple messages in parallel, however, scoped function statements do
block for the period during which the network is busy. This avoids network congestion and simpli�es the
data structures required. Scoped function statements are still processed in a FIFO basis.

A more complex alternative would consist in blocking until the command �nished executing, including
�nishing the operation at remote nodes. This requires a bidirectional communication from the targeted
nodes back to the root node to collect the con�rmations that the command has �nished executing suc-
cessfully. In such variant, the user could additionally specify a percentage of nodes (member of the
speci�ed scope) that are required to con�rm reception of the function statement and its execution.

4.7 Event Management

The last major component that completes the ukuFlow middleware is the event manager. In essence, the
event manager implements a simple, distributed event processing engine that is in charge of processing
tokens arriving at an event-based gateway. As presented in Section 3.5, in a uWDL model, event-based
gateways are accompanied by a number of outgoing branches, each pointing to a receive task that con-
tains an event expression (cf. Fig. 3.10, page 26). In this section we describe design decisions and
implementation details of this component.

The goal of the event manager is to identify the �rst occurrence of a matching event from the speci�ed
event expressions, and then forward a token through the corresponding sequence �ow. There are three
steps required to process each of these event expressions:

1. subscribe, i.e., deploy the required subscriptions in the network by disseminating the event expression
to the right subset of nodes affected;

2. trigger the event operators in a reliable fashion, eventually notifying the work�ow manager node
once a matching event is detected; and

3. unsubscribe, i.e., undeploy the subscriptions from the network.

The event model in ukuFlow (the hierarchy in Figs. 3.21 and 3.22) presents a modular approach to
specify the events of interest by combining several event operators in an event script. To support this
expressiveness, ukuFlow employs a design that enables connecting event operators with each other ar-
bitrarily (but under their cardinality rules). Each event operator outputs its events into an event channel.
Event operators that accept input are fed from one or more channels, depending on their cardinality, as
speci�ed in Table 3.3. Figure 4.11 illustrates how event channels connect event operators for a given
event expression. Conceptually, event channels are the entities that connect event operators with each
other or with the �nal consumer, both locally within a node and/or across nodes. Each event channel
carries an identi�er that must be unique within an ukuFlow network.

61

event
operator1

channel1

event
operator3

event
operator2

channel2

event
operator4

channel3
event

operator5
channel5

channel4

event
operator1

event
operator3

event
operator2

event
operator4

event
operator5

Figure 4.11.: Connection of event operators with channels.

For the design of an in-network event processing engine it is crucial to consider where in the network
to execute which logic in order to detect the event of interest � the event operator placement. In line
with the rest of the ukuFlow framework, the driving design objective is to minimize energy consumption.
A naïve approach is to send the entire raw data from the nodes generating this data towards the sink
node, and have the base station run the �ltering, aggregation or composition operations centrally. In
most cases, this approach leads to a large number of messages with the subsequent energy cost. The
tradeoff between communication and processing costs in a sensor node is well-known. The current draw
of a TelosB node, for instance, is 1.8mA when the microcontroller is in active mode, but 19mA when in
transmit mode and 20mA in receive mode. When looking at the power consumption at byte-level, the
difference is even higher: 9720nJ for transmitting 1 byte (in a 100-byte packet), but 1.35nJ to process a
16-bit instruction � a difference of three orders of magnitude, as pictured in Fig. 4.12.

As a result, it is crucial to reduce packet transmissions and shift processing into the network. A number
of techniques exist to reduce the number of radio packets at all layers of the communication stack
(physical, MAC, topology control and routing layers), or to optimize particular operations (e.g., detection
of a maximum or minimum value with Chaos [78]). However, in this work we look at techniques that
optimize the event detection at and above the routing layer.

The actual steps to perform for an event expression depend on the constituent event operators and their
attributes. A determinant aspect to minimize communication is whether an event operator is able to

 0

 5

 10

 15

 20

 25

CPU active TX RX

C
u

rr
e

n
t

[m
A

]

1.8

19.0
20.0

 1

 10

 100

 1000

 10000

16-bit instr. Packet TX

E
n

e
rg

y
 [

n
J
]

(l
o

g
)

1.35

9720.00

Figure 4.12.: Energy tradeo� for fundamental operations in a TelosB node. Note the logarithmic scale of

the plot to the right.

62

Event Operator

Event Event Event Composer

Result Generator Filter Logical Processing Function Temporal Change

A
N
D

O
R

N
O
T

M
I
N

M
A
X

C
O
U
N
T

S
U
M

A
V
G

S
T
D
E
V

S
E
Q

I
N
C

D
E
C

R
E
M

a) local x x

b) in-network x x x x

c) at root x x x x x x x x x x x x x

Table 4.3.: Result computation of ukuFlow's event operators.

produce its output locally on a node alone from its input. In general, this is the case for event generators
and simple event �lters. Event composers, in contrast, normally require aggregating or reducing a set
of input events to produce an output event, and thus inherently involve network communication. Some
of the event composers can readily compute the �nal result within the network, while others require
combining information from all the affected nodes, e.g., at a root node. Table 4.3 summarizes the
analysis of where the �nal result can be obtained: local, in-network or at root. Before we jump to
the event expression deployment and execution plan, we describe the mechanisms to deal with event
streams and event compositions.

4.7.1 Event Composition Mechanisms

When composing multiple events into higher-level ones, there are two aspects to consider to disam-
biguate the event algebra, which we describe next.

Dealing with Event Streams

First, we must de�ne how to deal with the potentially unbounded stream of input events. In particular,
event operators that require the entire input set of events, like min or count, would not return an output
event until the input stream concludes. This is typically solved by analysing �nite portions of the input
set by specifying an input window over which the event operator is applied. A comprehensive comparison
of types of windows is provided in [20], here we present window concepts of interest to WSANs.

Windows can be de�ned as a logical interval, speci�ed by two input events (a start and end input event),
or as physical interval, based on time. Physical windows are de�ned by a window start time, ws, and
window end time, we. A window's start and end can be updated with a policy, in which case it is called a
sliding window, i.e., its start and end events, or its start and end times (ws and we) change continuously.
Physical sliding windows can be of three types: rolling, tumbling or disjoint. Consider two successive,
sliding windows w1 and w2. A rolling, or overlapping window is such that w1.we > w2.ws; a tumbling
window is such that w1.we = w2.ws, and a disjoint window has w1.we < w2.ws (cf. Fig. 4.13).

w2.we

w1.ws w1.we

w2.ws
w3.ws

w1
w2

w1.ws

 w2.wsw1
w2

w1.we

w3.ws

w2.we

w1.ws w1.we
=

 w2.wsw1
w2

w3.ws

w2.we

Figure 4.13.: The rolling (left), tumbling (center) and disjoint (right) window mechanisms

63

Parameter Contexts

While the window mechanism reduces the input events to consider for an event composition to a certain
�nite interval, it is still possible for an operator to receive, within a window, many input events from
which alternative output events could be generated. Consider, for example, the partial event script
AND_EC (eo1, eo2). If, during the event composition procedure, the sequence of events e1, e′1, e2 occurs
(where e1 and e′1 are events matching the nested operator eo1 and e2 matches eo2), a rule is needed to
determine which of the combinations (e1, e2) and/or (e

′
1,e2) are generated as output events.

In [21], Chakravarthy et al. introduced the concept of parameter contexts to restrict the set of input
events to use in an event composition. Parameter contexts combine both composition rules and con-
sumption policies (therefore also known as consumption modes). To understand these contexts, the
authors consider an event log, i.e., a buffer where the entire set of occurrences of input events is stored.
The following four contexts were identi�ed:

� recent, where only the most recent occurrence of the input events are composed and consumed from
the event log. Newer input events received before all necessary input events are available simply
replace the previous input events of the same type. In this consumption mode not all input events
are used. This is very reasonable in a sensor network application where the user expects the most
up-to-date information to take a decision.

� chronicle, where the oldest input events are combined and consumed from the event log. Newer
input events received before an output event is produced are kept in the event log, until consumed.
In this consumption mode, input events are used at most once. This context is used whenever events
must be processed in order of arrival.

� continuous, where each initiator input event leads to a possible combination. An initiator event is
removed only after at least one combination was possible with it. In this consumption mode, input
events are used at least once. This context is useful in scenarios where multiple detections need to
be considered.

� cumulative, where all possible combinations are produced as soon as the composed event is detected,
i.e., all constituent input events are used. (Note that the cumulative context is equal to the continu-
ous context when only considering an event log of a single event composer. Differences arise when
considering an event script with nested event composers).

We argue that Chakravarthy's parameter contexts are less suitable for a WSAN for two reasons. In the
�rst place, context computation places unlimited or high storage requirements (except for the recent
context):

� recent is O
�

n
�

, where n is the number of event operators in the overall event expression, each
operator buffering a constant number of input events depending on its cardinality.

� the requirements for the rest, cumulative < continuous < chronicle, is theoretically unbounded, al-
though it could be restricted to O

�

n · d
�

, where d depends on the composite event duration and the
frequency of occurrence of input events. For example,

TOP = AND_EC ^2:00 (eo$_1$, eo$_2$)
eo$_1$ = PERIODIC_EG SENSOR_CO2_PPM ^0:10 @floor1
eo$_2$ = PERIODIC_EG SENSOR_CO_PPM ^2:00 @floor1

In this case, the AND event composer's buffer would require 12 slots. Using the continuous and
cumulative contexts would result in 12 output events.

64

The second, and more important reason is that these parameter contexts assume the availability of the
event log as a global buffer that can be analysed centrally. This is analogous to concentrating all the
information at one (or more) nodes in order to perform the detection, which we want to avoid in the
�rst place.

Finally, providing support for different parameter contexts is not viable in a resource-constrained network
of sensor nodes. While the choice of window type or parameter context is dependent on the application,
to realize an in-network event detector it is necessary to sacri�ce some �exibility. We next describe the
considerations to make event composition feasible in ukuFlow.

4.7.2 Event Composition in ukuFlow

In ukuFlow we restrict an event composer's input event set exclusively through tumblingwindows de�ned
by a time interval. Nodes participating in the event detection initiate the tumbling window mechanism
as soon as the event operator is deployed on them. This is implemented by means of a Contiki callback
timer that is reset periodically (leading to stable intervals over time). Since the dissemination of the
subscription over a multi-hop network does not occur instantaneously, minor asynchrony between the
node's windows exists. In Chapter 6 we investigate the jitter effects and discuss mechanisms to palliate
it further.

Second, in this work we propose a new parameter context that relaxes some of the properties of the
previous contexts in favor of accommodating a low-power data collection mechanism, and that we call
the collection context. The collection context works on a per event operator-basis, i.e., each event operator
computes its context based on an own event log. This is different from the previously described contexts
which looked at a global event log. Event scripts which contain multiple, nested event composers will
thus have multiple event logs, one per event composer, with a buffer size given by their cardinality. In
these logs, the order of events is based on the arrival time.

In cases where the event composer receives its event inputs directly from multiple nodes (i.e., over a
scope), the collection context employs a distributed approach where each node in the network partici-
pating in the collection mechanism has a slot within the operator's tumbling window in which it partially
contributes its computation to the �nal event combination. This is similar to the concept of interval (a
division of an epoch) in the Tiny AGgregation service (TAG) built into TinyDB [87], and is the crucial
aspect enabling the reduction of network packets.

Finally, the collection context only uses the most recent event inputs observed by a node in the interval.
A node receiving multiple events from the same input channel within a slot simply replaces the old input
for the new one.

The ukuFlow event manager receives subscription requests from the work�ow engine, and interprets
them to decide how to disseminate the event script and to whom. Next, we detail the deployment and
execution procedures that employ the collection context.

4.7.3 Event Script Deployment Plan

Cost-effective sensor network deployments will be composed of a landscape of heterogeneous nodes,
each ful�lling different roles [137, 115]. It is thus not reasonable to �ood the entire network with the
event description (unless explicitly needed by the application). Instead, only those nodes that must
participate in the event detection should be addressed. The goal of this procedure is to create an event

script deployment plan that minimizes the set of nodes addressed.

65

For this purpose, the event manager scans the bytecode of the event script. This bytecode speci�cation
is organized in polish notation � similarly to the data expressions presented in Section 4.4. The event
manager traverses the script through the event operators, and inspects the speci�ed destination of each
event generator found, adding the destination to a set T of target destinations that need to be contacted.
There are 3 possible destinations for an event generator:

� local→ event generator must be deployed locally at the event manager node,

� scoped→ event generator must be deployed at the respective scope, or

� world→ the entire set of nodes is required to participate in the generation of these events.

As a result of this scanning process, the set T will consist of a number of scope IDs, the local node
and/or the world scope. In cases where world /∈ T , the deployment plan consists in disseminating
the corresponding event operators to the identi�ed targets (scopes and/or the local node). If, by the
contrary, world ∈ T , the deployment plan simply consists in �ooding the event script once through the
entire network � an inevitably expensive plan.

We illustrate the general procedure with the previous example for detecting high CO2 concentrations
(which we replicate below for convenience). Figure 4.14 shows the steps required to disseminate the
subscription. In the left part, 4.14a, the entire set of nodes and links between them is shown1. Dotted
lines represent 1-hop neighbors, and straight lines represent the parent-child relation, which builds
the Scopes' overlay tree routed at the node with ID 1. Fig. 4.14b presents a snapshot of the scope
membership for two scopes S1 and S2. Note that for each of these scopes to be created, the entire
network needs to be �ooded as described in Section 4.5, since it is not known in advance which node
might belong to the scope or not. We note that:

� nodes 2 and 5 are member both of S1 and S2;

� node 3 is member of S1 but not S2, nodes 6 and 7 are member of S2 but not S1;

� nodes 4 and 8 are not member of S1 nor S2, but node 4 is forwarder of S2 due to its child node 7.

1 TOP = SIMPLE_EF [MAGNITUDE > 600] (maxF)
2 maxF = MAX_EC ^0:20 (co2egen)
3 co2egen = PERIODIC_EG SENSOR_CO2_PPM ^0:20 @floor1

Temp20

Filter5-45

CO2-20 MAX-20 SF-GT600

TEMP-20 SF-G45

HUMID-20 SF-L70

AND

AVG-60

AVG-60

Filter5-45

Scanning the event expression results in T = {floor1}. The event manager requests the creation of the
interceptable scope floor1 and disseminates the event script through it. We consider two scenarios for
floor1: S1 and S2. Since nodes know whether they have (direct or indirect) member children below
them, the actual traf�c for the dissemination through S1 requires only two broadcast messages (from
nodes 1 and 2) to reach all the depicted member nodes 2, 3 and 5. If the subscription was targeted to
S2, four broadcasts

2 would be necessary (from nodes 1, 2, 3 and 4).

The event manager sends the complete event script through the scope instead of only the event generator
that is needed at each scope since other event operators might be needed in the network. The sub-
scription message that is disseminated is typically very compact and taken directly from the work�ow
speci�cation's bytecode.

We note that the dissemination of the event script to multiple scopes requires one call to the send primi-
tive for each scope, since the Scopes API does not allow sending a message to multiple scopes simultane-
ously (i.e., with one single call). The ef�ciency of multiple dissemination calls vs. a single �ood depends
on the network topology and the actual set of nodes that are member of each scope. In the worst case,

1 For clarity of the discussion, we assume that all links are bidirectional.
2 Since data is disseminated with the netflood primitive (trickle-based), this scenario requires at most 4 broadcasts, but

possibly fewer for the depicted network topology.

66

1

2 3

4 5 6

7 8 9 10

1

2 3

4 5 6

7 8 9 10

1

2 3

4 5 6

7 8 9 10

S1

S2

S1

S2

parent-child
neighbor

Scope S1

Scope S2

S1 traffic
S2 traffic

(a) Network topology and overlay

tree

1

2 3

4 5 6

7 8 9 10

1

2 3

4 5 6

7 8 9 10

1

2 3

4 5 6

7 8 9 10

S1

S2

S1

S2

parent-child
neighbor

Scope S1

Scope S2

S1 traffic
S2 traffic

(b) Instantaneous scope member-

ship

1

2 3

4 5 6

7 8 9 10

1

2 3

4 5 6

7 8 9 10

1

2 3

4 5 6

7 8 9 10

S1

S2

S1

S2

parent-child
neighbor

Scope S1

Scope S2

S1 traffic
S2 traffic

(c) Tra�c over respective scopes

Figure 4.14.: Subscription dissemination on an overlay tree, highlighting the tra�c optimization to reach

only the necessary nodes.

all target scopes contain all nodes in the network, and thus the cost of the deployment plan is n−1 times
higher than that of a single �ood (where n is the number of target scopes). Here is where the selectivity
features of the Scopes framework play an important role, enabling a �ne-grained scope membership,
and make the cost of multiple individual send calls cheaper than a single network-wide �ood.

Also, the dynamic nature of the sensor network makes it dif�cult for the scope root node to know, at
all times, the current topology or the mapping of nodes to scopes, since in essence the scope creation
process is a unidirectional procedure (i.e., from the root towards the rest of the nodes) with very limited
feedback. Having an approximation of this distribution, however, would enable optimizations of the
subscription deployment plan � an aspect that opens new avenues but is left as future work.

Upon reception of a subscription message, each node needs to determine its role. Nodes process the
received event script recursively, in post-order fashion. For every event generator found, nodes follow
these rules:

1. if the node ismember of the event generator's target scope, the event generator is instantiated locally,
and the processing continues with considering the parent event operator (i.e., backtracking)

2. if the node is not member but forwarder for the event generator, the generator is not installed on this
node, but the processing continues with considering the parent event operator (like in the previous
case)

3. if the node is neithermember nor forwarder of the event generator, the processing of the event script
continues until the next event generator

In both cases 1) and 2) the processing continues with the parent event operator. In the case that the
parent event operator is a simple �lter, the operator is instantiated locally, and the processing continues.
If the operator is an event composer, it also must be instantiated locally, but processing for this branch of
the event script is stopped. This is because the �nal result for an event composer will be obtained only
at the root node of the corresponding scope, hence no other operators will be able to obtain an output
event from the event composer at a leaf or inner node.

Finally, the root node also participates in the event detection, since it is forwarder to all scopes. As such,
event composers and their parent operators are likewise instantiated at the root node.

We illustrate the instantiation of event operators with the previous example using S2. Figure 4.15 depicts,
on the left, the event script diagram for the original event expression (note each event operator coded in
a different color), and on the right, the network with an indication of the operator placement. Nodes 8,
9 and 10 do not participate at all; nodes 2, 5, 6 and 7 participate in both the event generation and the

67

identi�cation of the maximum value; and nodes 1, 3 and 4 participate only in the composition. The �nal
result of the composition is obtained at the root node, which is the only place where the simple �lter is
instantiated. In total there are 12 instances of event operators for this event expression placed across the
depicted network.

1

2 3

4 5 6

7 8 9 10

S2

Periodic Event
Generator

Max Event
Composer

Simple
Filter SF

EC

EG

SF

EC

EG

EG

EG

EG

EC

EC

EC

EC EC

EC

S2

Figure 4.15.: Event script diagram and operator placement for original CO2 example

In Fig. 4.16, we modify the event expression (and thus its event script diagram) by swapping the order
of the simple �lter and the event composer as presented to the left. The difference resides in that now,
nodes with event generators also run the simple �lter (which is not placed any longer at the root node).
The modi�ed expression results in an event operator placement with a total of 15 instances. Although
in this latter case the �nal output event of the modi�ed expression is semantically equal to the original
one, it leads to less network traf�c due to the earlier selectivity of the �lter operator � events not passing
the simple �lter will not be used in a composition.

Unfortunately, this modi�cation can not be applied in all circumstances, since the resulting event might
be different. In particular, such a swap is safe if the simple �lter's constraints operate on the magnitude
of the event, and if the composing operator is of exemplary nature, like min or max. It is otherwise
not straightforward to automatically determine if a swap yields a semantically equivalent result. With
the current design, users specifying the event expression need to be aware of this implication. Further
investigation in an analogous direction to query optimization in databases is left open.

1

2 3

4 5 6

7 8 9 10

S2

Max Event
Composer

Simple
Filter SF

EC

SF

EC

EG

EG

EC

EC

EC

EC

SF

EG

EC
SF

EG

EC
SFPeriodic Event

Generator EG S2

Figure 4.16.: Event script diagram and operator placement for modi�ed CO2 example

The unsubscription procedure is analogous to the subscription deployment plan: each participating scope
is contacted to remove the event operators instantiated for the event script, also releasing the allocated
resources and deleting events that might have been generated and produced in the meantime.

68

Network Dynamics

The dynamics of the network are an important aspect to consider. Topology changes occurring at runtime
due to nodes (temporarily) leaving the network or new nodes joining it pose the dif�culty that the overlay
routing tree breaks � and with it, the mechanisms that rely on it. A node that is temporarily isolated from
the rest of the nodes causes its child nodes to become disconnected from the rest of the network. Events
sent from child nodes to the unreachable parent node get lost, and since upward traf�c is not reliable
(i.e., not acknowledged), the child nodes continue their operation as usual, unaware of the issue. At
some point in time, however, these child nodes will notice that they have not received the scope refresh
message disseminated by the root node, and will thus leave the scope (the time or number of refresh
messages that must be missed is con�gured through a policy in Scopes). The event manager implements
a cleanup mechanism so that when it is noti�ed that the node left a scope, all event operator instances
associated to that scope are also freed, similarly to what is done when an explicit unsubscription request
is received.

For a node to join (or return into) the network and start contributing to the detection of an event, there
are three mechanisms in place. First, the scope root node periodically rebuilds the overlay tree, which
enables new (or existing) nodes to create a routing entry towards the root (or update an existing route
with a better one, respectively). Second, each scope is refreshed at a speci�ed interval, which lets nodes
discover the current scope speci�cations and evaluate their membership to them. Finally, the event
manager re-announces the actual event scripts periodically, allowing nodes to create (or update) local
event operator instances according to the previously described rules.

In conjunction, the automatic removal of event operators and scopes, and the periodical scope refresh
and event script reannouncing mechanisms support nodes in establishing a consistent state with regards
to the current work�ow operator being executed, and address topology changes at runtime.

4.7.4 Event Generation and Processing Mechanism

We now describe how the event generation and processing takes place within the network. Once a node
receives an event script deployment request, event operators are instantiated by creating a number of
objects in the node's RAM. The subscription request includes all the necessary information that an event
operator instance requires to begin carrying out its task, such as timer intervals, sensors to query and
tumbling window size.

An important attribute for the correct processing of events is the ID of the event channel into which the
event must be published. Within a node, each event operator works independently of the others, only
communicating indirectly through the event channels. Whenever an event operator is instantiated, its
inputs are con�gured to consume events from the event channel of the nested event operator. These
channel subscriptions are kept in a local list of running event operators.

The processing of events is then straightforward and consists in iterating through the list of running
event operators, and passing the event to each matching subscribed event operator. In the case that
no event operator is found locally, the event must be forwarded to the parent node. Ultimately, at the
root node, the output of an event operator is the �nal matching event and is thus passed to the upper
layer's subscribing application, which is a callback function in the work�ow engine. This concludes the
detection of an event. The work�ow engine then knows which of the outgoing branches of the event-

based gateway needs to be activated, and hence requests the unsubscription of all of the gateway's event
scripts. Events received afterwards, but before the unsubscription process is concluded, are discarded.

69

We illustrate this procedure with two examples. Figure 4.17a presents on the left side a simple event
script containing two event operators. Since these operators can obtain their output locally, they both are
pushed deep in the network. The right side depicts the network topology, the event operators deployed
on each node, and also the implicit event channels among them. Grayed boxes represent the case where
the output of an event operator does not �nd a local consumer, in which case the event must be forwarded
to the parent node in the tree, as mentioned above. Node 8, for instance, begins the processing when the
periodic event generator creates an event. This event is consumed locally by the simple �lter operator.
The output of the simple �lter (if any), is not consumed locally, so it must be passed to the parent node 4.
That event does not �nd a local consumer (note that in this example there is no aggregation), and thus
is forwarded to node 2, and then to node 1, where it is used as a noti�cation to the work�ow manager.
A similar process is followed for events from nodes 3, 4 and 8.

