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1.1 Motivation

Traditional storage such as Hard Disk Drives (HDDs) reached physical limits regarding latency
and I/O performance. Scalability and further performance improvement is limited by physi-
cal boundaries: the mechanical/material characteristics of moving parts. With this traditional
storage an access gap has been formed. Data-intensive systems such as database management
systems (DBMSs) that handle on line transactional load (OLTP) workloads are I/O bound and
demand scalable, fast access storage media. Modern DBMSs are designed on the performance
characteristics and device properties of HDD legacy hardware storage systems. Dated at least
three decades back, several optimizations have been integrated to utilize traditional hardware
and to compensate for their weak spots, such as their high latency.

Aiming to reduce I/O waiting time, large buffer and page sizes have been employed. Al-
gorithms are optimized for clustering, and streaming of data rather than random access. The
buffer management, for example, is designed and optimized to buffer the impact of the access
gap. The access gap is a technological property of traditional memory hierarchies: accessing
data in a buffer resident page takes less than hundred nanoseconds whereas accessing disk-
based data is in the lower millisecond range (Figure 1.1).

New developments in hardware storage technology introduce fundamentally different perfor-
mance characteristics and device properties compared to traditional (legacy) storage hardware
(Chapter 2). Figure 1.1 depicts the memory hierarchy. Storage technologies such as Flash and
Non Volatile Memories (NVMs) are capable of narrowing down the access gap and satisfy the
urgent need of modern DBMSs. These storage technologies are asymmetric in terms of their
read and write performance, they read much faster than they write. However their asymmetric
read and write behavior introduces new problems.

Existing DBMSs are not aware of the underlying asymmetric storage technologies. A plain
replacement with new storage technologies delivers only small performance benefits, while the
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Figure 1.1: Memory Hierarchy and Access Gap. Asymmetric storage technologies fill in the access
gap between symmetric storage. While the access gap shrinks it becomes operation
dependent, impacting existing algorithms and DBMS design assumptions.

main part of the potential can’t be realized. For backwards compatibility these storage technolo-
gies implement legacy hardware interfaces, the so called block interface and software layers. To
mask the properties and read/write asymmetry, they support legacy access methods by adding
additional software layers and mappings, which lead to complexity that artificially limits their
performance. This is unnecessary since a Flash-aware instrumentation of the new Flash storage
reduces overheads, removes additional compatibility layers and simplifies the DBMS architecture
as well as the storage stack.

In recent years Flash based storage systems for DBMSs became a standard technology. They
deeply impact the DBMS architecture and algorithms. This is not a simple question of “setting pa-
rameters right”: the overall DBMS architecture and inherent algorithms have to be re-evaluated
and re-designed. The Flash storage technology is based on electronic chips and does not require
moving parts.

In comparison with traditional Hard Disk Drives (HDDs), Flash Solid State Drives (SSDs) have
these key differences (a detailed description of the properties is given in Chapter 2):

• Asymmetric read/write performance: write approximately 10x slower than read;

• No overwrite: explicit erase operation (approx. 10x slower than write);

• No mechanical latency;

• Inherent parallelism;

• Limited Durability: erase-cycles wear out the Flash memory cells;
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• Low energy consumption and better performance per watt.

In order to mask several of these properties, the manufacturers of SSDs employ large volatile
caches (SD-RAM) and complex management processes that are implemented on the device in a
black box design. Although this fosters operational availability and interchangeability, this can
only be seen as a temporal solution: complexity and cost of the SSDs is increased. State depen-
dencies as well as unpredictable I/O and latency behavior (outliers) are direct consequences.
The asymmetry is exposed as soon as the volatile cache is filled. Complex, time consuming erase
operations are delayed by a remapping of updated pages, which requires over-provisioning and
complex garbage collection (GC) mechanisms. The GC interferes with foreground I/O requests,
causing noticeable performance fluctuations and unpredictability.

These inherently different properties result in a deep discrepancy in the design of DBMS
architecture, algorithms and optimizations [39]. Some examples [111] are:

• on HDDs a clustering is maintained to optimize for follow-up read sequential accesses, yet
in-place updates are necessary to maintain the clustering and to optimize for follow-up
read accesses, but have to be avoided on SSDs as they result in costly erase-cycles which
hamper performance and decrease endurance;

• Large page sizes and blocked I/O is preferred on HDDs, since more data is transfered per
I/O and I/O waiting time can be reduced. Cache pollution can occur, where the cache is
filled with unused data that has been transfered during the I/O;

• SSDs are capable of fast, parallel random reads and yield low latency on small page sizes,
which decreases the effect of cache pollution [91]. This also questions the trend towards
larger pages sizes;

• The buffer management for symmetric storage is mainly optimized for hitrate to reduce
the amount of random reads (re-fetching of pages), where asymmetric storage is fast on
random and on sequential reads.

Overall, the developments of the past years aim at the reduction of the access gap between
symmetric storage and symmetric memory. A gap which now can be filled by the asymmetric
storage technologies such as Flash.

Modern DBMSs are well-developed systems and in principle capable of working with asym-
metric storage technologies as a mere replacement, yet they fail to exploit their key properties.
This leads to the situation where huge performance potential is lying idle and durability of the
storage media is shortened which ultimately leads to higher costs.

This work is a remedy for those shortcomings, making the DBMS aware of the underlying
asymmetric Flash storage and questioning existing multi-version DBMS (MV-DBMS) architec-
ture, algorithms and optimizations. We exploit the performance potential of the asymmetric
Flash storage and increase its durability. A re-evaluation and redesign of components within
the DBMS is necessary, inevitably leading to a redesign of the whole DBMS. Without such a
redesign, the DBMS software stack will become the new I/O bottleneck.
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In this work we argue that the combination of the MV-DBMS, multi-versioning concurrency
control (MVCC) and append/log-based storage management (LbSM) on Flash storage delivers
optimal performance figures which are needed to satisfy the urgent demand in scalable perfor-
mance for modern DBMSs. The concepts need to be well integrated into a sound Flash-aware
system.

This demands a reconsideration of:

• the transactional multi-versioning invalidation model;

• searching and indexing schemes (access paths);

• the storage management and

• the buffer management.

This thesis describes a redesign of those concepts and further combines them to form an inte-
grated, sound MV-DBMS by introducing the Snapshot Isolation Append Storage (SIAS) approach.
In the following the concepts are introduced, focusing on OLTP workloads. The following Sec-
tion 1.2 provides an overview of MV-DBMSs.
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1.2 Inertia of the DBMS

A first step of this work is the re-evaluation of the inertia, architecture and algorithms, of existing
DBMSs. The transactional model of a Multi Versioning DBMS (MV-DBMS) seems to be a good
match for the Flash properties. Figure 1.3 depicts the general architecture of a MV-DBMS. Mod-
ules adapted as part of this thesis are shaded grey. Transaction processing and the transactional
model of the DBMS are directly influenced by hardware-specific properties of the underlying
physical storage. Properties such as the read/write asymmetry, slow in-place updates and write
durability need to be addressed while I/O parallelism and low I/O latency have to be leveraged.

MV-DBMSs can benefit from the fast reads, the organization of the underlying storage, low la-
tencies and the parallelism. Out-of-place updates are well suited for the organization of the data
on Flash, mainly addressing issues of slow overwrites, asymmetry and mixed load performance.

Parallelism is complemented by the MV-DBMS’ capability to support lock-free reads. Read
requests of concurrently running transactions can be executed in parallel on Flash.
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Figure 1.2: Invalidation in SIAS-Chains and the traditional approach (SI): (A) Transactions T1,
T2 and T3 update data item X; (B) Data item X now comprises 3 versions; (C) Version
organization and invalidation scheme under the traditional (SI) approach as a doubly-
linked list, causing write overhead due to version invalidation and SIAS-Chains as a
singly-linked list, where new versions are appended thus optimizing write I/O.

Ideally a MV-DBMS that utilizes the high I/O parallelism of Flash, enables concurrent reading
and parallel writing, while the multi-versioning transactional model enables concurrent transac-
tion processing. Since modern MV-DBMSs are designed for the properties of HDDs, they are not
capable to exploit the parallelism of the Flash storage. The critical point of the MV-DBMS is the
inherent version organization. A version organization scheme that implements an in-place inval-
idation model can’t leverage the conceptual advantages of the MV-DBMS. In-place invalidation
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models create (small) in-place-updates which render conceptual benefits inaccessible. In order
to exploit the versioning scheme, the invalidation model has to be changed to an out-of-place
invalidation model. Physical out-of-place updates need to be enabled. This also complements
append only storage management on the algorithmic level. Figure 1.2 shows an example of the
version invalidation scheme of the traditional approach (Section 4.2) that utilizes the two-place
invalidation scheme (Section 4.1.2). Figure 1.2 also depicts the Snapshot Isolation Append Stor-
age approach (SIAS), which is explained in Section 4.3. SIAS employs one-place invalidation
(Section 4.1.1) and enables out-of-place updates.

The storage management is the second critical component of the MV-DBMS. It determines
how data is read from and written to the storage. Overwrites on the Flash storage are more
costly than writing to fresh or erased regions on the Flash storage. Streamlining of write access,
avoiding random writes and in-place updates determines the choice for an append based storage
management. Historically such approaches are not integrated into the MV-DBMS since they are
only beneficial in special cases on symmetric storage, e.g. on streamlined writes. Mostly they
are implemented as an additional layer on top of the file system or device driver.
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Figure 1.3: MV-DBMS Architecture with focus on transactional processing. Modules adapted as
part of this thesis are shaded gray.
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1.3 Workload

In order to design and architect a sound Flash-aware MV-DBMS the workload must be consid-
ered: this work focuses on On-Line Transactional Processing (OLTP), which can hugely benefit
from Flash storage. OLTP mainly creates short running transactions that execute multiple reads,
small updates and inserts [113]. These are operations that demand highly concurrent execu-
tions and parallel access. Data skew can be observed where approx. 80% of all accesses are
issued on only 20% of the data, hence mixed workload and hot-spot regions emerge.

This work focuses on OLTP loads, as which are modeled by the TPC-C benchmark [113].
An overview of the benchmark is provided in the related work (Chapter 8). OLTP workload, as
created by the TPC-C benchmark, mainly focuses on short running transactions, creating a trans-
actional mix of 30% (small) update and 70% reading requests. This “mostly read” workload is
an ideal case for an MV-DBMS with underlying Flash storage that inherently offers parallel read
access with low latencies. In principle the algorithms presented in this work are also suitable
for other mixed workloads.

1.4 Transactional Model

The transactional model of MV-DBMSs offers conceptual advantages for Flash storage: lock-free
read access complements parallelism and conceptual out-of-place updates alleviate the issue of
in-place-updates. In comparison: transactional models of single version DBMS rely on in-place
updates and implement blocking approaches to concurrency control based on locking, hence
MV-DBMSs offer a higher grade of concurrency. The transactional model is further analyzed in
Chapter 3.

Modern MV-DBMSs follow an invalidation model that relies on in-place invalidation of tuple
versions, effectively locking tuple versions on updates and creating in-place-updates in order
to store visibility information. These properties create influence on the storage management,
making assumptions on tuple version placement, updates, etc. Version-organization is further
described in Chapter 4. In order to properly utilize the underlying Flash storage the invalidation
model has to be changed to an out-of-place invalidation model. The higher level of concurrency
must be propagated to the Flash storage in order to exploit parallelism. Propagating parallelism
to the Flash storage and avoiding the need for in-place invalidation becomes a key issue which
is addressed in this work.

1.5 Storage Management

Since Flash storage hugely impacts existing storage management approaches it emphasizes the
need for data placement strategies. It is not only performance critical but also vital for en-
durance and finally the cost of the devices.

Reading access becomes a less critical component, whereas write access patterns must be
optimized. A major issue is the endurance of Flash memories which can only be improved by a
significant reduction of the write amplification: in-place updates have to be avoided, especially
those that are caused by the invalidation model (Section 4.1); mixed load needs to be reduced
and random writes have to be avoided (especially those in small granularities). In addition to
these write issues, utilizing parallelism and low latency reads becomes a high priority task.
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The asymmetry of Flash storage substantiates these assumptions: Flash reads as fast in ran-
dom as in sequential, therefore the cost of maintaining a physical clustering (in-place updates,
overwrites and re-organizations) stands in no relation to the benefits (details in Section2) .

Shown in [109] append storage (page granularity) is beneficial for Flash. In this work we
argue that append storage is not only beneficial for Flash, but for any new storage media that
featuring asymmetric read/write speed, no support of direct in-place updates and high paral-
lelism. Traditional log-based storage managers (LbSMs) append in the granularity of pages and
are implemented as an additional layer outside the database [109].

The integration of the append operation into the MV-DBMS enables appends in small granu-
larities of tuple versions instead of pages. This reduces write amplification and the amount of
data that has to be written to Flash storage, compared to traditional LbSM approaches, as shown
in [35] and demonstrated in [33]. Chapter 6 investigates approaches to LbSM. The integration
of the tuple granularity LbSM into the MV-DBMS is described in detail in Section 4.3.

In all these approaches the database is separated from the (recovery-) log. This is further
described in Section 6.1.

Integrating the LbSM into the MV-DBMS, involving a change of the transactional model and
invalidation scheme, introduces new challenges to access paths and auxiliary structures.

1.6 Access Methods - Searching and Indexing

Storing versions of tuples in a LbSM requires efficient access paths. The change of the invalida-
tion paradigm, versioning and appending tuples instead of maintaining a clustering emphasizes
the need for efficient searching and indexing. Access paths in a MV-DBMS deliver access to data
items that match a certain (search-) criterion and in addition the versioning has to be managed.
Traditional index structures are unaware of the versioned data underneath and the underlying
asymmetric storage. They are version oblivious and treat each tuple version as a unique data
item. Traditional MV-DBMS separately handle visibility of the versions and need to check and
filter the result set that an index structure returns on a query, since the result set may con-
tain different tuple versions of the same data item. This also involves fetching each indexed
version and checking it for visibility. Furthermore on updates of data items new versions are
created which have to be inserted into the index, even if the indexed value has not changed.
The old index entry has to be updated or removed, which entails index management overhead
(e.g. B+ t ree rotations) resulting in suboptimal I/O patterns. Making the index aware of the
versioned data underneath and the underlying asymmetric storage can reduce the otherwise
incurred overhead of the version management. For instance, requesting and fetching versions
that are not visible involves probing and filtering that has to be provided by the MV-DBMS.
Suboptimal access patterns can be avoided, also reported in [37] and [35].

Section 5.2 describes the version conscious SIAS index structure capable of creating selective
I/O access to the Flash storage.

Making the access paths aware of the underlying Flash storage and versioning scheme further
creates new challenges for the buffer management (see Chapter 7).

1.7 Buffer Management

Buffer Management is a vital part of modern DBMS. Historically this key task is to minimize the
effect of the access gap between memory and storage (disk). Important data has to be kept near
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the processing unit. Traditional buffer management algorithms optimized for HDDs optimize
for hitrate, based upon metrics such as frequency and recency. Designed for symmetric disk
storage they are not aware that on asymmetric storage the cost of one dirty-page eviction can be
multiple times higher than the cost of (re-)fetching individual pages. This shows that utilizing
only hitrate as a metric for an eviction decision is not sufficient on Flash storage any more. A
Flash-aware buffer management strategy also has to consider spatial locality of dirty pages and
needs to treat the costs of reading/writing a page as two different values.

The Flash-based Adaptive Replacement Cache (FBARC) [29] is based on the adaptive re-
placement cache [77] and focuses on the importance of write clustering, forming sequential or
semi-sequential write access patterns. This approach is designed to optimize for in-place update
DBMSs, requiring less invasive changes of the DBMS.

The SIAS approach simplifies the buffer management. It applies write retention to pages
that are appended after the page is completely filled or a threshold is reached. SIAS buffer
management is described in Section 4.7 and FBARC is contained in Chapter 7.

1.8 Snapshot Isolation Append Storage

The introduced concepts need to be well integrated into the DBMS in order to form a sound
Flash-aware system, this lead to the Snapshot Isolation Append Storage (SIAS). This thesis
describes the Snapshot Isolation Append Storage (SIAS) approach, a Flash-friendly invalida-
tion model and a change in the paradigm of the version organization of existing MV-DBMSs.
SIAS implements an out-of-place invalidation model and the transactional model introduces the
paradigm of addressing all tuple versions of a data item as a unique entity by augmenting them
with a logical Virtual Identifier (VID). Visibility information about invalidation of a tuple version
is not stored on the tuple version but is coded within the version chain.

Versions of single relations are appended to new pages, which are appended to the Flash
storage as soon as a threshold is reached, e.g. when a page is completely filled. In-Place inval-
idation, physical overwrites and costly remapping operations on the Flash storage are avoided
and read-access parallelism is propagated to the Flash storage, as demonstrated in [33].

The SIAS algorithm introduces Flash-aware access paths and auxiliary structures that are
conscious of the versioned data underneath, using the data item’s V I D as the indexed value.
Thus more selective I/O access is possible.

A separate clustering to sequentialize writes is not maintained, since the append operation
already writes in sequence (as a DB log). In Section 6.1 the inter-page vs. page only sorting of
tuple versions is evaluated and compared to a sorted clustering of pages that are appended to
the MV-DBMS storage media [38].

1.9 Research Hypothesis and Contributions

Existing assumptions on design and architecture of modern MV-DBMSs are questioned and re-
vised. The Snapshot Isolation Append Storage (SIAS) approach subsumes changes on the algo-
rithmic and architectural design of the MV-DBMS with the focus on asymmetric Flash storage.
The contributions of this dissertation are:

• Storage Management: single-/multi-version schemes that employ in-place update ap-
proaches hinder concurrent access and parallelism.
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SIAS employs the multi-versioning scheme to increase concurrent access and foster paral-
lelism (Chapter 3)

• Invalidation Model: the versioning model of in-place invalidation creates small in-place
(random) updates which are unsuitable for the properties of Flash storage.

SIAS changes the invalidation model to facilitate out-of-place invalidation (Section 4.1).

• Version Organization Scheme: organization of tuple versions, addressing each of them as
individual data items, incurs in-place updates of visibility meta-data.

SIAS introduces a new versioning scheme that addresses all tuple versions of a data item as
a unique set (Section 4.3).

• HDD Read Optimized Data Structures: read optimized data structures and optimizations
such as clustering incur in-place updates and create mixed loads. Write optimized append
storage is more suitable for asymmetric storage. The trend towards larger I/O transfer
units (large page I/O) does not hold for Flash storage.

SIAS reconsiders access methods to optimize for write access (Chapter 5). SIAS enables
append storage management in tuple granularity (Chapter 6).

• Logical Page Append Storage Management: LbSMs that are implemented as a separate
layer between the DBMS and the storage, operate in page granularity and create write
amplification (smallest granularity to append is a page, even if just a single bit in the page
is updated).

SIAS significantly reduces the write amplification by integrating the LbSM into the MV-
DBMS and appending in tuple granularity (Chapter 6).

• Free Space Management: maintaining free space per page is not feasible for LbSM on
asymmetric storage. It inflates space consumption and avoids efficient cache usage.

SIAS does not use free space reservation. SIAS employs write retention and allows for a
simplified buffer management (Chapter 7).

• Traditional buffer managers optimize for hitrate: optimizing for locality and grouping of
writes, forming small sequential writes (or appends) becomes a major point.

The Flash based adaptive replacement cache (FBARC) has been developed (Chapter 7) to
address the benefits of write clustering.

The combination of the presented approaches leads to:

• Reduction of write amplification: SIAS leads to a significant reduction of the write ampli-
fication that is incurred by the version organization and the invalidation scheme.

• Fewer host writes: SIAS issues fewer host writes. Tuple versions become the net amount
of data pages.

• Lower space consumption: amount of occupied storage space is reduced since less net
amount of data has to be written and no free space reservation is applied.

• Avoidance of in-place updates caused by the version organization and invalidation scheme.
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• Flash awareness: complementing the FTL leads to more efficient and predictable garbage
collection and wear leveling. Avoidance of logical to physical block-address (LBA to PBA)
re-mappings that are caused by in-place storage management.

• Faster I/O of densely packed units: write less data and transfer more tuple versions (no
free space reservation).

• Lower latency: I/O is completed faster, leading to latency reduction and increased trans-
actional throughput on high loads

• Longevity: enhanced lifetime of Flash cells due to fewer host writes, avoidance of in-place
updates.

• Performance: SIAS achieves higher transactional throughput and lower average response
times.

• Shifting the knee-point: lower I/O latency and higher I/O throughput gracefully tolerates
workload fluctuations and spikes.

1.10 Structure of the Dissertation

Chapter 2 provides an exposition of the properties of asymmetric storage technology such as
Flash and Non Volatile Memory. This Section contains specifications provided by the manu-
facturers and our own experiments on the I/O behavior of Flash SSDs, where we built and
configured a high end server system.

Chapter 3 discusses the transactional model, the principle of Multi Version Concurrency Con-
trol (MVCC) and distinguishes MV-DBMSs from temporal databases.

Chapter 4 comprises the version management of the MV-DBMS. The basic types of the invali-
dation model are considered first and the Snapshot Isolation algorithm is examined.

The concept of the SIAS approach is stated in Section 4.3, which is embodied in the SIAS-
Vectors prototype (Section 4.4). With SIAS-Vectors we analyze the potential of the SIAS approach
and develop the improved SIAS-Chains concept which is detailed in Section 4.5. SIAS-Chains
is evaluated on different Flash storage, such as USB Flash, a single enterprise-class SSD and
an SSD RAID compound. The evaluation and discussion of SIAS-Chains is contained in Section
4.5.5.

Section 4.7 contains the SIAS approach for simplified buffer management using write reten-
tion. The SIAS algorithm involves changes to the access methods. The revised methods for
indexing and scanning are described in Chapter 5.

Different types and variants of LbSMs are examined in Chapter 6, focusing on append granu-
larity and data placement. Optimizations to LbSMs are discussed in Section 6.5.

Section 7.2 describes the Flash-aware buffer management of FBARC. FBARC extends ARC
by a write list utilizing the spatial locality of evicted pages to produce (semi-)sequential write
patterns.

The related work is contained in Chapter 8 giving an overview of existing approaches and our
own work and delivering a short survey of related approaches.

Chapter 9 contains a summary, a discussion of the contributions and future work.
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The properties of asymmetric storage technologies such as Flash differ from those of symmet-
ric storage media such as HDDs. Most DBMSs were designed to compensate for the properties of
HDDs, they treat SSDs as HDD replacements and are not optimized for their special properties.
Properties of HDDs upon which MV-DBMSs were designed are well known:

• HDDs are symmetric storage and reads are equally fast as writes.

• They incur high latency since on an arbitrary random access (read or write) the head has
to be positioned and the underlying disk has to rotate to the correct position.

• Physical limits are reached due to these mechanically moving parts.

• Over the past decades the access latency decreased only slightly, while data density, band-
width and processing power have increased exponentially.

With asymmetric storage such as Flash and Non-Volatile Memories (NVMs), this fact is not true
anymore. In the past years Flash based storage emerged as the main storage alternative to tra-
ditional HDDs. The key drivers of this development are the performance benefits of Flash-based
storage and falling prices, such as price per GB and more importantly per IOPS. Capacities have
significantly increased and modern physical interfaces and I/O protocols have been developed.
In the following Section 2.1 the properties of Flash memory chips are introduced. SSDs are
described in Section 2.2.

2.1 Flash Memory

Flash is persistent storage of a type of electrically erasable programmable read-only memory
(EEPROM) which is comprised of either NAND or NOR Flash memory chips. NOR Flash memory
is byte-addressable and mainly used for storing code. NAND chips are block-addressable and
mainly used for storing data.

In the following we focus on NAND based Flash. Such Flash memories are available from
manufacturers such as Hynix, Intel Micron Flash Technologies (IMFT), Powerchip, Samsung,
Sandisk and Toshiba or different OEM resellers.

There are mainly three types of NAND storage available on the market:

• Single-level cell (SLC) NAND, capable of storing 1 bit per memory cell (bit-codes 0, 1).
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• Multi-level cell (MLC) NAND, capable of storing 2 bits per memory cell (bit-codes 00, 01,
10, 11).

• Triple-level cell (TLC) NAND is capable of storing three bits per cell, also known as 3bit
MLC (bit-codes 000, 001, 010, 011, 100, 101, 110, 111).

Based on these types there exist further subtypes of NAND Flash chips. Enterprise MLC (eMLC)
is a special type of MLC NAND which is designed for server storage that yields enhanced en-
durance. In comparison to consumer MLC it supports a higher amount of (over-) write cycles
and therefore yields a higher durability: consumer MLC supports approx. 3000 to 10000 write
cycles and eMLC 20000 to 30000 write cycles [25].

3D V-NAND comprises either MLC or TLC NAND, features higher capacity than two dimen-
sional layouts of equivalent types, by deploying the cells in a three dimensional layout [98].
The “V” is an abbreviation for the vertical alignment of the NAND cells.

SLC NAND differs from MLC (and TLC) in lifetime, performance, density and costs. SLC yields
lower response times and a 10 times longer lifetime than MLC. The performance and endurance
of SLC comes with a price, it features lower density and involves higher cost. Therefore, it
is mainly used in special storage environments. The majority of Flash based storage currently
available on the marked is based on MLC or TLC Flash chips.

Some selected specifications are contained in Table 2.1. The Samsung 840 EVO series uses
an optimization called Turbo Write which instruments the MLC NAND Flash in the same way as
SLC chips, writing only one bit instead of three. This decreases the capacity but increases the
performance of the device. The device internally runs a background maintenance process which
migrates the data previously written in Turbo Write mode to the physical MLC format to reclaim
unused capacity.

Table 2.1: Vendor specifications (excerpt): Intel X25-E 64GB [50], Samsung 840EVO [100]. WC =
Write Cache.

Model Intel X25-E 64GB Samsung 840EVO
Application Server, Data Center Client PC
Type of Flash SLC 3bit MLC (3D VNAND)
Model Number SSDSA2SH064G1GC MZ-7TE750, MZ7TE1T0
Queue Depth (QD) Max. 32 Max. 32
Sequential Read 250MB/s 540MB/s
Sequential Write 170MB/s 520MB/s (Turbo Write)
Random Read 100% Span (QD 32) 35000 IOPS (8KB) 98000 IOPS (4KB)
Random Write 100% Span (QD 32, WC On) 3300 IOPS (8KB) 90000 IOPS (4KB)
Latency Read 75µs (QD 1) unknown
Latency Write 85µs (QD 1, WC on) unknown
Capacity 64GB 750GB, 1TB
Interface SATA 3.0 3GB/s SATA 6GB/s
Factoring Lithography 50nm 19nm
Endurance 2 PB random writes 3 years warranty
Trim support No Yes
On Device Cache unknown 1GB DDR2 SDRAM
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Figure 2.1: NAND Flash package layout [75]. Each Flash package comprises multiple dies which
consist of several planes. A plane comprises blocks (erase-unit) which are divided
into Flash-pages. Flash-pages are the unit of I/O and are accessed through the block
device interface. Blocks are the unit of erase operations.

The common layout of a Flash memory package/chip comprises one or more dies which are
individually segmented into multiple planes. Each plane contains several thousand blocks, each
containing 64 to 128 Flash-pages that yield a data storage capacity of 2KB to 8KB and some
space (e.g. 64-128 bytes) for storing meta-data such as Error Correcting Codes (ECC). The
exact design (storage, capacity, amount of meta-data, etc...) of a Flash memory package varies
from vendor to vendor. The Flash package layout is depicted in Figure 2.1 [75]. The write/read
unit is a Flash-page (via the block device interface). It is technically impossible to overwrite
Flash memories (only reset cells can be set), a write is always executed on a clean/erased block.
In order to overwrite a block, it has to be deleted first. The erasure of a Flash-page is only
possible when the whole block it is contained in, is erased first (bad block management). Hence
an update operation issues a so called erase-cycle where the block is read into the cache, merged
with the new data and written back after the physical block has been erased. Each erase-cycle
increases the wear of the block, hence decreasing its lifetime. In the following such a block is
referred to as an erase unit.

Most Flash chips provide a spare area per Flash-page which stores out-of-band (OOB) data,
including error correcting codes (ECC), the state bits of the page and the logical page number
(LPN) or the logical block number (LBN), respectively.

Technically, data is stored as a charge in a floating gate of the semiconductor within the
Flash cells. For instance, MLC induces four different charge levels in order to store two bits of
information per cell. This has direct influence on endurance, since with smaller (sub-micron)
cell design sizes the amount of reliable set and retrieve operations also decreases. Hence it
is critical to avoid write patterns that frequently update data on the same Flash cells. Flash
memories exhibit the following important properties:

• Asymmetric read/write performance: Access latencies for read operations vary from
nanoseconds to several microseconds [19]. Random read and sequential read perfor-
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mance (throughput) is roughly equally fast. Write operations, are at least an order of
magnitude slower. Write latencies for random and sequential access vary significantly.

• Three operations: read, write and erase that need to operate in different granularities
(pages, blocks).

• No mechanical latency.

• No overwrites: need for erase-cycles that wear out the Flash memory cells.

• Varying physical addresses: as a result of erase-before-overwrite and wear-leveling.

• Inherent parallelism - each die can operate independently.

• Mixed load performance: the mixed-load performance of Flash devices is sub-optimal com-
pared to their pure read or write performance (Figure 2.8 and Figure 2.9).

• Endurance: writes to the same memory location can cause the memory cells to malfunction
hence the notion of endurance or longevity.

2.2 Solid State Drives

In the past few years Flash based storage for DBMSs became a standard technology and the main
alternative for HDD based storage systems. Solid State Drives (SSDs) are integrated devices
which make Flash memory accessible, emulating an HDD and introduce additional properties.
SSDs comprise Flash memory chips, a controller that runs software logic that manages the Flash
chips, a volatile cache (SDRAM) and a physical interface to connect the device. Figure 2.2
depicts the general layout of a Flash SSD.

The Flash Translation Layer (FTL) subsumes the software logic that manages the Flash chips.
For backwards compatibility and interchangeability SSDs implement legacy hardware interfaces,
addressing and physical space management methods which were designed for properties and
characteristics of legacy block-device hardware. They implement a block device interface in
order to be compatible and interchangeable with traditional storage, such as Hard Disk Drives
(HDDs). This fostered their proliferation, since traditional DBMSs can operate on them. It
enables simple replacement and delivers an immediate performance boost. This fast “sugar-
Flash” comes at a price. SSDs are prevented from realizing their full potential. Even worse,
access methods that were developed for legacy storage can be harmful for the Flash memories.

Flash SSDs are available for different storage systems, yielding different block-device inter-
faces, connectors and form factors. Serial ATA (SATA) is commonly used for consumer PCs and
smaller (inexpensive) server systems. Serial Attached SCSI (SAS) and PCI Express (PCIe) is used
for server storage and reaches approx. ten times the performance of consumer models. Paral-
lel ATA and SCSI are successively replaced by SATA and SAS. SSDs for mobile devices mainly
implement a M.2 or mSATA interface.

In the following the most relevant properties and characteristics of Flash Solid State Drives
(SSDs) are listed.
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Figure 2.2: General layout of a Solid State Drive (SSD). A general SSD is comprised of several Flash
memory chips that are connected to memory controllers. A SRAM controller (ARM)
manages the connection to the host interface. The FTL subsumes SRAM and Flash
controllers, ARM processor and volatile SRAM cache.

Flash Translation Layer
The on-device Flash Translation Layer (FTL) of Flash storage media provides backwards-

compatibility, legacy interfaces (block device) and hides Flash storage specific behavior. The
essential mechanism that is performed by the FTL is the address translation. The principle of
the address mapping is depicted in Figure 2.3. The address mapping, along with the translation
scheme, is implemented within the Flash SSD as a black box and invisible for accessing layers
and several maintenance procedures are entailed with the address translation. When a page
is requested by the application, the logical block address (LBA) is directed through the block
device interface to the SSD’s FTL. The FTL performs a lookup within the address mapping table,
resident in the SRAM of the SSD, to determine the physical block address (PBA). Subsequently
the physical page is returned.

Since new data (updates, inserts) always has to be stored on clean (newly allocated) pages,
the physical address of already written pages is prone to change. The logical address, visible
outside the black-box, stays the same for the application (e.g. the database). The physical
address is not visible to the application.

This leads to unpredictable behavior, since several FTL-background processes such as garbage
collection, metadata synchronization, wear leveling and eventual log-block merges are executed
in the background and cannot be instrumented. For instance, the address translation process
may invoke the garbage collection once the amount of physical free space drops below a certain
threshold.

There exist mainly three different mapping schemes:

• Block-level mapping. Block-level mapping operates on Flash-block granularity. Hence it
abstracts from Flash-pages. The advantage of block-level mapping is the lower SRAM
overhead. The main disadvantage of block-level mapping schemes is that due the higher
granularity of the mapping it is not efficiently possible to seperate hot from cold Flash-
pages. Hot Flash-pages are updated frequently, while cold pages stay unaltered. This
creates a high amount of invalid Flash-pages. In order to reclaim space the garbage col-
lection mechanism has to copy (migrate) valid pages to a new Flash-block before the old
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Figure 2.3: Flash Translation Layer Mapping. A page is requested by the application using the
logical block address (LBA). Through the block device interface the request is directed
to the FTL which performs a lookup in the address translation table to retrieve the
physical address.

block is erased. A mixture of hot and cold pages therefore degrades the performance of
the garbage collection ([75])

• Page-level mapping. Page-level mapping schemes store a mapping of each logical block
address to a physical block address. This incurs a high overhead on the SRAM cache and
increases the size of the mapping table. Scalability is an issue and growing capacities of
Flash SSDs render pure page-level mappings infeasible. Page level mapping is mainly used
on devices with smaller capacities and NOR based Flash storage.

