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Zusammenfassung

Gegenwärtig hat sich Computersimulation als Werkzeug etabliert für die Planung,
Analyse und Optimierung von komplexen Systemen aber auch als wissenschaftli-
che Methode für die Untersuchung von Theorien sowie für die Absicherung von
Erkenntnis. Die generierten Ergebnisse dienen oft als Grundlage für Investitions-
entscheidungen, z.B. bei der Verkehrs- oder Fabrikplanung, aber auch zur Formu-
lierung von neuen wissenschaftlichen Theorien. Um die Belastbarkeit und Reprodu-
zierbarkeit der Simulationsergebnisse sicherzustellen ist es von essentieller Bedeu-
tung systematische und methodologisch-korrekte Simulationsstudien durchzufüh-
ren. Der Prozess von Simulationsstudien wird durch unterschiedliche Vorgehensmo-
delle strukturiert, welche von Simulationsexperten vorgeschlagen wurden und die
eine Reihenfolge von Schritten vorgeben, die im Rahmen der Studie durchgeführt
werden sollen. Jedoch erfordern diese Vorgehensmodelle zur statistischen Ergebnis-
absicherung oftmals die sorgfältige Durchführung einer Vielzahl von gleichartigen
Simulationsexperimenten. Aus Sicht der Anwenderin oder des Anwenders der Si-
mulation stellt dies eine repetitive und monotone Aufgabe dar. Eventuell auftreten-
de Unachtsamkeiten und Flüchtigkeitsfehler werde begünstigt und unter Umstän-
den hierdurch unwissentlich die Aussagekraft der Ergebnisse negativ beeinflusst.
Darüber hinaus ist der durch die Vorgehensmodelle definierte Simulationsprozess
nicht ausreichend spezifiziert, sodass wichtige Entscheidungen bei der Planung der
Experimente weiterhin durch die Anwenderin oder den Anwender getroffen wer-
den müssen und es ebenfalls zu einer unbeabsichtigten Verfälschung der Ergebnisse
kommen kann.

Um mit Hinblick auf die Nachvollziehbarkeit und Reproduzierbarkeit der Ergeb-
nisse die Durchführung von Simulationsstudien zu erleichtern, stellt diese Arbeit
ein Vorgehensmodell für Hypothesengetriebene Simulationsstudien (Hypothesis-
Driven Simulation Studies) vor, welches die Planung, Ausführung und Analyse von
Simulationsexperimenten unterstützt. Im Gegensatz zu bestehenden Modellen für
die Durchführung von Simulationsstudien stell in dem hier vorgestellten Ansatz ei-
ne formal spezifizierte Hypothese den Kern der Studie dar. Hierdurch kann jeder
Schritt der Simulationsstudie an die zentrale Hypothese angepasst werden und so
durchgeführt werden, dass dieser optimal zur Überprüfung und somit zur Bestäti-
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4 Zusammenfassung

gung oder Ablehnung der Hypothese beitragen kann. Zu diesem Zweck wird die
FITS-Sprache vorgestellt, welche die Spezifikation von Hypothesen ermöglicht, als
Annahmen über den Einfluss den bestimmte Stellgrößen des Simulationsmodells
auf die beobachtbaren Messgrößen haben. Das vorgeschlagene Vorgehensmodell
plant systematisch die relevanten Simulationsexperimente, -läufe, und -iterationen,
welche durchgeführt werden müssen, um die Hypothese zu überprüfen. Die gene-
rierten Ergebnisse werden dann für jede spezifizierte Messgröße aggregiert, um die
Anwendung von statistischen Hypothesentests zu ermöglichen. Die Nutzung der
hierzu entwickelten Simulationsassistenz setzt lediglich voraus, dass die Anwende-
rin oder der Anwender über ein ausführbares Simulationsmodell sowie eine entspre-
chende Hypothese verfügt. Im Hinblick auf die Implementierung dieser Assistenz
präsentiert die vorliegende Arbeit eine abstrakte Architektur sowie formale Spezifi-
kationen aller benötigten Services.

Zur Evaluation des vorgestellten Konzepts der Hypothesengetriebenen Simulati-
onsstudien werden zwei Fallstudien im dem Bereich der Produktion durchgeführt.
Hierbei wird der Ansatz exemplarisch auf ein NetLogo-Simulationsmodell einer
vierstufigen Lieferkette angewendet. Die untersuchten Szenarien sowie die entspre-
chenden Annahmen über das Modellverhalten haben zum Ziel das Phänomen des
Peitscheneffekts (bullwhip effect) sowie Gründe für dessen Auftreten aus Sicht des
Supply-Chain-Managements zu untersuchen. Ausgehend von einer formalen Spe-
zifikation der Hypothese wird jeder Schritt der Simulationsstudie detailliert vorge-
stellt, notwendige Entscheidungen bei der Planung der Experimente werden auf-
gezeigt und generierte Zwischenergebnisse und Endergebnisse werden dargestellt.
Im Hinblick auf die Vergleichbarkeit der Ergebnisse wird zudem eine konventio-
nelle Simulationsstudie durchgeführt, welche als Referenz dient. Der Ansatz der in
dieser Arbeit vorgestellt wird unterstützt sowohl Praktikerinnen und Praktiker als
auch Wissenschaftlerinnen und Wissenschaftler bei der Durchführung von Simula-
tionsstudien. Die entwickelte Assistenz ermöglicht die mühelose und vereinfachte
Planung und Ausführung von Experimenten, wobei die effiziente Generierung von
belastbaren Ergebnissen sichergestellt wird.

Schlagwörter: Automatisierung von Simulation, Hypothesenüberprüfung, Simula-
tionsstudie, Epistemologie der Simulation, Assistenzsystem.



Abstract

Computer simulation has become established in a two-fold way: As a tool for plan-
ning, analyzing, and optimizing complex systems but also as a method for the sci-
entific instigation of theories and thus for the generation of knowledge. Generated
results often serve as a basis for investment decisions, e.g., road construction and
factory planning, or provide evidence for scientific theory-building processes. To
ensure the generation of credible and reproducible results, it is indispensable to
conduct systematic and methodologically sound simulation studies. A variety of
procedure models exist that structure and predetermine the process of a study. As
a result, experimenters are often required to repetitively but thoroughly carry out a
large number of experiments. Moreover, the process is not sufficiently specified and
many important design decisions still have to be made by the experimenter, which
might result in an unintentional bias of the results.

To facilitate the conducting of simulation studies and to improve both replica-
bility and reproducibility of the generated results, this thesis proposes a procedure
model for carrying out Hypothesis-Driven Simulation Studies, an approach that as-
sists the experimenter during the design, execution, and analysis of simulation ex-
periments. In contrast to existing approaches, a formally specified hypothesis be-
comes the key element of the study so that each step of the study can be adapted
and executed to directly contribute to the verification of the hypothesis. To this end,
the FITS language is presented, which enables the specification of hypotheses as
assumptions regarding the influence specific input values have on the observable
behavior of the model. The proposed procedure model systematically designs rele-
vant simulation experiments, runs, and iterations that must be executed to provide
evidence for the verification of the hypothesis. Generated outputs are then aggre-
gated for each defined performance measure to allow for the application of statis-
tical hypothesis testing approaches. Hence, the proposed assistance only requires
the experimenter to provide an executable simulation model and a corresponding
hypothesis to conduct a sound simulation study. With respect to the implementation
of the proposed assistance system, this thesis presents an abstract architecture and
provides formal specifications of all required services.
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6 Abstract

To evaluate the concept of Hypothesis-Driven Simulation Studies, two case stud-
ies are presented from the manufacturing domain. The introduced approach is ap-
plied to a NetLogo simulation model of a four-tiered supply chain. Two scenarios as
well as corresponding assumptions about the model behavior are presented to inves-
tigate conditions for the occurrence of the bullwhip effect. Starting from the formal
specification of the hypothesis, each step of a Hypothesis-Driven Simulation Study
is presented in detail, with specific design decisions outlined, and generated inter-
mediate data as well as final results illustrated. With respect to the comparability of
the results, a conventional simulation study is conducted which serves as reference
data. The approach that is proposed in this thesis is beneficial for both practitioners
and scientists. The presented assistance system allows for a more effortless and sim-
plified execution of simulation experiments while the efficient generation of credible
results is ensured.

Keywords: Automation of Simulation, Hypothesis Testing, Simulation Studies,
Epistemology of Simulation, Assistance System.
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Chapter 1
Introduction

In various research disciplines, scientific advances rely on the application of com-
puter simulation1. The use of simulation opens innovative opportunities for analyz-
ing and understanding systems by extending existing domain-specific approaches
or by providing alternative techniques for investigating systems. Some shortcom-
ings of conventional approaches include limited access, exposure to risk, or the
non-existence of the investigated system as well as economic reasons such as the
cost-benefit ratio (Banks, 2014). This often restricts or even prevents the application
of empirical or analytical methods as well as the possibility of conducting experi-
ments for investigating the behavior of the system in question. To address this issue,
modeling and simulation techniques allow for the creation of artificial systems that
imitate the actions and behavior of real-world systems over time (Zeigler et al.,
2000). Simulated systems provide a wide range of scientific opportunities as they
can serve as a subject for experimentation in place of real-world systems and allow
for the investigation of what-if questions on the behavior of such systems. This fa-
cilitates a more economic and risk-free conducting of scientific experiments as well
as ex ante investigations of system developments or modifications.

Especially in information systems research, simulation has become established
as a means for planning, analyzing, and optimizing complex systems (Hudert et al.,
2010). This is associated with a general trend from descriptive research, with the
aim of developing theories for explaining systems or phenomena, to a more com-
prehensive design science perspective where information systems (artifacts) are de-
signed and used for solving problems. Yet, the use of simulation is not limited to
information systems research as other domains also recognized the benefits of the
experimental analysis of artificial systems. Examples include but are not limited to
sociology and economics (Gilbert and Troitzsch, 2005), production and manufactur-
ing logistics (Rabe et al., 2008), as well as traffic and transport logistics (Davidsson
et al., 2005). Across these disciplines, simulation is used for different tasks such as
optimization, input-output analysis, investigation of mechanisms, or advancement

1 For reasons of readability, the terms computer simulation and simulation are used synonymously
in this thesis. The used terminology is introduced in Section 2.2.1.
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4 1 Introduction

of knowledge (Axelrod, 1997). Moreover, the temporal perspective of simulation
analysis is not limited so that it can be applied to understand past phenomena as well
as be used for the prediction of future developments. In either case, many potential
applications of simulation are related to decision support. To this end, the investi-
gation of the model’s behavior is of relevance, i.e., how specific circumstances or
changes of circumstances (inputs) affect the observable behavior of the model (out-
puts). By investigating a system’s behavior under different circumstances, detailed
information regarding the mechanics of a system can be gathered and considered
during the decision-making process.

Especially in terms of decision support but also for the acquisition and validation
of knowledge, the methodologically sound and reproducible application of simula-
tion is essential (Tolk et al., 2013b). Only if the results generated by means of sim-
ulation are replicable are they of epistemological relevance in accordance with the
scientific method and provide a reliable decision-making basis. The systematic ap-
plication of simulation is subject to simulation studies. They aim at answering ques-
tions or analyzing assumptions regarding the behavior of a model. Such questions
or assumptions are often phrased as if-then statements (phenomenological hypothe-
ses). For instance, a potential phenomenological hypothesis about the behavior of a
manufacturing model is: If the number of machines in a production line increases,
the average cycle time of the manufactured products decreases. In this statement,
an inversely proportional relationship is assumed between the inputs of a model
(number of machines) and the measured performance (average cycle time).

To investigate and verify such hypotheses by means of simulation, studies must
comprise two aspects: model building and experimentation (Law, 2008). The re-
sulting process is extensive and requires advanced expertise of different aspects of
simulation (Bley et al., 2000). This includes specialized domain knowledge with
regard to model building as well as sophisticated simulation engineering skills for
designing, executing, and evaluating relevant experiments. In addition to this, the
difficulty of simulation studies increases as the complexity of the modeled sys-
tems or the number of parameters that potentially influence the model’s behavior
increases.

To facilitate the conducting of simulation studies, a large number of frameworks,
toolkits, and libraries was developed (Byrne et al., 2010; Himmelspach, 2007).
While some of these applications contribute to specific scientific disciplines and
domains, others can be utilized across different areas of application. Most of these
tools provide valuable assistance as they simplify the creation of simulation mod-
els or the conducting of experiments. Common steps of simulation studies that are
assisted by frameworks include the systematic coverage of the model’s parameter
space (Better et al., 2007), estimation of necessary replications (Hoad et al., 2007),
or assessing the statistical significance of the results (Steiger and Wilson, 2002).
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1.1 Problem Statement

Even though a variety of assistance functionalities exists, conducting sound and
credible studies is not trivial and using the aforementioned systems and models is
no silver bullet. The process of simulation studies is extensive and most tools do
not cover the entire process of the study or are not fully suitable for the intended
purpose. Often, the assistance provided is limited to single steps of the study or
requires individual and application-specific adaptions. Accordingly, to conduct sim-
ulation studies and for answering research hypotheses on the behavior of a model,
a model-specific identification, customization, and combination of suitable means
is required. As a result, important design decisions that affect the course of the
study as well as the generated results are primarily made by the researcher. This
might result in the occurrence of experimenter bias (observer-expectancy effect),
where researchers unintentionally influence the quality or credibility of the study’s
outcome (Tolk, 2017a). According to this effect, it needs to be assumed that the ex-
perimenters’ expectations in terms of the model’s performance, e.g., the subjective
opinion on a model’s suitability or quality, influence the study and consequently
bias the results. Furthermore, decisions that are insufficiently documented or made
methodologically ungrounded might also affect the reliability and reproducibility of
the results (Uhrmacher et al., 2016).

