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1 Introduction 

1.1 Motivation 

Load forecasting is an important component for power system energy management system. 

Precise load forecasting helps the electric utility to make unit commitment decisions, reduce 

spinning reserve capacity and schedule device maintenance plan properly. Besides playing a key 

role in reducing the generation cost, it is also essential to the reliability of power systems. The 

system operators use the load forecasting result as a basis of off-line network analysis to 

determine if the system might be vulnerable. If so, corrective actions should be prepared, such 

as load shedding, power purchases and bringing peaking units on line. 

Since in power systems the next days’ power generation must be scheduled everyday, day-ahead 

short-term load forecasting (STLF) is a necessary daily task for power dispatch. Its accuracy 

affects the economic operation and reliability of the system greatly. Underprediction of STLF 

leads to insufficient reserve capacity preparation and, in turn, increases the operating cost by 

using expensive peaking units. On the other hand, overprediction of STLF leads to the 

unnecessarily large reserve capacity, which is also related to high operating cost. It is estimated 

that in the British power system every 1% increase in the forecasting error is associated with an 

increase in operating costs of 10 million pounds per year [1].  

In spite of the numerous literatures on STLF published since 1960s, the research work in this 

area is still a challenge to the electrical engineering scholars because of its high complexity.  

How to estimate the future load with the historical data has remained a difficulty up to now, 

especially for the load forecasting of holidays, days with extreme weather and other anomalous 

days. With the recent development of new mathematical, data mining and artificial intelligence 

tools, it is potentially possible to improve the forecasting result.  

With the recent trend of deregulation of electricity markets, STLF has gained more importance 

and greater challenges. In the market environment, precise forecasting is the basis of electrical 

energy trade and spot price establishment for the system to gain the minimum electricity 

purchasing cost. In the real-time dispatch operation, forecasting error causes more purchasing 

electricity cost or breaking-contract penalty cost to keep the electricity supply and consumption 

balance. There are also some modifications of STLF models due to the implementation of the 
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electricity market. For example, the demand-side management and volatility of spot markets 

causes the consumer’s active response to the electricity price. This should be considered in the 

forecasting model in the market environment.  

1.2 Objectives 

Due to some data measurement and transmission problems, in the historical database there 

might be some bad data, which are far away from their real values. The existence of bad data in 

historical load curve affects the precision of load forecasting results. One of the objectives of 

this research work is to find a way to detect the bad data, eliminate them and evaluate the real 

data. 

Since precise load forecasting remains a great challenge, another objective of this work is to 

develop some new and practical models and algorithms with some up-to-date techniques. The 

power system operators always have very good intuition in manual load forecasting with their 

long time working experience. Therefore it is an attempt to combine the operators’ experience 

with the presented models in a convenient way.  

As can be seen from the bibliography, many methods have been developed for STLF. From the 

experimental results the conclusion can be drawn that different methods might outperform the 

others in different situations, i.e. one method might gain the lowest prediction error for one time 

point, and another might for another time point. How to choose a good method or the 

combination of different methods for different situations becomes necessary. This research tries 

to develop a comprehensive method selection to fulfill this goal.  

1.3 Thesis Organization Outline and Conventions 

The following chapters of this thesis can be mainly divided into 3 parts: the pretreatment of the 

historical data, the load forecasting with some proposed methods, and the integrative algorithm 

to combine the various approaches. The thesis is organized as follows. 

Chapter 2 gives an overview of the short-term load forecasting problem. The property of the 

system load, various forecasting methods, and the difficulty in forecasting are introduced. In 

chapter 3 the pretreatment of historical load data is discussed. This includes bad data detection 

and load curve smoothing. A regression tree algorithm is applied to short-term load forecasting, 

which is explained in detail in chapter 4. The experts’ experience is combined with the 
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algorithm to enhance its performance. In chapter 5 a support vector machine approach is 

proposed, which is composed of the cascaded modules of clustering, classification and fine 

regression. Chapter 6 describes the forecasting from a systematic point of view, including the 

integrative algorithm to combine different forecasting results and the generalized programming 

system device. The final chapter summarizes the research work and closes the thesis. 

In this thesis the following conventions will be employed unless otherwise stated. 

● The number of sample load points of per day is 96, i.e. the sampling interval is 15 minutes. 

● The examples are mainly from the Shanghai Power Grid data. German data have also been 
employed for the generalization of the methods. But since Shanghai load is more difficult to 
predict, Shanghai data is the default data for the case study. 

● Mean Absolute Percentage Error (MAPE) will be employed to measure the error of the 
methods.  

● For simplicity’s sake, term “target load”, “target day”, and “target time point” are used to 
represent respectively “the load which is to be forecasted”,  “the day for which the load is to 
be forecasted”, and “the time point at which the load is to be forecasted”, and  “point i” is 
used to represent the ith point of the daily load curve.  





 5 

2 Basic Concepts of Short-term Load Forecasting 

2.1 Characteristics of the Power System Load 

The system load is the sum of all the consumers’ load at the same time. The objective of system 

STLF is to forecast the future system load. Good understanding of the system characteristics 

helps to design reasonable forecasting models and select appropriate models in different 

situations. Various factors influence the system load behavior, which can be mainly classified 

into the following categories 

● weather 
● time 
● economy 
● random disturbance. 

The effects of all these factors are introduced as follows to provide a basic understanding of the 

load characteristics.  

Weather 

Weather factors include temperature, humidity, precipitation, wind speed, cloud cover, light 

intensity and so on. The change of the weather causes the change of consumers’ comfort feeling 

and in turn the usage of some appliances such as space heater, water heater and air conditioner. 

Weather-sensitive load also includes appliance of agricultural irrigation due to the need of the 

cultivated plants. In the areas where summer and winter have great meteorological difference, 

the load patterns differ greatly. Fig. 2.1 shows the typical different seasonal weekday Shanghai 

load profiles of the year.  

Normally the intraday temperatures are the most important weather variables in terms of their 

effects on the load; hence they are often selected as the independent variables in STLF. 

Temperatures of the previous days also affect the load profile. For example, continuous high 

temperature days might lead to heat buildup and in turn a new system peak. Humidity is also an 

important factor, because it affects the human being’s comfort feeling greatly. People feel hotter 

in the environment of 35  and 70% relative humidity than in the environment of 37  and 50% ℃ ℃

relative humidity. That’s why THI (temperature-humidity index) is sometimes employed as an 

affecting factor of load forecasting. Furthermore, WCI (wind chill index) is another factor that 



6 2  Basic Concepts of Short-term Load Forecasting 

measures the cold feeling. It is a meaningful topic to select the appropriate weather variables as 

the inputs of STLF.  
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Fig. 2.1 Typical seasonal workday Shanghai load profiles  

 

Time 

Time factors influencing the load include time point of the day, holiday property, 

weekday/weekend property and season property. From the observation of the load curves it can 

be seen that there are certain rules of the load variation with the time point of the day. For 

example, the typical load curve of the normal winter weekdays (from Monday to Friday) of the 

E.ON power grid in Germany is shown in Fig. 2.2, with the sample interval of 15 minutes, i.e. 

there are altogether 96 sample points in one day. The load is low and stable from 0:00 to 6:00; it 

rises from around 6:00 to 9:00 and then becomes flat again until around 12:00; then it descends 

gradually until 17:00; thereafter it rises again until 19:00; it descends again until the end of the 

day, but in between there is a sudden jump at 22:00 because the electricity price becomes lower 

at this time. Actually this load variation with time reflects the arrangement of people’s daily life: 

working time, leisure time and sleeping time. 
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Fig. 2.2 Typical load curve of the normal winter weekdays of the E.ON power grid  

There are also some other rules of load variation with time. The weekend or holiday load curve 

is lower than the weekday curve, due to the decrease of working load. Shifts to and from 

daylight savings time and start of the school year also contribute to the significant change of the 

previous load profiles.  

Periodicity is another property of the load curve. There is very strong daily, weekly, seasonal 

and yearly periodicity in the load data. Taking good use of this property can benefit the load 

forecasting result.  

Economy 

Electricity is a kind of commodity. The economic situation also influences the utilization of this 

commodity. Economic factors, such as the degree of industrialization, price of electricity and 

load management policy have significant impacts on the system load growth/decline trend. With 

the development of modern electricity markets, the relationship between electricity price and 

load profile is even stronger. Although time-of-use pricing and demand-side management had 

arrived before deregulation, the volatility of spot markets and incentives for consumers to adjust 

loads are potentially of a much greater magnitude. At low prices, elasticity is still negligible, but 

at times of extreme conditions, price-induced rationing is a much more likely scenario in a 

deregulated market compared to that under central planning.  
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Random Disturbance 

The modern power system is composed of numerous electricity users. Although it is not 

possible to predict how each individual user consumes the energy, the amount of the total loads 

of all the small users shows good statistical rules and in turn, leads to smooth load curves. This 

is the groundwork of the load forecasting work. But the startup and shutdown of the large loads, 

such as steel mill, synchrotrons and wind tunnels, always lead to an obvious impulse to the load 

curve. This is a random disturbance, since for the dispatchers, the startup and shutdown time of 

these users is quite random, i.e. there is no obvious rule of when and how they get power from 

the grid. When the data from such a load curve are used in load forecasting training, the impulse 

component of the load adds to the difficulty of load forecasting. Special events, which are 

known in advance but whose effect on load is not quite certain, are another source of random 

disturbance. A typical special event is, for example, a world cup football match, which the 

dispatchers know for sure will cause increasing usage of television, but cannot best decide the 

amount of the usage. Other typical events include strikes and the government’s compulsory 

demand-side management due to forecasted electricity shortage.  

2.2 Classification of Developed STLF Methods 

In terms of lead time, load forecasting is divided into four categories: 

● Long-term forecasting with the lead time of more than one year 
● Mid-term forecasting with the lead time of one week to one year 
● Short-term load forecasting with the lead time of 24 to 168 hours 
● Very short-term load forecasting with the lead time shorter than one day  

Different categories of forecasting serve for different purposes. In this thesis short-term load 

forecasting which serves the next day(s) unit commitment and reliability analysis is focused on.  

The research approaches of short-term load forecasting can be mainly divided into two 

categories: statistical methods and artificial intelligence methods. In statistical methods, 

equations can be obtained showing the relationship between load and its relative factors after 

training the historical data, while artificial intelligence methods try to imitate human beings’ 

way of thinking and reasoning to get knowledge from the past experience and forecast the future 

load.  
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The statistical category includes multiple linear regression [2], stochastic time series [3], general 

exponential smoothing [4], state space [5], etc. Recently support vector regression (SVR) [6, 7], 

which is a very promising statistical learning method, has also been applied to short-term load 

forecasting and has shown good results. Usually statistical methods can predict the load curve of 

ordinary days very well, but they lack the ability to analyze the load property of holidays and 

other anomalous days, due to the inflexibility of their structure. Expert system [8], artificial 

neural network (ANN) [9] and fuzzy inference [10] belong to the artificial intelligence category. 

Expert systems try to get the knowledge of experienced operators and express it in an “if…then” 

rule, but the difficulty is sometimes the experts’ knowledge is intuitive and could not easily be 

expressed. Artificial neural network doesn’t need the expression of the human experience and 

aims to establish a network between the input data set and the observed outputs. It is good at 

dealing with the nonlinear relationship between the load and its relative factors, but the 

shortcoming lies in overfitting and long training time. Fuzzy inference is an extension of expert 

systems. It constructs an optimal structure of the simplified fuzzy inference that minimizes 

model errors and the number of the membership functions to grasp nonlinear behaviour of short-

term loads, yet it still needs the experts’ experience to generate the fuzzy rules. Generally 

artificial intelligence methods are flexible in finding the relationship between load and its 

relative factors, especially for the anomalous load forecasting. 

Some main STLF methods are introduced as follows.  

Regression Methods 

Regression is one of most widely used statistical techniques. For load forecasting regression 

methods are usually employed to model the relationship of load consumption and other factors 

such as weather, day type and customer class.  

Engle et al. [11] presented several regression models for the next day load forecasting. Their 

models incorporate deterministic influences such as holidays, stochastic influences such as 

average loads, and exogenous influences such as weather. [12], [13], [14] and [15] describe 

other applications of regression models applied to load forecasting.  

Time Series 

Time series methods are based on the assumption that the data have an internal structure, such 

as autocorrelation, trend or seasonal variation. The methods detect and explore such a structure. 
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Time series have been used for decades in such fields as economics, digital signal processing, as 

well as electric load forecasting. In particular, ARMA (autoregressive moving average), 

ARIMA (autoregressive integrated moving average) and ARIMAX (autoregressive integrated 

moving average with exogenous variables) are the most often used classical time series methods. 

ARMA models are usually used for stationary processes while ARIMA is an extension of 

ARMA to nonstationary processes. ARMA and ARIMA use the time and load as the only input 

parameters. Since load generally depends on the weather and time of the day, ARIMAX is the 

most natural tool for load forecasting among the classical time series models.  

Fan and McDonald[16] and Cho et al. [17] described implementations of ARIMAX models for 

load forecasting. Yang et al. [18] used an evolutionary programming (EP) approach to identify 

the ARMAX model parameters for one day to one week ahead hourly-load-demand-forecasting. 

The evolutionary programming is a method for simulating evolution and constitutes a stochastic 

optimization algorithm. Yang and Huang [19] proposed a fuzzy autoregressive moving average 

with exogenous input variables (FARMAX) for one day ahead hourly load forecasting.  

Neural Networks 

The use of artificial neural networks (ANN or simply NN) has been a widely studied load 

forecasting technique since 1990 [20]. Neural networks are essentially non-linear circuits that 

have the demonstrated capability to do non-linear curve fitting.  

The outputs of an artificial neural network are some linear or non-linear mathematical function 

of its inputs. The inputs may be the outputs of other network elements as well as actual network 

inputs. In practice network elements are arranged in a relatively small number of connected 

layers of elements between network inputs and outputs. Feedback paths are sometimes used.  

In applying a neural network to load forecasting, one must select one of a number of 

architectures (e.g. Hopfield, back propagation, Boltzmann machine), the number and 

connectivity of layers and elements, use of bi-directional or uni-directional links and the number 

format (e.g. binary or continuous) to be used by inputs and outputs [19].  

The most popular artificial neural network architecture for load forecasting is back propagation. 

This network uses continuously valued functions and supervised learning. That is, under 

supervised learning, the actual numerical weights assigned to element inputs are determined by 

matching historical data (such as time and weather) to desired outputs (such as historical loads) 
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in a pre-operational “training session”. Artificial neural networks with unsupervised learning do 

not require pre-operational training.  

Bakirtzis et al. [62] developed an ANN based short-term load forecasting model for the Energy 

Control Center of the Greek Public Power Corporation. In the development they used a fully 

connected three-layer feed forward ANN and a back propagation algorithm was used for 

training. Input variables include historical hourly load data, temperature, and the day of week. 

The model can forecast load profiles from one to seven days. Also Papalexopoulos et al. [22] 

developed and implemented a multi-layered feed forward ANN for short-term system load 

forecasting. In the model three types of variables are used as inputs to the neural networks: 

seasonal related inputs, weather related inputs, and historical loads. Khotanzad et al [23] 

described a load forecasting system known as ANNSTLF. It is based on multiple ANN strategy 

that captures various trends in the data. In the development they used a multilayer perceptron 

trained with an error back propagation algorithm. ANNSTLF can consider the effect of 

temperature and relative humidity on the load. It also contains forecasters that can generate the 

hourly temperature and relative humidity forecasts needed by the system. An improvement of 

the above system was described in [24]. In the new generation, ANNSTLF includes two ANN 

forecasters: one predicts the base load and the other forecasts the change in load. The final 

forecast is computed by adaptive combination of these forecasts. The effect of humidity and 

wind speed are considered through a linear transformation of temperature. At the time it was 

reported in [23], ANNSTLF was being used by 35 utilities across the USA and Canada. Chen et 

al. [25] also developed a three layer fully connected feed forward neural network and a back 

propagation algorithm was used as the training method. Their ANN though considers electricity 

price as one of the main characteristics of the system load.  Many published studies use artificial 

neural networks in conjunction with other forecasting techniques such as time series [26] and 

fuzzy logic [27].  

Similar Day Approach 

This approach [28] is based on searching historical data for days within one, two or three years 

with similar characteristics to the forecast day. Similar characteristics include weather, day of 

the week and the date. The load of a similar day is considered as a forecast. Instead of a single 

similar day load, the forecast can be a linear combination or regression procedure that can 
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include several similar days. The trend coefficients can be used for similar days in the previous 

years.  

Expert Systems 

Rule-based forecasting makes use of rules, which are often heuristic in nature, to do accurate 

forecasting. Expert systems incorporate rules and procedures used by human experts in the field 

of interest into software that is then able to automatically make forecasts without human 

assistance.  

Ho et al. [29] proposed a knowledge-based expert system for the short-term load forecasting of 

the Taiwan power system. Operators’ knowledge and the hourly observation of system load over 

the past five years are employed to establish eleven day-types. Weather parameters were also 

considered. Rahman and Hazim [30] developed a site-independent technique for short-term load 

forecasting. Knowledge about the load and the factors affecting it is extracted and represented in 

a parameterized rule base. This rule-based system is complemented by a parameter database that 

varies from site to site. The technique is tested in different sites in the United States with low 

forecasting errors. The load model, the rules and the parameters presented in the paper have 

been designed using no specific knowledge about any particular site. Results improve if 

operators at a particular site are consulted.  

Fuzzy Logic 

Fuzzy logic is a generalization of the usual Boolean logic used for digital circuit design. An 

input under Boolean logic takes on a value of “True” or “False”. Under fuzzy logic an input is 

associated with certain qualitative ranges. For instance the temperature of a day may be “low”, 

“medium” or “high”. Fuzzy logic allows one to logically deduce outputs from fuzzy inputs. In 

this sense fuzzy logic is one of a number of techniques for mapping inputs to outputs.  

Among the advantages of the use of fuzzy logic are the absence of a need for a mathematical 

model mapping inputs to outputs and the absence of a need for precise inputs. With such generic 

conditioning rules, properly designed fuzzy logic systems can be very robust when used for 

forecasting. Of course in many situations an exact output is needed. After the logical processing 

of fuzzy inputs, a “defuzzification” can be used to produce such precise outputs. [31], [32] and 

[33] describe applications of fuzzy logic to load forecasting.  
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Data mining 

Data mining is the process that explores information data in a large database to discover rules, 

knowledge, etc [34, 35]. Hiroyuki Mori et al. proposed a data mining method for discovering 

STLF rules in [49]. The method is based on a hybrid technique of optimal regression tree and an 

artificial neural network. It classifies the load range into several classes, and decides which class 

the forecasted load belongs to according to the classification rules. Then multi layer preceptron 

(MLP) is used to train the sample in every class. The paper puts an emphasis on clarifying the 

nonlinear relationship between input and output variables in a prediction model.  

Wavelets 

A STLF model of wavelet-based networks is proposed [37] to model the highly nonlinear, 

dynamic behavior of the system loads and to improve the performance of traditional ANNs. The 

three-layer networks of the wavelet, the weighting, and the summing nodes are built by an 

evolutionary computing algorithm. Basically, the first layer of wavelet nodes decomposes the 

input signals into diverse scales of signals, to which different weighting values are given by the 

second layer of weighting nodes. Finally the third layer of summing nodes combines the 

weighted scales of signals into the output. In the evolutionary computing constructive algorithm, 

the parameters to be tuned in the networks are compiled into a population of vectors. The 

populations are evolved according to the stochastic procedure of the offspring creation, the 

competition of the individuals, and the mutation.  

To investigate the performance of the proposed evolving wavelet-based networks on load 

forecasting, the practical load and weather data for the Taiwan power systems were employed. 

Used as a reference for determining the input variables of the networks, a statistical analysis of 

correlation functions between the historical load and weather variables was conducted a priori. 

For comparison, the existing ANNs approach for the STLF, using a back propagation training 

algorithm, was adopted. The comparison shows wavelet-based ANN forecasting has a more 

accurate forecasting result and faster speed.  

Integration of Different Algorithms 

As there are many presented methods for STLF, it is natural to combine the results of several 

methods [38]. One simple way is to get the average value of them, which can lower the risk of 

individual unsatisfactory prediction. A more complicated and reasonable way is to get the 
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weight coefficient of every forecasting method by reviewing the historical prediction results. 

The comprehensive result is deduced by weighted average method.  

2.3 Requirements of the STLF Process 

In nearly all the energy management systems of the modern control centres, there is a short-term 

load forecasting module. A good STLF system should fulfill the requirement of accuracy, fast 

speed, automatic bad data detection, friendly interface, automatic data access and automatic 

forecasting result generation.  

Accuracy 

The most important requirement of STLF process is its prediction accuracy. As mentioned 

before, good accuracy is the basis of economic dispatch, system reliability and electricity 

markets. The main goal of most STLF literatures and also of this thesis is to make the 

forecasting result as accurate as possible.  

Fast Speed 

Employment of the latest historical data and weather forecast data helps to increase the accuracy. 

When the deadline of the forecasted result is fixed, the longer the runtime of the STLF program 

is, the earlier historical data and weather forecast data can be employed by the program. 

Therefore the speed of the forecasting is a basic requirement of the forecasting program. 

Programs with too long training time should be abandoned and new techniques shortening the 

training time should be employed. Normally the basic requirement of 24 hour (96 points) 

forecasting should be less than 20 minutes.  

Automatic Bad Data Detection 

In the modern power systems, the measurement devices are located over the system and the 

measured data are transferred to the control centre by communication lines. Due to the sporadic 

failure of measurement or communication, sometimes the load data that arrive in the dispatch 

centre are wrong, but they are still recorded in the historical database. In the early days, the 

STLF systems relied on the power system operators to identify and get rid of the bad data. The 

new trend is to let the system itself do this instead of the operators, to decrease their work 

burden and to increase the detection rate.  

Friendly Interface 
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The interface of the load forecasting should be easy, convenient and practical. The users can 

easily define what they want to forecast, whether through graphics or tables. The output should 

also be with the graphical and numerical format, in order that the users can access it easily.  

Automatic Data Access 

The historical load, weather and other load-relevant data are stored in the database. The STLF 

system should be able to access it automatically and get the needed data. It should also be able 

to get the forecasted weather automatically on line, through Internet or through specific 

communication lines. This helps to decrease the burden of the dispatchers.  

Automatic Forecasting Result Generation 

To reduce the risk of individual imprecise forecasting, several models are often included in one 

STLF system. In the past such a system always needs the operators’ interference. In other words, 

the operators have to decide a weight for every model to get the combinative outcome. To be 

more convenient, the system should generate the final forecasting result according to the 

forecasting behavior of the historical days.  

Portability 

Different power systems have different properties of load profiles. Therefore a normal STLF 

software application is only suitable for the area for which it has been developed. If a general 

STLF software application, which is portable from one grid to another, can be developed, the 

effort of developing different software for different areas can be greatly saved. This is a very 

high-level requirement for the load forecasting, which has not been well realized up utill today.  