• Hybrid mapping. Hybrid mapping schemes take advantage of the flexibility of a page-level
mapping while keeping the SRAM overhead reasonably low, close to that of block-level
mapping. One main task of this approach is to identify and manage hot and cold pages.

A summary of FTL mapping scheme approaches is given in the related work in Section 8. A
thorough survey of different FTL mapping schemes is also provided in [75].

Asymmetric Storage
Reads are up to an order of magnitude faster than writes (measured in I/O operations per

second – IOPS). This property is inherited by the Flash memories. On Flash SSDs the I/O
asymmetry is particularly large in the case of random writes [18]. These are one to two orders
of magnitude slower than random and sequential reads respectively [18]. Some manufacturers
of SSDs report symmetric read/write performance for their products, yet this is only true under
certain circumstances and an effect of the on-drive volatile cache. As soon as the cache is filled,
the asymmetric property of the Flash memories is revealed. Write as well as read performance
drops after that point. The cache quickly gets filled during a continuous operation, hence this
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property can’t be masked. The drop in read performance is also caused by the filled cache, since
mechanisms such as read ahead become inefficient. Random (re-)writes have long-term effects
on performance and endurance.

Costly Erase Cycles
Overwriting a physical block on Flash directly is impossible. Either a read-update-delete op-

eration (erase-cycle) has to be performed or the block has to be remapped. On the event of
a remapping operation the FTL writes the updated block to a different physical location and
stores the mapping data. Since the erasure of a block is only possible after the execution of an
erase-cycle (erase unit is read into the cache, merged with the new data and written back after
the physical erase unit has been erased). Since the read-update-delete operation is costly, most
Flash SSDs postpone the erase operation to a later time. They use the on-drive cache and a
predefined spare area (over-provisioning).

Performance
The random read performance is exceptionally good (latency and throughput), especially on

small block sizes (4KB/8KB [91]). The access time is bound by the transfer time and not the
seek time any more. The larger the blocksize, the higher the transfer time, resulting in fewer
IOPS. Figure 2.4 depicts the throughput of the SSD and HDD, measured in IOPS, on different
blocksizes. This contradicts the present trend towards larger database page sizes for HDDs,
since the cost of fetching a small page is low and can be parallelized in SSDs.

Figure 2.4: SSD and HDD throughput on different block sizes. Random read and random write.
IOPS scale is logarithmic.

Random write performance is lower than the random read performance (IOPS). Especially
on in-place updates the random write performance is significantly lower than the random read
performance [18]). Nonetheless, the random write throughput is an order of magnitude better
than that of an HDD. (Small) random writes, especially updates, are an issue not only in terms of
performance and durability of the Flash cells, they lead to long-term performance degradation
due to Flash-internal fragmentation. Some Flash device manufacturers report faster random
write than random read IOPS, but these figures can only be achieved by large on-device caches
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and do not consider sustained workload. The performance of the Flash device is bound by the
characteristic performance of the Flash memory, yielding unstable performance. As soon as the
cache is filled the Flash-specific characteristics are revealed.

Sequential or semi-sequential write patterns are preferred in terms of performance. When a
set of random write I/O requests is concentrated on a relatively small region, they are performed
nearly as fast as sequential requests (Section 7.2, [29, 13]). Append Log Storage is another
approach that sequentializes write requests and is studied in Chapter 6.

Sequential operations are also asymmetric. Sequential reads are approx. 25% faster than
sequential writes and sequential writes are significantly faster than random writes. These figures
are reduced to 25% due to caching and read ahead mechanisms.

Mixed workloads are slower than segmented loads. Due to the layout of the Flash memories a
mixture of read and write operations as well as random and sequential access patterns performs
slower than a pure work-load.

I/O Parallelism
Individual Flash chips can handle multiple I/O commands simultaneously. This is due to their

internal organization. Each Flash-chip comprises several dies, where each die can operate on
its own, independently of other dies, and is capable to execute multiple different commands
in parallel. Figure 2.1 depicts the internal layout of a single Flash package/chip. On a Flash
device there exist multiple levels of parallelism, since a Flash device is comprised of multiple
Flash chips. In addition Flash devices comprise multiple independently connected Flash chips in
an array-like organization. Compared to the typical hard drive a Flash device can handle much
higher levels of I/O parallelism. Furthermore, Flash devices (SSDs) can execute much more
I/Os in parallel than the SATA interface allows. The I/O performance increases with the number
of asynchronous I/O requests (queue depth) [3, 18].

Wear
Flash memories are prone to wear and offer limited endurance and durability. Each flash

chip is divided into erase-units (Flash-blocks) that can only be written a finite number of times
(erase-cycle), delivering increasingly unreliable results. Wear leveling (WL) is executed within
the FTL which balances the write load to evenly wear out the Flash memory chips. WL dis-
tributes the amount of overwrites (erase cycles) evenly across the Flash cells. When Flash cells
wear out the whole block in which they are contained is marked as defective and the reserved
over-provisioning area is used. The block is physically relocated and its valid contents are writ-
ten to different block on the Flash device. Relocations are stored in the FTL’s mapping table.
Over-provisioning is mainly used to postpone expensive erase operations that are triggered by
updates. Instead of updating a block in-place the block is remapped to a different location. The
efficiency can be influenced by the user of the SSD, by increasing the amount of unused space.

2.3 Flash Endurance

Since Flash storage is prone to wear and has a limited lifetime, it is crucial to provide appropriate
I/O patterns in order to improve the endurance. Growing Flash capacities for SSDs entail the
trend to larger erase units, since larger sizes allow the use of smaller mapping tables on the SSD’s
controller. Since wear on the device is measured using the average amount of erases, avoidance
of small updates, such as timestamp related meta-information becomes more important. The
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Figure 2.5: Latency outliers on random write load on a single SSD with factory clean state. Du-
ration 60 seconds and 335k write requests. The abscissa is showing the number (in
order) of each write request. The ordinate is showing the latency of each request.

SIAS algorithm significantly reduces the write amount and the required space on the device.
In-place updates are avoided, new pages are written (appended) in monotonically increasing
order.

Masked Behavior
The FTL emulates an HDD compatible block device interface and hides internal background

processes that manage the Flash memory. A black-box abstraction is created that hides internals
and specifics of the Flash memory. The basic background processes are represented by a logic
block mapping, the garbage collection and wear leveling algorithms. These background pro-
cesses run asynchronously and are triggered on certain conditions based on the device specific
state.

This organization leads to a crucial property: unpredictable performance in terms of latency
and throughput. The black-box abstraction leads to an interference between the execution of
foreground I/O requests (issued by the DBMS) and the background processes on the device.

When the (volatile) cache is filled during normal database execution, the performance drops
since write operations have to be carried out. In modern SSDs there exists a so called spare
area which is additional space available only for the internal device. Error correcting codes are
also stored within that area. If the spare area is saturated or a block has been remapped again,
expensive erase-modify-write operations have to be executed. Such executions produce outliers
in latency and throughput, which is unpredictable to the software behind the device interface.
Although the DBMS issues a sequential scan over its logical block addresses the SSD may have
to find remapped physical blocks at different locations.

Unpredictable Performance.
The address mapping (Figure 2.3) and background processes that manage the Flash chips

(garbage collection, wear leveling, etc.) and provide the legacy interface create a black box
abstraction which creates state dependencies and prevents stable performance characteristics.
Sporadic non-deterministic and workload dependent outliers occur, as depicted in Figure 2.5.
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A single SSD is instrumented with 60 seconds of random write requests, with a total of 335k
requests. We measured each write request’s completion time. The difference between the aver-
age and maximum request latency is significant. The main reason for this behavior is Garbage
Collection. The FTL runs a garbage collection (GC) process that is executed asynchronously.
Used blocks are collected and co-located such that erase units can be erased to reclaim space.
In most SSDs the GC process is triggered in the background when the device is idle or when a
threshold (used up space) is reached.

State Dependency

Figure 2.6 shows the state dependency of the Intel X25-E SLC SSD. We conducted I/O bench-
marks where each I/O trace is comprised of mixed random read and random write requests and
is created with an individual seed. Each trace was run consecutively for eight times. After each
individual test-run, the system was powered down and restarted in order to remove caching
effects. With each consecutive run, using the same seed, the SSD performed better. After
switching to a different seed, practically creating a different trace, the performance broke down
to the point of each initial benchmark series. This emphasizes the existence of state dependency
on Flash devices that are caused by internal processes and the occurrence of remapping on the
device. Therefore, it is difficult to guarantee certain performance figures as long as the I/O
pattern is not optimized.

1 2 3 4 5 6 7 8

Seed 20 31392 51807 59174 70305 74739 81847 84035 91056

Seed 42 33893 55930 57804 77522 73725 88827 87352 99010

Seed 173 35036 55064 65633 74620 81157 88424 93077 97537

Seed 65 34314 53855 63615 73538 79770 87545 92272 97154
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Figure 2.6: SSD state dependency. Each seed forms a series of 8 test-runs that are consecutively
executed. After each run the system was powered off. When the same trace is exe-
cuted, the SSD performs better - even after a power loss. Thus making it difficult to
guarantee reliable performance figures.
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Trim
If the host system is not aware of the underlying SSD storage it does not inform the SSD

when a block is deleted, since usually only an entry within the filesystem is updated. Traditional
HDD storage devices do not need the trim command since they are capable to overwrite blocks.
Since the block has to be explicitly erased on the SSD, the SSD is not able to garbage collect
that block if only the filesystem is updated. Therefore, the Trim command was introduced that
informs the SSD about the deletion of blocks. This is beneficial for the efficiency of the SSDs
background processes such as garbage collection and wear leveling. Trim is implemented in
modern operating systems such as Windows 7, Linux (kernel 2.6.33) and Max OS X (10.6.8).

Flash Write Amplification
The general term of write amplification is the difference of new data that has to be written and

the actual amount of data that has to be written. For example overhead that is generated by
meta-data and (hardware/software) interfaces.

Flash write amplification (F-WA) is the result of data written by the SSD’s controller divided by
write operations issued by the host The host accesses the SSD through a block-device interface.
If the host is unaware of the underlying Flash, it may issue overwrites that on the SSD trigger
a costly erase-cycle - this has to be avoided in order maintain sustained performance, reliability
and longevity. Operations such as the remapping of Flash-blocks or migrating of valid Flash-
pages within a Flash-block, creates the F-WA. The numerical value of F-WA is calculated dividing
the amount of data written by the SSD’s controller by the amount of data that is written by the
host. In the ideal case the number is smaller or equal to one. If it is smaller than one the data
written by the host is compressed by the SSD’s controller.

2.4 Hardware Specifications

The specification of our Intel X25-E SLC SSD are contained in Table 2.1. Table 2.2 and Table
2.3 show the measured performance of the Intel X25-E SLC SSD. The performance figures in
Table 2.2 are recorded on a Windows Server 2008, while those in Table 2.3 are recorded on an
Ubuntu Linux Server. The performance figures confirm the vendor’s specification. Experiments
on the device serve as an example of the basic properties of the Flash SSD. [99] provides further
analysis of different Flash devices.

Table 2.2: Single Intel X25-E SSD performance figures under Windows 2008 Server. With and
without file system. Random request size 4KB. Sequential request size 512KB.

Property IOMeter RAW IOMeter NTFS XDD NTFS
Random Read (IOPS) 35661 35937 34667
Random Write (IOPS) 5179 5893 5732
Sequential Read (MB/s) 255 261 265
Sequential Write (MB/s) 195 194 195

Mixed Workloads
As already stated, mixed workloads are slower than segmented loads. Figure 2.8 depicts the

mixed workload performance of a single SSD (Intel X25-E). The tests were conducted using
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Table 2.3: Single Intel X25-E SSD performance figures under Ubuntu Linux Server. With and
without file system. Random request size 4KB. Sequential request size 512KB.

Property IOMeter RAW IOMeter XFS XDD RAW XDD XFS
Random Read (IOPS) 35700 35792 35941 35068
Random Write (IOPS) 4923 4602 5659 5623
Sequential Read (MB/s) 248 257 252 248
Sequential Write (MB/s) 197 196 197 196

Figure 2.7: Intel X25-E SSD without the protective case. The device provides an SATA interface
and power connector. It comprises 16 SLC-NAND Flash chips, the controller and
volatile cache (SD-RAM). Source Intel [50]

the IOMeter benchmark tool with activated write cache and read ahead on the SSD. Activated
write cache and read ahead significantly improves the performance of full sequential writes
(no mixture with reads) and full sequential reads (no mixture with writes), respectively. Write
performance decreases with increased randomness. Figure 2.8 shows a significant drop in write
IOPS when only 20% of the writes are random writes. When full sequential write access is mixed
with only 33% sequential read access the performance drops by approximately 70% (8KB block
size).

In general, random reads are less costly than random writes and small random writes are
especially expensive, whereas sequential writes are less costly than random writes. When intro-
ducing randomness the read ahead has to “guess” the correct read pattern, which leads to an
initial decrease. Read IOPS increase on further increment of the randomness.

In contrast Figure 2.8 depicts the effect of deactivated write cache and no read ahead. The
overall write performance is impaired the most on small block sizes, since each issued I/O has
to be directly executed on the device - it can’t be cached. Small random writes are slower than
sequential or semi-sequential writes. Larger block sizes (256KB) are less impaired on sequential
access. It is obvious that small random writes benefit the most from activated write cache.
Overall writing in large and sequential access patterns and reading in smaller units is beneficial
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Figure 2.8: Variations of workload types on a single Intel X25-E SSD with activated write cache
and read ahead. Mixed workloads (read and write or sequential and random) are
slower than segregated loads. Sequential writes are less costly than random writes.
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Figure 2.9: Variations of workload types on a single Intel X25-E SSD with deactivated write cache
and no read ahead. Mixed workloads (read and write or sequential and random) are
slower than segregated loads. Sequential writes are faster than random writes.

for SSDs. Write caching and read ahead mechanisms are limited on continuous workloads (24/7
OLTP). In the ideal case all writes are issued sequentially in large units and reads are issued in small
block sizes.
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2.5 SSD RAID Configuration

Building a large, Flash-based storage system that is capable of delivering the aggregated perfor-
mance of each connected Flash device is a non-trivial task. Although recent SSDs reach capac-
ities of up to 6TB, they have a higher price/tb value than the equivalent amount of SSDs that
yield smaller capacities. The aggregated performance of an SSD RAID system largely depends
on the layout and infrastructure of the whole system, e.g. whether hardware RAID controllers
or software RAID is used.

Traditional hardware based RAID technology yields performance and scalability bottlenecks
when set up with Flash SSDs [88]. Such configurations cannot handle more than a few SSDs
until they get saturated. We examined different configurations of hardware and software RAID
with the purpose to reach the peak performance of each configuration. Our research indi-
cates that less than 10% of the expected random read rate and less than 35% of the expected
sequential read rate can be achieved by a traditional hardware RAID configuration [88], [89].

RAID layouts amplify the properties of Flash SSDs, especially their read/write asymmetry,
and write behavior. Hardware RAID controllers that are designed for the properties of HDDs are
saturated by only a few SSDs and become a bottleneck. The distribution of data by the hardware
controller amplifies fragmentation and write issues of the Flash SSDs, creating a negative impact
on the overall performance.

With software RAID and host based storage the aggregated and theoretically possible peak
performance can be reached.

Being capable of reaching peak performance by an adequate layout/configuration of the RAID
storage subsystem is a necessity for the development of a DBMS architecture that is capable of
effectively utilizing the performance. It is essential to ensure that no bottlenecks are artificially
created by a suboptimal configuration of the hardware system.

In order to benchmark the I/O subsystem and layout of the hardware system, synthetic bench-
marks are employed that are capable of selectively executing certain I/O patterns. This delivers
the storage systems raw performance and proves that the configuration is capable of reaching
the peak performance as the sum of its components.

With our Sylt server testbed we analyzed various configuration variants in order to determine
the optimal hardware and software layout that is capable of reaching the maximum theoretical
performance of the hardware. The final layout is depicted in Figure 2.11 and explained in the
following Section.
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2.5.1 Sylt Testbed

Figure 2.10: The Sylt Server testbed installed in the server rack.

We evaluated the layout and configuration of our Sylt server testbed (Figure 2.10) using
various performance benchmarks such as FIO, XDD, IOMeter and DBT2. The specification of the
Sylt Server is contained in Table 2.4. The baseline performance figures are contained in Table
2.5.

Table 2.4: Sylt specification.
Mainboard Supermicro with QPI bus-system
Main memory 48GB
Storage Controller Two LSI 9211-4i PCIe x4 - (host based storage)
SSD Storage 8x Intel X25-E SLC 64GB
Raid Linux Software Raid, managed using mdadm
I/O scheduling NO-OP scheduling
Main Operating System Linux 2.6.34-gentoo-r12
Secondary Operating System Windows 2008 Server

Figure 2.12 shows the random read performance of the Sylt server on raw storage. Incre-
menting the queue depth leads to higher IOPS for all blocksizes. The smaller the blocksize the
higher the IOPS. Figure 2.13 shows the average read latency of random read access on different
block sizes with incremental queue depth. Smaller blocksizes achieve lower response times on
higher queue depth. Peak performance is only reached when the Flash SSDs can be saturated
with requests. This occurs when the queue depth amounts to 256 (32 per SSD). Analogously
Figure 2.14 shows the throughput of random writes and Figure 2.15 shows the latency in mil-
liseconds. The same trend can be observed. This confirms the trend that transfer time becomes
more important than seek time.
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Figure 2.11: Final configuration of the Sylt Server testbed.

Table 2.5: Sylt baseline performance under Linux.
Property Block Size Read Write
Sequential Throughput (MB/s) 256KB 2018 1477
Sequential Throughput (MB/s) 512KB 2027 1487
Sequential Latency (ms) 256KB 0.382 0.521
Sequential Latency (ms) 512KB 0.432 0.703
Random Throughput (IOPS) 4KB 279 776 41 882
Random Throughput (IOPS) 8KB 184 469 30 458
Random Latency (ms) 4KB 0.251 0.085
Random Latency (ms) 8KB 0.298 0.221
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Figure 2.12: Sylt read IOPS on different block sizes and queue depths. Abscissa indicates the
queue depth. Ordinate indicates throughput in IOPS. Each graph represents a dif-
ferent blocksize.

Figure 2.13: Sylt read latency on different block sizes and queue depths. Abscissa indicates the
queue depth. Ordinate indicates latency in milliseconds. Each graph represents a
different blocksize.
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Figure 2.14: Sylt write IOPS on different block sizes and queue depths. Abscissa indicates the
queue depth. Ordinate indicates throughput in IOPS. Each graph represents a dif-
ferent blocksize.

Figure 2.15: Sylt write latency on different block sizes and queue depths. Abscissa indicates the
queue depth. Ordinate indicates latency in milliseconds. Each graph represents a
different blocksize.
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3 Transaction Management
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Concurrent execution of transactions on the same DB requires a concurrency control mecha-
nism. Uncontrolled execution of concurrent transactions that operate on the same data item(s)
may produce an inconsistent state of the DB and anomalies may occur. To maintain a consistent
state, it has to be ensured that the concurrent (interleaved) execution of multiple transactions
maintains the ACID properties of atomicity, consistency, isolation and durability. In short the
transaction manager has to guarantee that concurrently running transactions do not interfere
with each other.

The transaction manager observes and controls the execution of transactions, where each
transaction is described as a logical unit of work in terms of database processing. Transactions
transfer the database from a consistent state to another consistent state.

Transaction management also includes the task of recovery control. The proposed architec-
tural changes and algorithms in this work use existing recovery control mechanisms, such as
write ahead logging (WAL). The database is separated from the (recovery-) log. Approaches to
recovery control algorithms are not further investigated in this work.

3.1 Multi Version Concurrency Control

Management of multiple concurrent transactions is provided by the multi-version concurrency
control mechanism (MVCC).

There exist different approaches to MVCC [105] such as Timestamp Ordering, Multi-version
Two-phase Locking and Snapshot Isolation. Snapshot Isolation is a particular type of concurrency
control scheme and further described in Section 4.2.

Multi-version Concurrency Control (MVCC) schemes create versions of data items once they
are modified. On each write of a data item X a new version X i is created. On a read request
the appropriate version of X is selected by the concurrency-control manager. One major ad-
vantage of MVCC is the support of lock-free reading access. A read access is never blocked or
delayed. Any number of read transactions and one write transaction can operate on the same
data item. In a typical enterprise OLTP workload reading access (small read access) dominates
and a certain amount of small, selective updates is issued. Individual transactions are short run-
ning and last only milliseconds. With respect to the OLTP workload and Flash storage, MVCC
seems to be a good match. MVCC is also valid for workloads comprised of a mixture of long and
short running transactions. Where long running transactions are characterized by more complex
transactions that last minutes or up to several hours. The lock-free read access enables a higher
degree of concurrency compared to classical two-phase-commit locking protocols that depend
on (shared) read locks which cause delays by waiting for lock releases.
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3.2 MV-DBMS

Multi Version Database Management Systems (MV-DBMS) employ MVCC schemes and manage
versions of data items. MV-DBMSs differ from single version DBMSs (SV-DBMSs) that maintain
a single version of a data item. SV-DBMSs lock data items on updates and perform updates in-
place (overwrites). Therefore, the data item exists only in one version and there is no overhead
of finding the visible version of a data item. Related approaches that also manage a multi-
versioned dataset, such as Temporal DBs, are listed in Chapter 8.

MV-DBMSs are conceptually a good match for the properties of modern storage technologies
such as Flash. Reads are never blocked and concurrent transactions are capable to leverage
parallelism.

The design and algorithms in traditional approaches, as implemented in current databases,
address special properties of HDDs - especially their high sequential throughput and high latency
access time on any type of I/O. They maintain clustering by performing in-place updates to opti-
mize for follow-up read accesses, reducing the latency introduced by the mechanical properties
of HDDs (rotational delay, positioning time).

Concurrent updates are handled by the concurrency manager. This work focuses on Snapshot
Isolation, which either employs the first-committer-wins or first-updater-wins rule (explained in
more detail in Section 4.2.1). An important property of the MV-DBMS is the invalidation model.
It defines how invalidation of updated/deleted versions is handled and has direct influence on
the created I/O pattern. This is described in more detail in Section 4.1.

3.3 Multi Version Concurrency Control on SSD

MV-DBMSs, that implement MVCC schemes, are gaining more importance recently. They intro-
duce significant performance improvements compared to approaches that implement protocols
which require read lock. Especially the level of concurrency is increased, since read operations
do not block write operations and vice versa. Concurrent access can be leveraged to exploit the
Flash storage’s inherent parallelism. An immediate effect is that locking overhead is reduced,
but reads are more complex: due to version management it has to be ensured that the correct
tuple version of a single data item is read. This matches the SSD’s property of fast random and
sequential reads.

In this work Snapshot Isolation (SI) is used as an exemplification of the MVCC protocols. The
invalidation scheme in SI creates in-place updates caused by the invalidation of the updated
tuple, which possibly increase the (random) write load. In addition, it generates mixed load
since read and write locations intersect. In-place updates, small random writes as well as mixed
loads negatively impact not only the performance of the Flash device, they also impact their
endurance (Chapter 2).

The SI issues we discussed so far are: (i) mixed load in terms of read/write and (ii) in-place
updates, caused by the in-place invalidation scheme.

Those issues are addressed by the SIAS approach. SIAS alleviates the necessity of the on-tuple
invalidation since the presence of a successor version implicitly invalidates its predecessor. Thus
it orders the versions in a simple backwards connected logical chain. The load is not mixed since
a write is always performed as an append. Furthermore, once data is written it is immutable.
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The concepts and approaches presented in this dissertation are implemented in PostgreSQL.
They can be applied and transferred to other arbitrarily chosen MV-DBMS implementations.
PostgreSQL is chosen due to its availability and acceptance in both industry and academia. It
is open source and allows the implementation of the concepts and approaches presented in this
dissertation.
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Version management is essential to the MV-DBMS. Inserts create initial versions of data items
and updates insert new tuple versions of an existing version. On a request for single or multiple
data items the correct (visible) version of each item has to be found and the MV-DBMS has to
execute a visibility check of the tuple versions that belong to the requested data items.

Management of multiple concurrent transactions is provided by the multi-version concurrency
control mechanism (MVCC). There exist different approaches to MVCC [105] such as Timestamp
Ordering, Multi-version Two-Phase Locking and Snapshot Isolation. Snapshot Isolation (SI) is a
particular type of concurrency control scheme [105] and has gained wide acceptance in com-
mercial and open source systems (Chapter 8). Old, updated versions get invalidated to indicate
the existence of a newer version. The invalidation model is a performance critical component
and is further discussed in the following Section.
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4.1 Invalidation Model

Traditional, single version DBMSs maintain a single version of a data item. On an update
the item usually gets locked for reading/writing. Subsequently the item is updated in-place
(overwritten). Therefore, the data item exists only in one version and there is no overhead of
finding the visible version of a data item.

MV-DBMSs add one dimension to the DB’s data items, maintaining them in different tuple
versions (Section 3.2). Whenever a data item is modified a new tuple version is created. On
an access to the data item the correct tuple version has to be determined. This is facilitated by
invalidating the former tuple version using an invalidation model.

For instance, on an insert the initial tuple version of a data item is created, while on an
update a successor version is created. Deletions can be handled as updates (special tombstone
tuple version) or the recent tuple version is invalidated without a successor.

The newest uncommitted tuple version of the data item may only be visible to the transaction
that created it. Other transactions must access the most recent committed tuple version of the
data item, i.e. the tuple version that was committed before the start of that very transaction. MV-
DBMS implement mechanisms to identify the visible tuple version of a data item for a running
transaction. At most one tuple version of the data item is allowed to be visible to a transaction.

There exist two basic invalidation schemes:

• i) one place invalidation (valid from),

• ii) two place invalidation (validity range).

In the following approaches to the invalidation model are explained utilizing the SI con-
currency control scheme. Figure 4.3 depicts the two place invalidation scheme of the Snapshot
Isolation approach. The one place invalidation scheme of the Snapshot Isolation Append Storage
(SIAS) approach is depicted in Figure 4.7 (SIAS-Vectors) and in Figure 4.22 (SIAS-Chains).

4.1.1 One place invalidation

One place invalidation marks each tuple version with one timestamp. In general there is a choice
of two variants on that timestamp: either a validity timestamp that corresponds to the logical
moment in time from which on it is valid or a creation timestamp that corresponds to the logical
moment it was created - usually the begin timestamp of the creating transaction. One place
invalidation is a write optimized approach, since other (older) tuple versions of the data item
do not have to be changed. For example, on an update of a tuple version simply a new version
is created. This approach is in line with the append storage principle and does not require an
on-tuple invalidation. However, this approach is optimal for operations that often create new
tuple versions but seldomly read.

On each read access the visible tuple version has to be found. The choice of the timestamp
determines the type of visibility checks that have to be executed in order to find the visible tuple
version. This requires to fetch the most recent committed tuple version which was not inserted
by a concurrently running transaction. Since tuple versions only have one valid from or creation
timestamp, all tuple versions of a specific tuple have to be fetched and their timestamps have to
be compared.
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4.1.2 Two place invalidation

Two place invalidation assigns each tuple a logical range that defines its validity. On an update
of a tuple version, a new tuple version is created and the predecessor version has to be invali-
dated. This requires an in-place update of the predecessor’s visibility meta-data. Tuple versions
are marked with a range, facilitated by two timestamps that form the visibility meta-data. Anal-
ogously to the one place invalidation scheme, different timestamps can be utilized. The first
timestamp defines the logical moment in time from which on it is valid, or when it was created.
The second timestamp marks the tuple version as invalid. It is set upon the invalidation of the
tuple version by the creation of the successor version (or a deletion). Either when the successor
version became valid or was created.

Two place invalidation is a read optimized approach, since the visibility decision can be made
without fetching other tuple versions. All information that is needed to decide upon visibility of
a tuple version is contained on that very version. When reading an arbitrary tuple version the
transaction is capable to determine the visibility by checking the validity range stored on the
tuple version. Therefore not all tuple versions of a tuple (data item) need to be fetched. On an
update this approach inevitably has to update the validity timestamp of the predecessor, thus
resulting in an in-place update.

In the following the term data item is used to describe a tuple and the term tuple version is used
to describe a specific version of that data item. On symmetric storage additional effort is made
to maintain a clustering of tuple versions in order to optimize for reading access (minimize I/O
access times).

On asymmetric storage such clustering turns out to be counterproductive, writing in random
is very slow and immediate overwriting is impossible (erase before write cycle in erase block
granularity).

4.2 Snapshot Isolation

4.2.1 Snapshot Isolation - Introduction

Snapshot Isolation (SI) is an established multi-version concurrency control (MVCC) mechanism
- introduced in [4]. It is commonly accepted and widely spread in both academia and in-
dustry. Some MV-DBMS are (no particular order): Oracle, PostgreSQL, Microsoft SQL Server,
MySQL/InnoDB, Maria DB, Netezza.

SI is based on transactional timestamps, it assigns a (logical) timestamp to each transaction,
whereas a data item’s tuple version is assigned two different timestamps (two place invalida-
tion). The transaction’s timestamp corresponds to the start of each transaction and is unique for
each transaction. The tuple version’s timestamps correspond to the creation and invalidation
of that version; their values correspond to the creating/invalidating transaction’s timestamp.
Invalidations are issued on an update/deletion.

The principle of SI is that each running transaction executes against its own version/snapshot
of the committed state of the database and is isolated from effects of other concurrently run-
ning transactions. This allows a transaction to read an older committed version of a data item
instead of reading a newer, uncommitted version of the same item or being blocked/aborted. A
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snapshot describes the visible set of item versions the transaction is able to "see", facilitated by
the timestamps.

Operations of a transaction are isolated from concurrently running transactions. Whenever a
data item is accessed the transaction’s timestamp is compared with the timestamps on the tuple
version(s) of that item. A transaction is only allowed to read the most recent tuple version of
a data item that was committed before the transaction started. Versions with a higher creation
timestamp (inserted after the start of the transaction) are invisible and those with a lower
(or equal) timestamp are visible to the transaction as long as they are committed and were
not inserted by a concurrently running transaction. Tuple versions that have been inserted
concurrently by still running transactions are only visible to the transaction that inserted them.

Reads are never blocked by writes and changes made by a transaction are executed on its own
snapshot which becomes visible to follow up transactions after its successful commit. Whether
a commit is successful or not is determined by the transaction manager. This is explained in the
following paragraph.

Handling of Updates
The transaction manager handles concurrent updates either by using the first-committer-wins

or the first-updater-wins [4, 104] rule.
The first-committer-wins rule is enforced during the commit time of a transaction. As the

name suggests, the transaction which first finishes has the right to commit. This is an optimistic
scheduling, since checks are deferred to the commit time. At the commit time the transaction
manager performs a write set comparison of the involved concurrent transactions. Overlapping
write sets between concurrent transactions are not allowed and lead to the abort of at least one
transaction since it is not allowed to have more than one update to an item.

The first-updater-wins rule has to check each time a write/update is issued. It is implemented
in PostgreSQL using exclusive locks. At most one transaction at a time is allowed to update a
data item and only the youngest committed tuple version of a data item may be updated. If
one transaction attempts to update a data item which is updated by a concurrent unfinished
transaction, it waits until that transaction finishes. If the transaction finishes successfully (it
commits), the waiting transaction has to abort, otherwise the waiting transaction can attempt
to take the lock on the data item.

Example
Figure 4.1 depicts the history of three transactions. It illustrates an example where transaction

T1 creates the initial version X0 of data item X with an attribute value of 9. X is subsequently
updated by T2 which creates tuple version X1 with attribute value 10. Finally T3 creates X2 with
attribute value 11. T1 commits before T2 starts and T2 commits before the start of T3. In the SI
approach, T3 modifies the timestamp attributes of X2 and X1.

Figure 4.1: History: transactions T1,T2,T3 execute after each other. T1 inserts data item X in its
initial tuple version X0. T2 updates X , creating tuple version X1. T3 subsequently
updates X , creating tuple version X2.
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The resulting relation is depicted in Figure 4.2. The left side of the picture depicts the outside
view on the relation. Only data item X is visible, the MV-DBMS abstracts from the versioning
underneath. The right side depicts the MV-DBMS’s view on the relation. It manages three tuple
versions of data item X .

Figure 4.2: Relation R contains data item X in three tuple versions: X0, X1, X2. The MV-DBMS
abstracts from the multi-version scheme. Each running transaction is only allowed to
see at most one tuple version of X .

The resulting version organization and invalidation scheme is depicted in Figure 4.3. X0 is
updated in-place by setting the invalidation timestamp and X1 is created. The creation times-
tamp of X1 equals the invalidation timestamp of X0 and pointers are set to form a doubly linked
list. Analogously the update of T3 creates X2 and invalidates X1.

Figure 4.3: SI: invalidation scheme and logical version organization. T2 updates X , creates tuple
version X1 and invalidates X0 by setting the invalidation timestamp of X0 to its own
starting timestamp. This creates a small in-place update. T3 proceeds analogously
creating the second update (third tuple version X2) of data item X .

Version Organization
SI assumes a logical version organization as a doubly linked list as well as a two point invali-

dation (depicted in Figure 4.3). Invalidations are issued on updates and deletions. The physical
version organization is independent from the SI algorithm. In SI a new version is stamped with
a creation timestamp and an old version is invalidated with an invalidation timestamp equal to
the timestamp of the inserting/updating transaction. The double linked list, an optimization for
HDDs in order to save read access time, forms a physical chain and is built by storing a pointer
to the new version on the invalid version and vice versa. This is beneficial for symmetric storage
since it enables determining the appropriate tuple version of a data item at the scope of the
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tuple version and involves less complexity on reads, e.g. in favor of sequential scans. When
using single point invalidation all tuple versions of a data item have to be found in order to
decide upon visibility.