To prevent experimenter bias and to ensure the quality and reproducibility of sci-
entific studies, other research areas such as medicine or aviation defined standard-
ized and systematic procedure models as well as guidelines. During the development
of new aircraft such as planes or helicopters, RTCA DO-160 document provides rec-
ommendations for the certification process (SC-135, 2014). It defines performance
standards as well as environmental conditions that must be satisfied during the con-
ducting of tests. Likewise, clinical trials define a methodological frame for the ex-
perimental testing and approval of medical treatments (Simon, 1989). The goal of
these well-defined studies is to prove the efficacy of new medical treatments, e.g.,
drugs or vaccines, before release. The procedure is structured in phases that pursue
different goals and include an increasing number of test subjects. Through this, both
the effect and therapeutic efficacy of a new treatment are ensured. In summary, in
aviation as well as in pharmaceutics, controlled conditions are defined in order to
ensure the generation of comparable and reproducable results.

These approaches are similar to procedure models in simulation which give ad-
vice on the conducting of simulation studies (Banks, 2014; Law, 2014). Procedure
models define a step-wise and systematic process for the conducting of simula-
tion studies where the researcher is advised on essential steps for the execution of
sound and successful simulation studies. However, methodological differences can
be identified. Even though most procedure models describe similar steps and address
related demands, the instructions or guidelines provided by these models are too
vague to ensure the generation of reproducible results. Specific instructions on how
each step of the simulation study must be performed to answer the initial research
question are rarely provided (Timm and Lorig, 2015). Moreover, a lack of system-
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atization in the formulation of hypotheses as well as the alignment of the study’s
process with respect to testing hypotheses can be identified (Lorig et al., 2017a).

Epistemological shortcomings are not limited to underspecified procedure mod-
els but also result from unavailable models, missing documentation, and insuffi-
cient statistical validation of the outcomes (Dalle, 2012). This results in a lack
of justification of the derived results. To close this gap and to improve repro-
ducibility, the assistance of the entire life-cycle of simulation studies is proposed
(Teran-Somohano et al., 2014). This comprises the systematic design, execution,
and evaluation of relevant simulation experiments. To achieve this, existing frame-
works, services, and assistance functionalities must be logically linked in accor-
dance with existing procedure models. Furthermore, the entire process of a simula-
tion study must be aligned with the overall research hypothesis whose verification
is the study’s goal. To support and facilitate this comprehensive process, a demand
arises for the provision of an assistance system that facilitates the automated eval-
uation of hypotheses using simulation experiments. Especially with respect to the
automation of simulation, the “loop” between experiment design, data collection,
hypothesis formation and revision, as well as new experiments needs to be closed
(Waltz and Buchanan, 2009, p. 43). To this end, additional standards for the use of
simulation in scientific research are required so that simulation can last as an “episte-
mological engine” (Tolk et al., 2013b, p. 1154). In summary, a twofold problem can
be identified: On the one hand, a theoretical problem arises from a lack of system-
atization of simulation studies for answering research hypotheses on the behavior of
a model. On the other hand, a practical problem can be identified in terms of a lack
of assistance for the design and automated conducting of simulation experiments.

1.2 Research Questions and Objectives

To address these issues, the aim of this thesis is the systematization of simulation
studies with respect to the replicable and reproducible verification of research hy-
potheses on the behavior of a simulation model. This thesis proposes a process for
Hypothesis-Driven Simulation Studies, which aligns procedure models for simula-
tion studies with a specified research hypothesis. Through this, assistance is pro-
vided for the systematic design, conducting, and evaluation of simulation experi-
ments that are relevant for answering the specified hypothesis.

The presented problem indicates that current approaches are not capable of sys-
tematically assisting the verification of hypotheses by means of simulation experi-
ments. Addressing this gap results in different research questions that must be an-
swered first. Most of these research questions are related to different aspects and
phases of simulation studies. They are contextualized and related by the following
superior research question that structures the entire work.

How can assistance be provided for answering
phenomenological hypotheses by systematically designing

and conducting simulation experiments?
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The stated research question aims at developing a methodology which allows
for systematically answering research hypothesis on the behavior of a simulation
model based on simulation experiments. The research question is formulated with
respect to improving both the replicability and reproducibility of simulation stud-
ies and to mitigate experimenter bias. It is driven by the endeavor to facilitate and
further establish the efficient utilization of simulation as an epistemological method
in information systems research. The presented research question consists of four
aspects: assistance, hypothesis testing, experimental design, and systematization.
Each of these aspects is covered by more specific research questions. Additionally,
a fifth research question arises regarding the status quo of assisting and automating
simulation. In summary, the resulting research questions that are addressed by this
thesis are:

1. What is the current status quo in the application, assistance, and automation of
simulation?

2. How can both specification and testing of phenomenological hypotheses be as-
sisted?

3. How can relevant simulation experiments be derived and designed from hy-
potheses?

4. What is a suitable methodology for the conducting of Hypothesis-Driven Sim-
ulation Studies?

5. How must existing methods, frameworks, and tools be logically linked to pro-
vide assistance for the systematic testing of hypotheses in simulation studies?

As a first step towards a simulation-based assistance for answering research hy-
potheses, the hypothesis itself must be integrated into the procedure of simulation
studies. For this purpose, a machine-readable and unambiguous formal specifica-
tion of the hypothesis is required. Research efforts related to this question require
the identification of essential components as well as the development of a formal
specification language.

Subsequently, relevant simulation experiments must be derived from the hypoth-
esis that is specified by the developed language. In case the model consists of a large
number of input factors, the investigated parameter space must be limited with due
consideration of a potential loss of information. This requires an approach for the
identification of input factors that are of importance for the model’s performance
measure, which is specified in the hypothesis. Furthermore, a data basis must be
created so that statistical hypothesis testing approaches can be applied.

The research problem stated in this thesis is not a challenge that is caused by a
lack of adequate tools or frameworks. Instead, the issue can be attributed to missing
or inadequate methods for the suitable and targeted linkage of existing approaches
and techniques. Accordingly, the fourth research question aims at logically linking
existing functionalities to assist the simulation-based verification of hypotheses in
simulation studies.
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Finally, a corresponding methodology must be developed that provides a system-
atic theoretical framework for the concept of Hypothesis-Driven Simulation Stud-
ies. To this end, existing methods and best practices must be aligned with procedure
models of simulation studies. An integrated framework is required which defines a
procedure for the systematic design and conducting of experiments with respect to
answering a specific hypothesis. The methodology must focus on aspects of assis-
tance and reproducibility so that the conducting of Hypothesis-Driven Simulation
Studies is facilitated.

1.3 Contribution

In this thesis, a design science approach is pursued to accomplish the presented
goals and to answer the stated research questions. To this end, the main question
is addressed by answering the five resulting research questions. Unlike the behav-
ioral science paradigm, design science research aims at the design, development,
and application of innovative artifacts to improve the understanding of a specific
problem or to provide a solution to it (Hevner et al., 2004). To facilitate the prob-
lem solving process, the community agreed on guidelines that respective research
projects should follow. This includes the relevance of the investigated problem, the
thorough application of rigorous evaluation methods, and the statement of verifiable
contributions. In this regard, simulation is suggested as an experimental method
for design evaluation. The European information systems research community also
proposed principles for the conducting design-oriented research and described a
process that related initiatives should follow (Österle et al., 2011). The process con-
sists of four phases: analysis, design, evaluation, and diffusion and resembles the
aforementioned guidelines.

The contribution of this thesis can be specified in terms of the design science
paradigm. Hevner et al. (2004) distinguished between three potential types of con-
tributions while at least one of them must be fulfilled by a research project: design
artifacts, foundations, or methodologies. Different aspects of the approach presented
in this thesis can be attributed to each of the three types. First, the presented assis-
tance corresponds to the type of contribution referred to as design artifact. The prob-
lem the assistance addresses is that the reliability of current simulation approaches
strongly depends on the knowledge of the user. Due to a lack of assistance, impor-
tant design decisions must be made by the user which might result in experimenter
bias and decreased reproducibility. By providing assistance that covers the entire
process of a study, from the formulation of the hypothesis to the interpretation of
the results, the conducting of methodologically sound and reproducible Hypothesis-
Driven Simulation Studies is enabled and facilitated. Second, to allow for both for-
mulation and testing of hypotheses on the behavior of a model, a formal specifi-
cation language is proposed. In terms of the presented types of contributions, the
introduced modeling formalism must be considered to be scientific foundations for
the verification of hypotheses on the behavior of simulation models. By identifying
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relevant components of formalized research hypotheses, the design-science knowl-
edge base is extended by this contribution to the spectrum of methods. Third, the
theoretical framework for conducting Hypothesis-Driven Simulation Studies that is
proposed in this work counts as a methodology considering the typology of contribu-
tions. It facilitates the use of simulation as an evaluation method in scientific projects
as it structures the entire process with due regard to soundness and reproducibility,
two major evaluation criteria. By this means, simulation is further established as a
scientific method and the credibility of simulation-based results is enhanced.

Finally, by providing assistance for the design and conducting of simulation ex-
periments, the contributions this thesis makes can be summarized as follows:

– The process of formulating and testing phenomenological hypotheses on simu-
lation models is simplified,

– the conducting of reproducible and methodologically sound simulation studies
is assisted and facilitated, and

– a contribution is made to further establish simulation as an epistemological
method in information systems research.

With respect to the diffusion of the presented contributions, different aspects of
this thesis were presented at relevant conferences and published in respective pro-
ceedings. They can be found in established literature databases such as ACM or
DBLP and are publicly accessible via the Internet. The three most relevant publica-
tions that present contributions from this thesis are:

Lorig, F., Lebherz D. S., Berndt, J. O., & Timm, I. J. (2017). Hypothesis-
Driven Experiment Design in Computer Simulation Studies. In: E. H. Page,
G. Wainer, J. Tufarolo, V. Chan, A. D’Ambrogio, G. Zacharewicz, and N.
Mustafee (Eds.): Proceedings of the 2017 Winter Simulation Conference,
IEEE.

Lorig, F., Becker, C. A., & Timm, I. J. (2017). Formal Specification of Hy-
potheses for Assisting Computer Simulation Studies. In: Proceedings of the
Symposium on Theory of Modeling & Simulation (part of the SpringSim
conference). Society for Computer Simulation International.

Timm, I. J. and Lorig, F. (2015). A Survey on Methodological Aspects of
Computer Simulation as Research Technique. In: L. Yilmaz, W. K. V. Chan,
I. Moon, T. M. K. Roeder, C. Macal, and M. D. Rossetti (Eds.): Proceedings
of the 2015 Winter Simulation Conference, IEEE.
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1.4 Outline

With respect to the presented objectives and for answering the related research ques-
tions, this thesis consists of three parts. The structure refers to the phases of design
science research as proposed by Österle et al. (2011). In this regard, the diffusion
phase is taken account of by writing and publishing this thesis as well as related
scientific contributions such as conference papers.

The first part of this thesis provides an overview of relevant methods and current
approaches for the assistance and automation of simulation. Relevant related work
is divided and presented in two distinct chapters. While Chapter 2 introduces funda-
mental methods of simulation, Chapter 3 presents recent advances that address the
assistance and automation of individual components of simulation studies or that
guide the entire study. The second part executes a requirements analysis and pro-
poses a concept for the conducting and assistance of Hypothesis-Driven Simulation
Studies. The requirements analysis presented in Chapter 4 has the goal of deriving
requirements for scientific hypotheses in simulation and identifying methodological
shortcomings in their integration in simulation studies. Based on these requirements,
Chapter 5 proposes an integrated procedure model for the conducting of Hypothesis-
Driven Simulation Studies. Moreover, to assist the verification of hypotheses by
means of simulation studies, this chapter introduces logical components that are re-
quired for the execution of the process and outlines an abstract architecture for an
assistance system. To this end, a detailed specification of all logical components
as well as the interconnections between these components are presented in Chapter
6. Finally, in the third part, the proposed approach is applied to and evaluated in a
practical simulation scenario, which is focused on in Chapter 7. For this purpose, a
supply chain simulation model is introduced and a respective scenario is defined. In
Chapter 8, conclusions are drawn and an outlook on future work is given.
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Fig. 1.1: Structure of this thesis.