Periodic Event
Generator

AND Event
Composer

Simple
Filter 1 SF1

AEC

PEG

Pattern Event
Generator PAG

Simple
Filter 2 SF2

S1 S2

1

2 3

4 5 6

7 8 9 10

S1

SF1

PEG

AEC

AEC

AEC

S2

AEC

PEG

PAG

AEC

PEG

AEC

SF2

AEC

PAG

SF2 AEC

PAG

SF2

AEC

PEG

Periodic Event
Generator PEG

Simple
Filter SF

S1

1

2 3

4 5 6

7 8 9 10

S1

PEG

SF

PEG

SF

PEG

SF

PEG

SF

(a) Example with simple �lter

Periodic Event
Generator

AND Event
Composer

Simple
Filter 1 SF1

AEC

PEG

Pattern Event
Generator PAG

Simple
Filter 2 SF2

S1 S2

1

2 3

4 5 6

7 8 9 10

S1

SF1

PEG

AEC

AEC

AEC

S2

AEC

PEG

PAG

AEC

PEG

AEC

SF2

AEC

PAG

SF2 AEC

PAG

SF2

AEC

PEG

Periodic Event
Generator PEG

Simple
Filter SF

S1

1

2 3

4 5 6

7 8 9 10

S1

PEG

SF

PEG

SF

PEG

SF

PEG

SF

(b) Mixed example with shared event operator

Figure 4.17.: Event script diagrams and their event channels connecting local and remote event operators

The second example (Fig. 4.17b) illustrates the deployment of two event scripts that, in addition, share
an event operator: the pattern event generator. The �gure on network topology and operator placement
contains several important cases:

70

� At node 8, the periodic event generator feeds the AND composer which, in contrast to the previous
example, does not produce a �nal output event locally, but an intermediate result that is forwarded
to the parent node's instance of the event operator. This intermediate result is known as partial state
record in TAG ([87]).

� At node 4, the AND event composer combines the local input event with that one coming from
the child node (using the collection context as described previously). This intermediate output is
forwarded to node 2 and then to node 1, where the �nal output event is certainly available.

� Node 5 is the busiest from the network because it is member of both scopes S1 and S2. The output
event from the periodic event generator feeds the AND composer, while the output event from the
pattern event generator feeds both the AND as well as the simple �lter SF2. If the AND composer
at that layer receives the input events that satisfy the conjunction in its corresponding slot of the
collection context, it can forward an intermediate event with this information. Events output by the
simple �lter SF2 are forwarded directly towards the root.

Note that event composers which receive their input from other event composers are deployed at the
root node, similarly to the simple �lter SF1 in the second example.

Realization of the Event Manager Services

Subscriptions, unsubscriptions, as well as event processing requests, are asynchronous operations. These
are packed in a request object and put into a queue, which enables continuing with the next task imme-
diately. The processing of these requests is carried out internally by the event manager node with a
separate thread. This enables a correct serialization of operations.

Event operators have all a common structure, composed of a name and four functions for:

� initialization of the operator,

� removal of the operator,

� consumption of an event, and

� evaluation of an event.

At a node's boot-up time, the event manager initializes a vector containing the available event operators'
structures. This organization facilitates the localization of the callback function pointers for the process-
ing of an event. Extending the event manager with further event operators simply requires adding a
pointer to its structure in the vector.

4.8 Reliability Considerations

The design of the ukuFlow's runtime engine enables an in-network execution of work�ows, making
external infrastructure super�uous. The system presents a semi-distributed architecture that tolerates
many failures (in particular, fail-stop failures), as well as node churn, occurring at nodes at intermediate
and leaf levels of the overlay tree. In these situations, the work�ow execution continues with a degraded
quality. For example, if a work�ow instance requires obtaining the average temperature from a scope,
and a fraction of its member nodes fail, the average will consist only of the nodes that remain alive.
Routes will be adjusted dynamically, and the work�ow execution will proceed with this inexact value.

Failures at nodes acting as work�ow managers for a given deployed work�ow, however, are more severe,
since they cause the deployed work�ow instances to be lost. Therefore, manager nodes are single point

71

of failures, but only for the work�ows deployed on them (i.e., their failure does not prevent other nodes
that are managers for other work�ows from continuing their execution).

Approaches to increase the tolerance to failures, however, are interesting to consider. Redundancy can
be added by replicating the work�ow management functionality to multiple nodes. Upon work�ow
deployment on a node, called the leader node, a subset of alternative nodes receive replicas of the
work�ow speci�cation. If, later, it is detected that the manager node fails, the alternative nodes run a
leader election process and the winning node takes over. The larger the set of alternative leaders, the
more reliable the execution, but the higher the maintenance overhead. An initial implementation of
this functionality for the Scopes framework was carried out in the context of this thesis by the exchange
student Ignacio Brasca [14], the more general version of the problem was investigated by Guerraoui and
Schiper in [50].

4.9 System Code Distribution and Work�ow Upload

The system's runtime is installed on sensor nodes through the traditional reprogramming mechanism,
i.e., the bootstrap loader. This is a one-time operation that accesses the sensor node's program space
via a USB-to-serial converter, rewrites the node's ROM with the ukuFlow �rmware and reboots the node
with the new image.

For the deployment of work�ows, a special module called ukuflow-serial is also included, which is
in charge of opening a connection through the serial port and accepts work�ow (un)deployment com-
mands.

The BPMN2uku plug-in offers a context-sensitive menu, reachable from the IDE's package explorer,
through which the user can request the validation and generation of ukuFlow bytecode for a selected
work�ow. After passing all formal validations, a work�ow deployment command can be sent via the USB
port of the developer's workstation to a node directly connected to it.

The bytecode representation of a work�ow can contain zeroes in the middle of the stream. To avoid the
serial-line driver from interpreting these characters as end of lines, the entire (un)deployment requests
are encoded into Base64 on the PC side and decoded by the ukuflow-serial module back into its
binary version. The overhead in work�ow size (of around 33%) for the transmission is not a major issue
at runtime, since the Base64 representation is not retained in memory after decoding.

Availability

The ukuFlow software is available under a BSD license. The system is split into two parts:
the runtime for the sensor network, and the Eclipse plug-in. The system runtime is avail-
able via a Google Code public repository project page at code.google.com/p/ukuflow. The
plug-in can be obtained and installed into Eclipse's Juno release, from a download site at
download.dvs.informatik.tu-darmstadt.de/ukuFlow.

4.10 Summary

In this chapter we have presented the requirements and high level architecture of the ukuFlow frame-
work. Adhering to the Reference Architecture of the WfMC, we presented the separation between the
build-time functions, i.e., the IDE plug-in, and run-time functions, i.e., the ukuFlow runtime.

72

https://code.google.com/p/ukuflow/
http://download.dvs.informatik.tu-darmstadt.de/ukuFlow/

The plug-in, BPMN2uku, is a tool to design, compose and edit work�ows using the ukuFlow WDL de-
scribed in the previous chapter. The plug-in furthermore offers means to validate, convert, deploy and
undeploy work�ows onto sensor nodes connected to the workstation.

The ukuFlow runtime faces the hardest challenge of �tting a relatively complex work�ow system that
runs autonomously on a resource-constrained sensor network. We have presented the architectural de-
cisions that make the ukuFlow system feasible for mote-class devices. We demonstrated how a two-level
scheduler can be used to execute work�ows in an asynchronous way, enabling pseudo-parallel execu-
tion of work�ows and their instances. The usage of Scopes as networking component has been shown
to be effective, although it requires a number of adjustments for the ef�cient in-network processing of
events. Finally, we presented various mechanisms for the deployment of event script plans that resort to
a modular approach which causes only related nodes to participate in the event detection procedures.

Such a system offers many perspectives on which to analyze its performance and ef�ciency. The next
chapter paves the way for a systematic and realistic evaluation by presenting a set of testbeds that enable
a rigorous analysis of sensor network systems.

73

74

5 Empirical Evaluation of Sensor Network

Systems

An individual developer like me cares about writing

the new code and making it as interesting and

ef�cient as possible. But very few people want to do

the testing.

Linus Torvalds (1969-*)

In this thesis we make particular emphasis on the feasibility of a work�ow system for real-world sensor
networks. Such analysis is only possible by going beyond simulation and evaluations with few nodes. In-
deed, empirical experimentation has slowly become an important requirement for high-quality research
in WSNs, as can be observed in work presented at premiere conferences. In this chapter, we step back
from the main problem of providing an easy to use framework for the domain expert, and delve into the
challenge of realistic evaluation of sensor network software. We discuss the ongoing efforts to build the
TUDµNet testbed federation, and present the results achieved so far.

5.1 Simulations vs. Real-World Deployments

Current research in low-power sensor/actuator networks has mainly concentrated, on one side, on lab
work and simulation experiments that are reproducible yet simpli�ed in nature, and on the other side, on
realistic deployments that show feasibility yet make it dif�cult to explore parameters. Sensor network
simulators, like COOJA [107] or TOSSIM [82], facilitate parameter exploration and are able to scale
up to thousands of nodes, but do not always capture all phenomena from the target environments.
Working directly on deployments in situ, as done at the Great Duck Island [130] or precision agriculture
scenarios [79], exposes the system to the conditions of the real environment, but logistical hurdles, such
as mounting hardware, installing batteries, programming (i.e., �ashing) sensor nodes and instrumenting
them for experiment data collection make it dif�cult to repeat experiments, and even harder to make
them reproducible.

The practical solution between simulations and realistic experimentation are testbeds (cf. Fig. 5.1). A
testbed comprises a real sensor network instrumented with an additional infrastructure to, e.g., provide a
permanent energy supply (in contrast to the traditional battery source), as well as equipment for logging
node's activities. Testbeds provide users with the functionality to de�ne experiments, e.g., selection of
sites and node types, scheduling of jobs, and validation of experiment parameters.

Related work in testbeds includes projects such as TWIST [60], an indoor testbed including 204 nodes
(TelosB and eyesIFX), where users resort to a set of scripts to indirectly program sensor nodes and collect
debug data. MoteLab [142] (no longer active) included around 190 TelosB nodes spread through of�ces
in a three-story building, where test jobs were de�ned and scheduled through a web interface while
debug data is logged into a centralized database for later evaluation. The Kansei testbed [5] features
higher sensor node heterogeneity at a comparable scale (15x14 grid with Stargates and XSM nodes).

75

!"
#"

$%
&'
(
")

*+"
,&

-*
+

!".%/0(+

0/(1%.2&)0+

*"0*3"#0+

#"$%&'(")*0+
/)+*4"+5"%#+

Figure 5.1.: Testbeds tend to lead tomore realistic experiment data than simulations, while their software

redeployment e�ort is generally lower than in situ studies.

In order to reach an even larger scale, testbed federations have emerged. In the EU, the WISEBED
project [25] aimed at aligning several testbeds located in multiple european countries through a uni�ed,
loosely coupled management interface, while in the U.S., the KanseiGenie [124] had a similar aim.
There is a growing interest from both academic and industrial researchers in the ef�cient, cost-effective
construction of WSAN testbeds. Most testbeds, however, have been built using an unsystematic, best-
effort approach, which leads to systems that exhibit high deployment efforts, high maintenance and
operation costs, and do not offer the level of precision and validity required in research.

This chapter presents our ongoing efforts in addressing this issue through the development of TUDµNet,
a metropolitan-scale federation of sensor network testbeds that spans several sites within the city of
Darmstadt. Table 5.1 summarizes the aforementioned experimentation approaches, and puts our work
in context. Section 5.2 provides an overview of TUDµNet, and describes its constituent sites. We describe
our control infrastructure as a solution for managing a variety of experiments at a metropolitan scale,
present the challenges of building a reliable backchannel, and discuss the related applications.

realism scale control examples

deployment +++ ++ + GDI [130], Agriculture [79]

simulator + +++ +++ TOSSIM [82], COOJA [107]

testbed ++ ++ +++ MoteLab [142], TWIST [60], Kansei [5]

federation of ++ +++ ++ WISEBED [25], KanseiGenie [124]
testbeds ++ ++ +++ TUDµNet [52]

Table 5.1.: Approaches to doing sensor network experimentation, with proli�c examples from past and

current projects. As a metropolitan-scale federation, TUDµNet is a highly controllable testbed
with focus on realistic and reproducible benchmarking.

5.2 TUDµNet Overview

Similarly to other testbeds, TUDµNet's architecture is structured in three tiers (cf Fig. 5.2). The �rst
tier is composed of the sensor nodes which run the software being tested. This can be generated from
a normal build system like Contiki's or TinyOS's. Our testbed currently contains a mixture of TelosB,
Z1, G-Node and XM1000 nodes, all based on MSP430 microcontrollers. In turn, each node's board
is populated with a variety of sensors. The second tier is composed of simple gateways which are
permanently connected to a number of sensor nodes via USB cabling. Between 2 to 10 sensor nodes
are managed by a gateway, and each testbed is currently composed of 1 to 30 of these gateways. For
this tier, we have opted for network routers such as the Buffalo WZR (on which we run OpenWRT), as

76

http://www.tudunet.tu-darmstadt.de

Figure 5.2.: TUDµNet's architecture

well as Raspberry Pi devices. These are customized with sensor node management tools such as a serial
forwarder and the bootstrap loader. Finally, a central server orchestrates the entire federation activities
and stores the experiment results. The traf�c between the various testbeds (and in turn their gateways)
and the server is routed through MANDA (Metropolitan Area Network DArmstadt), which is operated at
Gbit/s speed.

5.2.1 Testbed Sites

Metropolitan areas typically span a number of different environments: urban areas with legacy buildings,
green parks, commercial/industrial districts, and even new neighborhoods following modern construc-
tion techniques. TUDµNet matches these areas with corresponding experimentation playgrounds that
remain of a manageable scale, yet offer enough scienti�c �delity to yield results applicable to similar en-
vironments. The TUDµNet federation spanned four sites [51], three of which are currently operational.
Each of these testbeds were motivated by certain well-de�ned scenarios, as presented next.

Old Buildings

In Europe, around 40% of energy consumption is due to building usage [92]. Buildings also are the
largest source of CO2 emissions [61]. Since energy is used mostly during the operational stage (i.e. dur-
ing user occupation), sensor networks become a key element for monitoring building use and enabling
intelligent control of, e.g., heating, ventilation, and air conditioning (HVAC) systems.

The testbed constructed at the main (Piloty) building of the Dept. of Computer Science of the TU
Darmstadt enables the development of this type of applications. This is a 3-story building renovated
after its �rst erection in 1937, consisting mainly of of�ces. The testbed at this site currently spans 25
of�ces in the north wing, each with 2 to 4 TelosB and XM1000 sensor nodes. Nodes are equipped
with an MSP430 micro-controller unit (MCU) and an 802.15.4 radio operating at 2.4GHz. The sensors

77

http://www.hrz.tu-darmstadt.de/netz/manda/index.de.jsp

attached to the nodes can measure temperature, humidity, and light intensity. Figure 5.3 depicts a typical
of�ce deployment. In each of�ce, a Buffalo WZR-HP-G300N acts as gateway (octagon), which bridges
departmental Ethernet with the nodes (circles) through a USB backchannel. This rather unconstrained
environment has shown its own challenge: the USB backchannel. Figure 5.4 presents the positions and
IDs of the nodes deployed in the �rst �oor.

Figure 5.3.: An o�ce in the Piloty building, with installed wireless sensors (circles) that are also attached

to a gateway (octagon) for quick reprogramming.

Emergency Response

The usage of technology for supporting �rst-responders and their operations in emergency situations has
become a critical tool for metropolitan cities. Identifying elevated physical or chemical concentrations of
radioactivity, gases or �re, as well as their temporal spreading, is a challenging task where the interaction
between autonomous aerial and terrestrial vehicles comes into play.

The joint laboratory of the Research Training Group 1362, Cooperative, Adaptive and Responsive Moni-

toring in Mixed Mode Environments, pursues exactly this goal. Located at the Technologie und Innova-
tionszentrum (TIZ bldg.) in Darmstadt, the site features multiple of�ces and a larger disaster scenario
arena constructed following the guidelines of the RoboCup Rescue competition [106], monitored with
gas sensors, uniformly spread in a 5x12 grid organized into multiple arrays.

In this deployment, each of the 60 TelosB nodes counts with an external sensor board on which additional
CO, CO2 and temperature sensors are attached. Due to the increased power consumption of these
sensors, the installation of an additional power line was necessary, as depicted in Fig. 5.5. The site
presents a dense network where, at maximum transmission power, most nodes can reach all others.
Experiments that require it can reduce the transmission power, which yields topologies of higher network
diameter.

78

3331

323029

282624

2523

2119

2220

1715

18

0 5 10 15 m

16

09

10

1311

1412
0605

0807

04

XBRE1SP0 XBRDXR93

XBRDXQDC

MFVKE0ET

XBRDXQH8 XBRDXQML XBRDXCUP

MFVKE02V

MFVKE05N XBRDXQDX

XBRE2RK2

XBRE2RIS

MFVKDR06

MFVKDQO9

XBRE1KAE

XBRE2QYC

XBRDXQEZ

XBRENWC1

XBRDXQFE

MFUD5SPDM4AC68XH

MFUD5WEM

XBRE2R88

0201

M4AC68YM

E
1
1
8

E
1
1
9

E
1
1
7

E
1
1
5

E112 D110 D108

D113

D106

E111 D111

E
1
0
8

M4AC68YC

03

MFUD5PGF

XBRE2QVQ

XBRE2RFD

MFVKDSPC

MFVKDR5J XBRE2RCL

XBRDXQPM

27

XBRENWDS

.16.2

.16.1

.16.3

.16.7

.16.8 .16.9 .16.10

.16.6.16.5

.16.4

3736

3534
XBRE2RBTXBRE2RJD

MFUD5QNCXBRE1SKS

52

5150
XBRE1RXWXBRDXQO1

XBRDXQK1 XBRDXQEA

E
1
2
1

E
1
2
2

E
1
0
7

E
1
0
6

48

MFUD5S5Z.16.12 MFUD5SVK

.16.13

53

49

E
1
2
3

4342

4140
MFUD5VZ3MFUD5Q68

FTWU3U2UFTWU3TUZ

E
1
2
5

.16.15

4746

4544
MFUD5O0FMFUD5QD4

MFUD5P8XMFUD5S60

E
1
2
6

.16.16

.16.11

38

MFVKE0SY MFUD5T8U

39

.16.14

E
1
2
6

E
1
0
1

E
1
0
2

E
1
0
4

Sensor Node
Gateway
USB Hub

xx

.x.y

Figure 5.4.:Map of 1st. �oor of the TUDµNet deployment in the Piloty building

Energy E�cient House Construction

The emergence of decentralized, micro-scale renewable energy sources (especially photovoltaic and
geothermal heating/cooling) has led the sustainable construction of energy ef�cient residential homes
into an interdisciplinary area of investigation beyond architecture and civil engineering, prompting ICT
systems to come into play. The explosion of construction techniques and modern materials mobilized
researchers and practitioners to establish a biennial competition, the Solar Decathlon [105], where par-
ticipants measure their innovations applied to residential properties at a number of contests. These
houses represent the state-of-the-art in low ecological footprint.

While many construction aspects are designed and validated through models and simulation, critical
aspects of the construction remain unclear until a prototype is built: Do the HVAC systems work as ex-
pected throughout the inner space of the house? Are the (costly) materials of the ceiling and exterior
walls correctly designed to tolerate the weather conditions to which they are effectively exposed (vary-
ing temperature and humidity levels)? Are solar panels acting optimally and delivering the maximum
amount of energy as originally planned? Does the geothermal heat pump tunneling deliver the expected

79

array #1array #2

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

27

28

29

30

31

32

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

33

34

35

26

Sensor Node
Gateway
USB Hub

USB 2m passive
USB 3m passive
USB 5m passive
USB 5m active

xx

array #12

Power plug
Power cable (12v, 5A)

array #3array #11 array #10 array #9 array #8 array #7 array #6 array #5 array #4

Figure 5.5.: Top: the TUDµNet deployment at the GKmM Laboratory, split into its 12 arrays. The dia-

gram presents the two-level USB backchannel (for clarity, only for array #12), as well as the

additional power infrastructure to feed the external CO/CO2/temperature sensors. Bottom:

panoramic view of the space above the dropped ceiling with some of the cabling.

Figure 5.6.: Left: the RoboCup Rescue arena at the GKmM Lab, with 25 nodes on the ceiling (arrays #1

to #5). Right: fully assembled CM5000 (a TelosB clone) with adapter board for the external

DS1000 set of CO/CO2/temperature sensors, attached to the USB and power infrastructure.

water temperature? These questions represent some of the engineering challenges where WSNs offer an
unprecedented monitoring resolution and can help to improve their energy consumption.

The third TUDµNet site was deployed at the Architecture Dept.'s solar house (the surPLUShome), an
award-winning architectural design that produces surplus energy above what it uses. Together with
colleagues from the chair on Energy Ef�cient Construction and Design, the site was designed and organized
into three areas: 1) the inner room, 2) the east and south façades, and 3) the cooling ceiling (cf. Fig.
5.7). These areas allowed a deeper investigation of the properties of the individual subsystems.

80

http://www.solardecathlon.tu-darmstadt.de/home/home.en.jsp

Figure 5.7.: Left to right, top to bottom: surPLUShome and nodes deployed in the inner room, façade

and cooling ceiling

Urban Park Management

Parks, squares and other open spaces are ever more important in metropolitan areas due to their effect in
reducing environmental pollution, besides encouraging citizens to an active lifestyle and reducing stress
through the interaction with nature. Urban park monitoring operations (open spaces, water streams,
visitor counts), park irrigation and other maintenance tasks like lawn-mowing, pruning of trees, bushes
and plants, and emptying garbage bins, all offer room for optimization.

For experimentation with outdoor sensor network systems, we have chosen the Botanical Garden of the
TU Darmstadt, a venue with especially changing weather characteristics (9.25 rainy days per month,
and harsh temperature changes spanning between -2◦C and 24◦C in average). The initial deployment,
carried out in the context of the Master Thesis of Iliya Gurov [56], targets the coniferetum, an area rich
in types of trees, whose growing properties required further examination. The site includes above- and
underground nodes operating at sub 1GHz frequencies, and sensors for monitoring the soil moisture
(Fig. 5.8).

Since this outdoor environment is located at a public space, in order to realize our testbed services we
had to take into account visitors' safety as well as measures against vandalism. We opted for a wired
backbone (instead of a wireless one), which also leads to a more robust experimentation facility, at the
cost of running cables through the environment. To protect the cabling from freezing, regulations for the
installation of the electrical infrastructure require burying the cables at least 50cm below the surface.
The backbone is a hierarchical structure containing a mix of power, �ber-optic, Ethernet and USB cables
(Fig. 5.9). The site is split into the north and south sections, and each section has an above-ground
main station, where a router merges power and the �ber-optic signals into regular Power-over-Ethernet

81

Figure 5.8.: Left: map of the botanical garden, highlighting the coniferetum area and the di�erent

types of cables used (imagery ©2014 AeroWest, Map data ©2014 GeoBasis-DE/BKG, ©2009

Google). Right: G-Node with adapter board, and the Vegetronix VH-400 soil moisture sensor

probe.

(PoE) cabling. The PoE-ready gateways are connected to two G-Nodes, which ultimately have 2 or 3 soil
moisture sensors attached to them.

The selection of sites discussed, summarized in Table 5.2, have a high potential for evaluating applica-
tions that target the lowering of greenhouse gas (GHG) emissions, and in particular CO2 levels. In [51],
we describe the activities performed in this direction.

5.3 Implementation

To develop TUDµNet, we have taken MoteLab's core and extended it in a number of ways. Beyond the
physical structure of the federated sites, TUDµNet organizes all its sensor nodes by means of node zones.
At their core, zones are simple subsets of a parent zone (at the top, the universal set contains all nodes).
Figure 5.10 depicts the current structure.