In the physical version organizing scheme tuple versions get organized, (often) clustered and
persisted on storage in order to speed up a follow up sequential read (scan) access. For instance,
PostgreSQL favors to store the successor tuple version on the same page where the older version
resides. In addition, PostgreSQL uses the heap only tuple (HOT) optimization in order to cluster
tuple versions that belong to the same data item on the same page. These properties create
physical small in-place updates which are particularly unsuitable for Flash. This can be seen in
the evaluation in Section 4.4.3 (Figure 4.13).

Write Amplification
With MV-DBMS (SI) on Flash storage, there exist several places where write amplification can

occur [68, 49, 114]. When a single attribute (net data) of a data item is updated in a MV-DBMS
the remaining attributes stay the same.

• On-tuple write amplification: beneath the net data the update of a single attribute adds
unchanged attributes.

• Visibility information write amplification: tuple versions store visibility information accord-
ing to the version organization.

• On-page write amplification: in SI a new version is created out-of-place. Since the smallest
I/O granularity equals a database page, header and footer information is added as page
metadata.

• DB I/O write amplification: the whole page has to be written.

• File system write amplification: the structures of the file system are updated.

• On-device write amplification: on the Flash storage the usual overhead of the address map-
ping, garbage collection and page migrations have to be made.

In the following the write amplification (WA) that is caused by the invalidation scheme and
the version organization is considered. On the invalidation of a tuple version the visibility
information such as the timestamp is set. This involves an update to the page where the tuple
version resides. In the worst case this creates an in-place update of the size of a whole page
although only a much smaller timestamp is changed. The default db-page size in PostgreSQL is
8KB, whereas the invalidation timestamp is 32bit. Version organization related WA also occurs
when tuple versions are clustered. Free-space per page/block is maintained to cluster tuple
versions by attribute or version. If a successor of a tuple version is clustered on the same page
as its predecessor, all other tuple versions that reside in that page have to be written as well.

Figure 4.4 shows the physical view for the example history as depicted in Figure 4.1. The
initial tuple version X0 of data item X is inserted by T1 and gets placed on page P0. On the
first update to X , issued by T2, the initial version is invalidated in-place. The whole page (8KB)
receives a write request although only the timestamp value was set (32bit). The successor tuple
version X1 is placed on a different page (P5). When X1 is updated by T3 the successor tuple
version X2 is placed on P3 and analogously X1 is invalidated in-place. This example leads to five
page-write requests where two pages have to be updated in-place.
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As an optimization for HDDs a successor tuple version could also be stored on the same page
as the predecessor, yet this requires free-space reservation and free-space management for each
page. This entails write amplification itself which depends on the amount of reserved space.

Figure 4.4: SI write amplification: Physical View on the SSD. The initial tuple version X0 of data
item X , inserted by T1, is placed on page P0. The first update to X , issued by T2,
invalidates X0 in-place and the whole page receives a write request. X1 is placed on
P5. T3 updates X , invalidates X1 in-place and creates X2 which is placed on P3.

4.2.2 Snapshot Isolation - Algorithm

In the following the SI algorithm, depicted in Algorithm 1, is described [59, 93, 105]. According
to the principles of SI, each transaction t x receives a timestamp as it starts, and each tuple
version Xn is stamped with a creation timestamp (Xn.xmin) and an invalidation timestamp
(Xn.xmax) . The creation timestamp corresponds to the transaction that created/inserted the
tuple into the database while the invalidation timestamp is set during the creation of a successor
version by the transaction that inserts the successor. An update is handled as an insert of a new
version Xn+1 of data item X and the invalidation of data item Xn. To invalidate Xn, Xn.xmax is
set by the transaction that commits the update. The invalidation results in an update of the page
in which the invalidated tuple version Xn resides. The update changes the version-information
but not the contents of the tuple (data-load) and the page has to be written to stable storage in-
place. The new tuple version may be stored on any page with enough free space. Optimizations
may group new versions of a transaction on the same page [34], or on the page that contains
the updated tuple. In the latter case there has to be a free space area reserved on each page,
which results in poor space utilization and higher porosity.

Algorithm 1 illustrates the general SI, which for technical completeness is complemented
with PostgreSQL specific details. In the following we use the notation of Xn for a data item
X in version n; t x for a transaction with timestamp tsi; Xn.xmin for the creation timestamp
and Xn.xmax for the invalidation timestamp of a given tuple version Xn. Note that Xn.xmin
and Xn.xmax are equal to the timestamps of the inserting or invalidating transactions respec-
tively. Complementary to the tuple versions, PostgreSQL maintains a Snapshot Data structure
(SnapData) for every running transaction t x . SnapData enables visibility checks and write-
set comparison. Among other fields it contains: (i) SnapData.xmax - the (cutoff-) transaction
ID of the next transaction (t x(+1) at the time t x started) which serves as a visibility thresh-
old for transactions whose changes are not visible to t x; (ii) SnapData.xmin - determines
transactions whose updates are visible to t x and denotes the transaction ID of the lowest still
running transaction; (iii) SnapData.x ip - holds a list of all transaction IDs concurrent to t x .
Finally, PostgreSQL uses a main memory structure called PG_CLOG (in short Log), based on the
database log, which allows for fast transaction status checks (aborted, committed, in progress).
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Algorithm 1 Snapshot Isolation Algorithm
1: StartTX(t x) tsi=timestamp (t x);
2: procedure READ(t x , Xv ) . t x reads tuple version Xv

3: if Xv ∈ {writeSet(t x)} then
4: READOWNVERSION(Xv ,t x)
5: else
6: READSTABLEVERSION(Xv ,t x)
7: end if
8: end procedure
9: procedure WRITE(t x ,X ) . t x modifies X

10: if (VERSIONCHECK(t x , X )← Failed) then
11: ROLLBACK(t x)
12: else
13: t x .lockX ← REQUESTANDWAITFORLOCK(t x , X )
14: if (t x .lock← granted) then . Perform Update
15: Xs← READSTABLEVERSION(t x , X );
16: X i ← NEWVERSION(X ); Xs.xmax=tsi;
17: X i.xmin=tsi; X i.xmax=NULL;
18: else . another transaction has a lock on X
19: ENQUEUELOCK(t x .lockX ) . t x waits
20: if (t x .lock← granted) then WRITE(t x ,X );
21: end if . Re-Check
22: ON Ti.commit() or Ti.rollback(): UpdateLog;
23: Release aquired Locks; WakeUp waiting Transactions;
24: end if
25: end if
26: end procedure
27: procedure READSTABLEVERSION(t x ,X )
28: Find Xa created by t xk such that:
29: (Xa.xmin< t x .SnapData.xmax) AND (LOG(Xa.xmin) == commit ted)
30: AN D((Xa.xmax == NU LL) OR (LOG(Xa.xmax) == abor ted) OR (Xa.xmax ∈
{t x .SnapData}))

31: if checks← FAI L return NU LL end if
32: return Xa
33: end procedure
34: procedure VERSIONCHECK(X)
35: X i = READSTABLEVERSION(X )
36: if (X i==NU LL) return FAI LED end if
37: end procedure
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Example: Consider the read of an item X by transaction t x . T x reads either its own version
(line 4) or another, committed and stable version in the DB (line 27). A stable version has to
be visible to t x which means it has to be committed before t x started (line 29). At this point
Xv .xmax indicates the existence of a successor to tuple version Xv . By checking Xv .xmax , t x
is able to determine if a successor version exists and if so, to decide if that version should be
read instead. Considering an update of a data item (line 9). Transaction t x has to perform a
version check (line 34) to check if the tuple version that is about to be updated is the stable
version. Under first-updater-wins, t x requires a write lock on the tuple version to successfully
perform the update. The tuple version could be locked by another concurrent transaction, in
which case t x waits until it is unlocked (line 19). On unlock of the tuple version, t x has to
check whether the tuple version is still the stable version (concurrent transaction aborted or
created no successor version) or if a new successor tuple version was created (t x aborts).

In summary: the invalidation timestamp related update is necessary for the SI algorithm since the
tuple versions are accessed as individual entities and not as multiple tuple versions of a single data
item. The in-place invalidation has to be avoided on SSDs since it reduces endurance and hampers
performance.

4.3 SIAS: Snapshot Isolation Append Storage

We analyzed SI (Section 4.2.1) to develop a better suitable Flash-aware concept. Along with
the investigation of different log/append based storage managers (further details on LbSMs are
given in Section 6) we developed the Snapshot Isolation Append Storage (SIAS) concept.

The SIAS approach subsumes changes on the algorithmic and architectural design of the MV-
DBMS with the focus on asymmetric Flash storage. Several components that were designed on
the performance properties of HDDs are reconsidered and evaluated for their effectiveness on
Flash storage.

SIAS introduces a new conceptual invalidation model and changes the paradigm of addressing
tuple versions individually. SIAS addresses tuple versions that belong to the same data item as
a single structure. The conceptual changes allow the exploitation of append based storage man-
agement that operates on tuple version granularity (rather than pages). The append operation
is conceptually realized in tuple granularity and is physically implemented for a block device in-
terface. This design decision makes the approach applicable to current device hardware layouts.
Since the block device interface is not a conceptual assumption, the approach is also applicable
to smaller (or larger) granularities, e.g. it can be applied to byte addressable NVMs.

The buffer management is adapted and simplified: to be applicable to the block device inter-
face a write retention is implemented. New tuple versions are logically appended to a buffered
page that is written when it is completely filled or a threshold is reached (time, fill-grade of
a page). Once a page has been appended it is immutable. Access methods such as scans and
indexes are augmented by the SIAS approach.

First approximations of the potential of LbSM are based on simulation (Chapter 6). The basic
concepts are integrated into the SIAS-Vectors prototype which further analyzes the potential of
SIAS and led to the development of the SIAS-Chains concept. The evaluation of the results
of the SIAS-Vectors implementation confirms and validates the analyzed potential of the initial
simulation. SIAS-Chains is evaluated on different Flash storage, such as USB Flash storage,
single SSDs and Flash SSD software RAID. Details and evaluation of the simulation are contained
in Chapter 6.
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First SIAS-Vectors is presented in Section 4.4. SIAS-Vectors implements the basic SIAS concept
and shows the benefits of tuple granularity appends, the revised invalidation scheme and ver-
sion organization. It demonstrates the advantages of the lower levels of the approach. Yet the
transaction management and access paths are not yet optimized in the realization. SIAS-Vectors
only delivers limited support for index access paths and incurs overhead on scans.

The improved approach SIAS-Chains is presented in Section 4.5. SIAS-Chains comprises fur-
ther conceptual changes of the invalidation model and the version organization along with the
access methods (Section 5) and visibility checks.

4.4 SIAS-Vectors

This Section introduces the Snapshot Isolation Append Storage Vectors (SIAS-Vectors) approach.
SIAS-Vectors is the initial prototypical implementation of the SIAS algorithm in PostgreSQL as
demonstrated in [33]. It conceptually introduces a new version organization and invalidation
model: The SIAS-Vectors invalidation scheme conceptually omits the invalidation timestamp
for each tuple version. SIAS-Vectors eliminates visibility meta-data related in-place updates on
asymmetric storage and employs tuple granularity LbSM. SIAS-Vectors applies a position based
identification of tuple versions through the utilization of bitmap vectors that code validity and
visibility.

4.4.1 SIAS-Vectors - Data Structures

First the SIAS-Vectors data structures are discussed. SIAS-Vectors uses bitmap vectors to indicate
different states of a single tuple version, depicted in Figure 4.5.

• B1 is the validity bit-vector. It indicates the invalidation of each tuple version. If the bit
is set, the corresponding tuple version is invalid and a valid successor is contained in the
database. A tuple version is considered invalid if and only if it has a valid (committed)
successor. If the bit is unset the tuple version is valid and serves as the entrypoint (most
recent valid version) of the data item. B1 is mandatory and logically partitions the database
into valid and invalid tuple versions.

• B0 is the dead tuple version bit-vector. If the bit is set the tuple version is invisible (dead)
to any running transaction due to the visibility rules of SI. B0 is optional and represents an
optimization.

Figure 4.5: SIAS-Vectors Data Structures: Mandatory Invalidation Bitmap Vector B1. Optional
invisible (dead) tuple version Bitmap Vector B0.
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A bit-vector is a lightweight data structure, since only one bit per tuple version is required.
On an invalidation of a tuple version Xn of data item X , the creation timestamp of the following
version Xn+1 denotes the invalidation timestamp of its predecessor Xn. The access paths are
modified such that accesses to a data item use the most recent tuple version. Either the most
recent tuple version has to be read, or an older tuple version has to be fetched by traversing
the singly linked list. As soon as the visible version is found or the initial version has been
reached, the traversal is interrupted. The detailed visibility check of SIAS-Vectors is described in
Algorithm 2 and explained in Section 4.4.2.

On-tuple Information

SIAS and SI store information on each tuple version that is used to determine the visibilty.
The tuple structure of SIAS and SI is depicted in Figure 4.6. SIAS-Vectors stores no version in-
validation information of the current tuple version on the corresponding tuple. The invalidation
information is coded in the version chain of the data item, such that a tuple version Xn+1 stores
its own creation timestamp Xn+1.create while the invalidation timestamp equals the successor’s
creation timestamp Xn.create.

Figure 4.6: SIAS-Vectors and SI on-tuple visibility information. SIAS-Vectors stores no invalida-
tion information on each tuple version itself. Each tuple version stores the creation
timestamp of a predecessor tuple version.

Example

Reconsider the history from the example history in Figure 4.1. Figure 4.7 depicts the inval-
idation using SIAS-Vectors. Each tuple version’s state is indicated within the bitmap vectors.
After T1 created tuple version X0, the validity bit-vectors are updated accordingly. T2 creates an
update to version X0: the invalidation bit is set within B1. After the commit of T2 no running
transaction is able to access (see) X0, hence the visibility bit is set in B0. This also classifies the
tuple version to be garbage collected. T3 creates and appends X2 and sets the bit values in the
bit vectors B0 and B1. Assuming that X1 is still visible to some running transaction(s), the bit in
B0 is unset.
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Figure 4.7: SIAS-Vectors: B0 indicates dead (invisible) tuple versions and B1 indicates invalid tuple
versions. X0 is inserted and becomes the entrypoint of the data item. T2 updates X
and inserts X1. X0 is invalidated by setting the bit in B1. X1 becomes the entrypoint.
T2 commits and the bit is set in B0 since X0 is a dead tuple version. T3 updates
X , invalidates X1 by setting the bit in B1 and inserts X2 which becomes the new
entrypoint.

4.4.2 SIAS-Vectors - Access Paths

Read
On the execution of a scan a virtual snapshot of B1 is created, representing the state of the

relation at the time the scan starts. The virtual snapshot is created by using the memcopy
operation. B0 indicates versions that can be discarded (garbage collected) and is not copied
since changes to it depend on the oldest still running transaction. False negatives (not visible)
are avoided, but false positives may exist, which are filtered during the visibility check using B1.
For instance a valid tuple version may be invisible for a running transaction if that transaction
has to read a previous tuple version.

Each tuple version maintains a back-link to and the creation timestamp of its predecessor (see
Figure 4.7). From each entrypoint the visibility check, depicted in Algorithm 2, is executed. If
the check returns false there can exist a visible predecessor version Xn−1 to some tuple version
Xn. Tuple version Xn−1 is fetched using the pointer on Xn and can subsequently be checked.
No other visible successor version exists, due to the local copy of B1, thus line 11 can never be
reached on scans.

A fetch of the successor version is the most costly operation for SIAS-Vectors. This case can
only occur when accessing an invalidated tuple version directly, for instance on an index access.
It is the worst case, since the successor version’s position in the database is not known. On a
call of getSuccessorVersion() the relation has to be searched for the entrypoint of the data item.
This operation is not necessary in the SIAS-Chains approach (Section 4.5), since the entrypoint
of a data item is always known.

Update/Insert:
An update consists of an invalidation of the old and an insertion of a new version. To inval-

idate the old version, the respective bit in B1 is set and the new version with its corresponding
values in both vectors (initial zero values) is inserted. The new version receives its own creation
timestamp, maintains a pointer to its predecessor and the predecessor’s creation timestamp.
The SIAS-Vectors buffer management applies write retention: The tuple version is appended to
a buffered page which is written after it is completely filled or a threshold is reached.
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Algorithm 2 SIAS-Vectors Visibility Check [33]
1: procedure VISIBILITYCHECK(TupleVersion Xv , Transaction t x)
2: if (Xv .t xmin== t x t id) then
3: return t rue; . tx reads its own version
4: else if (!B0[Xv .id]) then . check if garbage version is dead
5: if (Xv .t xmin> t x id) then
6: return f alse;
7: else if (Xv .t xmin< t x id) then
8: if (!B1[Xv .id] AND isCommit ted(Xv .t xmin)) then
9: return t rue;

10: else
11: Tuple Xnew = getSuccessorVersion(Xv );
12: if (Xnew.t xmin< t x t id AND isCommit ted(Xnew))
13: return f alse; else return t rue; end if
14: end if
15: end if
16: end if
17: return f alse;
18: end procedure

Figure 4.8 depicts the physical view of the tuple append in SIAS-Vectors. Tuple versions of
a relation are buffered and appended to the head of the LbSM. Compared with Figure 4.4 this
shows the potential of the write reduction. Instead of writing three pages, only one page is
appended. Traditional approaches to logging, such as write ahead logging and recovery are not
affected (Section 4.8).

Section 4.4.3 discusses the potential of the write reduction. Details on LbSMs are contained
in Section 6.

Figure 4.8: Write reduction of the SIAS concept, physical view. The buffer manager applies write
retention. New tuple versions are appended to a page that is held in the buffer.
When the page is completely filled or a threshold is reached, it is appended to the
head of the LbSM.

Delete:
A deletion is treated as an invalidation and an insertion of a tombstone version terminating

the version chain. The tombstone version becomes the entrypoint and when it becomes the only
visible version, the bits are set in B1 and B0 to render all versions of the data item invisible
(same indication as a dead tuple version) - no access to the tuple is needed in order to discard
it during the visibility check.
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4.4.3 SIAS-Vectors - Discussion and Evaluation

The tuple append functionality of SIAS-Vectors was initially simulated in order to focus on the
I/O characteristics of the basic SIAS concept. Figure 4.9 depicts the evaluation process of the
SIAS-Vectors approach. After the initial simulation of the algorithm the potential benefits were
analyzed. Details of the simulation process are also described in Section 6.4. The simulation
has been utilized to determine parameters such as the granularity of the append and the choice
of data placement. The simulation was also used to estimate possible benefits of the SIAS
concept. After the potential of the SIAS concept was established, the SIAS-Vectors algorithm was
implemented in PostgreSQL. The prototypical implementation has been tested using the same
benchmark configuration in order to cross validate the results of the simulation. The resulting
write patterns are equivalent with and comparable to those collected during the simulation and
the implementation shows the actual effects. In the following the write pattern is discussed
with the focus on the write reduction. The effects of the write reduction are analyzed using the
TPC-C benchmark and a micro benchmark.

Figure 4.9: SIAS-Vectors evaluation. Initial results are based on a trace driven simulation. The
simulator creates I/O patterns according to the SIAS concept. The SIAS-Vectors pro-
totype is executed on the same SSD and the I/O patterns are compared.

Write pattern.
The write pattern of SIAS-Vectors and SI is recorded using blktrace [10] to demonstrate the

effects of the tuple append operation and to emphasize the write reduction. The traces have
been recorded during the demonstration of the SIAS-Vectors approach in [103, 33]. TPC-C has
been instrumented with a low number of one warehouse and very short runtime of 360 seconds
in order to better demonstrate and visualize the resulting access patterns.

The graphs in Figure 4.10 and 4.12 represent written block numbers. Each dot represents
a page write of 8KB. Figure 4.10 depicts the SIAS-Vectors write pattern for the customer and
stock relation of the TPC-C benchmark. It illustrates the append operation. The block numbers
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are offset oriented, each relation begins with block number zero. The customer graph’s scale
begins at block number 6800. Because of the append operation new tuple versions are inserted
at new blocks which are buffered and appended when completely filled, hence there are no
write requests below that block number. Analogously the stock graph’s block number begins at
13000. In-place updates are avoided. Once a page is written it is considered immutable, except
for later garbage collection (reclaim space). Figure 4.12 and Figure 4.11 show the same bench-
mark configuration with the traditional SI algorithm, developed for HDDs. In-Place updates are
scattered across the whole relation, beginning with block zero. New inserted data shows as a
line at the top of the graph.

Figure 4.10: SIAS-Vectors. Write pattern of the customer relation. Each dot represents a page
write of 8KB. Tuple versions are appended to a buffered page which is written when
it is completely filled. Block numbers are offsets.

Write reduction
Compared with the SI in-place update concept Figure 4.4, the tuple append (Figure 4.8) yields

potential to for the reduction of issued writes. Instead of writing three pages, only one page is
appended.

Each dot in Figures 4.10, 4.11, 4.12 and 4.13 represents a page write of 8KB. Figure 4.10 and
Figure 4.12 show the write access to the customer relation of SIAS-Vectors and SI. They illustrate
the significant write reduction of the SIAS approach. The stock relation is depicted in Figure
4.11 and Figure 4.13. Using write retention new tuple versions get appended to a page which
is held in the buffer until it is completely filled or a threshold is reached (Figure 4.8). In the
customer relation SIAS-Vectors appends 17 pages which sum up to 136KB, respectively 53 pages
(424KB) are appended to the stock relation. In comparison, the SI approach has to write and
update 386 pages (approx. 3MB) in the customer relation and 2566 pages (approx. 20MB) in
the stock relation. SIAS-Vectors writes the net amount of new inserted tuple versions. SI updates
tuple versions in-place, thus updating pages that also contain other tuple versions which have
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Figure 4.11: SIAS-Vectors. Write pattern of the stock relation. Each dot represents a page write
of 8KB. Tuple versions are appended to a buffered page which is written when it is
completely filled. Block numbers are offsets.

Figure 4.12: SI. Write pattern of the customer relation. Each dot represents a page write of 8KB.
In-place updates and writes are scattered along each relation. Block numbers are
offsets.

to be written again. Obviously this increases the load on the I/O storage system in terms of
read and write operations and incurs additional buffer space consumption and eventually cache
pollution.
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Figure 4.13: SI. Write pattern of the stock relation. Each dot represents a page write of 8KB.
In-place updates and writes are scattered along each relation. Block numbers are
offsets.

Figure 4.14: Simulated Write Pattern: SI with in-place storage management. All relations of the
TPC-C benchmark are monitored - Figure also contained in Section 6.3.

Figure 4.14 shows the write pattern of the simulation of the SI approach and Figure 4.15
shows the write pattern of the SIAS-Vectors approach. Both Figures are also contained in Section
6.3. The same parameters of the simulation are realized in the SIAS-Vectors approach, which
are the tuple LbSM and individual write LbSMs for each relation. The Figures depicts the disc
I/O for write accesses. For SIAS-Vectors the disc I/O block trace shows the same write lines, just
for all TPC-C relations, as in Figure 4.10. Analogously the disc I/O block trace of the SI in-place
storage management shows the same scattered writes among each relation.

Micro Benchmark - One Tuple Update
The one tuple update micro benchmark is designed to show that SIAS-Vectors exhibits low

response times per transaction on write-intensive and/or mixed workloads and delivers stable
performance figures. It directly shows the effect of the write reduction. Response times under SI
tend to exhibit higher workload dependent variance. In this benchmark exactly one data item
in each page of the relation is updated. The amount of concurrent transactions is increased.
The standard deviation is higher on SI than it is on SIAS. It implies the following: if a relation
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Figure 4.15: Simulated Write Pattern:SIAS tuple LbSM. All relations of the TPC-C benchmark are
monitored - Figure also contained in Section 6.3.

comprises 100 pages and a page contains approx. 200 tuple versions, SI will update 100 pages
and writes them back in-place in order to mark each tuple version that is updated as invalid
(visibility information). This results in multiple random writes and in addition it creates a
single new page for the new tuple versions. Conversely SIAS-Vectors needs one page, which
is buffered until it is filled, to which the new tuple versions are appended. This benchmark
corresponds to the worst case update predicate touching only a sparse subset of the relation.
For instance in real world workloads this corresponds to a budget increase of all departments
that do not exceed a certain maximum budget. The result of this micro benchmark are depicted
in Figure 4.16 with deactivated write cache and in Figure 4.17 with activated write cache. It
shows the runtime (msec.) for different benchmark runs as well as the standard deviations as
error bars. It is executed on two different Flash SSDs, an Intel X25E and a Samsung 830 MLC
SSD.
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Figure 4.16: Micro Benchmark. One Tuple Update on SSD. Update exactly one data item in each
page of the relation. Measures runtime, varies the amount of concurrent transac-
tions. Write Cache Off.
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Figure 4.17: Micro Benchmark. One Tuple Update on SSD. Update exactly one data item in each
page of the relation. Measures runtime, varies the amount of concurrent transac-
tions. Write Cache On.

SIAS-Vectors also delivers better results on HDDs. This claim is demonstrated by executing
the one tuple update micro benchmark on an HDD. The results are depicted in Figure 4.18
with deactivated write cache in Figure 4.19 with activated write cache. SIAS-Vectors delivers
stable performance with low response/ completion times. The observed performance improve-
ment is caused by the significant write reduction and the avoidance of random writes. Yet the
improvement on SSDs is higher.
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Figure 4.18: Micro Benchmark. One Tuple Update on HDD. Update exactly one data item in each
page of the relation. Measures runtime, varies the amount of concurrent transac-
tions. Write Cache Off.
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Figure 4.19: Micro Benchmark. One Tuple Update on HDD. Update exactly one data item in each
page of the relation. Measures runtime, varies the amount of concurrent transac-
tions. Write Cache On.

Length of the Version Chain
In our test-runs we observed the length of the chains and the amount of subsequent reads

needed to receive the visible version. We assume that there are at most two more accesses
necessary to find a visible version under TPC-C workloads. This assumption is confirmed by the
test results and the actual number of average reads needed was smaller than expected. We chose
a long running TPC-C test with 240 minutes runtime and a small dataset to increase the amount
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Figure 4.20: SIAS-Vectors. Length of the version chain after the execution of the TPC-C bench-
mark on the customer relation. Without garbage collection of dead tuple versions
and space reclamation. Average chain length customer : 1.15. Average chain length
stock : 2.18. The average length of visible versions in a chain is below 1.01 tuple
version(s).

of updates to individual tuple versions. The following numbers consider solely the updated
tuples of the respective relations (non-updated tuples have a chain-length of zero), those are
taken out of the equation. Figure 4.20 and Figure 4.21 show the absolute tuple version chain
length of the customer and the stock relation, respectively. In each chain that contains at least
one update. The maximum amount of tuple versions for a data item is 10 for the customer and
75 for the stock relation.

The more important numbers are the average tuple version chain length as well as the length
of visible tuple versions in the chain, since only the visible tuple versions can be accessed by a
transaction. The visibility check (Algorithm 2) terminates before fetching older (invisible) tuple
versions. Therefore, the maximum chain length is not relevant for checking. The average chain
length of the customer relation was 1.15 and 2.18 tuple versions for the stock relation. The
average length of visible tuple versions, which is the most important number, within a chain is
below 1.01 but not lower than 1. This low number can be explained by the TPC-C workload.
Most transactions (read and update) in TPC-C are fast and short running. In addition only
one transaction is allowed to update a data item at a time. The absolute number of all visible
tuples (including tuples with chain length of zero) is 600 032 for the customer and 1 999 992
for the stock table (PostgreSQL statistics). Note: In the case of other mixed workloads yielding
long running reading transactions, the chain length can grow, yet other transactions that started
recently do not traverse the whole chain. They stop at the most recent tuple version in the chain
that is visible for them.
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Figure 4.21: SIAS-Vectors. Length of the version chain after the execution of the TPC-C bench-
mark on the stock relation. Without garbage collection of dead tuple versions and
space reclamation. Average chain length customer : 1.15. Average chain length
stock : 2.18. The average length of visible versions in a chain is below 1.01 tuple
version(s).

Benefits:
The benefits of the SIAS-Vectors approach are as following.

• SSD-friendly write patterns: SIAS-Vectors reduces random writes by utilizing out-of-place
updates.

• Write reduction and endurance enhancements: SIAS-Vectors packs versions densely on
pages and writes them sequentially, without the need of rewriting the page in which an old
version resides. Tuple versions are appended to a buffered page which is written to a block
on the SSD when the buffer is completely filled, or a (configurable) threshold is reached.

• Stable write throughput: SIAS-Vectors generates separate write/read streams and avoids
mixed load. Each relation uses its own LbSM and appends to a separate region on the SSD.

• Low Response times for write intensive and/or mixed workloads.

• Lower scan times under read-only workloads due to the denser packing of tuple versions.

Known issues of SIAS-Vectors:
An existing issue of the SIAS-Vectors approach refers to the direct access to a tuple version

that is not the entrypoint of the data item, e.g. through an index (primary or secondary). On
such an access there might exist a visible successor version which has to be found. This path
is coded in Algorithm 2, line 11. In the worst case this results in a scan of the whole relation.
Therefore, an index would have to store information about the visibility as well.

Another issue is the overhead on scans: SIAS-Vectors creates a memcopy of the bitmap vector
B1, although this is a relatively fast mechanism.
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Both issues are handled in SIAS-Vectors but incur overhead to the MV-DBMS. To correct these
shortcoming the SIAS-Chains algorithm was developed. It is described in Section 4.5.

4.5 SIAS-Chains

This section introduces the Snapshot Isolation Append Storage - Chains (SIAS-Chains) approach.
SIAS-Chains improves on SIAS-Vectors. As SIAS-Vectors it no longer follows the paradigm of
addressing each tuple version individually. It improves on SIAS-Vectors by addressing tuple
versions that belong to a unique data item as a set that belongs together: Tuple versions of
a data item receive a unique identifier - virtual ID (VID), which is the same across all data
item’s tuple versions. As in SIAS-Vectors the successor of a tuple version stores a reference
to the predecessor version’s physical location. Hence a backward chain (singly-linked list) is
constructed and in-place updates are conceptually avoided. The most recent (newest) tuple
version of each data item is always known and called the entrypoint of the data item. The use of
bitmap vectors is not required and the entrypoint does not have to be a committed tuple version
(e.g. an update in progress). A more efficient data structure (Section 4.5.3) keeps track of the
entrypoint of each data item. The mandatory data structure V I Dmap stores a mapping of the V I D
to the T I D of the most recent version of the data item (entrypoint). In Section 4.5.3 we discuss
the requirements of and deliver our solution for a data structure that is capable of efficiently
storing necessary information for the SIAS-Chains algorithm, both in terms of performance and
space efficiency. Detailed examples are available in Sections 4.5.1 and 4.5.3.

SIAS-Chains key features are:

• a new invalidation schema;

• a new paradigm to version management and organization: addressing of data items using
a V I D that identifies all tuple versions belonging to the same data item;

• forming a backwards directed chain of tuple versions;

• appending of inserted/updated data using an LbSM;

• support of index access paths;

• appending in tuple granularity and writing densely filled pages;

• no page is allowed to be altered after it has been physically written (except for garbage
collection);

• adaptation of the index access path using the data item abstraction V I D.

4.5.1 SIAS-Chains - Algorithm

Figure 4.22 depicts an example of the SIAS-Chains invalidation scheme (same example history
as in Section 4.2.1, Figure 4.1). In this example data item X of relation R is initially inserted in
tuple version X0 by transaction T1. SIAS-Chains assigns data item X a unique identifier V I Dx .
Each access to a tuple version is served by the V I Dmap using the data item’s V I D. T2 updates
X0 and creates the new tuple version X1. T2 sets V I Dx to the T I D of the new version X1. X1
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receives a pointer to the physical location of the predecessor version X0. Finally X is updated by
T3 which creates X2, setting V I Dx accordingly. The relation therefore comprises three different
tuple versions of X . In comparison (referring to the example in Section 4.2.1, Figure 4.3) the
traditional approach X0 and X1 are invalidated in place: T2 fetches the page of X0 and updates it
in-place by setting the invalidation timestamp accordingly; this page will be later written back.
Analogously T3 updates X1.

In SIAS-Chains the creation of a successor implicitly invalidates the previous version: X
receives a unique identifier, equal on all its tuple versions (V I Dx). The mapping structure
(V I Dmap, Section 4.5.3) always points to the entrypoint of X , which contains information about
the previous tuple version (if one exists). Each tuple version Xn is augmented with visibility
information (Figure 4.23):

Figure 4.22: Example: SIAS-Chains invalidation (SI). Access methods in SIAS-Chains are served by
the V I Dmap and follow the entrypoint of the data item.

4.5.2 SIAS-Chains - On-Tuple Information

Analogously to SI and SIAS-Vectors, each tuple version Xn in SIAS-Chains is augmented with the
visibility information (Figure 4.23) in addition to general tuple attributes such as the attribute
values.

• The creation timestamp Xn.create which is denoted by the inserting transaction’s ID.

• A unique V I D which is equal among all tuple versions of the data item it represents.

• A pointer ∗pt r which stores the physical reference to an existing predecessor version, or
NU LL if no such version exists.

• The timestamp of the predecessor Xn−1.create.

There is explicitly no invalidation information stored on each tuple version. SIAS-Chains aug-
ments the SIAS-Vectors on-tuple visibility information (Figure 4.6) with the unique V I D of the
corresponding data item. The chained structure of the data item’s tuple versions code this infor-
mation along the version chain. The tuple versions of a single data item form a chronologically
sorted chain. The creation timestamp of the following version equals the invalidation timestamp
of its successor version, hence the visibility check methods of the original SI can be applied. In
Figure 4.22 the entrypoint is X2, after T3 has committed. X2 is chained to the predecessor tuple
version X1 which itself is chained to the initial version X0.
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Figure 4.23: SIAS-Chains and SI on-tuple visibility information. SIAS-Chains augments the SIAS-
Vectors on-tuple visibility information with the V I D of the data item. SIAS-Chains
stores no invalidation information on each tuple version itself. Each tuple version
stores the creation timestamp of a predecessor tuple version.