Chapter 2
Foundations and Methods of Simulation

The increasing feasibility and popularity of applying simulation for planing, ana-
lyzing, and optimizing complex systems is a result of computational advances, e.g.,
web-based cloud computing and GPU computing (Nance and Sargent, 2002). In this
regard, simulation has been established as a third pillar of science between induc-
tion and deduction (Axelrod, 1997). It is used amongst various disciplines and no
longer limited to natural or information sciences such as information systems re-
search (Hudert et al., 2010). Also in humanities, especially in social sciences, sim-
ulation has become a standard means for analyzing population dynamics (Gilbert
and Troitzsch, 2005). To illustrate the underlying epistemological process of gain-
ing knowledge by means of simulation, Turnitsa and Tolk (2008) applied Ogden’s
semiotic triangle (cf. Figure 2.1). Accordingly, the model can be seen as the concep-
tualization of the natural (real world) system which is represented by a simulation.
Still, like other scientific methods, the starting point of simulation is existing knowl-
edge and the goal is to generate new knowledge (Tolk et al., 2013b).
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Fig. 2.1: Ogden’s semiotic triangle applied to simulation (Turnitsa and Tolk, 2008)

Advancing knowledge by means of simulation is possible but challenging. In par-
ticular it requires compliance with the principle of reproducibility, which is a major
requirement of all scientific methods and approaches. Asendorpf et al. (2013, p. 1)
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emphasized that “replication is more than hitting the lottery twice”. The National
Institute of Standards and Technology defined reproducibility as the

“closeness of the agreement between the results of measurements of the same measurand
carried out under changed conditions of measurement”.

(Taylor and Kuyatt, 1994, p. 14, VIM 3.7)

In the narrowest sense and transferred to simulation, the replication of simula-
tion studies and of respective results implies that if two persons execute the same
simulation experiment or conduct the same simulation study, the observed model
behavior must be equal. In a wider sense, one might neglect the necessity of equal
results for each run and assess reproducibility by the similarity of the final results
only. In non-deterministic environments such as simulation models, where the be-
havior of probabilistic components is observed, it is challenging or even impossible
to meet these requirements (Freire et al., 2012). Dalle (2012) identified different
challenges for reproducibility such as the human factor or technical issues. There-
fore, he proposed four levels of reproducibility which are more suitable with respect
to the demands of stochastic simulation models that consist of probabilistic com-
ponents. Besides the requirement of a detailed specification of both the scenario
and the instrumentation that was used for executing simulation experiments, he also
suggests a more loose specification of reproducibility in terms of similarity.

In the MANET community, which focuses on the simulation of Mobile Ad Hoc
Networks, Kurkowski et al. (2005) surveyed the 2000 to 2005 proceedings of the
MobiHoc symposium on Mobile Ad Hoc Networking and Computing. Even though
75.5% of the 151 surveyed papers used simulation, the authors discovered that only
15% of the presented approaches are repeatable. Among the main issues for limited
repeatability the authors identified missing information regarding the simulator that
was used for the execution of experiments, missing information on the number of
replications, and shortcomings in the application of statistical techniques.

Reproducibility of simulation is especially challenging due to different compe-
tences that are required for the application of simulation. To allow for the reproduc-
tion of simulation results, the competences and contributions of all involved experts
must be documented as well. Timm and Lorig (2015) discussed three perspectives
of tasks as well as three groups of experts which are involved in the conducting
of simulation studies. Strategic, tactical, and operational tasks must be mastered by
experts from computer science, information systems research, and the respective
application domain the modeled system originates from. Considering the required
competences and responsibilities, it becomes apparent that multiple experts are re-
quired to conduct a sound simulation study. Yet, all involved actors have different
know-how relating to the system that is modeled but also on simulation methods
and techniques. Furthermore, differences in experience as well as the capability of
abstraction must be assumed and the reproducibility of results becomes more chal-
lenging as more experimenter bias must be expected (Bley et al., 2000).

The application of simulation in accordance with the above mentioned require-
ments is a subject of the Modeling & Simulation discipline. As the name implies,
this process can be separated into two distinct tasks. First, a model needs to be built
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that adequately represents the system which is analyzed by means of simulation.
Following this, as a second step, simulation is used to execute the model and to
observe the behavior of the modeled system under specific circumstances.

In the literature, the required terms and concepts are not ambiguously defined.
This is challenging with respect to the goal of this thesis. To reduce experimenter
bias and methodological uncertainties when answering research questions in simula-
tion studies, the underlying concepts must be defined properly. Thus, in this chapter,
the foundations of simulation and especially of Modeling & Simulation are intro-
duced. This includes relevant aspects of simulation and how they are interconnected,
i.e., the real-world system which is simulated, the model, and the experiments, as
well as an overview of how simulation is used in information systems research. Fur-
thermore, challenges in simulation are illustrated and implications for intelligent
assistance are derived.

2.1 History of Simulation

When speaking of the origins of simulation, Buffon’s Needle Problem (1777) is of-
ten mentioned as the first documented problem whose solution was approximated
by means of simulation (Goldsman et al., 2010). In this mathematical problem,
the probability is searched that a needle of a specific length (l) which is tossed on
the floor intersects parallel lines of equal distance (d) that are painted on the floor
(cf. Figure 2.2). From today’s perspective, one possible solution for estimating the
searched probability can be classified as Monte Carlo experiments: The repeated
process of tossing needles on the floor and calculating the percentage share of nee-
dles that lie across a line for approximating the respective probability. However,
besides the mathematical approach he pursued, it is doubtful that Buffon was aware
of the fact that this problem can be solved by means of simulation.

Fig. 2.2: Buffon’s needle problem (Aigner and Ziegler, 2014).
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In the history of modern simulation, first attempts reach back more than 70 years.
Goldsman et al. (2010) refer to the era from 1945 to the 1970s as the formative pe-
riod of simulation where today’s understanding of simulation was shaped. In the
1940s, the invention of ENIAC enabled scientists to automatically execute mathe-
matical computations for solving numerical problems (Bednarek and Ulam, 1990).
Initially, the “general purpose electronic computing machine” (Goldstine and Gold-
stine, 1946, p. 97) was developed for calculating fire tables during World War II. One
of the earliest examples of modern computer simulation is the development of the
hydrogen bomb. A group of scientists around Ulam used ENIAC to simulate neuron
diffusion. Applying Monte Carlo methods they investigated how different materials
interfere with the travel of neurons (Goldstine and Goldstine, 1946; Bednarek and
Ulam, 1990).

Since then, the availability of computers increased, the hardware for executing
simulation experiments was enhanced, and the application areas expanded. As a
result, during the 1950s an 1960s, simulation gained popularity which resulted in
the development of methods for the application of simulation. Goldsman et al.
(2010) refer to The Art of Simulation as the first method-based textbook on sim-
ulation, which was published by Keith D. Tocher in 1963. In the following years,
the first frameworks, e.g., GPSS (Gordon, 1981), and languages, e.g., SIMSCRIPT
(Kiviat et al., 1968), for the specification and execution of simulation experiments
were developed.

From a scientific perspective, the development of simulation can be reconstructed
by means of the archive of one of the most established and influential conferences
on computer simulation: the Winter Simulation Conference. Initiated in 1967 as the
Conference on Applications of Simulation Using the General Purpose Simulation
System, the scope of the conference was extended in the following year. From 1968,
the conference was no longer limited to GPSS but called for contributions inde-
pendent from language and framework. As the Winter Simulation Conference has
taken place annually from 1968 on until today (except for 1972), it presents itself as
“the premier forum on simulation practice and theory” (Wilson et al., 1996, p. 6).
Considering the conference’s history, it can be assumed that the archive of the con-
ference provides an overview of relevant work conducted in context of simulation.
Lately, almost 500 contributions were presented and published annually as part of
the conference. This includes papers, posters, and keynotes from over 20 different
tracks such as Modeling Methodology, Manufacturing Application, and Social and
Behavioral Simulation.

In the following decades, simulation developed in various directions and the his-
tory of simulation must be pursued for each of the resulting topics or subdisci-
plines. With respect to the goal of this thesis, the history of simulation methodol-
ogy and especially the execution of simulation studies is the most relevant. To this
end, and due to the large number of openly accessible contributions from multi-
ple decades, it seems reasonable to analyze the archive of the Winter Simulation
Conference to reconstruct trends and advances in the methodology of simulation.
The results of this survey that are presented in this thesis were also published by
Timm and Lorig (2015). A first brief evaluation of the contributions revealed that
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the greater part of articles focus on the development of simulation models for prac-
tical applications rather than acquiring or introducing guidelines for performing
sound and successful simulation studies. Generating reliable and reproducible re-
sults appears not to be of central relevance.

Considering the development of the conference over time as well as the range of
subjects that are covered by the contributions, a trend can be identified. In the late
1960s and early 1970s, when simulation was still in its early stages of development,
contributions on how to improve the technique of simulation can be occasionally
found. The issues considered by the authors were related to the estimation of reli-
ability in simulation experiments (Fishman, 1968), the use of experimental design
techniques in simulation (Frank, 1968), or the necessity of a methodology for sim-
ulation (Mihram, 1973). Thereafter, up to the mid and late 70s, methodological and
process-oriented aspects of simulation were neglected. The tracks of the conference
mostly focused on the creation of simulation models for solving social, technical,
medical or economical issues. Examples include health service (Kennedy, 1973),
financial markets (Frankfurter and Horwitz, 1971), or even aerospace engineering
(Flanagan et al., 1973). Towards the end of the 70s, a reorientation of the conference
can be observed. Henceforth, papers and tracks regarding methodology of simula-
tion were no longer uncommon but became an inherent part of the conference.

Nance and Sargent (2002) discuss a variety technical factors that drove and still
drive the evolution of simulation. They distinguish between external factors, which
originate from computing technology and shape the evolution of simulation, and
internal factors, which are attributed to the community of simulation researchers
and practitioners. Besides the evolution of computer hardware and the advances
in computer software, Nance and Sargent identified a number of driving technolo-
gies which can be neither classified as hardware nor software. Examples are devel-
opments in human-computer interaction though which a decoupling of simulation
developers and users was achieved. Due to interactive simulation models, detailed
knowledge of the model was no longer required to work with the model. Through
this, models became accessible for users that are not the developers of the respective
model. As internal factors, Nance and Sargent identified assistance functionalities
such as stand-alone pseudo random number generators or event list management
tools. The reuse of such functionalities facilitates the development and execution
of simulation models. Accordingly, methodologies for analyzing simulation results
are still proposed and improved. This includes output analysis, experimental de-
signs, optimization approaches, or variance-reduction techniques which allow for
tactical planning of simulation studies. Finally, the development of their own “the-
ory of simulation” (Highland, 1977, p. 4) promoted the development and application
of simulation (Zeigler et al., 2000).

Nowadays, simulation is applied in various disciplines and has become an essen-
tial means in scientific research (Banks, 2014). By observing and adjusting simula-
tion models, hypotheses concerning the behavior of artificial systems can be evalu-
ated and the impacts of modifying real systems can be estimated ex ante.

However, findings made by analyzing artificial systems are often used for draw-
ing conclusions in regard to the real world. Especially in the context of investment
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decisions, simulation is frequently used for planning alternative approaches. Com-
mon areas of application are, for example, factory planning including material-flow
simulation (Kuhn, 2006) or traffic simulation when building new road networks or
redesigning traffic junctions (Lattner et al., 2011c). Therefore, it is obvious that
general conditions and guidelines are required to assure a certain level of quality.
Reliable results can only be generated if preparation and execution of simulation ex-
periments are conducted under well-defined or even standardized conditions. Only
in this case can results be used as a profound basis for decision-making or as starting
point for further research. Simulation has become established as its own discipline
and respective methods and techniques became an inherent part of the spectrum of
research methods of various disciplines. As simulation is rooted in many of those
disciplines’ methods, it became unimaginable to carry out research without the use
of simulation.

2.2 Fundamentals of Simulation

As previously mentioned, the discipline that emerged from the increasing applica-
tion of simulation in many scientific disciplines is referred to as Modeling & Sim-
ulation (Zeigler et al., 2000). This name emphasizes the importance of two distinct
yet closely linked tasks that have to be performed when applying simulation: The
building of a model and the execution of simulation experiments. Sokolowski and
Banks (2009) characterize Modeling & Simulation as a discipline with its own body
of knowledge, theories, and research methodology.

The key element of each simulation is the model that is used for the execution
of experiments. Simulation models can be defined as “approximations of the real
world” (Sokolowski and Banks, 2009, p. 3). In this regard, simulation is a technique
that allows for the repeated observation of the behavior of such models. The ob-
served behavior is then analyzed for drawing conclusions with respect to the real
world system based on which the model was built. Accordingly, the aim of simula-
tion and also of Modeling & Simulation is to artificially generate the behavior of a
system to allow for its analysis. In the following, relevant terms from Modeling &
Simulation are introduced and the relationships between the respective concepts are
described. This chapter especially focuses on three major entities: the system whose
behavior is to be analyzed, the model which contains the relevant mechanisms and
entities of the system, and the simulator which is used to execute the model and to
generate the observable behavior (cf. Figure 2.3). In this regard, especially the mod-
eling relation between the system and the model as well as the simulation relation
between the model and the simulator are outlined in this chapter.

Usually, the desire or need to apply simulation is motivated by the demand
to analyze a specific object or phenomena. When scientifically investigating phe-
nomena, this object of interest is often referred to as a system. In systems theory,
a system is defined as “a number of elements in interaction” (interrelated parts)
with given spatial and temporal boundaries which is located in an environment
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Fig. 2.3: Basic entities in M&S and their relationships (Zeigler et al., 2000).