The federation enables concurrent jobs (i.e., any two jobs that partially or totally overlap temporally),
as long as they are scheduled for different zones. Given that we perform the management of the zone

Table 5.2.: The TUDµNet testbed sites

site CS Dept. GKmM Lab Botanical Garden surPLUShome

nodes 53 TelosBs, 60 TelosBs 2 TelosBs, 20 Z1s

30 XM1000s 22 G-Nodes

sensors light, humidity, light, humidity, light, humidity, light, high

temperature temperature, CO temperature, precision temperature,

CO2 soil moisture humidity, CO2

focus networking gas plume environmental environmental

aspects, sensing, detection, monitoring monitoring

actuation

82

Figure 5.9.: Left to right, top to bottom: 1) digging work on main path for deployment of power and

�ber-optic cables 2) at correct depth �minimum of 50cm�, 3) shoveling within the conifere-

tum to �nally deploy 4) nodes and their enclosures

hierarchy centrally, verifying the availability of nodes for a submitted job is straightforward. As with
any �at organization, as the system scales up, the bene�ts of a hierarchy become more evident. An
administrative panel enables the recon�guration of zones.

TUD

CS Dept.

1st

Floor
2nd

Floor

3rd

Floor

GKmM Lab

1st

Array
2nd

Array
...

Botanical Garden

Coniferetum

north

Coniferetum

south
...

surPLUShome

Inner

Room
Façade

Cooling

Ceil-

ing

Figure 5.10.: Logical structure

83

The next sections describe two aspects which have required important attention: Section 5.4 presents
the improvement of the backchannel's reliability, and Section 5.5 the redesign of the GUI for specifying
and scheduling jobs.

5.4 Challenges of the USB Backchannel

In order to reduce the day-to-day maintenance costs, the design of testbeds of reasonable size aim at an
unattended operation. Interconnecting the testbed's sensor nodes to a central gateway through a USB
infrastructure has become the method of choice because USB can provide power to the nodes, be used
to reprogram nodes, and act as data-logging backchannel.

However, the design and installation of this sort of USB infrastructures is often an underestimated task
with pitfalls that can cause the testbed to become highly unreliable and costly to maintain. First, cur-
rent WSN platforms include (both hardware and software) implementations of USB protocols that are
not bug-free: although a testbed health monitoring system or a testbed engineer could troubleshoot
these issues, frequent manual intervention to restart and reconnect sensor nodes is required on-site. In
an unattended setup, this increases the maintenance costs and additionally reduces the testbed nodes'
availability.

Secondly, this issue is exacerbated with larger USB topologies, where cabling quickly reaches longer
lengths and contains hubs that fan out to many nodes. Despite employing USB topologies and parameters
within the USB speci�cation, even high quality off-the-shelf USB components do not play well with these
rather extreme setups, exhibiting considerable instability for power and data lines and thus causing
nodes to become unreachable. Although the unreliability of the gateway-nodes' USB backchannel is
well-known in the WSN testbed community [60], this issue is typically bypassed by manually resetting
individual nodes.

5.4.1 USB in Sensor Network Testbed Backchannels

Sensor Nodes

All sensor nodes (except perhaps for �nal products) require a programming and debugging interface.
Early platforms like the Mica2 made use of a specialized programming board [96], to which they attached
via a 51-pin connector. This connector would typically wear out after a number of reconnections. JTAG
is another interface broadly adopted for device reprogramming and debugging (e.g., the EyesIFX node).
To the best of our knowledge, USB was �rst used to interface the widely available TelosB node [109].

Table 5.3 summarizes various sensor nodes that employ USB to connect to a host computer. Some sensor
nodes' microcontrollers, such as the TelosB's MSP430, export UART pins for reprogramming and debug-
ging, thus require a USB converter chipset (which can be either on-board or on a separate device). Other
nodes, such as the jNode [120] have microcontrollers with USB support already built-in. In this chap-
ter we discuss the nodes chosen for the TUDµNet federation, which are based on the popular MSP430
microcontroller, with a wide variety of USB chipsets.

USB Topologies, Hubs, and Cabling

A USB topology connects sensor nodes with a gateway. Physically, the USB forms a layered star topology
(Fig. 5.11), or tree, with hubs at the center of each star, and the root hub typically embedded in the host
gateway device. Hubs can be passive (bus-powered) or active (self-powered). Due to timing constraints,
up to 7 layers are allowed. Nodes and hubs connect to their parent hub via point-to-point USB cables.

84

Table 5.3.: USB interfaces of various sensor nodes.

sensor node USB type USB chipset / Microcontroller

TelosB on-board FTDI FT232BM

Econotag on-board FTDI FT2232HL

jCreate separated FTDI FT232RQ

Z1 on-board Silicon Labs CP 2102

iMote2 built-in Intel PXA271

SunSPOT built-in Atmel AT91RM9200

Egs, Opal built-in Atmel SAM3U

jNode built-in Atmel ATmega32u4

These cables can be passive (limited by power and timing constraints to a length of 5 meters) or active
(extend the length to 10 or 12 meters by using signal repeaters and specialized circuitry). By chaining a
sequence of up to 5 passive cables and active USB hubs, the distance can be extended to 30 meters and
still conform to the USB standard. As we will show, this is the most robust topology, and comes at the
expense of extra power lines for each active hub.

Gateways

The literature reports various host platforms being used as gateways. Due to its low-cost hardware, the
Linksys NSLU2 was adopted early on as gateway for TelosB nodes (e.g., [142, 60]). Intel Stargates, fea-
turing a broader set of ports (PCMCIA, CompactFlash, I2C, etc.) and a faster processor, were used in [5].
Similarly powerful, a number of routers with USB ports, like Buffalo's, have been chosen as gateways and
customized with slimmed-down Linux distributions such as OpenWRT, e.g. in [52]. All these platforms
require some major involvement in setting up the gateway software due to their incompatibility with x86

N1

Hub 1

Layer 1

Layer 2

Layer 3

Layer 4

Layer 5

Host Gateway

Hub 2

hub:
-self-powered
-port-power switching
sensor node
passive cable
active cable

Nx

Hub

N2

N3 N4

N5

N7

Layer 6

Layer 7

Root Hub

Hub 3

Hub 4 N6

Figure 5.11.: Key components of a USB topology in several layers: root hub, active and passive hubs and

cables, and nodes.

85

Table 5.4.: Common gateways: Linksys NSLU2 (Slug), Bu�alo WZR-HP-AG300NH (Bu�alo), and PC.

Platform CPU type, speed RAM / ROM USB Price ($)

Slug Intel IXP42x, 266 MHz 8MB / 32MB 2x2.0 90

Buffalo Atheros AR9132, 400MHz 32MB / 64MB 1x2.0 100

PC Intel Dual Core, 2.5GHz 1GB / 80GB 4x2.0 300

architectures. Finally, some testbeds employ general purpose PCs as gateways as well (e.g., in [27] and
[30]). Such added �exibility in the testbed software preparation comes at a higher price per gateway.
Table 5.4 summarizes these, ordered by increasing processing power.

Gateway-to-Node Ratio and Scale

In some testbeds, only one sensor node is connected to each gateway, either directly (e.g., Kansei [5]) or
with a very short cable (e.g., MoteLab [142]), thus a large number of gateways is needed. By employing
USB cabling between gateways and sensor nodes, the number of design options increases considerably:
In TWIST [60], USB hubs are used, enabling up to 7 sensor nodes to be connected to each gateway while
achieving a similar number of nodes in the testbed. There, also a combination of passive and active USB
cables is used to extend the distance between gateways and sensor nodes up to 15 meters. Indriya [30]
resorts to high quality active USB cables which can be daisy-chained to cover a maximum distance of
up to 25 meters. This enables covering longer distances with very few gateways. In SignetLab [27], 48
nodes are connected through a two-level USB hub hierarchy to a single gateway (a PC). We summarize
these properties in Table 5.51.

The choice of gateway-node ratio is a precarious one: from a cost perspective, more nodes connected
per gateway implies a lower setup investment and lower gateway maintenance effort for the duration
the testbed will be deployed and active. However, reducing the number of gateways while covering the
same area requires more USB cabling, with choices of topology and, as we will see, risk of failures rapidly
increasing, as more complex USB infrastructure between gateway and nodes is deployed. Ultimately, up
to 127 devices (including nodes and hubs) can be connected to a single USB host according to the
USB standard [135], yet gateways will eventually require too much processing power as well as storage

Table 5.5.: Some well known testbeds with gateway-node ratio comparison for their USB backchannels.

Testbed No. gateways No. nodes Ratio Distance

gw:nodes gw.↔node (m)

Kansei 210 210 1:1 0

MoteLab 90 130 1:{1..2} 0.5

TUDµNet's Piloty site 25 83 1:{2..4} {1..15}

KanseiGenie 112 432 1:4 0.5

TWIST 90 204 1:{4..7} <15

NetEye 15 130 1:{6..12} <10

Indriya 6 127 1:22 <25

SignetLab 1 48 1:48 <15

1 Published details were not always speci�c; in this case, the respective authors were consulted and �gures adjusted, so

table data might be different.

86

capacity to cope with the management of the attached devices. Furthermore, power variations and
timing errors during the transmission are likely to become a major obstacle to increasing the ratio to
such a high scale.

5.4.2 USB Backchannel Issues

Testbed USB backchannels are exposed to several types of failures, which is why there is no guarantee
that a topology will work reliably, even when adhering to the ranges of the USB speci�cation. Variations
in the input power of a sensor node (or its USB converter chip) can cause clock synchronization failures.
Software glitches in the USB stack and the bootstrap loader, and increased bit error rates can lead to an
inconsistent protocol state. These can render a node non-programmable and non-addressable after the
error occurs.

Fig. 5.12 presents a histogram with the percentage of failed nodes in jobs submitted to TUDµNet's Piloty
site during the �rst 10 months of operation. This set only contains jobs addressing more than 10 nodes,
with other types of failures omitted (spanning around 200 jobs). This shows that only in 11.35% of the
jobs no nodes failed, while in all other jobs at least one node did. It is important to note that the referred
USB topologies conformed to the USB standard, and that none of these faults were due to faulty nodes,
nor occurred at one speci�c position within a topology. These node failures occurred in patterns that are

hard to track down or reproduce.

Such nodes resemble the so-called fail-stop behavior2: nodes stop being reprogrammable, which is iden-
ti�able through an error message, and remain in this state until being serviced. Two types of solutions
exist: a) a purist approach, and b) a method to emulate reconnecting the node to the USB port. The �rst
approach requires debugging and tracing the entire hardware and software stack, including USB drivers,
the OS kernel, and the serial bootstrap loader. This proved to be hard in the target environment. The
second approach emulates reconnections by removing power from the node and its USB converter, and
later reenabling it. This is much simpler than the former approach.

 0

 5

 10

 15

 20

 25

 30

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46

T
e

s
tb

e
d

 J
o

b
s
 (

%
)

Failed Nodes (%)

jobs w/o failed nodes

1
1
.3

5
%

jobs with % failed nodes > 0%

4
.3

2
%

4
.8

6
%

2
.1

6
%

3
.7

8
%

3
.2

4
%

1
.0

8
%

0
.5

4
%

1
.0

8
%

1
.0

8
%

0
.5

4
%

0
.5

4
%

0
.5

4
%

2
6
.4

9
%

1
2
.4

3
%

7
.5

7
%

1
1
.3

5
%

7
.0

3
%

Figure 5.12.: Histogram characterizing USB reprogramming failures in the early Piloty site over 10months:

11.35% of the testbed jobs deployed to all nodes; for the others, between 4% and 46% of

nodes were not reprogrammed.

2 This is in contrast to fail-silent failures, where the device would provide no hints that it has become non-programmable.

87

Without servicing failed nodes, the number of available (i.e., reprogrammable) nodes in the testbed
drops monotonically. In a permanent and unattended testbed, non-programmable nodes that require
manual intervention imply bad experiment repeatability. Next, we present a study of various USB
backchannel con�gurations and characterize the failures for different topologies with the aim of pro-
viding insights leading to reliable backchannel designs.

5.4.3 Backchannel Evaluation

In order to evaluate the different backchannel scenarios, we proceeded with the following basic set of
steps: a) physical preparation of the topology (connection of hubs, cables and/or nodes), b) veri�cation
of power on all nodes, c) veri�cation of correct, stable node enumeration (i.e., registration) at the host
gateway, and d) execution of microbenchmark. The microbenchmark software has minimal impact on
the measured results, since it simply consists in repeatedly reprogramming the node(s), which was done
with the default bootstrap loaders provided by Contiki and TinyOS for the respective sensor node and
host platform combination. The implementation was written in Perl and exploits parallel processes for
reprogramming the nodes as necessary. This approach allowed us to identify topology-related (i.e.,
spatial) issues. Although tests lasted from several hours to a couple of days, we could only capture a
fraction of the temporal issues that can emerge on a long-term, permanent testbed as presented before.

Across our tests we resorted to binary images of three sizes. A hello world program represented our
smallest image. As mid-size image we used a Scopes [71] test application. Finally, we use the binary
image from ukuFlow as our largest test program. The program sizes for two popular platforms, the
TelosB and Z1 WSN nodes, are summarized in Fig. 5.13a.

Gateway to Single Node Tests

We evaluated more than 50 cases with single-node topologies in total. For this purpose we elaborated a
simple microbenchmark which consisted in sequentially reprogramming the tested node. This sequence
was repeated until the node failed, or reached 1,000 iterations. In case of a failure, the procedure was
restarted, either by automatically rebooting the gateway when the device's root hub turns off attached
devices, or otherwise by manually reconnecting the node. This procedure was repeated 25 times to
ensure statistical validity.

Figure 5.13b presents the reprogramming time for both TelosB and Z1 nodes with the three �le sizes
described earlier, when nodes were connected directly to a gateway. As expected, the larger the �le size,
the longer the average reprogramming cycle was (averages are connected by dotted lines). The error
bars show an outlier, which is normally the �rst iteration, where the bootstrap loader and the program
image �les must be loaded into memory. Interestingly, no major differences were noticeable between the
two node types, although they used a different USB converter chipset (FTDI versus SiLabs). A closer look
at different manufacturers of these nodes revealed similar reprogramming times (cf. Fig. 5.13c), except
for Moteiv's Tmote Sky nodes, which took longer and had a higher variability. We believe this could be
due to these nodes belonging to some of the very early manufactured revisions. In terms of reliability,
no differences could be observed across these sensor nodes.

Distance between Gateway and Node

For many environments, long connections between a gateway and a node are advantageous. Since
the USB standard dictates a maximum cable length of 5 meters, we evaluated various topologies with
different cables and hubs. In Fig. 5.14a and 5.14b we present both the reprogramming time performance

88

 20

 25

 30

 35

 40

 45

 50

small medium large

P
ro

g
ra

m
 F

ile
 S

iz
e

 (
k
B

)

 Telos
 Z1

2
2
.2

0

3
6
.7

1

4
5
.7

3

2
3
.0

6

3
5
.4

5

4
5
.2

2

(a) program �le size

 10

 15

 20

 25

small medium large

R
e

p
ro

g
ra

m
m

in
g

 T
im

e
 (

s
e

c
s
)

 Telos
 Z1

1
1
.0

4

1
7
.0

5

2
0
.9

9

1
1
.4

8

1
6
.9

5

2
1
.2

0

(b) reprogramming time

 20

 21

 22

 23

 24

 25

 26

 27

moteiv
tmote sky

crossbow
 telosb

advanticsys
cm5000

zolertia
z1

R
e

p
ro

g
ra

m
m

in
g

 T
im

e
 (

s
e

c
s
)

FTDI
SiLabs

(c) reprogramming time for various

MSP430 platforms

Figure 5.13.: The e�ect of the node manufacturer on reprogramming time for a single-node: with

di�erently-sized programs, several platforms can be seen to have signi�cant di�erences in

programming time.

 15

 20

 25

 30

 35

 40

0
1

.8
3

.6

7
.2

1
0

.8

passive cables

 15

 20

 25

 30

 35

 40

5
6

.8

1
0

-a
1

0
-b

1
1

.8

1
5

-a
1

5
-b 2
0

2
5

-a
2

5
-b 3
0

3
6

.8 4
0

5
0

R
e

p
ro

g
ra

m
m

in
g

 T
im

e
 p

e
r

c
y
c
le

 (
s
e

c
s
)

active cables

 15

 20

 25

 30

 35

 40

3
2

.4

4
3

.2 5
4

6
4

.8

Total USB Cable Length (m)

 active hubs

(a) Reprogramming time vs.

total cable length.

 1

 10

 100

 1000

0
1

.8
3

.6

7
.2

1
0

.8

passive cables

 1

 10

 100

 1000

5
6

.8

1
0

-a
1

0
-b

1
1

.8

1
5

-a
1

5
-b 2
0

2
5

-a
2

5
-b 3
0

3
6

.8 4
0

5
0

R
e

p
ro

g
ra

m
m

in
g

 C
y
c
le

s
 B

e
tw

e
e

n
 F

a
ilu

re
s

active cables

25.00

65.56

17.76

598.84

9.28 9.40

 1

 10

 100

 1000

3
2

.4

4
3

.2 5
4

6
4

.8

Total USB Cable Length (m)

 active hubs

6.52

(b) reprogramming cycles between failures (RCBF) vs.

total cable length.

Figure 5.14.: Single-node reprogramming tests

as well as the reprogramming cycles between failures (RCBF), respectively. The components used in
these topologies, their order, and the resulting number of USB layers, are listed in Table 5.6.

By chaining standard 1.8 meter passive cables, it was possible to power a node located up to 10.8 meters
from the root hub. Though this is surprisingly well beyond the USB speci�cation, nodes were correctly
enumerated and worked reliably. As expected, the reprogramming time performance variance grew with

89

Table 5.6.: Some of the single-node topologies tested to reach a certain length between gateway and

node. (p.c. = passive cable; a.c. = active cable; a.h. = active hub)

length (m) components USB layers

0.0 direct 2

1.8 1 x 1.8m p.c. 2

3.6 2 x 1.8m p.c. 2

7.2 4 x 1.8m p.c. 2

10.8 6 x 1.8m p.c. 2

5.0 1 x 5m a.c. 3

6.8 1 x 5m a.c. + 1 x 1.8m p.c. 3

10-a 2 x 5m a.c. 4

10-b 1 x 10m a.c. 3

11.8 1 x 10m a.c. + 1 x 1.8m p.c. 3

15-a 1 x 5m a.c. + 1 x 10m a.c. 4

15-b 1 x 10m a.c. + 1 x 5m a.c. 4

20 2 x 10m a.c. 4

25-a 2 x 10m a.c. + 1 x 5m a.c. 5

25-b 5 x 5m a.c. 7

30 3 x 10m a.c. 5

36.8 3 x 10m a.c. + 1 x 5m a.c. + 6

+ 1 x 1.8m p.c.

40 4 x 10m a.c. 6

50 5 x 10m a.c. 7

32.4 3 x 6 x 1.8m p.c., 5 x a.h. 7

43.2 4 x 6 x 1.8m p.c., 5 x a.h. 7

54.0 5 x 6 x 1.8m p.c., 5 x a.h. 7

64.8 6 x 6 x 1.8m p.c., 5 x a.h. 7

the total length. All nodes used in these topologies were correctly recognized and reprogrammed for the
full 1,000 iterations. From 12.6 meters onwards, nodes were not enumerated anymore.

Conclusion 1:

Standard passive cables will work to cross a distance from gateway to a node of up to 10 meters.

When resorting to active cables, the 10 meter limit was overcome using various 5 and 10-meter cables
of this kind. Since these work internally as a hub, technically up to 5 of these can be chained, thus
potentially reaching 50 meters with active cables plus a last passive segment of 10.8 meters. With these
components, however, correct enumeration was found to be limited to a maximum of 50 meters. Average
reprogramming time and variance grew with cable length, with the reliability decreasing considerably.
With three 10-meter cables, for instance, we observed an average of 9.28 RCBF. Remarkable was also
that having a 10-meter cable as the last segment always led to poor reliability.

Conclusion 2:

Active cables extend the distance to the gateway, at the cost of decreasing reliability, to 40 meters.

By employing active hubs and passive cables, the length was stretched further. Inter-hub lengths of
5.4, 7.2, 9.0 and 10.8 meters were tried, for a total of 32.4, 43.2, 54 and 64.8 meters, respectively.
The longest length achieved with a reliable behavior was 43.2 meters. At 64.8 meters, nodes could be

90

correctly powered and enumerated, but not reprogrammed. All other topologies were either extremely
unreliable, or nodes were enumerated but could not be reprogrammed.

Conclusion 3:

Active hubs allow extending the distance to the gateway, at the cost of routing power to the hubs, to

43 meters.

Gateway to Multiple Node Tests

When connecting multiple nodes to a gateway, reliability can be expected to drop as the USB backchan-
nel's topology becomes more complex. This was already noticed in steps b (verifying power) and c
(enumeration) of the evaluation methodology. When having more than 64 nodes, and thus more than
3 layers of 4-port USB hubs, enumeration became very unreliable. This was due to sections of the tree
not being powered in a stable manner. We believe that this is an issue in the USB handshake proto-
cols. We managed to power 64 nodes and have them registered with the OS, though this required some
effort since at this scale, the topology became very sensitive to cable quality. Figure 5.15 presents the
multi-node topologies that worked reliably (summarized in Table 5.7).

The microbenchmark for multiple-node topologies was parameterized to support several concurrent pro-
cesses. Fig. 5.16 exempli�es two instances of its execution. In Fig. 5.16a, the number of nodes equals
the number of processes (n=p=4). At the third inner iteration, nodes 2 and 4 fail to be reprogrammed;
the others continue. Once all nodes fail, the system is reinitialized and the whole procedure is repeated
(25 times). In Fig. 5.16b there are more nodes than processes (n=8, p=3), therefore, at least three
rounds are necessary in each inner iteration.

E�ects of Host Gateway

The selection of the gateway platform plays a major role in the overall testbed costs. We compared the
reprogramming performance of the three host platforms of Table 5.4. The left plot in Fig. 5.17 shows
that faster gateways also exhibited faster average reprogramming cycles, which suggests that the more
nodes a topology has, the better suited a more powerful gateway is. This assumes that the topology is
reasonably designed: the scenario with only the 10-meter cable shows that the reliability decreases with
more powerful gateways (Fig. 5.17, right barchart).

Conclusion 4:

The choice of gateway platform should be determined by the speed at which all its nodes need to be

programmed.

Table 5.7.:Multi-node grid topologies in detail.

grid nodes area density USB USB

(m2) (n/m2) layers hubs

a) 3x3 9 12.96 0.69 5 3

b) 5x3 15 25.92 0.57 7 5

c) 4x6 24 48.60 0.49 6 8

d) 6x6 36 103.68 0.34 5 21

e) 7x7 49 147.91 0.33 5 21

f) 8x8 64 147.91 0.43 5 21

91

5.4m

9m

10.18m

10.18m

12.16m

12.16m

a)

b)

c)

d)

e)

f)

10.18m

...

...

...

3.6m

3.6m

7.2m

3.6m

3.6m

3.6m

7.2m

3.6m

5.4m
9m

12.16m

12.16m

12.16m

...

...

...

12.16m

...

...

...

Figure 5.15.:Multi-node grid deployments (left) and underlying USB topologies (details in Table 5.7).

92

N1 N2 N3 N4

p3p2p1
p4

p3p2p1
p4

1s
t.

in
ne

r
ite

ra
tio

n
2n

d.
 in

ne
r

ite
ra

tio
n

3r
d.

 in
ne

r
it

er
at

io
n

p3p1

...

4t
h.

 in
ne

r
ite

ra
tio

n

N1 N2 N3 N4 N5 N6 N7 N8

p3p2p1

1s
t.

in
ne

r
ite

ra
tio

n
2n

d.
 in

ne
r

ite
ra

tio
n

p3p2p1

p2p1

ti
m

e

a) b)

p3p2p1
p4 p3p2p1

p3p2p1

p2p1

Figure 5.16.: Two instances of the microbenchmark to test reprogramming behavior. In a) there is the

same number of processes and nodes (n=p=4), thus each process participates only once in

each iteration. In b) there are more nodes than processes (n=8 and p=3), thus processes

participate multiple times in each iteration.