Example: SIAS-Chains On-Tuple Information
Another example of the SIAS-Chains on-tuple information is given in Table 4.1, which is de-

picted in the logical relational view in Figure 4.24. The relation contains data items X and Y .
X0 was inserted by a transaction with the transactional timestamp 15. Since it is the initial ver-
sion its predecessor pointer ∗pt r points to itself and the creation timestamp of the predecessor
X0−1.create is null. X receives the unique V I D 0x0. X is updated by transaction 38, which creates
tuple version X1 and sets ∗pt r to X0 and X0.create to 15. The V I Dmap points to the physical
position of X1, which is 0x123.

Analogously Y was inserted by transaction 50 and received the unique V I D 0x23. Transaction
83 created the second version Y1, set ∗pt r and Y0.create accordingly and updated the V I Dmap.
Transaction 110 creates the most recent tuple version Y2, sets all fields analogously and updates
the pointer in the V I Dmap. No predecessor tuple version is updated in-place. Which enables the
LbSM to append immutable tuple versions.

Table 4.1: SIAS-Chains: On-Tuple Information
Tuple Version Xn Xn.create ∗pt r Xn−1.create VID
X0 15 X0 null 0x0
X1 38 X0 15 0x0
Y0 50 Y0 null 0x23
Y1 83 Y0 50 0x23
Y2 110 Y1 83 0x23

4.5.3 SIAS-Chains - Data Structures

SIAS employs the V I Dmap data structure that stores a mapping of each V I D to the entrypoint of
the corresponding data item. There exists exactly one V I Dmap for each relation which is used
for all access paths, such as indexes and scans.

The V I Ds are monotonously increasing positive numbers, which are unique for all tuple ver-
sions of the same data item. Although a simple array is capable of holding the mapping func-
tionality, the efficiency of the V I Dmap is important. The requirements for the V I Dmap involve the
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Figure 4.24: SIAS-Chains relational view of Table 4.1 with the V I Dmap. Tuple versions are con-
nected with a backwards simply linked chain. The V I Dmap stores the T I D of each
data item’s entrypoint.

support of fast exact match lookups, a low memory footprint, fast updates and the support for
short time latches. The latches are necessary for updates, when a new tuple version is created
and becomes the entrypoint of the data item’s version chain. On an insert new V I D values are
appended. The mapping table might easily become a performance bottleneck for large database
sizes, hence it should scale with data volume.

The search key in the V I Dmap is the data item’s V I D and the output is the corresponding T I D
(tuple version ID) of the entrypoint - its physical location. Pre-loading and bulk-loading can be
supported, e.g. new V I Ds can be generated in a page-wise manner. Assumptions about the page
size and length of the T I D are implementation specific. The concept is applicable to different
implementation choices. Our prototype uses the following configuration:

• i) T I Ds are stored in pages of 8KB.

• ii) One T I D (in PostgreSQL) has the size of 6 Bytes and comprises the DB BlockID (32bit)
and an offset to the tuple version (16 bit) within that block.

• iii) The maximum amount of T I Ds that fit into a page is 1365, exclusive header.

• iv) We store a maximum of 1024 T I Ds per page, a 10bit offset per TID is used.

• v) The record format is one T I D (of the latest version, the entrypoint) per V I D.

In the following the possible data structures for the implementation are discussed.

Array
The array is intended to be held in memory enabling direct access to T I D values. The read

and write costs are low, since each V I D also serves as the index to the value in the array. Hence
the reading cost CR of a TID value is O(1). The writing costs CW are the same O(1), yet for
concurrent access the array position has to be latched. A downside to the in-memory array is
the management and persistence of the structure. A static array requires the pre-reservation of
space while a dynamically growing/shrinking array needs management overhead, e.g. pointers
and handlers. Because of the in-memory architecture there is no refined page layout that could
evict certain parts of the mapping. The static array method works best for small databases that
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do not have the need to evict the mapping. On a crash the mapping needed for the SIAS-Chains
algorithm can be reconstructed using a sequential scan on each relation (can be piggy-backed
during recovery).

Hashtable
On large DB sizes the mapping may not fit completely into main memory and therefore parts

of it need to be swapped to persistent storage. In order to give the DBMS more control over
the swapping process the V I Dmap is augmented with a page abstraction. The TID-filling degree
of a page is 100%, as long as it is not the last page of the mapping. The bucket size equals
the database page size. Since V I Ds of a relation are sequentially assigned, the buckets also get
filled sequentially. The position of each T I D within a bucket can exactly be calculated. The
bucket number is determined by a DIFF operation on the VID and the capacity of the bucket:
BucketN r = b V I D

1024c.
The position within the bucket can be calculated using the modulus of 1024: T I DPOS =

V I D mod 1024

There are no overflow buckets, since collisions are impossible due to the ascending order of
the V I Ds. Each V I D has exactly one corresponding T I D (record format). Each update of a
T I D indicates a new tuple version and substitutes the old T I D′. The capacity of each bucket
correlates with the hash function. A new bucket is allocated after each 1024 consecutive VIDs.
Using this implementation queries on VID ranges are also facilitated.

An important part is the concurrency on the structure. On modifications of data items (opera-
tions that change or insert a T I D that belongs to a V I D) as well as on updates the corresponding
storage slot within a hash bucket is latched. No latches are needed for read access, since the
T I D values are unchanged.

On the Hashtable there are two design decisions possible. Either a whole bucket or a single
V I D can be latched on updates (inserts). A separate bit-vector, that is correlated to the V I Ds,
can store latching information on V I D granularity and serves as a VID latching table. Since each
bucket contains 1024 T I Ds, the bit-vector seems to be capable of better supporting concurrent
access and therefore promotes parallelism. Instead of latching a whole bucket and subsequently
blocking access to 1024 T I Ds, a single bit is set for the V I D.

Note: There is no lock contention on the V I Dmap. The first-updater-wins rule is applied and on
modifications the tuple version is locked with an exclusive lock.

The access cost CR for fetching a value is: O(1) + CPU. The update cost CW in the hash table
is the calculation of the position, setting/unsetting the latch and writing the new value: 2∗CR+
Latch. The buffer has to be accessed and dirtied, hence twice CR. The CPU denotes the cost to
calculate the TID’s position.

The SIAS-Chains implementation uses a fixed amount of slots that can be held in the cache
for each relation. One slot accommodates one page containing one hash bucket. The amount is
parameterized and can be chosen at configuration time. The pages are managed by the default
PostgreSQL clock and sweep buffer management algorithm. All pages get flushed to disk when
the database is shut down. Since all version information is contained on the tuple versions, there
is no additional recovery logic for the V I Dmap. After a crash it can be reconstructed during the
scan of the whole relation, which is done in PostgreSQL anyhow (piggybacked) - more details
on recovery are contained in Section 4.8.
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Figure 4.25: Hash Buckets for the V I Dmap with a capacity of 1024 T I Ds. V I Ds are monotonously
increasing integers. V I Ds are not physically stored, they represent the position of a
corresponding T I D.

Tree Structure
A tree structure, such as a B+ tree, also seems to be a valid candidate for the V I Dmap. Since

there are mostly point queries and range queries are also possible on the hashtable, due to the
entropy of the VIDs (unique and monotonically increasing), the capability of range searches
is not exclusive to the tree structure. For the SIAS-Chains approach an adapted tree structure
is suggested that makes use of the VIDs entropy. Each leaf contains 1024 TID values and the
position of a single TID does not have to be searched within a leaf node, since it can be calculated
by a modulus of 1024 and the VID (similar to the hastable) if the tree is optimized such that
the leaf nodes have the same format as the buckets in the hashtable approach. This serves as an
optimization but requires a special handling of rotations in index nodes.

The access cost is comprised of the traversal through the index nodes to the leaf node, calcu-
lation of the position and the access of the TID: CR = Traversal + CPU + O(1).

The update cost CW in the tree structure is comprised of the traversal to the leaf node contain-
ing the TID, the latching/lockin, calculation of the TID’s position within the leaf and the access
plus the update of the leaf node: CW =O(1)+O(1)+Traversal+Latch.

In addition operations have to be executed that involve rotations of index nodes (search key
values), as soon as an index node “pops”.

In terms of concurrency, the tree structure has to implement tree locking protocols ([78, 21]),
since rotations may require to update index nodes. Locks and Latches have to be acquired in
root to leaf order and have to be released in inverse order. Therefore the latching has to be
made on a higher granularity which hinders concurrency, compared to the hashtable which is
capable of latching a single VID.

The above mentioned special implementation of a tree structure, dedicated to the VID to
TID mapping, involves special handling of index nodes, hence the following tree structure is
suggested. It is especially designed for the requirements and has several performance optimiza-
tions and it is intended to be a minimalistic implementation. Instead of implementing default
B+Tree conform rotations, the index nodes are constructed using the amount of TID entries
(1024) that fit into a leaf page. Leaf nodes always contain 1024 subsequent VID-TID entries
that are aligned on the nx210 border, where n denotes the corresponding leaf page (or bucket).
Using that approach enables to calculate the exact position of each TID within a leaf page and
not having to search. New VIDs are inserted into a leaf node with the capacity of 1024 en-
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Figure 4.26: Tree Structure. V I Ds are monotonously increasing and inserted in ascending order.
Each leaf yields the capacity to store 1024 V I Ds. Offsets can be calculated to directly
access a leaf node.

tries, aligned at VID borders of {nx210−1;nx210}; new index nodes are appended on the layers
above. Values within leaf nodes are not rotated and the indexed search keys stay the same.
This obviously creates an intermediate and temporally unbalanced tree structure but saves on
rotation overhead. Intermediate index nodes can be reused and entries within a leaf are not
rotated.

4.5.4 SIAS-Chains - Access Methods Insert - Update - Delete

The visibility rules for SIAS-Chains are equal to those of SIAS-Vectors. On an insertion of a
new data item X its first tuple version X0 is created. A new V I D is assigned: V I Dmap stores
the physical pointer to X0. The on-tuple information is set: X0.create is set to the inserting
transaction’s ID (timestamp); X0.∗pt r is set to NU LL and XV I D is set accordingly.

Algorithm 3 SIAS-Chains Insert
1: procedure INSERT(DataItem X , Transact ion t x)
2: t x .lockX = REQUESTXLOCK(X ) . Lock for insert
3: X0 = new v ersion(X )
4: X0.create = t x id; X0.pred.create = null;
5: X0.∗pt r = null; . No older version
6: X0.V I D = getNewUniqueVID(); . get new unique V I D
7: V I Dmap[X0.V I D] = X0.sel f ;
8: ON (tx.commit() or tx.rollback()): UpdateLog;
9: Release aquired Locks; WakeUp waiting transactions;

10: end procedure

An update proceeds similarly to an insertion. On an update of data item X a new tuple
version Xn is created. All on-tuple information is set analogously set to an insert, except for
the ∗pt r variable, which is set as the physical pointer to the previous tuple version Xn−1. The
V I D is inherited from the data item (equal among all versions of X ). The entry within the
V I Dmap is set to the physical location of the new tuple version Xn, which now becomes the
entrypoint. Only entrypoints are allowed to be updated and concurrent updates are avoided.
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The example in Figure 4.22 depicts this process. The SIAS-Chains algorithm implements the
first-updater-wins rule: An update in progress creates a new entrypoint of the data item which
is not visible for concurrently running transactions - this “locks” the data item for updates of
other transactions. Our implementation in PostgreSQL uses transaction locks, which deliver the
desired functionality (Algorithm 1 line 7).

Algorithm 4 SIAS-Chains Update
1: procedure UPDATE(TupleVersion Xu, Transact ion t x)
2: TupleVersion X e = null;
3: X e= V I Dmap[Xu.ent r ypoint]; . Entrypoint of X
4: if (NOT((X e==Xu) && (isVisible(X e, t x)))) then
5: t x .ROLLBACK( );
6: end if
7: t x .lockX = REQUESTXLOCK(X ) . Lock for update
8: if (t x .lockX == GRAN T ED) then
9: Xn = new v ersion(X )

10: Xn.create = t x id; Xn.pred.create = X e.create;
11: Xn.∗pt r = X e.sel f ; . Pointer to old entrypoint
12: Xn.V I D = X e.V I D;
13: V I Dmap[Xn.V I D] = Xn.sel f ;
14: else
15: TX.WAIT(t x .lockX ) if GRANTED goto[1]
16: end if
17: ON (Ti.commit() or Ti.rollback()): UpdateLog;
18: Release aquired Locks; WakeUp waiting transactions;
19: end procedure

A deletion of a data item leads to the insertion of a special tombstone tuple version. This is
only necessary as long as there are running transactions, capable of viewing older tuple versions
that have been recent before the deletion. For example: a transaction that started before the
data item has been deleted by another transaction, still has to access the last committed state
of the data item (most recent tuple version) before the deletion. After those transactions have
finished, the data item is not visible to any running transaction anymore. In that case a simple
NU LL value can be inserted into the V I Dmap, hence removing the pointer to the entrypoint of
the data item. The remaining tuple versions can be garbage collected, archived, compressed,
etc..
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4.5.5 SIAS-Chains - Discussion and Evaluation

The SIAS-Chains algorithm is implemented in the PostgreSQL [93] database system. We com-
pare it to the original PostgreSQL code base, utilizing the DBT2 [22] open source implemen-
tation of the TPC-C [113] benchmark. In the following benchmarks and tests the PostgreSQL
system relations, e.g., catalog and meta-data are stored separately on SSD for all experiments
to exclude PostgreSQL specific management overhead.

The algorithms are evaluated on different Flash storage media, in order to emphasize the
effects of the I/O patterns generated by the prototype. An artificial I/O bottleneck is created on
the system by storing the tablespace of the database on a Sandisk 16GB USB Flash drive.

The USB stick instantly exemplifies the specific properties of the Flash chips. It also allows to
discuss the effects of SIAS-Chains on a relatively small dataset and delivers a clear visualization
of the I/O patterns. This is comparable to a system using Flash storage that becomes the I/O
bottleneck to the remaining hardware components.

Although SSDs employ several optimizations and management processes, the properties of
the Flash memories can only be “masked” up to a certain point which is reached as soon as the
cache gets full or the over provisioning area is used up (Chapter 2).

This effect is shown in the TPC-C benchmarks on SSD Flash storage. The TPC-C performance
benchmarks are conducted on an enterprise class SLC NAND Flash SSD (Intel X25-E 64GB SLC
SSD). This delivers comparability to the preceding TPC-C benchmarks for SIAS-Vectors and the
initial simulation of the LbSM.

In addition we executed the TPC-C performance benchmark on a small SSD RAID system.
Two SSDs are connected by a software RAID that comprises two Intel X25-E SSDs using mdadm
(Linux software RAID [70]). The RAID is built in performance level 0 (stripe) over the full
capacity of the devices.

The following Sections argue that the I/O patterns of the different Flash storage media il-
lustrate transferability and deliver comparable results. They are in-line with the results of the
previously conducted benchmark runs for SIAS-Vectors and the previously conducted simula-
tions.

Effects of the SIAS-Chains algorithm are recorded and visualized using the following tools:
blktrace [10] is instrumented to record the I/O patterns; blkparse [9] is used to extract the
amount of issued I/O requests out of the traces recorded by blkparse; iowatcher [51] generates
the graphs to visualize the recorded traces.

I/O Pattern

In SIAS-Chains write accesses are realized as append operations for each relation (local append
region - Section 6.3). The blocktrace in Figure 4.27 depicts the I/O pattern on the USB Flash
storage, recorded during a TPC-C benchmark with 14 warehouses and a 2 hour runtime. Each
relation appends new pages containing fresh tuple versions to a local append region (green
dots).

The scan operation over the V I Dmap leads to more selective access which creates random
read operations, visible as blue dots between the offsets 512 and 873. Since the dataset is
relatively small, once fetched pages stay cached. The comparable I/O pattern confirms the
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Figure 4.27: Blocktrace: SIAS-Chains - USB Flash Storage - 14 Warehouses - 2h. Small Dataset. Ap-
pend operations are visible as monotonously increasing lines. Random read access
in offset range [512, 873], sparsity indicates the effect of caching.

append characteristics of SIAS-Vectors (Figure 4.10) and the initial simulation (Figures 4.14
and 4.15).

The analog caching effect can be observed in the blocktrace diagram of SI, depicted in Figure
4.28. SI produces a high amount of in-place updates due to the in-place invalidation of older
tuple versions. A write operation implies that a page is read first. Pages are scanned and updated
in sequence, hence the diagonal pattern.

SIAS-Chains leverages parallelism by the selective read access using the scan over the V I Dmap.
The entrypoint of each data item is fetched first.

The amount of write requests is significantly reduced. Table 4.2 shows the total amount
of writes for SIAS-Chains and SI using blkparse on a large TPC-C dataset of 100 warehouses
(WH). The reduction is caused by the append of tuple versions to a page, that is appended
and flushed to the storage after a threshold is reached (see Section 4.5.5 for details). The
one place invalidation of SIAS-Chains avoids the in-place update of visibility information. The
trace diagrams (Figures 4.29 and 4.30) show that recently appended pages are accessed more
often than pages that contain cold(er) tuple versions. Appends to each relation form horizontal
swimlanes (green dots). In Figure 4.29 frequently read pages are visible as a horizontal blue
line (marked as New Data). Pages that are accessed through the index is shown in Figure 4.29.
This illustrates that under SIAS-Chains data is selectively read, forming a scattered distribution.
These random reads utilize the ample I/O parallelism on Flash and represent no performance
bottleneck.

SI in contrast shows the effect of the PostgreSQL background writer, which randomly writes
pages at once, repeatedly. This effect is illustrated in Figure 4.30 that shows vertical almost
equidistant write bars.

Write Reduction

The worst case for the SSD is that many different pages are updated in-place and only a small
amount of data, e.g. invalidation information, is written. This occurs when only a sparse subset
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Figure 4.28: Blocktrace: SI - USB Flash Storage - 14 Warehouses - 2h. Small Dataset. Writes as
swimlanes in increasing blocknumbers (HDD optimization).

of the relation is accessed and updated, e.g. price updates of different and distinct products in
a warehouse that do not exceed a certain base-price.

In the evaluation we observe a significant write reduction (Section 4.5.5) by the SIAS-Chains
algorithm, which is complementary to the SSD’s inherent optimization mechanisms.

The SIAS concept reduces the Visibility information related write amplification that is caused
by the version organization. Newly appended pages contain more “net” data.

We measured the amount of write reduction (issued writes) on a larger set of WHs. Since
USB Flash was saturated by a relatively small amount of warehouses, we conducted these tests
on the SSD. We recorded the blocktraces and configured DBT2 with a scaling factor of hundred
WHs on different runtimes in order to inspect the amount of writes issued by SI and SIAS-
Chains as well as to measure the occupied (utilized) space. Table 4.2 depicts our findings. We
found that SIAS-Chains significantly reduces the amount of write requests. In-place updates are
transformed into appends.

Figure 4.29: Blocktrace: SIAS-Chains - SSD - 100 Warehouses - 300 sec. Large dataset. Random
read access. New data is appended to local append regions.
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Figure 4.30: Blocktrace: SI - SSD - 100 Warehouses - 300 sec. Large dataset. In-place updates
influenced by the background writer (intervals)

In the concept of SIAS-Chains a dense packing of tuple versions is created by appending
only completely filled pages. The optimal space utilization and the highest write reduction is
achieved by writing only completely filled pages. The amount of utilized space and issued writes
is equal on such a setting (approx. 52 times - also reported in Section 6.4).

The amount of write reduction is dependent on the filling degree of each appended page.
Nevertheless, the filling degree can be influenced by a threshold.

In order to investigate the efficiency of the append operation with default values, we con-
figured SIAS-Chains with two different thresholds. Threshold t1 is the default setting of the
PostgreSQL background writer process and t2 is defined by each checkpoint interval (piggy
back).

Even when configured with the default thresholds, the SIAS-Chains algorithm leads to an
immense write reduction. In comparison to SI, SIAS-Chains only issues 3% of the amount of
writes and therefore cuts down on 97% of the overall write requests, listed in Table 4.2 with
threshold SIAS-t2. This means that the amount of writes issued by SIAS-Chains is 33 times
less than the amount that is issued by SI. Even with the more conservative threshold t1 the
reduction amounts to 65%. The optimal reduction amounts to approx. 55 times (Section 6.4).
This is extremely beneficial for the Flash storage in terms of write stability, endurance and
lifetime.

Tuple versions of different relations are not stored on the same page. Pages that belong to
different relations are placed at different regions on the Flash memory (local append region).
This avoids mixing tuple versions and pages and reduces contention, e.g. one relation receives
more updates/inserts than another [35].

The Flash device suffers write overhead from SI caused by the in-place invalidation: if a tuple
version is invalidated, only the timestamp (32bit) is updated, while the tuple version data stays
unaltered. Nevertheless, the whole page (8KB) has to be updated out-of place on Flash, which
might physically lead to a whole erase-rewrite operation sequence, entailing mapping overhead
and unpredictable performance. SI writes the new version on any (arbitrary) page that contains
enough free space, possibly causing another erase-rewrite cycle. This overhead is conceptually
avoided in SIAS-Chains, which explains the significant write reduction. SIAS-Chains appends
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Table 4.2: Write Amount (issued writes in MB) and Reduction (%) compared to SI. SIAS-Chains is
configured with two different thresholds. SIAS-t1 is the default PostgreSQL back-
ground writer interval. SIAS-t2 piggy-backs the write operation with the interval
of each checkpoint operation. In both configurations the pages are not filled com-
pletely, hence write reduction is threshold defined. The maximum amount of write
reduction for TPC-C load is evaluated in Section 6.4.

Runtime(sec.) SI (MB) SIAS-t1(MB) SIAS-t2(MB) Red. %-t1 Red. %-t2
600 4369 1511 130,5 65% 97%
900 6488 2263 193,6 65% 97%

1800 12786 4473 344,65 65% 97%

the new version, leaving the old one unchanged and updates the pointer in the in-memory
V I Dmap.

The amount of occupied space also depends on the threshold, which directly influences the
degree, to which each appended page is filled. The threshold defines when a new page is
physically appended to stable storage. Threshold t1 is not suitable for the tuple LbSM, since
pages are persisted too frequently and are only sparsely filled. This leads to suboptimal overall
space utilization, although less net data is written (no overwrites). Appending too frequently
leads to writing out pages that have a poor fill-factor, leading to wasted space and a higher
amount of write requests. In SI the utilized space differs from the issued writes, since pages are
updated in-place.

Threshold t2 delays the point of physically appending a page beyond that of threshold t1.
Configured with t2 SIAS-Chains delivers a reduction of the overall space consumption by 12%.
Hence pages are filled denser and a smaller number of pages is physically appended. The
variations in runtime do not change the overall database size. This indicates that the pages
under configuration t1 and t2 are not completely filled yet and the threshold can be further
optimized. It is therefore possible to further increase the filling degree, resulting in a further
write reduction and smaller database sizes.

The optimal threshold for write efficiency is the maximum filling degree of a page. When
configured with a filling degree of 100% the maximum write reduction of the SIAS tuple LbSM
is approximately 52 times under TPC-C workload. This is evaluated in Section 6.4 and also
reported in [35] and [38].

Performance on USB

We investigate the I/O performance behavior on the USB Flash storage. SIAS-Chains achieves
stable, dependable write throughput and response times on Flash storage.

Throughput
SI manages to scale with up to ten WHs and subsequently reaches a plateau (response time

approx. 5 sec.). At ten WHs SIAS-Chains yields 1.5 times the transactional throughput com-
pared to SI and exhibits sub-second response times. The throughput of SIAS-Chains and SI is
depicted in Figure 4.31. SIAS-Chains scales linearly and reaches the plateau at 18 WHs and max
throughput at 20 WHs (Figure 4.39). While still providing a responsive system SI reaches peak
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Figure 4.31: SIAS-Chains vs. SI - Transactional Throughput. SIAS-Chains achieves higher through-
put. It provides up to 2.6 times the transactional throughput.

performance with 86 NoTPM (New-Order Transactions Per Minute) and SIAS-Chains with 220,
thus SIAS-Chains provides 2.6 times the transactional throughput.

Response Time
Figure 4.32 depicts the response time of SIAS-Chains and SI. SI exhibits response times below

five seconds on scaling factors smaller than eight WHs. SI reaches the plateau at ten WHs and
shows an exponential increase of the response times afterwards. SIAS-Chains exhibits stable
sub-second response times up to a scaling factor of 16 WHs (blue curve Figure 4.32). SIAS-
Chains shifts the kneepoint of the system and reaches the plateau at 18 WHs. This is 80%
more tolerable load. At the time SI reaches the plateau with 5.468sec the response time of
SIAS-Chains is 0.0015sec. Hence, SIAS-Chains further shifts the knee-point of the system and
maintains a responsive system on peak loads.

Performance on SSD

We investigate the performance on our enterprise class Intel X25-E SLC Flash SSD. The DBT2
benchmark is instrumented with a varying amount of warehouses, 10 Clients and a runtime of
two hours.

Throughput
The throughput, measured in NOTPM is depicted in Figure 4.33. SI reaches the plateau when

the response time drops below five seconds at 220 WHs. After that point the system is no longer
responsive and the graph of the throughput flattens. Benchmarking SI with more than 300 WHs
resulted in a frozen system, hence no further performance comparison is reported above that
point. SIAS-Chains scales linearly above that point, while still providing a responsive system. At
400 WHs SIAS-Chains delivers more than 5000 NOTPM, depicted in Figure 4.40.
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Figure 4.32: SIAS-Chains vs. SI - Response Time. SIAS-Chains is shifting the kneepoint of the
system, delivering a responsive system on peak loads.
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Figure 4.33: SIAS-Chains vs. SI - Transactional Throughput on SSD (ordinate begins with 1500
NOTPM). SIAS-Chains achieves higher throughput than SI.
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Figure 4.34: SIAS-Chains vs. SI - Response time on SSD. SIAS-Chains is shifting the kneepoint of
the system, delivering a responsive system on peak loads.

Response Time

The response times are depicted in Figure 4.34. SI reaches the plateau after 220 WHs, the
response time gets larger than five seconds. SIAS improves on SI by 13x lower response times
at that point. SIAS delivers sub-second response times up to 300 WHs. The response time
increases above that point and reaches 3.1 sec. at 400 WHs.

Performance on SSD RAID

We benchmarked SIAS-Chains and SI on a RAID that comprises two Intel X25-E SSDs. The RAID
is created using the mdadm software RAID in Linux. It is configured with RAID level 0 (stripe).

Throughput

SIAS-Chains achieves high throughput (Figure 4.35) with low response times (Figure 4.36)
on SSD RAID storage. SIAS-Chains increases the throughput by up to 30%. SI reaches peak
throughput with 450 WHs with a response time of 4.8 sec. providing 4862 NOTPM. SIAS-
Chains reaches peak performance with 530 WHs with a response time of 3.3 sec. providing
6182 NOTPM (Figure 4.41).

Response Time

Figure 4.36 depicts the response time of the system. SI features a response time below five
seconds with up to 450 WHs. After that point the response time increases significantly up to the
point where the system no longer responds to any query (above 520 WHs). SIAS-Chains stays
responsive with more than 530 WHs where the response time is still below five seconds.
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Figure 4.35: SIAS-Chains vs. SI - Transactional Throughput on SSD RAID (ordinate begins with
4000 NOTPM). Two Intel X25-E SSDs in software RAID (stripe).
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Figure 4.36: SIAS-Chains vs. SI - Response time on SSD RAID with two Intel X25-E SSDs in soft-
ware RAID (stripe). SIAS-Chains is shifting the kneepoint of the system, delivering a
responsive system on peak loads.

Performance on Sylt

Figure 4.37 depicts the throughput of SIAS-Chains and SI on the Sylt server. It is configured
with six Intel X25-E SLC SSDs, 80GB of main memory and two Intel Xeon CPUs. This removes
any bottleneck of computational power or available main memory.
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Figure 4.37: SIAS-Chains vs. SI - Transactional Throughput on the Sylt server (ordinate begins

with 6000 NOTPM). Six Intel X25-E SSDs in software RAID (stripe).
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Figure 4.38: SIAS-Chains vs. SI - Response time in seconds on the Sylt server. Six Intel X25-E SSDs
in software RAID (stripe).

Throughput
SIAS-Chains reaches the plateau after approx. 1200 WHs and SI reaches peak throughput at

approx. 1000 WHs. After these points both algorithms decrease in throughput. The graphs in
Figure 4.37 also show that the rate at which SI decreases is higher than that of SIAS-Chains.

Response Time
Figure 4.38 depicts the response time of SIAS-Chains and SI. As in the preceding benchmarks,

the response time of SIAS-Chains is lower than that of SI on higher loads. On lower loads the
response time is less or equal to that of SI.
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Figure 4.39: SIAS-Chains response time (blue curve, right ordinate) and throughput (red curve,
left ordinate) on USB. SIAS-Chains processes twice the load before reaching the
plateau.

Scalability

The benchmarks show that SIAS-Chains, compared to SI, scales with a higher amount of ware-
houses while being capable of providing a responsive system with sub-second response times.

On USB SI scales only up to approx. 10 warehouses. After that point throughput and response
time are impaired. The throughput of SI and SIAS-Chains on USB is depicted in Figure 4.31 and
response times are contained in Figure 4.32, respectively.

Since SIAS-Chains scales up to a higher amount of warehouses, the throughput and response
times are depicted separately in Figure 4.39. The red curve in Figure 4.39 depicts the throughput
and the blue curve depicts the response time of SIAS-Chains. With roughly double the amount
of warehouses SIAS-Chains delivers a responsive system.

The benefits in response time are particularly impressive on SSD. SI reaches the kneepoint
after 220 WHs, where SIAS-Chains still provides sub-second response times. SIAS-Chains scales
up to 400 WHs with a response time far below five seconds.

This is due to the write reduction that is achieved by the SIAS-Chains algorithm: the positive
effects of SIAS-Chains in terms of lower latency and higher transactional throughput can be
attributed to the significant write reduction, caching of fresh tuple versions in pages and the
lack of small in-place updates due to the new invalidation model.

Performance on HDD

SIAS-Chains was developed for new storage media with the properties of Flash memory. It
aims to optimize the I/O access patterns and explicitly leverages parallelism and read/write
asymmetry. SIAS-Chains follows the idea that reads are traded for writes and updates. With
SIAS-Chains we even observed clear advantages on HDD. We benchmarked SIAS-Chains and SI
on a Seagate ST3320613AS S-ATA HDD with 7200rpm. On traditional symmetric storage writing
cost equals reading cost and random read as well as random write access involves rotational and
positioning delays.
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SIAS-Chains on SSD - Throughput - Response Time 

Figure 4.40: SIAS-Chains response time (blue, right ordinate) and throughput (red, left ordinate)
on SSD (Intel X25-E). SIAS-Chains scales almost linearly up to 400 warehouses.
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SIAS-Chains on SSD RAID - Throughput - Response Time 

Figure 4.41: SIAS-Chains response time (blue, right ordinate) and throughput (red, left ordi-
nate) on SSD RAID (2x Intel X25-E). SIAS-Chains scales almost linearly up to 530
warehouses.
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Figure 4.42: SIAS-Chains vs. SI - Throughput. SIAS-Chains optimizes for asymmetric Flash storage,
yet traditional symmetric storage also benefits from the approach. Throughput is
improved.

Figure 4.43: SIAS-Chains vs. SI - Response Time. SIAS-Chains optimizes for asymmetric Flash stor-
age, yet traditional symmetric storage also benefits from the approach. Average
response times are lower on SIAS-Chains due to the write retention and grouping
of new inserted tuple versions.

The caching effect of SIAS-Chains is implicitly confirmed by our performance tests on HDD.
SIAS-Chains scales on HDD as long as most reads are cached and improves on SI due to write
reduction and append operations.

Since less data is written in SIAS-Chains, the HDD has to move less mechanical components
for random writes. It is therefore not surprising that the SIAS-Chains approach proves to be
beneficial for the HDD as long as the sum of reads and writes (appends) in SIAS-Chains stays
below the cost of those in SI.

On HDD SIAS-Chains improves on SI in terms of transactional throughput and especially on
response time. The lower response time indicates the benefit of the co-location of fresh tuple
versions. New appended pages contain fresh data and it is more likely that on a subsequent
access a page is still cached. SI co-locates tuple versions of a data item, supporting a clustering
of data. SI exhibits high response times. The system stays responsive below 30 WHs. SIAS-
Chains provides a responsive system with up to 75 WHs. It can be observed that on a scaling
factor of 100 WHs the performance of SIAS-Chains suddenly drops, suffering a 10 times increase
in response time compared to 75 WHs. At this point random reads dominate, since SIAS-Chains
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Figure 4.44: Garbage Collection concept. First a candidate page Pc is chosen. Valid tuple versions
X3, Y2, Y1 are re-inserted (re-located) in the append storage, here at the LbSM head
page PH . The mapping structure V I Dmap is updated and Pc is erased, reclaiming the
occupied space.

does not maintain a clustering, a property inherited by the append based storage management.
It tends to produce more random reads, hence the scaling factor of 100 warehouses shows a
sudden decrease in throughput and increase in response time.

4.6 SIAS Garbage Collection

The basic concept in MV-DBMSs to reclaim space on the append storage is using a garbage
collection (GC) mechanism which: (i) finds a candidate (victim-) page Pc that is chosen to be
garbage collected, (ii) re-inserts still valid tuple versions and (iii) discards dead tuple versions of
that page. Currently the SIAS-Chains prototype does not perform space reclamation techniques.
All three steps offer interesting points of research, which are currently under investigation in
our group and left for future work. Figure 4.44 depicts the basic concept of the GC.

Obviously it is more beneficial to chose a candidate page that contains many dead tuples. An
unsuitable candidate page comprises a high fraction of visible tuple versions.