(von Bertalanffy, 1968, p. 83). They consist of states that describe the system’s con-
dition at certain points in time and which transform inputs from the system’s envi-
ronment into outputs that are returned to the environment. To evaluate hypotheses
which aim at explaining a certain phenomena of a system, i.e., the relationship be-
tween inputs and outputs, experiments are conducted (Wilson, 1990). When per-
forming an experiment, the system itself is varied or observed under changed condi-
tions with the goal of studying the effect the modification or the new conditions have
on the system and its behavior (Gooding, 1990). In the classical sense, experiments
are directly conducted with the system under investigation. However, experimen-
tation with the original system is not always feasible or reasonable due to various
reasons. These include but are not limited to economic reasons, i.e., experiments
with the real system are too expensive, as well as pragmatic reasons, e.g., the sys-
tem might not be accessible due to safety or spatial restrictions, the system’s state
or existence does not allow for experimentation, or the system would be modified
and the system’s state would be negatively affected by the experiments. In all of the
described cases, the conducting of experiments based on an artificial copy of the
system seems to be promising for bypassing the mentioned issues. With regard to
the application of simulation, this section presents foundations of simulation models
and experiments.

2.2.1 Simulation Model

The simplified representation of a system (source system) in which only purpose-
fully selected aspects are considered is referred to as a model. In some disciplines,
e.g., engineering or physics, models are built as a physical copy of a system and thus
provide a visual representation for the examination of the system (physical model).
An example of a physical model is a replica of a car which is placed in a wind
tunnel to analyze its aerodynamics. The aspect of the real system which is relevant
for investigating its aerodynamics is the outer shape of the car. Accordingly, the
model is reduced to this aspect and inner components such as the interior or motor
compartment are not part of the physical model.

In contrast, the representation of a system or some aspects of a system by means
of conceptualization is called the conceptual model. A conceptual model of a system
often consists of assumptions regarding the interactions of the system’s components



18 2 Foundations and Methods of Simulation

to explain its behavior in a logical or mathematical way by applying commonly
accepted principles. Yet, the real world existence of the model’s source system is
not mandatory as virtual or fictional systems can be modeled, too. Either way, the
source system of a model is often referred to as real-world system. This relates to
the fact that this system is the one on which conclusions are drawn. The goal of this
thesis is the assistance and partial automation of simulation studies. Accordingly,
only conceptual models are considered and the terms “model”, “simulation model”,
and “conceptual model” are used as synonyms.

(a) Physical model (b) Conceptual model

Fig. 2.4: Examples of two different types of models: a) Flow simulation of a car
(Bulmahn, 2009) and b) MAINSIM traffic simulation (Dallmeyer, 2013).

Especially when developing a conceptual model of a system, it is important to
ensure that the real-world system and the model are similar. From a systems the-
ory perspective, the similarity between systems can be defined on different levels.
Zeigler et al. (2000) discriminates between five levels of morphism. While level 0
only demands that inputs, outputs, and the time bases of the systems correspond to
each other, simulation requires the systems to be homomorphic. This implies that
the structure of the real-world system is preserved during the modeling process, i.e.,
that both systems go though the same state sequence and that the states of both sys-
tems are identical (cf. Figure 2.5). The homomorphism concept requires that each
state or transition of the modeled system must correspond to a state or transition of
the real-world system but not vice versa.

To introduce relevant aspects of simulation models, the remainder of this section
is structured as follows. First, a distinction is presented of inputs and outputs of
models which are required to control and observe the behavior of a model. Then,
a discrimination is provided between different types of models and discrete-event
simulation is introduced in particular. Finally, this subsection presents approaches
for the verification and validation of simulation models to ensure the correctness of
the model as well as its suitability for investigating the respective real-world system.
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Fig. 2.5: The homomorphism concept preserves state transitions (Zeigler et al.,
2000).

Inputs and Outputs of Simulation Models

A model can be described in two ways: by its structure or by its behavior. The
structure represents the inner architecture of a model and consists of possible states
and rules how and when states are transformed into other states. A system’s struc-
ture may consist of multiple subsystems and individual systems can be coupled to a
larger system (Zeigler et al., 2000). This perspective corresponds to the definition of
systems in systems theory (von Bertalanffy, 1968). In contrast to the inner structure,
the behavior of a system characterizes the relationship between the system’s inputs
and outputs, i.e., sets of external input data that influence the system and corre-
sponding sets of output data that can be used to measure the behavior of the model
(cf. Figure 2.6). During the experiment-driven research process, most hypotheses
assume or propose a certain behavior of a model under given inputs, which are then
verified by conducting corresponding experiments.

In this thesis, a black box approach is pursued where the inner structure of the
model is not of relevance or even unknown. The focus on the functional capabilities

!"#$%

!" !# !$%

&" &# &'%

&'()*+ ,)*()*+

-"'*."%%/0%$12/3*".+

4'3"'*."%%/0%$12/3*".+

Fig. 2.6: Black box view of a modeled system (Montgomery, 2013).
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of a system is a common approach in information systems research and stands in
contrast to a formal perspective with a focus on the efficient and effective applica-
tion of information systems (Hevner et al., 2004; Österle et al., 2011). In this regard,
a model is only defined by its input-output behavior whose analysis is the goal of
a simulation study. In this regard, the model can be seen as a function f : X 7! Y ,
which maps explicit symbolic inputs X to corresponding outputs Y . The model itself
can be considered as a subsymbolic system where the behavior is implicitly modeled
and which does not allow insights into the generation of the behavior. This is con-
trary to white box approaches and models, where the states of the model as well as
the transition mechanisms between states are explicitly specified. The input-output
behavior of a model is defined by a set of inputs (exogenous variables) and corre-
sponding outputs (endogenous variables) (Birta and Arbez, 2013). It is assumed that
the outputs of a model change in accordance with the inputs and the relationships of
the model.

Yilmaz (2015) presented three distinctions of exogenous model inputs: quali-
tative vs. quantitative, discrete vs. continuous, and controllable vs. uncontrollable
inputs. Quantitative inputs, such as the number of workers in a factory, are char-
acterized by numerical values. In contrast to this, qualitative inputs, as the queu-
ing discipline of job processing, are nominally scaled and do not provide a hier-
archy of values. Still, nominal values can be used to encode different levels, e.g.,
1 ! FIFO and 2 ! LIFO (Sanchez and Wan, 2012). As qualitative inputs do not
provide an ordered range of values, a differentiation between discrete and continu-
ous inputs can only be applied for quantitative inputs. The main difference between
discrete and continuous inputs is the data type of the variable. While discrete in-
puts can only take a countable number of values (e.g. Integer or a specific set of
floating-point values), continuous inputs may take any real-number value and are
only limited by specific upper and lower bounds (Sanchez and Wan, 2012). Accord-
ingly, for instance, the quantitative input that defines the number of workers in a
factory is discrete. In contrast to this, examples of continuous inputs are weight,
size, or volume of a product. Depending on whether or not the inputs can be in-
fluenced, a distinction between controllable and uncontrollable inputs can be made
(cf. Figure 2.7). In this regard, Winsberg (2010) refers to parameters when speaking
of uncontrollable inputs of a model that are constant over time. In contrast to this,
input variables are controllable and take values that vary over time. An example of a
controllable variable is the number of machines or the used queuing disciplines in a
job shop simulation model. Uncontrollable variables are of statistical origin and the
values are generated randomly. Consequently, they take probabilistic values which
can not be manipulated, e.g., the inter arrival time between orders or service times.

The observable outputs of the model are computed during the execution of the
simulation. Just like exogenous variables, these endogenous variables can also be
distinguished depending on whether the output is constant or influenced by chance
(random). When analyzing a modeled system, it is often necessary to define mea-
sures for evaluating the performance of the model. These measures of effectiveness
are usually not part of the model’s outputs and need to be calculated on the basis
of the model’s response and respective output variables. For this purpose, it seems
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Fig. 2.7: Classification of inputs and outputs of a simulation model.

to be reasonable to define one or many layers of intermediate variables (auxiliary
variables) as the precursor of target variables.

Types of Simulation Models

In case the formalized model is not too sophisticated, mathematical methods can
often be used for deducing a precise analytic solution of the model’s input-output-
behavior. When analytical solutions cannot be derived within a reasonable period of
time or not at all for complexity reasons, e.g., due to the scope of the models, sim-
ulation provides an alternative approach for analyzing these models. In contrast to
mathematical methods, simulation executes the model with specific input values or
a range of values to practically observe how the model’s outputs are affected by the
inputs. As most of the experiments with formalized models are conducted in silico
(cf. Table 2.1), this type of simulation is referred to as computer simulation. This
stands in contrast to in vitro experiments with physical models, e.g., crash tests with
cars or aerodynamic flow simulations of planes. Accordingly, simulation is depen-
dent on the mathematical modeling of systems for conducting experiments when
analytical solutions are not feasible or reasonable (cf. Figure 2.8). In this thesis, the
terms “computer simulation” and “simulation” are used as synonyms and imply the
in silico execution of models and experiments.

Table 2.1: A taxonomy of experiments (Vallverdú, 2014).

Experiments

Material
Nature In vivo
Laboratory In vitro

Non-material
Computational

In silico
In virtuo

Throught In mente
Hybrid Computational-material In mixtura
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Fig. 2.8: Ways to study a system (Law, 2014).

According to Law (2014) and Harrell et al. (2012), mathematical models used in
simulation (simulation models) can be distinguished by three dimensions: dynamics,
randomness, and progress of time.

Dynamics: Simulation models mostly represent systems, in which time plays an
important role as the system changes over time. This type of simulation models is
referred to as dynamic simulation models. The area of application includes but is
not limited to manufacturing and logistics as these systems operate over time. In
contrast, when a model represents the state of a system at a specific point in time or
when time is not existent in the system, a simulation model is said to be static. Static
models are used for Monte Carlo experiments where random samples are drawn for
statistically solving problems. In finance, for instance, Monte Carlo simulation is
used for determining the estimated distribution of outcomes when analyzing portfo-
lios (Raychaudhuri, 2008).

Randomness: When the inputs of a simulation model are not influenced by ran-
domness, the model is deterministic (cf. Figure 2.9). Consequently, a given initial
state of a model determines all possible future states of the model as no random or
unforeseen events might occur. The outputs of the model are predetermined likewise
and will remain constant regardless of the number of iterations. Thus, deterministic
models need to be executed only once to obtain exact results. An example of a de-
terministic simulation model is a set of differential equations describing dynamics
in manufacturing, e.g., average flow of products (Armbruster et al., 2006; van den
Berg et al., 2008). In contrast, if one or more inputs are probabilistic, the simula-
tion model is referred to as a stochastic model. The outputs of the model depend
on probabilistic inputs, which results in the observation of random outputs from an
(unknown) probability distribution. In this case, each execution of the model only
allows for one observation of the system’s behavior. In consequence, stochastic sim-
ulation models must be executed multiple times to estimate the parameters of the
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distribution of output values and to derive statistical performance indicators, e.g.,
average values. In manufacturing, systems with varying process times and resulting
uncertain throughput times are modeled stochastically.
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Fig. 2.9: Examples of (a) deterministic and (b) stochastic models (Harrell et al.,
2012).

Progress of time: Depending on how the states of a system are formalized, mod-
els can be either discrete or continuous. The state of continuous models changes
steadily over time, which is why sets of differential equations can be used here as
well. Examples are models of moving objects, e.g., vehicles or planes, as well as
the consumption of a substance or material over time, e.g., fuel in vehicles or cer-
tain operating materials in manufacturing. Here, the behavior of the model can be
observed at arbitrary points of time.

In most cases, the continuous modeling of systems is not feasible. Computers,
which are used for executing the model, work in discrete units and real data, which
is used to calibrate or evaluate the model, is also available for discrete points of
time. To cope with these circumstances, discrete models can be used to represent the
system by using a reduced number of states that change at discrete points in time.
Usually, changes of states are caused or triggered by events occurring in the system.
They cause an instantaneous change of the state, e.g., incoming orders, failure of
machines, or the completion of a manufacturing process. Discrete models benefit
from a reduced complexity as periods of time without relevant actions do not need
to be simulated in detail, computing capacities can be saved, and transitions between
states are simplified. In fact, this results in a further abstraction of the source system.
Yet, for most applications of simulation this is still sufficient.

Discrete-Event Simulation

In this thesis, the focus lies on models that are discrete, dynamic, and stochastic.
Such models are subject to discrete-event simulation, where states of the model
change at specific points in time (Nance, 1993). Often, a distinction is made be-
tween this type of simulation and continuous or Monte Carlo simulation. Examples
of discrete event simulation are queuing models as they can be found in customer



24 2 Foundations and Methods of Simulation

service, e.g., call centers, inquiry desks, or restaurants, but also inventory manage-
ment, e.g., in manufacturing or warehousing. The discrete-event characteristic of
such simulation models relates to how the system evolves over time. In contrast to
continuous simulations, the states of the model change instantaneously at specific
points in time upon the occurrence of specific events. An example of an event is the
arrival of a customer in the waiting queue of an information desk or the receipt of
an order in a production line. The benefit of discrete-event simulation is that time
intervals between the occurrence of two events do not need to be simulated as it is
assumed that no relevant action takes place. Thus, the computation of such models
is more efficient as such periods of time can be skipped (cf. Figure 2.10). Likewise,
when multiple events occur in a short time interval which could not be differen-
tiated in time-equidistant simulation, discrete event simulation allows for the con-
sideration of each individual event. Yet, scheduling of events as well as obtaining
dynamic behaviors is challenging as specific assumptions might apply (Özgün and
Barlas, 2009).
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Fig. 2.10: Time steps in time-equidistant and event-driven simulations (Law, 2014).