2.4 Difficulties in the STLF 

Several difficulties exist in short-term load forecasting. This section introduces them separately. 

Precise Hypothesis of the Input-output Relationship   

Most of the STLF methods hypothesize a regression function (or a network structure, e.g. in 

ANN) to represent the relationship between the input and output variables. How to hypothesize 

the regression form or the network structure is a major difficulty because it needs detailed a 

prior knowledge of the problem. If the regression form or the network structure were improperly 

selected, the prediction result would be unsatisfactory. For example, when a problem itself is a 
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quadratic, the prediction result will be very poor if a linear input-output relationship is supposed. 

Another similar problem is parameter selection: not only the form of the regression function (or 

the network structure), but also the parameters of it should be well selected to get a good 

prediction. Moreover, it is always difficult to select the input variables. Too many or too few 

input variables would decrease the accuracy of prediction. It should be decided which variables 

are influential and which are trivial for a certain situation. Trivial ones that do not affect the load 

behavior should be abandoned.  

Because it is hard to represent the input-output relationship in one function, the mode 

recognition tool, clustering, has been introduced to STLF [54]. It divides the sample data into 

several clusters. Each cluster has a unique function or network structure to represent the input 

and output relationship. This method tends to have better forecasting results because it reveals 

the system property more precisely. But a prior knowledge is still required to do the clustering 

and determine the regression form (or network structure) for every cluster.  

Generalization of Experts’ Experience 

Many experienced working staff in power grids are good at manual load forecasting. They are 

even always better than the computer forecasting. So it is very natural to use expert systems and 

fuzzy inference for load forecasting. But transforming the experts’ experience to a rule database 

is a difficult task, since the experts’ forecasting is often intuitive.  

The Forecasting of Anomalous Days 

Loads of anomalous days are also not easy to be predicted precisely, due to the dissimilar load 

behaviour compared with those of ordinary days during the year, as well as the lack of sufficient 

samples. These days include public holidays, consecutive holidays, days preceding and 

following the holidays, days with extreme weather or sudden weather change and special event 

days. Although the sample number can be greatly enhanced by including the days that are far 

away from the target day, e.g. the past 5 years historical data can be employed rather than only 

one or two years, the load growth through the years might lead to dissimilarity of two sample 

days. From the experimental results it is found that days with sudden weather change are 

extremely hard to forecast. This sort of day has two kinds of properties: the property of the 

previous neighbouring days and the property of the previous similar days. How to combine 

these two properties is a challenging task.  
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Inaccurate or Incomplete Forecasted Weather Data 

As weather is a key factor that influences the forecasting result, it is employed in many models. 

Although the technique of weather forecasting, like the load forecasting, has been improved in 

the past several decades, sometimes it is still not accurate enough. The inaccurate weather report 

data employed in the STLF would cause large error.  

Another problem is, sometimes the detailed forecasted weather data cannot be provided. The 

normal one day ahead weather report information includes highest temperature, lowest 

temperature, average humidity, precipitation probability, maximum wind speed of the day, 

weather condition of three period of the day (morning, afternoon and evening). Usually the 

number of the load forecasting points in a day is 96. If the forecasted weather data of these 

points can be known in advance, it would greatly increase the precision. However, normal 

weather reports do not provide such detailed information, especially when the lead time is long. 

This is a bottleneck of load forecasting.  

Less Generalization Ability Caused By Overfitting 

Overfitting is a technical problem that needs to be solved for load forecasting. Load forecasting 

is basically a “training and predicting” problem, which is related to two datasets: training data 

and testing data. Historical training data are trained in the proposed model and a basic 

representation can be obtained and in turn used to predict the testing data. For the outcoming 

training module, if the training error for the training data is low but the error for the testing data 

is high, “overfitting” is said to have occurred. Fig. 2.3 shows the regression curve of the 1-

dimensional input to illustrates the effect of overfitting. The round dots represent the testing data 

and the triangle dots represent the training data. In (a) both the training error and the testing 

error are low. In (b) where overfitting exists, although the training error is almost zero, the 

testing error is quite high. A significant disadvantage of neural networks is overfitting; it shows 

perfect performance for training data prediction but much poorer performance for the future data 

prediction. Since the goal of STFL is to predict the future unknown data, technical solutions 

should be applied to avoid overfitting.  
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test data
train data

             

test data
train data

 

(a) Without overfitting 
 

(b) With overfitting 

Fig. 2.3 Illustration of training result with/without overfitting 

The Destroy of Load Curve Nature By Compulsory Demand-side Management 

With the development of economical development and relative lag in power investment, energy 

shortage has appeared in many countries. To avoid reliability problem and assure the power 

supply of very important users, compulsory demand-side management is often executed. This 

compulsory command destroys the natural property of load curve. When this kind of load curve 

is included in training, it serves as noise and deteriorates the final results. 
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3 Historical Data Pretreatment 

3.1 Overview of Load Bad Data 

The existence of bad data in historical load curve affects the precision of load forecasting result. 

There are two kinds of bad data in the daily load curve: false channel bad data and abnormal 

event bad data. False channel bad data are due to the measurement and transmission mistakes, 

and they are far from their real physical values. Abnormal event bad data come from some 

unexpected sudden incidents, such as short circuit and equipment overhaul, which cause 

unnatural sudden changes of the load curve trend. According to the continuous time of the bad 

data appearance they can be put into two categories: long-last bad data and short-period bad data. 

Fig. 3.1 shows these two kinds of bad data.  
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(a) Short-period false channel bad data 
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(b) Long-lasting false channel bad data 
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(c) Short-period abnormal event bad data 
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(d) Long-lasting abnormal event bad data 

Fig. 3.1 Daily load curves with bad data 

The thick lines of Fig. 3.1 (a), (b), (c) and (d) show respectively daily load curves with short-

period false channel bad data, long-lasting false channel bad data, short-period abnormal event 

bad data, and long-lasting abnormal event bad data. In Fig. 3.1(a) and (b), where the bad data 

are caused by false channel, the thin lines correspond to the real physical values of bad data. In 

Fig. 3.1 (c) and (d), where the bad data are caused by abnormal events, the thin lines correspond 

to what the load values of bad data are supposed to be if the abnormal events didn’t take place. 

Through observation and analysis of a large amount of historical load curves in different areas, 

it is discovered that most of the bad data, especially the false channel bad data do not last for a 

long time. For example, through the statistic research of Shanghai Power Grid of 2004, it is 

found out that more than 90% of the bad data lasted less than 30 minutes.  
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3.2 Bad Data Detection and Replacement  
3.2.1 Basic idea of second order difference 

To investigate the proposed second order difference for bad data detection, firstly two concepts 

of second order difference are introduced. Suppose L(i) is the real load of the point i in the load 

curve, then its forward second order difference (FSOD) is defined as 

  (3.1) 
..

f ( ) ( ( ) ( 1)) ( ( 1) ( 2)L i L i L i L i L i= − + − + − + )

and its backward second order difference (BSOD) as 

  (3.2) 
.. ..

b f( ) ( 2) ( ( 2) ( 1)) ( ( 1) ( )) L i L i L i L i L i L i= − = − − − − − −

The idea of second order difference for bad data detection is, for the continuously time-variant 

physical quantity in nature, in a short enough period of time, the second order difference of the 

continuous samples is close to zero, or located in a short interval V = [v1, v2], where v1 is a small 

negative number, and v2 is a small positive number. But the electrical power load bad data, 

whether they are caused by false channel or by abnormal event, usually lead to a sudden change 

in the load curve; thus their corresponding second order difference is far from zero and therefore 

doesn’t belong to the interval V. If FSOD of point i is within V, points i, i + 1 and i + 2 are 

thought to be continuous and vise versa. If BSOD of point i is within V, points i, i - 1 and i - 2 

are thought to be continuous and vise versa.  

The bad data separate a load curve into several segments. The points in every segment are 

continuous, e.g. S1, S2, S3 in Fig. 3.1. By calculating the second order difference, the continuous 

segment(s) of a load curve can be detected. Suppose the indices of the starting and ending points 

of one segment are respectively m and n, they should satisfy the following two rules:
..

f ( )L i V∈ , i 

= m,m + 1…,n - 2; and , i = m + 2, m + 2...n.  
..

b ( )L i V∈

If a bad datum n + 1 appears next to a segment of normal data, it shows a sudden change in the 

curve and its backward second order difference absolute value is large: 
..

b ( 1)L n V+ ∉ . 

For a given load curve, the description of bad data and continuous segment detection is as 

follows. Note that the load curve doesn’t need to be a daily load curve; it can be with arbitrary 

length.  

1) First consider the leftmost point of a load curve, i.e. i = 1.  
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2) If , it is supposed to be the starting point of segment S
..

f ( )L i V∈ 1; otherwise, consider the 

forward second order difference of the right-side neighboring point, i.e. i = i + 1, until the 

starting point is found. 

3) Let i = i + 2; if , which means i is still in the continuous segment, consider its right-

side neighbouring point, i.e. i = i + 1; if 

..

b ( )L i V∈
..

b ( )L i V∉ , point i - 1 is regarded as the ending point of 

the continuous segment S1. 

4) Explore the remaining load curve with the above technique to find the other segments S2, 

S3, …until all the points of the daily load curve are covered.  

 

i=1, t=0

t=t+1;
Set i as the Starting point of S(t);

i=i+2

Set i-1 as the ending 
point of S(t)

Set i as the ending point of S(t)
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n-i>2

Y

N
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Y

N

..

f ( )L i V∈

Y

N

Y

N
..

b ( )L i V∈

 
Fig. 3.2 Flowchart of finding continuous segment(s) 

Fig. 3.2 illustrates how to find the continuous segment(s) for a series of sampling load data. In 

the figure n means the total sampling number in the curve, and S(t) means the tth segment the 

algorithm detects.  
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Fig. 3.3 Bad data in a continuous segment 

When more than one continuous segment is obtained, the points between the neighbouring 

continuous segments are regressed in a quadratic form to revaluate the points between them. 

The continuous segments do not always represent the good data. Sometimes, bad data can also 

constitute a continuous segment. For example, segment S2 in Fig. 3.3 contains false channel bad 

data, but it is still in a continuous segment. To detect the bad data that appear to be in a 

continuous segment, determine whether the bordering points (for example, a2 and a3 in Fig. 3.3) 

are still bad data according to the revalued points by calculating the related second order 

difference. The following are the procedures of revising the curve with bad data, Fig. 3.1(a) 

taken as an example: 

1) Use data in the last n1 points in S1 and the first n1 points in S2 to form a least square quadratic 

regression formulation L(t) = at2 + bt + c and determine the parameter a, b and c, t being the 

time point. 

2) With the regression result L(t), replace the load data of the open interval between the ending 

point of S1(a2) and the starting point of S2(a3) (the thin line in Fig. 3.1(a)). 

3) With data in S1 and S2 as well as the new load data derived in step 2, calculate 
..

f 2( 1L a )−  and 

. If both of them belong to V, the regression result is the acceptable substitution of bad 

data. Otherwise, S

..

b 3( 1L a + )

2 is thought to be invalid and all the points in it are regarded as bad data. In 

this case, the above method is applied to segment S1 and S3.  

4) Repeat the above procedure to replace all the bad data of the load curve.  
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If the interval between two segments is too long, it is considered a long-lasting bad data period, 

e.g. Fig. 3.1(b). Regarding such a long interval as a quadratic curve may cause unacceptable 

error. Fig. 3.4 shows an example of an unsuccessfully revised curve with long-lasting bad data, 

where the actual load and the revised curve are not close to each other. Since the lack of data 

makes it difficult to estimate these data, the corresponding load curve is given up and taken out 

of the database. In this thesis the upper limitation of the interval is set to be 75 minutes. 

Fortunately due to the property that most bad data don’t last long, most of the bad data of the 

load curve can be revalued effectively. Due to a similar reason, the number of points (2n1) that 

constitute the regression samples shouldn’t be very large. In this thesis n1 is set to occupy 45 

minutes of the load curve.  
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Fig. 3.4 Unsuccessfully revised curve with long-lasting bad data 

3.2.2 Consideration of the segment with both good and bad data 

In the case of Fig. 3.1(c) and Fig. 3.1(d), an abnormal event comes suddenly but recovers 

gradually. Thus, there might be the segment that contains both bad data and good data, and there 

is no obvious border that distinguishes bad data from good data. Here Fig. 3.5 is taken as an 

example to illustrate how to deal with it. It’s not successful to make a smooth regression for S1 

and S2 because a2 is a sudden change point. Set a point b1 which is to the right of the starting 

point of a2 but still on the segment S2. S21 is used to represent the segment between point b1 and 

point a3. Try to make smooth quadratic regression with S1 and S21. If it succeeds, the open 

interval between a2 and b1 is thought to be bad data and revalued by the regression. Otherwise, 

find in S21 a point b2 to the right of b1 and repeat the process. But for the case of Fig. 3.1(d), due 

to the long time for the bad data to recover, the regression result is not reliable, so it is given up. 
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If in this case S2 is long enough (e.g. more than two days), it is considered that the forepart of it 

(e.g. four hours) has suspicious data and should be taken out of the database.  
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Fig. 3.5 Dealing segments with both good and bad data 

3.2.3 Selection of interval V 

The selection of V is very important. A too broad interval can cause the neglecting of some bad 

data, while a too narrow interval can cause misjudgment. In this thesis the statistics theory is 

applied. Consider n + 2 points of the load curve over a relatively long period of time (e.g. a 

month) and calculate the forward second order difference of every point: 

   (1), (2),..., ( )FSOD FSOD FSOD n

Define the average value of them 

 ( (1) (2) ... ( )) /  FSOD FSOD FSOD FSOD n n= + + +  (3.3) 

The standard deviation of them is 
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2

1

1 ( ( ( ) ) )
1

n

i

DEV FSOD i FSOD
n =

= −
− ∑  (3.4) 

Thus it can be derived  

 1 2[ , ] [ 3 , 3 ]v v FSOD DEV FSOD DEV= = − +V   (3.5) 

According to the probability theory, the point whose FSOD value is outside V is considered to 

be a bad datum. Here n should be a large number to decrease the effect of bad data inside the 

second order difference sequence. In this thesis n ≥ 3 × 104 is required. It can be proved that V is 

also the acceptable interval for BSOD.  

3.3 Smoothing the Load Curve  

In some power systems, the daily load curve is not very smooth even without bad data, 

especially in the highly industrialized areas where there is a large amount of impulse load such 

as steel mill, synchrotrons and wind tunnels. The startup and shutdown time of these devices is 

quite random, i.e. there is no obvious regularity for them. When the data of such a load curve are 

used in load forecasting training, the impulse part of the load adds to the difficulty of load 

forecasting. After detecting the bad data and replacing them with reasonable ones, the load 

curve might still be not very smooth because of the impulse load, although the curve’s sudden 

change it causes is not as obvious as the bad data. In this research work the smoothing method is 

proposed. 

It can be thought that a load curve is the sum of two load curves (Fig. 3.6), an essential load 

curve that represents the basic load requirement, and a vibrating curve that contains the 

information of sudden change of the large consumers’ state. With some experiments, it is found 

that the essential load curve has some regularity; however the regularity of vibrating curves is 

not so easy to get. Further more, the mean absolute value of the latter is much less than that of 

the former. Therefore the smoothed curve is used in training instead of the original curve, so that 

the ruleless vibration does not affect the prediction result. To prove this, two kinds of methods 

are employed in short-term load forecasting. The first one is to predict the load with the original 

historical load data, and the other one is to predict the load with the essential load curve. In the 

forecasting result shown in Chap. 6, it is found that the second method improves the forecasting 

accuracy of the first method by 18.6%. Actually this kind of prediction doesn’t take the 

vibrating load of the target load into account. Because of the lack of statistical significance, the 



3.3  Smoothing the Load Curve 27 

prediction of vibrating load is not very predictable. Therefore it is better to only predict the 

essential load and regard it as the forecasting result. 

In this stage, the essential load curve is achieved through weighted least square quadratic fitting. 

Consider a span for the point t to be fitted. Compute the regression weights for each data point 

in the span. The weights are given by the cube function shown in Eq. (3.6). 
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Fig. 3.6 Demonstration of curve decomposition 
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ti are the neighbors of t as defined by the span, and d(t) is the distance along the abscissa from t 

to the most distant predictor value within the span. The weights have the following 

characteristics. The data point to be smoothed has the largest weight and the most influence on 

the fitting. Data points outside the span have zero weight and no influence on the fitting. For the 

daily load curve the span is set to be 90 minutes long. A weighted quadratic least squares 

regression is performed according to the calculated weights of the points in the span, together 

with their corresponding load values. The smoothed value is given by the weighted regression at 

the predictor value of interest, namely, point t. 

Fig. 3.7 shows the flowchart of the proposed historical data pretreatment system, including the 

segments search, bad data revaluation and curve smoothing. For a system where the load curve 

is very smooth, the smoothing module can be ignored. The bad data that couldn’t be revalued 

will be regarded as absent data.  
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In some power systems, due to the electricity price policy, “natural” sudden change in the daily 

load curve exist. For example, the electricity price drops at the time of 22:00 everyday in the 

German E.ON power grid. This leads to the sudden jump at around this time in the daily load 

curve. In the proposed method of bad data detection and curve smoothing, these kind of points 

should be regarded as exceptions, which should not be considered bad data or smoothed.  
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Fig. 3.7 Historical data pretreatment system flowchart 

3.4 Case Study 

The proposed method of historical load data pretreatment is applied to the Shanghai Power Grid 

daily load curve. The historical database contains the load of 2001-2004, with the sampling 

interval being 15 minutes. Tab. 3.1 shows the statistics of bad data. Altogether 10.96% of all the 

daily load curves contain bad data, and altogether 86.04% of the bad data curves can be revalued. 

The statistics of bad data of the German E.ON power system in 2003 is shown in Tab. 3.2. Fig. 
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3.8 shows some daily load curves that contain some detected bad data. The examples are from 

the Shanghai Power Grid. The estimated actual values are also displayed on the figures, with the 

triangle symbol.  

Tab. 3.1 Statistics of bad data from the Shanghai power system in 2001-2004 

Daily load curves with bad data (%) 10.96 
False channel curves (%) 5.21 

Abnormal event curves (%) 5.75 
Successfully revalued false channel curves (%) 5.02 

Successfully revalued abnormal event curves (%) 4.41 
Successfully revalued bad data curves (%) 9.43 

 

Tab. 3.2 Statistics of bad data from the German E.ON power system in 2003 

Daily load curves with bad data (%) 1.37 
False channel curves (%) 1.1 

Abnormal event curves (%) 0.27 
Successfully revalued false channel curves (%) 1.1 

Successfully revalued abnormal event curves (%) 0 
Successfully revalued bad data curves (%) 1.1 

 

In Fig. 3.8(a) the first two occurrences of bad data are revalued to prevent the curve from 

sudden change. But points from point 50 on cannot be revalued, so this period is discarded. In (b) 

point 50-point 65 contains bad data. Since the period is very long, it is decided by the algorithm 

not to revalue them. The beginning part of the next segment from 66 on is thought suspicious 

and also discarded. In this research, it is supposed that the first four hours of this segment are 

not reliable, so the discarded period is from point 66 to point 82. In (c), (d) and (e) all the 

detected bad data are replaced with estimated values. 
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(a) Curve of 2002.11.24 
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(b) Curve of 2002. 1.22 
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(c) Curve of 2001.9.1 
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(d) Curve of 2001.3.18 
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(e) Curve of 2001.6.17 

Fig. 3.8 Daily load curves with bad data and the revaluation 

Fig. 3.9 shows the effect of bad data detection and fitting. Curve (a) is the load curve of 

2001.04.15 with bad data and impulse load, curve (b) is bad data detection and substitution 

module output of curve (a), and curve (c) is the fitting module output of curve (b). It can be seen 

that curve (b) detected and revalued the bad data effectively, and curve (c) reflects the trend of 

the curve correctly and shows better smoothness than curve (b). The span corresponding to Eq. 

(3.6) is selected to include 7 points (90 minutes long).  
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(a) The Original Daily Load Curve 
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(b) Curve processed by bad data detection module 

4500

5000

5500

6000

6500

7000

1 11 21 31 41 51 61 71 81 91

MW

Sample Number
 

(c) Curve processed by fitting module 

Fig. 3.9 The effect of bad data detection and fitting for a daily load curve 

Shanghai is a metropolis with over a population of 16 million population and has a very 

advanced industry. Its numerous electricity users make the effect of any individual user 

behaviour in consuming electricity not so obvious. As a result, the impulse part of the Shanghai 

load curve is not very obvious. Therefore a relatively smaller utility, the Changzhou Power Grid 

in China, is taken here as an example of the smoothing effect. Fig. 3.10 shows the original load 

curve, essential load curve and vibrating curve of several days in Changzhou. In order to get 

detailed original curve information, the data with the 288 sample points are used, i.e. the sample 
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interval is five minutes. The figures show that with the proposed smoothing algorithm the daily 

load curve can be smoothed very well. 
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(a) Changzhou load curves of 2003.01.29 
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(b) Changzhou load curves of 2003.03.23 

Fig. 3.10 The effect of smoothing 

In order to test the bad data detection ability of the proposed algorithm, some fictitious bad data 

are added to replace the actual load. The number of these fictitious data is 15% of the total load 

data. The proposed method is applied, and all the fictitious data are detected.  The MAPE of the 

replaced data compared with the real data is 0.97%. 

In this chapter the way of detecting bad data has been demonstrated, as well as the way of 

getting rid of the ruleless impulse component from the load curve. Traditional ways of bad data 

detection are to compare a load curve with the other curves. If it is abnormal, all of the data in 

the curve are regarded as useless. The application of second order difference bad data detection 

is an effective way to find out the bad data. It also revalues the bad data so that plenty of 
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information is not lost. The load curve revised by fitting is much flatter than the original one, 

but it retains the basic changing trend of the original one very well. Later on this thesis will 

show that these methods help to decrease the prediction error. From the prediction results, it can 

be seen that the application of bad data detection and fitting can significantly increase the 

forecasting accuracy.  
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4 Regression Tree Based STLF 

4.1 CART Regression Tree Algorithm 

As a non-parameter algorithm, regression tree (RT) is an automatic classifier. For a learning 

sample consisting of n historical cases (x1,y1), (x2,y2), …(xn, yn), where xt is the tth independent 

variable with a form of m-dimensional vector, and yt is the corresponding response variable with 

numerical value, RT forms a binary tree structure classifier. The tree is constructed by repeated 

splits of subsets into two descendant subsets according to sample input variables. Every split is 

an inquiry about the input variables, and the answers of “yes” and “no” lead respectively to the 

left and right descendant subsets. Fig. 4.1 is the regression tree of a predefined function 

. 2
1 2 1 2 1 2( 1) 4 , , [0,7xy x x x e x x x−= − + − ∈ ]

]

Since a regression tree algorithm only deals with discrete values, firstly the function is 

discretized into 64 vectors of input and output variables in the domain. Part of the discretized 

data is shown in Tab. 4.1, on the basis of which the regression tree of Fig. 4.1 is constructed. 