Sequential versus Parallel Reprogramming

A topic that arises when reprogramming multiple nodes from a single gateway is that this should ideally
be done in parallel since this might save time, compared to a sequential reprogramming. The limited
resources of single-board computer gateways, however, constrain the degree of parallelism. The table
in Fig. 5.18a presents our �ndings on the maximum degree of parallelism (row called max ‖◦) of each
gateway; reprogramming more nodes caused the host platform to hang. (Note that a PC could probably
reprogram more than 59 nodes, but this was a limit in our test topologies due to power and enumera-
tion.) The bottom part of the table indicates in how many rounds a topology of a given number of nodes
can be divided in order to exploit parallelism. Evidently, the slug will require many rounds to repro-
gram large topologies, while a PC could do it in one or two rounds. Fig. 5.18b presents the observed
average time it took the Buffalo gateway to reprogram once all of the nodes in each of the topologies of
Fig. 5.15, both with the maximum degree of parallelism (bottom) and sequentially (top). The diverging
curves show that parallelism should be preferred. From the reliability perspective, it was not relevant
how nodes were reprogrammed.

Conclusion 5:

Topologies with many nodes should exploit parallelism to reduce the reprogramming overhead time.

E�ects of USB Hubs

In these experiments, we have inspected a total of ten USB hubs, with varying con�gurations of number
of ports (4- and 7-port) and power supply (bus- and self-powered). In our experiments, no noticeable
effects were obtained, neither in terms of reprogramming time, nor in reliability. The next section
indicates, however, which hubs are to be preferred for a testbed.

93

 15

 20

 25

 30

 35

 40

 45

 50

slug buffalo pc

R
e
p

ro
g

ra
m

m
in

g
 T

im
e
 (

s
e

c
s
)

 1

 10

 100

 1000

slug buffalo pc

R
e
p

ro
g
ra

m
m

in
g
 C

y
c
le

s
 B

e
tw

e
e
n

 F
a
ilu

re
s RCBF for 10-b

Figure 5.17.: Comparison of gateway platforms of Table 5.4.

USB Power Control to Enhance Reliability

Manually reconnecting nodes to the USB cabling, in order to remove power temporarily and cause a
hard reboot effect, is a costly solution to the backchannel problems. By using a feature of USB 2.0 hubs,
namely hub port power control (HPPC) [135], it is possible to achieve the same effect, but without
requiring manual intervention. Power control was �rst used in TWIST [60] to emulate node deaths.
Here we resort to it in order to increase the reliability of the testbed.

The power control procedure begins by constructing a tree re�ecting the attached USB topology (as for
example the one shown in Fig. 5.11). This is done by exploring operating system's data structures. For
each element in the tree, the OS provides metadata such as whether the element is a sensor node or a
hub (and whether it is active or passive), its manufacturer, the product ID and other descriptors. Details
matter, since many hubs that shared the vendor and product IDs were very different internally.

Once a gateway has constructed its USB tree, HPPC can be applied to all nodes or a selected one.
Switching power of all nodes can be used, e.g., to do a testbed soft reboot of the lowest, sensor node

Slug Buffalo PC

max ‖◦ 5 8 59

ro
u
n
d
s
fo
r

#
n
o
d
e
s

4 1 1 1
12 3 2 1
24 5 3 1
48 10 6 1
64 13 8 1|2

(a) parallel capacity
 0

 5

 10

 15

 20

 25

3x3 5x3 4x6 6x6 7x7 8x8

 R
e
p
ro

g
ra

m
m

in
g
 T

im
e
 (

m
in

)

Topology Size

max ||
 sequential

(b) total reprogramming time

Figure 5.18.: Exploiting parallelism for reprogramming nodes through a backchannel. The table on the

left shows the maximum capacity observed for the tested gateways. The plot on the right

compares the time needed to reprogram all nodes in sequential vs. parallel fashion.

94

tier. For this case, the procedure starts traversing the tree from the root hub and, in a post-order fashion,
switching power (on or off, as requested) of all of a hub's ports, assuming it supports HPPC. Note that
it does not suf�ce to stop at the �rst USB hub that supports HPPC, since downstream hubs could be
self-powered (thus connected nodes would remain unaffected).

Switching power of a particular node (without affecting the others) is used if for instance a test job is
running on some nodes within the tree, and some other need to be restarted or reprogrammed. After
searching for the target node in the tree, the procedure checks whether its direct parent hub supports
HPPC. If it does, power switching is requested for the speci�c port of that hub to which the node is
attached (this is the case for node N1 in Fig. 5.11). If it does not, the procedure backtracks through
parents until it �nds one that does. Since this could imply switching power to nodes in the common
branch, care must be taken to consider this undesired side effect (e.g., N7 is safe through hub 3, but N4
is not safe through hub 1). We have additionally implemented a force option, which aggressively ignores
switching other nodes' power. This is useful for troubleshooting tasks.

Reliability Improvements

Applying HPPC has shown to overcome many (though not all) of the issues in our testbed. Fig. 5.19
presents a quanti�cation of the effects of HPPC on three of the problematic single node topologies (20, 30
and 54 meters), extended with an HPPC-able USB hub connected to the root. The plot shows the relative
improvement in RCBF in these three cases, and suggests that the more complex the USB topology, the
higher the improvement achieved by applying HPPC before reprogramming a node.

Enabling HPPC in a USB topology for any given node works best when having USB hubs that support this
function as its direct parent. Although the USB standard speci�es that bus-powered hubs are required to
implement this function (self-powered hubs might) [135], in practice, few of all the USB hubs we tried
were manufactured with the necessary circuitry to support it, to the point that it is very hard to �nd any
on the market. Mass production, however, does not imply that this circuitry adds a signi�cant price to
the USB hub3, and the reliability gains greatly outweigh its cost.

Conclusion 6:

Using HPPC is an inexpensive mechanism to improve reliability for an unattended testbed operation.

 0

 5

 10

 15

 20

 25

 30

 20m 30m 54m

 R
e

la
ti
v
e

 R
C

B
F

 I
m

p
ro

v
e

m
e

n
t

(%
)

5.03 %

12.38 %

24.19 %

Figure 5.19.: E�ects of hub port power control (HPPC) on the reliability within the testbed.

3 One such hub is the DeLock 4-port 87445, which retails for around $7.

95

Alternatives

As indicated earlier, some gateways' root hub USB circuitry effectively powers down attached USB devices
when doing a software reboot. Besides implying shutting down critical services running on the gateway,
boot cycle time (especially of single board computers) can take minutes, reducing the testbed availability.
Although we have not searched extensively, among the hardware we inspected only the Buffalo WZR-
HP-G300NH (rev. 2.0) routers exhibited USB power-down during software reboot.

5.5 Job De�nition and Scheduling

In order to increase the repeatability of experiments, we have not only improved the reliability of the USB
backchannel, but also reworked and improved the graphical user interface of the testbed federation by
simplifying the de�nition and scheduling of jobs. TUDµNet enables registered users to log into the web
interface, upload binary images, schedule jobs at a desired zone, and retrieve a job's data, all by means
of a series of mouse clicks. The interface for job scheduling (cf. Fig. 5.20) received particular attention
since, as soon as the system is used by multiple users, it becomes necessary to obtain an overview of
empty and reserved time slots.

In TUDµNet, users schedule jobs to run on a zone (or subzone) during a speci�c time window (e.g.,
from 3pm to 4pm). Like in MoteLab, users have a quota that limits the duration of their pending jobs.
As an example, a user with a quota of 60 minutes can schedule one job of 60 minutes, or 3 jobs of
20 minutes each, etc. Only after jobs are �nished (or cancelled) it is that the user's available quota is
updated. Each user is assigned an initial quota of 30 minutes, and can be increased by contacting the
system administrators.

Figure 5.20.: TUDµNet web interface for job scheduling. Concurrent jobs on di�erent zones are shown

next to each other. Users can stop jobs or access logged data through few mouse clicks.

96

http://www.tudunet.tu-darmstadt.de
http://www.tudunet.tu-darmstadt.de

In addition, we have implemented a number of features like public/private jobs (e.g. for sharing common
jobs like data collection, setting node ids, etc.); a simple visualization of the federation zones' status as
an overlay on a map; and administrative scripts for testbed maintenance, among others.

5.6 TUDµNet's Impact on Users and the Research Community

Besides technical achievements in the development of the testbed federation, it is important to highlight
the effects of its utilization so far. Currently, over 100 user accounts are registered in the system. While
most of these accounts have been created for TU Darmstadt's undergraduate students, there are around
10 power users, i.e., users who have executed more than 100 jobs in the context of Bachelor, Master and
PhD theses. Also, �rst external users (e.g., from the US, Brazil and Australia) have gotten accounts.

Since the roll out of the web interface, in July 2011, users have scheduled experiments with the testbed
amounting collectively to around 8,000 hours, with an ever increasing utilization, as presented in Fig.
5.21. In general, there is a correlation between the number of jobs in a week and the number of hours
used in that week. An exception to this observation is found in some weeks where it was allowed to a
subset of the users to run experiments for 5 or 7 days straight. More interestingly is that this utilization
comes from more than 10,000 jobs. Considering that the manual reprogramming of a 30-node network
costs a human about 30 minutes (ignoring the need to physically travel to the site), we can conservatively
state that TUDµNet has saved researchers around 5,000 hours of reprogramming time.

5.7 Summary

There exist several ways to carry out system experimentation. We believe that in order to take sensor
networks (and in particular systems like ukuFlow) one step closer to their promised ubiquity, empirical
experimentation is necessary, and testbeds are an ideal research tool for this purpose.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

 600

2
0

1
1

-0
7

2
0

1
1

-0
8

2
0

1
1

-0
9

2
0

1
1

-1
0

2
0

1
1

-1
1

2
0

1
1

-1
2

2
0

1
2

-0
1

2
0

1
2

-0
2

2
0

1
2

-0
3

2
0

1
2

-0
4

2
0

1
2

-0
5

2
0

1
2

-0
6

2
0

1
2

-0
7

2
0

1
2

-0
8

2
0

1
2

-0
9

2
0

1
2

-1
0

2
0

1
2

-1
1

2
0

1
2

-1
2

2
0

1
3

-0
1

2
0

1
3

-0
2

2
0

1
3

-0
3

2
0

1
3

-0
4

2
0

1
3

-0
5

2
0

1
3

-0
6

2
0

1
3

-0
7

2
0

1
3

-0
8

2
0

1
3

-0
9

2
0

1
3

-1
0

2
0

1
3

-1
1

2
0

1
3

-1
2

2
0

1
4

-0
1

2
0

1
4

-0
2

2
0

1
4

-0
3

2
0

1
4

-0
4

2
0

1
4

-0
5

2
0

1
4

-0
6

2
0

1
4

-0
7

2
0

1
4

-0
8

2
0

1
4

-0
9

2
0

1
4

-1
0

a
g

g
re

g
a

te
d

 t
im

e
 (

h
o

u
rs

)

month

time usage

Figure 5.21.: TUDµNet's testbed usage since its early deployment mid-2011. The bars represent the ag-

gregated time spent each month across all sites.

97

In this chapter we have described the TUDµNet testbed federation, which is composed of four experi-
mentation sites (three of which are currently active), managed through the concept of zones. We have
shown that the construction of a testbed site, if not done carefully, can yield high deployment, mainte-
nance and operation costs, and provide a poor experimentation experience with regards to realism and
repeatability. The work presented in this chapter to improve the USB backchannel, and the measures
taken to improve the user interface, were fundamental in the development of TUDµNet to reach the
level of scienti�c rigour required in research.

The usefulness of this research tool has shown its �rst fruits, not only for the experts of the domains
in which the sites were deployed (TU Darmstadt's Dept. of Architecture and Biology), but primarily for
the sensor network researchers using the testbed, as evidenced by its continuously increasing system
utilization. In the next chapter, we too exploit the testbed sites to understand and evaluate the ukuFlow
system in action.

98

6 System Evaluation

Statistics: The only science that enables different

experts using the same �gures to draw different

conclusions.

Evan Esar (1899-1995)

This work argues that through a high-level work�ow macroprogramming approach, domain experts can
de�ne the logic of a sensor/actuator network application, and have this logic run entirely in-network,
with a low-power operation, tolerating network dynamics. In this chapter we study the feasibility of
such a system by evaluating the most signi�cant aspects that enable prototypical applications to run on
real-world WSANs.

The evaluation is structured in two main parts, as presented in Fig. 6.1. In the �rst part we analyzemicro

aspects of the ukuFlow engine, addressing questions such as whether the system exhibits an adequate
footprint for the targeted platforms (Section 6.1), evaluating data management aspects (Section 6.2),
and work�ow instantiation and execution (Sections 6.3 and 6.4). The second part zooms out from the
internals of a single node, and considers macro aspects of work�ow execution that concern an entire
network. In order to correctly assess these results, we carried out a characterization of the test sites
before investigating the scoping performance. The chapter is concluded with a study on a number of
actuation (Section 6.7) as well as event detection scenarios (Section 6.8 and 6.9).

6.1 System Footprint

We begin discussing the feasibility of ukuFlow for the targeted mote-class devices. All mote-class sensor
node platforms are very memory constrained. Furthermore, while many sensor nodes such as the TelosB
have MCUs with a single address space for both data and code, these two are internally mapped to

macro-
evaluation

micro-
evaluation

data
management

workflow
execution

network
characterization

actuation
scoping

performance

event
detection

complex event
detection

workflow
parallelism

Section 6.1

system
footprint

Section 6.2 Section 6.3 Section 6.4

Section 6.5 Section 6.6

Section 6.8 Section 6.9

Section 6.7

Figure 6.1.: Organization of this chapter

99

Table 6.1.:Mote-class devices' memory properties

MSP430 Memory (KB)

Platform Microcontroller RAM Flash

TelosB / Tmote Sky F1611 10 48

Zolertia Z1 F2617 8 92

Advanticsys XM1000, SOWNet G-Node F2618 8 116

different units: RAM (used for data) and �ash (for the program space). Table 6.1 details the sizes of
various platforms1. The system footprint thus needs to be measured from these two perspectives.

The asymmetry between RAM and �ash requires a careful de�nition of the data structures. Therefore,
most parameters in the ukuFlow stack are �xed at compile-time so that these can be allocated to the pro-
gram space. A crucial aspect to decide what to place where is volatility, so that the node can eventually
recover and continue its operation after a crash or a watchdog reset.

We measured the system footprint by generating the object binaries for the different ukuFlow modules.
For this purpose, we use the compiler msp-gcc version 4.7.0, and the tool msp430-size to extract the
size of the binaries (for the �ash unit) and the variables (both initialized, data, and uninitialized, BSS).

Applying some simple techniques, the entire system is compiled into a �rmware �le of less than 45 KB
of �ash and 6 KB of RAM. This makes the current implementation of ukuFlow suitable even for the
resource-constrained sensor nodes. Figure 6.2 presents the requirements for both �ash (solid boxes) and
RAM (patterned) of the three subsystems (the data manager, the Scopes framework and the ukuFlow
runtime). ukuFlow modules themselves require around 18.6 KB of �ash, while the remaining 26.4
KB belong to the operating system and libraries. The largest modules are ukuFlow's work�ow engine
and event manager, and to a smaller extent the Scopes manager and tree-based routing module. The
requirements for static RAM amounts to 2.6 KB, mainly due to the scopes-selfur module (i.e., tree-
based routing) that keeps a number of routing and scope entries simultaneously (this was con�gured
to 10 entries of each type), as well as the size of the fragmentation buffer (con�gured to 8 packets).
These parameters can be tweaked to reduce the RAM requirements, in particular in situations where it
is known in advance what applications might run on the ukuFlow network.

The cited techniques include removing all process names as well as debugging information not neces-
sary for the execution of work�ows. During system development and evaluation, however, debugging
messages are fundamental to understand the behavior and �x bugs. Since debug messages in Contiki
are realized through printf statements, these are costly in terms of �ash space. For this reason, an
overhead-free debugging module was employed which enables to quickly choose the log level, from
zero (no messages) to �ve (detailed logging). Recompiling with a particular log-level value enables or
disables the corresponding log messages.

Besides the RAM statically allocated for ukuFlow's data structures, the system requires RAM to run code
(in the stack space) and to allocate dynamic memory (in the heap). The next sections inspect the dynamic
behavior, looking at memory requirements and execution time.

1 Note that although newer platforms have a �ash unit larger than that of the original TelosB node, current toolchains are

not yet able to fully exploit MCUs with more than 64 KB (i.e., an address space of 216 entries). Experimental extensions

exist that add support for 20-bit pointers, which enable addressing the far memory region beyond the �rst 64 KB, but

current bootstrap loaders have yet to be extended.

100

 0

 1000

 2000

 3000

 4000

 5000

d
a
ta

-m
g
r

e
x
p
re

s
s
io

n
-e

v
a
l

s
c
o
p
e
s

s
c
o
p
e
s
-m

e
m

b
e
rs

h
ip

-s
im

p
le

s
c
o
p
e
s
-s

e
lf
u
r

fr
a
g
-u

n
ic

a
s
t

b
it
v
e
c
to

r

u
k
u
fl
o
w

-c
m

d
-r

u
n
n
e
r

u
k
u
fl
o
w

-e
n
g
in

e

u
k
u
fl
o
w

-e
v
e
n
t-

m
g
r

u
k
u
fl
o
w

-m
g
r

u
k
u
fl
o
w

-n
e
t-

m
g
r

u
k
u
fl
o
w

-s
e
ri
a
l

e
v
e
n
t

w
o
rk

fl
o
w

M
o

d
u

le
 S

iz
e

 (
B

y
te

s
)

data-mgr
scopes

ukuFlow-engine

Figure 6.2.: The ukuFlow runtime modules binaries' size and their RAM requirements

6.2 Data Management

The data manager is a central component to the entire framework: it is used by the Scopes framework
for storing node properties and checking a node's membership to the received scope speci�cations, and
by the ukuFlow engine for work�ow instance's data. The data manager was built as a �exible service
that does not require a previous declaration of which and how many name-value pairs will be required,
or how wide they should be.

Instead of using a preallocated, static memory region (some of which might remain unused), this �ex-
ibility is achieved using dynamic memory organized into 2 levels, as shown in Fig. 6.3. The �rst level
contains representatives of each repository. A module that requires a repository is given a repository ID,
which is used later as handle to access its name-value pairs. The second level contains the name-value
pair entries themselves. The implementation makes extensive use of the list data structure offered
by Contiki. We further reduce memory requirements by not storing summary information such as list
lengths - this is traded off with longer execution time for its recalculation. Most operations have a
complexity linear to the number of repositories and entries.

We have evaluated the usage of the data manager on sensor nodes with an MSP430 MCU, and found out
that it is possible to allocate a total of around 4 KB of RAM dynamically. Objects in the �rst level have
a �xed width of 14 bytes. The width of objects in the second level, i.e., name-value pairs, depends on
the length of the value �eld. This �eld can have 1, 2 or 4 bytes, leading to a total of 10, 12 or 14 bytes
(after including the padding). Figure 6.4 shows the relationship between the number of repositories that
a node can handle and the maximum number of entries per repository. This helps us to �nd a balance
between the two dimensions. For instance, allowing only 1 repository would enable 398 name-value
pair entries in it (at maximum), while 50 repositories would enable only 6 entries per repository. While

101

data
manager

repo ID
repo ttl

entry type
entry id
data_len
.. data ..

next_repo

entries

next_entry

entry type
entry id
data_len
.. data ..

next_entry

repo ID
repo ttl

next_repo

entries

entry type
entry id
data_len
.. data ..

next_entry

COMMON REPO

repo ID
repo ttl

next_repo

entries

...

...

...

REPO #1 REPO #2

Le
ve

l 2
:

na
m

e-
va

lu
e

pa
ir

s
Le

ve
l 1

:
re

po
si

to
ri

es

Figure 6.3.: Two-level lists organization of the data manager

these parameters can be adjusted, we have chosen to have a maximum of 20 repositories, each then of
a maximum of 15 entries. Note that these 15 entries are for application-speci�c or user-de�ned values,
and are in addition to the ∼15 entries of the common repository described in Section 4.4.

The usage of dynamic memory in a sensor network system should not be taken for granted. Indeed,
TinyOS and nesC were initially constructed around a completely static memory model, where dynamic
memory and function pointers were not allowed in order to simplify the management and avoid the
overhead of memory allocation. Only more recent OSs like SOS and Contiki departed from this restriction
and re-enabled the usage of the malloc and free primitives.

We investigated this overhead on a TelosB node closely and found that the added �exibility can be
afforded despite the higher cost. The data management operations occur at the two levels: repositories
and name-value pairs. Figure 6.5 presents histograms of the execution times for repository creation (left,
uses malloc) and deletion (right, uses free). The plots in Fig. 6.6 are the execution times for creating
a new entry (left, uses malloc) and overwriting an existing one (right). In general, we observe that
compared to the free operation, malloc is slower and has a higher variance. The average time to create
a repository entry averages 1056 µs, creating a name-value pair with a 16-bit value �eld requires slightly
longer, 1344 µs. To put this operation in perspective: a simple write onto 10 bytes statically allocated

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 10 20 30 40 50

M
a
x
 n

r.
 o

f
e
n
tr

ie
s
 p

e
r

re
p
o
s
it
o
ry

Nr. of repositories

8-bit
16-bit
32-bit

Figure 6.4.: Relationship between number of repositories andmaximum number of name-value pairs per

repository, for di�erent lengths of the value �eld, on a TelosB node.

102

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 500 1000 1500 2000 2500 3000 3500

R
e
p

o
si

to
ry

 C
re

a
tio

n
 (

fr
e
q
u

e
n

cy
)

Time (µs)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 40 50 60 70 80 90 100 110 120

R
e
p

o
si

to
ry

 D
e
le

tio
n
 (

fr
e
q

u
e
n

cy
)

Time (µs)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 500 1000 1500 2000 2500 3000 3500 4000

N
a
m

e
-V

a
lu

e
 P

a
ir
 C

re
a
tio

n
 (

fr
e

q
u

e
n
cy

)

Time (µs)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 200 400 600 800 1000 1200 1400

N
a
m

e
-V

a
lu

e
 P

a
ir
 O

ve
rw

ri
te

 (
fr

e
q
u

e
n

cy
)

Time (µs)

Figure 6.5.: Histograms of completion times for repository operations. Left: repository creation, right:

repository deletion
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 500 1000 1500 2000 2500 3000 3500

R
e
p

o
si

to
ry

 C
re

a
tio

n
 (

fr
e
q

u
e
n
cy

)

Time (µs)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 40 50 60 70 80 90 100 110 120

R
e

p
o
si

to
ry

 D
e
le

tio
n
 (

fr
e
q

u
e
n

cy
)

Time (µs)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 500 1000 1500 2000 2500 3000 3500 4000

N
a
m

e
-V

a
lu

e
 P

a
ir
 C

re
a
tio

n
 (

fr
e

q
u
e

n
cy

)

Time (µs)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 200 400 600 800 1000 1200 1400

N
a
m

e
-V

a
lu

e
 P

a
ir
 O

ve
rw

ri
te

 (
fr

e
q
u

e
n

cy
)

Time (µs)

Figure 6.6.: Histograms of completion times for operations on name-value pairs. Left: creation of a new

name-value pair, right: write into name-value pair in-place. The 4x overhead for writing 10

bytes of data is tolerable given the added �exibility.

requires 270 µs, which yields an overhead of 4x. Overwriting an already existing name-value pair, e.g.,
to update sensor data, is much faster at an average of 176 µs. Deleting an entry is considerably fast at
41 µs. We argue that the incurred overhead is tolerable, considering the bene�ts from dynamic memory
of reorganization at runtime and allowing the reuse of unneeded, freed memory, for other purposes.

The available RAM on a node is not used exclusively for data entries: also the Scopes framework and
ukuFlow work�ow objects require memory dynamically. In the next sections we evaluate the interplay
between these subsystems.

6.3 Work�ow Execution

In this section we evaluate ukuFlow's execution performance. Since the execution of function statements
is performed in asynchronous fashion, we concentrate on computation statements instead, which are
CPU-bound, and look at the overall context switching overhead incurred by the virtual machine approach
of ukuFlow. To evaluate the execution time of computation statements, we employed three different
expressions (presented in Listing 6.1), and measured their individual execution times, as well as the
total time.