Law (2014) illustrates the benefits of discrete-event simulation using an example
of a service facility. To estimate the expected average delay in a queue of customers
arriving at an information desk at an airport by means of a discrete-event model,
only three variables are required: the status of the server, the number of waiting
customers, and the point of time each customer arrived at the desk. Depending on
the status of the server, an arriving customer is served immediately or needs to
wait in the queue. When a customer leaves from the desk after being served, the
server becomes idle in case the queue is empty or serves the next customer from
the queue. Accordingly, two types of events can occur: the arrival of new customers
and the departure of customers after they were served. The average delay is then
determined as the average delta between the time of arrival and the time of departure
of each customer. In case the server is idle and no customer is waiting in the queue,
the time until the next customer arrives can be skipped and does not need to be
simulated. Likewise, when a new customer is served, the time until the departure of
the customer can be skipped, too, except when new customers enter the queue.

In contrast to continuous simulations, the behavior of the system can only be
derived for specific points of time. Accordingly, no conclusions can be drawn about
the dynamics of the system between the occurrence of two events. In case all events
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that are relevant for thoroughly answering the underlying question are modeled, this
might be an advantage. Time slices in which no event occurs do not need to be
simulated, which saves computation time and leads to a more efficient execution of
the model. Discrete event simulation also allows for the simulation of events that
take place in parallel, as they are sequentialized by the event list but still take place
at the same time slice of the model. Finally, discrete event simulation allows for the
parallel and distributed simulation of models (Fujimoto, 1990).

Verification and Validation of Simulation Models

Regardless of whether a system is designed as a continuous or discrete-event model,
the significance of the simulation study strongly depends on the model’s validity
(Sargent, 2013). To increase the validity of a model and to ensure the quality of a
model for the execution of sound experiments, means of verification and validation
must be applied. Petty (2009) defined related terms with respect to modeling and
simulation from a quality management perspective: Verification describes a testing
approach in which an object’s consistency with individual specifications or regu-
lations is measured and assessed. Transferred to Modeling & Simulation, verifica-
tion refers to the assessment of whether the executable implementation of a model
corresponds to the specification of the model. An analyze is made of whether the
conceptual model is correctly implemented by the program code. In other words,
verification analyzes whether the model was built right (Balci, 1998, p. 336).

In contrast to this, validation takes an external perspective in quality manage-
ment and evaluates whether a product corresponds to the customers’ requirements.
In Modeling & Simulation, this refers to the behavior of the model. If the correspon-
dence of the model’s behavior with the behavior of the real-world system is satis-
fying, a model is considered valid. However, a famous quote that is often attributed
to physicist Murray Gell-Mann states that “the only valid model of a complex sys-
tem is the system itself” (Beautement and Broenner, 2011, p. 38). This aims at the
issue that models can never be able to adequately represent every aspect and mech-
anism of the real world as they might even be unknown. For that reason, Sargent
(2013) redefines the requirements for a model to be valid such that the criterion of
accuracy is weakened. Instead of absolute accuracy, Sargent demands an accuracy
which lies in an acceptable range and that is sufficient for the purpose of the simula-
tion. In this thesis, models to which common techniques and methods of validation
were applied are referred to as validated models. This corresponds to Sargent’s def-
inition of validity and implies at the same time that the model’s behavior does not
fully correspond to the real-world system’s behavior, yet, the level of inaccuracy
is acceptable. Accordingly, validations analyzes whether the right model was built
(Balci, 1998, p. 336).

Figure 2.11 illustrates how verification and validation fit into the process of sim-
ulation studies (Petty, 2009). Verification establishes a relationship between the re-
quirements that define which aspects of the real-world system must be part of both
the conceptual model and the executable model. It must be assessed, whether all
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Fig. 2.11: Comparisons in verification, validation, and accreditation (Petty, 2009).

requirements are met by the conceptual model. Furthermore, verification also takes
place between the conceptual model and the executable model. The goal of verifica-
tion is to ensure that all aspects of the conceptual model are sufficiently implemented
in the executable model that was developed using a programing language or simula-
tion framework. In contrast to this, validation can be located between the simuland
(experimenter), the real-world system of interest, and the conceptual model but also
between the simuland and the behavior or results generated by the executable model.
Between the simuland and the conceptual model, validation evaluates whether the
aspects of the simulation were modeled adequately and to their full extent. Addi-
tionally, observations of the simuland are compared to the results of the simulation.
Validation assures that the behavior of the artificial system corresponds to the be-
havior of the real-world system with sufficient accuracy. Finally, Petty (2009) in-
troduces accreditation as a third process that takes place between requirements and
results. Unlike verification and validation, accreditation is a decision process with
the goal of deciding whether or not a model is suited for a specific purpose.

A process that is closely related to validations is calibration. Instead of com-
paring the model’s behavior to the real system, the aim of calibration is to find
a parametrization that results in a specific desired output behavior of the model
(Banks, 2014). Calibration is an iterative process in which the values of the model’s
inputs are adjusted with respect to minimizing the deviation between the outputs of
the models and the outputs observed from the real-world system under correspond-
ing circumstances (Kleijnen, 1995). This can, for instance, be achieved by means
of optimization algorithms such as simulated annealing (Bates, 1994; Kasaie and
Kelton, 2015).

Building proper simulation models is a challenging and time-consuming task
(Sargent, 2013). It requires a large amount of domain expertise and knowledge of
respective mechanisms that are part of the artificial representation of the real-world
system. In this thesis, it is assumed that approaches were successfully applied for
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the verification, validation, and accreditation of the model. Accordingly, when re-
ferring to a model that is provided by a user for conducing a simulation study, it
is assumed that this model’s reliability and validity were tested by means of ade-
quate techniques. Furthermore, it is presumed that the model’s accreditation for the
intended study was confirmed as well.

2.2.2 Simulation Experiment

After building a simulation model and assuring its quality, the next step towards
answering research questions is the execution of simulation experiments. The aim
of simulation experiments is to identify and understand changes in the observable
behavior of a model that are caused by the variation of the values of the model’s
inputs. With respect to the goal of this thesis, the conducting of Hypothesis-Driven
Simulation Studies, the identification and design as well as the execution and anal-
ysis of those experiments are crucial for answering the hypothesis. Especially when
investigating models with a large number of inputs and admissible values per in-
put, not all possible input value combinations can be investigated by experiment.
Instead, a limited number of experiments with parametrizations that provide evi-
dence for answering the hypothesis (relevant experiments) must be executed. For
instance, if it can be proven that a specific input does not influence the behavior of a
model, it might not be necessary to execute experiments for each possible value of
this input. Respective experiments can then be considered irrelevant for answering
the hypothesis.

For this reason, the concept which is presented in Chapter 5 and specified in
Chapter 6 addresses these steps thoroughly. It discusses how experiments can be
assisted and automated with respect to systematically answering research questions.
To avoid redundancies and with respect to the structure of this thesis, only concepts
and terminology which are of superior relevance for understanding the presented
approach are introduced in this chapter. The aim of this subsection is to impart a
basic understanding of what scientific simulation experiments are, why the proper
design of experiments is an important and challenging task, and how this task can be
supported by means of theoretical frameworks. To outline the fundamentals of sim-
ulation experiments, it is structured as follows. After providing a definition of sim-
ulation experiments, the influence randomness has on the design and execution of
simulation experiments is illustrated. Finally, theoretical frameworks are presented
that provide assistance for the design of simulation experiments.

Scientific Simulation Experiments

For the generation of credible simulation results, it is not sufficient to just observe
the behavior of a model under any circumstances upon execution. To provide reli-
able answers to model-related research questions, it is necessary to understand how
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different circumstances systematically affect the behavior of the model. It is essen-
tial to investigate and analyze a model’s cause-and-effect relationships in terms of
how variations of the model’s inputs influence the model’s outputs (Montgomery,
2013). Furthermore, it is also desirable to identify which inputs influence a specific
output. This is the goal of simulation experiments. In Modeling & Simulation, a
simulation experiment can be defined as

“a test or series of runs in which purposeful changes are made to the input variables of a
process or system so that we may observe and identify the reasons for changes that may be
observed in the output response”.

(Montgomery, 2013, p. 1)

In each of the runs that Montgomery refers to, the model’s behavior is observed
under different circumstances. Technically, those circumstances are defined by the
model’s inputs and more particularly by the values of the model’s inputs. To execute
the model, specific values must be assigned to each input of the model. A tuple
that contains an individual value for each input of the model is referred to as the
parametrization of the model. Accordingly, each simulation run that is performed
as part of an experiment is defined by an individual parametrization of the model.

Randomness in Simulation Experiments

If the model consists of random inputs (cf. Section 2.2.1), the design and execution
of simulation experiments is more difficult compared to deterministic models that
are not comprised of stochastic behavior. This is because the statistical certainty
of the generated results must be assessed and considered. To include probabilis-
tic values in simulation models, stochastic probability distributions are used. They
consist of mathematical functions that provide information on how likely the ob-
servation of specific outputs of an experiment is. When rolling a 6-sided dice, the
sample space of possible outcomes is S = {1,2,3,4,5,6} where each observation
is equally likely, namely 1/6 ⇡ 16.67%. Accordingly, the corresponding probability
distribution of rolling a fair dice is uniformly distributed (cf. Figure 2.12).

A differentiation can be made between continuous and discrete probability dis-
tributions (cf. Figure 2.13). The probability distributions of rolling a dice or tossing
a coin consist of a countable number of discrete events that can be observed. Each
observation can be assigned to one specific and predefined value of the respective
discrete random variable. In contrast to this, a continuous probability distribution de-
fines the probability of a continuous random variable taking a specific value. Such
distributions consist of an infinite and uncountable number of possible values. Ac-
cordingly, the likelihood to observe one specific value is zero and only the probabil-
ity to observe a value from a range of values is determined by the distribution. Con-
tinuous probability distributions can be utilized to describe outcomes of processes
where times are measures, e.g., the processing time of orders in a manufacturing
environment. However, considering the accuracy of the measuring tool, continuous
distributions might be discretized due to a lack of granularity. For instance, the pre-
cision of stop watches that are used for measuring waiting or processing times is
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often limited to a hundredth or thousandth of a second. Thus, measured times are
discretized accordingly. This corresponds to the distinction between discrete and
continuous inputs of a model as presented in Section 2.2.1.
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Fig. 2.12: Probability mass function of a 6-sided fair dice.
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Fig. 2.13: Discrete and continuous probability distribution (Montgomery, 2013).
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Theoretical Frameworks for Designing Experiments

To consolidate all aspects that are of importance when designing simulation exper-
iments, several theoretical frameworks were proposed that provide assistance and
structure relevant processes. Montgomery (2013) proposed seven guidelines (steps)
for designing simulation experiments (cf. Table 2.2). These guidelines shape a pro-
cedure for the design and analysis of simulation experiments with respect to an exact
understanding of the study’s goal, the extent and form of collected data, as well as a
qualitative understanding regarding the analysis of these data. The first step of Mont-
gomery’s guidelines proposes both a recognition and statement of the study’s un-
derlying problem. Only by keeping the specific reason for executing experiments
in mind can a targeted and sound experimentation be ensured. This proceeding is
not exclusive for simulation experiments but can also be discovered in procedure
models for simulation studies as a part of which experiments are executed (cf. Sec-
tion 2.3.3). When discussing reasons for simulation experiments, Montgomery dis-
tinguished between factor screening, optimization, confirmation, discovery, and ro-
bustness. This emphasizes, that the process of executing experiments must be varied
in accordance with the specific reason.

Table 2.2: Guidelines for designing an experiment (Montgomery, 2013).

1. Recognition of and statement of the problem (Pre-experimental planning)
2. Selection of the response variable (Pre-experimental planning)
3. Choice of factors, levels, and ranges
4. Choice of experimental design
5. Performing the experiment
6. Statistical analysis of the data
7. Conclusions and recommendations

As a next step, the selection of the response variables is proposed to adequately
measure the performance or behavior of the model during experimentation. In this
regard, the conducting of multiple simulation iterations is suggested to reduce the
measurement error that might occur in dynamical models. The first and second step
of the proposed guidelines can be summarized as pre-experimental planning. They
are conducted in advance of the experimentation and serve as a methodological
frame for the following steps.

In the third step, the choice of factors, levels, and ranges takes place. In Design
of Experiment terminology, (design) factors are inputs that can be varied during
an experiment. Montgomery (2013) discriminated between potential design factors,
those that are varied by the experimenter during the experiment, and nuisance fac-
tors, which are not of particular interest for the current experiment. Still, nuisance
factors might affect the performance of the model and thus need to be taken into
account during experimentation. After the experimenter has defined which design
factors will be varied, the second task is to determine which values (levels) or ranges
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of values will be simulated for each factor. At this point, a trade-off between the cov-
erage of the parameter space and the computational complexity needs to be made.
For the selection of relevant design factors, detailed process knowledge is required.
Approaches exist for the systematic identification of important factors, e.g., factor
screening. However, such approaches are difficult to apply and several preconditions
need to be met (Kleijnen et al., 2005).

The fourth step of Montgomery’s experiment guidelines intends the choice of
an experimental design. Besides the required number of replications, the order in
which the simulation runs are executed as well as potential reductions of the param-
eter space can be provided by experimental designs. A more detailed presentation
and discussion of approaches for designing simulation experiments is provided in
Section 6.3.