Tab. 4.1 Discretized inputs and outputs for  2
1 2 1 2 1 2( 1) 4 , , [0,7xy x x x e x x x−= − + − ∈

Vector ID 1 2 3 4 5 6 7 8 9 10 … 64
x1 0 0 0 0 0 0 0 0 1 1 … 7 
x2 0 1 2 3 4 5 6 7 0 1 … 7 
y 1.0 -3.6 -7.9 -12.0 -16.0 -20.0 -24.0 -28.0 1.0 -3.6 … 266.0

 

 

Fig. 4.1 Regression tree of  2
1 2 1 2 1 2( 1) 4 , , [0,7xy x x x e x x x−= − + − ∈ ]
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Every subset is called a “node”, e.g. node a, b,…,s in Fig. 4.1. If a split of node N1 divides it into 

two nodes: N2 and N3, then N1 is the parent of N2 and N3, and N2 is N3’s sibling. In Fig. 4.1 node 

b is the parent of d and e, and d and e are the siblings of one another. A leaf node is one without 

further splits, e.g node j, k…s in Fig. 4.1. The root node is the original sample set, e.g. node a in 

Fig. 4.1. Every leaf node has an output value and a rule which can be expressed in the form of 

“if…then…”. For instance the rule of node m in Fig. 4.1 is  

“if 1.5 ≤ x2 < 3.5 and x1 ≥ 4.5, then y = 66.76”.  

In forming a regression tree, three elements are necessary to determine a tree predictor: 

● A way to select a split at every intermediate node 
● A rule for determining when a node is a leaf node 
● A rule for assigning an output value to every leaf node  

Breiman et al. proposed the classification and regression tree (CART) in 1984 [39]. The 

algorithm answers the above questions very well. To give an overview of these answers from 

CART, some concepts are introduced as follows.  

For a node k that contains cases (xk1,yk1), (xk2,yk2)…(xkN,ykN),  its dispersion (or data dispersion) 

is measured as the total standard deviation (DEV) of ykt, t = 1, …, N: 
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 (4.2) 

In order to find the best split variable and the best split value for this variable, the RT algorithm 

checks all possible splitting variables, as well as all possible values of every variable to be used 

to split the node. Suppose for any split S of node k into kL and kR, let 

 ( ) ( ) ( )L Rf DEV k DEV k DEV k= − −  (4.3) 

The above 3 questions about forming a RT are answered as follows.  

1) The best split of the node is the one that can maximize (4.3). 

http://www.amazon.com/exec/obidos/search-handle-url/index=books&rank=relevancerank&field-author-exact=Leo%20Breiman/102-3538996-0459313
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2) If the sample number N is too small, the statistical significance is not obvious. Therefore, the 

lower limitation of N is set: Nmin. The nodes are split until one of these conditions is satisfied. 

● Condition 1: the sample number of the subset is less than Nmin  
● Condition 2: all the sample points of the subset have the same output value. 

3) The output value of the leaf node k is the average output value of all the cases, i.e. ky
−

 of the 

node k. 

Compared with the other regression or network algorithms, RT has the following advantages. It 

is unnecessary to build a regression equation or network construction for the algorithm, because 

the algorithm itself can automatically classify the data and assign a value for every node without 

any a prior knowledge. The result of the algorithm is with the form of “if… then…”, which can 

be easily understood. Both continuous and categorical independent variables are acceptable in 

forming a regression tree. It can handle the non-homogeneous relationship between input and 

output variables. It can estimate the error of the prediction values. It is robust with outliers. 

Given a redundant set of input variables, it is able to pick up the important input variables and 

ignore the redundant ones.  

4.2 Application of CART in Short-term Load Forecasting 

This thesis presents two kinds of RT application to STLF: non-increment RT method and 

increment RT method.  

4.2.1 Non-increment method 

The non-increment RT method regards every day as a sample object of the tree. Suppose the 

historical day indices are 1,2,…,t, and the pth point of day t + 1 is to be forecasted. Then the pth 

point load of day 1…t are regarded as the response value of the learning sample, with a great 

number of corresponding independent variables of the focus day: TH, TL, THP, HU, WR, whose 

meaning is shown in Tab. 4.2.  

The regression tree is developed based on these data. For the target load to be forecasted, the 

related input variables are employed to find the leaf node, the output value of which is 

considered as the prediction value. The dispersion and the node sample number of the leaf node 

can also be obtained. 
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Tab. 4.2 Input variable definition for non-increment regression tree 

Parameter Definition 
TH The highest temperature of the sample day ( )℃  
TL The lowest temperature of the sample day ( )℃  

THP The highest temperature of the sample day’s previous day ( )℃  
HU Average humidity of the sample day (%) 
WR Weekday rank of the sample day, 1...7 means from Monday to Sunday

 
An experienced dispatcher usually compares only the days with the same weekday type to 

predict the future load because the data similarity of weekday and weekends is not very strong. 

For example, if he wants to forecast the load of Wednesday, he would use the data of Tuesday, 

Monday and last Friday, Thursday and avoid using the data of last Saturday and Sunday. Since 

the weekend and weekday daily load curves are quite different, in our research three different 

trees are constructed to decrease the dimension of the problem: the pure weekday tree, the pure 

Saturday tree and the pure Sunday tree. The pure weekday tree only deals with the data of 

weekdays, and the pure weekend tree only with the data of weekends. Holiday curves are 

usually quite different from the normal curves, so they are neglected in forming the historical 

data of a non-holiday. Later the holiday load forecasting will be surveyed specially. Fig. 4.2 

shows the basic process of the non-increment regression tree forecasting. 
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Fig. 4.2 Process of non-increment regression tree forecasting 
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In section 4.1 the CART rule for determining when a node is a leaf node was stated. In this 

research another stopping condition is added for it. This was proposed due to the following fact: 

for a forecasted result if the dispersion DEV is too large, the result is not believable because of 

the high historical data decentralization. As a result the upper limitation of DEVmax is set. 

Therefore besides condition 1 and condition 2, the third condition is added: 

● Condition 3: The dispersion of the subset is less than DEVmax 

In this case condition 2 can be ignored, because when all the sample points of the subset have 

the same output value, DEV(k) = 0, and this is just a special case for condition 3. Therefore once 

condition 1 or condition 3 is satisfied, the subset is thought to be a leaf node. For node k the 

algorithm executes the following procedure to decide if it is a leaf node: 

If N ≥  Nmin 
If DEV(k) < DEVmax 

  Node k is regarded as a leaf node and not split any more 
Else 
  Go on splitting 

 End 
Else 

 Node k is not split according to Eq. (4.3) 
End 

 
In this thesis DEVmax = 175MW and Nmin = 5. The forecasting result shows that this method 

often leads to a good result, especially for the leaf nodes that contain a large number of samples 

and small dispersion. But there are still some leaf nodes that either contain insufficient number 

of samples, or have large dispersion. For the target load to be forecasted, whose input values fall 

into these kind of nodes, there are insufficient similar samples, which often correspond to 

abnormal weather or special events. Although the sample numbers can be increased by 

including more historical days (e.g. five years’ historical data can be applied rather than only 

one or two years), it would lead to another problem: because of the change of the economic 

situation and its corresponding change of consuming electricity, two different days with similar 

weather and weekday conditions may have totally different load curves if the time interval 

between them is too long.  

4.2.2 Increment regression tree 

The idea of increment regression tree comes from the experience of the power system 

dispatchers. Although they don’t use any algorithm in STLF, their prediction result is usually 
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more accurate than many complex algorithms. That’s why in some power companies manual 

STLF is employed instead of the computer prediction. One of their key ways for prediction is to 

compare the forecasting target day condition with several previous reference days and predict 

the increment with experience. Unlike the non-increment RT, which regards every historical day 

as a sample case, the presented approach focuses on the difference of two different days. 

Suppose the historical days are 1,2,…,t, and the pth point of day t + 1 is to be forecasted, the 

following is the procedure of increment regression tree method for STLF.  

Select two days t1 and t2 which are in the historical database. The comparison of day t1 and t2 is 

regarded as a sample object of the increment regression tree. The independent variable has the 

form  

[TH, TL, THP, HU, DTH, DTL, DTHP, SR, DHU], 

whose meaning is shown in Tab. 4.3. 

Tab. 4.3 Input variable definition for increment regression tree 

Parameter Definition 
TH The highest temperature of day t2 ( )℃  
TL The lowest temperature of day t2 ( )℃  

THP The highest temperature of day t2’s previous day ( )℃  
HU The average humidity of day t2 (%) 

DTH The highest temperature difference between day t2 and t1 ( )℃  
DTL The lowest temperature difference between day t2 and t1 ( )℃  

DTHP The highest temperature difference between day t2 - 1 and t1 - 1 ( )℃
SR Whether t1 and t2 have the same day rank in a week 

DHU The average humidity difference between day t2 and t1 (%) 
 
The response variable is the relative increment of load of day t1 and t2 DLt2-t1 = (Lt2 - Lt1) / Lt1 

where Lt1, Lt2 are respectively the pth  load of day t1 and t2. 

Here the response value of the regression tree is a relative increment value, therefore this 

method is named “relative value increment regression tree”, to distinguish it from the “absolute 

value increment regression tree” method that will be introduced in the later part of this section.  

Suppose day indices from 1 to d are in the historical database, theoretically there are d - 1 + d - 

2 + … + 1 = (d - 1)d / 2 samples; this might lead to an overlarge tree when d is very large. 

Based on the dispatchers’ experience, only the difference of adjacent days is meaningful in 

comparison, because the load difference between days with a long interval doesn’t show 
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statistical significance. Therefore the upper limitation of the day difference DDaymax is set, and 

only the difference of day ti, tj that satisfy |ti - tj| <  DDaymax are valid in forming an increment 

sample. All the qualified historical samples are selected, the independent and dependent 

variables of which are employed to form the regression tree.  

In order to forecast the object load of day t + 1, first find its adjacent days: l1, l2,…, ln as 

reference days. All the adjacent days should satisfy the requirement of |li - (t + 1)| < DDaymax. 

For every reference day li, the independent variables can be obtained:  

[THli, TLli, THPli, HUli, SR(t+1)-li, DTH(t+1)-li, DTL(t+1)-li, DTHP(t+1)-li, DHU(t+1)-li]. 

Use these variables in the regression tree to reach a leaf node and the related load increment 

value DL(t+1)-li. The corresponding dispersion and the node sample number of the leaf node can 

be obtained. Suppose the pth load of reference day li is Lli, which is named in this research “base 

load”, the prediction value based on it is Lli (1 + DL (t+1)-li). Fig. 4.3 shows the process of the 

relative value increment regression tree forecasting. 
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Fig. 4.3 Process of relative value increment regression tree forecasting 

Similar to the relative value increment regression tree approach, another kind of regression tree 

method is proposed, which is named absolute value increment regression tree. Its input variables 

are the same as relative value increment regression tree. The only difference is in the output 

variable; here it employs the absolute value of the load increment: DLt2-t1 = (Lt2 - Lt1). The way 
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of forming the regression tree is the same as the relative value method. The corresponding 

dispersion and the node sample number of the leaf node can be obtained. Suppose the pth load of 

reference day li is Lli and DL (t+1)-li is the leaf node value of the target input variable, then the 

predicted load value based on them is Lli + DL (t+1)-li. 

Whatever kind of regression tree is employed, the output leaf node has two properties: number 

of samples and standard deviation. Because it can never be known in advance the error of using 

the leaf node output value as the prediction of the actual value, the standard deviation is simply 

regarded as a measure of the real error. However, their values are not really the same, but 

statistically the standard deviation is in accordance with the error. It is just thought that the 

lower the standard deviation is, the more possible a low forecasted error might be obtained. 

Hence it is used as a measure of the error. 

4.2.3 Tree prediction result combination 

Similar to the non-increment tree, the upper limitation of dispersion and the lower limitation of 

leaf node sample number are also set for regression tree: DEVmax, Nmin. In our research DEVmax = 

2.75% and Nmin = 7 for relative value regression tree, and DEVmax = 300MW and Nmin = 7 for 

absolute value regression tree.  

Suppose in the relative value RT for the n reference days, k of them are within valid leaf node 

(DEVli ≤ DEVmax and Nli ≥ Nmin), then k prediction values of the future load can be obtained. In 

addition, suppose in the absolute value RT for the n reference days, m of them are within valid 

leaf node, then m prediction values of the future load can also be obtained. For convenience here 

the indices of the qualified relative value RT leaf node are named q1,q2…qk. and the indices of 

the qualified absolute value RT leaf node are named qk+1,qk+2…qk+m. DEVqi means the standard 

deviation of the node qi, and Lqi means the base load of node qi. Furthermore there is the non-

increment RT prediction result of leaf node value and dispersion. For convenience the 

dispersion is labeled as DEVq(k+m+1), and the node value as Lq(k+m+1). To combine the leaf node 

values in a reasonable way, the weighted average method is applied to calculate the wanted load, 

introduced as follows.  

  (4.4) 1/( ),      1,...i qi qiCONF DEV L i k= ⋅ =

Lqi means the pth load of day qi, and DLqi is the increment RT leaf node output of day qi. CONFi 

is defined as the confidence of the qi
th forecasted result. Since the standard deviation of the qi

th 
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forecast result is DEVqi, approximately the upper and lower value of the forecasted target load 

are regarded to be respectively Lqi(1 + DLqi + DEVqi) and Lqi(1 + DLqi - DEVqi) for relative value 

RT. Both of these two have an absolute difference from the forecasted target load of DEVqiLqi. 

Consequently (4.4) is employed as the accuracy measurement with unit for the relative value 

increment tree. CONFi is referred to as the measurement of the precision of the result ith result, 

so it represents the confidence of the ith forecasted result. 

Similarly the confidence of the absolute value increment RT and non-increment RT can be 

acquired: 

 

  (4.5) 1/ ,      1,..., 1i qiCONF DEV i k k m= = + + +

= + +

1

Summing up all confidence of increment RT and non-increment RT results, the total confidence 

TOTAL_CONF is obtained: 
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Define Wi as the weight of the ith forecasting result in the final: 

  (4.7) / _        1,... 1i iW CONF TOTAL CONF i k m=

Equation (4.7) shows that the larger CONFi, the larger Wi. This follows the rule “the more data 

density in the leaf node, the more reliable the result is”. For the qi
th forecast result of relative 

value increment RT, Lqi is the base load of node qi, the forecasted target load is Lqi(1 + DLqi). In 

absolute value increment RT, the forecasted target load is Lqi + DLqi. Dq(k+m+1) is  the forecasted 

value of the non-increment RT. All the k + m + 1 predicted results are be averaged according to 

their weights: 
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 (4.8) 

If sample point qi’s relative value increment RT forecasted load has an error of ERi, and it 

contributes to the integrated result Wi, so the error it contributes is Wi·LDqi·ERi. Similarly the 

errors contributed by the non-increment RT and absolute value RT can also be obtained. In 

forecasting people certainly do not know the actual error of every forecasting result, so the 

dispersion is just regarded as the possible error, and the total error indicator (TEI) is defined as 
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  (4.9) 
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This is not equal to the forecasting error due to two facts: 1) the dispersion is not the actual error; 

2) the absolute value of the estimated error DEVqi is utilized since the sign of the error is 

actually unknown. But it gives the users an indicator of the probable error, which can be used to 

estimate the forecasting error. In normal ways of load forecasting, the result is a single load 

curve, but the introduction of TEI enables people to get the possible area of the future load, 

shown in Fig. 4.4. Fig. 4.4(a) shows a normal forecasted load curve, and (b) shows the 

forecasted area. This area is bordered by two curves: the higher curve corresponds to L + TEI, 

and the lower one L - TEI, and the curve between these two is the forecasted load curve. This 

helps the power system staff to make economical and reliable decisions on reserve capacity.  
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Fig. 4.4 Comparison of two forecasted results 
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The experienced dispatchers predict the target load in many different ways and combine the 

forecasted results. The weighted average method takes advantage of the human’s experience of 

predicting, combining several individual forecasted results according to their weights. This 

“average” result prevents the error from being overlarge. Especially when there is an undetected 

historical bad datum or abnormal datum, which is regarded as base load. Although this affects 

the result, its contribution is only a small fraction, due to the participation of the other forecasted 

results based on the correct base load. This adds to the robustness of the algorithm. 

From the observation and analysis of every day load, in a week with the same time point, the 

conclusion can be drawn that from Monday to Friday the load values are similar and those of 

Saturday and Sunday are lower. Due to this, our research constructs six different trees, the 

explanation of which is shown in Tab. 4.4. Note that every kind of increment tree can be further 

divided into two types: relative value and absolute value. This helps to decrease the dimension 

of the problem.  

Tab. 4.4 Explanation of different increment trees 

Tree Name Day 1 Day 2 
Pure weekday increment tree Mo ,Tu, We ,Th ,Fr Mo ,Tu, We ,Th ,Fr
Pure Saturday increment tree Sa Sa 
Pure Sunday increment tree Su Su 

Pure weekday-Saturday increment tree Mo ,Tu, We ,Th ,Fr Sa 
Pure weekday-Sunday increment tree Mo ,Tu, We ,Th ,Fr Su 
Pure Saturday-Sunday increment tree Sa Su 

 
4.2.4 Finding the desert border variable 

According to the generated RT, every input variable can reach its leaf node. As mentioned 

before, the leaf node with small dispersion and large sample number is thought to be valid. But 

after a lot of simulation experiments a special case has been found, which would affect the 

forecasting result seriously. It is named the “desert border” case. In this case, although the 

independent variable can correspond to a seemingly good leaf node with small dispersion and 

large sample number, one (or more) of the independent variable components is far different 

from this component of the samples in this leaf node. Such an independent variable is mentioned 

in this thesis as the “desert border variable”. In such a case, since the independent variable value 

is not very similar to the samples in the leaf node, the corresponding real value might also be far 

from the output value in the leaf node. Therefore, the prediction of the desert border variable 

should be discarded. This can be illustrated in Fig. 4.5, where the input variables (x1, x2) are 2-
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dimensional. All the round points are sample points, and the area inside the contour surrounding 

the sample points suggests the feature of these points. The leaf node sample points correspond to 

the rule “76 ≤ x2 < 94”. Note in the rule variable x1 is not mentioned. Now let’s have a look at 

the target points: point A(x1 = 16, x2 = 87) and B(x1 = 7, x2 = 90). They all satisfy the leaf node 

rule, but it can be clearly seen in the figure that A is within the contour and B isn’t. In this case 

A is a desert border point. Desert border phenomena often appear in STLF when the weather of 

the target day shows a sudden change compared with the previous days. Some desert border 

point examples will be shown in the example section. 

To make sure the target independent variable xt in not a desert border point, find all the 

x1,x2…xn which are the training samples that form the leaf node. Suppose the independent 

variable in m-dimensional, e.g.  

x1 = [x11,x12,…x1m], x2 = [x21,x22…x2m]…xn = [xn1,xn2…xnm], 

and the independent variable of the target load xt = [xt1,xt2,…,xtm]. Examine if every component 

of xt is a desert border component or not. Take the first component as an example: form the 

series [x11,x21,…,xn1], and calculate the average value 1x  as well as dispersion . Set 1DEV

[ ]1,3λ ∈  as a deviation coefficient. If 1 1 11[ ,t 1]x x DEV x DEVλ λ∉ − + , the first component is 

regarded as a desert border component. Check the other m - 1 components in this way. If any of 

the components is a desert border component, the input variable is regarded as a desert border 

point and the leaf node output value cannot be taken as the forecasted value. Now look again at 

Fig. 4.5. Employing this method of detection it can be seen that the input variable x1 of B is a 

desert border component according to the x1 values of the sample points, although B satisfies the 

leaf node rule. Therefore B will not be considered as being in the same cluster of the leaf node.  

 
Fig. 4.5 Illustration of desert border point 
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The following steps are the procedure of desert border variable detection 

1) For i = 1:m, execute the following loop. 

2) Calculate the average value ix  and dispersion  of the iiDEV th component of the leaf 

node input variable samples [x1i,x2i,…,xni] 

If [ ,ti i ii i ]x x dev x devλ λ∉ − +  

It is regarded as a desert border component, and the leaf node is regarded as a 
desert border point and break the “for” loop. 

Else 
 It is not regarded as a desert border component. 

End 

4.3 Historical Data Selection 

For a good load prediction, not only the input variables, but also the historical data need to be 

selected. Usually the data near the forecasting point have more similar property to the target 

load than the distant ones. But if only a few adjacent data are selected, the sample number might 

not be enough. In this thesis, RT can be used together with the dispatchers’ experience to solve 

this contradiction.  

In selecting samples, normally the near date samples have more similarity to the target load than 

the distant date. Therefore, our principle of using historical date is that, if in the near date there 

are enough similar days, they are used as sample days instead of taking the distant date into 

consideration. But sometimes there might be the “input variable sudden change date”, especially 

the sudden change of the temperature. For example, there are a hundred continuous days with 

the highest temperature lower than 27 degrees, but the following day’s highest temperature is 32 

degrees. Only using the nearby samples might lead to the “desert border problem” and, in turn, 

no prediction result can be obtained. In this case, it is better to turn to around this time last year 

for more close samples. 

Suppose the target day is t + 1, and day 1st...dth historical days’ load, weather and date 

information is accessible. The load curve has very strong yearly periodicity. From the 

dispatchers’ experience, normally the load curves are similar only when they are located in the 

adjacent relative position of the year (although they might be located in different years). So in 

this research the maximum relative position difference of two days, Day_Daymax, is also set. 

Suppose the historical day i is the Ti
th day of the year it belongs to, and the target day (t + 1) is 

the Tt+1
th day of its year. It is required that only the days that satisfy  
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 1 _i t maT T Day Day+− ≤ x  (4.10) 

are regarded as qualified training data. 

The selection of the historical date should follow the rule of “the nearer the historical time to the 

target, the more priority it has for training”. Fig. 4.6 shows the diagram of the historical data 

selection. Day t + 1 is the target date. The days with triangle satisfy the requirement of (4.10). 

The rows correspond to different years: Y1,Y2…Ym, where Ym is the target year.  

Divide the qualified days of every year into 2n equal (or nearly equal) columns. Therefore for 

every historical year Y1 to Ym-1 there are the historical training columns D1, D2,…D2n. For the 

target year Ym, since Dn+1 to D2n are future dates, only the columns D1, D2,…Dn contain 

historical training data. Now the potential historical sample days have been divided into (2m - 

1)n segments. Every individual segment is uniquely identified by its year ID (identity) and 

column ID. For simplicity the segment with year ID i and column ID j is named as Segment YiDj. 