Granularity

Flash storage can only be erased in erase unit granularity, hence the smallest unit for GC can
be defined by the granularity of one single erase unit.

GC triggered by the DBMS is a deterministic process and does not rely on the device’s inher-
ent mechanisms. Integrating the append storage GC into the MV-DBMS avoids unpredictable
performance outliers of the Flash storage media, caused by background processes on the device.
Performance (latency) outliers that are caused by indeterministic execution of the on-device GC
can be avoided.
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Data Placement
Rather than re-insert valid tuple versions they can be efficiently re-located. Hot and cold

tuple versions can be grouped, sorted and stored appropriately. It can be beneficial to group
tuple versions which are updated frequently, such that a larger potion can be garbage collected.

The SIAS-Chains concept of using V I Ds complements the re-insertion/ re-location of visible
tuple versions. When a tuple version receives a different T I D during the garbage collection
process, the V I Dmap gets updated and the V I D points to the new position of that version.
Existing index entries do not have to be changed on a re-location of a tuple version, since they
store the V I D instead of the T I D.

This transfers yet more control over the Flash storage into the MV-DBMS and complements
the NoFTL approach [46].

Maintaining the Version Chain
If a visible version is found which is not the entrypoint of a data item, the whole chain is re-

inserted/ re-located. During that operation, the placement of the entrypoint and the still visible
predecessor tuple version(s) can be reconsidered. For instance, all entrypoints of the data items
can be stored on a different page than their corresponding predecessors, which is beneficial
under the assumption that the predecessor tuple versions will become dead tuple versions soon
(the oldest running transaction can only access a newer version) and can be discarded on a
subsequent GC call.

Indexing
A serious consideration is the treatment of indexed data items. When an indexed data item

is relocated during the execution of the GC. In a traditional MV-DBMS all indexes have to be
updated in order to point to the new position of the data item (its tuple version). In SIAS the
V I Dmap keeps track of the entrypoint and the index structures redirect accesses to the V I Dmap,
hence only the V I Dmap has to be updated. The index structures do not have to be updated
since they already store the V I D. This property complements a simplified GC. The indexing
mechanism in SIAS-Chains is explained in Chapter 5.

4.7 SIAS Buffer Management

The SIAS buffer manager is designed to be incorporated with the other components of the SIAS
approach. The SIAS concept employs a simplified buffer management that performs a write
retention of buffered pages which are about to be appended to the LbSM.

Pages are appended to the LbSM after they are completely filled. Once written, such pages
are immutable, apart from garbage collection and space reclamation.

A configurable parameter defines the amount of buffered pages per relation. Appending to
only one page creates a bottleneck since concurrently executed transactions have to share the
buffered page for modifications.

The SIAS-Chains prototype was configured with two different time-based thresholds to write
out buffered pages. This led to the event that pages have been physically appended to the
LbSM although they are not completely filled, thus having negative impact on overall space
consumption and the amount of issued host writes.
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4.8 SIAS Recovery

SIAS-Chains and SIAS-Vectors do not impinge on the MV-DBMS’s inherent recovery mechanisms.
The write ahead log (WAL) as well as the MV-DBMS’s inherent mechanisms for recovery are not
impaired. The buffer manager performs a threshold configured write retention which delays
the time until a single page is allowed to be physically appended and written out to the storage
media, yet WAL is not affected.

The SIAS-Chains V I Dmap is persisted in a container relation on regular shutdown of the
database. Nevertheless, as all information that is needed for a reconstruction after a crash
is stored on each tuple version (Section 4.5.2), no additional effort is taken to recover the
V I Dmap.

The V I Dmap can be recovered after a crash by a piggybacked scan of each relation. Since each
tuple version stores it’s V I D, the V I Dmap can be successively re-built. The same is true for the
SIAS-Vectors datastructures. The bitmap vectors can be re-built using the on-tuple information.

4.9 SIAS Discussion - Worst Case Scenario

The search for a worst case scenario for the SIAS concept (based on the SIAS-Chains implemen-
tation) is an interesting discussion.

Maximum Overhead of the data structures
In order to experience the maximum overhead of the data structures, there should be rel-

atively short version chains. For instance if only one tuple version per data item exists, then
the overhead of keeping the V I Dmap is maximized. Yet this is an unrealistic scenario, since the
MV-DBMS manages multiple versions of data items - which is one of the basic assumptions of
multi-versioning.

Traversal of the Version Chain
On a traversal of the version chain a predecessor tuple version is fetched. In a worst case

scenario, many predecessor tuple versions have to be fetched in order find the visible one. This
can occur on mixed workload when a long running transaction needs to access an older tuple
version of a data item. Yet this only applies to an old transaction. Newly started transactions
are not affected, since those have to read the newest committed tuple version of a data item.
In an OLTP system it is most likely that the visible tuple version is denoted by the entrypoint or
its immediate predecessor, as our statistics on the visible part of a version chain show (Section
4.4.3, Figure 4.20).
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5 Access Methods - Searching and Indexing
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Data stored on Flash is accessed by a scan or by using an index. The index access enables
selective point queries which usually result in small random reads, yet also sequential access is
possible on range queries on an index.

5.1 SIAS-Chains: Scan - Introduction

SIAS-Chains enables two variants of scan operations. The SIAS-Chains V I Dmap scan and the
traditional relational scan. In the following both scan variants are discussed.

5.1.1 SIAS-Chains - V I Dmap Scan

This method performs a scan on the V I Dmap, fetching the entrypoints of all data items first.
The V I Ds in the mapping structure are accessed in ascending or descending order. This access
pattern is more likely to create random reads on the flash storage, since the entrypoints are not
clustered. Pages that do not contain an entrypoint or any visible tuple version are not fetched. A
page needs to contain at least one visible tuple version in order to be fetched from the storage.
Tuple versions are checked for visibility beginning with the entrypoint - as soon as the visible
version of the data item is found, no older versions need to be fetched and checked.

Algorithm 5 describes the scan using the V I Dmap. The V I Dmap is accessed first to determine
visible tuple versions. This variant is implemented in the SIAS-Chains PostgreSQL prototype.
This access path is parallelizable and therefore complements the parallelism of the Flash storage.

For each V I D the visible tuple version is determined, rather than reading the complete set of
tuple versions contained in the relation and subsequently checking each for visibility. In line 18
the visibility check is executed: the requirement is that the tuple version Xv was committed be-
fore the checking transaction t x started. Beginning with the entrypoint in the chain of each data
item, the algorithm returns the first tuple version found that satisfies the visibility cirteria. The
commit timestamp is not stored on the tuple version and therefore cannot be checked directly.
The tuple version stores its creation timestamp Xv .create which corresponds to the inserting
transaction’s timestamp. If this timestamp is smaller or equal (Xv .create ≤ t x id , Algorithm 5, line
18) and the corresponding transaction was not concurrently running (Xv .create 6∈ t xconcurrent),
then the tuple version was committed before the start of the accessing transaction - hence it is
“visible”. SIAS-Chains scans the V I Dmap first and enables more selective I/O as shown in the
evaluation (Section 4.5.5).
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Algorithm 5 SIAS-Chains Scan over V I Dmap

1: procedure SCAN(Transact ion t x)
2: For each VID v ∈ V I Dmap {
3: TupleVersion e=V I Dmap[vent r ypoint] . Entrypoint
4: if isVisible(e, t x) then
5: return e;
6: else
7: while(e∗pt r != null){
8: p = f etch(e∗pt r) . Predecessor
9: if isVisible(p, t x) then

10: return p
11: else
12: e = p
13: end if
14: }
15: end if
16: v=v.next();} . Next Data Item
17: end procedure
18: procedure ISVISIBLE(TupleVersion Xv , Transact ion t x){
19: return (Xv .create ≤ t x id)&& (Xv .create 6∈ t xconcurrent)
20: }
21: end procedure

5.1.2 SIAS-Chains - Full Relational Scan

The traditional implementation of relational scan provided by PostgreSQL, which was developed
for HDDs to enable sequential I/O, first reads the whole relation (all tuple versions) and subse-
quently each tuple version is checked individually. This access pattern fetches all pages from the
flash storage (ascending or descending page number), even if they do not contain any visible
tuple version. Since SSDs enable fast random reads, the traditional scan is inefficient, since each
tuple version has to be checked. In addition, this scan uses the logical block numbers which are
likely to be physically remapped to different positions on the SSD (black-box abstraction). On
the traditional scan the same visibility criteria as in Algorithm 5 are applied. Such a relation
scan first fetches all the tuple versions and sorts them for matching attributes corresponding to
the query. Subsequently each tuple version has to be checked for visibility individually. Hence a
tuple version becomes a visible candidate.

SIAS-Chains executes the same base algorithm for checking a tuple version: the entrypoint
of the data item is fetched and the visible version (if it exists) is determined as in Algorithm
5 - this version is compared with the candidate tuple version. If it matches, the check returns
t rue. Obviously this method is not as efficient as the V I Dmap which uses only the entrypoints,
since all potential versions of a data item need to be checked thus involving additional memory
consumption and CPU cost. The advantage of the sequential scan on traditional HDDs does not
hold for SSDs. Instead, the individual access to the entrypoints exploits the parallelism of the
SSD.
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In the absence of the V I D, the SIAS-Vectors approach relied on the traditional scan, realized
by a memcopy of the vector datastructes for each scan. The copied vector data structure is used
to identify entrypoints that are valid at the snapshot of the scan. Concurrently updated and
inserted tuple versions are shielded from the snapshot. Details on the scan of SIAS-Vectors are
discussed with the SIAS-Vectors visibility check, described in Section 4.4.2 (Algorithm 2).

5.2 SIAS-Chains: Indexing - Introduction

SIAS-Vectors utilizes bitmap vectors in order to identify the entrypoint of each data item. This
approach is suboptimal for index access: although the entrypoint can be determined very fast
by a simple bit comparison, it lacks the functionality of finding a specific entrypoint to a given
tuple version that is not an entrypoint. Yet that kind of access occurs on the access path using
an index.

SIAS Chains improves on SIAS-Vectors. Since the bitmap vectors are no longer necessary and
the information about specific entrypoints is coded within a chain of tuple versions that belong
to a data item. The entrypoint of each data item is stored within the SIAS-Chains mapping
structure. Using this paradigm where all versions of a data item can are identified by a virtual
ID (VID), it is possible to use that VID within an arbitrary index structure. Instead of the tuple
version’s ID that stores the physical position of (TID, row ID, lists etc...) the VID is stored. This
is implemented in the SIAS-Chains implementation’s tree index structure (B+ t ree). There are
no additional requirements on the type/layout of the search key (key). It is simple adaptation
of the value that is stored for a given search key. E.g. in traditional B+Tree index structures
there are three different record formats and their corresponding counterparts in SIAS-Chains.

• < ke y, T I D > –> < ke y, V I D >.: the direct pointer to the location where the tuple is
stored, which becomes an index to the VID structure and points to the data item’s entry-
point.

• < ke y, Tuple > –>< ke y, DataI tem >: a unique data item. Note: there is no difference,
since it is assumed for this case that the data item stays unchanged.

• < ke y, {l isto f T I Ds} > –> < ke y, {l isto f V I Ds} >: a list of TIDs which becomes a list of
VIDs.

When a tuple version matches a search key the access is made to the V I Dmap leading to the
entrypoint of the data item. This also entails an important property: In case that an attribute of
a data item is updated, where the MV-DBMS creates a new version of the data item, the (VID)
entry within the index can stay the same if the search-key attribute has not been changed. The
visible tuple version is then determined by the SIAS-Chains algorithm (Section 5.1).

5.2.1 SIAS-Chains - Indexing

Any index structure can be adapted at the cost of an additional indirection. When assuming a
B+ tree index on a relation R, the index records are traditionally comprised of a < ke y, T I D >
pair. Since SIAS-Chains identifies all versions of a data item by using a V I D, the index record is
comprised of a < ke y, V I D > pair. Analogously to the B+ tree, other index structures, e.g. Hash
based index structures, can equally be adapted to the SIAS-Chains algorithm. For each relation
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Figure 5.1: SIAS-Chains Indexing: Index Key Update (left). SIAS-Chains Indexing: Non-Index Key
Update (right). Access is served by the V I Dmap and forwarded to the entrypoint of
the data item.

there exists exactly one V I Dmap. SIAS-Chains uses the very same V I Dmap for all access paths.
Figure 5.1 depicts the indexing in SIAS-Chains. In both figures a B+ tree index is created on
attribute A of relation R. The V I Dmap serves to determine the entrypoint of the data item.

Example 1: The value of an indexed attribute changes
Transaction T1 creates the initial version X0 of data item X with the attribute value 9 (ap-

pended on P0). T2 updates X , changed the value to 10 and creates X1 (appended on P5). The
B+ tree stores the < ke y, V I D > pairs, while the V I Dmap structure points to the latest tuple
version X1, resident on P5. A reading transaction T4 executes a lookup of all values in R that
match either 9 or 10. Using the V I Dmap as a mediator, the ent r ypoint is fetched from page
P5. Note: if a transaction is old enough to not see X1 but young enough to see X0, the reference
pointer on X1 is used to fetch the previous version.

Example 2: Update on a non-indexed attribute
Figure 5.1 (right) depicts the update to X that does not involve a change of the index key

value. Data item X is inserted as in Example 1 with the difference that the attribute value has
not changed. For instance, there exists an index on the product id (Figure 5.1 right, attribute
A), yet just the price is updated.

The pointer in the V I Dmap is updated to point to the ent r ypoint X1 on page P5 while the
index is left unchanged. In the worst case the predecessor version X0 has to be fetched after X1,
if it did not match the visibility criteria. (i) Data items that are updated without the change of
the key-value do not require an update on the index structure in SIAS-Chains. (ii) New (most
recent) tuple versions, that denote the ent r ypoint of the data item, will eventually become the
only visible version of the data item.
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Log-/Append-based Storage Managers (LbSM) are a forthcoming trend in modern MV-DBMS.
Their principle of implementing each logical modification of data as a physical append operation
complements the properties of Flash memories. This Section examines existing approaches to
LbSM and proposes, along with SIAS, a new approach to LbSM that is integrated into a MV-
DBMS.

6.1 Append Storage - Introduction

The concept of LbSM is well known from file systems (Rosenblum and Oosterhout [97]). LbSM
append data portions to the logical end of log-organised storage, thus avoiding physical in-place
updates and random writes. Each logical modification operation (update, insertion, deletion) is
physically realised as an append operation. In LbSM a once appended page is immutable. Ran-
dom writes, which are suboptimal for Flash storage, are transformed into appends. Appends are
more suitable for Flash memories, nevertheless follow up read access is more complex. Since
multiple versions of the appended data (page) may exist, the correct version of the data has
to be identified. This entails garbage collection and more complex space management. Out-
dated (invalidated) data can be removed in order to free occupied space. LbSM as traditionally
proposed are not natively integrated into the MV-DBMS. They do not address issues related to
version organisation caused by, e.g., the in-place invalidation of outdated tuple versions (write
overhead/ amplification).

The type of versioning directly influences the amount of mapping and write overhead the
LbSM needs to manage. The versioning paradigm of MV-DBMS entails the concept of out-of-
place updates. Although this alleviates the append of new data in principle, it is not applied in
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traditional approaches which address special properties of symmetric storage (rotational delay,
positioning time). Current MV-DBMS maintain a clustering (primary index, most frequently read
data, etc...) by performing in-place updates to optimise for sequential read access. They write
data to arbitrary (random) positions, update data and invalidate old versions in-place. This
effort effectively creates contraproductive write patterns for the LbSM and leads to additional
write amplification, since each update of an already appended page needs to append a new
version of that page.

This renders the traditional assembly, where the LbSM is realized as a seperate layer, of a
MV-DBMS suboptimal. Furthermore: on the one hand the MV-DBMS maintains a clustering of
logical pages and on the other hand the LbSM creates a remapping of those pages to ascending
physical block addresses (PBA) on the storage media which destroys the physical clustering.
New and/or updated data can not be clustered with already appended data. Approaches us-
ing delta stores (such as [81]) still require relatively expensive merge operations in order to
maintain the clustering and induce additional overhead on read access.

As traditional LbSM approaches primarily address the high throughput of large sequential
writes on HDDs, they have mostly been used in write heavy environments. Modern SSDs require
optimized access methods that leverage low latency and fast random reads. Access methods
need to address (relatively) low random write I/O, fast sequential writes and the vulnerability
to wear.

We claim that the integration of the LbSM into the MV-DBMS effectively addresses the char-
acteristics of modern storage technology. The LbSM needs to be implemented and integrated
within the architecture and algorithms of modern MV-DBMSs. As described in Chapter 3 the
SIAS approach combines version visibility and transactional management with the LbSM.

Two important factors of LbSM have been identified and investigated in this work (published
in [35]):

• The size (granularity) of the logical and physical append unit - Section 6.2.

• The data placement and layout of the physical append operation (region of append) - Sec-
tion 6.3.

In the following these two factors are further investigated and evaluated based on [35], show-
ing that a tuple LbSM with local append regions performs best under OLTP workload.

6.2 Append Granularity

The device interface to the Flash SSD (inherited from the interface of traditional storage) im-
plements a block device and commercially available SSDs are blockoriented. Therefore, the
smallest physical append unit is constrained by the block size, nevertheless the logical append
unit can be a fraction or a multiple of that size.

The granularity of the logical append unit is a critical component, on the one hand appending
in page granularity (page mapping) is convenient since the LbSM can be implemented as an
additional layer outside of the MV-DBMS and several components of the MV-DBMS can stay
unaltered. Such traditional page mapping LbSM approaches utilize coarse grain granularity
appends and implement a mapping of logical to physical blocks.

On the other hand page mapping introduces threefold overhead:
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Figure 6.1: In-Place Storage Managers update pages in-place. Page LbSM append whole pages in
the order in which they arrive. Tuple LbSM require a write retention mechanism that
buffers tuple versions before they get physically appended. A threshold is required
(time, work or space defined).

• Mapping overhead.

Mapping overhead is induced by maintaining a mapping table of logical block addresses to
physical block addresses.

• Version handling.

Additional version handling of appended pages: updates of already written pages ren-
der them invalid and new versions of such pages are appended. Garbage collecion of
invalidated pages is necessary to free space.

• Write amplification.

Write amplification results from MV-DBMS version management. E.g., the update of
a small unit (data item) within a page where the whole page has to be (re-)written
(remapped and appended). Each logical modification, especially in-place invalidation in
MV-DBMS, leads to the rewrite of a whole page.

The choice of the size of the mapping table in traditional LbSM is a tradeof: large append units
reduce the size of the mapping table but increase the write amplification on small modifications,
small append units reduce the write amplification but increase the size of the mapping table.

In contrast, the integration of the LbSM into the MV-DBMS renders the additional layer obso-
lete, alleviating the mapping table and version management overhead. A coupling of the LbSM
functionality to the MV-DBMS transactional model, including the invalidation model, enables
appending in smaller logical units (single tuple versions).
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Furthermore, the knowledge about the data on the transactional level improves the quality of
the append operation. Other optimizations can be applied, for example, appending sorted runs
(Section 6.5).

The SIAS approach (Section 4.3) uses a tuple version as the logical append unit and the (much
larger) page size as the physical append unit which is transferred to the storage device.

6.2.1 Page Append LbSM

Traditional approaches to LbSM(page LbSM) append in logical granularities of pages (or mul-
tiples of them). They implement an additional layer between the MV-DBMS and the storage
media. Unaware of the content of each appended unit, they maintain a mapping of a logical
block address to the corresponding physical block address. On an update, a logical page is
remapped and a new physical block address at the head of the append-log is assigned to that
page. Figure 6.1 illustrates the page append operation. Page A is updated, a new version of
that page is subsequently stored at the end of the LbSM. This creates out-of-place updates and
effectively addresses the in-place update issue on Flash [109]. Nevertheless, since the logical
granulariy is defined by the page/block size, even small updates to a page lead to the update
of the physical page, thus creating write amplification. For example, a whole page needs to be
remapped, independent of the amount of changes to that page, even if only a single data item
is updated. If the MV-DBMS is not aware of the page LbSM and Flash storage underneath, it
issues in-place invalidations which cause small updates to pages that have to be re-inserted and
remapped.

6.2.2 Tuple Append LbSM

The SIAS approach is a tuple append LbSM (tuple LbSM) approach. Each modification of a data
item leads to the creation of a new tuple version of that item which is logically appended to
a new page. Small updates do not lead to the remapping of a whole page, instead new tuple
versions are created while old tuple versions stay unchanged. Small data portions get collected
and are inserted/appended to a new page, which is written by the LbSM when it is completely
filled or once a threshold (time, amount of committed transactions etc...) is reached. The
process is depicted in Figure 6.1 where data item A is updated and appended to a new page.
The page holding the old tuple version of data item A is left unchanged. The new allocated
page is held in the buffer until a threshold is reached. The LbSM functionality is migrated into
the MV-DBMS and no additional external mapping structures have to be employed, since the
MV-DBMS already maintains an explicit mapping. This integration requires a change of the
invalidation model within the transactional model of the MV-DBMS and a new paradigm to
version invalidation, as described in Section 4.3.

6.3 Data Placement and Layout

The physical region of the append is an important factor which directly influences the I/O pat-
tern. Whether data-pages of one relation is mixed with data of another relation, or if data of
different relations is physically seperated. This is evaluated in this work using multiple regions,
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e.g., one per relation which results in multiple append write streams, or using one global append
region.

Each individual page contains tuple versions of exactly one relation.

6.3.1 Global Region

A LbSM with one global region which is the same for all relations appends pages that belong to
different relations to a single region (Figure 6.2). Thus using one writer process for all relations
that creates a mixture of pages that belong to different relations. Pages are appended in the
order in which they arrive at the LbSM. Data pages of different relations are appended to the
same writer, hence the amount of written data is forming a single write stream.

6.3.2 Local Region

A LbSM with local regions (also depicted in Figure 6.2) appends each page of a single relation
to a separate region, thus using multiple writer streams - at least one for each relation. Pages
that belong to different relations are not mixed within a region. This also influences space
management, since the append operation is executed individually for each relation.

Figure 6.2: Global vs. Local Append Region(s). One global append region comprises appended
pages of different relations. One local append region per relation comprises pages
of exactly one relation.
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6.4 LbSM Evaluation

The evaluation focuses on the I/O characteristics and behavior of the Flash storage technology.
It is based on our own work, published in [35], augmentations are made where appropriate.

We compare in-place storage management and page-/tuple LbSM approaches in conjunction
with multi- versioning databases on new storage technologies (Flash storage) and elaborate
the influence of one single or multiple append regions. Our findings show that while page-
based LbSM approaches are better suitable for new storage technologies, they can be optimised
by implementing tuple-based LbSM directly into the MV-DBMS. SIAS is implemented (Section
4.3), as a tuple LbSM within the PostgreSQL MV-DBMS which algorithmically generates local
append behavior. SIAS leverages the characteristics of Flash storage and addresses their special
properties. SIAS achieves high performance, scales almost linearly with growing parallelism
and exhibits a significant write reduction. Our experimens show that:

• Traditional LbSM approaches are up to 73% faster than their in-place update counterparts;

• SIAS tuple-version granularity append is up to 2.99x faster (IOPS and runtime) than in-
place update approaches;

• SIAS reduces the write overhead (amount of issued write requests) up to 52 times;

• SIAS using local append regions is up to 5% faster than using one global append region
for all relations.

Page LbSM as well as tuple LbSM is evaluated in combination with global region and local
region append. For page LbSM two additional variants are evaluated, one using garbage collec-
tion, marked with the postfix “-GC”, and one that omits the garbage collection (no postfix).

For the tuple LbSM, two additional variants are evaluated. An optimistic approach that as-
sumes that SIAS data structures are cached, marked with the postfix “-O” and a pessimistic
approach which fetches the data structures separately, marked with postfix “-P”. A variant
with/without garbage collection delivered congruent performance, therefore this distinction
is omitted here. The complete (100%) filling degree is assumed as the threshold for the evalu-
ated SIAS approaches. This assures that each page gets completely filled before it is appended to
the storage. Hence the results indicate the maximum benefit of the SIAS approach. The results
of the prototypical implementation vary as the threshold is chosen differently, for example as a
variable filling degree, timeout or as the amount of finished transactions. Our key figures and
trends, reported in this Section, are confirmed by the implementation, this is further described
in Section 4.3.

For comparison the in-place approach, default in PostgreSQL, is also reported and instru-
mented with and without garbage collection.

Garbage collection (GC) is either activated or turned off for the measurement of the I/O
behavior. This experiment is conducted in order to examine the influence of GC on append
storage management.

• SI-PG-(GC): Page LbSM that appends pages to one global append region on the storage
device.

• SI-PL-(GC): Page LbSM that appends pages to multiple local append regions. SI-PL parti-
tions the global append storage into multiple local append regions, dedicating each region
to a single relation of the database.
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• SIAS-L-(O/P): Multiple/local append regions, where each region is dedicated to exactly
one relation of the database. All pages in a local append region belong to the same relation
and all tuples within a page belong to the same relation. Tuple versions are appended to a
page of their relation. When it is filled completely or has reached a certain threshold it is
appended to the relation’s local append region.

• SIAS-G-(O/P): One append region for all pages. Tuples within a single page belong exactly
to one relation. Tuple versions get appended to a single page (analogously to SIAS-L)
which is then appended to a global append region. The global append region maintains
pages of all the relations of the MV-DBMS.

• SI-(GC): Default PostgreSQL in place storage management, with (-”GC”) and without
garbage collection.

Figure 6.3 depicts the evaluated storage manager variants.
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Page-Append Tuple-Append
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Figure 6.3: Evaluated Storage Manager Variants

6.4.1 Simulation.

The following evaluation of the different LbSM alternatives (depicted in Figure 6.3) is based
upon a trace driven simulation. Simulation is chosen for the following reasons:

• (a) Ability to focus on the main characteristics of the multi versioning algorithms (i.e. ex-
clude influences of the transaction-, storage- and buffer-manager as well as PostgreSQL’s
specific overhead). By setting probing points accordingly within the transaction- and
buffer-manager, we eliminate their influence and are able to simulate the raw I/O of
heap-data (non-index data) tuples. RAW access to the storage device is used to shield
the evaluation from the influence of a filesystem.

• (b) Ability to compare a number of LbSM and SIAS alternatives with the same workload
(trace).
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• (c) Investigating the maximum performance benefit of each approach.

The simulation (Fig. 6.4) comprises the following steps:

• (i) Recording of the raw-trace;

• (ii-a) Simulation of SIAS and SI resulting in I/O traces;

• (ii-b) Remapping of the traces, creating the appropriate I/O workload requests as I/O
traces;

• (iii) I/O trace execution on a physical SSD (Intel X25-E SLC) using FIO;

• (iv) Validation using our SIAS-Vectors & SIAS-Chains prototypes installed on the same
hardware [33].

Fedora Linux 

Systemtap

PostgreSQL

DBT2 – TPC-C

Raw 

Traces

Simulator

SIAS

SI

FIO

SIAS Trace

SI Trace

SSD

Executor

Transaction 

Manager

Buffer 

Manager

Storage 

Manager

Trace Recording I/O BehaviorSimulation

Append

Figure 6.4: Simulation Process. First the trace is recorded using a standard PostgreSQL imple-
mentation with probing points set by systemtap. Second the simulator creates I/O
traces as they would result in the implementation. Third the I/O traces are fed to the
FIO benchmarking tool.

SI and SIAS are simulated based on the raw trace including visibility checks and the resulting
storage accesses. During the simulation in step (ii-a) and (ii-b) the DB state is recreated accord-
ing to the respective approach (Figure 6.3). The simulated databases always contain exactly
the same tuples as the original DB, with the only difference of the permutation of the tuple
versions’ location. Tuple versions reside on different pages within the simulated DB, according
to the corresponding approach. The SIAS approach algorithmically generates a local append
and corresponds to the SIAS-L variant. The simulation of SIAS-L gives the maximum benefit of
the SIAS approach as described in Section 4.3.

In order to simulate SIAS-G, an additional mapping is performed - analogously to the page
LbSM approaches. This is an implementation choice, since SIAS is already based on local regions
which allow us to utilize page number offsets for each relation. Although this is only necessary
for the creation of the block-level traces during the simulation, this obviously needs to maintain
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a (global) page mapping similar to the page LbSM approaches. Nonetheless the overhead of
this page mapping is less exhaustive since the amount of appended pages is smaller due to the
tuple append granularity.

The output of the simulator are block-level traces in the format used in FIO to generate I/O
workload patterns. These reflect the I/O access pattern that a MV-DMBS, which uses the cor-
responding storage manager, would execute against the storage. Finally, the block-level traces
are executed on a real SSD using FIO, which allows us to precisely investigate the influence
of I/O parallelism and raw access (without a file system). The FIO I/O benchmark guarantees
controlled trace execution, repeatable results, configurable I/O parallelism and reliable met-
rics. FIO was configured using the libaio library accessing an Intel X25-E 64GB SSD via direct
I/O as a raw device. The raw device had no file-system layer in between. To avoid SSD state
dependencies a series of 8KB random writes is executed after each run of a trace.

The simulation workload is created by the DBT2 TPC-C implementation. We record each
operation on a tuple version and trace the visibility decision for that version. The resulting
raw-trace is fed to the simulator.

6.4.2 Validation

The simulator was validated against the SIAS-Vectors and SIAS-Chains implementation using
TPC-C conform [113] workload. The simulation as well as the SIAS implementation(s) deliver
comparable I/O patterns, reported and demonstrated with SIAS-Vectors in our own work [33].

The write patterns generated by our simulation and the SIAS prototypes are congruent. Figure
6.5 depicts the blocktrace of the SIAS-Chains implementation run on USB, benchmarked by a
TPC-C testrun with 12 warehouses and 2 hours runtime. Since the amount of warehouses is
limited, most read pages are already cached, yet the write access pattern is forced to the USB
stick (described in detail in Section 4.3). This shows the read and write pattern of the simulated
SIAS-LO approach. Figure 6.6 depicts the blocktrace of the SIAS-Chains implementation, bench-
marked on SSD by a TPC-C testrun with 100 warehouses and 300 seconds runtime. Figure 6.7
shows the blocktrace of the SIAS-Vectors write pattern on SSD with active garbage collection
and the SI write pattern for comparison.

The read pattern shows the random access caused by index accesses. The write pattern illus-
trates the append as a thin swimlane. This corresponds to the simulated SIAS-LO read access
pattern discussed later in this Chapter (Section 6.5, Figure 6.21).

The performance is comparable with both approaches. The write reduction slightly differs
in favor of the simulation, since the threshold until a new page is appended is set to a time-
limit (piggybacked with checkpoint segments) - the write patterns of the prototype show an
interrupted line. Performance of the SIAS prototypes is discussed in Section 4.3.

In terms of I/O behavior and I/O parallelism both (prototype and simulation) achieve:

• (i) compareable performance;

• (ii) congruent write patterns; and

• (iii) comparable net/gross write overhead reduction.
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Figure 6.5: Blocktrace: SIAS-Chains on USB - TPC-C - 12 warehouses - 2 hours runtime.

Figure 6.6: Blocktrace: SIAS-Chains on SSD - TPC-C - 100 warehouses - 300sec runtime

Instrumentation.

A default, out of the box PostgreSQL was used to record the raw trace. It was instrumented
utilizing TPC-C [113] (DBT2 v0.41 [22]) with the PostgreSQL default page size of 8KB. All
physical appends were conducted using this block size. The used Fedora Linux (kernel 2.6.41)
included the systemtap extension (translator 1.6; driver 0.152). In order to visualize the I/O
patterns the blocktrace of each FIO execution is recorded.

Load Characterization.

The open source DBT2 benchmark v0.41 [22] is used to generate TPC-C conform workload
[113]. DBT2 is instrumented to create two traces, both with 10 clients per warehouse and a
total of 200 warehouses. Trace I with a runtime of 60 minutes and Trace II with a runtime of
90 minutes. Based on these two traces we also investigate the impact on space management,
chain length etc. The TPC-C testruns for the prototypes are instrumented to show certain effects
and characteristic I/O patterns more clearly. The recorded trace in Figure 6.5 is instrumented
with only 12 warehouses but a runtime of two hours and serves as an example of the append
operation. It allows to adequately investigate the append write I/O pattern, local region append
is clearly visible as swimlanes in the simulated approach (also depicted later in Figure 6.20).
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The blocktrace of the SIAS-Chains prototype, as depicted in Figure 6.6, is instrumented with
100 warehouses and a short runtime of 300 seconds to firstly emphasize the random read pat-
tern caused by point queries over an index and secondly to depict the amount of appends form-
ing a swimmlane.

Raw-Trace.

The raw trace is recorded with the systemtap extension and contains:

• (i) tuple versions and the operations executed on them;

• (ii) the visibility decision for each tuple version;

• (iii) the mapping of tuple versions to pages.

This information is sufficient to simulate the storage manager approaches.

Figure 6.7: Blocktrace on SSD: SI vs. SIAS (SIAS-LO). The SIAS-LO blktrace is recorded using the
SIAS-Vectors implementation (Section 4.4).

6.4.3 Results

I/O Performance and Parallelism. Parallelism is examined by instrumenting FIO with different
queue depths (QD) ranging from QD=1 (no parallelism) to QD=32 (maximum queue depth of
the Intel X25-E 64GB SSD). We measure the IOPS and runtime of each of the storage manager
approaches on both traces.
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The IOPS of Trace I are depicted in Figure 6.8 and Figure 6.9. The runtime of Trace I is
illustrated in Figure 6.10 and 6.11. The IOPS of Trace II are depicted in Figure 6.12 and
the runtime in Figure 6.13. The I/O pattern (seeks, throughput, access distribution) for the
maximum QD=32 is depicted as a blocktrace in Figure 6.20 and 6.21.

Figure 6.8 illustrates the differences between SIAS and SI-P in both global and local implemen-
tation variants. It is clearly visible that SIAS achieves much higher IOPS compared to the SI-P
approaches (global and local). Figure 6.9 additionally displays the in-place update approach of
SI, which is slower than all other approaches.