Table 6.2 presents the results of the measurements for both TelosB and XM1000 nodes. The bottom row
presents the total time required to execute all three expressions plus the assignment of the initial values

103

a=3; b=12; c=5;

d = a + b - c; // expression 1, d=10

e = ((a * d) + (a * b) - (c * d)) % 2; // expression 2, e=(30+36-50) % 2=16 % 2=0

f = (e != 0) OR (b > c); // expression 3, f=1

Listing 6.1: Computation statements used for tests

to the variables. As a comparison, we implemented the same logic on an analogous, native C program,
and compiled it with most compiler optimizations disabled. The native program took 61 µs on a TelosB
node (30 µs on an XM1000), which is a factor of 50 to 60 times faster. From this analysis it follows that
while it is possible and convenient to perform simple arithmetic and logic operations with the built-in
computation statements, math-intensive work�ows can greatly bene�t from a custom component written
natively for the target platform.

Table 6.2.: Execution times for several CPU-bound expressions

expression time (µs)
TelosB XM1000

expr. 1 610 244

expr. 2 1251 518

expr. 3 732 305

average 598 247

st. dev. 360 148

total 3601 1495

In ukuFlow, context switching from one running token to another involves a variety of operations. These
include sending the token to the corresponding (ready or blocked) queue, posting an event to the re-
spective scheduler protothread (short or long term), allocating and releasing resources for new tokens,
etc., i.e., all the management activities not directly contributing to the work�ow execution.

We measured the duration of these context switches for a subset of the work�ows listed in Section 4.2.4,
which yielded an average of 402 µs on a TelosB node, and 183 µs on an XM1000 node. While this penalty
is smaller than the fastest operations presented previously (the CPU-bound computation statements), it
is not negligible because it is incurred continuously during the lifetime of a work�ow instance. Also, the
standard deviation observed, 347 µs and 152 µs, respectively, was high. This was due to the varying
circumstances in which context switches occur, such as the number of tokens running concurrently, and
the length of token queues.

6.4 Work�ow Parallelism

This section focuses on the possibility of the ukuFlow framework to deal with multiple work�ows. Par-
allelism is possible only under the assumption that enough RAM is available to instantiate work�ows.

In the memory of a ukuFlow manager node, each work�ow speci�cation is wrapped with a compact
management object called work�ow node, which is used to track the number of instances already
created for that work�ow, the state, and the number of instances that need to be created yet (in case
this parameter was speci�ed). Each work�ow instance has a corresponding object in memory that has
�elds used to track the number of instance tokens, to link to the work�ow speci�cation, and to register
the instance's repository ID. Finally, a work�ow instance has one or more instance tokens, which are

104

initialized to point to the start event of the work�ow, and seed the execution of the instances. An
instance token carries a pointer to the current and previous work�ow operator IDs, to the work�ow
instance (through which it is possible to reach the work�ow speci�cation), to operator-speci�c token
state, and to the parent token (if any).

In ukuFlow, we resorted to a hybrid memory model for these four object types. As shown in Fig. 6.7,
these objects form a logical pyramid. It is not simple to predict the exact number of objects needed at all
times for each type. However, the predictability increases from the bottom of the pyramid towards the
top. For this reason, ukuFlow uses dynamic memory for work�ow tokens and operator-speci�c token state
objects, and a pre-allocated memory pool for work�ow instances and nodes. This reduces the need to
impose an arti�cial limit to the number of tokens, while enabling fast work�ow registration and instance
creation.

In order to evaluate the behavior of ukuFlow executing parallel work�ows, we performed stress-tests to
determine how many instances can be allocated, with a) a single-work�ow and b) a mixed-work�ow
scenario.

The initial implementation of the work�ow manager made intensive use of interprocess communication
between the long- and short-term schedulers to notify about the completion of tasks and availability of
resources. For this service, the Contiki operating system uses an array to store the IDs of the caller and
callee modules, the noti�cation type and the actual parameter. Since this array is for most platforms
de�ned to have a size of 8 entries, when requiring a degree of work�ow parallelism of above 4 work�ow
instances, this space would not suf�ce �and the nodes crashed. We modi�ed the operation so as to
require notifying a scheduler only if it does not have pending noti�cations already. At the cost of this
extra veri�cation, this optimization reduces the required number of noti�cations between these two
modules to only 1 message at all times.

For the single-work�ow scenario, we employed a linear work�ow consisting of 15 operators, i.e., 13
script tasks (each with a single computation statement), plus the start and end events. Due to this
linearity, each work�ow instance does not have more than one token (and one token state object) at any
time. The simplicity of this work�ow allows us to reason about CPU and memory utilization. We speci�ed
the work�ow to execute 100 times, and by varying the number of maximum parallel instances required,
we observed how the system behaved and coped with overload. For each parameter, we repeated the

w
f_

t#
2

w
f_

t#
5

w
f_

n#
3

w
f_

t#
3

w
f_

t#
1

w
f_

n#
21

w
f_

i#
2

w
f_

i#
4

w
f_

i#
8

workflow
instances

workflow
nodes

workflow
tokens

token
state t_

s#
2

t_
s#

1

(l
ow

)

pr
ed

ic
ta

bi
lit

y

(h
ig

h)

static memory (pool)

dynamic memory

Figure 6.7.: In-memory objects for process management. The number of objects at the bottom of the

pyramid is di�cult to predict, but is better known towards the top.

105

 0

 5

 10

 15

 20

 25

 30

 35

 40

1 2 4 8 16 24 32 40 42 45 50 55 60
 30

 35

 40

 45

 50

 55

M
a
x
.

n
r.

 o
f

p
a
ra

lle
l
in

s
ta

n
c
e

s
 o

b
ta

in
e

d

In
s
ta

n
c
e

 c
o

m
p

le
ti
o

n
 t

im
e
 (

m
s
)

Nr. of parallel instances requested

max. parallel instances
avg. instance completion time

Figure 6.8.: Support for parallelism in a single-work�ow scenario.

test three times and obtained the average values (the observed standard deviation was negligible, since
this is a deterministic work�ow).

Figure 6.8 presents the results for TelosB nodes. The horizontal axis presents the number of parallel in-
stances requested (with the max. # of instances required parameter). The blue curve (which reads
with the vertical axis on the left) represents the maximum number of work�ow instances observed in
parallel: a maximum of 40 instances were possible. When requiring more instances than that, the sys-
tem failed to instantiate one of the necessary objects in dynamic memory (a data repository, a token or
its token state object), and thus sent the work�ow to the blocked state, where it waited until resources
became available again. The green curve (reads with the vertical axis on the right) represents the time
required in average by a single instance to complete its execution. It is worth noting that the average
work�ow instance completion time for required degrees of parallelism of 2 or 4 were lower than when
requiring only one instance. By interpolation, 6 parallel instances were possibly at the break-even point
for being just as fast as with only 1 instance. Parallelism degrees above 6 increased the average work�ow
instance completion time in near linear fashion. For parallelism degree values above 40, the system hit
its maximum capacity, and thus the curve �attened.

For the mixed-work�ow scenario, we employed three work�ows: 1) a linear work�ow, similar to the
one used before, but limited to 8 operators (start and end events, and 6 script tasks), 2) a work�ow
with an exclusive decision gateway, and 3) a work�ow with a nested fork operator. The �rst work�ow
only allocates 1 token during its execution; the second uses 2 tokens when executing the script tasks
succeeding from the decision gateway. In the third work�ow, this number varies from 0 to 3 across the
duration of the execution of an instance, and is thus the most expensive in terms of memory utilization.

For this test case, we required each of the three work�ows to be instantiated 100 times, and varied the
number of parallel instances required. The results of the evaluation on a TelosB node are presented in
Fig. 6.9. These plots show the active instances being executed in parallel across the duration of the
experiment. Instances are encoded with a color corresponding to their work�ow speci�cation. In 6.9a
we allow 1 instance per work�ow; in 6.9b, 2 per work�ow; and in 6.9c we tried with 6. The system
was only able to cope with a maximum of 17 instances in this scenario (in contrast to the 40 of the
single-work�ow scenario). This is due to the lack of RAM to hold the necessary objects. As expected,
the time required by instances to complete is proportional to the number of other instances running in
parallel at that moment. Only towards the end of an experiment, where fewer work�ows were active,
the completion time was much shorter than when the maximum number of instances are active. From

106

this we conclude that higher degrees of parallelism are possible, but for an increased total completion
time.

In the next sections we switch from a micro to a macro view of the system and concentrate on the
behavior at network scale.

6.5 Network Characterization

For the macro-evaluation of this work, we have resorted to two sites of non-trivial size: the deployments
in the Piloty and TIZ buildings, which are integrated in the TUDµNet federation of testbeds. To under-
stand the operation of ukuFlow, and in particular the behavior of Scopes, we investigated the network
characteristics of these two sites. Table 6.3 presents their static properties:

Table 6.3.: Properties of selected TUDµNet Sites

Site Nodes Physical Distance (m) Density

Size (m3) min avg max (n/m3)

Piloty 63 30×20×8 1.2 13.9 34.4 0.01

TIZ 60 31×7×3 1.2 10.4 26.5 0.09

From the physical location of the nodes, we characterized the wireless links according to the distance
between the corresponding pair of nodes. While the average link length is considerably similar (10.4m
in TIZ vs 13.9m in Piloty) between the two sites, their link length distributions (shown in Fig. 6.10)
were different: in TIZ, the distribution is positively skewed: many links were short, and there were only
few links with a length longer than 20 meters. In contrast, link lengths in Piloty follow more closely a
gaussian distribution.

To capture the dynamic properties of these sites, we assessed the quality of every network link, i.e., the
communication between any pair of nodes. For this purpose we developed a Contiki tool that exchanges
probes among all nodes sequentially. In round-robin fashion, the master node:

1. designates one node as sender and all other as receivers,

2. instructs the sender node to begin sending probes �while all other nodes remain idle�, and

3. requests the collection of statistics centrally from all other nodes.

The statistics collected include packet reception ratio (PRR), received signal strength indication (RSSI)
and link quality indicator (LQI) of each successfully received probe. From this data set, further dynamic
properties of the site were calculated such as network diameter and expected network delivery. A detailed
evaluation of the dynamic properties of these two sites was presented in [57]. Here, instead, we focus
on an aspect that is relevant to our study, namely the node degree.

Node degree refers to the number of direct neighbors a node has, and results from factors such as node
density, site layout and topology. At TIZ, the relatively obstruction-free and dense deployment yields an
average node degree of 57.61, which means that nodes can successfully communicate with almost all
of the other nodes in the site. In contrast, due to artifacts such as thick walls and other interference, in
Piloty the average node degree is only 25.3. This implies that data needs to travel through more hops to
reach its destination.

Table 6.4 presents the �ndings for both sites using different transmission (TX) power levels. The table
includes the minimum, average and maximum node degrees observed, as well as a column with the

107

 0

 1

 2

 3

 4

 5

 6

 0 2000 4000 6000 8000 10000

In
s
ta

n
c
e
 N

u
m

b
e
r

Time (ms)

wf. #1 wf. #2 wf. #3

(a) Test with 1 instance per work�ow

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 2000 4000 6000 8000 10000

In
s
ta

n
c
e
 N

u
m

b
e
r

Time (ms)

wf. #1 wf. #2 wf. #3

(b) Test with 2 instances per work�ow

 0

 5

 10

 15

 20

 0 2000 4000 6000 8000 10000

In
s
ta

n
c
e
 N

u
m

b
e
r

Time (ms)

wf. #1 wf. #2 wf. #3

(c) Test with 17 instances (wf. #1: 6, wf. #2: 6, wf. #3: 5) - the maximum reached.

Figure 6.9.: Completion time plots describing the support for parallelism in a mixed-work�ow scenario.

Higher parallelism degree is possible at the cost of an increased total completion time.

108

Table 6.4.: The obtained node degree of the two sites for di�erent transmission power levels

Site TX power Node Degree % of links

(dBm) min avg max with PRR>0

Piloty 0 12.00 25.30 39.00 41

-5 5.00 15.71 26.00 25

-15 3.00 8.03 17.00 13

-25 0.00 0.31 3.00 1

TIZ 0 51.00 57.61 59.00 89

-5 38.00 51.91 59.00 80

-15 18.00 35.81 52.00 55

-25 0.00 1.06 3.00 2

percentage of links with PRR>0, i.e., link in which at least one probe was received successfully. In the
next sections, the evaluations refer always to the highest TX levels (also, at low levels the networks
become partitioned).

6.6 Scoping Performance

ukuFlow relays all its network traf�c through the Scopes framework. In order to facilitate the under-
standing of the behavior of the actuation and event detection mechanisms proposed in this work, we
�rst investigate the behavior of the underlying Scopes framework. These results complement those
co-published by the author in [72].

For this evaluation, we de�ned a single test that allows us to isolate and reason about different aspects
of interest. In this test, a scope is opened and closed multiple times. Figure 6.11 presents the phases of
a single iteration on the x axis, together with the percentage of nodes that were members of the scope
at that time instant, on the y axis. Each iteration consists of:

 0

 25

 50

 75

 100

 125

 150

 0 5 10 15 20 25 30 35

L
in

k
 f
re

q
u
e
n
c
y

Link length (m)

Piloty
TIZ

Figure 6.10.: Distribution of link lengths

109

1. [t0,t1), an initial delay a where intentionally nothing occurs,

2. [t1,t8), scope creation, followed by data traf�c,

3. [t8,t10), scope removal, followed by an inactivity interval to allow for nodes that did not hear the
removal message to automatically leave the scope, and

4. [t10,t11], a �nal wait b before restarting an iteration.

t1 t2 t8

a
delay

scope alive

no scope

auto-scope
removal

root-to-members and
 members-to-root
scoped data traffic

b
wait

t3 t4 t5 t6 t7 t9 t10

100%

0%

t11

Figure 6.11.: Organization of an iteration for testing scopes

We ran this experiment in both the TIZ and Piloty sites. For each, a node located at a corner was chosen
as scope root in order to increase the number of hops. Next, we split the study into three aspects of
interest: a) the scope membership ef�cacy, b) the membership stability, and c) the traf�c goodput (i.e.,
the percentage of packets that arrive at the destination node out of the total number of packets sent by
all other nodes).

6.6.1 Scope Membership E�cacy

Given a scope speci�cation and the set of states of each network node, scope membership ef�cacy refers
to the percentage of nodes that become member of a scope out of the ideal set of member nodes. In
information retrieval terminology, this is equivalent to the concept of recall. While false positives could
occur2, none were observed. A common problem, however, were false negatives (nodes that should
become scope members but do not). This aspect is relevant to ukuFlow because all non-local work�ow
actuation depends on it to function correctly.

For many scope speci�cations, it is possible to calculate in advance which nodes should belong to it at
a given time. For instance, given a scope speci�cation that uses node positions or their node IDs, and a
sensor network's set of nodes, IDs, their positions and data repository values, we can calculate how many
nodes should belong to the scope when it is opened. Scope membership ef�cacy can then be measured
empirically by comparing the observed member set against the expected (i.e., ideal) one.

To quantify this aspect, we ran the described test with different network sizes. We used 15, 30, 45 and 60
nodes in TIZ, and 7, 15, 30, 47 and 63 nodes in Piloty. Note that tests in Piloty employed both TelosB as
well as XM1000 nodes, thus a certain node heterogeneity is taken into account. Figure 6.12 presents the
results for the particular run at Piloty with 30 nodes. The curve shows the observed scope membership
ef�cacy on the y axis. The upper plot includes all 10 iterations, and shows that, typically, membership
neither is 100% immediately after opening a scope, nor it becomes 0% immediately after closing it. This
is due to various network effects. The bottom plot zooms into the initial 10 seconds after opening the
scope in the �rst iteration, and shows how the scope membership increases as the scope speci�cation is
disseminated through some (in this case 4) hops.

2 For instance due to communication errors where certain bits in the scope speci�cation could get swapped

110

 0

 20

 40

 60

 80

 100

00:00:00 00:10:00 00:20:00 00:30:00 00:40:00 00:50:00 01:00:00 01:10:00

 S
c
o
p
e
 m

e
m

b
e
rs

h
ip

 (
%

)

Time

 0

 20

 40

 60

 80

 100

01:02 01:04 01:06 01:08 01:10 01:12

 S
c
o
p
e
 m

e
m

b
e
rs

h
ip

 (
%

)

Time

Figure 6.12.: Top: scope membership during the 10 iterations of the test. Typically, membership is not

100% immediately after scope opening, and also not 0% after scope closing. Bottom:

zoomed-in view of �rst 10 seconds in �rst iteration.

When a scope is opened, the Scopes framework blocks applications from using the scope for a 1-second
interval in order to allow the network to stabilize. Through empirical observations, we have found that
it is best to extend this interval to reduce the chances of collisions. The ukuFlow Command Runner thus
waits 4 further seconds before using the network to send the actual command. For this reason, we are
interested in the scope membership achieved in the �rst 5 seconds immediately after opening a scope,
since it is those nodes who will potentially receive and execute the issued command (i.e., for actuation
it is not relevant if the membership ef�cacy increases or decreases afterwards). We de�ned the scope
membership ef�cacy as the average membership in the �rst 5 seconds (as highlighted in the bottom plot
of Fig. 6.12).

Figure 6.13 presents the results of both sites for the mentioned network scales. The green curve shows
that in the TIZ deployment, a perfect membership for all network sizes is achieved. This is due to the
extremely high node density and node degree properties of that site, where most nodes were reached
without the need for multi-hopping. The blue curve, in contrast, shows good results for networks of
size 30 or above, but relatively poor for network sizes of 15 or lower. This is mostly due to the physical
properties of the site, which is characterized by intermittent links between physically nearby nodes. In
Piloty deployment, only when a larger number of nodes is included, it is possible to have alternative
paths to the nodes, through which a scope speci�cation is disseminated. This is an important aspect
to consider when deploying any wireless network, and neither ukuFlow nor Scopes make provisions to
counter this.

Scope creation inevitably requires disseminating a scope speci�cation throughout the entire network. In
the worst case, the network has a topology in which the cost of opening a scope is linear to the number
nodes. In addition, when the network is idle and no scopes exist, an initial routing tree needs to be

111

 0

 20

 40

 60

 80

 100

7 15 30 45 47 60 63

S
c
o
p
e
 m

e
m

b
e
rs

h
ip

 e
ff
ic

a
c
y
 (

%
)

Network size (#nodes)

TIZ deployment
Piloty bldg. deployment

Figure 6.13.: Scope e�cacy in both TIZ and Piloty deployments

created, which further duplicates the cost3. Finally, depending on the scope speci�cation and the actual
number of member nodes, there is a certain traf�c for activation and suppression messages (as described
in Section 4.5). In many setups, however, the usage of polite-gossiping greatly reduces the number of
message broadcasts required.

Figure 6.14 presents the cost for the previously presented cases in terms of the number of messages
sent for both the tree creation and the scope dissemination operations. The curves show that the cost
is considerably lower than the worst case (around 2x the number of nodes). The high node degree of
the TIZ deployment means that a single broadcast from one node will be overheard by many neighbors,
which will politely stay quiet. In such setups, it is possible to open a scope with a very high ef�cacy at
very low cost (e.g., it required only 11 messages in the 60-node network). The deployment in Piloty,
however, proved to be a more challenging one due to the need for multihopping, and exhibited a rather
linear behavior. This is still an improvement over a traditional �ooding scheme. From these evaluations
we conclude that creating a scope is an expensive operation, and should thus be used sparsely.

 0

 10

 20

 30

 40

 50

 60

7 15 30 45 47 60 63

S
c
o
p
e
 c

re
a
ti
o
n
 c

o
s
t
(#

 m
s
g
s
.)

Network size (#nodes)

TIZ deployment
Piloty bldg. deployment

Figure 6.14.: Scope creation cost in both TIZ and Piloty deployments

3 Recall that the creation of this tree is only triggered when there were no other scopes in use. Posterior scopes use the

tree rooted at the scope root, so the cost is recouped for the normal case.

112

6.6.2 Scope Membership Stability

While scope membership ef�cacy refers to the initial percentage of member nodes, the stability refers to
the unwanted �uctuations in the scope membership during its lifetime. This aspect is also important for
event detection because ukuFlow requires nodes to continuously contribute to the �nal event during the
time they are needed, i.e. during the time the scope is open.

In order to quantify the membership stability, we looked at the difference between the areas under the
ideal and observed membership curves. We distinguished between a) the instability during the lifetime
of the scope, and b) the instability after the scope is removed. These differences correspond to the
size of the dark-colored areas in Fig. 6.15. Lifetime instability is due to nodes not hearing the scope
speci�cation message disseminated after the scope is created, or not hearing a sequence of scope refresh
messages. Removal instability occurs when nodes miss the scope deletion message, and thus execute the
auto-removal subsequently. High instability values represent larger dark areas, i.e., higher deviations
from the ideal curve.

t1 t2

a
delay

scope alive

no scope

auto-scope
removal

root-to-members and
 members-to-root
scoped data traffic

b
wait

t3

100%

0%

a) lifetime
instability

b) removal
instability

Figure 6.15.: Quanti�cation of scope instability a) during the lifetime of the scope, and b) after scope

removal

Figure 6.16 presents the results of the membership stability tests for both deployments. A positive result
is that at larger network size, both the instability during the scope lifetime as well as after removal were
low, below 5%. Similarly to the ef�cacy tests, the TIZ site exhibits an almost perfect behavior, while in
the Piloty site the membership instability is non-negligibly higher. The curve from the tests at the Piloty
site suggest that the instability decreases at higher network sizes, but there is not enough evidence to
claim this trend. The variability could be due to the randomness with which trees were constructed, but
requires further analysis. The relatively poor membership stability at low network sizes can be attributed
to the effect that individual failing nodes have on the overall percentage.

6.6.3 Scope Data Tra�c

We now examine the data traf�c behavior. For this purpose, we look both at:

1. RtM traf�c (i.e., multicast), and

2. MtR traf�c (i.e., convergecast), with different payload lengths.

In these experiments, we let the scope root send 6 messages to the scope members. Nodes that receive
this message had to answer back with a reply after a random timer. We experimented with three lengths,
spanning 1, 2 and 3 fragments. Figure 6.17 presents the goodput in terms of the percentage of received
messages for each direction and number of fragments. The plot for the TIZ site showed that RtM traf�c

113

 0

 5

 10

 15

 20

 25

7 15 30 45 47 60 63

S
c
o

p
e

 m
e
m

b
e

rs
h

ip
 i
n
s
ta

b
ili

ty
 (

%
)

Network size (#nodes)

TIZ deployment
Piloty bldg. deployment

 0

 5

 10

 15

 20

 25

7 15 30 45 47 60 63

S
c
o
p
e
 m

e
m

b
e
rs

h
ip

 i
n
s
ta

b
ili

ty
 (

%
)

Network size (#nodes)

TIZ deployment
Piloty bldg. deployment

Figure 6.16.: Observed scope instability. Top: during the lifetime of the scope, bottom: after scope re-

moval

was not affected at higher network scales: it remained constant at around 95%. In contrast, MtR traf�c
did worsen with a larger network scale. This is due to the increased chance of collisions in the network,
since virtually all nodes were located in a single radio cell. Furthermore, in this site it could be observed
that goodput decreased when the messages consisted of 2 or 3 fragments. This follows from the fact that
longer messages cause sender nodes to block the receiver node for a longer time. If, during the reception
of fragments from node a a fragment from node b is received, the former are discarded (for memory
reasons, as described in Section 4.5.1). While this strategy simpli�es the node's memory usage, it has a
big impact on the throughput.

The bottom plot corresponds to Piloty. In general, the goodput results were not only lower as compared
to the TIZ site, but also their variance is higher. This was mainly due to the larger number of hops
through which retransmissions must occur. First, RtM traf�c averages 73% across all network scales, a
difference of 23% compared to TIZ. Furthermore, MtR traf�c goodput was low, varying between 5% and
25%. Interestingly, no correlation was observed between the number of fragments and the goodput (for
instance, MtR traf�c with 2 fragments was more reliable than with just 1). In MtR traf�c, the trend to
have lower goodput when more nodes are members of the scope was also observed. As a result of being
a true multihop environment, the routing trees constructed by the underlying protocol varied from one

114

 0

 20

 40

 60

 80

 100

RtM MtR/1f MtR/2f MtR/3f

T
ra

ff
ic

 G
o
o
d
p
u
t
(%

)

Traffic Direction/Fragments

TIZ Site

15 nodes

30 nodes

45 nodes

60 nodes

 0

 20

 40

 60

 80

 100

RtM MtR/1f MtR/2f MtR/3f

T
ra

ff
ic

 G
o
o
d
p
u
t
(%

)

Traffic Direction/Fragments

Piloty bldg. Site

15 nodes

30 nodes

47 nodes

63 nodes

Figure 6.17.: Data goodput for both studied sites

run to the other, causing a higher variability in the performance results. The Piloty site thus exhibited
much harsher conditions than TIZ, and is thus taken as a challenging setup to evaluate the ukuFlow
concepts implemented in this thesis.