To satisfy the rule of “the nearer the historical date to the target, the more priority it has for 

training”, arrange the segments according to their distance to the target day: 

YmDn, YmDn-1, YmDn-2,…,YmD1, Ym-1Dn+1, Ym-1Dn, Ym-1Dn+2, Ym-1Dn-1,…,Ym-1D2n, Ym-1D1,…,Y1Dn+1, 

Y1Dn, Y1Dn+2, Y1Dn-1,…,Y1D2n, Y1D1. 

For convenience, these segments are called BB1, B2B ,…BB(2m-1)n, and a (2m - 1)n-element historical 

training data sequence BB is constituted:  

[BB1, B1B  + BB2, B1B  + BB2 + B3B , …, BB1 + B2B  + … + BB(2m-1)n], 

or simply [BB1, BB2, …, BB(2m-1)n]. Those data corresponding to the segments will be trained in 

turn until the satisfactory prediction is obtained.  

To determine what is a satisfactory prediction, two parameters are set beforehand. TEImax is the 

upper limitation of total error indicator; and RNmin, which is the lower limitation of the result 

number. In the final result, it is believed that when  

TEI <  TEImax and k + m + 1 ≥  RNmin, 

the result is reliable.  
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Fig. 4.6 Demonstration of selection of the historical days 

The following is the procedure of main forecasting. First use BB1 as training set, and find out if 

the forecasting result has satisfactory total error indicator and result number. If not, use BB2 to 

enhance the historical date scale. Do it repetitiously until the good estimated result is obtained. 

Fig. 4.7 shows the process. If the elements of BB have been gone through and no satisfactory 

result has been found, the standard can be lowered or other forecasting ways can be sought for a 

better result. 

t=1

Predict in the historical 
period BBt
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Lower the requirement 
and output

output
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t=t+1

Y

N
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Fig. 4.7 Process of using the data in BB 
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The above-mentioned way of choosing historical sample days is limited to increment RT in this 

research. Non-increment regression tree can only take the samples within one year because of 

the possible load change of each year.  

Any of the following treatments can be done as a compromise when the elements of BB have 

been used and no satisfactory result has been found: 

● Increase the TEImax and calculate again. 
● Decrease RNmin and calculate again. 
● Seek for other calculating methods not involving iteration.  

Fig. 4.8 shows the RT load forecasting system schematic diagram proposed in this chapter. 

Historical database

Generate different 
increment RTs

Generate target 
input variables for 

increment RTs

Get different target leaf 
values

Get rid of desert 
border leaf values

Find Historical data 
samples for increment 

RT

Find Historical 
data samples for 

non-increment RT

Generate non-
increment RT Generate target input 

variables for non-
increment RTs

Get different target 
leaf value

Get rid of the leaf value 
if it is a desert border

Tree result 
combination

Result 
satisfactory? Output

Enlarge the historical 
period by historical 

data selection

YN

 
 

Fig. 4.8 Regression tree load forecasting system schematic diagram  
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4.4 Case Study 

The proposed method is applied to Shanghai Power Grid historical load data of 2000-2002 to 

test its effectiveness.  

Fig. 4.9 shows the non-increment tree of 2002.04.26(Friday), 12:30PM. Tab. 4.5 shows the 

statistics of the leaf nodes of Fig. 4.9. Nodes e, h and k are not qualified due to a small node 

sample number. The others are accepted nodes. From this example it can be found that the 

regression is intuitively easy to understand in analyzing the relationship between input and 

output variables. The input variable of 2002.04.26 is  

[TH, TL, THP, HU, WR] = [16.8 , 11.9 , ℃ ℃ 12.7℃, 70.4%, 5], 

 so it falls on node i, and the predicted load is 7115MW.  

 
Fig. 4.9 Non-increment tree of 2002.04.26, 12:30PM 

Tab. 4.5 Statistics of the leaf nodes of Fig. 4.9 

Leaf 
Node 
Name 

Node 
Sample 
Number 

Node 
Dispersion 

(MW) 

Node 
Output 
(MW) 

Input Variable Range 

e 2 106 7558 TH ≥ 27.55℃ HU < 72.3% 
f 5 146 7573 TL < 11.4℃ HU ≥ 72.3% 
h 4 111 7334 TH < 15.4℃ HU < 72.3% 
i 8 69 7115 15.4℃ ≤ TH < 27.55℃ HU < 72.3%
j 9 79 7328 11.4℃ ≤ TL < 17.55℃ HU ≥ 72.3%
k 2 45 7498 TL ≥ 17.55℃ HU ≥ 72.3% 
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Fig. 4.10 Increment tree of 2002.04.26, 12:30PM 

Fig. 4.10 shows the relative value incremental tree of the same point. Since the complete tree is 

too large to be shown in the thesis, only a small fraction of the tree is shown. Note that node a in 

the tree is not the root node, but one of the intermediate nodes of the tree. It satisfies the 

condition  

DTL ≥ -2.65℃, TH ≥ 12.25 ,℃  TL ≥ 13.15℃, HU ≥ 65.7%. 

Tab. 4.6 shows the statistics of the leaf nodes of Fig. 4.10. Due to large dispersion or small 

sample number, nodes b, i, r, s, t, w, and c’ are not qualified. Every leaf node has a 

“ if…then…” rule, and a corresponding load percentage increment. For example, leaf node m 

corresponds to rule:  

“if -2.65℃ ≤ DTL < 0.35  and ℃ TL ≥ 13.25  and ℃ HU ≥ 65.7% and TH ≥ 25.2  and ℃ DHU ≥ 

1.95%, then the load increment is –0.4%”. 



4.4  Case Study 53 

 
 

Tab. 4.6 Statistics of the leaf nodes of Fig. 4.10 

Leaf Node 
Name 

Node Sample 
Number 

Node 
Dispersion 

(%) 

Node Output 
Value (%) 

b 10 3.5 6.34 
i 11 3.2 -0.1 
m 12 2.75 -0.4 
n 7 2.2 0.28 
p 10 1.86 -2.27 
r 11 3.1 2.97 
s 5 1.68 -0.58 
t 6 1.76 -4.57 
u 12 1.54 -2.43 
w 3 2.76 8.35 
x 10 1.44 1.77 
a’ 13 2.26 1.81 
b’ 14 2.25 -0.45 
c’ 2 1.19 -6.02 
d’ 11 1.76 4.14 
e’ 10 1.72 2.17 

 
To show an example of relative value increment RT method, the load of 2002.04.24 is used. The 

input value  

[TH, TL, THP, HU, DTH, DTL, DTHP, SR, DHU] 

= [20.8℃, 14.0℃, 19.7℃, 95.3%, -4℃, -2.1℃, -1.9℃, false, -24.9%]. 

According to the regression tree, the input value leads to node p. The reference load in 

2002.04.21 is 7426MW, so the forecasted result is  

7426 × (1 - 2.27%) = 7257.2 MW. 

Tab. 4.7 shows the weighted average forecasting result of several trees to predict the load of 

2002.04.26, 12:30. 

Fig. 4.11 shows four typical seasonal weekday forecasted load curves in comparison with the 

actual load curves. Weekend load curves are relatively difficult to be forecasted than the normal 

days due to limited sample numbers. Fig. 4.12 shows four typical seasonal weekend forecasted 

load curves in comparison with the actual load curves. The figures indicate the error of these 

days is acceptable.  
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Tab. 4.7 Integrated weighted average forecasting result of 2002.04.26, 12:30PM 

 
Parameter 

Non-
increment 

Tree 

Increment 
Tree 1 

Increment 
Tree 2 

Increment 
Tree 3 

Increment 
Tree 4 

Reference load(MW) No 7466 7426 7485 7218 
Reference date No 02.04.22 02.04.23 02.04.24 02.04.25 

Leaf output 7115(MW) -3.3 -2.27 -1.8 3.4 
Forecast result (MW) 7115 7218.2 7257.2 7346.7 7463.4 

Dispersion 69(MW) 1.77(%) 1.85(%) 1.54(%) 1.29(%) 
Weight 0.29 0.16 0.15 0.17 0.22 

Integrated result 
(MW) 

7271.64 Actual load 
(MW) 

7395 Error (%) –1.67 
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(a) 2002.05.24(typical spring weekday) 
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(b) 2002.08.08 (typical summer weekday) 
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(c) 2002.10.25(typical autumn weekday) 
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(d) 2002.01.21(typical winter weekday) 

Fig. 4.11 Four typical seasonal weekday forecasted load curves  
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(a) 2002. 05.26(typical spring weekend) 
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(b)2002.08.10(typical summer weekend) 
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(c) 2002.11.23(typical autumn weekend) 
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(d) 2002.01.26 typical winter weekend 

Fig. 4.12 Four typical seasonal weekend forecasted load curves 
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As mentioned before, non-increment RT is good at predicting normal days with large sample 

number, but behaves poorly for small number sample training. This can be illustrated by Tab. 

4.8, which shows the comparison of pure non-increment method forecasting result and the 

increment + non-increment method forecasting result. The MAPE of every day maximum 

absolute error is shown, because the non-increment RT behaves especially poorly for this 

quantity. 

Tab. 4.8 MAPE (%) prediction result for the whole year in 2002 in comparison with pure non-
increment RT 

Method Jan Feb Mar Apr May Jun 
Tree combination 3.27 2.71 1.92 1.54 1.96 1.56 1*

Non-increment 4.18 3.56 2.07 1.58 2.28 1.62 
Tree combination 10.75 9.39 7.09 7.47 7.28 8.32 2*

Non-increment 16.25 14.93 12.71 7.74 7.53 9.08 
Method Jul Aug Sep Oct Nov Dec 
Tree combination 3.02 3.83 3.63 2.51 2.16 3.43 1*

Non-increment 3.84 4.20 3.82 2.63 2.49 4.68 
Tree combination 11.32 11.53 8.72 6.77 6.96 10.50 2*

Non-increment 14.61 17.17 10.96 6.65 7.66 14.42 
Method Average 
Tree combination 2.63 1*

Non-increment 3.08 
Tree combination 8.84 2*

Non-increment 11.64 

 

*1: MAPE for 96 points; 2: MAPE for maximal absolute error of the daily 96 points 

Tab. 4.9 shows the prediction result of the whole year in 2002. To show the effectiveness of the 

proposed method, ANN method was also employed as a comparison. Like RT method, ANN 

trains the weekday, Saturday and Sunday separately. The input variables employed by non-

incrment RT are also employed by ANN.  

Since weekend always lead to larger prediction error, Tab. 4.10 also shows the MAPE of 

weekend prediction. The average monthly MAPE of RT method is 2.63, lower than the error of 

2.80 in ANN method. The average monthly weekend MAPE of RT method is 2.99, much lower 

than the error of 4.07 in ANN method. The comparison indicates the excellence of the RT 

method.  
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Tab. 4.9 MAPE (%) prediction results  for the whole year in 2002. 

Method Jan Feb Mar Apr May Jun 
Proposed method 3.27 2.71 1.92 1.54 1.96 1.56 

ANN 3.58 2.49 2.11 1.51 1.89 1.90 
Method Jul Aug Sep Oct Nov Dec 

Proposed method 3.02 3.83 3.63 2.51 2.16 3.43 
ANN 3.23 4.13 3.48 2.35 3.07 3.87 

Method Average 
Proposed method 2.63 

ANN 2.80 
 

Tab. 4.10 Prediction results for the whole year weekend in 2002. 

Method Jan Feb Mar Apr May Jun 
Proposed method 3.25 2.98 2.05 2.01 2.21 2.15 

ANN 5.66 4.34 2.41 2.74 2.88 2.56 
Method Jul Aug Sep Oct Nov Dec 

Proposed method 3.85 4.16 3.79 3.31 2.50 3.64 
ANN 5.02 5.71 4.37 4.29 3.86 4.94 

Method Average 
Proposed method 2.99 

ANN 4.07 
 
In this researchλ = 2. Here the forecasting 17:30 load of 2002-9-25 is taken as an example to 

illustrate the effectiveness of desert point detection. The highest temperature of this day is 20.1

℃, which is a sudden drop compared with the previous days.  In the formation of an increment 

absolute value regression tree, the leaf node is met, the property of which is shown in Tab. 4.11. 

The target input value is  

[DTH, DTL, DHU, TH, TL, HU] = [ -4℃, 1.1℃, 13.8%, 21.9℃, 20.1℃, 68.4%] 

the target day to be compared is 2002-9-23, the target load to be compared is 7800.3MW. For 

variable TH, 1 1 1[ 2 , 2 1]x DEV x DEV− +  = [23.7℃, 31.0℃]. It can be seen that TL is smaller than 

the lower limitation of TL. Therefore it is regarded as “desert border point”. If this point is not 

neglected, its forecasted value should be: 7800.3 - 560.245 = 7240.06MW, which is far away 

from the real load 8722MW with error of -17.0%. 

Tab. 4.12 and Tab. 4.13 show respectively the two comprehensive results of load forecasting: 

abandoning and not abandoning the desert border point. 
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Tab. 4.11 Property of the example leaf node 

Node DTH DTL DHU TH TL HU DL 
1 -3.9 -0.8 10.6 25.5 23.9 94.5 -242.24 
2 -4.3 -1.8 14.5 25.5 23.9 94.5 -517.1 
3 -2.2 -0.5 17 27.5 26.2 89.8 -786.52 
4 -1.5 -0.7 16.5 28.2 26 89.3 -777.65 
5 -2.8 -1.4 17.4 30.5 27.1 81 -166.03 
6 -1.5 -0.1 14.2 30.5 27.1 81 -216.32 
7 -3 -1.4 9.3 29 25.8 76.1 -730.69 
8 -1.5 -1.3 -4.9 29 25.8 76.1 -514.38 
9 -2.8 -1.2 -7.7 26.2 24.6 68.4 -943.43 
10 -1.8 -1.3 -10.6 27.1 25.6 73.5 -697.65 
11 -2.5 -1.1 -5.8 27.1 25.6 73.5 -338.17 
12 -2.1 -1.2 9.3 25.3 21.2 80.7 -1144.8 
13 -1.6 -0.3 -3.9 25.8 22.1 67.5 -282.06 
14 -1.6 0 -6.1 25.8 22.4 65.3 -486.39 

Average -2.36 -0.93 4.99 27.36 24.81 79.37 -560 245 . 
Min  -4.18 -2.02 -16.46 23.71 21.09 59.98
Max  -0.54 0.15 26.43 31.01 28.53 98.76  

 

Tab. 4.12 Forecasting result of 2002-9-25, without desert border detection 

Leaf value -560.24 -12.11 -12.11 -12.11 -1007.5 -1007.5 -1007.5 -30.32
DEV 296.89 1.95 1.95 1.95 149.9 149.9 149.9 161.55

Reference load 7800.3 8679.6 8568.9 8475.2 8679.6 8568.9 8475.2 7800.3
Method A

*
B
* B* B* A* A* A* A*

Base load date 09.23 09.17 09.19 09.20 09.17 09.19 09.20 09.23 
Forecasted value 7240 7628.4 7531.2 7448.8 7672.1 7561.5 7467.8 7770 

Error Estimated 0.75% Forecast Load 7549.2 Error -13.45%

* A: non-increment absolute value; B: non-increment relative value 

Tab. 4.13 Forecasting result of 2002-9-25, with desert border detection 

Leaf value -1.38 -0.84 -0.84 -121.8 -42.80 -192.54 -42.80
DEV 0.73197 1.0816 1.0816 184.35 80.792 261.35 80.792

Reference load 7816.8 8679.6 8475.2 7816.8 8679.6 8568.9 8475.2
Method B

*
B
*

B
*

A
*

A
*

A
*

A
*

Date 09.16 09.17 09.20 09.16 09.17 09.19 09.20
Forecasted value 7708.8 8606.4 8403.8 7695 8636.7 8376.4 8432.4
Error Estimated 0.46% Forecast Load 8261.5 Error -5.28%

* A: non-increment absolute value; B: non-increment relative value 
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5 Short-term Load Forecasting Based on Support 

Vector Machine  

5.1 Support Vector Machine Theory 

Support vector machine (SVM) is a statistical learning method based on statistical analysis and 

robust regression theory, which has many advantages such as structural risk, high training speed, 

simple mathematical models with global optimal solution and better learning results than other 

pattern recognition and regression forecasting methods. It can be employed to deal with three 

sorts of problems: classification, regression and clustering. In this section the theories of support 

vector regression (SVR) and support vector clustering are briefly introduced. 

5.1.1 Support vector regression 

For  training data, in which the il th datum includes independent variable n
i R∈x  and 

corresponding dependent variable iy R∈ , to seek for the most suitable parameters  and  in 

the regression form of 

'x b

( ) ( '), ( )iy φ φ=x x xi b+ , the model can take the following form  

 

l
2 *

i
i 1

i

*

*
i

1min ( ') ( )
2

subject to     ( '), ( )

                     ( '), ( )

                    , 0

i

i i

i i

i

C
l

b y

y b

φ ε ε

i

φ φ ε ε

φ φ ε

ε ε

=

+ +

+ − ≤ +

ε− − ≤ +

>

∑x

x x

x x
 (5.1) 

φ  is a nonlinear transformation to some high dimensional feature-space. For simplicity, define 

( , ) ( '), ( )i j ik φ φ=x x x x . It is the kernel function (or simply kernel) that satisfies the Mercer’s 

condition [40]. ε  is the permissive error. iε  and *
iε  are the slack errors for the ith training point. 

 is the punishment constant of the slack errors. According to dual optimization theory, the 

model can be transformed to the following problem 
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where iα  and *
iα  are Lagrange multipliers of (5.1). 



62 5  Short-term Load Forecasting Based on Support Vector Machine 

Eq. (5.2) is a maximization optimization problem. Multiply the objective function with –1 and 

preserve the conditions, then a minimization optimization problem can be obtained: 
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This is a standard quadratic programming problem, for which many tools, such as sequential 

minimal optimization (SMO), interior points and Quasi-Newton, can be used to solve easily.  

For certain simple types of algorithms, statistical learning theory can identify rather precisely 

the factors that need to be taken into account to learn successfully. Real-world applications, 

however, often mandate the use of more complex models and algorithms, such as neural 

networks, that are much harder to analyze theoretically. The support vector algorithm achieves 

both. It constructs models that are complex enough: it contains a large class of neural nets, radial 

basis function nets, and polynomial classifiers as special cases. Yet it is simple enough to be 

analyzed mathematically, because it can be shown to correspond to a linear method in a high-

dimensional feature space nonlinearly related to input space. Moreover, even though it can be 

regarded as a linear algorithm in a high-dimensional space, in practice, it does not involve any 

computations in that high dimensional space. By the use of kernels, all necessary computations 

are performed directly in input space. This is the characteristic twist of support vector method. 

People are dealing with complex algorithms for nonlinear pattern recognition, regression, or 

feature extraction, but for the sake of analysis, people can “pretend” that they are working with a 

simple linear algorithm.  

The objective function of Eq. (5.1) is composed of two parts. The first part measures the 

smoothness of the feature space (and also that of the input space). It is referred to as “structural 

risk”; the minimization of this part is to make the final regression form as simple as possible. 

The second part measures the degree of point error deviations from the tolerated error. This part 

is regarded as “empirical risk”, the minimization of which is to make the regression as accurate 

as possible. Other traditional regression tools, such as ANN, linear and nonlinear regression, 

only deal with the empirical risk. That’s why they often lead to the unexpected overfitting. One 

outstanding property of SVM is to avoid overfitting by the utilization of structural risk together 

with empirical risk.  



5.1  Support Vector Machine Theory 63 

5.1.2 Support vector clustering 

As a kernel-based algorithm, support vector clustering [55] is a novel clustering method of 

kernel-based learning. The algorithm maps the data points from input space to a high 

dimensional feature space, where support vector machine theory is used to define a sphere 

enclosing them. The boundary of the sphere in the feature space is mapped back to a set of 

closed contours containing the data in input space. The dataset enclosed by each contour is 

defined as a cluster.  

Suppose {  is a dataset with N points, with . Using a nonlinear transformation }jx d
j ∈x φ  to 

map the points from the input space  to a high dimensional feature space, the algorithm looks 

for the smallest sphere enclosing all the points, described by the constraints: 

d

2 2( )j Rφ − ≤x a  

j∀ , where R  is the radius of the sphere, ⋅  is the Euclidean norm and a  is the center of the 

sphere. For the thj  point slack variables 0jξ ≥  is employed to get the soft constraints: 

 
2 2( )j R jφ ξ− ≤ +x a  (5.4) 

To solve this problem Lagrange multipliers , 0j jα μ ≥  and penalty coefficient are 

introduced to get the following Lagrangian:  

0C ≥

 
22 2min ( ( ) )j j j j j

j j

F R R C j
j

ξ φ α ξ μ= − + − − − +∑ ∑x a ξ∑  (5.5) 

In support vector machine, kernel function is defined: 1 2 1 2( , ) ( ), ( )k φ φ=<x x x x > . There are 

basically four kinds of kernels: linear function, polynomial function, Gaussian function and 

sigmoid function. As can be seen from the calculation results in section 5, all of these four 

functions are employed for support vector clustering, and the Gaussian kernel gives much better 

results than the other three. So in this section, the Gaussian kernel 
2

1 2
1 2( , )k e γ− −= x xx x  is mainly 

dealt with and regarded as the default kernel function.  

By setting the derivative of (5.5) to zero and applying the Karush-Kuhn-Tucker method [40], the 

above minimum can be transformed into its dual form, which is a quadratic programming 

problem: 

 
,

min ( ), ( ) ( ), ( )

subject to 1 and 0

j j j i j i j
j i j

i i
i

C

φ φ α αα φ φ

α α

−

= ≤ ≤

∑ ∑

∑

x x x x

 (5.6) 
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Eq. (5.5) is a minimization with respect to variables , , , ,j jR iξ μ αa . But when it is changed to its 

dual form of Eq. (5.6), only iα  becomes the variable and the other variables are given in terms 

of iα . 

In the high dimensional feature space, the distance between a point x  and the center of the 

sphere is defined: ( ) ( )R φ= −x x a . For the thj  point  if jx ( )jR R>x , point  lies outside the 

sphere, it is then considered as an “outlier” with corresponding 
jx

0jξ > . In the latter part of the 

thesis it will be discussed how to deal with the outliers.  

Although the mapped data (except the outliers) in the high dimensional feature space are inside 

a sphere, they might be within different contours in their original input space [56]. In order to 

classify data points into clusters, the connected components method is introduced as follows.  

The criteria of deciding whether two points belong to one cluster is to judge if all the points on 

the line segment between them can be matched back inside the sphere in the high-dimensional 

space. If two points  and  are arbitrarily selected from the training dataset, to determine 

whether they are in the same cluster, firstly set some sampling points on the line segment 

connecting the two points. An adjacency matrix A  is setup. If any sampling point is an outlier, 

 and  are regarded to be in different clusters, and element  and are set to be false. 