• The results show that the in-place storage management approaches show the lowest per-
formance for both traces, independent of the state of the garbage collection (SI and SI-GC).
Parallelism is not leveraged.

The read IOPS of SI-GC (active garbage collection) are the lowest, visible throughout Fig-
ures 6.8, 6.9, 6.12 and 6.10.

• Increasing parallelism (QD) emphasizes the performance deficit of the in-place and the
LbSM approaches. The in-place approaches can improve up to a QD of two (parallel I/O
requests), and stagnate at a QD of four. These approaches do not benefit from higher
parallelism.

• Page LbSM and Tuple LbSM scale with a higher QD. Both approaches benefit from higher
parallelism.

• The runtime of SI-V and SI-NV is significantly higher (Figure 6.11 and 6.13 ). SI-GC takes
more than twice the time to complete the workload, compared to SIAS-L.

On maximum parallelism (QD=32) the page-append LbSM approaches SI-PG and SI-PL
are up to 73% faster than the in-place update approaches SI and SI-GC.

Without parallelism (QD=1), the I/O rate of the tuple-append LbSM is approx. 34% higher
than in SI-GC and 23% higher than SI. SI is approx. 8% faster than SI-GC. On active
garbage collection (GC) SI-PL-GC is 13% faster than the in-place updates approaches and
yields up to 25% higher read IOPS than SI if GC is deactivated.

• Tuple LbSMs exhibit higher I/O performance and a lower runtime than page LbSMs. The
I/O performance is illustrated by the graphs in Figure 6.8, 6.9 and 6.12. The graphs indi-
cate that the tuple LbSMs increases steeper than the page LbSMs. The runtime is illustrated
in Figures 6.10, 6.11 and 6.13, showing an asymptotic trend towards the runtime.

The runtime of the page LbSM approaches is twice the runtime of tuple LbSM for Trace I
(Figure 6.10 ) and Trace I (Figure 6.11 and 6.13).

• SI-PG and SI-PL show almost equal performance, yet SI-PL is marginally slower than SI-PG
(Figure 6.9 and Figure 6.10 ).

SI-PL writes at multiple locations, this requires more write streams (one per each relation)
than SI-PG. This is illustrated with a blocktrace in Figure 6.14. The corresponding read
blocktrace is depicted in Figure 6.15. The Figure depicts the seek count which shows the
effect of multiple write streams (higher amount of seeks).

The append-region for reads/writes of each relation is depicted as a straight, slightly in-
creasing line. With increasing parallelism LbSM approaches using local append regions
have the advantage over one global append region.
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• Global and local variants of tuple LbSM (SIAS) perform equally well at low levels of paral-
lelism. With increasing parallelism the local approach is approx. 5% faster than the global
approach. Figures 6.16 and 6.17 depict the resulting write pattern.

• The performance of the tuple LbSM approach (SIAS) scales linearly with increasing par-
allelism and benefits from a high queue depth. Runtimes are asymptotically reduced with
increasing parallelism. Pessimistic and optimistic SIAS show equal performance, indicat-
ing that additional fetches of the datastructures do not significantly impact performance
(neither negative nor positive).

Garbage Collection.

• Active garbage collection (GC) negatively impacts the performance of all approaches. This
trend is intensified by a higher degree of parallelism.

On regarding the IOPS in Figures 6.8, 6.9 and 6.12 it can be observed that GC creates
significant overhead when using page LbSM. Starting with a queue depth of four, page
LbSM approaches loose up to 35% IOPS on activated GC.

• Traditional GC mechanisms are not beneficial for page-append LbSMs, since they prune
(remove) single tuples and therefore create physical page updates that have to be remapped
by the LbSM. Page LbSM with active GC (SI-PG-GC and SI-PL) benefit from higher queue
depths but not as much as the variants with deactivated GC.

• Page LbSM approaches with deactivated GC (SI-PG and SI-PL) scale up to the maximum
queue depth and experience stagnation on queue depths larger than four (IOPS in Figure
6.8 and 6.12).

• On Trace I, SIAS (all variants) is up to three times faster than SI-V, 2.43x faster than page
LbSM with activated GC (SI-PL-GC/SI-PG-GC) and approx. 40% faster than page LbSM
without GC (SI-PG/SI-PL).

• The performance difference between tuple LbSM (SIAS) using either global or local append
regions is marginal and in favor of the local variant, it is therefore not justified to maintain
an additional page mapping, as it is necessary for the global variant (SIAS-G).

The I/O rate correlates with the runtime of the traces and the tendencies observed in this
Section are confirmed by both traces (Trace II shows comparable results to Trace I).

• SI-PL and SI-PG show almost identical runtime behavior as well as SI-PL-GC and SI-PG-GC
(Figure 6.11). SIAS is faster than the other approaches (all implementations).
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Figure 6.8: I/O Parallelism: Read IOPS vs. Queue Depth for Trace I. Tuple vs. page append:
differences between SIAS and SI-P in both global and local implementation variants.
SIAS achieves much higher IOPS compared to the SI-P approaches (global and local).
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Figure 6.9: I/O Parallelism: Read IOPS vs. Queue Depth for Trace I. Tuple vs. page append and
the in-place approach. SIAS achieves much higher IOPS compared to the SI-P and SI
approaches.
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Figure 6.10: I/O Parallelism: Runtime vs. Queue Depth for Trace I. Tuple vs. page append. All
approaches need less runtime with increasing amount of queue depth. SIAS needs
less runtime than the other approaches.
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Write MB - Total Amount Figure 6.11: I/O Parallelism: Runtime vs. Queue Depth for Trace I. Tuple vs. page append and
the in-place approach. All approaches need less runtime with increasing amount
of queue depth. SIAS needs less runtime than the other approaches. Traditional
in-place approaches need a higher runtime.
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Figure 6.12: I/O Parallelism: Read IOPS vs. Queue Depth for Trace II. Tuple vs. page append.
SIAS achieves much higher IOPS compared to the other approaches. Global page
append with active GC achieves the lowest IOPS.
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Write MB - Total Amount Figure 6.13: I/O Parallelism: Runtime vs. Queue Depth for Trace II. Tuple vs. page append. SIAS
needs less runtime compared to the other approaches.
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Read/Write Overhead.

• In-Place update approaches as well as the page LbSM have the same amount of writes,
since the page mapping is performed outside the MV-DBMS. With deactivated GC these
approaches (SI-PG, SI-PL and SI) write 966MB in Trace I and 1396MB in Trace II. With
activated GC the write overhead increases. The approaches (SI-PG-GC, SI-PL-GC and SI-
GC) write 1304.6MB in Trace I and 1975.3 in Trace II, respectively.

This is caused by remappings and relocations of pages issued by the GC.

• Write amplification is significantly reduced by the tuple LbSM approach (SIAS) as com-
pared to the in-place and page LbSM approaches. Figure 6.18 illustrates the write pattern
resulting from in-place storage management and Figure 6.18 that of SIAS with local ap-
pend regions. The in-place approach obviously writes random updates to single pages,
leading to a scattered write pattern. In SIAS each relation has one append position to
which new pages are appended.

• A key feature of the SIAS tuple LbSM is the significant write reduction. SIAS page LbSM
writes (in all variants) 25MB in Trace I and 39.9MB in Trace II. The amount of writes is
equal in all SIAS variants - only new tuple versions (inserted and updated) have to be
written. There is no distinction in the amount of issued write requests when appending to
local regions or a single global region.

Compared to Trace I SIAS writes 37x less with deactivated GC and 52x less with activated
GC. On Trace II SIAS writes 34x less with deactivated GC and 49x less with activated GC.

The write overhead is reduced to a fragment of the usual amount, which is a direct con-
sequence of the out-of-place invalidation, logical tuple appends and full filling of pages.
The amount is also depending on the chosen threshold. In this simulation the threshold
is defined by the capacity of each page, hence pages are filled to their full capacity. This
effect can be observed in the implementation of the SIAS approach, where we also discuss
using two differently timed thresholds (Section 4.5.5).

It is beneficial to chose the threshold that way since a page, once appended is not allowed
to be overwritten. Keeping free-space in appended (and immutable) pages is clearly a
waste of storage space, since it is rendered unusable.

• Traditional GC is unnecessary for tuple LbSM. In traditional GC of MV-DBMS space is freed
by the deletion of dead tuple versions. The deletion entails an update to the already
appended page where the page has to be relocated. In addition the free space can’t be
utilized unless the page is updated (and relocated) again.

GC for tuple LbSM is discussed in Section 4.6.

• SIAS avoids metadata updates. The metadata update to invalidate a tuple version in SI
leads to an update of the page in which this version resides, although the data-load of that
version is unchanged. SIAS only needs to append the new version.
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Figure 6.14: Write blocktrace on physical device: SI-PL vs. SI-PG. SI-PG forms one single sequential
access, hence not seeks.

Figure 6.15: Read blocktrace on physical device: SI-PL vs. SI-PG
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Figure 6.16: Page LbSM: one global append region for all relations. No seeks, since all access is
on consecutive block addresses.

Figure 6.17: Page LbSM: Local append regions. Each append region forms a swimlane.
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Figure 6.18: Write Pattern: In-place storage management . Write access is scattered on the
whole disk. Pages are updated in-place. Large amount of seeks.

Figure 6.19: Write Pattern: SIAS tuple LbSM with local append regions. Pages are appended
forming swimlanes. Low amount of seeks.
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Figure 6.20: I/O Blocktrace on Intel X25E SLC SSD: SI-GC vs. SIAS-LO. SI-GC requires to write more
gross data than SIAS-LO. SI-GC issues a large amount of in-place updates. SIAS-LO
appends data to each local append region. SIAS completes the trace much faster.

Figure 6.21: I/O Blocktrace on Intel X25E SLC SSD: SI-GC vs. SIAS-LO. SI-GC requires to read more
gross data than SIAS-LO. SIAS completes the trace much faster than SI.
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6.5 Read Optimizations

This Section discusses an approach to ordered log storage as a read optimization for page/tuple
LbSM on Flash, based on our own work published in [38].

Multi-versioning complicates search, both for point and range queries, and modification han-
dling. Search performance is impaired by multi-versioning, since I/O intensive version visibility
checks are required for every result set item that matches a search criterion. Modification perfor-
mance is impaired since OLTP transactions produce a constant stream of new versions (updates
and inserts) that result in heavy insert load. Version maintenance overhead such as invalidation
of updated versions and removal of invisible versions (garbage collection) causes additional
load.

Append storage is a write optimization for Flash storage. The basic principles of ordered log
storage are:

• i) Enlargement of the portion in the cache that is reserved for each physical append oper-
ation and postpone the append until the portion is densely packed with data;

• ii) Order the data within each portion according to a sorting criterion.

The first principle increases the cache requirement and influences the cache hitrate. Tuples
within a portion have recently been inserted and therefore contain fresh data. Since most buffer
managers of modern MV-DBMS follow the no-force policy and instrument the recovery manager
accordingly (e.g. by using write ahead logging), the durability of the data is not affected.

Optimization: Sorted Runs
The second principle defines the application of a sorting criterion. Each portion represents

a sorted run and is comprised of multiple pages. The append operation for sorted runs creates
an I/O write pattern that is comprised of small sequential writes that are beneficial for Flash
storage. Since in page LbSM the data within a page is unknown, the sorting criteria can be
made upon the meta-data of each page. In tuple LbSM information about each tuple version is
available and the sorting criterion can be more fine granular, e.g. within a sorted run the tuple
versions can be sorted by attribute values. Within a sorted run, comprised of multiple pages,
multiple tuple versions can be sorted beyond page boundaries. Hence sorted runs contribute to
significant table scan speedups.

On subsequent read accesses a sorted run can be read sequentially and the sorting criteria can
be leveraged.

The expected benefits of ordered LbSM are:

• Read efficiency due to the use of parallel reader streams;

• Write efficiency since appending in sorted runs creates small sequential writes;

• Faster garbage collection: read multiple sorted runs, filter dead tuples and create one
combined sorted run (merge sort).

Optimization: Index Snippets
Index snippets aim at the reduction of tuple version visibility checks, filtering tuple versions

which are guaranteed to be invisible to an accessing transaction. Traditional indexing ap-
proaches in MV-DBMS are unaware of the versioning scheme underneath and do not store
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versioning related information, they check the visibility of a tuple version after it has been
fetched. The index snippets augment an existing index with versioning information, without
changing the index itself. A property of the LbSM is leveraged: Tuple versions within an ap-
pended unit correlate according to their creation times. The index snippet augments existing
indexing techniques with versioning information about the set of the tuple versions which are
contained within the corresponding appended unit, e.g. a single page or a sorted run. The
following expected benefits of an index snippet extension are discussed in this Section.

• Visibility Checks on the index level and pre-filtering of invalid/invisible tuple versions, thus
reducing unnecessary fetches of pages;

• Postponing of index reorganizations that are caused by versioning (version management);

• Avoidance of invalid tuple bits in the index (index in-place updates);

• Fast identification of dead tuple versions that can be garbage collected.

Both optimizations, the index snippets and the sorted runs, alone aim to accelerate opera-
tions along the respective access paths. The combination of both optimizations facilitates index
searches on sorted runs. Multi-version indexing in combination with LbSM gains importance,
since Append Storage Management inherently disables clustering, thus rendering many read-
optimisations ineffective.

6.5.1 Index-Snippet.

Traditional indexing schemes, as inherited by single-version DBMS (SV-DBMS), are capable of
returning an immediate answer to an index search, comprised of a set of tuples, a single tuple
or nothing. In MV-DBMS tuple versions returned by an index search have to be checked for
visibility to the transaction that executes the lookup.

In classic MV-DBMS approaches using SI the visibility is checked by accessing the tuple version
itself - which, if it is not already cached in main memory, has to be fetched using a disk access.
If the indexed tuple version is not visible to the transaction, the page was needlessly fetched.

Example: under SI a transaction Tx is allowed to see the latest version of a Kv committed
before Tx begin (tuple K in version v); if a newer transaction Tx+1 committed a newer version
Kv+1 after the start of Tx than the MV-DBMS visibility criteria will allow only Kv to be returned
to Tx . Traditional index structures contain both tuple versions. If both tuple versions match the
search criteria of Tx , both are returned and subsequently have to be filtered. In other words,
there might exist tuple versions that match the search criteria but not the visibility criteria,
hence a query may take longer to finish.

Definition: An index snippet is a small page-specific part of the index, stored in-memory for
every immutable data page that has been appended by the LbSM.

Its structure is as follows (Figure 6.22) :

• A bitmap vector that indicates for each tuple version within the corresponding page whether
it has a committed successor or not.

• A logical timestamp TP_max that stores the commit time of the newest committed tuple
version(s) in that page.

115



All tuple versions within the page, that have a non-zero entry within the corresponding bitmap
vector, have a committed successor in the database, this means tuple versions that are indicated
by the bitmap vector have been successfully updated.

If only one tuple version is indicated TP_max stores the timestamp on which the update was
committed (not the creating transaction’s timestamp).

Therefore, TP_max abstracts from different transactions and records the most recent update
to a tuple version in the page. Transactions that have a begin timestamp greater than TP_max
are not allowed to access any of the indicated tuple versions. Those transactions have to access
a newer (younger) committed tuple version of the data item, which does not have to be the
immediate successor of the tuple version.

Transactions yielding a start timestamp smaller than TP_max must check each version within
the page individually, independently of the snippet’s indication. This is necessary since TP_max
only stores the commit timestamp of the last update.

Therefore the visibility check routines are able to decide some, but not all, checks using the
index snippet only.

Yet this facilitates lazy update procedures for other, larger index structures, postponing the
deletion of updated versions. Assume an index that stores the location(s) of multiple tuple
versions of a single data item - transactions are capable to decide on the visibility without
needing to fetch each tuple version from the physical storage. Updated/outdated versions can
be left within the index until a certain maintenance operation (garbage collection) is executed,
hence post-poning index update operations.

The index snippet speeds up sequential scans on the whole relation that, in case of SIAS, do
not use the scan variant of accessing the SIAS-Chains mapping structure first (Section 5.1.2). In
general the index snippet improves access methods and paths that access a tuple version first
(in comparison to SIAS-Chains that accesses the data item first by using the VID).

Note: In SIAS-Chains this functionality is improved since VIDs (data item identification) in-
stead of TIDs (tuple version identification) are stored in the index.

The implementation of SIAS-Vectors (Section 4.4) implements two bitmap vectors that entail
functionality close to that of the snippet. The difference of the implementaion in SIAS-Vectors
is the missing timestamp TP_max and the semantics of the set/unset bits in both vectors. The
combination of both vectors in SIAS-Vectors allows to filter dead tuples, that follow a much
stricter criterion than tuple versions that are invisible. A tuple version may be visible to some
transactions and invisible to others, hence it is not dead yet. Only if the tuple version is invisible
to all running transactions it becomes a dead tuple version.

The traditional approach (see Figure 6.22) follows an (arbitrary) index structure directly to
the indicated tuple version, resulting in an access to the page and subsequently the visibil-
ity check of that tuple version. The snippet improves on the traditional approach by filtering
invisible tuple versions:

• first, a transaction follows the index to the row-id of the tuple version;

• second, it uses that row-id to check the bitmap snippet and TP_max timestamp, both held
in memory; either the transaction answers the query immediately returning false or;

• third, it fetches the tuple version and executes the visibility check, using the tuple version’s
attributes.
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Figure 6.22: Index Snippet. Each index snippet stores invalidation information about tuple ver-
sions of a single page in the relation. T Pmax serves as the boundary for accessing
transactions. If a transaction yields a timestamp higher than T Pmax it is not allowed
to access all tuple versions that are indicated by the snippet with a non-zero value .

Filtering property.

The snippet filters invisible tuple versions. It can’t be guaranteed that a tuple version is visible
to an accessing transaction if it was not filtered. If a tuple version was not filtered it has to
be checked for visibility afterwards, even if the bit within the snippet is set. Tuple versions
contained in a page can be updated by different transactions which commit at individual points
in time, where TP_max records the commit time of the most recently updated version. If the bit
is set and TP_max is greater than the accessing transaction’s timestamp, the tuple version may
be invisible if TP_max was updated by a transaction that updated a different tuple version and
committed.

A “false invisible” implies that a tuple version is rejected during the visibility check although it
is visible. It is impossible that such a version can exist. Since the TP_max timestamp is valid for
a committed transaction that updated a tuple in the corresponding page, another transaction
that started after that moment in time has to read the newer tuple version. All versions within
the page are at least as old as indicated by the TP_max timestamp. All indicated tuple versions
have a committed successor ’somewhere’ in the database system. If the checking transaction
yields a begin timestamp greater than TP_max it is allowed to discard all tuples in the page that
have a non-zero entry in the corresponding snippet.

Snippet Evaluation.

The snippet is evaluated in the SIAS-Vectors approach (Section 4.4) using the more strict crite-
rion of dead tuples. It is not explicitly implemented in the SIAS-Chains approach, since SIAS-
Chains is capable of identifying data items rather than versions, hence the issue of multiple
versions of the same data item in an index does not occur. Most of the benefits are piggybacked
by the SIAS-Chains datastructures, including the dead tuple optimization of SIAS-Vectors. Hence
the effects of the snippet are included in the evaluation of SIAS-Chains.

117



6.5.2 Ordered/Unordered Append Log.

Append/log based storage managers (LbSM) address the problem of slow random writes (small
in-place updates) on Flash memories (Section 6.1, also reported in [35]). They eliminate ran-
dom writes, since each write operation is executed physically as an append.

LbSM obviously destroys the holistic clustering of an entire relation, since an order is not
maintained. Asymmetric Flash storage is faster on random reads than on random writes (sus-
tained workload) and the in-place update problem renders a holistic clustering not feasible.

The concept of the ordered LbSM is to postpone the flush (physical append) operation of
a set of pages and to sort the pages or the contained tuples according to an arbitrary, pre-
defined criterion. The sorting can be defined during table creation time. This creates sorted runs
analogously to the sorted runs generated by the external merge sort algorithm. It is especially
beneficial on Flash, since multiple parallel write and read streams can be used (local append -
Section 6.3) .

A prerequisite for building sorted runs is the ability to delay flushing dirty pages out of the
database buffer. This operation is facilitated by the no-force policy in modern (MV-)DBMS. The
database log and the application of WAL guarantees that no data is lost in the case of a system
failure. A combination with group commit can be utilised to maximise the length of sorted runs.

The expected benefits are:

• (i) read efficiency due to leverage of parallel reader streams;

• (ii) write efficiency since larger amounts of data are appended sequentially;

• (iii) fast garbage collection: read multiple sorted runs, filter dead tuples and write a single
combined sorted run;

• (iv) smaller mapping table since offsets and inherent compression can be used;

• (v) read optimization, since multiple sorted runs can be read in parallel by the Flash tech-
nology;

• (vi) range values reduce can be used to index sorted runs.

Figure 6.23 illustrates the different approaches of ordered LbSM.
Traditional page LbSM is implemented outside the DBMS [109] - Page Append A in Figure

6.23. It receives pages that are identified by the layers above using a logical page number, or
page ID (such layers assume it to be the physical page number). Subsequently the pages are
appended to the physical storage media. During that progress the logical database pages are
mapped to physical pages (logical block address - LBA - to physical block address - PBA) using
a mapping table to facilitate the append behavior. Pages are not ordered by the LbSM, hence
pages are appended in arbitrary order (as received by the DBMS).

The ordered page LbSM is depicted in subfigures 6.23.B1 and 6.23.B2. A set of dirty pages
is buffered up to a threshold and appended in the logical order as given by the DBMS. The
difference between B1 and B2 is the threshold. The size of the sorted run depends on the size
of the buffer which is defined by a threshold. In B1 the threshold amounts to four pages and in
B2 it amount to two pages, thus influencing the sorting.

Ordered page LbSM is unaware of the contents of the page, hence an ordering within single
pages has to be managed by the DBMS, which limits the ordering on the granularity (and
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Figure 6.23: Storage management variants. Tuples {X,A,B,Z,K} are stored. In place update man-
agers update each page in place. Page Append A appends each page in the order
of the arrival at the storage manager. Ordered page append B1 and B2 append a
threshold defined group of pages and orders them. Ordered tuple append C1 and
C2 append tuple versions to a threshold defined amount of buffered pages and
orders the tuple versions within that threshold.

properties) of each individual page (no sorting of tuple versions spanning the boundaries of
one page).

Ordered tuple LbSM append tuples and write in granularities of pages. They enable sorted
runs that contain sorted tuples, spanning page boundaries (Figure 6.23.C1 and Figure 6.23.C2).
Again a threshold defines the size and the sorting range of a single sorted run.

Figure 6.23.A shows that each page is mapped to a consecutive position on the storage media.
Writes are performed in page granularity. For the ordered approaches we use a threshold that
defines the least amount of pages to be buffered before a physical write operation is issued. For
the ordered page LbSM approaches (Figure 6.23.B1 and Figure 6.23.B2) this defines the amount
of pages, whereas for the ordered tuple LbSM approaches (Figure 6.23.C1 and Figure 6.23.C2)
this defines the amount of individual tuples (circles in Figure 6.23) to be buffered before a
write is issued. These changes do not interfere with the write ahead logging mechanism of the
MV-DBMS and transactional properties such as recovery are not affected.

LbSM approaches that are based on the granularity of pages (traditional LbSM approach) have
no information about the page contents, hence the sorting can only be based on logical page
numbers. This means that a sorting of tuple versions cannot span multiple pages. Since the
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Table 6.1: Comparison: ordered page LbSM and ordered tuple LbSM
Ordered Page LbSM Ordered Tuple LbSM
append granularity: page append granularity: tuple version
implemented outside the MV-DBMS integrated into the MV-DBMS
sorting on page properties sorting on tuple version properties/attributes
sorting can’t span pages sorting spans entire sorted run
same amount of writes as in-place approaches reduces write-rate (gross amount)
seperate mapping outside the MV-DBMS mapping inherently contained in MV-DBMS

traditional approach is located outside the DBMS [109], the only sorting criterion is the logical
page identification number. A sorted run in this configuration creates a series of consecutive
pages, where each logically mapped page receives a physical location according to its individual
page identifier. Other pages contained in the sorted run with smaller logical page-ids receive a
physical position before, and such with logical page-ids higher receive a physical position after
the page’s position.

LbSM approaches that are based on tuple versions (SIAS in [35]) enable sorted runs that
span multiple pages. Tuples can be sorted within individual pages and beyond page boundaries.
Tuple versions within a single sorted run, comprised of multiple pages, are sorted according
to an arbitrary sorting criterion (e.g. value of an attribute). Therefore each sorted run also
represents a sorted partition of recently inserted or updated tuples. This co-locates ’fresh’ data.

Table 6.1 sums up some important properties and differences of ordered tuple LbSM and
ordered page LbSM. In comparison to page append granularity, tuple append significantly lowers
the amount of writes, hence reducing the write rate. This is caused by the updates of single tuple
versions, since traditional MV-DBMS implement in-place invalidation and follow the paradigm
of addressing tuple versions instead of data items. When a tuple version is updated it has to be
stamped as invalid which results in the re-write of a whole page. This is avoided by SIAS since
the invalidation of the old version is omitted (Section 4.3). The new tuple version is appended
at the head of the log and pages are written when they are completely filled - instead of writing
up to two pages, one tuple version is appended (as demonstrated in [33, 103]).

Sorted runs - Evaluation.

The approaches are approximated with experiments contained in this Section. For validation
the SIAS approach is also included in these experiments. The SIAS approach (Section 4.3)
gives practical evaluation results for tuple LbSM that append on local regions using the DBT2
TPC-C benchmarking tool. All experiments are conducted on a physical Intel X25-E SSD by
instrumenting the FIO benchmarking tool. We execute different access patterns depending on
the specific LbSM algorithm processing the same workload. These experiments abstract from
version visibility with the intention of solely identifying the influence of the I/O patterns. Hence
all experiments exclude the effects of version visibility checks. Since the ordered append storage
is a read optimization, we choose a full table scan of a single relation with the size of 5GB as
the assumed workload. The resulting physical access patterns are recorded using tools such as
blktrace, iowatcher [51] and seekwatcher [102] to visualize the access patterns.
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Unordered Append Storage.

The page append storage manager outside the DBMS receives flushed pages from the DBMS.
With respect to the algorithmics of a traditional LbSM outside the DBMS [109], a physical
order equal to the DBMS’ logical page order cannot be recreated. This is due to the required
remapping caused by the append operation. Therefore a sequential read access is transformed
into multiple random read accesses.

The tuple append storage manager, integrated in the MV-DBMS, is capable of identifying a
sequential scan. The SIAS approach, as described in Section 4.3, implements such an unordered
tuple LbSM. Instead of semi sequential reads, this approach creates a random read access pat-
tern. Therefore this evaluation also executes random reads beneath the sequential access for
comparability. Section 6.1 and Section 4.3 show that the amount of written data is efficiently
reduced when using tuple append granularity (published in [35, 36, 33]), therefore the tuple
append storage manager tests are conducted with an amount of 1% additionally written data.

The page append LbSM as well as the tuple append LbSM both achieve a read throughput of
37MB/s, reading and writing in 8KB pages. As soon as the SIAS tuple append storage manager
uses a sequential scan instead of random reads to scan the relation, the performance increases
to approx. 123MB/s. The influence of the append at the end of the log has almost no effect on
the read throughput. The checking of tuple version visibility is omitted on these experiments
in order to focus on the storage management and the resulting I/O. The influence of version
visibility checks is conducted in Section 4.3.

Ordered Append Storage.

Approaches performing a sorting of tuples, are capable of identifying a sequential scan since
they are implemented inside the DBMS. Approaches implemented outside the DBMS such as
[109] have to use separate pattern recognition methods to detect certain access patterns. For
the ordered append the relation is split into sorted runs which can be read in parallel. FIO is
instrumented with multiple read streams to show this effect. The minimum size of a sorted run
is configured as 1MB, therefore the append uses the size of 1MB granularities. This also equals
the threshold in the MV-DBMS until pages are flushed. Each page within one 1MB sorted run
yields a pagesize of 8KB. Section 6.1 and Section 4.3 (also published in [35, 36, 33]) show that
page append outside the DBMS has to write more gross data than the tuple append approach
within the DBMS. That effect is evoked in this experiments by reducing the amount of written
data for the tuple append LbSM approach (10% relation size for page append and 1% relation
size for tuple append).

Configurations.

With the experiments we analyze the effect of the ordered append storage optimization. The
experiments are conducted on the following configurations on a single Intel X25-E SLC SSD. The
base data was defined by a 5GB relation, yielding a page/blocksize of 8KB. FIO benchmark is
instrumented accordingly to execute appends and read accesses at the same time. The workload
is defined as a single scan of the relation while appending 10% of the relation size for page
append and 1% of the relation size for tuple append.
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When the MV-DBMS issues a full table scan, the MV-DBMS is using a forward scan of the
relation, fetching the logical blocks with increasing logical blockaddresses (LBA). These I/O
requests are subsequently handled by the page append LbSM where each corresponding physical
blockaddress (PBA) ist fetched from the storage device. In order to expose the effect of that
remapping, the configurations use random reads where appropriate.

• Configuration 1 represents the traditional page LbSM, implemented outside the DBMS.
Random reads are executed and 10% of the relation size is appended (500MB), both in
8KB granularity, using a queue depth of one. Random reads were used to show the effect
of the remapping employed by the page append manager.

• Configuration 2 represents the tuple append LbSM. For comparability to configuration
1 we assumed a simple storage manager which has no knowledge about the executed
operation (scan), hence also performing random reads in 8KB (representing the internal
mapping in the DB). Simultaneously appends 1% of the relation size (50MB) is appended,
since the amount of written data is significantly reduced by such an approach [36, 35].

• Configuration 2b represents the tuple append LbSM which has knowledge about the exe-
cuted operation. It creates a remapping of pages but reads the relation performing sequen-
tial block I/O. This configuration yields the same parameters as configuration 2 but using
a single sequential read.

• Configuration 3 represents the ordered page LbSM. FIO is instrumented with different
read streams to show the effect of reading sorted runs of pages in parallel. Since each
sorted run has a size of 1MB the offset of each run is known which facilitates the parallel
request of multiple 1MB chunks. The size of each appended data portion was increased,
since pages have to be kept in cache for a longer time. The append builds sorted runs
where pages are sorted by their logical block number.

• Configuration 4 represents the ordered tuple append. FIO is instrumented to read sorted
runs of tuples and pages. The append is conducted in the granularity of 1MB units. Each
1MB unit is comprised of pages that have a page size of 8KB.

• Configuration 5 is equal to configuration 4 with the difference of a larger append unit of
2MB.

• Configurations 6 and 7 are equal to configurations 1 and 2 with the difference of exe-
cuting random reads with maximum I/O parallelism (queue depth of 32). This simulates
parallel index accesses. This implies that each storage manager has sufficient knowledge
about the given workload in order to request the necessary amount of pages.

Configuration 1 (Figure 6.24a) shows a high seek rate, since each read issues a random read
while appending new data. Such a pattern is a good match for the SSD, however on a mag-
netic disk this access pattern would lead to a dramatic performance decrease. The throughput
amounts to 37MB/sec on pure read load and increases to 45MB/sec when writing in parallel.

Configuration 2 (Figure 6.24b) is slightly faster than configuration 1 and finishes approx. 8
seconds earlier. The reduction of the appended data portion leads to this effect.

Configuration 2b (Figure 6.26a) shows the bulk read of the whole relation span. Seek rate is
high while writing at the same time. This benchmark is rather synthetic, yet an improvement
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of the bulk read can be observed (approximately 2.5 times). Parallelism is not leveraged by this
configuration, it shows the HDD optimized access pattern. Compared with configuration 3 this
shows the benefits of the tuple append integration into the DBMS.

Configuration 3 (Figure 6.25a) requires significantly less time to complete than the first three
configurations. This shows the advantage of the ordered page append over the unordered page/-
tuple append. No additional seeks are required since there is no mixture with reads. Even a
single sequential scan in configuration 2b is not faster than reading multiple sorted runs in
parallel, showing the benefit of leveraging the parallelism of the SSD.

A further improvement is given by the ordered tuple append in configuration 4 (Figure 6.25b).
The tuple append has to write in larger granularities and inherently creates sorted runs. Increas-
ing the size of the sorted run to 2MB has no significant further improvements on throughput or
time to finish, as configuration 5 (Figure 6.26b) shows.

Configurations 6 and 7 (Figures 6.27a and 6.27b) show the expected performance advantage.
These however requires a deeper integration of the LbSM into the (MV-)DBMS.

Ordering pages and the content of pages is beneficial for Flash devices such as SSDs. Even
with assumptions that favor the traditional approaches, the ordering shows promising results.

With more data skew, which is typical for OLTP systems, where approx. 80% of all accesses
only touch 20% of the data the ordered tuple LbSM further improves. We expect the optimiza-
tions to be more beneficial for such workload, because of the performed co-location of most
recently updated/inserted tuples. This effect has also been observed in our own work in [34].
As an example lets assume the orders relation in the benchmark suite DBT2/TPC-C [113, 22].
A sorted run can be configured to contain orders that have sorting attributes such as each order
ID, thus accelerating subsequent scans.
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(a) Unordered Page Append - Configuration 1

(b) Unordered Tuple Append - Configuation 2
Figure 6.24: Unordered Append - (a) appends in pages, writes a higher amount of gross data and

requires more time until the trace is completet. (b) appends in tuple granularity and
requires less time until the trace is completet. Both configurations are executed with
a queue depth of one.
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(a) Ordered Page Append - Configuration 3

(b) Ordered Tuple Append - Configuration 4

Figure 6.25: Ordered Append - (a) requires more time until the trace is completed since the page
append also has to write more data. (b) appends in tuple granularity, requires less
completion time and writes less data.
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(a) Ordered Page Append - Configuration 2b

(b) Ordered Tuple Append - Configuration 5

Figure 6.26: Ordered Append. (a) uses a single sequential read operation. Seeks are minimized.
This equals a HDD read optimization (single sequential scan). Parallelism of the Flash
storage is not used.
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(a) Unordered Page Append - Configuration 6

(b) Unordered Tuple Append - Configuration 7

Figure 6.27: Unordered Append - Queue Depth 32. Increasing the queue depth is benefitial for
Flash storage. Parallelism can be leveraged, throughput increases up to the Flash
SSDs maximum capabilities.
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Buffer Management is a central component of database systems and plays a critical role in
transaction management. From an architectural perspective, it addresses the task of minimizing
the substantial access gap in the latencies of main memory and symmetric disk storage.