After an experimental design was chosen, performing the experiment is the
fifth of the seven presented guidelines. Montgomery emphasizes the importance of
executing the experiments in exact accordance with the experiment plan, which was
defined in the previous steps. He furthermore points out that errors in the execution
of experiments may drastically reduce or even entirely undermine the validity of
the results. As a major source of error in the execution of simulation experiments,
Montgomery identifies the person performing the experiments. While he suggests
the involvement of a second person with the task of checking experiment settings,
it seems that the assistance and automation of respective tasks, as proposed in this
thesis, is more efficient with respect to reducing experimenter bias (Tolk, 2017a).

The statistical analysis of the data is the sixth step of experimentation. To en-
sure the objectiveness of the output data analysis and to facilitate the respective
process, it is recommended to apply statistical methods. Those methods are able to
assess the reliability and validity of the results by means of confidence levels and
error estimations. However, they cannot prove that a factor indeed has a specific
effect (Montgomery, 2013). Thus, a combination of statistical methods and domain
knowledge is required to enable a sound and reasonable interpretation of the exper-
iment’s results.

Finally, as a last guideline, conclusions and recommendations must be made.
This includes drawing practical conclusions from the results that were analyzed
in the previous step. According to Montgomery, this last step can also include the
execution of follow-up runs to confirm or disconfirm findings. Experimentation can
be understood as an iterative process, where the results of one experiment lead to
new problems and result in new experiments.

To summarize, simulation experiments have dynamic and individual properties,
which need to be applied thoroughly and carefully. In this regard, Teran-Somohano
et al. (2014) speak of a life cycle of experiments, taking account of a systematic
design of experiments presented by Lorscheid et al. (2012) (cf. Table 2.3). With the
goal of contributing to a more standardized simulation research process, Lorscheid
et al. opened the “black box of simulations” to develop an approach for the sys-
tematic analysis of simulation models. Teran-Somohano et al. picked up on their
approach, revised and specified the steps with respect to the computational assis-
tance of experiments, and referred to it as the experiment life-cycle.
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The experiment life-cycle consists of three phases and eight stages, which mostly
correspond to the guidelines of experimentation proposed by Montgomery (2013).
Teran-Somohano et al. argue that many tools and frameworks exist for managing the
conducting of simulation experiments. However, they criticize that these tools do
not take the entire life-cycle of simulation experiments into account. To counteract
this shortcoming, experiments are modified as part of the extended process and with
respect to experimental objectives.

Table 2.3: Phases and stages of the experiment life-cycle (Teran-Somohano et al.,
2014) based on Lorscheid et al. (2012).

Phase Stage Output
I: Experiment
preparation

1. Experiment objective formula-
tion

List of experimental objectives

2. Variable classification Variable classification table
II: Experiment
execution

3. Definition of response vari-
ables and factors

Response list, Factor table (in-
cluding levels and values)

4. Design selection Experiment design matrix
5. Estimation of experimental er-
ror variance

Number of required replications
for statistical reliability

6. Experiment execution Final effect matrix
7. Analysis of effects ANOVA table, Effect strength

and direction table, Factor and in-
teraction significance table

III: Analysis of
experiment

8. Outcome analysis with respect
to experiment objective

Updated response and factor list

The development of experiment process models such as guidelines for executing
simulation experiments can, among other reasons, be attributed to a lack of (sound)
experiments (Himmelspach, 2007). However, this is not a new topic. Already 20
years ago, Tichy (1998) discussed a lack of experimentation for testing theories and
emphasized the importance of experimentation for computer science.

2.3 Application of Simulation

Combining the perspectives on modeling and experimentation, the focus of this sec-
tion lies on the application of simulation, which is introduced in a twofold way. First,
practical aspects of the application of simulation are presented. This includes the in-
troduction of areas in which it is applied as well as software support for the execu-
tion of models and the conducting of experiments. In this regard, different domain-
specific and multi-domain procedure models are presented. Second, theoretical as-
pects of applying simulation are focused including a discussion on advantages and
disadvantages of simulation. To conduct methodologically sound simulation studies
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using the presented simulation software, this section introduces procedure models
that structure the application of simulation studies.

2.3.1 Areas of Application

Simulation has been established as a third pillar of science and its application is no
longer limited to computer science and information systems research. Banks (1998)
summarized a wide range of potential areas of application. An obvious area of ap-
plication is manufacturing, where simulation is used to analyze production plan-
ning models and machine shop operations (Mönch et al., 2003). This is especially
promising with regard to the “Digital Factory”, a strategic goal of many enterprises
in the production industry (Wenzel et al., 2005). The Digital Factory benefits from
simulation as production processes can be planned, optimized, and changed as they
take place. This also enables a more dynamic handling of unpredictable events such
as failures in the manufacturing process. In this case, simulation can support the
decision-making by investigating potential alternative manufacturing scenarios in
no time.

Also in logistics and supply chain management, simulation has become a stan-
dard technique (Thiers and McGinnis, 2011). Many specialized software frame-
works, e.g., Arena (Rockwell Automation) or Plant Simulation (Siemens AG),
were developed to analyze logistics networks and resource distribution (Pawlewski
and Borucki, 2011). Specific scenarios are allocation or scheduling of resources
as required in warehousing and distribution of goods. Kleijnen (2005b) presented
four types of simulation that are applied in logistics and supply chain simulation:
Discrete-event dynamic system simulation, spreadsheet simulation, system dynam-
ics, and business games. Discrete-event dynamic system simulation is closely related
to discrete-event simulation, which represents individual events and incorporates
uncertainties. By this means, complex supply chains can be simulated where ran-
dom variables, e.g., production times or delays, need to be considered. In the broader
sense and according to Banks (2014), the simulation of pedestrian flows is part of
logistics simulation as well. This includes the flow of customers in a company’s
building, e.g., passengers in an airport terminal, but also of people in general, e.g.,
the evacuation of sport fans from a soccer stadium in case of fire or other emergen-
cies. To this end, as well as for the simulation of logistics supply networks, agent-
based simulation is often applied, which imposes scalability challenges (Timm and
Pawlaszczyk, 2005).

Traffic and transportation simulations are comprised of road traffic, shipping,
and aviation. On land, the planning and optimization of (long distance) road traffic
and transportation networks (Taniguchi and Shimamoto, 2004) as well as the evalua-
tion of strategies for traffic light circuits and traffic guidance alternatives (Dallmeyer
et al., 2015) can be supported by simulation. In addition to these areas of application,
Davidsson et al. (2005) provide a comprehensive overview of further applications
of simulation in transport logistics. On water, simulation is applied to optimize port
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traffic (Cortés et al., 2007) or in container terminal management (Henesey, 2006)
including connections to the hinterland (Iannone, 2012). In the air, the areas of ap-
plication range from the training of pilots in flight simulations to the airflow simu-
lations for the design of aircrafts and spacecrafts (Lee, 2005). However, in aviation,
discrete-event simulations are rarely used.

In terms of business processes management, simulation can be applied to reduce
costs or to improve efficiency. Accordingly, it can be applied as a method in busi-
ness process reengineering (Greasley, 2003). Like in logistics, numerous simulation
frameworks exist that facilitate modeling and simulation of processes in or between
companies. For this purpose, process models that were described by means of tradi-
tional business modeling paradigms, e.g., BPMN (Wagner et al., 2009) or PetriNets
(Jansen-Vullers and Netjes, 2006), can be executed and analyzed (van der Aalst
et al., 2010). Potential applications of business process simulation are diverse and
extend from call center staffing (Atlason et al., 2008) to patient treatment processes
in hospitals (Djanatliev and Meier, 2016).

Also in social sciences, simulation has been established for modeling artifi-
cial populations with the aim of investigating human behavior. The emerging sub-
discipline is referred to as computational social science (Conte and Paolucci, 2014)
where modern computer-assisted approaches are applied to analyze social phenom-
ena. A prominent example is the research field of agent-based social simulation
where methods from social sciences, computer simulation, and agent-based com-
puting are combined (Davidsson, 2002). Related methods are well suited to analyze
social phenomena on a micro scale by representing individuals or groups of individ-
uals as software agents (Gilbert and Troitzsch, 2005). In this regard, the potentials of
combining sociology and artificial intelligence were also studied in the research field
of socionics (Malsch and Schulz-Schaeffer, 2007). Yet, the application of simula-
tion in social sciences is not limited to the analysis of human behavior. Simulation is
also applied for estimating and understanding socio-demographic development, e.g.,
unemployment (Münnich and Rässler, 2005) or care-demand (Berndt et al., 2017).

Finally, for the sake of completeness, military applications of simulation must
be mentioned. Military simulation includes domestic and international scenarios of
defense and disaster management as well as combat missions and reconnaissance.
Relevant fields include logistics and operational planning where supply networks
(Hussain et al., 2015) or emergency strategies (Brachner, 2015) are evaluated. Fur-
thermore, simulation is used to gain tactical advantages by optimizing the location
of decoys (Mattila et al., 2014) or naval mines (Floore and Gilman, 2011). But also
human performance can be analyzed and optimized by means of simulation. An
example is the detection of and adaption to team behavior by autonomous mobile
robots (Wimpey et al., 2015). Finally, to prevent and mitigate the effects of cyber
attacks, modeling and simulation of different attack scenarios and counter-measures
seems suitable (Cayirci and Ghergherehchi, 2011). Another common application of
simulation in a military context is the development of serious games. Through this,
both training and education of military staff can be improved, e.g., the importance
and effects of international humanitarian law and ethics can be taught in role plays
(Veziridis et al., 2017). At the same time, this application of simulation also empha-
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sizes and justifies the importance of a code of ethics for the application of simulation
(Tolk, 2017b).

2.3.2 Appropriateness and Advantages of Simulation

As stated in this chapter, simulation is an established technique for analyzing real-
world systems by means of artificial models. Based on validated models, experi-
ments are executed to systematically investigate the model’s behavior and to derive
conclusions regarding the behavior of the real-world system. Even though simu-
lation is applied in various disciplines and for multiple purposes, simulation is no
silver bullet and the opportunities provided by simulation must be considered care-
fully before its application. Thus, this subsection discusses circumstances under
which the application of simulation is appropriate as well as benefits and pitfalls
of simulation.

Section 2.3.1 introduced various areas in which simulation is applied. This gives
only a first impression regarding the extensive field of application of simulation.
The question of whether or not simulation can be applied in a specific situation or
under specific circumstances cannot be answered by only considering the respective
domain. To assess if the application of simulation is appropriate, e.g., for solving a
problem or analyzing a system, the underlying purpose must be considered as well.

According to Banks (2014), traditional purposes where simulation is appropriate
include but are not limited to studying complex systems or systems within systems as
well as to treat internal interactions of complex systems. Moreover, observing how
changes of the inputs affect the outputs of a system is a major task where simulation
can be applied just like analyzing effects of environmental changes by investigating
how the model’s behavior changes in accordance with changes of the environment.
By these means, dependencies and mechanisms within the model as well as between
the model’s variables can be identified. Finally, simulation is appropriate to evaluate
new designs or policies before implementation,

In contrast, several circumstances exist where the application of simulation is
not appropriate. Banks and Gibson (1997) refer to “ten rules for evaluating when
simulation is not appropriate” (cf. Table 2.4). While some of the provided rules
focus on the solvability of the underlying problem, others target quantitative factors
such as costs or time.

The primary rule for not applying simulation is the question whether it is neces-
sary and efficient to use simulation. If the application of simulation takes too long
compared to alternative analytical solutions, it is not recommendable to use simula-
tion even though it might be useful. As an example, Banks and Gibson (1997) men-
tion steady-state queuing models and probabilistic inventory models where proba-
bilities in the system can be determined more efficiently by means of (closed form)
equations. Furthermore, under some circumstances it might be easier to perform
real-world experiments if the respective system as well as the obtained results will
not be modified, harmed, or affected in any other negative way.
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Table 2.4: Ten rules for evaluating when simulation is not appropriate (Banks and
Gibson, 1997).

Rule 1 The problem can be solved using "common sense analysis".
Rule 2 The problem can be solved analytically (using a closed form).
Rule 3 It’s easier to change or perform direct experiments on the real system.
Rule 4 The cost of the simulation exceeds possible savings.
Rule 5 There aren’t proper resources available for the project.
Rule 6 There isn’t enough time for the model results to be useful.
Rule 7 There is no data - not even estimates.
Rule 8 The model can’t be verified or validated.
Rule 9 Project expectations can’t be met.
Rule 10 If system behavior is too complex, or can’t be defined.

From an economic perspective, the appropriateness of applying simulation can
be assessed monetarily. If the cost savings that can be achieved based on the sim-
ulation’s results do not cover the expenses of the required simulation study, the
application of simulation is not appropriate. Likewise, if there is not sufficient time
to conduct a simulation study, e.g., due to long-winded model building or as the
available time window is too narrow, it is also not appropriate to use simulation.
Finally, if the model cannot be verified and validated or if no data is available for
the execution of sound simulation experiments, it is not reasonable to simulate.

After evaluating whether the application of simulation is appropriate based on the
individual circumstances, the consideration of further advantages and disadvantages
of simulation is necessary. In addition to enabling the analysis of possible futures of
a system, Banks (2000) discussed 21 aspects for and against the use of simulation.
With respect to the goal of this thesis, the most relevant aspects are the exploration
of possibilities, the identification of constraints, difficulties in interpreting results,
and the inappropriate use of simulation.