Otherwise, it is considered that all the points on the line segment connecting point  and point 

 are not outliers, then  and  are in the same cluster, and  and are set to be true.  

ix jx

ix jx ijA jiA

ix

jx ix jx ijA jiA

When every element of A  is calculated, the breadth-first-search technique [63] is used to 

determine different clusters. First put point 1 into cluster 1, and then put all the points that are 

connected with 1 (all the points  that satisfies Ajx 1j = true) into cluster 1. Similarly, for every 

 that have been detected to be connected with point 1, search all the points that are connected 

to it and put them in cluster 1. Do this repeatedly until no more points can be put in cluster 1. 

Now have a look at all the points. If there is still one (or more) that doesn’t belong to cluster 1, 

put it in cluster 2 and put all the points connected with it in cluster 2. The loop is broken until 

every point has been assigned a cluster number.  

jx

Compared with the conventional clustering method, support vector clustering has the following 

advantages: it doesn’t rely on the initial values; the quadratic programming problem of the 

algorithm is convex and has a globally optimal solution; and it can deal with outliers, making it 

robust with respect to noise in the data.  
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5.2 LIBSVM Solution 
5.2.1 Basic solution 

In section 5.1 the theory of support vector regression and support vector clustering was briefly 

reviewed. For support vector regression, model (5.3) is obtained; and for support vector 

clustering, model (5.6) is obtained. Both (5.3) and (5.6) are quadratic optimization problems. 

For the sake of simplicity and generalization, they can be generalized into the following form: 

 

1minimize 
2

subject to 
0 , 1,

T TQ p

Ts
C t lt

α α α

α
α

+

⎧ = Δ⎪
⎨

≤ ≤ =⎪⎩ 2...
 (5.7) 

The difficulty of equation (5.7) is, when there are many samples, matrix Q is a large-

dimensioned, non-sparse matrix. Lin [52] proposed a decomposition algorithm in LIBSVM (a 

library for support vector machines). The procedure of the algorithm is introduced as follows.  

1) Set  as the dimension of the working set, and lq ≤ kα as the original value of the final 

solution, and set . 1k =

2) If  is the optimal solution of equation kα (5.7), the calculation is stopped. Otherwise, define a 

q-dimensional working set {1,... }B l⊂ ; define BlN \},...1{= ; define and as the sub-

vectors corresponding respectively to B and N.  

k
Bα k

Nα

3) Solve the following optimization problem with the variable Bα . 
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where is the reorganization of . ⎥
⎦

⎤
⎢
⎣

⎡

NNNB

BNBB
QQ
QQ

Q

4) Define as the optimal solution of (5); let  ，and go to step 2. 1+k
Bα k

N
k
N αα =+1
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5.2.2 Selection of working set 

To get the optimal solution of (5.7) quickly and conveniently, the working subset should be 

carefully selected. Apply the Karush-Kuhn-Tucker (KKT) condition to model (5.7), there should 

be a scalar b, and non-negative vectors λandμ, which satisfy： 
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Eq. (5.9) can be rewritten as 
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According to Eq. (5.10)， lisi ,...,1,1 =±= ，and this further implies： 
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where ( )f α  is the objective function of (5.7), and ( )f α∇  is the gradient of ( )f α  at α . 

Define 
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 (5.12) 

and select B＝{i,j}. Here the dimension of B is chosen to be 2 rather than other values, so that 

Eq. (5.8) become a typical quadratic optimization with the analytical solution. Compared with 

the common optimal problem solutions, this algorithm needs less memory space and is more 

precise and faster.  

5.3 Application of Support Vector Machine to STLF 

In this thesis, a support vector clustering and regression method for short-term load forecasting 

is proposed. The method consists of three cascaded major modules: support vector clustering, 

decision tree classification [39] and support vector regression, shown in Fig. 5.1. The left part of 
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Fig. 5.1 illustrates how to generate the clusters and classification rules, and the right part shows 

how to apply these clusters and rules to forecast a future load. The general idea of the proposed 

method is introduced as follows.  

 

24 hour load of the 
historical dataset   

support vector 
clustering

              …...            cluster
2

decision tree 
classification

classification 
rules

classification 
rules

cluster
t

support vector 
regression

regression form

forecasted 
load

cluster 
n

cluster
1

input variables 
for the load to 
be forecasted

 

Fig. 5.1 Block diagram of the proposed method 

Firstly the daily load curves in the historical database are divided into several clusters using the 

algorithm of support vector clustering. The data in every cluster have more similarity than in the 

original dataset. Secondly the decision tree classification algorithm generates the rules to map 

the input variables (e.g. weather condition, day rank of the week etc.) to their corresponding 

cluster. To predict a future day load, its input variables are examined according to these rules to 

match the associated cluster. Then support vector regression is executed applying the historical 

data in this cluster. The regression form that shows the relationship between the input variables 

and the output load is achieved. Now the SVR input variables are utilized, namely they are 

applied to the regression form to get the expected load value. 

In the following subsections, the three modules of the proposed hybrid methods will be 

explained in more detail.  
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5.3.1 Clustering of historical load 

In the clustering procedure, a vector of several continuous load sample points of every historical 

day is regarded as a training object. Suppose there are altogether d  days in the historical 

database, and  is the real load of the ijL thi thj  day, 1,2,...i n= , 1,2,...j d= ;  is the number of 

sample load points in a day. If the target to be forecasted is the p

n
th load of day d + 1, for a certain 

j , elements 

{ | 2, 1, , 1, 2}ijL i p p p p p= − − + +  

are regarded as the input variables for the thj  day. Here five points are employed instead of only 

the pth load, because the similar loads not only have similar values on the pth point, but also have 

similar neighbours. In other words, the similar loads have the similar changing trend in the load 

curve. Support vector clustering described in section 2 is applied to these data to get the clusters. 

But too long an interval is also not employed (for example, 24 hours as described in [41]) 

because similar loads do not need to be associated with a very long similar load curve. How to 

select the points of the interval depends on experience. After some experiments, it is found that 

around one hour (the span of five points) is quite satisfactory.  

The concepts of repetitious clustering and overlapping clusters are presented to get better 

prediction precision. The effectiveness of the proposed method is demonstrated through 

calculation of forecasted data error. 

5.3.2 Repetitious clustering 

With power load data, the tiny cluster problem is encountered, which is not mentioned in other 

references. That means, in the result of support vector clustering, there are too many clusters 

that include few points. Moreover, there might be many outliers in the clustering result. In this 

thesis both kinds of points are referred to as “isolated points”. This is a drawback for the later 

training of these samples, because with insufficient number of samples, no training algorithm 

can get satisfactory results. To solve this, this thesis presents the repetitious clustering method. 

Instead of clustering only once, it is done in an iterative way. Because too few samples in one 

cluster would affect the training and prediction precision, the lower limitation of the point 

number for clusters is set up. However if the point number for a cluster is too large, the point 

number for the other clusters might be too small. So the upper limitation of the point number for 

clusters is also set up. Each time the samples are clustered, the resultant clusters are dealt with. 
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Clusters with proper point number are reserved as qualified ones, and the remaining data are 

clustered again. If, as a result of the clustering the point numbers of all the clusters are too large 

or too small, parameter γ  of kernel function  

2
1 2

1 2( , )K e γ− −= x xx x  

can be increased or decreased to get a cluster with reasonable number of members [55]. This 

repeats until every datum is in a proper cluster. 

All the historical data are put 
into  Data1; set Data2 to be null

Is Data1 null?

Support vector clustering with 
Data1

Qualified clusters 
exist

Take out qualified 
clusters from Data1 and 

put them into Data2
  Each cluster has 

more than      elements

Increase           

Decrease   

The end and output

    Each cluster has less   
than       elements and 

number of remaining data 
is not less than    

uN

γ

γ

lN

Yes

No

Yes

No

Yes

No

   Yes

No
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Fig. 5.2 Flowchart of repetitious clustering 
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Although the purpose of repetitious clustering is to avoid isolated points, it is very natural that 

for holidays, special events or abnormal weather, the corresponding load curve is abnormal and 

a cluster with many members that contains it cannot be found. Here the upper limitation of the 

number of isolated points is set up, and repetitious clustering comes to an end when the number 

of the rest data outside any cluster is below this value. These data are regarded as acceptable 

isolated points. Actually this is another advantage of the support vector clustering method: being 

able to find the real isolated points. Instead of using training methods, the prediction of these 

data should employ some expert knowledge, which will be another subject of our work in 

chapter 6. The prediction method presented in this chapter is not suitable for the isolated points.  

Fig. 5.2 is the flowchart of repetitious clustering. Its related term definition and variable 

explanation are given in Tab. 5.1. 

Tab. 5.1 Term definition and variable explanation of repetitious clustering 

1Data  The dataset to store all the data to be clustered 
2Data  The dataset to store the feasible clusters 

uN  Upper limitation of the member number in a cluster 

lN  Lower limitation of the member number in a cluster 
Tiny cluster Cluster whose member number is under  lN
Remaining data The data in  1Data

sN  Upper limitation of the isolated points 
Qualified cluster Cluster whose member number is in the rang of [ , ] lN uN

 
5.3.3 Slight revision of the algorithm to allow overlapping clusters 

With the repetitious clustering method, the load data are divided into several qualified clusters. 

After a lot of simulation, it is found that the application of overlapping clusters is better than 

completely separate clusters. This can be illustrated in Fig. 5.3. Fig. 5.3(a) and (b) show several 

points in a 2-D area. In Fig. 5.3(a), firstly the support vector clustering is done with all the 

points in the input space and cluster 1 is formed. Then it is done again with the remaining points 

and cluster 2 is formed. Points A and point B are classified in cluster 1. But it can be seen from 

the figure that points A and B also have some property of cluster 2. If the points are clustered in 

another way shown in (b), points A and B are in the overlapping part of clusters 1 and 2. 

Although Fig. 5.3 only shows the overlapping of two clusters for simplicity, the method can be 

generalized to more clusters. In other words, two or more clusters can share some same points. 
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The employment of overlapping clusters is quite useful in short-term load forecasting, as can be 

seen later in the table of forecasting result. 

Cluster 1 Cluster 2
Point A

Point B

              
Cluster 1 Cluster 2

Point A

Point B

 

(a) without overlapping                                    (b) with overlapping 

Fig. 5.3 Clustering without and with overlapping clusters 

To revise the algorithm presented in last subsection, some concepts are introduced as follows: 

The distance  from the map of point x  to a cluster center in the high dimensional feature 

space is defined by:  

( )R x

 
22

,

( ) ( ) ( , ) 2 ( , ) ( , )j j i j i j
j i j

R k kφ α α= − = − + kα∑ ∑x x α x x x x x x  (5.13) 

Cluster sphere: when a cluster has been formed, support vector clustering can be executed again 

with the data inside the cluster in the input space, and the corresponding sphere in the high 

dimensional feature space is the cluster sphere [55]. 

Inner sphere: suppose for a cluster m  the radius of its cluster sphere  in the high dimensional 

feature space is 
1O

R , inner sphere O  is a smaller sphere which has the same center as , but its 

radius is less than 
2 1O

R . Points inside  are thought to only belong to cluster . Points inside  

but out of  are thought to not only belong to m , but also possibly belong to other clusters in 

the dataset.  

2O m 1O

2O

In order to get the overlapping clusters, part of the repetitious clustering algorithm should be 

slightly revised. If a cluster whose member number lies in the area [ ],l uN N  exists, it is regarded 

as a qualified cluster. The data corresponding to this cluster are put in , and the distance 

between each point in the cluster and the cluster center, namely R(x) in Eq. 

2Data

(5.13), is calculated. 

If it is less than a predefined inner sphere radius, it is taken out from ; otherwise, it is left 1Data
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in  to take part in the next clustering. Some points might be left in  for more than 

one time, which proves that the number of overlapping clusters can be greater than 2. 

1Data 1Data

5.4 Regression of the Clustered Data 
5.4.1 Decision tree application 

After clustering, there are several calculated clusters. In the decision tree classification period, 

each sample takes the cluster ID it belongs to as its classification property according to the 

support vector clustering result. Because the decision tree method requires that every sample 

should have only one unique classification property, for the sample in overlapping clusters, it 

must be decided which of these clusters should be regarded as its cluster property. This thesis 

presents the method of relative distance calculation to decide it. For a point  which belongs to 

cluster , if the radius of the cluster sphere for cluster m  is , and the distance between x  

and the cluster centre is l , then the relative distance of the point  to the cluster sphere centre is 

defined as:  

x

m mr

x

  (5.14) ' / ml l r=

Suppose  is located in the intersection of several clusters, the cluster corresponding to the 

smallest relative distance will be selected as the winning one. It is regarded as the classification 

property of point . 

x

x

For the load to be forecasted the grown decision tree is used to find the cluster it belongs to. The 

output variable is the cluster ID number. The following variables are chosen as the input 

variables of the decision tree. 

TH: the highest temperature of the sample day 

TL: the lowest temperature of the sample day 

HU: the average humidity of the sample day 

WE: Weekend property: if the sample day is Saturday or Sunday, the corresponding value is true; 

otherwise false 

Monday, Tuesday, Thursday, Wednesday, Friday, Saturday, and Sunday: 7 weekday properties 

indicating day rank in a week. Note that every day can only belong to one weekday rank, so if 
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one of these seven properties for a certain day is “true”, then the others must have the “false” 

value.  

TH and TL are continuous numerical variables. The other variables have discrete property, and 

there are only two possible values for them: true and false.  

5.4.2 Support vector regression for the clustered data 

When the decision tree is built up, the input variables of the day whose load is to be forecasted 

are employed to determine which cluster it belongs to. With the advantages of structural risk, 

simple mathematical models and short training time, SVR is used to train all the data in this 

cluster and give the predicted result.  

Suppose the pth load of the day d + 1 is to be forecasted, the following variables are selected as 

the input variables of SVR: forecasted highest temperature TH, forecasted lowest temperature 

TL, the pth  load in the past 2 days, and of the last week, the corresponding highest temperature 

difference and the corresponding lowest temperature difference: 

, , 1 , 6 1 6 1, , , , , , , ,p d p d p d d d d d d dL L L DTH DTH DTH DTL DTL DTL− − − − − 6−  

A linear function is selected as a kernel. This is also an experience---it is found out that in the 

clustered data, the input variable and the output variable has an approximate linear relationship.   

5.5 Calculation Results 
5.5.1 Conditions 

1) The proposed method is applied to the Shanghai Power Grid real load data of 24 hour load 

forecasting. The goal is to predict 96 points load in every day in 2002.   

2) Suppose day ID of the target load is t , the time point of the target load is p, then days with ID 

from  to  are regarded as 730 historical data objects. Every object has 5 components, 

namely the 5 real load sampling values: 

730t − 1t −

{ | 2, 1, , 1, 2}, 730, 729,... 1ijL i p p p p p j t t t= − − + + = − − −   

3) In the program some predefined parameters are set as follows:  = 6,  = 75, lN uN sN  = 25.  

4) This thesis employs the following different methods for the short-term load forecasting to 

make a comparison and verify the feasibility of the presented method:  
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● Method A: The presented method (repetitious clustering + decision tree + SVR), with 

overlapping clusters, Gaussian kernel function applied 

● Method B: support vector clustering + decision tree + SVR, clustering is completed in one 

time instead of repetitious clustering, Gaussian kernel function applied 

● Method C: repetitious clustering + decision tree + SVR, without overlapping clusters, 

Gaussian kernel function applied 

● Method D: K-means clustering + decision tree + SVR 

● Method E: using SVR directly without finding clusters, using the data of two months before 

the date of the load to be forecasted.  

5.5.2 Prediction results 

Tab. 5.2 displays the clustering results of daily curves of point 56 for 730 days with different 

kernel methods. The Gaussian kernel clustering divides the curves into 13 clusters. Linear 

kernel, polynomial kernel and sigmoid kernel can only find one cluster, which doesn’t help to 

classify the data at all. This shows that among the four kernel functions, only Gaussian is able to 

fulfill the task of clustering.  

 

Tab. 5.2 Clustering results of different kernel functions 

Function name Gaussian Linear Polynomial Sigmoid 
Cluster numbers 13 1 1 1 
Relative outlier 

number (%) 
4.5 0 0 0 

 
In Tab. 5.3, the clustering results of point 56 for 730 days with method A and method B are 

displayed and compared to show the effectiveness of overlapping. Note that for method A the 

sum of member numbers in all the clusters is above 100%, due to the permission of overlapping 

clusters. There are 4.5% isolated points in the result of method A. To go into details it is found 

out that these sample days include the Spring Festival holidays, National Day holidays, Labour 

Day holidays and the winter and summer days in which load control was employed due to 

insufficient electricity supply. These would be treated separately with expert knowledge. The 

result of method B shows that there are 21.3% outliers and 3.7% points in tiny clusters. Not only 
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the isolated points of method A are included, many relatively normal days are also regarded as 

isolated points in the result. For example, July 3rd is regarded as an outlier in method B and 

cannot be trained. But in the result of method A it is in cluster 10, and the MAPE  prediction 

result is 3.8%, which is quite acceptable.  

Tab. 5.3 Clustering results of methods A and B 

Cluster ID 1 2 3 4 5 6 7 
Relative 
member 

number (%) 

17.4 16.0 11.9 3.1 12.5 11.4 13.7 

Cluster ID 8 9 10 11 12 13 Isolated 
points 

 
 
 

Method 
A 

Relative 
member 

number (%) 

9.0 5.8 2.4 4.5 5.5 3.1 4.5 

Cluster ID 1 2 3 4 to 33 Outliers  
Method 

B 
Relative 
member 

number (%) 

60.4 11.6 3.0 each cluster  < 0.5 
Altogether 3.7 

21.3 

 
 
For every cluster, a decision tree algorithm is employed in the presented method, and every 

cluster corresponds to a classification rule. As examples, the classification rule of cluster 1 with 

method A in Tab. 5.3 is written as follows:  

 

(WE = false AND Monday = false AND TL ∈(11,15 ) OR  ]

(WE = false AND Monday = false AND TH ∈(18,25  OR ]

(WE = false AND Monday = false AND TH ∈(25,27  AND TL ] ∈(15,18 ) OR ]

(WE = false AND Monday = false AND TH ∈(14,18  AND TL ] ∈(7,11 ) ]

 

Fig. 5.4 shows the prediction MAPE of every month in 2002 with different methods. Tab. 5.4 

shows the prediction results of the load in a randomly selected number of 10 days in 2002. The 

MAPE of the prediction results for everyday are shown in the table. This thesis only compares 
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the result of methods A, C, D and E, since there is an unacceptable large number of isolated 

points in method B.  

Tab. 5.4 Prediction MAPE (%) of different methods 

Day (Date) Method A Method C Method D Method E 
1(18th January) 3.2 3.9 3.7 4.8 

2( 17th, Februay) 2.8. 3.1 3.2 3.5 
3( 26th, March) 2.6 2.6 2.1 3.4 
4( 9th, April) 2.2 2.8 2.5 4.6 
5(23rd May) 1.6 2.1 1.9 4.2 
6(11th,June) 2.7 3.5 2.5 4.6 
7( 3rd, July) 3.8 4.1 4.2 5.4 

8(14th,August) 3.7 4.3 4.5 5.6 
9( 23rd, September) 2.5 3.1 2.8 3.5 
10( 11th, October) 3.3 4.4 4.1 5.6 

Average 2.8 3.4 3.2 4.5 
 
From Tab. 5.4 and Fig. 5.4 it can be seen that methods A, C, D are much better than method E. 

This proves the advantage of clustering. In method E, which is without clustering, all the data 

two months ahead are trained together. The diversity of these data acts on the training 

parameters and finally affects the precision. The average error of the ten days predicted by 

methods A, C, D are respectively 2.8%, 3.4% and 3.2%. It is obvious that the presented method 

has the best precision.   
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Fig. 5.4 Prediction MAPE of every month in 2002 with different method 

To show the comparison of the SVM method proposed in this chapter and the RT method 

proposed in the last chapter, Fig. 5.5 shows the monthly MAPE result of the two approaches. RT 
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is better than SVM for half of 12 MAPE results, and SVM better than RT for the other half. In 

chapter 6 the combination of different methods will be covered.  
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Fig. 5.5 SVM and RT prediction comparison MAPE of every month in 2002 
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6 Integrative Algorithm  

6.1 Load Forecasting for Holiday and Anomalous Days  

The basis of load forecasting is to find historical points that are similar to the target load and do 

the training employing these points. Therefore having enough historical training samples is a 

precondition for a good forecasting result. For normal days this is not a difficulty, but for 

anomalous days it is much more difficult to find enough similar sample points in the historical 

database.  

Anomalous days include public holidays, consecutive holidays, days preceding and following 

holidays, days with rare weather or special events. Every year these kinds of anomalous days 

appear only one or a few times, therefore a large enough training set can not be obtained within 

one or two years. Although the sample number can be increased by including more historical 

days (e.g. five years’ historical data can be applied rather than only one or two years), it would 

lead to decentralization of training samples: because of the change of economic situation and, in 

turn, the corresponding change of consuming electricity, two different days with similar weather 

and holiday conditions may have totally different load curves if the time interval between them 

is too long. 

[10] classifies the anomalous days into different types. Based on this theory, this research 

improves it by replacing the “anomalous day” with “anomalous period”, since the anomalous 

load curves do not always appear in the unit of one day. For example, January 1st is a public 

holiday, but from the previous evening people begin to celebrate it, so in this research the period 

from the 19:00 of December 31st to 24:00 of the next day is regarded as a holiday period.  

In the proposed method several kinds of anomalous periods are defined and every period is 

associated with an anomalous period index number, shown in Tab. 6.1. There are altogether 11 

kinds of anomalous periods for the Shanghai Power Grid load. Periods with the same anomalous 

period index number have a similar load behavior. Deciding how many indices there should be 

and how to define the period of each index is more or less an expert system domain problem, 

since it is dependent on peoples’ experience and the acquaintance of load curves.  
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Tab. 6.1 Anomalous periods for Shanghai Power Grid load 

Anomalous 
period index 

Description Corresponding 
holiday name 

1 From 19:00 Dec 31st to 24:00 Jan 1st New Year’s day
2 From 12:00 lunar new year eve to 2nd day 

of lunar year 
3 3rd or 4th day of lunar year * 
4 0:00 5th of the lunar year to 24:00 of 8th 

lunar year 

Lunar new year 
holidays 

5 15th day of lunar year Festival of 
lanterns 

6 From 12:00 30th Apr to 24:00 2nd May 
7 3rd May or 4th May * 
8 0:00 5th May to 12:00 of 8th May 

May golden week

9 From 12:00 30th Sep to 24:00 2nd Oct 
10 3rd May or 4th Oct * 
11 0:00 5th Oct to 12:00 of 8th Oct 

October golden 
week 

* “or” is used because either day corresponds to the same index 
 
Similar to the method of regression tree proposed in Chap. 4, in this research “weekday-

holiday”, ”Saturday-holiday”, “Sunday-holiday” and “holiday-holiday” increment trees are 

generated in addition to pure holiday non-increment trees. The increment trees usually have 

more training samples than non-increment trees. Besides, the increment trees usually lead to the 

target leaf node with higher sample number and lower estimated error (dispersion) than non-

increment trees for holiday load prediction. In other words the rule generated by increment RT 

is more convincing than the non-increment RT. This is especially true when the historical 

database span is largely enhanced.  