Traditional buffer management strategies utilize temporal locality of page accesses to increase
the probability of locating the requested pages in the buffer (hit-rate) and to minimize expensive
disk accesses. Such strategies utilize two criteria to select victim pages to be evicted from the
buffer once new ones are requested: recency and frequency.

The primary criterion of traditional buffer management strategies is hit-rate maximization.
Over the last decade asymmetric storage technologies (Flash, Non-Volatile Memories) have
emerged with new characteristic properties (Chapter 2) that question the effectiveness and
efficiency of present design assumptions of buffer management algorithms. The asymmetric
property renders the cost of a page eviction several times higher than the cost of fetching a
page. Hence buffer management strategies for modern storage technologies have to address
write-awareness and spatial locality besides hitrate.

FBARC is designed to operate independently of SIAS. FBARC operates with in-place storage
management, requiring less invasive changes of the DBMS than the SIAS approach. SIAS as
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a whole compilation of architectural and algorithmic changes, addresses the crucial in-place
updates which are still issued by FBARC. In the following related buffer management strategies
are discussed and the Flash Based Adaptive Replacement Cache (FBARC) is described.

7.1 Related Buffer Management Approaches

7.1.1 CFLRU

CFLRU [87] is a very light weight extension of the traditional LRU algorithm. It prioritizes dirty
pages over clean pages by replacing clean pages at the LRU end of the LRU stack first (the so
called priority region). This behavior may be suboptimal with respect to the following reasons.
First, the priority region tends to fill up with dirty pages, and thus the constant eviction victim
selection runtime of LRU degrades to a linear run time based on the size of the priority region.
Second, it affects the hitrate substantially since clean pages are evicted as soon as they enter
the priority region, thus effectively lowering the cache size for clean pages. While the size of
the priority region can be dynamic it needs a tuning parameter for the cost of a write or, if the
priority region is static, it needs a well chosen size based on the workload and thus replacing
one tuning parameter with another.

7.1.2 CFDC

CFDC [83] improves upon CFLRU in two ways. It still divides the cache into a work region and a
priority region, but it further sub-divides the priority region into a clean and a dirty region. This
way it overcomes the search-for-clean-pages problem and allows for a constant search time. In
addition, CFDC clusters the dirty page priority region based on the spatial locality of the pages.
It still evicts clean pages first, but if there are none then the oldest page from the cluster with the
least priority will be evicted and the priority for this cluster is set to zero until it is completely
evicted. The priority is computed on every change of the priority region for all clusters and is
based on the temporal and spatial locality of the pages within the cluster. This causes CFDC to
be very computationally intensive.

7.1.3 FOR

The FOR [73] algorithm approaches the problem from a different perspective. It classifies pages
according to two operations: the last completed and the currently executing. Using the resulting
’interoperation distance’ it can recognize a hot page even if it was already evicted, and thus
can retain it longer when it is requested again. This approach requires that two data points
(last read and last write) are saved for every accessed page over its whole life. Additionally,
every operation has to be recorded, i.e. every pin and every dirty flagging has to change the
possibly very long operation list. To overcome these issues the authors introduce FOR+ which
tries to approximate the inter-operation distance based on the currently cached pages. This
approximation works by dividing the LRU stack into a hot and cold region and assigning page
weights based on region membership. However, as FOR/FOR+ are built on an LRU basis there
may be scan resistance issues. Furthermore, both FOR and FOR+ need carefully chosen cost
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estimation for reads and writes and FOR+ needs another tuning parameter for the size of its
cold page index.

7.1.4 DULO

The DULO [52] cache replacement algorithm tries to combine both the temporal and the spatial
locality on top of a LRU stack. It was designed for rotating disks and thus tries to reduce the
amount of random accesses in favor of sequential prefetches. It divides the LRU stack into three
parts: the working area at the MRU end which consists of single pages, the fixed size sequencing
bank and the sequential area at the LRU end which consists of sequential page sequences. The
sequencing bank is used to create sequences of pages that can be evicted at the same time and
can be read in later with the help of prefetching. To reduce the sequencing cost DULO uses the
CLOCK algorithm, which allows it to do the sequencing only when an eviction is needed instead
of doing it on every access that causes the LRU stack to change. At eviction time DULO then
evicts a complete sequence of pages from the LRU end. This works well on a system that uses
a lot of sequential read accesses, but as prefetching does not work for writes it is difficult to
achieve write awareness. On flash based storage DULO is not as efficient, as random reads are
not much slower than sequential reads.

7.1.5 BPLRU

BPLRU [62] is an embedded device cache level replacement algorithm. It works on a block level
and targets only the write buffer on a flash device assuming a log-block FTL [20]. As all its pages
are dirty and ready to be written at any time it doesn’t have to keep any “clean”-hitrates high.
As any hit on a page within a block moves the complete block to the MRU position this can lead
to a decreased hitrate as older pages are kept longer in the cache. As a protection against cache
flushing it uses a sequential write detection algorithm, which puts sequentially accessed blocks
directly to the LRU position. When a block has to be evicted BPLRU attempts to perform a switch
merge and pads the block if needed, which reduces the amount of the expensive full merges.
Another embedded replacement algorithm that relies on spatial locality and focuses on write
caches is WOW [32]. In contrast to BPLRU it was designed for hard disk storage controllers.
A cache at that point in the storage hierarchy is is non-volatile (battery backed) and limited
by the available resources, but also lacks the information of the current hardware state. WOW
unifies CScan – an elevator algorithm for spatial locality, with LRW, an LRU adaption for write
caches. The writes are ordered sequentially and grouped in fixed size write groups. This write
groups are then put on a ring in a CLOCK like manner and then are evicted in sequential order.
A write group can stay in the cache if it is marked as hot when the pointer passes it, but has to
be remarked as hot to continue staying in cache.
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7.2 Flash Based Adaptive Replacement Cache

This Section is based on our own work [29]. The Flash Based Adaptive Replacement Cache is
an extension of the adaptive replacement cache (ARC [77]). FBARC extends ARC by a write list
utilizing the spatial locality of evicted pages to produce semi-sequential write patterns.

FBARC is a special purpose, clustering buffer management algorithm, which partly uses page
state information. FBARC relies on ARC as a general purpose algorithm. It features a distinc-
tion between recency and frequency and can automatically adapt to workload changes. The
ARC [77] replacement policy operates with two lists, one that represents recency and one that
represents frequency. FBARC extends ARC by a write list utilizing the spatial locality of evicted
pages to produce semi-sequential write patterns. For this purpose FBARC adds an additional
list to host dirty pages grouping them into fixed regions (clusters), based on their disk location.
FBARC is designed to operate with in-place storage managers. In comparison to other buffer
management approaches (CFLRU [87], CFDC [83] CASA [82], FOR/FOR+ [73], [57]), FBARC:

• addresses write-efficiency and endurance of asymmetric storage;

• offers comparatively high hitrate;

• is computationally-efficient and uses static grid-based clustering of the page eviction list;

• adapts to workload changes;

• is scan-resistant - this property is inherited from ARC.

Since traditional storage technologies exhibit symmetric performance (i.e. reads are as fast
as writes, Figure 7.1), maximizing the hitrate thus minimizing disk accesses of whatever type
(read or write) is a sufficiently general, single design criterion.

The characteristics of asymmetric storage technologies have significant impact on the buffer
manager and influence the design goals for a buffer management strategy. In face of the shrink-
ing and operation dependent (read/write is asymmetric) access gap, with the FBARC approach
we claim that addressing I/O asymmetry should be considered as first-class criterion besides hi-
trate. The write-efficiency aspects of I/O asymmetry can be addressed by utilizing spatial locality
during the page eviction process.

Existing approaches rely on write region clustering, which may result in high computational
costs.

The design trade-off, therefore is to minimize eviction costs at the expense of memory con-
sumption with a moderate increase of computational intensity. A lower hitrate is acceptable
if the overall performance improves. This tradeoff is supported by present hardware trends of
increasing memory volumes and low read latencies.

Random write I/O performance and endurance issues make it important to perform sequential
or semi-sequential writes. Our initial experiments indicate that when a set of random write I/O
requests is concentrated on a relatively small region then they are performed nearly as fast as
sequential requests. This effect is also studied in [13]. This obviously lacks the write reduction
of the SIAS approach and introduces in-place updates, yet FBARC improves on existing buffer
management strategies. This observation affects the way spatial locality can be addressed,
especially the choice of the clustering algorithm (Section 7.2.1).

By static clustering the set of dirty pages, the pages for eviction can be subdivided into smaller
regions; even though those may not be optimally filled and may result in random writes, they
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Figure 7.1: Memory Hierarchy and Access Gap. Asymmetric storage technologies fill in the access
gap between symmetric storage, questioning the assumption of traditional buffer
managers that optimize for hitrate to minimize disk accesses of whatever type (read-
/write). The access gap shrinks with asymmetric storage technologies but becomes
operation dependent.

will be executed as sequential ones. Hence the desired tradeoff may be achieved at acceptable
computational costs.

In the following the FBARC algorithm is explained in more detail.

7.2.1 FBARC - Algorithm

FBARC is an extension of ARC which is explained first in the following paragraph. The organi-
zation of the buffer space is depicted in Figure 7.2.

ARC

ARC [77] organizes recently accessed pages in an LRU organized list L1; and frequently accessed
pages in another list L2. Both lists L1 and L2 are subdivided into two further lists - L1 into T1
and B1; L2 into T2 and B2. The T-lists (T1 and T2) manage the available buffer frames; the sum
of their sizes equals the total number of buffer frames available - c. One frame has the capacity
to store one buffer page.

The B-lists (B1 and B2) are virtual lists, containing metadata about pages which were evicted
from the respective T-lists. The B-lists contain in total another - c page metadata entries; thus
the total page metadata maintained by ARC is 2c entries.
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Figure 7.2: List organization of FBARC. L1 and L2 are inherited by ARC [77]. FBARC adds the addi-
tional List L3 which is divided into T3 and B3. T3 manages clusters of dirty pages, each
containing (a) a list of dirty pages and (b) a reference counter. B3 is LRU-organized
and maintains metadata of uncached dirty pages.

ARC balances the sizes of L1 and L2 to realize the trade-off between recency and frequency,
which enables adaptation to workload changes [77].

FBARC

FBARC extends ARC with an additional list (L3) to address spatial locality (Figure 7.2). Analo-
gously to L1 and L2 it is subdivided into T3 and B3. Unlike T1 and T2, T3 manages clusters of
dirty pages. A cluster contains a list of pages and a reference counter. B3 is LRU-organized and
contains the metadata for single uncached pages.

FBARC uses a static clustering algorithm (called GRID clustering). We logically divide the disk
space into static equally-sized regions called clusters.

Even though the clusters can be sparsely filled with dirty pages, which will result in random
write requests, they will be performed as if they were sequential (semi-sequential) since the
page addresses are concentrated on a relatively small region (cluster).

The cluster size is a tunable parameter, specific to the concrete Flash device. The proposed
GRID clustering represents a trade-off between efficiency, simplicity and acceptable computa-
tional intensiveness.

Assume that the cache is completely filled and a page is requested, this means that some cache
has to be freed (one or more pages have to be evicted). First, FBARC verifies whether the page
has already been processed by locating the metadata for that page (Algorithm 6, line 2) in L1,
L2 or L3. If it finds it, it checks if the page is cached (Algorithm 6, line 3). If so, the page is
moved to the MRU position of T2 and the page is returned. If the page was not cached, but the
metadata was found, then FBARC uses this information to adjust the balance between T1, T2
and T3 (Algorithm 6, lines 6-16) and then invokes the eviction process (Algorithm 6, lines 17,

134



18). The page is then placed at the MRU position of T2 and the page is returned (Algorithm 6,
line 19).

How the balance between T1, T2 and T3 is changed depends on where the metadata hit
occurred.

The lists are managed using a target size, which is a soft upper bound under which the lists
should stay. If a list is bigger than its target size then the next eviction victim will be chosen
from that list.

If the metadata was located in B1, then the target size for T1 is increased by one, if it was in
B3 then the target size for T3 is increased by one. If it was in B2 then the logical target size for
T2 is increased by one. T2 has only a logical target size, as it is the result of c − ts1 − ts3. So
if the target size of T2 has to grow, another target size has to shrink. To decide which target
size has to shrink we compare them with each other (Algorithm 6, line 9), and then shrink the
bigger one. This protects the balance in cases where many hits in B2 would otherwise lead to
skew and the predominance of the list.

If the page is unknown (e.g. the look up did not return any metadata) then FBARC might
have to evict an additional B-list page. This housekeeping ensures that the complete historic
view stays confined within 3c, i.e. information about evicted pages stored in the B-lists.

First, FBARC checks if L1 (i.e. T1+B1) is the same size as the cache size and whether there
is at least one entry in B1 (Algorithm 6, line 25). If this is the case then the LRU entry of B1
is removed. Otherwise, it goes on to check whether the total size of all lists (L1, L2 and L3)
exceeds the cache size (Algorithm 6, line 27). It then checks if L1+L2 is bigger than or equal to
2c (Algorithm 6, line 28). If so, the LRU entry of B2 is removed, otherwise FBARC checks if the
total size of all lists (L1+L2+L3) is equal to 3c and in that case removes the LRU entry of B3
(Algorithm 6, line 30).

This confines the maximum amount of information about the entries in L1 to c, the maximum
amount of entries in L2 to 2c and the maximum size of L3 to 3c. The reasoning behind this is
that L1 represents the recency and an excessively large recency list would contain pages that
are not recent any more. L2 on the other hand represents frequency, and the information that a
page was frequently accessed in the past is useful even if it was not that recent.

Similarly, the information that a page was written to in the past is even more useful, as we
try to retain dirty pages longer to reduce the amount of write I/Os that a buffer management
strategy produces.

After the housekeeping is done, the eviction process is invoked (Algorithm 6, line 34). The
new page is read in, placed at the MRU position of T1 and returned (Algorithm 6, lines 36-39).
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Algorithm 6 FBARC: Get Procedure
1: procedure GET(x)
2: if x ∈ bu f f ers then
3: if x .origin ∈ {t1, t2, t3} then . Cache Hit
4: MOVETOMRU(t2, x)
5: else . Cache Miss, Hit in History
6: if x .origin= b1 then
7: ts1← MAX(c, ts1 + 1)
8: else if x .origin= b2 then
9: if |ts1| ≥ |ts3| then

10: ts1← MIN(0, ts1 − 1)
11: else
12: ts3← MIN(0, ts3 − 1)
13: end if
14: else if x .origin= b3 then
15: ts3← MAX(c, ts3 + 1)
16: end if
17: EVICT(x)
18: bu f f ers[x]← READIN(x)
19: MOVETOMRU(t2, x)
20: end if
21: else . Page is unknown
22: if |t1|= c then
23: EVICTLRU(t1) . instead of calling evict
24: else . Housekeeping
25: if |l1|= c then
26: REMOVELRU(b1)
27: else if |l1|+ |l2|+ |l3| ≥ c then
28: if |l1|+ |l2| ≥ 2c then
29: REMOVELRU(b2)
30: else if |l1|+ |l2|+ |l3|= 3c then
31: REMOVELRU(b3)
32: end if
33: end if
34: EVICT(x)
35: end if
36: bu f f ers[x]← READIN(x)
37: MOVETOMRU(t1, x)
38: end if
39: return bu f f ers[x]
40: end procedure
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The eviction process first checks if a page has to be evicted at all (Algorithm 7, line 2), and if so
FBARC continuously evicts as many pages from different source candidates (lists) as needed. At
least one buffer slot (size of a page) has to be freed. The source selection for eviction candidate
is made based on the current and target size of all lists, and on the metadata (if present) of the
requested page. First, it checks if T1 is too big (Algorithm 7, line 3), then it checks if T3 is too
big (Algorithm 7, line 5), and if this is also not the case, then it just selects the biggest of all
three as the source.

Algorithm 7 FBARC: Eviction
1: procedure EVICT(x)
2: while |bu f f ers|= c do
3: if |t1|> 0∧ (|t1|> ts1 ∨ (x ∈ b2 ∧ |t1|= ts1)) then
4: source← t1
5: else if |t3|> 0∧ (|t3|> ts3 ∨ (x ∈ b2 ∧ |t3|= ts3)) then
6: source← t3
7: else
8: source←MAX(t1, t2, t3)
9: end if

10: EVICTLRU(source,x)
11: end while
12: end procedure

If the eviction source candidate is T1 or T2 then FBARC attempts to evict the page at the LRU
position (Algorithm 8, line 5). If that page is clean, then the buffer for it is cleaned, and its
metadata is moved to the corresponding bottom list (Algorithm 8, lines 9, 10). If it is dirty it
will be added to T3 (Algorithm 9) and the eviction process is restarted (Algorithm 7, line 2) as
the dirty page was not written out, and thus no free place was created yet. If the source is T3,
then a special eviction is started (Algorithm 10).

Algorithm 8 FBARC: Eviction of LRU for l1 and l2
1: procedure EVICTLRU(source, x)
2: if source = t3 then
3: EVICTFROMT3(nil)
4: else
5: l ru←REMOVELRU(source)
6: if l ru.dir t y then
7: ADDTOT3(l ru)
8: else
9: REMOVE(bu f f ers[l ru])

10: MOVETOMRU(source.histor y , l ru)
11: end if
12: end if
13: end procedure

When a page is added to T3, FBARC calculates its cluster id based on the page number and a
given cluster size (Algorithm 9, line 2). If a cluster with that cluster id already exists, then the
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page is added to it and its reference counter is incremented (Algorithm 9, lines 10, 5). If there
is no pre-existing cluster with that id, then a new one is created and added to the cluster hash
map (Algorithm 9, lines 7, 8).

Algorithm 9 FBARC: Add Page to t3

1: procedure ADDTOT3(x)
2: cluster Id ← page/clusterSize
3: if cluster Id ∈ clusters then
4: cluster ← clusters[cluster Id]
5: x .cluster.re f Count ++
6: else
7: cluster ← NEW CLUSTER()
8: cluster[cluster Id] = cluster
9: end if

10: cluster.pages.APPEND(x)
11: end procedure

There are two reasons for a page to leave T3. The first is that the page was hit by an access
and is moved to T2 (Algorithm 6, line 4). In that case FBARC removes the page from its cluster
and increases its reference count by one (Algorithm 10, lines 2, 3, 7). The reasoning behind this
decision is that the page might come back into the cluster if it stays long enough. If the cluster
is empty after this operation, then the cluster is removed (Algorithm 10, lines 4, 5). The second
reason is that T3 was selected as a source in the eviction process. In that case FBARC estimates
the eviction cost for each cluster (clusterCost) and selects the cluster with the lowest cost as
the victim (Algorithm 10, lines 10, 11).

The cost is estimated by the reference count and the amount of pages that are in the cluster.
Thus a cluster with a low reference count and a lot of pages is more likely to be replaced then
a cluster with the same reference count and only a few pages. This allows a cluster with only a
few pages to live longer and thus gives it a chance to accumulate more pages. A selection solely
based on the cluster size is insufficient, since then very small clusters could block a buffer slot
for a long time.

After the victim cluster is chosen, the reference count of all other clusters is decreased by the
victims reference count (Algorithm 10, line 13). This is mainly to keep the reference count low
such that inactive clusters that once had a high activity can be evicted sooner. The pages of the
victim cluster are then written in sequential order to the storage and added to the MRU position
of B3.

7.3 FBARC: Instrumentation and Experiments

We experimentally evaluated the performance of FBARC, comparing it against a number of
different buffer management algorithms (ARC, FOR+, LRU, CFLRU, CFDC) under realistic
workloads (TPC-C, TPC-H, pgbench) in different scenarios. We implemented a simulation
framework, hosting and executing the set of buffer management strategies. An overview of
the trace-driven simulation process is provided in Figure 7.3. It comprises three phases, which
are described in detail in the following Sections:

• (i) Recording raw traces for different DB workloads (Section 7.3.1, and Section 7.3.2);
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Algorithm 10 FBARC: Evict Page from t3

1: procedure EVICTFROMT3(x)
2: if x 6= nil then
3: x .cluster.pages.REMOVE(x)
4: if |x .cluster.pages|= 0 then
5: clusters.REMOVE(x .cluster)
6: else
7: x .cluster.re f Count ++
8: end if
9: else

10: clusterCost ← λx ← (x .re f Count,−|x .pages|)
11: bestC luster ←MIN(clusters, ke y = clusterCost)
12: for all cluster ∈ clusters do
13: cluster.re f Count−= bestC luster.re f Count
14: end for
15: bestC luster.pages.SORT()
16: for all page ∈ bestC luster do
17: WRITEOUT(page)
18: MOVETOMRU(b3,page)
19: end for
20: clusters.REMOVE(bestC luster)
21: end if
22: end procedure

• (ii) simulation of the eviction policies and generation of block access traces (Section 7.3.2);

• (iii) execution of the I/O traces on a physical SSD using FIO (Section 7.3.2).

With this setup we are able to study:

• different aspects of spatial and temporal locality, e.g. hitrate and quality of the clustering
algorithm;

• the computational intensiveness and the I/O behavior;

• various additional aspects of the buffer management algorithms, e.g. scan-resistance or
workload adaptation.

• In addition this setup provides a controlled environment and enables the evaluation un-
der repeatable conditions and realistic workloads. For fair performance evaluation we
assign equal total amount of memory to all compared algorithms (unless explicitly stated
otherwise).

The following system was used to perform the experimental evaluation: 4 GB RAM, Intel Core
2 Duo 3 GHz running under Linux (kernel 2.6.41). In addition, we used an Intel X25-E/64GB
enterprise SSD and a Hitachi HDS72161 7200RPM SATA2 320GB HDD; the latencies of both
drives are listed in Table 7.1.
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Figure 7.3: Simulation Process. (i) Trace Recording: raw traces are recorded by setting appropri-
ate probing points; (ii) Simulation: simulation of the eviction strategies and genertion
of block I/O traces; (iii) I/O Behavior: block trace execution on physical storage media
(SSD and HDD).

Table 7.1: Average I/O Latencies for the Intel X25-E SSD and the Hitachi HDS72161 HDD.
Blocksize 4KB SSD Intel X25-E 64GB HDD Hitachi HDS72161
Sequential Read 53 µs 0,133ms
Sequential Write 59 µs 0,168ms
Random Read 167 µs 10,8ms
Random Write 435 µs 5,6ms (write cache)
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7.3.1 Raw Trace

To ensure repeatable experiments and comparable experimental results under realistic work-
loads we record traces of PostgreSQL buffer manager method calls. Probing points were set
on buffer methods fetching a page as well as those marking a buffer dirty within PostgreSQL’s
bufmgr.c. We used a Fedora Linux (kernel 2.6.41) with the Systemtap extension (translator 1.6;
driver 0.152) to record the trace. By setting probing points accordingly (prior to the buffer
manager, Figure 7.3), we guarantee that the traces record the real database behavior for the
respective OLTP or OLAP workload, and eliminate the influence of PostgreSQL’s eviction policy
and storage manager. These are simulated for each implemented strategy by the simulation
framework (Section 7.3.2)

7.3.2 Workload and Trace Characterization

An out of the box PostgreSQL (version 9.1.1) was instrumented for OLTP and OLAP work-
loads. Both types of workloads are considered since they stress different aspects of a buffer
management strategy, and target asymmetry differently.

As an OLTP benchmark we used DBT2 [22], an open source implementation of the TPC-C
benchmark and pgbench [24], which is the PostgreSQL internal benchmark. DBT2 was instru-
mented with 200 Warehouses (nominal DB size approx. 20GB), 10 database connections and
10 terminals per warehouse. PostgreSQL uses 24 MB shared buffer space. The other OLTP trace
was recorded with pgbench, which was instrumented with a scale factor of 600.

As OLAP load we used DBT3 [23], an open source implementation of the TPC-H benchmark.
PostgreSQL was instrumented with scale factor 3 (nominal DB size approx. 13GB). The default
database page size of PostgreSQL (8KB) is used throughout all benchmarks.

For the HDD benchmarks, we used scaled down traces that have the same workload char-
acteristics as the pgbench and DBT2 traces. They are scaled down to one tenth of the original
trace size (nominal DB size approx. 2GB). Scaling was performed to reduce the otherwise
unacceptably long experimental run-time.

All traces contain index and table accesses. The traces have, however, been purged of Post-
greSQL specific service accesses (e.g., management overhead) to make them more comparable
with traces that would be gained by other MV-DBMSs.

Figures 7.4, 7.5, 7.6 and 7.7 show the access distribution per trace. The dot-dashed blue
and dotted green lines show the access frequency per distinct page, while the dashed red and
continuous yellow lines show the cumulative part of the total accesses a distinct page receives.
We have chosen a logarithmic scale for both the access frequency as well as the distinct page
count to emphasize the impact of the most frequently accessed pages.

Trace H
DBT3 (TPC-H) is a typical OLAP benchmark, and that is also reflected in its trace. Figure

7.4 shows the low fraction of write accesses in the TPC-H throughput test (temporary data),
hence we use this trace mostly to investigate the effects of the write awareness extensions on a
mostly read only trace. Additionally, as depicted in the scatter diagram of this trace, it executes
complex queries that focus on only a few relations at a single time (see Figure 7.15), which is
reflected by the plateaus seen in Figure 7.4.
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Figure 7.4: Trace H: DBT3 (TPC-H) - Scale
Factor 3. Page numbers from
hot (left) to cold (right) pages.
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Figure 7.5: Trace B: pgBench - Scale Factor
600. Page numbers from hot
(left) to cold (right) pages.
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Figure 7.6: Trace C: DBT2 (TPC-C) - 200
Warehouses. Page numbers
from hot (left) to cold (right)
pages.
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Figure 7.7: Trace Cd : DBT2 with 200 Ware-
houses. Delivery transaction ac-
cesses. Page numbers from hot
(left) to cold (right) pages.
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Trace B
The pgbench trace shows a TPC-B like access pattern. Even though some relations are ac-

cessed more frequent than others, the access distribution within the relations themselves is very
uniformly random (Figure 7.18). That can also be observed in Figure 7.5, as every plateau rep-
resents a single relation, and all the pages within it are equally often accessed. The writes are
almost equally distributed, but they occur ten times less often.

Trace C
For DBT2 we have recorded two traces. One, as shown in Figure 7.6, contains all accesses as

they are defined in the TPC-C specification (Trace C). The other, as shown in Figure 7.7 (Trace
Cd), contains only accesses from the delivery transaction. While trace C allows us to create a
realistic OLTP load, trace Cd allows us to have a write heavy OLTP-like load.

Figure 7.6 and 7.7 show that for both traces more then half of all accesses are in a very narrow
range of pages, as less then 10% of all pages account for more then 60% of all accesses. The
write requests though are a lot less concentrated in both traces. Additionally the trace Cd shows
a pattern of concurrent semi sequential accesses over most of the involved relations (see Figure
7.17).

Trace SR
In order to stress the scan resistance of the different algorithms the framework simulates large

sequential accesses by introjecting parasites into the OLTP traces. After an amount of OLTP load
a parasite is introjected. The parasite pollutes the complete cache size and accesses pages which
are not covered by the main trace to avoid any interference. After that the OLTP load is resumed
for n additional requests, where n is the cache size. The Load is resumed for only n additional
requests to highlight the effect of the parasite. Each parasite is either write only or read only
(see Section 7.4.4).

Instrumentation - Simulation and Metrics
The simulation framework applies the buffer eviction policies to the raw traces. The simulated

eviction policies are:

• ARC

• LRU

• CFLRU with 10% priority region.

• CFLRU with 40% priority region.

• CFDC with 10%priority region.

• CFDC with 40% priority region.

• FOR+

• FBARC with different cluster sizes.

The simulation results are reported for the following metrics:

• hitrate
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Trace B Trace C Trace H
1024 2048 4096 1024 2048 4096 1024 2048 4096 1024 2048 4096

Hitrate [%] LRU 90.26 91.40 92.29 78.68 81.55 83.77 76.53 79.06 79.38 90.02 91.12 92.63
ARC 89.91 91.29 92.33 78.60 81.06 83.24 76.54 78.98 79.09 89.78 91.07 92.53
FBARC 88.39 90.43 92.11 77.68 81.17 83.82 73.02 78.40 79.40 89.88 91.06 92.46
CFLRU 10% 90.13 91.24 92.20 78.48 81.40 83.60 76.19 79.08 79.38 89.92 91.07 92.57
CFLRU 40% 89.69 90.63 91.73 77.25 80.64 82.88 74.02 78.56 79.42 89.44 90.81 92.40
CFDC 10% 90.10 91.24 92.20 78.15 81.21 83.50 75.67 79.06 79.39 89.90 91.05 92.57
CFDC 40% 89.46 90.58 91.72 75.82 79.74 82.34 72.20 78.18 79.66 89.34 90.72 92.38
FOR+ 90.24 91.31 92.25 78.38 81.53 83.49 74.66 78.91 79.62 89.78 90.94 92.52

CPU [s] LRU 55.94 58.61 63.79 70.74 79.91 94.36 125.83 139.92 145.03 147.07 153.36 179.49
ARC 63.29 68.60 71.95 78.96 87.70 104.10 138.88 144.62 155.76 167.23 182.80 201.99
FBARC 81.79 84.18 96.54 152.08 177.51 199.36 293.10 333.55 317.33 188.06 195.14 213.23
CFLRU 10% 70.43 86.24 113.82 102.13 135.66 195.97 189.31 248.65 371.63 226.18 293.91 414.02
CFLRU 40% 111.30 160.82 254.13 209.25 315.38 533.11 391.34 593.98 1038.69 223.49 288.71 413.21
CFDC 10% 80.80 100.34 139.46 113.43 145.13 206.45 190.77 248.10 323.42 163.69 167.02 194.83
CFDC 40% 130.86 196.65 331.69 198.89 298.83 501.99 328.95 487.48 777.72 161.15 165.83 176.39
FOR+ 174.57 218.34 282.86 257.75 365.33 545.26 352.24 442.31 694.68 392.49 546.64 938.95

I/O [s] LRU 166.23 156.69 148.07 286.43 250.84 237.59 539.22 484.94 477.87 267.94 257.12 217.49
ARC 167.55 158.43 148.52 297.54 258.42 232.95 536.95 486.32 485.71 264.70 232.34 215.56
FBARC 180.44 164.19 148.93 299.94 255.12 224.01 581.28 478.80 441.83 263.56 232.03 216.34
CFLRU 10% 164.90 157.92 150.86 295.90 254.19 232.62 539.56 485.13 477.74 268.76 256.51 217.32
CFLRU 40% 171.79 162.42 153.66 297.26 257.29 233.63 566.00 492.66 476.41 269.35 256.42 217.49
CFDC 10% 167.52 158.64 150.75 301.62 257.59 230.59 554.14 488.28 476.08 269.22 256.74 217.77
CFDC 40% 173.26 161.02 154.88 329.66 280.03 247.45 613.08 504.01 471.26 268.43 255.33 217.06
FOR+ 164.33 155.48 149.41 292.92 255.91 232.48 559.94 490.47 474.07 268.73 256.54 216.55

Combined[s] LRU 175.61 166.45 160.18 324.99 288.70 259.57 570.74 516.32 505.07 277.59 265.47 267.89
ARC 180.16 167.28 159.38 327.83 293.85 264.74 571.20 518.18 513.92 275.08 273.24 284.83
FBARC 191.48 172.92 160.94 324.19 278.64 245.99 607.10 495.23 456.05 278.14 278.72 292.41
CFLRU 10% 177.84 167.41 156.95 322.06 285.56 254.51 567.89 509.35 494.43 290.39 321.26 426.94
CFLRU 40% 179.41 179.68 261.75 326.04 340.06 535.93 583.95 620.08 1048.52 290.96 324.15 423.25
CFDC 10% 176.43 164.38 161.37 328.39 291.04 254.63 585.46 511.57 497.51 278.87 267.01 280.63
CFDC 40% 180.71 212.96 341.38 354.38 324.54 512.10 641.94 537.00 834.27 278.66 266.79 262.18
FOR+ 194.31 235.83 294.65 315.24 388.96 565.95 584.18 510.23 723.91 454.84 599.22 971.54

Trace Cd

Figure 7.8: Results for Hitrate, CPU, I/O and Overall Time. Columns indicate amount of pages in
the cache (1024 .. 4096). Charts covering specific aspects are presented in Figure 7.8,
7.11, and 7.14.

• CPU time - measure of computational complexity (Section 7.4.1).

• I/O time - measure of I/O performance (Section 7.4.2).

• overall runtime - interleaving of CPU and I/O time (Section 7.4.3).

I/O Trace
In the final step we benchmarked the traces on a physical SSD and HDD. The simulation

framework translates page addresses into block addresses generating an I/O trace, which is
used as an input for the FIO benchmark. FIO accesses the SSD/HDD as a raw device using di-
rect I/O, and thus bypasses the I/O cache. We used FIO for the following reasons: a) guaranteed
I/O behavior; b) controlled use of I/O parallelism; c) reliable performance metrics (IOPS, run-
time). On SSD after each run of a single trace, we executed a series of random write operations
(approximately 30GB) using FIO to avoid SSD state dependencies.