Shannon (1998) also discussed advantages and disadvantages of the application
of simulation. To emphasize the advantages of simulation, Shannon compares sim-
ulation to other approaches for analyzing systems such as analytical and mathemat-
ical models. Besides the improved comprehensibility of simulation, which is an ad-
vantage if the underlying concepts need to be explained to customers or managers,
he points out the increased credibility of simulation models. Also for the identifi-
cation of bottlenecks, e.g., in processes where the flow of information or products
is analyzed, simulation is an adequate means. With respect to the goal of this the-
sis, the aspect of hypothesis testing for the investigation of phenomena is a major
advantage of simulation. However, Shannon also discusses disadvantages of simu-
lation such as extensive training, dependence on the quality of input data, and the
fact that simulation models are not solved but run. Thus, they do not per se provide
an optimal solution.

In summary, numerous advantages and disadvantages of simulation exist. Before
applying simulation, one needs to thoroughly trade off these aspects against each
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other to assess whether or not simulation is an appropriate technique in a specific
context. This thesis assumes that the appropriateness of the application of simula-
tion was confirmed in advance of the planning of the simulation study. The proposed
approach neither questions the suitability of simulation nor proposes alternative ap-
proaches for solving a problem. To ensure the generation of valid results, the feasi-
bility of alternative approaches must be investigated by the experimenter.

2.3.3 Procedure Models for Simulation Studies

In the previous two sections, two key components of simulation studies were in-
troduced: simulation models and simulation experiments. For each of the two com-
ponents, individual research areas were established such as agent-based modeling
(Bonabeau, 2002) and design of experiments (Kleijnen, 1998). Yet, to conduct suc-
cessful and sound simulation studies, a thorough and systematic coordination be-
tween both components is required. When applying simulation in terms of studies,
such coordination of the simulation process can be achieved and ensured by means
of procedure models.

Procedure models are applied for process modeling and consist of a number of or-
dered steps with the intention to facilitate the achievement of a process goal. At first
glance, this definition of procedure models seems to correspond to the definition of
simulation experiments. Montgomery (2013) defines experiments as a series of tests
in which the input-output relationship of a model is investigated. However, in this
thesis, a differentiation between simulation studies and experiments is made such
that experiments do not necessarily need to follow a systematic approach. While ar-
bitrary parametrizations can be tested during an experiment, the process of a study
as a first step requires the formulation of a research question. All remaining steps of
the study are then aligned to contribute to systematically answering this question. In
this regard, experiments can be seen as an essential part of simulation studies, yet,
they can also be executed in isolation and apart from a study.

A large amount of procedure models was proposed during the last decades (Timm
and Lorig, 2015). In the discrete event simulation community, the procedure model
proposed by Law (2014) has been established as a de facto standard (cf. Figure
2.14). Hence, as a representative for other procedure models, Law’s perspective on
simulation studies is introduced.

Law’s procedure model consists of ten linked sequential steps. As a first step of
each simulation study, Law advises thoroughly formulating the problem of the
study. This includes the definition of the overall objectives of the study in terms
of questions that will be answered during the study. It also implies the definition
of requirements for the model which will be developed during the study, based on
objectives that are defined by the decision-maker. The boundaries of the modeled
system are defined at this stage, too. Furthermore, performance measures for the
assessment of the model’s efficiency or for the comparison of different parametriza-
tions of the model are defined at this stage of the simulation study.
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Fig. 2.14: Procedure model for simulation studies (Law, 2014).

The second step proposed by Law covers both the collection of data and def-
inition of a model. Real-world system data that needs to be collected during this
step in the study is required for the specification of the parameters of the developed
model. Yet, not only the determination of relevant parameters but also the identifi-
cation of respective ranges of admissible values as well as input data analysis for
identifying and fitting respective probability distributions are part of this step. The
result of the second step is a detailed documentation of assumptions that must be
met regarding the model as well as a specific data basis which is often referred to as
the conceptual model.

In the next step, an evaluation is made whether the assumptions document is
valid. Law suggests that this task, the conceptual-model validation, can be achieved
by means of a structured walk-through of the respective documents. In case the va-
lidity of the assumptions document cannot be confirmed in this step, the document
has to be updated before proceeding with the fourth step of the study. This means
that, depending on the identified shortcomings, it might be necessary to repeat step
2 or even to start over with the entire procedure. Multiple iterations of the improve-
ment process might also be required.
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After the successful validation of the assumptions document, the next step’s goal
is the construction and verification a computer program. The development of an
executable model includes the specification of the model using adequate means such
as class or sequence diagrams as well as the implementation of the model. To imple-
ment the model, either profession simulation software, e.g., NetLogo, AnyLogic, or
Repast Symphony (Kravari and Bassiliades, 2015), or proprietary implementations
written in programming languages such as Java or C++ can be used. The verifica-
tion of the implemented model can be evaluated using dynamic testing approaches
such as unit testing but also by means of static techniques like model checking or
software metrics (Chockler et al., 2006; Sawyer and Brann, 2009). At this point of
the study, the model can be used to make pilot runs. The data acquired during these
pilot runs can then be used for the validations in the following step of the study.

The sixth step analyzes whether the pilot runs provided sufficient evidence that
the programmed model was valid. Law discriminates between results validation
and face validity when referring to the correctness of simulation models. Results
validation can be achieved by comparing the model’s observed behavior to the be-
havior of the real-world system. Face validity, in contrast, can also be achieved
without respective data from a real-world system. Instead, the reasonableness of the
observed behavior is evaluated and assessed by experts. In case the model’s behav-
ior is compliant with the experts’ expectations, the model has face validity. At this
step, an identified lack of validity results in the reiteration of the previous steps and
the revision of the model assumptions as well.

After the model’s validity is confirmed, the model building part of the simulation
study is successfully completed and the process of the study continues with the ex-
perimentation part. The seventh step of simulation studies according to Law, and the
first step of the experimentation, focuses on the design of experiments. The goal
of this step is to specify under which conditions each parametrization of interest is
executed. This includes but is not limited to the definition of individual warm-up
periods, run length, and number of replications per simulation run. Especially when
simulating stochastic models that require many replications for each parametriza-
tion, a large number of individual executions of the model might be necessary. To
avoid the combinatorial explosion of simulation runs and iterations, factorial de-
signs, e.g., 2k fractional design or Latin hypercube sampling, should be applied at
this step (Kleijnen et al., 2005). Based on the runs that were defined in the previ-
ous step, the next step of a simulation study is to make production runs. For this
purpose, the simulation software that was chosen in step 4 is used to execute the
model.

During the execution of the model which was performed in step 8, output data is
generated for each iteration of each parametrization. With respect to answering the
research question or the problem that was stated as the first step of the study, the sec-
ond last step of a simulation study deals with output data analysis. Maria (1997)
identified two major tasks during output data analysis. First, descriptive statistics
need to be applied to calculate numerical estimates of the model’s performance
with respect to the performance measure defined in step 1. This includes the cal-
culation of the arithmetic mean or confidence intervals. Second, these data shall be



40 2 Foundations and Methods of Simulation

used to test hypotheses about the performance of the model. For this purpose, Law
suggests comparing the outputs of alternative parametrizations of the model in a
relative sense. Yet, the application of a statistical hypothesis testing approach is also
reasonable and applied frequently (Hofmann, 2016).

Finally, to complete the simulation study, it is necessary to document, present,
and use the study’s results. This is of particular importance with respect to the
reproducibility of the study’s results. For this purpose, the assumptions that were
made during the study, the executable model, the outputs generated by the model,
and the results must be thoroughly documented. Additionally, Law emphasizes that
the presentation of the study’s results is important, too, when completing a simula-
tion study.

In this section, a brief overview of the steps of simulation studies was given with
respect to their definition in procedure models. In the further course of this thesis,
a more detailed discussion of individual differences between the procedure model
presented here and other existing procedure models is provided (cf. Section 4.2.1).
Furthermore, each of the steps that are related to the execution of experiments will
be analyzed with respect to the verification of research hypotheses. For this purpose,
more detailed specifications of those steps will be presented in Chapter 6.



Chapter 3
Assistance and Automation of Simulation

In the previous chapter, simulation was introduced as an approach where computer
models of real-world systems are applied to facilitate analyzing, planning, and opti-
mizing of these system. This thesis aims at integrating research hypotheses into the
process of simulation studies, to assist the identification, design, execution, and eval-
uation of important experiments to prove or disprove such hypotheses. Especially in
models with a large number of inputs, the resulting degrees of freedom require an
extensive number of similar experiments. The repetitiveness of this task might lead
to carelessness by the experimenter, which is a thread to the quality of the results.
Moreover, the large number of design decisions that must be made during a study
might unwillingly lead to experimenter bias.

To overcome this, this thesis claims that an assistance or even automation of the
entire process of simulation studies and its respective steps is required. With respect
to this goal, this chapter provides a state-of-the-art overview of existing approaches
for assisting and automating simulation. Based on the results of the literature survey,
potentials and opportunities but also gaps and shortcomings of existing approaches
are identified. Accordingly, existing approaches can be extended and combined so
that they contribute to the overall goal of Hypothesis-Driven Simulation Studies.

To examine the current state of the art in the design, assistance, and automation
of simulation studies, two major areas need to be covered: theoretical and practi-
cal approaches. As a first step, formalisms such as description languages and other
theoretical frameworks are considered. Such approaches provide assistance as they
structure and define both the process of simulation as well as individual tasks, steps,
and entities. This includes interchange formats and specification languages, method-
ology and quality guidelines, as well as systematizations of the simulation process.
In a second step, practical implementations such as software toolkits and frame-
works for the automation of simulation are surveyed. The aim of this investigation
is to examine their capabilities for assisting the life-cycle of simulation studies de-
fined by procedure models.

The survey that is conducted to identify related contributions is inspired by the
literature snowballing approach (Wohlin, 2014), which enables systematic literature
studies. The snowballing procedure consists of three major iterative steps, which are
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executed until no new relevant papers are found. For this purpose, reference lists of
relevant contributions as well as publications that reference these contributions are
analyzed to identify further papers, articles, and books that are of importance with
respect to the initial question or problem. The relevance of a contribution is assessed
stepwise by its title, abstract, and the full text. This process is repeated until no
additional references are found during the analysis of the gathered reference lists.
Hence, snowballing allows for more reproducible and systematic literature studies.

To search for relevant publications, Google Scholar1 was used, an academic
search engine that indexed nearly 100 million documents (Khabsa and Giles, 2014).
In a second step, results found when using Google Scholar were complemented
by searching the quality-assured DBLP2 database, which lists more than 4 million
computer science publications. Combining these two search engines enables a com-
prehensive overview over a wide range of scientific publications which is comple-
mented by relevant contributions from major conferences and journals in computer
science.

The following sections present the relevant publications. As a differentiation can
be made between theoretical and practical contributions, this section has a two-fold
structure. First, it presents theoretical approaches for the assistance of simulation
including interchange formats and specification languages as well as guidelines for
and systematizations of the application of simulation. Then, practical approaches
are introduced that refer to toolkits and software frameworks for the automation of
simulation experiments or studies.

3.1 Description Languages and Theoretical Frameworks

This first section surveys theoretical approaches for the assistance of simulation. In-
terchange formats and specification languages are developed to facilitate the com-
munication of simulation concepts, e.g., description and configuration of experi-
ment, models, or performance indicators. An overview of relevant domain-specific
languages is provided in Section 3.1.1. Afterwards, Section 3.1.2 introduces guide-
lines for both the methodology as well as the quality of simulations. Such guidelines
provide theoretical frames that guide the application of simulation. Finally, Section
3.1.3 presents systematizations of the procedure of simulation studies. In addition
to guidelines, such approaches align relevant aspects of simulation and establish a
methodological connection between them. Such theoretical frameworks address and
assess the epistemological contribution of simulation.

1
https://scholar.google.de/ [Retrieved Aug. 2018]

2
https://dblp.uni-trier.de/ [Retrieved Aug. 2018]

https://scholar.google.de/
https://dblp.uni-trier.de/
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3.1.1 Interchange Formats and Specification Languages

To allow for the specification of simulation models and experiments, numerous
XML-based model interchange formats and specification languages have been de-
veloped (Smith et al., 2010). This subsection presents different approaches for spec-
ifying simulation-related artifacts and entities. Each approach is briefly introduced,
if available, the application domain is specified, and a discussion is provided on both
advantages and disadvantages of the introduced approaches.

Schützel et al. (2014) discriminate between four different types of modeling and
simulation support languages: workflow languages, domain-specific languages, lan-
guages to instrument data collection, and languages to support validation and anal-
ysis. The authors identified a paradigm shift in Modeling & Simulation towards a
more structured process of simulation studies in terms of scientific workflows. Mul-
tiple workflow languages were proposed to specify simulation processes as scientific
workflows. An example is BPMN, a language that aims at the specification of busi-
ness processes, which can also be automatically transformed into simulation models
(Schepers et al., 2014). In contrast to this, domain-specific languages are not multi-
purpose approaches and the vocabulary is defined with respect to one particular
domain. As they are implemented using general-purpose programming languages,
e.g., Scala (Ewald and Uhrmacher, 2014), or frameworks for the development of
programming languages, e.g., Xtext (Doud and Yilmaz, 2017), they can be extended
assuming the user has sufficient knowledge of the respective language or frame-
work. To limit the volume of collected data by means of a targeted data extraction, it
is reasonable to apply data collection languages. According to Schützel et al. (2014),
the specification of such languages requires three design decisions: target address-
ing (“Which entities contain relevant information?”), collection of metadata (“How
are groups of values formed and aggregated?”), and frequency of data collection
(“During which phase will data be collected?”). Finally, languages that support val-
idation and analysis of simulation models and experiments provide techniques that
enable, e.g., automated model checking. An extensive overview of domain-specific
languages is provided by van Deursen et al. (2000), although not all of the pre-
sented languages were developed with respect to the application in the context of
simulation. Additionally, Bruce (1997) presents principles for assessing the quality
of domain-specific languages.