The load curve of holidays is affected not only by the common factors of load such as climate 

and recent load, but also the holiday property. To decouple the problem, another way of 

anomalous day load forecasting is presented.  

Suppose the pth load of target anomalous day with the anomalous period index l is to be 

forecasted. First find in the historical database all the pth load historical period with the 

anomalous period index l. These real loads are named as RL(1), RL(2),…RL(n). 

Then suppose these periods are not anomalous days but common weekdays. For example, all of 

them are supposed to be common Tuesday. For every pth load of the “supposed Tuesday” the 
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forecasting methods proposed in the preceding chapters are employed to get the imaginary loads: 

IL(1), IL(2),…,IL(n). 

The imaginary loads are mapped to the corresponding real loads.  

 IL(1)→RL(1), IL(2)→RL(2),…, IL(n)→RL(n) (6.1) 

They are regarded as the input variables and the corresponding output variables of a dataset. To 

find the input variables of the target load, the target day is also supposed to be an ordinary 

Tuesday. Use the normal prediction method presented in the former chapters to get the 

imaginary load IL(n + 1). Train the input and output variables in Eq. (6.1) with the support 

vector machine, and use IL(n + 1) as the target input variable. A predicted RL(n + 1) is 

generated and regarded as the forecasting result of the target load.  

6.2 Integration of SVM, RT and Other Traditional Algorithms 
6.2.1 Integration of SVM and RT 

As mentioned in Chap. 5, SVM is employed as a tool for STLF. Taking advantage of structural 

risk, simple mathematical models which can be solved easily, the application of SVM to STLF 

has shown good results with small errors and high training speed. But unlike RT, it is not able to 

find the suitable input variables and partition the input variable space. RT can do this well. The 

disadvantage of RT is that, for every predictor value that falls into the leaf node, it can only use 

the samples’ average dependent value as its output value. If the dispersion in the node is large, 

this can cause a large error. If the sample number in leaf node is small, the result lacks statistical 

significance. If the target point is a desert border point of the leaf node, the leaf output might be 

quite different from the real target load. Although DEVmax and Nmin as well as desert border 

detection can be employed in RT to prevent large error as mentioned before, sometimes, 

especially when dealing with the holidays, days with rare weather or other anomalous days, 

maybe too few qualified (or even no) leaf nodes can be reached. To solve this problem, this 

thesis presents the combined RT and SVM method (RTSVM) to take use of their advantages for 

better results.  

When the regression tree algorithm is used to forecast a future load, a leaf node can be matched. 

According to the principle of determining whether a node is a leaf node, the leaf node should 

satisfy one of the following two conditions: 

● DEV < DEVmax, N ≥ Nmin 
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● N < Nmin 

Condition 1 is very ideal because it shows a large number of similar samples with very low 

dispersion. The target load that falls in this kind of leaf node can take the leaf node output value 

as its forecasted value.  

If the target load falls into the second kind of leaf node, it is not so reliable to regard the output 

value of the leaf node as the forecasted load, no matter whether the dispersion is greater or less 

than DEVmax, since the statistical significance of the samples is not obvious. In this thesis, 

RTSVM method is presented to deal with this kind of node, which is described as follows.  

For a load to be forecasted, generate the regression tree as described earlier. Suppose the 

forecasted load falls in the leaf node ND0 that satisfies condition 2. Backdate toward the root 

node. Suppose node ND2 is the parent of ND0, ND1 is ND2’s parent, and ND3 is ND2’s sibling, 

shown in Fig. 6.1. Calculate separately the dispersion of ND1, ND2 and ND3: DEV1, DEV2 and 

DEV3. Define split dispersion ratio (SDR) as the DEV of a parent node divided by the average 

DEV of its two siblings 

  (6.2) 2 3 1( ) /SDR DEV DEV DEV= + / 2

Setρas the maximum limitation of split dispersion ratio. In this thesis it is set:  

 ρ = 0.25 (6.3) 

If the SDR < ρ, this implies that the split of ND1 is efficient in partitioning the subset ND1 into 

two distant subsets: ND2 and ND3. Therefore it might not be appropriate to train the data of ND2 

and ND3 together. Otherwise, it implies that the data in ND2 and ND3 have similarity, so it is 

proper to train them together.  

ND0

ND2

ND1

ND3

 
Fig. 6.1 Subtree with node ND0, ND1, ND2 and ND3 
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Here the notation T is used to represent the node that is regarded as a complete cluster, the 

samples of which will be trained in SVM. Therefore, when SDR < ρ, let T = ND2. If not, 

backdate toward the root node. Do this repeatedly until a good node T (or the root node) is 

reached. Fig. 6.2 shows the tree backdating flowchart to find the appropriate node samples for 

further SVM.  

Since T is not a leaf node, it must have some splits. Collect the split of T and all the splits of its 

offspring and regard all the related split variables as the important variables. For example, in Fig. 

4.1, if a, b, c or d is regarded as the complete cluster node, the important variables are x1 and x2; 

while if f or h is regarded as the complete cluster node, the important variable is only x2 because 

no further split is related to x1. The split input variable of a node is thought to be the influential 

variable to the dataset corresponding this node. Therefore the important variables are regarded 

as the input variable components of SVM. This is an effective way to reduce the input variable 

number.  

ND0 = Leaf Node Number

ND2 = Parent(ND0)

ND2 is the root node

ND1 = Parent(ND2)
ND3 = Sibling(ND2)

SDR < ρ

ND0 = ND1

Enough sample number?

T = ND2

N
Y

N

Y

N
Y

 
Fig. 6.2 Tree backdating flowchart for finding the cluster node for further SVM 
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Train the samples in node T with SVM. The process of RTSVM is shown in Fig. 6.3. But here 

enough sample numbers in the SVM training must be assured. Here “enough” means at least the 

sample number should be no less than the input variable [51]. If this condition of node T is not 

satisfied, backdate to find a new appropriate node. Apply the independent variables (only the 

important variables derived from the tree) to the final regression form and the forecasted load 

can be obtained.  

start
Form regression tree

Is the  leave node 
satisfactory? RT predicting

Yes

No

Find a good node T for SVM

Find the important input variables for node T

SVM predicting

 
Fig. 6.3 Process of RTSVM prediction 

6.2.2 Extended dispersion calculation in RTSVM forecasted result 

The weighted average method in RT, which integrates the different forecasted results, has been 

introduced in Chap. 4. According to Eq. (4.4) - (4.7), the weight of every forecasted result of RT 

can be calculated. This method can also be extended to the integration of the RTSVM method. 

The problem is, the RTSVM forecasted result doesn’t correspond to a dispersion value. In this 

thesis a way of measuring the accuracy of RTSVM is presented. 

Suppose T is the RT node in which SVM has been carried out, and there are m samples in T. 

Suppose the input variables of these m samples are  

[x1, x2, …xm] 

and the corresponding output invariables are  

[y1, y2, …ym] 

By training these samples in SVM the regression form indicating the input-output relationship y 

= f(x) is obtained. Now apply [x1, x2, …xm] to the regression form y = f(x) and the forecasted 

values [y1
’, y2

’, …ym
’] are calculated. To compare the real output variable values and the 

forecasted ones, define the extended dispersion of node T as 
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= ∑  (6.4) 

Apply the weighted average method to both the RT and RTSVM results (Eq. (4.4) - (4.8)). In 

the equations DEV is replaced by an extended dispersion for the RTSVM result. Similarly the 

weighted average method is applied and the RTSVM and TEI (total error indicator) can also be 

obtained (Eq. (4.9)). They serve as a final result of the RTSVM forecasting.  

6.2.3 Integration of different algorithms 

Different methods outperform in different conditions. For example, in April, the difference of 

different day load curves is not obvious, even if the highest or lowest temperature changes by 5

℃. Linear regression or non-increment RT might perform well in such a situation. But in 

summer, only a 1℃ change of the highest temperature might cause a great change in the load 

curve, and the load value is a nonlinear response of the temperature. In this case the increment 

RT method might outperform. In this subsection the integration method presented in 6.2.2 is 

generalized to employ more single load forecasting algorithms and take more advantage of the 

more appropriate ones.  

Suppose there are n forecasting methods in a forecasting system: M1, M2,…, Mn. Every method 

has its own advantages and disadvantages. Now these methods are used to predict the historical 

loads of the past s days, “as if” the real data are unknown. To distinguish this kind of prediction 

from the normal future load forecasting, it is named “past forecasting”.  

Suppose the historical days are day 1,day 2, …day t, and the target is the pth load of day t + 1. 

Past forecasting is done to “forecast” the pth load for s days before the target load. In other 

words, from day t back to day (t –s), all the pth loads of the load curve are predicted by past 

forecasting. Due to the limitation caused by different algorithms, sometimes less than s results 

might be obtained for some algorithms. For example, if an algorithm is specially designed for 

weekend load curve forecasting, normally there are much less than s forecasting results since 

weekends occupy only around 2/7 of the total days.  

Suppose Ni past forecasting results are obtained for the method Mi (Ni ≤ s, which means some 

days might not satisfy the forecasting condition). In addition, Ni past forecasting absolute 

percentage errors are achieved by comparing the forecasting result with the real data: E1, 

E2, …,ENi. The average error  
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 AVEi = (E1 + E2 + … + ENi) / Ni (6.5) 

is regarded as an approximate measurement of the possible error of the target forecasting result 

for method Mi. Like dealing with the RT in Chap. 4, the upper limitation of AVEi (AVEmax) and 

the lower limitation of Ni (Nmin) are set to filter out the results with large error or small sample 

number. Excluding the methods with AVEi or Ni breaking bounding, k results, Mq1,Mq2,…Mqk, 

are obtained. The following calculation is done to combine the k prediction results and calculate 

the total error indicator. 

  (6.6) 1/( ),      1,...i qiCONF AVE i k= =

  (6.7) 
1

_
k

i
i

TOTAL CONF CONF
=

= ∑

  (6.8) / _        1,...i iW CONF TOTAL CONF i k= =

qi

  (6.9) 
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=
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  (6.10) 
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k

iTEI W AVE= ∑

CONFi is the confidence of the qith method. TOTAL_CONF is the sum of all the confidence 

values. Wi is regarded as the weight of the qith forecasting result Lqi, and TEI is the total error 

indicator of the final integrative result. Fig. 6.4 shows the process of integration of different 

algorithms. 

The integrative method integrates several different methods. Different methods have different 

forecasting error for the same target load. As an average method, the integrative result is a value 

between the maximal error prediction and the zero error prediction. Although it might be worse 

than the prediction result of the single prediction that leads to the minimal error for any single 

point, for the future forecasting people can never know in advance which one is with the 

minimal error. Moreover, an individual algorithm, which performs better than the other for one 

point, might show poor performance for another point. With the average property of the 

integrative method, it is more effective to decrease the maximal error of the daily load curve 

than the single methods. For load forecasting the maximal error of the forecasted daily load 

curve is a very important measurement of the forecasting result, since larger maximal error leads 

to improper unit commitment and, in turn, causes a higher cost of real time dispatch. Therefore 

the integrative method is very effective. On the other hand, since the algorithm applies weights 
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in averaging all the results instead of a simple average, it pays more attention to the potentially 

better results and, in turn, usually leads to better prediction precision.  

Method 
1

Method  
n

Method 
2 …...

AVE1, N1, L1 AVE2, N2, L2 AVEn, Nn, Ln

Get rid of the unqualified results

AVEq1, Nq1,Lq1 AVEq2, Nq2, Lq2 AVEqk, Nqk, Lqk

…...

…...

Comprehensive calculation

Final result:  integrated predicted load and total error indicator

Past forecasting

 
Fig. 6.4 The integration process of different algorithms 

6.2.4 Smoothing of the forecasted load curve 

For STLF input variable selection there is a contradiction. If the pth load of the target day is to 

be forecasted, although the samples near the pth points are influential on the output load, too 

many input variables might interfere with the forecasting result precision. In the previously 

mentioned methods of short-term load forecasting, decoupling was utilized in treating the input 

and output variables. For example, if the target load is the pth point of a day, in selecting the 

input and output variables only the pth point of the historical days are taken into consideration. 

The purpose is to decrease the scale of the problem. The deficiency of not using the historical 

load of pth points’ neighbours can be compensated by the smoothing method described as 

follows.  

In Chap. 3 the second order difference was employed to detect the outliers, and weighted least 

square quadratic fitting was employed to smooth the real load curve. Here, to improve the STLF 

result, these two tools are also applied to the forecasted load curve.  
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Suppose the forecasted time sequence load for a future day is L1, L2,…,L96. Employ the second 

order difference to detect if there are sudden change points in the curve. They are considered to 

be bad forecasting results and are replaced by a least square quadratic regression. Then the 

forecasted load curve is smoothed by weighted least square quadratic fitting. The application of 

“smoothing” can take the effect of historical points near the pth point. In other words, without 

increasing the complexity of the problem, the application of smoothing can naturally “add” 

some “input variable effect” of the nearby loads of the pth point in the historical database.  

6.3 Generalized Programming System Design 

Different power systems have different load behaviours. In RT forecasting, a way of generating 

“weekday-Saturday”, “weekday-Sunday” tree has been proposed in Chap. 4. This implies that 

the weekdays, Saturdays and Sundays are in different clusters. The clusters are obtained from 

experience. But the clusters are not always in the unit of a day, and they do not always obey the 

division of weekday, Saturday and Sunday. For example, it is found that in terms of wee hours, 

Tuesday, Wednesday, Thursday, Friday and Saturday have more similarity than from Monday 

to Friday in many regions. Therefore, the clustering of the time period shouldn’t be fixed in the 

programs for better generalization. In addition, many other parameters, such as the selection of 

calculation methods and the maximal acceptable estimated error, also differ from one system to 

another. This inspires the authors to devise a tabular data format, for the users to decide the 

calculation mode.  

In this research the three-table frame and the related programming modules are designed for 

different users to input the system load properties and the calculation requirement. With these 

three tables, users can apply the proposed integrative algorithm easily without any modification 

of the programs themselves. The three tables, which are a cluster description table, a time 

schedule table and a method description table, are explained respectively as follows.   

The cluster description table defines the load curve clusters of the system, shown in Tab. 6.2. 

Every column represents the property of the investigated load, and every row corresponds to one 

cluster. If the element of the xth row and the yth column has a “1” value, it means the yth property 

for xth cluster has a true value. “0” means false value. “-1” means the yth property doesn’t affect 

the decision of the xth cluster. Moreover, there are also some numerical value columns. For 

example, MinTime is the lower limitation of the time point of the investigated load and 

MaxTime is its upper limitation. All the integration of these columns are in “and” relationship. 
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For example, cluster 3 has the rule “week rank is not Sunday and week rank is not Monday and 

holiday is false and time point ≥ 1 and time point ≤ 20”. From this table any load at any time 

belongs to its cluster(s). The design of this table doesn’t require any point to be in a unique 

cluster. In other words, one point can be in more than one cluster. But it is necessary that every 

point belong to at least one cluster.  

Tab. 6.2 Example of the cluster description table 

Cluster ID Sun Mon Tue Wed Thu Fri Sat Holiday MinTime MaxTime
Cluster 1 1 0 0 0 0 0 0 0 1 20 
Cluster 2 0 1 0 0 0 0 0 0 1 20 
Cluster 3 0 0 -1 -1 -1 -1 -1 0 1 20 
Cluster 4 0 -1 -1 -1 -1 -1 0 0 21 96 
Cluster 5 0 0 0 0 0 0 1 0 21 96 
Cluster 6 1 0 0 0 0 0 0 0 1 96 

…… 

 
Corresponding to this table, a function is devised to find the cluster ID of any load. Given the 

date, weather, holiday, time point and other related information of the object, the function 

returns the cluster(s) type of the investigated point.  

Suppose there are N kinds of calculation methods, such as absolute value increment RT, relative 

value increment RT, support vector machine, RTSVM, linear regression and so on, in the STLF 

system. As training methods, every one has its own input variables. To make things as flexible 

and generalized as possible, in this research the input variables are not “burnt” inside the 

functions. On the contrary, all the possible input variables are listed as the different columns of 

method description table, shown in Tab. 6.3. Every row corresponds to one method. Column 

“focus cluster” corresponds to the cluster ID of the target point. In the forecasting system every 

forecasting method corresponds to a method ID. Column “method” is the method ID. Column 

“compared cluster” is only valid for the increment algorithms. It defines the cluster with which 

the focus cluster is compared. If its value is “-1”, it means that this is not an increment algorithm. 

Columns SR to DTHP are related to the input values. The value “1” means the corresponding 

column variable is adapted by the method, and “0” means not. NumMin is the lower limitation 

of the sample numbers of past forecasting results. MaxAVE is the upper limitation of the 

average error of past forecasting. If the output result has an average error less than MaxAVE 



90 6  Integrative Algorithm 

and past forecasting sample number more than NumMin for the training data, the forecasted 

result is regarded reasonable.  

As an example, the detailed explanation of the first row of Tab. 6.3 is given here: for cluster 1, 

method 1(in this thesis method 1 is defined as non-increment RT) can be applied, and the 

following input variables are required: TL, THP, HU… The lower limitation of the past 

forecasting result number is 7. The upper limitation of the past forecasting average error is 2.5%. 

For a better generalization of the system, new algorithms can be added to the system. Thus a 

new function for the new algorithm must be added to the project by the developers, and the total 

number of method IDs should be increased. Maybe the input variables in the method description 

table couldn’t cover those in the new algorithm, in this case they have to be “fixed” in the 

program.   

 

Tab. 6.3 Example of the method description table  

Input variable selection A* B* C* D* 
SR TH TL THP HU DTH DTL DTHP … 

E* F*

1 1 -1 1 0 0 1 1 1 0 0 0 … 7 2.5
2 2 1 1 0 0 1 1 1 0 1 1 … 4 3 
3 2 2 1 1 0 1 1 1 0 1 1 … 4 3 
4 2 3 1 1 0 1 1 1 0 1 1 … 5 2 

 
 
*A: Cluster ID; B: Method; C: Compared cluster; D: Focus cluster; E: NumMin; F: 
MaxAVE(%) 
 
 
 

Tab. 6.4 Example of the time schedule table 

cluster ID m n Dd TEImax RNmin

1 5 10 5 2 2 
2 4 10 5 2.5 2 
3 6 10 5 2.5 3 

…… 
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Tab. 6.4 is the time schedule table of the forecasting. Every row corresponds to a cluster. The 

forecasting is consistent with the principle of “the nearer historical data has higher priority in 

training”. This means firstly some nearby samples of the target load for forecasting are 

employed. If the result is not satisfactory, the allowable time period for historical training data is 

enlarged a bit more. A loop is executed until the satisfactory result is found. The method was 

introduced in Chap. 4. Tab 6.4 defines the related parameters: m, n, Dd . m is the maximal 

historical year count, 2n is column count (see Fig. 4.6) of one year, and Dd indicates how many 

days there are in a column. TEImax and RNmin indicate the loop ending condition. The former is 

the upper limitation of TEI and the latter is the lower limitation of the calculation result number. 

When the calculated TEI and result number are within limit, the calculation is thought to be 

valid. 

If a target load belongs to two or more clusters, corresponding calculations of all the clusters 

will be carried out and the results will be combined again using the forenamed integrative 

method. Fig. 6.5 shows the generalized main calculation for STLF. 

The proposed method is applied to Shanghai Power Grid and the Germany E.ON. power grid. 

For the calculation of a new system, the programs don’t need to be modified at all; only the 

three tables should be refilled. This saves effort and shows good portability. Nevertheless, 

people have to use the expert knowledge and experience to decide the data in the three tables for 

a new system. From the experiment it can be found: if parameters from Shanghai are utilized 

instead of filling new parameters for the E.ON, the STLF result would be very poor.  
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the system
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appointed methods for the clusters, until 
the calculation requirement is reached. 

User defined 
tables

Calculation 
flowchart

Smoothing the 
forecasted curve

 
Fig. 6.5 Schematic diagram of the generalized main calculation 

 

6.4 Case Study 

Tab. 6.5 shows the holiday forecasting result of 2002 using the integration of the two proposed 

holiday forecasting methods. Tab. 6.6 shows the monthly forecasting results for year 2002 with 

the presented integration method. It combines the results of four methods: RT method presented 

in Chap. 4, SVM method presented in Chap. 5, RTSVM presented in this chapter, as well as 

ANN. To show its effectiveness, the results of the other four individual methods are also 

displayed. Mean absolute percentage error (MAPE) of every month is displayed in the table to 

compare the results of the different methods. Mean max error is the mean value of daily 

maximum percentage error (absolute value). From the table it can be seen that RTSVM 

outperforms RT and SVM methods. The presented method has achieved the best results. From 

the results it can also be found that the presented method is especially effective in the mean max 

error calculation.  
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Tab. 6.5 Holiday forecasting results for 2002. 

Anomalous 
period index 

MAPE(%) 

1 3.59 
2 3.52 
3 4.18 
4 3.25 
5 3.01 
6 4.31 
7 3.27 
8 3.06 
9 4.67 
10 3.58 
11 3.64 

 

Tab. 6.6 Monthly forecasting results for the year 2002 with different methods 

MAPE(%) Mean max error(%) Month 
1* 2* 3* 4* 5* 1* 2* 3* 4* 5* 

Jan 3.27 2.9 3.22 3.58 3.31 10.75 9.54 9.52 11.16 7.57
Feb 2.71 2.62 2.49 2.49 2.38 9.39 10.29 10.46 12.39 8.79
Mar 1.92 2.21 1.95 2.11 2.07 7.09 6.91 6.84 6.48 5.94
Apr 1.54 2.16 1.6 1.51 1.8 7.47 8.24 7.68 7.97 6.87
May 1.96 2.03 1.76 1.89 1.84 7.28 7.32 6.83 7.69 6.25
Jun 1.56 2.8 1.48 1.9 1.77 8.32 9.64 8.65 10.34 8.51
Jul 3.02 3.66 3.15 3.23 3.16 11.32 9.97 10.09 11.65 8.35

Aug 3.83 3.64 3.43 4.13 3.73 11.53 10.34 10.61 12.88 10.05
Sep 3.63 2.83 3.55 3.48 3.15 8.72 8.56 7.82 8.25 8.66
Dec 2.51 2.38 2.28 2.35 2.47 6.77 6.25 6.56 7.17 6.21
Nov 2.16 3.19 2.18 3.07 2.53 6.96 7.18 7.58 7.48 7.02
Dec 3.43 3.25 3.1 3.87 3.5 10.5 10.08 9.84 12.45 10.1

Average 2.63 2.81 2.52 2.8 2.64 8.84 8.69 8.54 9.66 7.86
* 1-RT 2-SVM 3-RTSVM 4-ANN 5-integrative method 
 
Chap. 3 proposed the bad data detection method, together with the load curve smoothing method. 