One promising optimization that is left as future work consists in improving the routing tree construction
process by considering metrics other than minimum hop count. With this routing metric, long-lived
routing trees tend to change over time to ones with shortest paths (as calculated by the minimum number
of hops). For instance, a node at a hop distance of n might hear a scope tree construction request
with which it would be at distance n − 1, and thus choose it. While these paths have fewer hops,
they might not be of better quality (i.e., have higher loss rates). In contrast, considerable performance
improvements have been achieved in other routing protocols based on the expected transmission count
(ETX) metric. Instead of choosing a tree parent based on the number of hops to the root, the quality of
the respective paths is compared. As a result, a path with fewer hops but with poor quality will need
fewer retransmissions than a path with more hops, each of which have better quality.

6.7 Actuation

In this section, we evaluate experimentally the actuation capabilities of ukuFlow from a macro, network
perspective. To verify how well ukuFlow can execute scoped commands over the network, we carried

115

 0

 20

 40

 60

 80

 100

10% 30% 50% 70% 90%

A
c
c
u

ra
c
y
 (

%
)

Scope Size

8
5

.0
0

%

8
5

.6
2

%

9
2

.1
2

%

8
3

.3
3

% 9
2

.8
3

%

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

10% 30% 50% 70% 90%

D
e

la
y
 (

s
)

Scope Size

µ ± σ
min

µ

max

Figure 6.18.: Actuation performance for the Piloty site. Upper plot: average number of nodes, within

the scope speci�cation, that ran the scoped function statement. Bottom plot: mean and

dispersion for the delay in executing the scoped function statement.

out an experiment in which we ran a work�ow consisting of a script task containing a scoped function
statement, and set its work�ow looping property to iterate 10 times. Each iteration included a pause long
enough to let the network return to a still state. We were interested in analyzing both the percentage of
nodes within the speci�ed scope that received and executed the scoped statement, as well as the timing
properties, i.e., the jitter between nodes as a result of the network dissemination. In this test we focused
exclusively on Piloty because of its more challenging nature.

We analysed these two aspects by keeping the network size constant and equal to the entire set of nodes
(i.e. 63), while varying the scope speci�cation to include an increasing number of nodes belonging to
them, ranging from 10% to 90% of the network size. The two plots in Fig. 6.18 show these 5 scope
sizes on the horizontal axis. The upper plot presents the total number of times that nodes executed the
function statement, as a percentage of the ideal number, which we call accuracy. These values were
averaged over the 10 iterations. The results show a slight tendency to increase with larger scope size.
When compared to the values for data goodput of RtM traf�c with 63 nodes (73.50%), the average
actuation accuracy (87.78%) turned out to be higher. This could be due to the fact that the RtM values
come from averaging 6 messages over a longer time period, in which the scope instability plays a major
role, while the actuation accuracy values only depend on the scope ef�cacy in the �rst 5 seconds after
opening a scope.

The bottom plot's candlestick chart describes the timing properties of scoped actuation. The measured
time represents the latency between a work�ow manager node initiating the execution of a scoped

116

function statement, and the command runner on the scope member nodes executing the statement. This
latency includes the creation of the scope tree, the 1-second block time, as well as the dissemination of
the statement itself. The plot includes minimum, average, maximum, and ± 1 standard deviation from
the mean. Here we observe a clearer trend to have a longer latency with larger scope size. This is because
larger scope sizes include more nodes, in particular those more distant (in terms of hop-count) from the
work�owmanager node. While the |min−max | interval increases with scope size, the standard deviation
slightly decreases, which implies that more nodes execute the scoped function statement at around the
same time. Finally, recall that in Scopes the tree creation and statement dissemination operations were
implemented with polite gossiping using the ipolite primitive, which makes nodes stay quiet for a time
interval before rebroadcasting a message. The length of this time interval is a useful parameter: reducing
it indeed reduces the latency, but increases the chances of collisions as well as the energy consumption.

The next two sections focus on ukuFlow's event manager, a component that is crucial in making the
work�ow approach viable in power-constrained environments.

6.8 Event Detection

To evaluate the behavior of the event-based exclusive decision gateway in a real-world setup, our �rst
set of experiments targeted a simple work�ow using periodic event generators. For this test, we used
a work�ow with two event generators and a timer event, as depicted in Fig. 6.19. The periodic event
generators were de�ned to produce their output at a 60-second interval. The timer event was de�ned to
time out after 200 seconds, which allows for two rounds of missed periodic events.

We employed topologies comprising the entire set of nodes in the network. Both event generators were
associated to a scope, S1 and S2 respectively. These scopes consisted of a disjoint subset of around 5
nodes each, all located at one extreme of the network, while the base station was located at the other
extreme. The 3 actions consisted in making the root node blink a number of times, which we used as
indicator of a positively detected event at the work�ow manager node. The work�ow was de�ned as
executing in an in�nite loop, and we let the experiment run for around one hour in each site.

Due to the sequential approach to disseminating event expressions, in this simpli�ed scenario where both
event generators have the same period and no complex aggregation or �ltering takes place, the normal
course of action should be that always a temperature event (corresponding to the �rst event expression)
is detected �rst, and thus Action 1 is executed.

deferred choice,
event-based exclusive

decision gateway
Temperature

^60s

merge
exclusive
gateway

Humidity
^60s

Action #1

Action #2

Action #3

200s

S1

Temp. ^60s

Hum. ^60s

S2

Figure 6.19.: Test work�ow with an event-based exclusive decision gw. and periodic event generators

117

Table 6.5 summarizes the outcome for both sites. During the hour that the test lasted, there were 44 and
46 loops of the work�ow, respectively. In the majority of iterations, an event from the temperature gen-
erator was received (and thus Action 1 was executed). We validated that this behavior is not dependent
on the scope de�nition or the network topology (but rather on the order in which event expressions are
disseminated) by testing with another work�ow that alternates the deployment order of S1 and S2.

Table 6.5.: Statistics on event detection for the work�ow of Fig. 6.19 on the two testbed sites

Site Action taken % Events

#1 #2 #3 Generated

Piloty 84.09% 15.91% 0.00% 77.76%

TIZ 97.83% 2.17% 0.00% 98.91%

In some cases, an event from the humidity generator was received before all others from the temperature
generator (hence, Action 2 was executed). There are a number of reasons why this happened: a) due to
the scope creation message of S1 not being received by the targeted nodes, b) when the event expression
message was not received correctly by the nodes member of S1, or c) when all of the events from the
participating nodes got lost. In Piloty, this occurred much more often than in TIZ (15.91% vs 2.17%).
In neither site did the timer event �re and trigger Action 3, which means that always an event from the
temperature or humidity generators was received.

Finally, the rightmost column in Table 6.5 indicates the number of events generated collectively as a
percentage of the ideal number of events that should have been generated if all nodes had become scope
members and had received the event expression message. Once again, the TIZ site obtained an almost
perfect behavior with ∼99% versus a <78% at the Piloty site.

Since the event manager uses the data manager's hidden shared data repository to retrieve sensor data,
it is possible to tune the maximum frequency with which the costly sensor sampling operations will
be performed (cf. Section 4.4). However, a drawback of only using event generators in the event
expressions is that events are sent in their raw form to the event manager node, while the latter only
needs one of these to decide which outgoing sequence �ow to take. It does not matter which of all of
the events generated for a certain expression is received, but rather the expression of the event received
�rst. This causes unnecessary traf�c (and indeed, many events arrive out-of-order after the �rst event
and before the event manager has begun unsubscribing the now unnecessary event expressions). Next,
we investigate the behavior of the two operators that contribute to reducing the traf�c by pushing event
operators to the network: �ltering and aggregation.

The event �lters are a key event operator to reduce energy consumption. To evaluate these, we used
a second work�ow consisting of a periodic event generator chained to a simple �lter that inspects the
event magnitude and requires it to exceed a certain threshold (cf. Fig. 6.20).

While, in practice, the thresholds used in a �lter are application-speci�c parameters provided by domain
experts, we identi�ed a range of values for experimentation by pro�ling the temperature on both sites.
Figure 6.21 presents a 24-hour temperature pro�le for both sites4. The upper plot shows a quick increase
of temperature at the TIZ site, from 24 ◦C to 28 ◦C, in only 3 hours starting at 6:00 am. This is because
the TIZ site is formed by of�ces with large windows that face the east side, which is hit by the sun directly
in the morning. The bottom plot shows a candlestick chart where lines correspond to the [min., max.]
temperature range, and the boxes span a ±1 standard deviation, in hourly intervals. Here we observed
that the absolute values were much more variable in Piloty than in TIZ. This resulted from nodes in the
TIZ deployment being placed in the ceiling, where hot air accumulated and was more uniform than in
the Piloty site. From these �gures, we chose to use 3 different thresholds at 22, 24 and 26 ◦C.

4 The results shown here include a calibration step as reported by others in the literature, e.g., [116].

118

Temperature
^60s > 24 oC Action #1

Action #2

200s

Temp. ^60s Temp. > 24

S1

Figure 6.20.: Test work�ow with a periodic event generator and a simple �lter

We evaluated the performance of this work�ow with each of the three thresholds, sequentially; the
results are presented in Fig. 6.22. Since we run these tests on TUDµNet, we can centrally log the
temperature value generated by each node, regardless of whether that event reached the sink or not.
From this information we plot the average, minimum and maximum temperature values read by the
nodes in the scope during the event creation by the periodic event generator. In the plot, the three
rectangles with a light-blue background highlight the range of values that each simple �lter accepts; a

 23.5

 24

 24.5

 25

 25.5

 26

 26.5

 27

 27.5

 28

0
1
:0

0

0
2
:0

0

0
3
:0

0

0
4
:0

0

0
5
:0

0

0
6
:0

0

0
7
:0

0

0
8
:0

0

0
9
:0

0

1
0
:0

0

1
1
:0

0

1
2
:0

0

1
3
:0

0

1
4
:0

0

1
5
:0

0

1
6
:0

0

1
7
:0

0

1
8
:0

0

1
9
:0

0

2
0
:0

0

2
1
:0

0

2
2
:0

0

2
3
:0

0

0
0
:0

0

A
v
e
ra

g
e
 T

e
m

p
e
ra

tu
re

 (
°
C

)

Time

Piloty
TIZ

 15

 20

 25

 30

 35

 40

0
1
:0

0

0
2
:0

0

0
3
:0

0

0
4
:0

0

0
5
:0

0

0
6
:0

0

0
7
:0

0

0
8
:0

0

0
9
:0

0

1
0
:0

0

1
1
:0

0

1
2
:0

0

1
3
:0

0

1
4
:0

0

1
5
:0

0

1
6
:0

0

1
7
:0

0

1
8
:0

0

1
9
:0

0

2
0
:0

0

2
1
:0

0

2
2
:0

0

2
3
:0

0

0
0
:0

0

A
b
s
o
lu

te
 T

e
m

p
e
ra

tu
re

 (
°
C

)

Time

Piloty
TIZ

Figure 6.21.: 24-hour temperature pro�le for Piloty and TIZ sites. Upper plot: average temperature across

all nodes, in 15-second intervals. Bottom plot: min, max and dispersion ranges for tempera-

ture in hourly intervals.

119

 19

 20

 21

 22

 23

 24

 25

 26

 27
0
9
:2

4

0
9
:3

0

0
9
:3

6

0
9
:4

2

0
9
:4

8

0
9
:5

4

1
0
:0

0

1
0
:0

6

1
0
:1

2

1
0
:1

8

1
0
:2

4

1
0
:3

0

1
0
:3

6

1
0
:4

2

1
0
:4

8

1
0
:5

4

1
1
:0

0

1
1
:0

6

1
1
:1

2

1
1
:1

8

1
1
:2

4

1
1
:3

0

A
v
e

ra
g

e
 T

e
m

p
e

ra
tu

re
 (

°
C

)

Time

avg. temp.
temperature event

timer event

Figure 6.22.: Evaluation of a simple event �lter. Green plus symbols represent correctly detected events,

while red cross symbols represent time-out events.

box overlapping the rectangle thus represents a situation where the generated events should be reported
at the base station. The green plus symbols indicate points in time where events from the simple �lter
indeed arrived �rst at the work�ow manager node, while red cross symbols indicate that the timer event
was detected �rst. There were three situations where the timer event kicked in �rst:

� when nodes did not receive the scope speci�cation or the event expression, thus they did not gener-
ate the input events (e.g., the �rst and third red crosses at ∼9:54 and ∼10:23, resp.),

� when nodes generated events, but these did not pass the �lter (e.g., at ∼11:08), and

� when events passed the �lter, but these were not received at the base station (e.g., at ∼10:18 and
∼10:38).

Despite these special cases, the event detection through simple �lters yielded the correct result at least
94% of the time. The net energy savings achieved ultimately depend on the selectivity of the �ltering
criteria over the input events. In the tested scenario, for instance, 653 events out of 968 (67%) were
�ltered at the originating node for not passing the �lter, and thus did not generate further traf�c.

6.9 Complex Event Detection

With the ability to compose individual events into higher level, more meaningful ones, the possible
applications increase substantially. Consider the scenario where a user wants to �nd out how many
rooms are there throughout the day with room temperature exceeding the acceptable comfort levels, i.e.,
above 26 ◦C. This logic can be addressed by the count event processing composer, con�gured to consume
events from a corresponding simple �lter (as discussed in the previous section). In a deployment where
only this application would be active, it would be suf�cient and necessary to deploy one node per room.
In this section we evaluate the performance of this operator.

For our evaluation, we de�ned a work�ow similar to that of Fig. 6.20, and extended it with an event-
based gateway using a count event operator as shown in Fig. 6.23. Since there are multiple nodes
per room in the employed testbeds, one way to deal with this task is to de�ne a scope with one node
per room. In order to span a larger number of nodes in the experiment, however, we used a scope
speci�cation with more than one node per room. The time windows of the count event operator and the
event generator were con�gured to act in a 60-second interval. We let this experiment run for 2 hours;
in order to understand the behavior at scale, we repeated it with different network sizes.

120

Count Temp.
^60s > 26 oC

Count ^60sTemp ^60s Temp > 26

S1

Figure 6.23.: Event expression using the count composite event operator

The overall event expression used in this scenario, composed by the three operators, had a length of 27
bytes. This is considerably shorter than the available payload length of an 802.15.4 message, leaving
suf�cient space for chaining or nesting the expression to further event expressions.

In Fig. 6.24 we present the results of this evaluation, carried out at the Piloty deployment. In the upper
plot, each box represents the percentage of events aggregated and reported correctly at the sink (out of
the set of events that should have been generated), sorted in descending order. The 2-hour duration of
each test allowed for exactly 26 iterations of the work�ow execution. This upper plot corresponds to
the particular experiment with 16 nodes, where a median of 81.25% events was observed; a detailed
presentation of the results for each network scale is presented in Appendix B.

 20

 40

 60

 80

 100

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

 1
6

 N
o

d
e

s

Iteration #

med.: 81.25%

(a) Test with 16 nodes

 0

 20

 40

 60

 80

 100

8 16 24 32 40 48 56 64

E
v
e

n
t
C

o
m

p
o

s
it
io

n
 E

ff
ic

ie
n

c
y
 (

%
)

Network Scale

min, Q1, Q3, max
Q2

(b) Performance summary of all network scales

Figure 6.24.: Event composition performance results. Upper plot: number of events aggregated in the

network and reported correctly back at the event manager node in the particular network

size of 16 nodes. Bottom plot: summary of all the network sizes evaluated.

121

The bottom plot is a candlestick chart summarizing the results for each network size, in steps of 8 nodes.
Each candlestick's line spans from the absolute minimum and maximum number of events aggregated,
the box corresponds to the �rst and third quartile. Finally, the green curve shows the median for each
network size. In general, the results were very good. However, the absolute results had a high variance,
ranging from excellent to poor. Indeed, for all network scales there was one iteration out of the 26
where no events were aggregated at all. A closer look at the testbed logs showed that this was due to the
event subscription message not being received correctly at any node in the network, which suggests a
transient problem at the transmitter side. Although the event manager in ukuFlow accounts for this case
by retransmitting the subscription at a regular interval, the particular implementation of the count event
operator (which mimics the SQL count aggregate function) returns a zero count before the expression
can be re-disseminated. This situation can be ameliorated by tuning the frequency of subscription re-
transmission in the ukuFlow event manager, but is left as future work.

The green curve (median) decays with larger network scales, from a value of 100% for a small scale
setup of 8 nodes, down to 65% for 64 nodes. This behavior is due to the fact that at larger network
sizes, where the network tree is deeper, a single packet lost causes the immediate loss of a higher num-
ber of aggregated events. This result matches with the observations made for member-to-root traf�c in
Section 6.6.3. Depending on the characteristics and requirements of the target application, the perfor-
mance obtained at the larger network size might be acceptable, or require more advanced and reliable
strategies.

6.10 Summary

From the outset, for this work we targeted the understanding of the system in a realistic setup. In
this chapter we dived into the performance of the main components that enable ukuFlow as high-level
work�ow macroprogramming approach running entirely in-network. We have shown its potential to
run multiple work�ows in parallel, looking at the dynamic memory utilization and time complexity
of a CPU-bound process. Following this, we investigated the performance of the network protocols in
and underneath Scopes, to better understand the behavior of ukuFlow's actuation and event detection
capabilities.

By means of the two main TUDµNet deployments, the realization and evaluation of the platform pro-
vided valuable insights into the behavior of the proposed work�ow mechanisms. The TIZ deployment
was identi�ed as a tractable topology due to its higher node density and shorter network diameter, while
Piloty was a very challenging environment characterized by low link instability and large number of
hops. Our work with this range of parameters lead us to ensure that ukuFlow offers ef�cient WfMS
algorithms in very disparate setups.

Lastly, it should be noted that certain suboptimal results are due to the wireless technology not being any
longer state-of-the art (the hardware design of the radio is over 10 years old), and hence improvements
can be expected with newer sensor platforms.

122

7 Conclusions

In theory, theory and practice are the same. In

practice, they are not.

Albert Einstein (1879-1955)

We started this thesis by raising the problem that the development of applications for low-power WSANs
requires advanced programming skills, typically available only to the sensor network specialist. The
research efforts in this direction had either addressed the low-level developer, or did not match the
expectations of domain experts such as volcanologists, civil engineers, biologists or the like.

7.1 Contributions

The largest contribution of this work is the design and evaluation of a macroprogramming system that
simpli�es the development of application logic for the domain expert, while shielding them from the
vagaries of sensor/actuator networks. The approach is based on using work�ows as �rst-class citizens
to de�ne application logic, which we view as a generic instrument that experts across all domains can
understand and use. In addition, this work makes the proposition that the entire logic of the application
can be pushed into the network. Despite certain similarities with other projects, to our knowledge, this
is the �rst attempt to offer such a holistic platform.

To this end, we have architected, implemented and evaluated ukuFlow, a holistic work�ow management
system for low-power embedded sensor and actuator networks. The work includes models, tools and
mechanisms to support the end-to-end work�ow development and execution lifecycle. Although we
initially designed a new work�ow model trimmed for WSANs, we soon opted for not reinventing the
wheel and adopted an industrial-strength standard, namely BPMN. This brought the issue of simpli�ca-
tion since, in its version 2.0, the standard included over a 100 constructs. We have carefully picked out
a subset, called uWDL, that enables a wide range of applications, and illustrated it with a complex air
traf�c application such as surface management operations for handling aircraft stops.

In uWDL we have incorporated three key aspects that enable WSAN applications: 1) scopes, as a means
to re�ne sets of nodes that need to participate in an interaction; 2) statements, as mechanism to execute
control logic on the sensor/actuator nodes; and 3) events, as construct to precisely specify the high-level
situations that determine which course of action to take. The de�nition of work�ow logic using these
constructs is enabled by BPMN2uku, a graphical editor integrated into Eclipse for the speci�cation of
both work�ow and event models. The control of these building blocks is achieved with an in-network
architecture that enables the users to upload the work�ow speci�cation to a network node, and takes
over the execution in an autonomous fashion.

In order to evaluate the performance of this approach, we digressed from the main topic and devoted
ourselves to the construction of an entire metropolitan-scale testbed federation, TUDµNet, that spans
4 different realistic environments. This thesis presented the rationale behind the individual testbeds
targeted, and discussed key challenges and solutions. We elaborate on the problem of designing a
scalable USB backchannel that exhibits a reliable sensor node operation. Today, this testbed federation

123

has been used by over 100 users/10 power users, amounting collectively to around 8,000 hours of
experimentation.

The previous chapter presented the empirical evaluation of ukuFlow. The results remind a comparison
between a station wagon and a sport coupé: ukuFlow's strengths lie in offering a �exible palette of services
that can be run in-network, and not in a high ef�ciency in only one of these services. The evaluation
contains a detailed analysis of the CPU and memory utilization at a single-node level, showing the
suitability of the prototype implementation for mote-class nodes. The macro-view of the system behavior
focused on the two more mature sites of the federation: the Piloty and TIZ buildings. Each of these sites
include around 60 nodes distributed over a few hundred square meters. Our network characterization
shed light on differences between the two sites, identifying the former as the more challenging setup due
to artifacts such as thick walls and various sources of interference.

The performance results of the in-network actuation and event detection mechanisms showed the prac-
ticability of the autonomous execution of work�ows inside a WSAN. The tests showed that the system
can be perfectly used for small-scale networks (i.e., fewer than 20 nodes), but also achieve high accuracy
at larger scales (60 nodes or more). At scale, the harsh conditions observed in the Piloty site led to a
degradation of the ef�ciency in the detection of complex events, which might not be acceptable in certain
applications.

7.2 Future Work

Despite the large effort that this work required, much work is left to be done. Part of this work involves
improving the actual hardware platforms in all its dimensions. A critical aspect that our work highlighted
was the need to extend the program space of the microcontroller. Although we have shown that the
prototypical implementation of ukuFlow's modules �ts in a mote-class node such as a TelosB with less
than 60 KB of �ash, a full-featured implementation would greatly bene�t from a program space of 128
KB or more. For instance, a larger �ash module could enable validating the work�ow's well-formedness
dynamically inside the network, instead of relying on having a backend that carries this out only once.
Likewise, improved radio transceivers will increase the scoping performance, and in turn the event
detection and actuation accuracy.

Certainly, a qualitative assessment of the approach is necessary to understand its bene�ts and short-
comings. This could be addressed by the creation of domain-speci�c reference applications which can
then be used to more objectively benchmark the development effort across different approaches. Here,
the simpli�ed metric of lines of code will likely not suf�ce, in particular in our approach where a mixed
graphical/declarative/imperative macroprogramming model is used. Subsequently, a longitudinal evalu-
ation of the learning curve of uWDL, including the identi�cation of best practices, would be advantageous
for its improvement.

Another approach that could enable energy savings as well as increased reliability consists in extending
the semi-distributed architecture with a mechanism to automate the work�ow distribution among a
other nodes. In this way, these failover nodes can resume the execution when a work�ow manager fails
(as discussed in Section 4.8). Additionally, by strategically choosing nodes that are placed at the optimal
location in the network for the work�ow being run, the communication routes can be shortened and
thus the work�ow execution times reduced.

The subsystem to run commands could also be extended with further transactional capabilities. This
includes: 1) informing the command runner module whether the current number of member nodes in a
scope exceeds a speci�ed minimum that should be expected; 2) returning some sort of feedback about
the result of the execution of an action, to further control the following execution �ow; and 3) include a
lightweight atomic commit protocol to coordinate the execution of actions at multiple nodes.