144



7.4 FBARC: Experimental Evaluation

The experiments of our experimental evaluation include: (i) investigation of the hitrate and
the computational intensiveness of all algorithms (Section 7.4.1); (ii) examination of the I/O
behavior of all buffer management strategies (Section 7.4.2); as well as (iii) the investigation
of the overall time (Section 7.4.3). We investigate the influence of sequential operations on the
algorithms (scan resistance), which gains importance in database systems optimized for new
storage technologies or analytical processing (Section 7.4.4). Finally, we compare the perfor-
mance on HDDs to investigate whether the algorithms have desirable properties on a variety
of storage media. Since all those experiments vary the cache size but keep the FBARC specific
parameters, i.e. cluster size constant, we additionally analyze the influence of the FBARC pa-
rameters in terms of the influence of the cluster size on the computational complexity and I/O
behavior (Section 7.4.5). CFLRU and CFDC in particular are analyzed with two different prior-
ity queue sizes of 10% and 40%. All results presented in this section are the average values of
three experimental runs (since the standard deviation was consistently low we do not report it).

We have consolidated the results of all main experiments into Figure 7.8. This allows to easily
compare the results of different traces and see the influence of different factors on the combined
metric. The algorithms are sorted in the given order, to allow for an easier comparison of FBARC
with ARC and LRU.

7.4.1 CPU Time

In this section we examine the computational complexity (CPU time) and hitrate of each eviction
policy, for different traces and buffer/cache sizes (Figure 7.8, rows 9-16, “CPU”). CPU time
measures the runtime required for each algorithm to complete the respective trace under full
CPU utilization. It is an indication for the algorithm’s pure computational complexity on the
respective trace. I/O time and parallelism are not present.

Here LRU naturally outperforms all other algorithms. With increasing cache size FBARC has
better runtime than the others.

For small cache sizes FBARC performs mostly comparable to or slower than the other strate-
gies, but as the cache size increases that gap narrows. While the hitrates for the different
algorithms are comparable and grow with the amount of cache used, the CPU times differ
significantly. The trend to larger cache sizes is in favor of the FBARC algorithm.

FOR+ exhibits the highest computational complexity of all algorithms. It increases signifi-
cantly with growing cache sizes. CFDC exhibits the highest computational intensiveness of all
clustering algorithms especially for larger cache sizes. This is due to the employed clustering
algorithm. CFLRU and FBARC have similar complexities, with CFLRU being better for smaller
buffer sizes and FBARC taking lead for larger buffer sizes. LRU and ARC are both basic al-
gorithms and thus shine in this metric because they are write-oblivious and do not have the
respective complexity. Using the computational resources of modern many core CPUs for the
buffer eviction strategy is valid, since most of the computational power is unused.

Upcoming NVM technologies are characterised by higher asymmetry, smaller page sizes and
hence yield higher CPU overhead for T3 Maintenance. The relative CPU overhead of FBARC
compared to other strategies is (Figure 7.9): (i) smaller; (ii) it also grows slower for increasing
number of pages. In general, all clustering strategies are affected; to attack the issue the ample
computational resources of many core CPUs need to be used.
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Figure 7.9: Relative CPU overhead for varying number of pages in cache. Baseline LRU. CPU
overhead increases for CFLRU and CFDC with a higher amount of pages. FBARC
experiences more overhead than ARC due to the GRID clustering algorithm.

Table 7.2: Read KB in Trace C. Columns indicate amount of pages in the cache (1024 .. 4096).
Algorithm 1024 pages 2048 pages 4096 pages
LRU 6,485,952 5,613,128 4,938,152
ARC 6,511,440 5,761,776 5,098,056
FBARC 6,790,968 5,728,960 4,920,816
CFLRU 10% 6,549,112 5,657,208 4,988,896
CFLRU 40% 6,922,672 5,888,768 5,208,096
CFDC 10% 6,648,344 5,716,696 5,019,144
CFDC 40% 7,358,888 6,163,464 5,373,144
FOR+ 6,580,288 5,618,288 5,021,456

7.4.2 I-O Time

In this section we report the I/O times for the investigated replacement strategies for different
loads and buffer cache sizes. I/O time stands for the I/O time needed to write/read evicted/re-
quested pages for the respective raw (benchmark) trace. The framework creates an I/O trace
that corresponds to the simulated eviction policy and is used as input for FIO (Section 7.3.2).
It is then executed with synchronous direct I/O. The CPU time is minimal and can therefore be
neglected.

FBARC reads and writes faster than the other eviction policies. The higher write rate of FBARC
is the result of the sequentialization of random writes. It is significantly faster to write a whole
cluster of pages which reside in spatial locality than writing random.

The results also show that the preferred eviction of clean pages leads to a higher value of read
I/O (Table 7.2) and a higher read IOPS, nevertheless the influence of the prioritized eviction
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Table 7.3: Written KB in trace C. Columns indicate amount of pages in the cache (1024 .. 4096).
Algorithm 1024 pages 2048 pages 4096 pages
LRU 3,168,016 2,908,216 2,691,712
ARC 3,135,872 2,880,960 2,687,672
FBARC 3,209,080 2,911,360 2,665,472
CFLRU 10% 3,123,869 2,878,440 2,674,600
CFLRU 40% 3,028,568 2,800,088 2,632,928
CFDC 10% 3,210,520 2,933,828 2,703,720
CFDC 40% 3,393,264 3,039,200 2,788,552
FOR+ 2,965,504 2,717,352 2,595,992
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Figure 7.10: Overall speedup in percent compared to ARC on trace C

of clean data pages does not impact the hitrate negatively, as the results of the CPU time tests
show.

FOR+ shows the lowest amount of written bytes (Table 7.3). This is the result of its meta
data use. It retains single hot dirty pages longer in cache than any other algorithm, due to its
comparatively long write history list. Even though FOR+ writes less than FBARC it is not faster
per se since the resulting write patterns lack spatial locality.

7.4.3 Overall Time

The overall time represents a combined metric unifying the CPU time and I/O time. It inter-
leaves the computational tasks of a buffer strategy with I/O time for page fetch/eviction (Figure
7.8, rows 25-32, Combined). The I/O requests are executed as synchronous I/O: its block-
ing nature guarantees that the complete I/O latency is accounted for. Thus I/O parallelism
and asynchronous I/O are not present which represents the realistic worst case scenario. (In
commercial implementations I/O parallelism will be present to varying degrees, increasing the
performance.)

Figure 7.8 (rows 25-32, Combined) depicts the overall time of the algorithms under test and
Figure 7.10 and 7.11 depict the relative improvement over ARC on trace C and Cd . We removed
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Figure 7.11: Overall speedup in percent compared to ARC on trace Cd .

CFDC 40%, CFLRU 40% and FOR+ from those charts, because of their significant computational
overhead (see also Figure 7.8 (rows 13, 15, 16, CPU)).

FBARC works very well on trace C and gains up to 7% speedup with a big cache size. On
trace Cd FBARC achieves a speedup of up to 11% but slows down with a smaller cache size.
The performance slowdown comes mainly from a comparatively low hitrate for that particular
cache size. Even though FBARC has a higher computational intensiveness than some of the
other strategies, its resulting I/O behavior does reduce the overall time.

In trace H there were so few write requests, that the hitrate and computational overhead are
the main source of differences between the different strategies.

In trace B the uniform random access seems to produce equally mostly unchanged results
when compared to LRU and ARC, thus none of the write aware strategies can really improve
over the basic strategies there.

7.4.4 Scan Resistance

Scan resistance is an important characteristic of buffer management algorithms with view of
new storage technologies and analytical loads and cache-awareness. At their core both trends
employ sequentializing write or read accesses, and become increasingly wide-spread. Not every
buffer management algorithm is able to handle such type of accesses efficiently.

We compare the hitrate of an eviction policy on a trace without and with (a) a read parasite
and (b) a write parasite introjected. Our findings show that the smaller the cache size the more
likely the hitrate will drop on all strategies but ARC and FBARC. FBARC is influenced by neither
write nor read parasites, while the other policies are significantly influenced. FBARC, like ARC,
uses the recency list to filter out pages that are accessed only once, and thus a sequential parasite
can only pollute a relatively small part of the cache. Even though a sequential write parasite
can flush the T3 list, it does not influence the hitrate in a significant way as these pages are not
frequently accessed. Additionally it will buffer the write parasite and write it out sequentially.

CFLRU, CFDC and LRU lose more than 10% of hitrate on smaller cache sizes while FOR+
looses a quarter of that. LRU derivatives such as CFDC and CFLRU react differently to read
and write parasites due to the specific optimizations. As shown in Figure 7.12 the effect of
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Hitrate [%] 128 256 512 1024 2048 128 256 512 1024 2048
ARC 87.89 90.23 91.70 92.92 93.12
ARC (Read) 87.89 90.63 91.70 92.92 93.09 0.00 0.39 0.00 0.00 -0.02
ARC (Write) 87.89 90.63 91.70 92.92 93.09 0.00 0.39 0.00 0.00 -0.02
CFDC 88.67 90.63 91.80 92.77 93.09
CFDC (Read) 80.08 83.20 85.94 88.62 90.14 8.59 7.42 5.86 4.15 2.95
CFDC (Write) 76.17 80.27 83.40 86.47 88.18 -12.50 -10.35 -8.40 -6.30 -4.91
CFLRU 88.67 90.63 91.80 92.77 93.12
CFLRU (Read) 81.25 84.38 87.89 89.84 90.14 -8.20 -6.25 -3.91 -2.98 -3.00
CFLRU (Write) 76.17 80.27 83.40 86.47 88.18 -13.28 -10.35 -8.40 -6.35 -4.96
FBARC 88.28 90.43 91.70 92.92 93.04
FBARC (Read) 87.89 90.43 91.60 92.92 92.92 -0.39 0.00 -0.10 0.00 -0.12
FBARC (Write) 88.28 90.43 91.70 92.92 92.94 0.00 0.00 0.00 0.00 -0.10
FOR+ 89.45 90.63 91.80 92.82 93.14
FOR+ (Read) 84.77 87.50 88.67 89.45 89.77 -4.69 -3.13 -3.13 -3.37 -3.37
FOR+ (Write) 85.55 87.50 88.67 89.45 89.79 -3.91 -3.13 -3.13 -3.37 -3.34
LRU 88.67 90.63 91.80 92.97 93.12
LRU (Read) 76.17 80.27 83.40 86.47 88.18 -12.50 -10.35 -8.40 -6.49 -4.93
LRU (Write) 76.17 80.27 83.40 86.47 88.18 -12.50 -10.35 -8.40 -6.49 -4.93

Figure 7.12: Influence of Scan Resistance. Absolute Hitrate on the left, difference compared to
baseline on the right. Columns indicate amount of pages in the cache (128 .. 2048).

Table 7.4: FBARC - Trace C: influence of cluster size on (a) hitrate, (b) CPU time, (c) overall time.
Columns indicate the cluster size.

FBARC - Trace C 1024 pages 2048 pages 4096 pages
Hitrate 83,82 83,83 83,85
CPU time 201,02 182,57 152,56
Overall time 243,88 238,61 230,79

a write parasite on hitrate is twice the effect of a read parasite. LRU does not distinguish
between reads and writes hence the identical numbers. The identical hitrate reduction for
write parasites for CFDC and CFLRU can be easily explained with the fact that the parasite
pollutes the whole buffer cache, regardless of the clustering algorithm and write optimization.
The effect of read parasites on hitrate reduction of CFDC and CLRU depends on the cache
size. For smaller cache sizes CFLRU exhibits smaller hitrate penalties, a fact that is due to
the way the balance between read and write regions (Working/Clean-first region in CFLRU vs.
Working/Priority region in CFDC) is being handled. FOR+ is not scan resistant, it however
shows smaller hitrate reductions than LRU, since it uses additional information to keep hot
pages longer than previously unknown pages. As for FOR+, regardless of all optimizations read
and write parasites affect its hitrate reduction to the same degree.

7.4.5 FBARC Cluster Sizes

Throughout all the cluster size experiments we kept the cluster size of FBARC constant. Since it
accounts for physical parameters of the Flash Device it is a tunable parameter in FBARC. In this
experiment we vary it from 1024 pages to 4096 pages, keeping the buffer size constant at 4096
pages.
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128 256 512 1024 2048
LRU 4720.22 3959.84 3580.07 3219.36 2880.25
ARC 4691.32 4005.01 3625.47 3259.75 2900.58
FBARC 4740.55 3964.56 3568.04 3210.92 2863.26
CFLRU 10% 4762.38 3968.51 3578.98 3231.58 2895.06
CFLRU 40% 5062.04 4183.72 3665.22 3327.70 2981.58
CFDC 10% 4791.82 3975.31 3572.79 3196.70 2829.28
CFDC 40% 5106.15 4114.93 3568.73 3197.88 2815.65
FOR+ 4868.25 4034.39 3553.66 3263.65 2977.73

Figure 7.13: I/O Time [s] on HDD. Columns indicate amount of pages in the cache (128 .. 2048).

Table 7.4 shows that the cluster size has a marginal influence on the hitrate. For most traces
the hitrate is unaffected or changes by less than 1%. Given a skewed workload where dirty
buffers in L3 (Figure 7.2) are requested will result in a cache hit under FBARC because of the
CLOCK based cluster management algorithm.

The cluster size has a significant impact on the overall time (Table 7.4). The pages of the
evicted cluster are written out as semi-sequential writes and all I/O operations are synchronous
(Algorithm 10), which confirms our initial hypothesis. In addition larger cluster sizes reduce
the amount of clusters managed by L3 and hence the computational complexity of FBARC.

7.4.6 Behavior on HDD

In this section we evaluate how the different strategies behave on HDD. It is favorable if a special
purpose algorithm performs well even in cases in which it was not intended to be used. For this
test we scaled the used traces down to reduce the experimental run-time to an acceptable range.
For this reason smaller cache sizes are included in the results.

Figure 7.13 shows the overall time for the scaled down trace C to complete. Figure 7.14 shows
the relative speedup or slowdown compared to ARC. Most of the values are within 5% of ARC
and most LRU derived strategies perform very similar.

These results also show that the computational intensiveness does not influence the overall
time in any significant way. The I/O time and hitrate mostly dominate the overall performance.

Blocktrace Diagrams
Figures 7.15, 7.16, 7.17 and 7.18 show the accesses of each trace. The darker a point, the

more often a page at this point was accessed. Each point represents several thousand pages.

7.4.7 FBARC Summary and Conclusion

Low-latency storage technologies with asymmetric performance characteristics call for buffer
management strategies that treat both temporal and spatial locality as a first class criterion.
Hence replacement strategies need to optimize for both hitrate and eviction cost to ensure bal-
anced performance. FBARC is a buffer management strategy addressing I/O asymmetry on
Flash devices. On real world traces FBARC is less computationally-intensive (up to 2.5x) due
to the employed Grid clustering algorithm. On the traces used, FBARC exhibited the lowest
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Figure 7.14: Relative change compared to ARC

Figure 7.15: Trace H scatter diagram (some portions left out). TPC-H blocktrace - mostly read
only access pattern. Complex analytical queries are executed that focus only on a
few relations at a single time.
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Figure 7.16: Trace C scatter diagram. The typical TPC-C blocktrace is depicted, showing the ac-
cesses of all relations (whole DB).

Figure 7.17: Trace Cd scatter diagram. The typical TPC-C blocktrace is depicted, showing only the
accesses of the delivery relation.
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Figure 7.18: Trace B scatter diagram. Pgbench blocktrace showing the TPC-B access pattern. This
pattern shows a uniform distribution of accesses.

computational-intensiveness of all clustering strategies. FBARC’s lightweight clustering algo-
rithm is based on the observation that on Flash devices random write operations that are
restricted on a small address region are executed with close to sequential performance. This
trend is also valid with the newest generation of devices and will persist. In addition, ARC and
FBARC are the only scan-resistant buffer management strategies among those under test. Such
property is especially relevant for Data Warehousing systems where large sequential scans may
be followed by large sequential update streams. Moreover sequential patterns are even more
common for new storage technologies since new algorithms target write sequentialization.
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8.1 Multi Version Databases

As a disruptive technology asymmetric storage such as Flash SSDs became the established stor-
age media of modern database management systems in the last decade. Snapshot Isolation (SI)
and Multi Version Concurrency Control (MVCC) enjoy broad system support. Some commercial
and open source systems using MVCC are: Ingres, Microsoft SQL Server, Oracle, Oracle Berkeley
DB, PostgreSQL. Some of them implement SI as a separate isolation level, while others use it to
facilitate serializable isolation.

Concepts of concurrency control mechanisms in database systems are described in [6].
The theory of MVCC is presented by Bernstein and Goodman in [5]. There exist different

approaches to MVCC [105] such as Timestamp Ordering, Multi-version Two-Phase Locking and
Snapshot Isolation.

8.1.1 Snapshot Isolation

As proposed in [4] by Bernstein et al Snapshot Isolation (SI) may produce histories that are
not serializable. SI is implemented in PostgreSQL [93]. An overview of its implementation in
PostgreSQL is given in [104]. Serializable SI (SSI) is proposed in [14], based on read/write
dependency serialization graphs and graph testing algorithms. SSI is refined with precisely SSI
(PSSI) in [94]. A performance comparison between different MVCC algorithms is provided in
[16]. [76] and [59] offer insights to the implementation details of SI in Oracle and PostgreSQL.

The scheme of organizing data item versions in simple chronologically ordered chains has
been proposed in [17] and explored in [91, 11] in combination with MVCC algorithms and
special locking approaches.

The MySQL InnoDB multi-versioning scheme stores older versions of data items in rollback
segments [79]. On a request of an older version it is recreated using undo records.
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The Microsoft SQL Server implements SI for the isolation levels snapshot and Read committed
snapshot based on row versioning [105]. Update and delete operations create older versions
of the affected rows and store them in a temporal database. Once no running transaction is
required to read the older versions, they are garbage collected.

8.1.2 Indexing in MV-DBMS

The application of version oblivious indexing on a multi-versioned dataset is per se trivial, yet
leveraging discrete properties of the multi versioned dataset is a challenging task. An overview
of approaches on indexing in MV-DBMSs is provided in [55]. One of the earlies approaches
for indexing multi-version datasets are Time-Split B+Trees (TSB-tree) [71, 72]. A modified
version of B+ − t ree is proposed in [115]: index nodes yielding a validity period and data
nodes with different record formats are introduced. Aiming to provide a general index structure
for MV-DBMS the Multi-Version B-Tree is proposed in a series of papers by Haapasalo et al.
[45, 42, 43, 44].

InnoDB distinguishes between primary and secondary indexes. Primary indexes are updated
in-place and secondary indexes are updated by creating new index entries and marking the old
entry invalid [79].

8.2 Temporal Databases

Temporal Databases (TMP-DBs) manage historical data. [106] describes approaches to temporal
databases. Historical data is characterized by data that can be mapped to a discrete moment or
timespan. The concept of time travel DBMSs that enable the user to execute historical queries
is discussed in [110].

Temporal databases differ significantly from real-time databases, where transactions have
deadlines or timing constraints, described in a survey in [85].

In comparison to a TMP-DB the MV-DBMS contains versions of data items that represent the
current state of the DB. Versions are utilized to determine the correct/current state of the DB
given for a transaction (transactional time). Each data item is represented by a non-empty set
of tuple versions. Each running transaction is allowed to access at most one tuple version which
represents the most recent state of the data item for that transaction.

In TMP-DBs updates to data items are rare and insert operations dominate. TMP-DBs handle
data involving the dimension of time, including a temporal data model and an adapted version
SQL [107]. An example for a TMP-DB is a warehouse that processes OLAP workload (business
intelligence). In the case of TMP-DBs, the user is aware of the historical data set, which is not
the case in MV-DBMSs.

8.3 In-Memory Databases

Recently In-Memory Database Management Systems (IM-DBMS) emerge as a forthcoming trend
[31, 60, 1, 7, 112]. IM-DBMS operate on memory resident data and keep the database in-
memory at any given time of the operation. Persistent storage media is used for logging and
durability of the data.
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Such approaches employ variants of versioning and version organization which are orthogonal
to the work presented here.

A recent trend is the combination of OLTP and OLAP workload using in-memory MV-DBMS
that create a real-time business intelligence.

SAP Hana [31] alleviates the need for a separation of the business intelligence (OLAP) and the
operational system (OLTP) in two separate (server-) systems. The database is held in-memory
and persistent storage is used for logging.

Hyper [60] separates OLAP from OLTP workload by the creation of virtual memory snapshots
utilizing copy on write methods.

Although main memory prices have dropped (factor of 10 every 5 years [1]) they are still
significantly higher than those of Flash storage media. In addition the energy consumption of
DRAM is higher than that of Flash storage. For recovery and logging those systems also require
additional persistent storage media.

Hekaton [1] describes a different approach to serializability based on visibility range defini-
tions. Another approach to IM-DBMSs is proposed in [112].

8.4 Log Based Storage Management

Log-structured file systems in Linux are presented in [64] and [95]. FlexFS [65] is a file system
that is designed for MLC NAND Flash. File systems are designed to be applicable for general
software and do not address special properties of DBMSs.

[91, 11, 17] explore database related approaches to LbSMs. The authors also investigate ap-
proaches to garbage collection. Other non-in-place update strategies for Flash-based transaction
systems are presented in [116]. LbSM approaches using delta stores still require relatively ex-
pensive merge operations and generate overhead on read accesses [80]. The applicability of
LbSM approaches for asymmetric storage technologies such as Flash devices has been partially
addressed in [109, 7, 108]. Hyder [7] is a transactional record manager for Flash storage. The
approach in [61] stores updates in a delta store that is later merged with the main data store.

A common feature of these approaches is that they use page-granularity.
SIAS employs tuple-granularity much like the approach proposed in [11]. The latter however,

invalidates tuples in-place. Given a page granularity the invalidated page still needs to be
remapped in a holistic, global mapping and persisted, hence no write-overhead reduction is
achieved. Alternatively, given tuple-granularity, multiple new tuple-versions can be packed on
a new page and written together once. In the area of operating systems log storage approaches
at file system level for hard disk drives have been proposed in [96].

Approaches to group commit as described in [48] integrate the database and the log structure.
Multiple transactions are delayed and committed with a single disk I/O. This work separates
the database as storage and the log as the recovery control mechanism and does not delay
transactions.

8.5 Snapshot Isolation Append Storage

In [34] a tuple version management scheme, called SI-CV, is adopted that co-locates tuple ver-
sions created by individual transactions. This aims at the reduction of random reads on Flash.
Although this introduces several improvements, a main issue is not addressed by the approach:
updated tuple versions are still invalidated in-place, which causes physical in-place updates.
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SIAS-Vectors (Section 4.4) algorithmically integrates LbSM in tuple granularity into the MV-
DBMS. It is demonstrated in [33] (video available online [103]). SIAS-Vectors no longer follows
the paradigm of addressing each tuple version individually: all versions of a tuple (data item)
receive the same unique identifier, the so called virtual ID (VID), which identifies the data item
as a whole. SIAS-Chains introduces a new paradigm to version management, improves on the
version invalidation scheme and adapts the indexing scheme. The existence of a valid successor
of a tuple version implicitly invalidates the previous tuple version. In-place updates are con-
ceptually avoided. SIAS-Chains co-locates recently inserted tuple versions. SI-CV [34] creates a
different kind co-location of tuple versions. Tuple versions that are created by individual transac-
tions are placed on individual buffer pages and each transaction receives a reserved buffer page,
whereas SIAS-Chains (and SIAS-Vectors) co-locates tuple versions of different transactions. It is
not required to reserve a buffer page for each individual transaction.

8.6 Flash Storage

An overview of Flash storage properties is given in [18], design and performance trade-offs are
discussed in [3]. In [90] we give an overview of MV-DBMSs on modern storage. We provide an
overview of append storage (LbSM) in MV-DBMSs on Flash in [36], which we extend in [35],
[37]. In [38] we present read optimizations for LbSM in multi-version databases on Flash.

In [91] the configuration of RAID systems based on Flash Drives is evaluated, aiming at build-
ing up large and scalable storage out of relatively small but fast SSDs. The I/O parallelism of
Flash drives can’t be leveraged by modern RAID controllers. Software configurations that utilize
the processing power of modern CPUs achieve greater performance (throughput, latency) than
server class RAID controllers. This was explained in more detail in Section 2.5.

Rules of thumb in data engineering describing optimizations for legacy storage, such as the
trend towards increasing block sizes, are provided in [40]. A recipe for building Flash-based
data intensive systems is given in [47].

8.7 Flash Translation Layer

The FTL’s main task is to provide a mapping of logical and physical addresses. Approaches
to the mapping scheme can be classified as Page-level mapping schemes, Block-level mapping
schemes or Hybrid-/Log-Block-mapping schemes. An evaluation and comparison of different
FTLs is provided in [20] and [75]. In the past numerous designs of FTLs have been proposed.
For instance [86], [41], [67], [66], [69], [74] etc..

DFTL is a page-mapping FTL and is introduced in [41]. There are multiple Flash simulation
frameworks such as FlashSim [63] or DiskSim [27].

Ongoing research on omitting certain on-device FTL functionalities assigns the accessing lay-
ers more control over the Flash chips [8]. An approach that is not using the block I/O interface
is presented in [84], [12] presents a hybrid approach which can bypass the on-device FTL.

Specialized Flash Server Storage such as FusionIO [2] moves the FTL from a device into the
driver.

[46] demonstrates an on-line Flash simulator, delivering direct access to Flash chips. NoFTL
completely removes the on-device FTL, enabling the application to take full control of the Flash
storage device. The integration of the FTL functionality into the DBMS, providing native access
to Flash storage yields significant performance benefits.
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8.8 Buffer Management

Database buffer management is a traditionally well-studied field; a broad overview is provided
in [30]. We distinguish between general purpose (FIFO, LRU [26], ARC [77]) and special purpose
algorithms.

General purpose cache replacement algorithms can be used at any layer in the memory hierar-
chy. They, however, do not utilize special system knowledge to speed up accesses.

Special purpose algorithms on the other hand are designed to use system information and
circumvent restrictions of the respective target area. They can be further sub-divided into:

• Embedded algorithms [62, 54] are designed to use low-level system information for devices
with limited computational resources. An elevator algorithm for example needs to know
where the disk head is positioned at the moment to decide which block to access next, or
an FTL knows if a write will need a full merge or a switch merge.

• Clustering algorithms [83, 87, 53] target the spatial locality by grouping dirty in-buffer
pages into clusters and making the eviction decision based on a composite per-cluster
score.

• Page State algorithms [73, 57, 56, 87] make use of the page’s state in the decision which
page to evict and can adapt to different kinds of access. That way it can address the
read/write asymmetry on Flash media. CFLRU [87], CFDC [83] and FOR/FOR+ [73] are
cache replacement strategies that fall in the class of page state dependent replacement al-
gorithms. The buffer strategies ARC, CFLRU, CFDC, FOR, DULO and BPLRU are described
in detail in Chapter 7.

• Persistent buffer extensions [28, 15, 58] mainly provide long term archiving of data.
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9.1 Summary and Contributions

Modern DBMSs fail to exploit the key properties of asymmetric Flash storage. Performance
potential is lying idle and durability of the storage media is shortened which ultimately leads
to higher costs. This thesis is a remedy for those shortcomings, making the DBMS aware of
the underlying asymmetric Flash storage. Existing assumptions on design and architecture of
modern MV-DBMSs are questioned and revised.

The Snapshot Isolation Append Storage (SIAS) approach subsumes changes on the algorithmic
and architectural design of the MV-DBMS to optimize for asymmetric Flash storage. The combi-
nation of the MV-DBMS, multi-versioning concurrency control (MVCC) and append/log-based
storage management (LbSM) on Flash storage delivers optimal performance figures which are
needed to satisfy the urgent demand in scalable performance for modern DBMSs. We exploit
the performance potential of the asymmetric Flash storage and increase its durability.

The contributions of this dissertation are:
• The Snapshot Isolation Append Storage (SIAS) approach subsumes changes on the algorith-

mic and architectural design of the MV-DBMS with the focus on asymmetric Flash storage.
SIAS is a compilation of architectural design changes and algorithms that are designed for
the specific properties of asymmetric storage devices such as SSDs. Beginning with the
transaction processing and multi-version concurrency control, the transaction manager,
the version organization and related access methods are redesigned. Simplified buffer
management is incorporated into append storage management.

• SIAS changes the invalidation model to facilitate out-of-place invalidation (Section 4.1).
SIAS introduces a new version organization scheme that does not rely on in-place invali-
dation.

• SIAS introduces a new versioning scheme that addresses tuple versions of a data item as
a unique set (Section 4.3). Access methods such as scans and indexes are adapted and
optimized.

• SIAS enables append storage management in tuple granularity (Chapter 6). Logical ap-
pends of tuple versions are enabled, coupled with the buffer manager physical appends
are executed in page granularity.
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• SIAS couples a simplified buffer management with append storage management by per-
forming write retention (Chapter 7).

• The minimal invasive Flash based adaptive replacement cache (FBARC) has been developed
(Chapter 7) which can be applied to in-place update DBMSs. With the FBARC buffer
management, that employs static grid clustering the efficiency of semi-sequential writes
on Flash storage is explored.

Existing assumptions on design and architecture of modern MV-DBMSs are questioned and
revised:

• Clustering: clustering, as a read optimization, incurs in-place updates and creates mixed
loads. Keeping a dataset clustered on Flash is not feasible. The in-place updates negate the
positive effects of the clustering. Append storage is more suitable for asymmetric storage.

• Free Space Management: maintaining free space per page is not feasible for LbSM on
asymmetric storage. It inflates space consumption and avoids efficient cache usage.

• The trend towards larger I/O transfer units (large page I/O) does not hold for Flash stor-
age. Random reads are exceptionally fast on small transfer units.

• Version Organization Scheme: organization of tuple versions, addressing each of them as
individual data items along with two-place invalidation, incurs in-place updates of visibility
meta-data.

• In-Place Invalidation: the versioning model of in-place invalidation creates small in-place
(random) updates which are unsuitable for the properties of Flash storage.

• In-Place Storage Management: single version schemes and in-place update approaches
hinder concurrent access and parallelism.

• Logical Page Append Storage Management as an additional layer: LbSMs that operate in
page granularity create write amplification (smallest granularity to append is a page, even
if just a single bit in the page is updated).

• Buffer Managers Optimizing for Hitrate: optimizing for locality and grouping of writes,
forming small sequential writes (or appends) becomes a major point, especially on in-
place storage management.

• Read optimized datastructures: datastructures that optimize for HDD read access have to
optimize for Flash storage write access.

The accumulation and integration of the presented techniques into SIAS lead to:
• Reduction of write amplification: SIAS leads to a significant reduction of the write ampli-

fication that is incurred by the version organization and the invalidation scheme.

• Less host writes: SIAS writes less data. Tuple versions are the net amount of data.

• Less space requirement: the amount of occupied space is reduced since less net amount of
data has to be written and no free space reservation is applied.

• Avoidance of in-place updates caused by the version organization and invalidation scheme.
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Figure 9.1: Benefits of SIAS in a nutshell.

• Complementing the FTL: more efficient garbage collection and wear leveling due to Flash-
awareness.

• Performance benefits: Higher transactional througput with lower response times.

• Scalability: SIAS scales with more warehouses on TPC-C loads.

• Complete I/O faster: write less data and transfer more tuple versions (no free space reser-
vation).

• Lower latency: I/O is completed faster, leading to latency reduction and increased trans-
actional throughput on high loads

• Higher longevity: enhanced lifetime of Flash cells due to less host writes.

• Shifting the knee-point: lower latency and higher throughput allows a higher tolerance for
peak workloads.

• The reported benefits of SIAS are summed up and depicted in Figure 9.1.
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9.2 Future Work

9.2.1 Garbage Collection

Approaches to garbage collection in LbSMs are an interesting research topic. As described in
Section 4.6 the steps performed during garbage collection involve:

• (i) finding the candidate (victim-) page that is chosen to be garbage collected,

• (ii) reinsertion of valid tuple versions and

• (iii) discarding of dead tuple versions of that page.

All three steps offer interesting points of research, providing research on advanced data place-
ment. For example, hot and cold data separation and archiving.

This offers research questions such as: “how to optimize for garbage collection efficiency?”; and
“is it beneficial to place tuple versions that are updated at comparable rates on the same page?”

In addition the synergy between garbage collection, LbSM free space management and the
version organization has to be considered.

9.2.2 Thinking Beyond the Block Interface

The SIAS approach is working on tuple version granularity and assumes a block device interface.
Another point of research is it’s combination with the NoFTL approach. It has been shown

that removing the block device interface, thus moving more control over the Flash storage into
the DBMS is beneficial for performance and durability.

Utilizing direct access to the Flash memory involves changing the LbSM component of SIAS
and directs full control of the Flash memory to SIAS.

It has to be analyzed how possible effects of this combination influence the Flash memory
(endurance, longevity) and the MV-DBMS (throughput, latency).

9.2.3 Compression of Sorted Runs

Leveraging the properties of sorted runs theoretically promises further improvements in terms
of write performance and I/O behavior. Sorted runs define a finite and locally restricted dataset
and tuples are sorted, hence tuple values correlate on tuple versions which are alike. Sorted runs
can also be compressed when attributes only differ in small delta changes or contain common
properties.

Integrating the compression into the MV-DBMS offers a possible reduction of header informa-
tion, since a sorted run can also be seen as one large block of pages instead of multiple single
pages that yield individual headers. The principle of using minimal headers for very large tuples
is already applied in practice, e.g. as a toast relation in PostgreSQL [92]. Also each sorted run
contains a finite set of tuple versions that differ in only a single attribute. Compression of sorted
runs can reduce the amount of written data but increases the complexity of each read access.
The idea of such a compression of a data-portion that is persisted on the Flash storage has been
implemented most recently in hardware controllers of Flash SSDs [101].
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