In this thesis all the load forecasting examples utilize the data based on these data treatment 

methods. To examine the contribution of data smoothing to the prediction accuracy, Tab. 6.7 

shows some comparison of applying and not applying smoothing. The research object is the 

Changzhou power system in China. It displays the STLF results for June 1st to 10th, 2004 with 

three methods. Method 1 employs bad data detection, fitting and SVM forecasting presented in 

Chap. 5. Method 2 neglects the fitting module. Method 3 neglects both the detection module and 
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the fitting module, with the original data input to the SVM module directly. The MAPE is used 

to compare the prediction results. From the predicted data it can be seen that the presented 

method has the best accuracy among the three. And the effect of bad data detection is obvious 

through the comparison of method 2 and method 3: it can be seen that when there are no bad 

data in training and predicting (the date without *), the predicting results are the same; but when 

the bad data appear, the effect of bad data detection and revaluation is significant. Method 1 

improves the accuracy of method 2 by 18.6%, and method 2 improves the accuracy of method 3 

by 3.79%. 

Tab. 6.7 STLF results for ten Days 

MAPE(%) Date 
Method 1 Method 2 Method 3 

June 1st 2.28 2.32 2.32 
June 2nd 2.75 2.89 2.89 
June 3rd 3.63 3.83 3.83 
*June 4th 2.82 2.97 3.45 
*June 5th 2.68 2.74 5.81 
*June 6th 3.12 3.30 4.55 
*June 7th 2.51 2.49 4.76 
June 8th 3.78 3.81 3.81 
*June 9th 3.43 3.69 3.83 
June 10th 3.41 3.58 3.58 
Average 3.04 3.16 3.88 

 

* implies there are bad data in the training data or predicting data. 

To prove the smoothing affect of forecasted load curve, proposed in subsection 6.2.4, four days 

in 2002, which respectively belong to spring, summer, autumn and winter, are randomly 

selected as target days. The cases of smoothing and no smoothing are respectively employed. 

Both cases take the regression tree method proposed in Chap. 4 as the forecasting algorithm.  

The result in Tab. 6.8 shows that the smoothing method helps to decrease the forecasting error. 

This is not very obvious in the average absolute error calculation, but it shows great advantages 

when calculating the maximum absolute error of every day.  
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Tab. 6.8 RT prediction result with/without smoothing method 

Without Smoothing With Smoothing  
Date MAPE(%) Max absolute 

Error(%) 
MAPE(%) Max absolute 

Error(%) 

2002.09.03 2.74 6.44 2.73 6.24 

2002.07.21 2.95 12.56 2.71 9.18 

2002.02.05 2.75 8.70 2.60 7.08 

2002.11.05 2.81 9.21 2.63 7.34 

2008.08.02 4.08 9.01 4.05 7.65 
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7 Conclusion and Outlook  

7.1 Conclusion 

The general objective of this work is to provide power system dispatchers with an accurate and 

convenient short-term load forecasting (STLF) system, which helps to increase the power 

system reliability and reduce the system operation cost. In the modern electricity market, the 

energy trade and the spot price establishment are based on a precise load forecasting result. The 

significance of STLF inspires the author to develop this work. 

On the whole, this thesis is composed of three parts: historical data treatment, individual 

algorithms proposed for load forecasting, and the design of an integrative and convenient system 

combining different algorithms.   

The existence of bad data in the historical load curve affects the precision of the load forecasting 

result. There are two kinds of bad data in the daily load curve: false channel bad data and 

abnormal event bad data. The concepts of forward second order difference (FSOD) and 

backward second order difference (BSOD) are introduced. Bad data always correspond to the 

second order difference being outside a certain range V. The bad data separates a load curve into 

several segments. The points in every segment are continuous. By calculating the second order 

difference, the continuous segment(s) of a load curve can be detected. Bad data between the 

neighbouring continuous segments are regressed in a quadratic form to revaluate the points 

between them. Case studies for Shanghai Power Grid and the German E.ON Grid indicate, that 

the second order difference bad data detection method can effectively find false channel bad 

data and abnormal event bad data.  

After detecting the bad data and replacing them with reasonable data, the load curve might still 

not be very smooth because of the impulse load. This research regards a load curve as the sum 

of two load curves: an essential load curve that represents the basic load requirement, and a 

vibrating curve that contains the information of sudden change of the large consumers’ state. 

The former is obtained by smoothing the load curve, and is utilized in training instead of the 

original curve. The essential load curve is achieved through weighted least square quadratic 

fitting. The load forecasting methods with and without smoothing are respectively employed. 

Better prediction precision is acquired by the one with the smoothing treatment.  
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This work applies the regression tree algorithm to the load forecasting problem. The algorithm 

can automatically classify the data and assign a value for every tree node without a prior 

knowledge. The result of the algorithm has the form of “if… then…”, which can be easily 

understood. Both continuous and categorical independent variables are acceptable in forming a 

regression tree. It can handle the non-homogeneous relationship between input and output 

variables. It can estimate the error of the prediction values. It is robust with outliers. Given a 

redundant set of input variables, it is able to pick up the important input variables and to ignore 

the redundant ones.  

Although the original purpose of applying a regression tree is to avoid a prior knowledge, it is 

found that good understanding of the system helps to improve the regression tree design for a 

better forecasting result. Therefore some special treatments are added to the regression tree 

according to the expert experience. These treatments include: setting up a weekday tree, 

weekend tree, and holiday tree; setting up the relative value increment regression tree; and, 

setting up the absolute value increment regression tree. Many forecasting results are obtained 

with different trees, and they are combined to generate a combined forecasted value, together 

with the total error indicator. This work also presents the concept of “desert border variable”, 

the effect of which is removed from the forecasting results. Historical data selection is done 

according to the expert experience of “the near date samples have more similarity to the target 

load than the distant date samples”. A case study compares the presented regression tree method 

with the ANN algorithm and proves its superiority.   

This work proposes an SVM-based forecasting method. Support vector training classifies the 

input data into clusters efficiently. The data in every cluster have good similarity for further 

training. A decision tree is an efficient way to decide which cluster the input data belong to. 

SVR is used to predict daily load due to the advantages of structural risk, simple mathematical 

models and short training time. Clustering classifies the data with numerical diversity into 

different clusters. The prediction precision of methods with clustering is higher than the 

methods without clustering. Support vector clustering is a useful algorithm to classify data. 

Compared with the conventional clustering method of k-means, support vector clustering 

doesn’t rely on the initial values; the quadratic programming problem of the cluster description 

algorithm is convex and has a globally optimal solution; it can deal with outliers, making it 

robust with respect to the noise in the data. The repetitious support vector clustering method 

proposed in this thesis clusters the data in an iterative way. If the repetitious support vector 
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method is not applied, there are too many isolated data. Less isolated points are obtained by this 

method and they correspond to the abnormal days very well. Many isolated data produced in a 

conventional support vector clustering can be predicted by the repetitious method and the result 

is acceptable. The points inside the intersection of overlapping clusters can be trained in 

different clusters. This is extremely helpful for those clusters that do not have many members. 

The simulation result shows the precision can be greatly improved by this method.  

Holiday and anomalous day load forecasting is emphasized because this is always a difficulty 

for STLF. Two methods are proposed to solve this problem: a holiday regression tree and 

imaginary load method. In the holiday regression tree method, the concept of anomalous period 

is presented and every period is assigned an index. A regression tree method is employed to 

predict the anomalous day results. The anomalous day load is affected by not only the common 

factors of load, such as climate and recent load, but also the holiday property. Therefore, in 

imaginary load method, the relationship between the imaginary load and its corresponding real 

load is analyzed with SVM. Holiday load forecasting examples prove the feasibility of the two 

methods.  

This thesis proposes to combine RT and SVM to take advantage of the merits and avoid the 

demerits of the two algorithms. Firstly RT is established. If the target load falls into a leaf node 

with a large number of similar samples and very low dispersion, the leaf node output value can 

be taken as its forecasted value. Otherwise, SVM is executed to analyze the behavior of the 

samples in the same node.  

Different methods outperform others in different conditions. A combination method is proposed 

to employ more single load forecasting algorithms and take more advantage of the more 

appropriate ones.  

Different power systems have different load behaviours. In this work three-table frame and 

related programming modules are designed for different users to input the system load 

properties and the calculation requirement. With these three tables, users can apply the proposed 

comprehensive algorithm easily without any modification of the programs themselves. This idea 

increases the forecasting system portability and generalization.  
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7.2 Experiences and Outlook 

During the research procedure some unsuccessful attempts have been made. The first one is the 

application of the apparent temperature. The weather condition is very influential to the load. 

Common weather variables include temperature, humidity, sunshine duration, amount of 

daylight, wind velocity. In meteorology the concept of “apparent temperature” is defined to 

measure the people’s feeling of the environment temperature. This variable is mainly decided by 

the actual temperature, but it is also influenced by the environment humidity and the wind 

velocity.    

In this research work the author tried to use “highest apparent temperature” and “lowest 

apparent temperature” as influential variables of load. The highest temperature and lowest 

temperature of the day are respectively applied in the calculation of the apparent temperature, as 

well as the average humidity and average wind velocity. Experiment results show that the 

proposed method is even less accurate than the methods employing normal weather variables. 

Through a further analysis it is found that using the average humidity and wind velocity to 

represent real time humidity and wind velocity can cause large errors. Nevertheless, in the 

existing weather report and forecasting systems, only the maximum, minimum and mean values 

of these two variables are available. It is expected that in the near future, the hourly humidity 

and wind velocity can be provided when recording the historical and predicting the future 

weather data, so that the apparent temperature might be effective in load forecasting. 

Another unsuccessful attempt is to train all the historical data in one SVM frame. In the thesis, 

three-year historical load data are regarded as sample dependent variables regardless of the day 

type and time point. 25 corresponding independent variables concerning the weather condition, 

day type, time point and historical load, are listed. This results in an extremely large dataset. The 

training time was very long for one single target point (about 45 hours). The predicted loads 

have an average error of about 15%, which is very high. This experiment indicates that 

clustering, independent variable selection and human experience are crucial to load forecasting. 

Although the most ideal way of load forecasting is to “provide the computer with a large amount 

of data and let it calculate the rule while the people are drinking and chatting”, this proves 

impossible with the current techniques.      

The following recommendations may help to further contributions in this area. 
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In the application of support vector machine, the parameters of the input-output function are 

decided by experience. Further employment of genetic or grid algorithms might help to locate 

the most appropriate parameters. 

In the electricity market environment, the electricity price and market mechanism are also 

influential to the load. In this research work they are neglected due to the lack of data; only time 

variables are considered to contain the market information of the system. In future work the 

market variables can be directly considered. 

The proposed SVM, RT, RTSVM and integrative forecasting are methods to find the input-

output relationship. Therefore they shouldn’t be limited to short-term load forecasting. Future 

work might employ these proposed methods to super short-term, mid-term and long-term load 

forecasting.  

Recent research on demand side management enhancements have been applied to electrical 

energy consumers. The load curve of these users may have some new characteristics. Future 

work can focus on the load forecasting of the demand side management users. In addition, load 

characteristics can also be explored to find ways of lowering the system load peak. 
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Appendix A   Methodology for building a classification tree 

In constructing a classification tree, CART makes use of prior probabilities (priors). A brief 

review of priors and their variations as used in CART is provided. 

Prior probabilities play a crucial role in the tree-building process. Three types of priors are 

available in CART: priors data, priors equal, and priors mixed. They are either estimated from 

data or supplied by the analyst. 

In the following discussion, let 

 N = number of cases in the sample  

 Nj = number of class j cases in the sample, and  

 Fj = prior probabilities of class j cases  

Priors data assumes that distribution of the classes of the dependent variable in the population is 

the same as the proportion of the classes in the sample. It is estimated as  

 Fj = Nj / N.  

Priors equal assumes that each class of the dependent variable is equally likely to occur in the 

population. For example, if the dependent variable in the sample has two classes, then  

 prob(class 1) = prob(class 2)=1/2.  

Priors mixed is an average of priors equal and priors data for any class at a node. 

Three components are required in the construction of a classification tree: (1) a set of questions 

upon which to base a split; (2) splitting rules and goodness-of-split criteria for judging how 

good a split is; and (3) rules for assigning a class to each terminal node. These components are 

discussed below. 

Two question formats are defined in CART: (1) Is X ≤ d?, if X is a continuous variable and d is a 

constant within the range of X values. For example, is HighTemperature ≤ 18? Or (2) is Z = b?, 

if Z is a categorical variable and b is one of the integer values assumed by Z. For example, is 

Holiday = false? 
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The number of possible split points on each variable is limited to the number of distinct values 

each variable assumes in the sample. For example, if a sample size equals N, and if X is a 

continuous variable and assumes N distinct points in the sample, then the maximum number of 

split points on X is equal to N. If Z is a categorical variable with m distinct points in a sample, 

then the number of possible split points on Z equals 2m-1 - 1.CART assumes that each split will 

be based on only a single variable. Let  

 j = 1,2,…,k   

be the number of classes of categorical dependent variables; then define p(j|t) as class 

probability distribution of the dependent variable at node t, such that p(1|t) + p(2|t) + p(3|t) 

+…+ p(k|t) =1, j=1,2,…,k. Let i(t) be the impurity measure at node t. Then define i(t) as a 

function of class probabilities p(1|t), p(2|t), p(3|t),… Mathematically, i(t)=Φ[p(1|t) , p(2|t) , 

p(3|t) ,…, p(k|t)]. The definition of impurity measure is generic and allows for flexibility of 

functional forms. 

Splitting Rules. There are three major splitting rules in CART: the Gini criterion, the towing 

rule, and the linear combination splits. In addition to these main splitting rules, CART users can 

define a number of other rules for their own analytical needs. CART uses the Gini criterion as 

its default splitting rule.  

The Gini impurity measure at node t is defined as i(t) = 1-S (the impurity function), where S =∑

p2(j|t), for j = 1,2,…k. 

The impurity function attains its maximum if each class (vulnerable or not) in the population 

occurs with equal probability. That is p(1|t) = p(2|t)=…= p(k|t). On the other hand, the impurity 

function attains its minimum (=0) if all cases at a node belong to only one class. That is, if node 

t is a pure node with a zero misclassification rate, then i(t)=0. 

Let s be a split at node t. Then, the goodness of split s is defined as the decrease in impurity 

measured by  

 ∆i(s, t)=i(t)-pL[i(tL)]- pR[i(tR)] 

where  
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s = a particular split,  

pL = the proportion of the cases at node t that go into the left child node, tL

pR = the proportion of the cases at node t that go into the right child node, tR

i(tL)=impurity of the left child node, and 

i(tR) =impurity of the right child node. 

There are two rules for assigning classes to nodes. Each rule is based on one of two types of 

misclassification costs. 

The Plurality Rule: Assign terminal node t to a class for which p(j|t) is the highest. If the 

majority of the cases in a terminal node belong to a specific class, then that node is assigned to 

that class. The rule assumes equal misclassification costs for each class. It does not take into 

account the severity of the cost of making a mistake. This rule is a special case of rule 2. 

Assign terminal node t to a class for which the expected misclassification cost is at a minimum. 

The application of this takes into account the severity of the costs of misclassifying cases or 

observations in a certain class, and incorporates cost variability into a Gini splitting rule. 

The tree-building process starts by partitioning a sample or the root node into binary nodes 

based upon a very simple question of the form 

 Is X ≤ d?,  

where X is a variable in the dataset and d is a real number. Initially, all observations are placed 

in the root node. This node is impure because it contains observations of mixed classes. The 

goal is to devise a rule that will break up these observations and create groups or binary nodes 

that internally have more purity than the root node. CART uses a computer intensive algorithm 

that searches for the best split at all possible split points for each variable. The methodology that 

CART uses for growing trees is technically known as binary recursive partitioning. Starting 

from the root node, and using, for example, the Gini diversity index as a splitting rule, the tree 

building process is as follows: 
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1. CART splits the first variable at all of its possible split points (at all of the values the variable 

assumes in the sample). At each possible split point of a variable, the sample splits into binary 

or two child nodes. Cases with a “yes” response to the question posed are sent to the left node 

and those with “no” responses are sent to the right node. 

2. CART then applies its goodness- of- split criteria to each split point and evaluates the 

reduction in impurity that is achieved using the formula 

 ∆i(s, t)=i(t)-pL[i(tL)]- pR[i(tR)]   

which was described earlier. 

3. CART selects the best split of the variable as that split for which the reduction in impurity is 

highest. 

4. Steps 1–3 are repeated for each of the remaining variables at the root node. 

5. CART then ranks all of the best splits on each variable according to the reduction in impurity 

achieved by each split. 

6. It selects the variable and its split point that most reduced the impurity of the root or parent 

node. 

7. CART then assigns classes to these nodes according to the rule that minimizes 

misclassification costs. CART has a built-in algorithm that takes into account user-defined 

variable misclassification costs during the splitting process. The default is unit or equal 

misclassification costs. 

8. Because the CART procedure is recursive, steps 1–7 are repeatedly applied to each non-

terminal child node at each successive stage. 

9. CART continues the splitting process and builds a large tree. 

The largest tree is built if the splitting process continues until every observation constitutes a 

terminal node. Obviously, such a tree will have a large number of terminal nodes, which will be 

either pure or have very few cases. 
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Incompleteness of data may be a problem for conventional statistical analysis, but not for CART. 

It makes use of a surrogate variable splitting rule. A surrogate variable in CART is that variable 

that mimics or predicts the split of the primary variable. If a splitting variable used for tree 

construction has missing values for some cases, those cases are not thrown out. Instead, CART 

classifies such cases on the basis of the best surrogate variable ( the variable with a close 

resemblance to the primary split variable). The surrogate may have a different cutoff point from 

the primary split, but the number of cases the surrogate split sends into left and right nodes 

should be very close to that with the primary split. By default, CART analysis produces five 

surrogate variables as part of its standard output. Surrogate splits are available only for splits 

based on a single variable. 
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Appendix B   Forecasting Result for Frankfurt Substation 

1. Data Resource 

Load data 

The load data is from a substation in Mainova AG. The data time span is from 1/1/1999 to 

12/29/2003. There are 96 sampling load points for every day. 

Weather data 

The weather data is from http://www.dwd.de/de/de.htm. Four weather factors of the day are 

utilized: highest temperature, lowest temperature, mean humidity, and mean degree of cloud 

cover. 

Holiday information 

The holiday information is from http://www.nensel-kalender.de/. The holiday information of the 

Hessen state is employed 

2. Data Treatment 

With the proposed “second order difference” and “weighted least square quadratic fitting” 

methods, all the load data are inspected and the suspicious bad data are detected. If possible, the 

bad data are revalued with the estimated values. 

3. Load Prediction 

Forecast object 

The everyday load curves of a year from 12/2/2000 – 12/1/2001 are forecasted. The starting 

time (12/2/2000) was randomly selected.  

Available data for the forecast object 

For the ith point of the dth day to be forecasted, the following information is supposed to be 

known: 

1. The weather information from 1/1/1999 to day (d-1) 

2. The forecasted weather information from 1/1/1999 to day d. If the forecasted weather 

http://www.dwd.de/de/de.htm
http://www.nensel-kalender.de/
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information is not available, the actual data are used instead. 

3. The load data from 0:00, 1/1/1999 to the ith point of the (d-1)th day 

4. The holiday information from 1/1/1999 to ith the (d-1)th day 

Forecasting methods 

The following algorithms are employed for load forecasting and derivation of an integrated 

forecasting result. 

1. Regression tree algorithm 

2. Support vector regression algorithm 

3. The integrated algorithm 

4. Suspected Bad Data Report 

Bad data statistics 

From 1/1/1999 to 12/29/2003, there are altogether 1824 load curves. 32 of them are thought to 

contain bad data. Among these 23 curves can be revalued and 9 cannot, shown in Tab. A. 1. 

 

Tab. A.1 Statistics of the load bad data 

 Total curve 
number 

Curves with 
bad data  

Curves that 
can be 

revalued 

Curves that 
can not be 
revalued 

Total valid 
curves 

Actual number 1824 32 23 9 1815 
Percentage 

number 
100% 1.75% 1.26% 0.49% 99.5% 

 

Some Load curves with bad data which can be revised 

Fig. A. 1 – Fig A. 3 show some examples of the bad data load curve which can be detected and 

revalued. Fig. A. 4 – Fig A. 6 show some examples of the bad data load curve which can not be 

detected and revalued. 
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Fig. A. 1 Load correction of 6/11/1999 

5/31/2000

0

10000

20000

30000

40000

50000

60000

1 11 21 31 41 51 61 71 81 91
time point

Lo
ad

(K
W)

Actual Load Revised data

 

Fig. A. 2 Load correction of 5/31/2000 
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Fig. A. 3 Load correction of 6/11/2002 

Some Load curves with bad data that cannot be revised 
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Fig. A. 4 Load curve of 3/26/2000 
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Fig. A. 5 Load curve of 11/12/2001 
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Fig. A. 6 Load curve of 6/13/2002 
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5. Forecasting Results 

The forecasting error of every day table 

The forecasting error of every day is listed in Tab. A. 2. 