124

Finally, during the course of this work, two aspects were identi�ed in the area of experimentation and
testbeds. First, there is no systematic approach to build WSAN testbeds, which leads to systems that
are costly, unreliable, or don't offer the level of reproducibility required in research. Second, current
abilities to precisely emulate realistic physical conditions to which WSANs under test are exposed are
very limited. Initial efforts target the manipulation of the RF environment [10] and also temperature
[11], but much work is left to provide a comprehensive, truly controlled experimentation platform.

125

126

Bibliography

[1] Kemal Akkaya and Mohamed Younis. A Survey on Routing Protocols for Wireless Sensor Networks.
Ad Hoc Networks, 3(3):325�349, May 2005.

[2] Ian F. Akyildiz and Ismail H. Kasimoglu. Wireless Sensor and Actor Networks: Research Chal-
lenges. Ad Hoc Networks, 2(4):351�367, October 2004.

[3] Gustavo Alonso, Roger Günthör, Mohan Kamath, Divy Agrawal, Amr El Abbadi, and C Mohan. Ex-
otica/FMDC: a Work�ow Management System for Mobile and Disconnected Clients. In Databases

and Mobile Computing, pages 27�45. Springer, 1996.

[4] Wolfgang Apolinarski, Marcus Handte, and Pedro J. Marrón. An Approach for Secure Role Assign-
ment. In 8th Intl. Conference on Intelligent Environments, pages 34�41, June 2012.

[5] Anish Arora, Emre Ertin, Rajiv Ramnath, Mikhail Nesterenko, and William Leal. Kansei: A High-
Fidelity Sensing Testbed. IEEE Internet Computing, 10:35�47, 2006.

[6] Asad Awan, Suresh Jagannathan, and Ananth Grama. Macroprogramming Heterogeneous Sen-
sor Networks Using COSMOS. In 2nd ACM SIGOPS European Conference on Computer Systems,
EuroSys'07, pages 159�172, New York, NY, USA, 2007. ACM.

[7] Magdalena Balazinska, Amol Deshpande, Michael J. Franklin, Philipp B. Gibbons, Jim Gray,
Suman Nath, Mark Hansen, Michael Liebhold, Alexander Szalay, and Vincent Tao. Data Man-
agement in the Worldwide Sensor Web. IEEE Pervasive Computing, 6(2):30�40, April 2007.

[8] Gordon Bell. Bell's Law for the Birth and Death of Computer Classes. Communications of the ACM,
51(1):86�94, January 2008.

[9] Shah Bhatti, James Carlson, Hui Dai, Jing Deng, Jeff Rose, Anmol Sheth, Brian Shucker, Charles
Gruenwald, Adam Torgerson, and Richard Han. Mantis OS: An Embedded Multithreaded Oper-
ating System for Wireless Micro Sensor Platforms. ACM/Kluwer Mobile Networks & Applications

(MONET), Special Issue on Wireless Sensor Networks, 10(4):563�579, 2005.

[10] Carlo Alberto Boano, Thiemo Voigt, Claro Noda, Kay Romer, and Marco Zuniga. JamLab: Aug-
menting Sensornet Testbeds with Realistic and Controlled Interference Generation. In 10th Intl.

Conference on Information Processing in Sensor Networks, IPSN'11, pages 175�186, April 2011.

[11] Carlo Alberto Boano, Marco Zuniga, James Brown, Utz Roedig, Chamath Keppitiyagama, and Kay
Römer. TempLab: a Testbed Infrastructure to Study the Impact of Temperature on Wireless Sensor
Networks. In Adam Wolisz, Jie Liu, and Lin Zhong, editors, 13th Intl. Conference on Information

Processing in Sensor Networks, IPSN'14, pages 95�106. IEEE/ACM, 2014.

[12] Philipp Bonnet, Johannes Gehrke, and Praveen Seshadri. Querying the Physical World. IEEE

Personal Communications, 7(5):10�15, October 2000.

[13] Holger Branding, Alejandro P. Buchmann, Thomas Kudrass, and Jürgen Zimmermann. Rules in an
Open System: The REACH Rule System. In Norman W. Paton and M. Howard Williams, editors,
Rules in Database Systems, Workshops in Computing, pages 111�126. Springer London, 1994.

127

[14] José Ignacio Isaía Brasca. Towards Floating Managers in Scopes � Autonomous
Scopes Maintenance. Research Exchange Student Final Presentation, www.dvs.tu-
darmstadt.de/staff/guerrero/docs/brasca09�oating.pdf, April 2009.

[15] Alejandro P. Buchmann, Stefan Appel, Tobias Freudenreich, Sebastian Frischbier, and Pablo E.
Guerrero. From Calls to Events: Architecting Future BPM Systems. In 10th Intl. Conference on

Business Process Management, BPM'12, Tallinn, Estonia, September 2012. Springer.

[16] Jenna Burrell, Tim Brooke, and Richard Beckwith. Vineyard Computing: Sensor Networks in
Agricultural Production. IEEE Pervasive Computing, 3(1):38�45, January 2004.

[17] Alexandru Caracaş̧ and Alexander Bernauer. Compiling Business Process Models for Sensor Net-
works. In Intl. Conference on Distributed Computing in Sensor Systems and Workshops, DCOSS'11,
pages 1�8, June 2011.

[18] Alexandru Caracaş̧, Thorsten Kramp, Michael Baentsch, Marcus Oestreicher, Thomas Eirich, and
Ivan Romanov. Mote Runner: A Multi-language Virtual Machine for Small Embedded Devices. In
3rd. Intl. Conference on Sensor Technologies and Applications, SENSORCOMM'09, pages 117�125,
June 2009.

[19] Matteo Ceriotti, Michele Corra, Leandro D'Orazio, Roberto Doriguzzi, Daniele Facchin, Stefan
Guna, Gian Jesi, Renato Cigno, Luca Mottola, Amy L. Murphy, Massimo Pescalli, Gian Picco,
Denis Pregnolato, and Carloalberto Torghele. Is There Light at the Ends of the Tunnel? Wireless
Sensor Networks for Adaptive Lighting in Road Tunnels. In 10th Int. Conference on Information

Processing in Sensor Networks, IPSN'11, pages 187�198, April 2011.

[20] Sharma Chakravarthy and Qingchun Jiang. Stream Data Processing: A Quality of Service Perspec-

tive: Modeling, Scheduling, Load Shedding, and Complex Event Processing. Advances in Database
Systems. Springer, 2009.

[21] Sharma Chakravarthy, Vidhya Krishnaprasad, Eman Anwar, and Seung-Kyum Kim. Composite
Events for Active Databases: Semantics, Contexts and Detection. In 20th Intl. Conference on Very

Large Data Bases, VLDB'94, pages 606�617, San Francisco, CA, USA, 1994. Morgan Kaufmann
Publishers Inc.

[22] Sharma Chakravarthy and D. Mishra. Snoop: An Expressive Event Speci�cation Language for
Active Databases. Data and Knowledge Engineering, 14:1�26, November 1994.

[23] K. Mani Chandy. Event-driven Applications: Costs, Bene�ts and Design Approaches. In Gartner

Application Integration and Web Services Summit, San Diego, CA, June 2006.

[24] K. Mani Chandy. AWeb That Senses and Responds. In Kai Sachs, Ilia Petrov, and Pablo E. Guerrero,
editors, From Active Data Management to Event-Based Systems and More, volume 6462 of Lecture
Notes in Computer Science, pages 78�84. Springer Berlin Heidelberg, 2010.

[25] Ioannis Chatzigiannakis, Stefan Fischer, Christos Koninis, Georgios Mylonas, and Dennis P�sterer.
WISEBED: an Open Large-Scale Wireless Sensor Network Testbed. In 1st Intl. Conference on Sensor

Networks Applications, Experimentation and Logistics, volume 29 of SENSAPPEAL'09, pages 68�87,
ICST, September 2009. Springer-Verlag.

[26] George F. Coulouris, Jean Dollimore, and Tim Kindberg. Distributed Systems: Concepts and Design.
International Computer Science Series. Addison-Wesley, 2001.

128

http://www.dvs.tu-darmstadt.de/staff/guerrero/docs/brasca09floating.pdf
http://www.dvs.tu-darmstadt.de/staff/guerrero/docs/brasca09floating.pdf

[27] Riccardo Crepaldi, Simone Friso, Albert Harris III, Michele Mastrogiovanni, Chiara Petrioli,
Michele Rossi, Andrea Zanella, and Michele Zorzi. The Design, Deployment, and Analysis of
SignetLab: A Sensor Network Testbed and Interactive Management Tool. In 3rd Intl. Confer-

ence on Testbeds and Research Infrastructure for the Development of Networks and Communities,
TridentCom'07, pages 1�10, May 2007.

[28] Umeshwar Dayal, Alejandro P. Buchmann, and Dennis R. McCarthy. Rules are Objects Too: A
Knowledge Model for an Active, Object-Oriented Database System. In Klaus R. Dittrich, editor,
Advances in Object-Oriented Database Systems, volume 334 of Lecture Notes in Computer Science,
pages 129�143. Springer Berlin Heidelberg, 1988.

[29] Luisella Dazzi, Clara Fassino, Roberta Saracco, Silvana Quaglini, and Mario Stefanelli. A Patient
Work�ow Management System Built on Guidelines. In American Medical Informatics Association

Annual Fall Symposium, AMIA'97, pages 146�150, Nashville, 1997.

[30] Manjunath Doddavenkatappa, Mun Choon Chan, and Akhihebbal L. Ananda. Indriya: A Low-Cost,
3DWireless Sensor Network Testbed. In 7th Intl. Conference on Testbeds and Research Infrastructure

for the Development of Networks and Communities, TridentCom'11, pages 302�316, Shanghai,
China, April 2011.

[31] Marlon Dumas, Luciano García-Bañuelos, and Artem Polyvyanyy. Unraveling Unstructured Pro-
cess Models. In Jan Mendling, Matthias Weidlich, and Mathias Weske, editors, Business Pro-

cess Modeling Notation, volume 67 of Lecture Notes in Business Information Processing, pages 1�7.
Springer Berlin Heidelberg, 2011.

[32] Adam Dunkels. Full TCP/IP for 8-bit Architectures. In 1st Intl. Conference on Mobile Systems,

Applications and Services, MobiSys '03, pages 85�98, New York, NY, USA, 2003. ACM.

[33] Adam Dunkels, Björn Grönvall, and Thiemo Voigt. Contiki - a Lightweight and Flexible Operating
System for Tiny Networked Sensors. In 29th Annual IEEE Intl. Conference on Local Computer

Networks, LCN'04, pages 455�462, November 2004.

[34] Adam Dunkels, Fredrik Österlind, and Zhitao He. An Adaptive Communication Architecture for
Wireless Sensor Networks. In 5th Intl. Conference on Embedded Networked Sensor Systems, Sen-
Sys'07, pages 335�349, New York, NY, USA, 2007. ACM.

[35] Adam Dunkels, Oliver Schmidt, Thiemo Voigt, and Muneeb Ali. Protothreads: Simplifying Event-
driven Programming of Memory-Constrained Embedded Systems. In 4th Intl. Conference on Em-

bedded Networked Sensor Systems, SenSys'06, pages 29�42, New York, NY, USA, 2006. ACM.

[36] Opher Etzion and Peter Niblett. Event Processing in Action. Manning Publications Co., Greenwich,
CT, USA, 1st edition, 2010.

[37] Federico Ferrari, Marco Zimmerling, Lothar Thiele, and Olga Saukh. Ef�cient Network Flooding
and Time Synchronization with Glossy. In 10th Intl. Conference on Information Processing in Sensor

Networks, IPSN'11, pages 73�84, April 2011.

[38] Ludger Fiege, Mira Mezini, Gero Mühl, and Alejandro P. Buchmann. Engineering Event-based Sys-
tems with Scopes. In B. Magnusson, editor, European Conference on Object-Oriented Programming,
volume 2374 of ECOOP'02, pages 309�333. Springer-Verlag, June 2002.

[39] Chien-Liang Fok, Gruia-Catalin Roman, and Chenyang Lu. Mobile Agent Middleware for Sensor
Networks: an Application Case Study. In 4th Intl. Symposium on Information Processing in Sensor

Networks, IPSN'05, Piscataway, NJ, USA, April 2005. IEEE Press.

129

[40] Chien-Liang Fok, Gruia-Catalin Roman, and Chenyang Lu. Rapid Development and Flexible De-
ployment of Adaptive Wireless Sensor Network Applications. In 25th IEEE Intl. Conference on

Distributed Computing Systems, ICDCS'05, pages 653�662, Washington, DC, USA, June 2005.
IEEE Computer Society.

[41] Chien-Liang Fok, Gruia-Catalin Roman, and Chenyang Lu. Agilla: A Mobile Agent Middleware
for Sensor Networks. Technical Report WUCSE-2006-16, Washington University in St. Louis,
Department of Computer Science and Engineering, March 2006.

[42] Christian Frank and Kay Römer. Algorithms for Generic Role Assignment in Wireless Sensor
Networks. In 3rd Intl. Conference on Embedded Networked Sensor Systems, SenSys'05, pages 230�
242, New York, NY, USA, November 2005. ACM.

[43] Gerhard Fuchs and Reinhard German. UML2 Activity Diagram Based Programming of Wire-
less Sensor Networks. In Workshop on Software Engineering for Sensor Network Applications,
SESENA'10, pages 8�13, New York, NY, USA, May 2010. ACM.

[44] Antony Galton and Juan Carlos Augusto. Two Approaches to Event De�nition. In 13th Intl. Confer-

ence on Database and Expert Systems Applications, DEXA'02, pages 547�556. Springer, September
2002.

[45] Saurabh Ganeriwal, Ram Kumar, and Mani B. Srivastava. Timing-sync Protocol for Sensor Net-
works. In 1st Intl. Conference on Embedded Networked Sensor Systems, SenSys'03, pages 138�149,
New York, NY, USA, November 2003. ACM.

[46] David Gay, Philip Levis, Robert von Behren, Matt Welsh, Eric Brewer, and David Culler. The nesC
language: A Holistic Approach to Networked Embedded Systems. In ACM SIGPLAN Conference on

Programming Language Design and Implementation, volume 38 (5) of PLDI'03, pages 1�11, New
York, NY, USA, June 2003. ACM.

[47] Johannes Gehrke and Samuel Madden. Query Processing in Sensor Networks. IEEE Pervasive

Computing, 3(1):46�55, March 2004.

[48] Omprakash Gnawali, Rodrigo Fonseca, Kyle Jamieson, David Moss, and Philip Levis. Collection
Tree Protocol. In 7th Int. Conference on Embedded Networked Sensor Systems, SenSys'09, pages
1�14, New York, NY, USA, November 2009. ACM.

[49] Saul Greenberg and Chester Fitchett. Phidgets: Easy Development of Physical Interfaces Through
Physical Widgets. In 14th Annual ACM Symposium on User Interface Software and Technology,
UIST'01, pages 209�218, New York, NY, USA, November 2001. ACM.

[50] Rachid Guerraoui and André Schiper. Software-Based Replication for Fault Tolerance. Computer,
30(4):68�74, April 1997.

[51] Pablo E. Guerrero, Alejandro Buchmann, Kristof Van Laerhoven, Immanuel Schweizer, Max
Mühlhäuser, Thorsten Strufe, Stefan Schneckenburger, Manfred Hegger, and Birgitt Kretzschmar.
A Metropolitan-Scale Testbed for Heterogeneous Wireless Sensor Networks to Support CO2 Re-
duction. In 2nd. Inttl. Conference on Green Communications and Networking, GreeNets'12. ICST,
October 2012.

[52] Pablo E. Guerrero, Alejandro P. Buchmann, Abdelmajid Khelil, and Kristof Van Laerhoven. Poster
Abstract: TUDµNet, a Metropolitan-Scale Federation of Wireless Sensor Network Testbeds. In 9th

European Conference on Wireless Sensor Networks, EWSN'12, February 2012.

[53] Pablo E. Guerrero, Daniel Jacobi, and Alejandro P. Buchmann. Work�ow Support for Wireless
Sensor and Actor Networks. In 4th Intl. Workshop on Data Management for Sensor Networks,
DMSN'07, pages 31�36, New York, NY, USA, September 2007. ACM.

130

[54] Pablo E. Guerrero, Kai Sachs, Mariano Cilia, Christof Bornhövd, and Alejandro P. Buchmann. Push-
ing Business Data Processing Towards the Periphery. In 23rd Intl. Conference on Data Engineering,
ICDE'07, pages 1485�1486. IEEE Computer Society, April 2007.

[55] Ramakrishna Gummadi, Omprakash Gnawali, and Ramesh Govindan. Macro-programming Wire-
less Sensor Networks Using Kairos. In Intl. Conference on Distributed Computing in Sensor Systems,
DCOSS'05, pages 126�140, June 2005.

[56] Iliya Gurov. Design and Deployment of a Wireless Sensor Network Testbed for Forest Monitoring.
Master's thesis, Technische Universität Darmstadt, February 2013.

[57] Iliya Gurov, Pablo E. Guerrero, Martina Brachmann, Silvia Santini, Kristof Van Laerhoven, and
Alejandro P. Buchmann. A Site Properties Assessment Framework for Wireless Sensor Networks.
In 11th Intl. Conference on Embedded Networked Sensor Systems, SenSys'13, pages 32�33. ACM,
November 2013.

[58] Gregory Hackmann, Christopher Gill, and Gruia-Catalin Roman. Extending BPEL for Interoperable
Pervasive Computing. In Intl. Conference on Pervasive Services, ICPS'07, pages 204�213. IEEE, July
2007.

[59] Chih-Chieh Han, Ram Kumar Rengaswamy, Roy Shea, Eddie Kohler, and Mani B. Srivastava. A
Dynamic Operating System for Sensor Networks. In 3rd Intl. Conf. on Mobile Systems, Applications,

and Services, pages 163�176, New York, NY, USA, June 2005.

[60] Vlado Handziski, Andreas Köpke, Andreas Willig, and Adam Wolisz. TWIST: A Scalable and
Recon�gurable Testbed for Wireless Indoor Experiments with Sensor Networks. In 2nd Intl. Work-

shop on Multi-hop Ad hoc Networks: from Theory to Reality, REALMAN'06, pages 63�70, New York,
NY, USA, May 2006. ACM.

[61] Matti Hannus, Abdul S. Kazi, and Alain Zarli, editors. ICT Supported Energy Ef�ciency in Construc-

tion. REEB Project Consortium, 2010.

[62] Wendy B. Heinzelman, Amy L. Murphy, Hervaldo S. Carvalho, and Mark A. Perillo. Middleware
to Support Sensor Network Applications. IEEE Network, 18(1):6�14, January 2004.

[63] Dang Quoc Hien. BPMN2uku - An Eclipse Plugin for Generating ukuFlow's Code from Business
Process Model Notation. Bsc. thesis, Technische Universität Darmstadt, November 2012.

[64] Jason Hill, Mike Horton, Ralph Kling, and Lakshman Krishnamurthy. The Platforms Enabling
Wireless Sensor Networks. Communications of the ACM, 47(6):41�46, June 2004.

[65] Jason Hill, Robert Szewczyk, Alec Woo, Seth Hollar, David Culler, and Kristofer Pister. System
Architecture Directions for Networked Sensors. In Intl. Conference on Architectural Support for

Programming Languages and Operating Systems, ASPLOS IX, pages 93�104, New York, NY, USA,
November 2000. ACM.

[66] Annika Hinze, Kai Sachs, and Alejandro P. Buchmann. Event-based Applications and Enabling
Technologies. In 3rd Intl. Conference on Distributed Event-Based Systems, DEBS'09, pages 1�15,
New York, NY, USA, July 2009. ACM.

[67] Bianca Hochberger and Jörg Zentgraf. Entwurf eines Work�ow-Management-Systems zur Mod-
ellierung und Systemtechnischen Unterstützung der Arbeitsabläufe der Flugsicherung. Master's
thesis, Techische Universität Darmstadt, May 2000.

[68] David Hollingsworth. The Work�ow Reference Model. Document TC00-1003, Work�ow Manage-
ment Coalition, January 1995.

131

[69] Bosch Software Innovations. Capitalizing on the Internet of Things � How to Succeed in a Con-
nected World. White Paper Series, February 2014.

[70] Daniel Jacobi, Marc Fischlin, and Alejandro P. Buchmann. Security for Multihop Wireless Networks,
chapter Secure Multipurpose Wireless Sensor Networks. CRC Press. Taylor and Francis Group,
April 2014.

[71] Daniel Jacobi, Pablo E. Guerrero, Ilia Petrov, and Alejandro P. Buchmann. Structuring Sensor Net-
works with Scopes. In 3rd IEEE European Conference on Smart Sensing and Context, EuroSSC'08,
Zurich, Switzerland, October 2008. IEEE Communications Society.

[72] Daniel Jacobi, Pablo E. Guerrero, Ilia Petrov, and Alejandro P. Buchmann. Distributed Network
Structuring with Scopes. Technical Report 2741, Technische Universität Darmstadt, Darmstadt,
Germany, October 2009.

[73] Holger Karl and Andreas Willig. Protocols and Architectures for Wireless Sensor Networks. Wiley &
Sons, 1st. edition, June 2005.

[74] Steffen Kilb. Design und Implementierung von Scopes für Contiki. BSc. Thesis, Technische Uni-
versität Darmstadt, January 2009.

[75] Sukun Kim, Shamim Pakzad, David E. Culler, James Demmel, Gregory Fenves, Steven Glaser, and
Martin Turon. Health Monitoring of Civil Infrastructures Using Wireless Sensor Networks. In 6th

Intl. Conference on Information Processing in Sensor Networks, IPSN'07, pages 254�263, New York,
NY, USA, 2007. ACM Press.

[76] JeongGil Ko, Kevin Klues, Christian Richter, Wanja Hofer, Branislav Kusy, Michael Bruenig,
Thomas Schmid, Qiang Wang, Prabal Dutta, and Andreas Terzis. Low Power or High Perfor-
mance? A Tradeoff Whose Time Has Come (and Nearly Gone). In 9th European Conference on

Wireless Sensor Networks, EWSN'12, pages 98�114, Berlin, Heidelberg, February 2012. Springer-
Verlag.

[77] John Koenig. JBoss jBPM, November 2004.

[78] Olaf Landsiedel, Federico Ferrari, and Marco Zimmerling. Chaos: Versatile and Ef�cient All-to-All
Data Sharing and In-Network Processing at Scale. In 11th Int. Conference on Networked Sensing

Systems, SenSys'13, pages 1�14, New York, NY, USA, November 2013. ACM.

[79] Koen Langendoen, Aline Baggio, and Otto Visser. Murphy Loves Potatoes: Experiences from a
Pilot Sensor Network Deployment in Precision Agriculture. In 14th Intl. Workshop on Parallel and

Distributed Real-Time Systems, WPDRTS'06, April 2006.

[80] Philip Levis. Experiences from a Decade of TinyOS Development. In 10th USENIX Conference

on Operating Systems Design and Implementation, OSDI'12, pages 207�220, Berkeley, CA, USA,
October 2012. USENIX Association.

[81] Philip Levis and David E. Culler. Maté: A Tiny Virtual Machine for Sensor Networks. In Intl.

Conference on Architectural Support for Programming Languages and Operating Systems, ASPLOS
X, pages 85�95, New York, NY, USA, October 2002. ACM Press.

[82] Philip Levis, Nelson Lee, Matt Welsh, and David Culler. TOSSIM: Accurate and Scalable Simulation
of Entire TinyOS Applications. In 1st Intl. Conference on Embedded Networked Sensor Systems,
SenSys'03, pages 126�137, New York, NY, USA, November 2003. ACM.

132

[83] Philip Levis, Samuel Madden, David Gay, Joseph Polastre, Robert Szewczyk, Alec Woo, Eric A.
Brewer, and David E. Culler. The Emergence of Networking Abstractions and Techniques in
TinyOS. In 1st Symposium on Networked Systems Design and Implementation, NSDI'04, pages
1�14, Berkeley, CA, USA, March 2004. USENIX Association.

[84] Philip Levis, Neil Patel, David Culler, and Scott Shenker. Trickle: a Self-regulating Algorithm
for Code Propagation and Maintenance in Wireless Sensor Networks. In 1st Symposium on Net-

worked Systems Design and Implementation, NSDI'04, pages 15�28, Berkeley, CA, USA, March
2004. USENIX Association.

[85] Frank Leymann and Dieter Roller. Business Process Management with FlowMark. In Compcon

Spring '94, Digest of Papers., pages 230�234, 1994.

[86] Christoph Liebig, Bianca Boesling, and Alejandro P. Buchmann. A Noti�cation Service for Next-
Generation IT Systems in Air Traf�c Control. In GI-Workshop: Multicast-Protokolle und Anwendun-

gen, Braunschweig, Germany, May 1999.

[87] Samuel Madden, Michael J. Franklin, Joseph M. Hellerstein, and Wei Hong. TAG: a Tiny AG-
gregation Service for Ad-hoc Sensor Networks. 5th Symposium on Operating Systems Design and

Implementation, 36(SI):131�146, December 2002.

[88] Samuel Madden, Michael J. Franklin, Joseph M. Hellerstein, and Wei Hong. The Design of an Ac-
quisitional Query Processor for Sensor Networks. In ACM SIGMOD Intl. Conference on Management

of Data, SIGMOD'03, pages 491�502, New York, NY, USA, June 2003. ACM.

[89] Samuel Madden, Michael J. Franklin, Joseph M. Hellerstein, and Wei Hong. TinyDB: an Acquisi-
tional Query Processing System for Sensor Networks. ACM Trans. Database Systems, 30(1):122�
173, March 2005.

[90] Geoffrey Mainland, Greg Morrisett, and Matt Welsh. Flask: Staged Functional Programming for
Sensor Networks. In 13th ACM SIGPLAN Intl. Conference on Functional Programming, ICFP'08,
pages 335�346, New York, NY, USA, September 2008. ACM.

[91] Alan Mainwaring, David Culler, Joseph Polastre, Robert Szewczyk, and John Anderson. Wireless
Sensor Networks for Habitat Monitoring. In 1st ACM Int. Workshop on Wireless Sensor Networks

and Applications, WSNA'02, pages 88�97, New York, NY, USA, September 2002. ACM.

[92] Colette Maloney. Foreword. In 2nd. EEB Data Models Community Workshop, page 6, Sophia
Antipolis, France, October 2011.

[93] Kirk Martinez, Paritosh Padhy, Ahmed Elsaify, Gang Zou, A. Riddoch, Jane K. Hart, and Henry
L. R. Ong. Deploying a Sensor Network in an Extreme Environment. In IEEE Intl. Conference on

Sensor Networks, Ubiquitous, and Trustworthy Computing, volume 1, pages 186�193, June 2006.

[94] Friedemann Mattern, editor. Total vernetzt � Szenarien einer informatisierten Welt. Xpert.press.
Springer-Verlag, 2003.

[95] Dennis R. McCarthy and Umeshwar Dayal. The Architecture of an Active Data Base Manage-
ment System. In James Clifford, Bruce G. Lindsay, and David Maier, editors, Intl. Conference on
Management of Data, SIGMOD'89, pages 215�224, Portland, Oregon, May 1989. ACM Press.

[96] MEMSIC. Gateways' Datasheets. www.memsic.com/wireless-sensor-networks/index.cfm, July
2012. (last visited October 2014).

[97] MEMSIC. Mica2 Data Sheet. www.memsic.com, July 2012. (last visited February 2013).

133

http://www.memsic.com/wireless-sensor-networks/index.cfm
https://web.archive.org/web/20130204044343/http://www.memsic.com/support/documentation/wireless-sensor-networks/category/7-datasheets.html?download=151%3Aoem-mica2-edition

[98] Mohammad M. Molla and Sheikh Iqbal Ahamed. A Survey of Middleware for Sensor Network and
Challenges. InWorkshops at the Intl. Conference on Parallel Processing, ICPPW'06, pages 223�228,
Washington, DC, USA, August 2006. IEEE Computer Society.

[99] Gabriel Montenegro, Nandakishore Kushalnagar, Jonathan Hui, and David Culler. Transmission
of IPv6 Packets over IEEE 802.15.4 Networks. RFC 4944 (Proposed Standard), September 2007.
Updated by RFCs 6282, 6775.

[100] Luca Mottola and Gian Pietro Picco. Programming Wireless Sensor Networks: Fundamental Con-
cepts and State of the Art. ACM Computing Surveys, 43(3):1�51, April 2011.

[101] Luca Mottola and Gian Pietro Picco. Middleware for Wireless Sensor Networks: an Outlook.
Journal of Internet Services and Applications, 3(1):31�39, May 2012.

[102] René Müller, Gustavo Alonso, and Donald Kossmann. A Virtual Machine for Sensor Networks. In
2nd ACM SIGOPS European Conference on Computer Systems, EuroSys'07, pages 145�158, New
York, NY, USA, March 2007. ACM.

[103] Lama Nachman, Jonathan Huang, Junaith Shahabdeen, Robert Adler, and Ralph Kling. Imote2:
Serious Computation at the Edge. In Intl. Wireless Communications and Mobile Computing Confer-

ence, IWCMC'08, pages 1118�1123, August 2008.

[104] Object Management Group, Inc. Business Process Model and Notation (BPMN) Version 2.0, 2011.

[105] US Dept. of Energy. Solar Decathlon. http://www.solardecathlon.org, 2009. (last visited October
2014).

[106] National Institute of Standards and Technology. RoboCup Rescue Arena Assembly Guide.
www.nist.gov/el/isd/upload/2011_Assembly_Guide.pdf, July 2011. (last visited October
2014).

[107] Frederik Osterlind, Adam Dunkels, Joakim Eriksson, Niclas Finne, and Thiemo Voigt. Cross-Level
Sensor Network Simulation with COOJA. In 31st IEEE Conference on Local Computer Networks,
LCN'06, pages 641�648, November 2006.

[108] PlatformX. Stargate Project Page. platformx.sourceforge.net, July 2005. (last visited October
2014).

[109] Joseph Polastre, Robert Szewczyk, and David Culler. Telos: Enabling Ultra-low Power Wireless Re-
search. In 4th Int. Symposium on Information Processing in Sensor Networks, IPSN'05, Piscataway,
NJ, USA, April 2005. IEEE Press.

[110] Gregory J. Pottie and William J. Kaiser. Wireless Integrated Network Sensors. Communications of

the ACM, 43(5):51�58, May 2000.

[111] Viktor K. Prasanna, James Reich, Amol Bakshi, and Daniel Larner. The Abstract Task Graph: A
Methodology for Architecture-Independent Programming of Networked Sensor Systems. Work-

shop on End-to-End, Sense-and-Respond Systems, Applications and Services, pages 19�24, June
2005.

[112] Mirko Presser, Srdjan Krco, Tobias Kowatsch, Wolfgang Maass, Sebastian Lange, Francois Carrez,
Bernard Hunt, Richard Egan, Jan Höller, Alessandro Bassi, Stephan Haller, and Gunter Woysch.
Inspiring the Internet of Things: The Internet of Things Comic Book. Alexandra Institute, Aarhus,
Denmark, October 2011.

[113] Red Hat, Inc. BPMN2 Modeler Web Site. www.eclipse.org/bpmn2-modeler, November 2013.
(last visited October 2014).

134

http://www.solardecathlon.gov/past/2009/
http://www.nist.gov/el/isd/upload/2011_Assembly_Guide.pdf
http://platformx.sourceforge.net
http://www.eclipse.org/bpmn2-modeler/

[114] Kay Römer. Programming Paradigms and Middleware for Sensor Networks. In GI/ITG Workshop

on Sensor Networks, pages 49�54, February 2004.

[115] Kay Römer, Christian Frank, Pedro J. Marrón, and Christian Becker. Generic Role Assignment
for Wireless Sensor Networks. In 11th ACM SIGOPS European Workshop, pages 7�12, Leuven,
Belgium, September 2004.

[116] Luis Ruiz-Garcia, Pilar Barreiro, Jose Ignacio Robla, and Loredana Lunadei. Testing ZigBee
Motes for Monitoring Refrigerated Vegetable Transportation Under Real Conditions. Sensors,
10(5):4968�4982, 2010.

[117] Nick Russell, Arthur H. M. ter Hofstede, Wil M. P. van der Aalst, and Nataliya Mulyar. Work�ow
Control-Flow Patterns: A Revised View. Report BPM-06-22, BPM Center, bpmcenter.org, 2006.

[118] Nick Russell, Wil M. P. van der Aalst, Arthur H. M. ter Hofstede, and Petia Wohed. On the Suitabil-
ity of UML 2.0 Activity Diagrams for Business Process Modelling. In 3rd Asia-Paci�c Conference on

Conceptual Modelling, volume 53 of APCCM'06, pages 95�104, Darlinghurst, Australia, Australia,
January 2006. Australian Computer Society, Inc.

[119] Christopher M. Sadler and Margaret Martonosi. Data Compression Algorithms for Energy-
constrained Devices in Delay Tolerant Networks. In 4th Intl. Conference on Embedded Networked

Sensor Systems, SenSys'06, pages 265�278, New York, NY, USA, November 2006. ACM.

[120] Philipp M. Scholl, Kristof Van Laerhoven, Dawud Gordon, Markus Scholz, and Matthias Berning.
jNode: a Sensor Network Platform that Supports Distributed Inertial Kinematic Monitoring. In
9th Int. Conference on Networked Sensing Systems, INSS '12, pages 1�4, Antwerp, Belgium, June
2012.

[121] Alec Sharp and Patrick McDermott. Work�ow Modeling: Tools for Process Improvement and Appli-

cation Development. Artec House Publishers, 2001.

[122] Randall B. Smith. SPOTWorld and the Sun SPOT. In 6th Intl. Conference on Information Processing

in Sensor Networks, IPSN'07, pages 565�566, New York, NY, USA, April 2007. ACM.

[123] Patrik Spiess, Stamatis Karnouskos, Luciana Souza, Domnic Savio, Dominique Guinard, Vlad Trifa,
Oliver Baecker, and Moritz Koehler. Reliable Execution of Business Processes on Dynamic Net-
works of Service-Enabled Devices. In 7th IEEE Intl. Conference on Industrial Informatics, INDIN'09,
pages 533�538, Cardiff, UK, June 2009.

[124] Mukundan Sridharan, Wenjie Zeng, William Leal, Xi Ju, Rajiv Ramnath, Hongwei Zhang, and
Anish Arora. From Kansei to KanseiGenie: Architecture of Federated, Programmable Wireless
Sensor Fabrics. In 7th Intl. Conference on Testbeds and Research Infrastructure for the Development

of Networks and Communities, TridentCom'11, pages 155�165. Springer, April 2011.

[125] John A. Stankovic. Research Challenges for Wireless Sensor Networks. SIGBED Rev., 1(2):9�12,
July 2004.

[126] Jan Steffan, Ludger Fiege, Mariano Cilia, and Alejandro P. Buchmann. Towards Multi-Purpose
Wireless Sensor Networks. In Intl. Conference on Sensor Networks, SENET'05. IEEE Computer
Society, August 2005.

[127] Martin Strohbach, Gerd Kortuem, and Hans Gellersen. Cooperative Artefacts - A Framework for
Embedding Knowledge in Real World Objects. In Smart Object Systems Workshop at UbiComp,
September 2005.

[128] Ryo Sugihara and Rajesh K. Gupta. Programming Models for Sensor Networks: A Survey. ACM

Trans. Sen. Netw., 4(2):8:1�8:29, April 2008.

135

http://bpmcenter.org

[129] Michael Sweet. Mini-XML Project. www.msweet.org, December 2011. (last visited October 2014).

[130] Robert Szewczyk, Joseph Polastre, Alan Mainwaring, and David Culler. Lessons from a Sensor
Network Expedition. In Holger Karl, Andreas Willig, and Adam Wolisz, editors, 1st European
Workshop on Wireless Sensor Networks, volume 2920 of EWSN'04, pages 307�322. Springer, Jan-
uary 2004.

[131] David Tennenhouse. Proactive Computing. Communications of the ACM, 43(5):43�50, May 2000.

[132] Stefano Tranquillini, Patrik Spieß, Florian Daniel, Stamatis Karnouskos, Fabio Casati, Nina Oer-
tel, Luca Mottola, Felix Jonathan Oppermann, Gian Pietro Picco, Kay Römer, and Thiemo Voigt.
Process-based Design and Integration of Wireless Sensor Network Applications. In 10th Intl. Con-

ference on Business Process Management, BPM'12, pages 134�149, Berlin, Heidelberg, September
2012. Springer-Verlag.

[133] Nicolas Tsiftes and Adam Dunkels. A Database in Every Sensor. In 9th ACM Conference on Embed-

ded Networked Sensor Systems, SenSys'11, pages 316�332, New York, NY, USA, November 2011.
ACM.

[134] U.S. Department of Transportation. Instrument Flying Handbook. Federal Aviation Administration,
2012.

[135] USB Implementers Forum. Universal Serial Bus Speci�cation Revision 2.0, April 2000.

[136] Wil M. P. van der Aalst, Arthur H. M. ter Hofstede, Bartek Kiepuszewski, and Alistair P. Barros.
Work�ow Patterns. Distributed and Parallel Databases, 14(1):5�51, July 2003.

[137] Pascal A. Vicaire, Zhiheng Xie, Enamul Hoque, and John A. Stankovic. Physicalnet: A Generic
Framework for Managing and Programming Across Pervasive Computing Networks. In 16th IEEE

Real-Time and Embedded Technology and Applications Symposium, RTAS'10, pages 269�278, April
2010.

[138] Mark Weiser. The Computer for the 21st Century. SIGMOBILE Mobile Computing Communications

Review, 3(3):3�11, July 1999.

[139] Matt Welsh and Geoff Mainland. Programming Sensor Networks Using Abstract Regions. In
1st USENIX/ACM Symposium on Networked Systems Design and Implementation, NSDI'04, pages
29�42, Berkeley, CA, USA, March 2004. USENIX Association.

[140] Chen Wenjie, Chen Lifeng, Chen Zhanglong, and Tu Shiliang. A Realtime Dynamic Traf�c Control
System Based on Wireless Sensor Network. In Intl. Conference Workshops on Parallel Processing,
ICPP'05 Workshops, pages 258�264, June 2005.

[141] Geoffrey Werner-Allen, Konrad Lorincz, Matt Welsh, Omar Marcillo, Jeff Johnson, Mario Ruiz,
and Jonathan Lees. Deploying a Wireless Sensor Network on an Active Volcano. IEEE Internet

Computing, 10(2):18�25, 2006.

[142] Geoffrey Werner-Allen, Patrick Swieskowski, and Matt Welsh. MoteLab: a Wireless Sensor Net-
work Testbed. In 4th Intl. Symposium on Information Processing in Sensor Networks, IPSN'05,
Piscataway, NJ, USA, April 2005. IEEE Press.

[143] Kamin Whitehouse, Cory Sharp, Eric Brewer, and David E. Culler. Hood: A Neighborhood Ab-
straction for Sensor Networks. In 2nd Intl. Conference on Mobile Systems, Applications and Services,
MobiSys'04, pages 99�110, Boston, MA, USA, June 2004. ACM Press.

[144] Petia Wohed, Wil M. P. van der Aalst, Marlon Dumas, Arthur H. M. ter Hofstede, and Nick Russell.
On the Suitability of BPMN for Business Process Modelling. In Business Process Management,
BPM'06, pages 161�176, Vienna, Austria, September 2006.

136

http://www.msweet.org/projects.php?Z3

[145] Ning Xu, Sumit Rangwala, Krishna Kant Chintalapudi, Deepak Ganesan, Alan Broad, Ramesh
Govindan, and Deborah Estrin. A Wireless Sensor Network for Structural Monitoring. In 2nd Intl.

Conference on Embedded Networked Sensor Systems, SenSys'04, pages 13�24, New York, NY, USA,
November 2004. ACM Press.

[146] Yong Yao and Johannes Gehrke. The Cougar Approach to In-Network Query Processing in Sensor
Networks. SIGMOD Record, 31(3):9�18, September 2002.

[147] Yong Yao and Johannes Gehrke. Query Processing in Sensor Networks. In Biennial Conference on

Innovative Data Systems Research, CIDR '03, January 2003.

[148] Xiaoliang Zhao, Tao Qian, Gang Mei, Chiman Kwan, Regan Zane, Christi Walsh, Thurein Paing,
and Zoya Popovic. Active Health Monitoring of an Aircraft Wing with an Embedded Piezoelectric
Sensor/Actuator Network: II. Wireless Approaches. Smart Materials and Structures, 16(4), August
2007.

137

138

A The ukuFlow Bytecode

We present the primary blocks of the ukuFlow bytecode, aligned at 16 bits, as is the case in the MSP430
line of microcontrollers. Capitalized elements occupy 1 byte, and have prede�ned values, while elements
surrounded by angular brackets are of variable width, and are de�ned subsequently.

The description includes the bytecode speci�cation for the general work�ow data, events, script tasks,
gateways and event operators.

General Work�ow Data

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

work�ow id # wf. elements

of scopes min. # of instances required

max. # of instances required looping info

<work�ow elements>
. . .

<scope de�nitions>
. . .

Events

Start event

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

wf. element id START_EVENT

id of following wf. element

End event

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

wf. element id END_EVENT

139

Script Task

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

wf. element id EXECUTE_TASK

id of following wf. element # of statements

<statements>
. . .

The statements take one of the following formats:

Computation Statement
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

COMPUTATION_STATEMENT id of variable that receives value

expression length

<expression>

Local Function Statement
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

LOCAL_FUNCTION_STATEMENT id of variable that receives value

command length # of parameters

<command string>

<list of parameters>

Scoped Function Statement
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

SCOPED_FUNCTION_STATEMENT id of scope to use

command length # of parameters

<command string>

<list of parameters>

A parameter has one of the following structures:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

REPOSITORY_VALUE id of repository entry

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

UINT8_VALUE value

140

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

UINT16_VALUE value's lsb

value's msb

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

STRING_VALUE string length

<string>

Gateways

Fork Gateway

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

wf. element id FORK_GATEWAY

of outgoing seq. �ows

<list of work�ow ids to which to fork>

Join Gateway

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

wf. element id JOIN_GATEWAY

id of following wf. element # of incoming seq. �ows

<list of work�ow ids from where to expect tokens>

Inclusive Decision Gateway

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

wf. element id INCLUSIVE_DECISION_GATEWAY

of outgoing seq. �ows

<list of outgoing sequence �ows>

These outgoing sequence �ows have the following structure:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

id of following wf. element condition expression length

<condition expression>

In the case of there is a default sequence �ow, this must be the last one inside of a gateway, and must
contain no expression, as follows:

141

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

id of following wf. element 0

Inclusive Join Gateway

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

wf. element id INCLUSIVE_JOIN_GATEWAY

id of following wf. element # of incoming seq. �ows

<list of work�ow ids from where to expect tokens>

Exclusive Decision Gateway

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

wf. element id EXCLUSIVE_DECISION_GATEWAY

of outgoing seq. �ows

<list of outgoing sequence �ows>

Exclusive Merge Gateway

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

wf. element id EXCLUSIVE_MERGE_GATEWAY

id of following wf. element # of incoming seq. �ows

<list of work�ow ids from where to expect tokens>

Event-based Exclusive Decision Gateway

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

wf. element id
EVENT_BASED_EXCLUSIVE

DECISION_GATEWAY

of outgoing seq. �ows

<list of outgoing sequence �ows>

These outgoing sequence �ows have the following structure:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

id of following wf. element event operator expression len.

<event operator expression>

142

Event Operators

Event Generators

All event generators follow the syntax below:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

event generator type event operator id

channel id source

scope id

<event generator-speci�c parameters>

We present two event generators next:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

ABSOLUTE_EG event operator id

channel id source

scope id

absolute node time, in seconds (4 bytes)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

PATTERN_EG event operator id

channel id source

scope id # of repetitions

period length

pattern length <actual pattern>

Event Filters

Simple Event Filter:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

SIMPLE_EF event operator id

channel id # of expressions

<list of expressions>

where the expressions follow the format:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

expression length <expression>

143

Composite Event Filters

All event composers follow the syntax below:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

event composer type event operator id

channel id window size's lsb

window size's msb

An example event composer of type COUNT_EC:
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

COUNT_EC event operator id

channel id window size

(in seconds)

144

B Detailed Event Composition Performance

The following �gure expands on the data presented in the evaluation of the event composition operator
(Section 6.9). Each plot corresponds to a different network scale (in steps of 8 nodes); boxes represent
the amount of events used for the composition in the respective iteration, sorted in descending order.

 20

 40

 60

 80

 100

8
 N

o
d

e
s

avg.: 93%

 20

 40

 60

 80

 100

1
6

 N
o

d
e

s

avg.: 75%

 20

 40

 60

 80

 100

2
4

 N
o

d
e

s

avg.: 72%

 20

 40

 60

 80

 100

3
2

 N
o

d
e

s

avg.: 67%

 20

 40

 60

 80

 100

4
0

 N
o

d
e

s

avg.: 67%

 20

 40

 60

 80

 100

4
8

 N
o

d
e

s avg.: 61%

 20

 40

 60

 80

 100

5
6

 N
o

d
e

s avg.: 60%

 20

 40

 60

 80

 100

 0 1 2 3 4 5 6 7 8 9

 1
0

 1
1

 1
2

 1
3

 1
4

 1
5

 1
6

 1
7

 1
8

 1
9

 2
0

 2
1

 2
2

 2
3

 2
4

 2
5

 2
6

 2
7

6
4

 N
o

d
e

s

Iteration #

avg.: 59%

Figure B.1.: Evaluation of event composition performance, measured with networks of 8, 16, 32, 40, 48,

56 and 64 nodes.

In the �gure it can be observed that the average amount of events composed decreased with the network
scale, from 93% for 8 nodes, down to 59% with 64 nodes. Also, for all network scales, the range of
values for the percentage of events composed ranged from 100% to 0% (the lowest value only occurred
once).

145

	Introduction
	Problem Statement
	Proposed Approach and Contributions of this Thesis
	Dissertation Roadmap

	Background and Related Work
	Low-Power Wireless Sensing Systems
	Sensors and Actuators
	Pervasive Applications and Workflows
	Enhanced Airport Management Case Study

	Application Development with Operating Systems - and WSAN Libraries
	Programming Abstractions, System Services and WSAN Middleware
	Node Grouping Abstractions
	Holistic Solutions

	Summary

	Macroprogramming Workflows with ukuFlow
	Workflow Model
	Control Structures
	Workflow Concurrency and Looping

	Data Model
	Scoping Model
	Actuation Model
	Putting it all Together

	Event Model
	Event Concepts
	Event Generation
	Event Filtering and Composition
	Combining Event Operators
	Event-based Diagrams - Graphical Notation

	Summary

	ukuFlow Design and Implementation
	System Requirements and High Level Architecture
	The BPMN2uku Editor
	Workflow Editor
	Event Script Diagram Editor
	Workflow Validation
	The ukuFlow Bytecode

	The ukuFlow Runtime Architecture
	Workflow Management and the ukuFlow Engine

	Data Management
	Networking with the Scopes Framework
	Scopes Optimizations for ukuFlow

	Command Runner Engine
	Synchronous vs. Asynchronous Command Execution

	Event Management
	Event Composition Mechanisms
	Event Composition in ukuFlow
	Event Script Deployment Plan
	Event Generation and Processing Mechanism

	Reliability Considerations
	System Code Distribution and Workflow Upload
	Summary

	Empirical Evaluation of Sensor Network Systems
	Simulations vs. Real-World Deployments
	TUDNet Overview
	Testbed Sites

	Implementation
	Challenges of the USB Backchannel
	USB in Sensor Network Testbed Backchannels
	USB Backchannel Issues
	Backchannel Evaluation

	Job Definition and Scheduling
	TUDNet's Impact on Users and the Research Community
	Summary

	System Evaluation
	System Footprint
	Data Management
	Workflow Execution
	Workflow Parallelism
	Network Characterization
	Scoping Performance
	Scope Membership Efficacy
	Scope Membership Stability
	Scope Data Traffic

	Actuation
	Event Detection
	Complex Event Detection
	Summary

	Conclusions
	Contributions
	Future Work

	The ukuFlow Bytecode
	Detailed Event Composition Performance