Tab. A. 2 Forecasting error of every day 

Date 

Mean Absolute 

Percentage Error 

(%) 

Mean Max 

Absolute 

Percentage 

Error(%) Date 

Mean Absolute 

Percentage 

Error(%) 

Mean Max Absolute 

Percentage Error(%)

12/2/2000 0.97 6.34 6/3/2001 5.00 9.59
12/3/2000 0.86 5.93 6/4/2001 1.90 3.93
12/4/2000 0.99 3.23 6/5/2001 4.68 8.83
12/5/2000 1.01 2.60 6/6/2001 1.47 5.91
12/6/2000 2.35 6.79 6/7/2001 1.76 4.83
12/7/2000 1.85 4.89 6/8/2001 1.10 4.33
12/8/2000 1.28 4.10 6/9/2001 0.95 2.68
12/9/2000 0.90 2.36 6/10/2001 1.04 3.93
12/10/2000 1.94 7.93 6/11/2001 1.43 5.51
12/11/2000 0.64 1.76 6/12/2001 1.08 2.67
12/12/2000 1.47 3.84 6/13/2001 1.04 3.46
12/13/2000 0.58 2.06 6/14/2001 9.31 14.75
12/14/2000 1.58 5.86 6/15/2001 2.46 6.35
12/15/2000 1.58 4.00 6/16/2001 3.00 7.25
12/16/2000 1.40 3.47 6/17/2001 2.79 8.63
12/17/2000 1.35 3.08 6/18/2001 0.80 2.10
12/18/2000 1.91 3.81 6/19/2001 0.95 2.15
12/19/2000 1.88 4.94 6/20/2001 1.01 2.94
12/20/2000 1.81 4.56 6/21/2001 1.22 3.08
12/21/2000 1.29 3.49 6/22/2001 0.76 2.98
12/22/2000 3.13 8.24 6/23/2001 1.50 3.94
12/23/2000 2.83 7.05 6/24/2001 0.78 3.34
12/24/2000 6.27 19.02 6/25/2001 2.21 3.18
12/25/2000 3.29 7.65 6/26/2001 2.72 3.99
12/26/2000 3.17 6.51 6/27/2001 4.57 6.68
12/27/2000 11.07 20.84 6/28/2001 4.23 7.83
12/28/2000 6.29 13.51 6/29/2001 1.25 2.78
12/29/2000 2.42 6.17 6/30/2001 1.94 3.82
12/30/2000 2.80 9.22 7/1/2001 1.78 3.87
12/31/2000 6.36 18.17 7/2/2001 0.83 2.86
1/1/2001 5.38 12.68 7/3/2001 0.53 1.43
1/2/2001 1.60 4.34 7/4/2001 0.54 1.98
1/3/2001 2.37 5.16 7/5/2001 2.39 3.63
1/4/2001 4.42 9.11 7/6/2001 2.34 4.78
1/5/2001 2.95 7.72 7/7/2001 2.79 7.05
1/6/2001 2.34 6.89 7/8/2001 1.52 5.27
1/7/2001 3.06 8.86 7/9/2001 1.27 3.65
1/8/2001 4.62 10.68 7/10/2001 0.83 3.08
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1/9/2001 5.42 10.19 7/11/2001 1.32 3.93
1/10/2001 5.28 8.79 7/12/2001 3.18 5.44
1/11/2001 2.92 9.18 7/13/2001 1.68 3.84
1/12/2001 1.70 5.33 7/14/2001 1.60 4.45
1/13/2001 2.84 5.98 7/15/2001 1.63 3.53
1/14/2001 3.06 7.06 7/16/2001 2.70 4.58
1/15/2001 3.26 6.15 7/17/2001 0.86 3.13
1/16/2001 3.56 5.87 7/18/2001 1.64 3.85
1/17/2001 2.03 6.92 7/19/2001 0.52 2.28
1/18/2001 1.96 4.21 7/20/2001 0.91 2.48
1/19/2001 0.98 2.07 7/21/2001 2.11 3.50
1/20/2001 1.41 7.24 7/22/2001 0.72 2.16
1/21/2001 0.65 2.22 7/23/2001 1.82 3.68
1/22/2001 1.32 3.34 7/24/2001 3.08 5.53
1/23/2001 2.31 5.59 7/25/2001 2.19 3.92
1/24/2001 2.57 5.47 7/26/2001 2.44 4.59
1/25/2001 0.89 2.89 7/27/2001 1.13 6.06
1/26/2001 0.84 2.64 7/28/2001 1.01 3.14
1/27/2001 2.93 7.61 7/29/2001 5.54 8.59
1/28/2001 0.95 2.58 7/30/2001 2.08 5.00
1/29/2001 1.42 2.93 7/31/2001 3.91 6.47
1/30/2001 0.89 3.08 8/1/2001 3.19 8.23
1/31/2001 0.93 3.05 8/2/2001 1.63 6.03
2/1/2001 1.11 3.34 8/3/2001 5.73 10.80
2/2/2001 1.20 3.30 8/4/2001 2.13 4.19
2/3/2001 1.56 3.41 8/5/2001 2.01 6.11
2/4/2001 1.76 5.30 8/6/2001 1.89 5.76
2/5/2001 2.19 4.49 8/7/2001 1.28 3.49
2/6/2001 2.14 4.76 8/8/2001 1.35 3.35
2/7/2001 1.29 4.49 8/9/2001 2.06 6.24
2/8/2001 1.94 4.06 8/10/2001 1.54 4.31
2/9/2001 1.46 4.06 8/11/2001 3.10 6.46

2/10/2001 3.34 12.91 8/12/2001 3.14 6.76
2/11/2001 2.11 5.30 8/13/2001 1.58 3.75
2/12/2001 1.08 4.36 8/14/2001 2.90 7.11
2/13/2001 1.25 4.82 8/15/2001 3.74 7.21
2/14/2001 1.76 3.99 8/16/2001 4.20 7.51
2/15/2001 1.64 3.75 8/17/2001 1.15 3.71
2/16/2001 1.76 4.48 8/18/2001 1.18 2.94
2/17/2001 3.24 7.21 8/19/2001 3.81 7.34
2/18/2001 2.25 6.67 8/20/2001 1.54 3.57
2/19/2001 2.45 7.02 8/21/2001 1.83 5.52
2/20/2001 1.92 5.57 8/22/2001 1.85 3.82
2/21/2001 0.91 3.29 8/23/2001 2.79 4.53
2/22/2001 0.93 3.56 8/24/2001 4.61 5.78
2/23/2001 2.41 8.58 8/25/2001 4.99 6.59
2/24/2001 2.69 11.07 8/26/2001 5.80 9.76
2/25/2001 2.19 7.87 8/27/2001 4.94 9.11
2/26/2001 3.61 8.81 8/28/2001 1.04 3.34
2/27/2001 4.18 10.62 8/29/2001 3.80 6.90
2/28/2001 1.10 2.12 8/30/2001 3.15 6.00
3/1/2001 2.08 7.35 8/31/2001 1.89 3.39
3/2/2001 0.65 2.33 9/1/2001 1.83 4.23
3/3/2001 1.52 5.23 9/2/2001 2.56 5.14



116 Appendix B  Forecasting Result for Frankfurt Substation 

3/4/2001 1.09 3.31 9/3/2001 1.76 6.25
3/5/2001 1.55 3.53 9/4/2001 1.70 3.87
3/6/2001 1.58 4.52 9/5/2001 0.72 2.24
3/7/2001 1.73 6.65 9/6/2001 1.21 4.30
3/8/2001 1.45 3.87 9/7/2001 2.78 6.07
3/9/2001 1.41 3.71 9/8/2001 2.55 6.17

3/10/2001 1.60 3.87 9/9/2001 3.02 6.46
3/11/2001 1.40 4.09 9/10/2001 3.14 6.83
3/12/2001 1.56 3.45 9/11/2001 3.39 6.38
3/13/2001 2.10 6.20 9/12/2001 3.13 6.25
3/14/2001 1.53 5.62 9/13/2001 1.65 4.01
3/15/2001 0.91 3.44 9/14/2001 0.94 2.87
3/16/2001 1.55 6.28 9/15/2001 2.70 8.27
3/17/2001 1.45 3.15 9/16/2001 3.35 5.14
3/18/2001 1.23 4.92 9/17/2001 2.14 4.44
3/19/2001 0.87 3.20 9/18/2001 1.39 3.32
3/20/2001 1.34 3.67 9/19/2001 1.67 5.52
3/21/2001 2.21 4.90 9/20/2001 2.08 4.81
3/22/2001 1.06 3.19 9/21/2001 0.99 2.34
3/23/2001 1.14 4.98 9/22/2001 1.24 4.94
3/24/2001 1.01 2.87 9/23/2001 0.85 2.42
3/25/2001 2.36 6.06 9/24/2001 1.66 4.50
3/26/2001 2.58 5.93 9/25/2001 0.87 2.78
3/27/2001 3.62 8.76 9/26/2001 1.07 2.69
3/28/2001 3.94 6.53 9/27/2001 1.19 2.68
3/29/2001 2.37 6.38 9/28/2001 0.99 2.70
3/30/2001 1.48 6.55 9/29/2001 1.36 5.01
3/31/2001 1.28 5.57 9/30/2001 0.85 3.87
4/1/2001 1.09 4.62 10/1/2001 1.65 6.45
4/2/2001 4.08 6.98 10/2/2001 1.76 3.60
4/3/2001 2.22 6.17 10/3/2001 8.69 14.55
4/4/2001 1.57 3.86 10/4/2001 2.69 4.80
4/5/2001 1.28 3.00 10/5/2001 1.59 3.87
4/6/2001 0.86 3.52 10/6/2001 1.01 4.19
4/7/2001 1.74 5.00 10/7/2001 1.23 4.19
4/8/2001 2.33 5.24 10/8/2001 0.94 3.33
4/9/2001 2.27 5.91 10/9/2001 0.93 4.57

4/10/2001 2.01 5.55 10/10/2001 1.37 4.27
4/11/2001 1.35 3.22 10/11/2001 1.45 2.98
4/12/2001 3.06 6.39 10/12/2001 1.43 3.08
4/13/2001 1.56 5.13 10/13/2001 2.90 7.43
4/14/2001 2.41 7.76 10/14/2001 1.70 7.50
4/15/2001 4.17 9.16 10/15/2001 2.12 6.02
4/16/2001 1.83 4.87 10/16/2001 1.57 5.26
4/17/2001 1.94 5.36 10/17/2001 1.03 3.13
4/18/2001 2.25 4.60 10/18/2001 0.66 1.79
4/19/2001 2.44 7.92 10/19/2001 1.22 3.58
4/20/2001 1.59 5.49 10/20/2001 2.08 5.46
4/21/2001 1.87 5.20 10/21/2001 1.40 7.92
4/22/2001 1.77 5.52 10/22/2001 0.64 3.10
4/23/2001 1.66 3.50 10/23/2001 1.20 6.34
4/24/2001 1.18 2.96 10/24/2001 0.96 3.13
4/25/2001 3.75 7.68 10/25/2001 NA* NA*
4/26/2001 1.42 3.41 10/26/2001 0.88 2.37
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4/27/2001 1.00 2.75 10/27/2001 0.86 2.33
4/28/2001 1.07 3.64 10/28/2001 1.72 10.87
4/29/2001 1.32 3.07 10/29/2001 1.95 9.34
4/30/2001 5.63 8.50 10/30/2001 1.31 9.25
5/1/2001 3.65 7.22 10/31/2001 1.65 7.90
5/2/2001 3.99 7.45 11/1/2001 1.17 2.95
5/3/2001 3.16 6.13 11/2/2001 1.26 2.96
5/4/2001 1.98 3.88 11/3/2001 1.97 8.47
5/5/2001 1.89 5.39 11/4/2001 1.77 5.16
5/6/2001 1.46 3.57 11/5/2001 2.79 5.25
5/7/2001 1.23 2.64 11/6/2001 3.56 8.00
5/8/2001 0.68 2.03 11/7/2001 3.12 6.99
5/9/2001 0.73 2.17 11/8/2001 2.78 6.65

5/10/2001 1.20 3.00 11/9/2001 1.95 4.85
5/11/2001 0.98 2.31 11/10/2001 1.35 4.84
5/12/2001 2.37 4.46 11/11/2001 0.15 0.80
5/13/2001 1.58 3.15 11/12/2001 NA* NA*
5/14/2001 1.92 7.36 11/13/2001 NA* NA*
5/15/2001 0.81 3.44 11/14/2001 2.68 5.66
5/16/2001 1.05 5.24 11/15/2001 0.22 1.72
5/17/2001 1.31 4.37 11/16/2001 0.21 2.91
5/18/2001 1.52 3.47 11/17/2001 1.39 5.73
5/19/2001 1.59 6.73 11/18/2001 1.98 4.14
5/20/2001 1.50 6.51 11/19/2001 1.64 4.02
5/21/2001 0.98 4.79 11/20/2001 0.73 2.09
5/22/2001 0.91 2.83 11/21/2001 0.58 1.70
5/23/2001 0.92 3.38 11/22/2001 2.53 5.92
5/24/2001 6.52 11.48 11/23/2001 1.31 3.87
5/25/2001 4.34 8.10 11/24/2001 1.19 5.96
5/26/2001 0.79 2.81 11/25/2001 1.74 6.21
5/27/2001 1.55 4.89 11/26/2001 1.37 4.35
5/28/2001 3.12 4.55 11/27/2001 1.53 2.97
5/29/2001 4.85 9.49 11/28/2001 1.22 2.89
5/30/2001 1.59 5.47 11/29/2001 1.36 5.19
5/31/2001 1.39 2.67 11/30/2001 1.18 3.49
6/1/2001 2.27 3.75 12/1/2001 1.82 6.51
6/2/2001 1.86 4.71  

NA*: Not available because the original curve is a bad load curve which is not revisable 

Error of whole year is shown in Tab. A. 3 and the monthly error is shown in Fig. A. 7 and Fig. 

A. 8. 

Tab. A.3 Mean Error of the forecasting result 

 

Date Mean Absolute Percentage 
Error (%) 

Mean Max Absolute 
Percentage Error (%) 

From 12/2/2000 – 
12/1/2001 

2.04 5.21 
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Fig. A. 7 Average monthly error 

Average monthly max error
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Fig. A. 8 Average monthly max error 

Some examples of daily load forecasting results show 

Because there are too many load curve forecasting results to be shown in the report, the 20th of 

every month are shown as examples. The number of “20” was just selected randomly. They are 

shown in Fig. A. 9. 
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Fig. A. 9 Some forecasting result examples 
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Appendix C   Zusammenfassung in Deutsch 

Die Zielsetzung dieser Arbeit ist, Energieerzeugern und Übertragungsnetzbetreibern für die 

Netzleitstellen ein präzises und praktisches System zur kurzfristigen Last-Prognose zu geben. Es 

soll die Zuverlässigkeit des Übertragungssystems erhöhen und zur Senkung der Betriebskosten 

des Netzes beitragen. Im heutigen Energiemarkt hängt der Energiehandel und die 

Preisermittlung stark von den Ergebnissen einer exakten Lastprognose ab. Die hohe Bedeutung 

einer kurzfristigen Lastprognose hat die Anregung für die Entwicklung dieser Arbeit gegeben. 

Die vorliegende Arbeit besteht aus drei Teilen: Analyse der historischen Daten, Vorstellung 

einzelner Prognosealgorithmen und Design eines integrativen Systems, das unterschiedliche 

Algorithmen kombiniert. 

Die Existenz von falschen Werten in den Aufzeichnungen von Lastkurven aus der 

Vergangenheit beeinflusst die Präzision der Ergebnisse einer Lastprognose. In dieser Arbeit 

werden deshalb Methoden der „backward and forward second order difference“ zur 

Lokalisierung der falschen Werte eingeführt. Um den wahren Wert der falschen Daten zu 

schätzen wird eine quadratische Regression anwendet. Die Untersuchungen zeigen, dass dieses 

Vorgehen falsche und abnormale Werte, die z.B. durch Kurzschlüsse entstanden sind, erlaubt 

effizient zu detektieren. 

In dieser Arbeit wird eine Lastkurve als Summe zweier Kurven betrachtet: eine Haupt-

Lastkurve und eine um einen konstanten Wert schwingende Kurve. Die Haupt-Lastkurve wird 

durch die Methode der gewichteten kleinsten quadratischen Abweichung ermittelt. Die 

folgenden Lastprognose-Methoden werden jeweils mit und ohne geglättete Werte verwendet. 

Hierbei zeigt sich, dass mit den geglätteten Werten eine höhere Genauigkeit erreicht wird. 

Für das Lastprognose-Problem wird in dieser Arbeit der „regression-tree-algorithm“ verwendet. 

Dieser Algorithmus kann die Daten automatisch einstufen und einen Wert für jeden 

Baumknotenpunkt zuweisen, ohne die Eigenschaften der einzelnen Lasten zu kennen. Das 

Resultat des Algorithmus wird in einfacher Form von "if... then" angegeben. Obgleich der 

ursprüngliche Ansatz dieser Regression darin besteht ohne detaillierte Informationen über die 

Lasten auszukommen, zeigt sich, dass Zusatzinformationen die Prognoseergebnisse verbessern. 

Deshalb werden dem Regressionsbaum entsprechend den Erfahrungen einige spezielle 
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Verfahren hinzugefügt. Eine Untersuchung vergleicht die dargestellte „regression-tree-

algorithm“ Methode mit dem ANN-Algorithmus (künstliche neuronale Netze) und belegt seine 

Überlegenheit. 

Diese Arbeit stellt eine Prognose-Methode vor, die auf dem Ansatz der „support vector 

machine“ basiert. Dabei werden die Beispieldaten effizient zu Clustern zusammengefasst, d.h. 

ähnliche Daten bilden einen Block. Mit der Methode des Entscheidungsbaums wird entschieden, 

in welchen Cluster die Eingangsdaten gehören. Um die tägliche Last vorauszusagen wird die 

„support vector regression“ verwendet, da ihr ein einfaches mathematisches Modell zugrunde 

liegt, die Rechenzeiten sehr gering und die strukturellen Risiken klein sind. 

Es werden zwei Methoden vorgestellt, um das Problem der Prognose für Feiertage und anomale 

Tageslasten zu lösen: „holiday regression tree“ und „imaginary load method“. Beispiele für 

Feiertags-Last-Prognosen belegen die Durchführbarkeit der beiden genannten Methoden. 

Die vorliegende Thesis schlägt vor, den Regressionsbaum mit der „support vector machine“- zu 

kombinieren, um die Vorteile beider Algorithmen zu nutzen und deren Nachteile zu vermeiden. 

Als erstes wird der Regressionsbaum erstellt. Wenn die angenommene Last in einen Bereich mit 

einer großen Zahl ähnlicher Proben und einer sehr niedrigen Streuung fällt, kann der 

Ausgangswert als endgültige Aussage für die Prognose genommen werden. Andernfalls wird die 

support vector machine angewendet, um das Verhalten der Proben im gleichen Knotenpunkt zu 

analysieren. 

Es ist stark von den jeweiligen Bedingungen abhängig, welche Methode die besten Ergebnisse 

liefert. In der Arbeit wird deshalb eine kombinierte Methode vorgestellt, um mehrere 

unterschiedliche Lastprognose-Algorithmen einzusetzen und den Nutzen aus den jeweils besten 

zu ziehen. Dazu  werden drei Tabellen dem Benutzer zur Verfügung gestellt, in denen er sein 

zusätzliches Wissen über die betrachteten Lasten einbringen kann. Somit können Benutzer den 

vorgestellten Algorithmus, der verschieden Methoden miteinander verbindet, leicht anwenden 

ohne eine Änderung der Programme selbst vornehmen zu müssen. Dieser Ansatz erleichtert die 

Anpassung an unterschiedliche Prognose-Aufgaben in verschiedenen Energieversorgungsnetzen. 
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List of Symbols and Abbreviations 
ABBREVIATIONS 

 ANN(NN) Artificial Neural Network 

 ARIMA Auto-Regressive Integrated Moving Average 

 ARMA Auto-Regressive Moving Average 

 ARMAX ARIMA with eXogenous Variables 

 BSOD Backward Second Order Difference 

 CART Classification And Regression Tree 

 EP Evolutionary Programming  

 FARMAX Fuzzy ARMAX 

 FSOD Forward Second Order Difference 

 KKT Karush-Kuhn-Tucker 

 LIBSVM LIBrary for Support Vector Machines 

 MAPE Mean Absolute Percentage Error 

 RT Regression Tree 

 RTSVM Regression Tree Support Vector Machine 

 SMO Sequential Minimal Optimization 

 STLF Short-Term Load Forecasting 

 SVM Support Vector Machine 

 SVR Support Vector Regression  

 THI Temperature-Humidity Index 

 WCI Wind Chill Index  

SYMBOLS 

 ( )f α∇  Gradient of ( )f α  

 a,b,c Coefficients of L(t) = at2 + bt + c  

  Adjacency matrix  A

 AVE Measurement of the possible error  

 AVEmax Upper limitation of the average error of past forecasting  

 B Segment of the historical training 

 B Working set 

 BB Member of the historical training segment sequence 
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 BB Sequence of historical training segments  

  Punishment constant of the slack errors C

 CONF Confidence of the forecasted result  

 D Historical training data column 

 d(t) Distance from t to the most distant predictor  

  Dataset to store all the data to be clustered 1Data

  Dataset to store the feasible clusters 2Data

 Dd Day number in a column 

 DDaymax Upper limitation of the day difference  

  Standard deviation DEV

 DEVmax Upper limitation of node sample standard deviation 

 DHU Average humidity difference  

 DL Increment of loads 

 DTH Highest temperature difference  

 DTL Lowest temperature difference  

 E Past forecasting absolute percentage errors  

 ER Error of forecasting 

 ( )f α  Objective function for LIBSVM 

 HU Average humidity of the sample day  

 IL Imaginary load 

  Kernel function ( , )i jk x x

 kL Left division of a node 

 kR Right division of a node 

  Distance between a point and the cluster centre l

  Relative distance between a point and the cluster centre 'l

 L(i) Load of the point i in the load curve 

 L(t) Quadratic regression formulation 

  Backward second order difference of point i  
..

b ( )L i

  Forward second order difference of point i 
..

f ( )L i

 M Forecasting method code 

 N Non-working-set 

 ND Node notation 
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 Nmin Lower limitation of node sample number  

  Lower limitation of the member number in a cluster lN

 sN  Upper limitation of the isolated points 

 Nt The tth node of a regression tree  

  Upper limitation of the member number in a cluster uN

  Cluster sphere  O

 Q Coefficient matrix of the quadratic minimal optimization 

  q  Dimension of the working set 

 R  Radius of the sphere 

 RL Real load 

  Radius of the cluster sphere for cluster m  mr

 RNmin  Lower limitation of the result number 

 S Segment of a load curve 

 SDR Split dispersion ratio 

 t Focused regression point 

 T  Node that is regarded as a complete cluster 

 TEI  Total error indicator  

 TEImax Upper limitation of total error indicator 

 TH Highest temperature of the sample day  

 THP Highest temperature of the sample day’s previous day  

 ti  Neighbours of t as defined by the span  

 TL Lowest temperature of the sample day  

 TOTAL_CONF  Total confidence  

 V Difference interval 

 v1 Lower limitation of difference interval 

 v2 Upper limitation of difference interval 

 WE Weekend property 

 Wi Weight of the ith forecasting result in the final 

 x Independent variable vector 

 y Response variable  

 Y Historical training data row 

  Average output value of node k ky
−
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 iα , *
iα , jμ  Lagrange multiplier 

  Solution of the quadratic minimization problem kα

 γ  Parameter of kernel
2

1 2
1 2( , )K e γ− −= x xx x  

 ε  Permitted error 

 iε , *
iε  Slack errors for the  training point thi

 λ  Deviation coefficient 

 ρ Maximum limitation of split dispersion ratio 

  The iiw th point weight in quadratic regression 

 φ   Nonlinear transformation function 

  Reorganization of Q⎥
⎦

⎤
⎢
⎣

⎡

NNNB

BNBB
QQ
QQ
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