In computer network research, the ns-3 simulator enables the specification and
execution of discrete event simulation experiments (Riley and Henderson, 2010).
To keep the entry barrier for working with ns-3 low, Riley and Pekley (2011) pro-
posed ns3xml, an XML experiment description language for ns-3. By this means,
the user is no longer required to have programming skills in C++ but can design and
specify simulation experiments as XML files. The syntax of ns3xml is simple but
even though it is specified in XML, the developers do not provide an XML schema.
Instead, the ns3xml program ensures the consistency of the generated document as
it enforces required sub-elements of each element.

The SAFE framework (Simulation Automation Framework for Experiments) pro-
vides assistance for the use of the ns-3 simulator by automating workflows for the
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design and execution of experiments. As an extension of the SAFE framework,
Hallagan (2011) developed two XML-based languages: NEDL (ns-3 Experiment
Description Language) and NSTL (ns-3 Script Templating Language). The goal of
these languages is to describe network simulation experiments and models. While
NEDL can be used for specifying experiments, NSTL provides a set of tools that
enable the exchange of information between NEDL and the underlying simulator.

Another extension to the SAFE framework is SLED (SAFE Language for Experi-
ment Description), a domain-specific language for the description and configuration
of simulation experiments in SAFE (Schützel et al., 2014). SLED was developed
after NEDL and NSTL and in contrast to these languages, the goals of SLED are
improved readability as well as the automated generation of experiments. For this
purpose, SLED is not based on XML but makes use of the JSON format instead. It
was the developers’ intention to fully replace NEDL.

A need for sharing and reusing models and respective experiments was also iden-
tified in computational biology and biochemistry. To meet the communities’ de-
mand for a more detailed description of how simulation were executed, Köhn and
Le Novère (2008) proposed the simulation experiment description markup language
SED-ML. SED-ML corresponds to the requirements of MIASE, guidelines that de-
fine minimum information about a simulation experiment, and is compliant with
XML-based models (Waltemath et al., 2011).

Another domain-specific language for the specification of experiments that orig-
inated in tge domain of computer networks is OF-NEDL (OpenFlow Networking
Experiment Description Language) (Liang et al., 2012). OF-NEDL is a language
for describing networking experiments in OpenFlow, which is a communications
protocol for Ethernet network switches (McKeown et al., 2008). OpenFlow enables
the user of the switch to modify a switch’s flow-table with the aim of evaluating
experimental routing settings. The interventions required for the execution of such
experiments affect internal functionalities of the switch. Thus, the manufacturer of
the switch would need to reveal functionalities to allow for these experiments. To
keep the company’s secrets, manufacturers might refuse to do so. OpenFlow is a
compromise that does not require the vendor to reveal the internal workings of the
switch while researchers are able to execute experiments. It provides a physical sep-
aration of the network forwarding and control function.

An OF-NEDL specification of experiments is written in XML and consists of
five components: information, topology, deployment, control, and output. Topology,
deployment, and control contain network simulation specific data. In contrast, in-
formation and output contain more generalizable data. The information component
consists of the experiment’s metadata such as the person that defined the experiment
as well as parameters that define the start and end time of the experiment. The out-
put component consist of data that is required to evaluate the performance of the
network experiment.

The PMIF approach of Smith and Llado (2004) makes use of software perfor-
mance engineering techniques for the development of a performance model inter-
change format. The goal of the proposed interchange format is to close the gap be-
tween software performance engineering tools and different performance modeling
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tools. Through this, the quantitative assessment of a system’s performance is facili-
tated. This corresponds to the definition of performance indicators as it is known in
simulation studies.

In the following years, a more general concept for the specification of simula-
tion experiments was proposed by Smith et al. (2007). In terms of queuing network
models, the Experiment Schema Extension (Ex-SE) can be used to define a set of
simulation runs as well as the desired outputs. According to the authors, Ex-SE
is capable of specifying simulation iterations, alternations, assignments of variable
values, and other features of simulation experiments. It allows for the definition of
parameter values and ranges that are executed in an automated way, model execu-
tions that depend on the result of previous executions, the use of outputs values as
inputs of subsequent runs, and the specification of individual output metrics. Some
aspects of Ex-SE were transfered into individual specification languages such as
Output Schema Extension (Output-SE) and Result Schema Extension (Result-SE)
(Smith et al., 2011). Thus, the idea behind both schema extensions is closely related
to Ex-SE (cf. Figure 3.1). While Output-SE specifies the XML format of simulation
experiment output metrics, Result-SE provides information to automatically trans-
form those output metrics into processable results.

Fig. 3.1: Ex-SE model interoperability framework (Llodrà et al., 2011).

Ex-SE is based on PMIF, which facilitates the exchange of model-related infor-
mation between different simulation tools (Smith et al., 2010). In PMIF, queuing
network models are defined by a set of nodes and arcs that connect those nodes as
well as workloads that represent transactions between nodes. The respective experi-
ment extension (PMIF-Ex) consists of variable declarations, solution specifications
and output specifications (Smith et al., 2011). The declaration of variables includes
the assignment of values to input parameters of the model as well as the automated
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iteration over these values. Solutions are specified so that stop conditions and al-
ternations are applied in case given tests are passed or failed. Finally, outputs are
specified by means of metrics such as throughput or utilization. The specifications
of PMIF-Ex and Ex-SE are mostly equal, yet, PMIF-Ex considers additionally struc-
tural analysis for outputs. Besides, the experiment schema extension is not a closed
system but can be extended or adapted according to more specific requirements.
Melia et al. (2008) enhanced Ex-SE such that it satisfies the requirements of Petri
nets analysis, e.g., constraints on tokens, invariant analysis, or reachability analysis.

As one of the last steps of a simulation study, the outputs generated by the model
must be analyzed to derive conclusions. In practice, measures that are required for
investigating the model’s performance are often not part of the output variables.
Accordingly, techniques are required to close the gap between the outputs of the
model and the performance measures that are required for analyzing the results of
the study. A first step towards the evaluation of simulation experiments is to convert
data into more comprehensible tables. To assist this step, Llodrà et al. (2011) pro-
posed FORGE, a “friendly output to results generator engine”. FORGE works hand
in hand with Results-SE as it generates a Result-SE file based on the model’s PMIF
outputs (cf. Figure 3.1). This file is then processed to generate more readable ta-
bles which facilitate manual analysis of simulation results. Additionally, the authors
developed EXOSS (EXperiment, Output to SpeadSheet). In contrast to FORGE,
EXOSS only aggregates XML outputs from different simulation experiments and
presents them in one single xls spreadsheet.

A general purpose approach for specifying, analyzing, and designing complex
systems is OMG SysML (OMG Systems Modeling Language). In contrast to other
approaches presented in this section, SysML is a graphical modeling language
which is based on the well-known modeling language UML 2 (Booch et al., 2005).
Its area of application is not limited to simulation, yet simulation-specific applica-
tions exist. Peak et al. (2007) presented an approach for using SysML in simulation-
based design. Furthermore, Huang et al. (2007) illustrated how SysML can be ap-
plied for developing object-oriented models of systems that include the structure
and behavior of people, material, and other resources. The authors emphasize that
using SysML in Modeling & Simulation enables the development of formal system
models that can be directly linked to formal simulation languages. By this means,
such models can be automatically parsed into executable models.

Besides the presented general-purpose languages, domain-specific languages
were proposed to solve problems in a specific application domain or a specific type
of problems. SESSL is a domain-specific language that is implemented in Scala and
that is applied for specifying simulation experiments (Ewald and Uhrmacher, 2014).
Scala is a functional and object-oriented programming language which can be exe-
cuted on a Java virtual machine as the source code is compiled to Java bytecode. The
compatibility to Java improves the simplicity of SESSL. It is easy to use with many
simulation frameworks and only rudimentary programming skills are required to
read and modify SESSL code (cf. Figure 3.2). SESSL can be used for experimental
design, performance analysis, result reporting, and simulation-based optimization
on models from various disciplines and independent from the underlying simulation
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framework. It is closely related to the JAMES II framework, however, other frame-
works can be used as well. SESSL supports different types of simulation experi-
ments such as observations, parallel executions, or reports. Especially the observa-
tion of simulation outputs is relevant with respect to answering research hypotheses.
To specify a simulation experiment, a reference to the model file itself as well as a
list of parameters and respective value ranges to be scanned during the simulation is
required. Furthermore, replications, stop conditions, and the observed performance
indicator can be specified.
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Fig. 3.2: Specification of an experiment using SESSL (Ewald and Uhrmacher,
2014).

One of the latest approaches discussed in this thesis is the domain-specific lan-
guage XPerimenter (Yilmaz et al., 2017). According to the authors, the declarative
XPerimenter language is dedicated to the specification of simulation experiments. It
is independent of the host programming environment and allows for a high level of
abstraction. The target environment entities that are generated by the translator of
XPerimenter are those utilized by scientific workflow management system. In this
regard, the authors mention Kepler as the reference system that is used for replicat-
ing experiments and for managing experiment variants even though the approach
itself is platform-neutral. The interface between XPerimenter and scientific work-
flow management systems is specified such that the fragments of the simulation
experiment are mapped to the features of the respective workflow system. To facili-
tate experiment management, a distinction between “true users”, those that are not
programmers, and “power users” that are capable of writing and interpreting code,
is made. The flexibility of power users is increased as they can properly use the
syntax of the domain-specific language. In contrast to this, true users require more
high-level tools that rely on variability models. Such models describe variants of the
experiment and thereby simplify the use of the proposed language.

The efforts at developing a standard specification language for communicating
models and experiments are not only related to computer science. In biology, the
specification language SBML became a de-facto standard for the description of sim-
ulation models (Hucka et al., 2003). In mid-2018, 290 SBML-compatible software
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packages were listed by the developers of the language and the initial publication in
which SMBL was presented was cited more than 2,900 times according to Google
Scholar. The main goal of the Systems Biology Markup Language is the representa-
tion and exchange of biochemical reaction network models with respect to increased
interoperability. Examples of such networks of biochemical phenomena are infec-
tious diseases or metabolic networks.

Another markup language that must be mentioned when referring to SBML is
CellML as these languages are closely related (Smith et al., 2014). While SBML
aims at the exchange of information about models by means of language elements,
CellML describes models in a more numerical way using variables, mathematical
expressions, and metadata. However, it is possible to translate SMBL to CellML and
vice versa (Smith et al., 2014).

In the domain of discrete event simulation, to which this thesis contributes, one of
the most important and generally applicable specification formalisms is DEVS. The
Discrete Event System Specification was introduced by Zeigler in 1976 and targets
the issue that many simulation models are “prisoners of their simulation language
implementations or algorithmic code expressions” (Zeigler et al., 2000, p. 6). To
this end, DEVS utilizes concepts of systems theory and modeling and provides a
formalisms for describing model behavior. A DEVS specification consists of input
and output values as well as specific states and transitions between these states.
This facilitates the determination of the model’s output based on a given state or a
set of inputs. Nowadays, multiple (partially domain-specific) extensions of Classic
DEVS exist (cf. Figure 3.3). This includes P-DEVS (Parallel Discrete Event System
Specification), RT-DEVS (Realtime Discrete Event System Specification), and FD-
DEVS (Finite & Deterministic Discrete Event System Specification) (Wainer et al.,
2011).
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Fig. 3.3: Some highlights in DEVS development (Zeigler, 2016).

In conclusions, numerous domain-specific and multi-domain specification lan-
guages exist. Most languages focus on the specification of simulation experiments
while others can also be used for the formal description of simulation models. With
respect to the goal of this thesis, a de facto standard language for specifying simu-
lation experiments cannot be identified. An overview of the surveyed languages is
provided in Tables 3.1 and 3.2.
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3.1.2 Guidelines

In addition to specification languages, methodological guidelines are another ap-
proach to provide a theoretical framework and to assist simulation studies. In this
context, guidelines can be understood as non-mandatory information or recommen-
dations regarding how to conduct specific tasks in simulation or entire simulation
studies. This is reminiscent of procedure models for the conducting of simulation
studies which were presented and discussed in Section 2.3.3. In contrast to pro-
cedure models, guidelines are of a more general character and do not necessarily
describe the step-wise process of an entire study. As some procedure models are
formulated as recommendations, they can also be considered as guidelines for sim-
ulation. However, the guidelines discussed in this subsection go beyond procedure
models and mostly consist of best-practices collected by experienced researchers in
the field of simulation.

As in many disciplines, a lack of reusability of simulation models and exper-
iments was identified in the field of biology. It was attributed to an insufficient
availability and description of models. Instead of proposing a standard description
format, LeNovère et al. (2005) proposed minimum quality standards for describ-
ing biochemical simulation models. These quality standards are formulated as a set
of rules which define procedures for the annotation of models. Models that corre-
spond to these rules can be systematically parsed by simulation frameworks without
the need for human translation. The Minimum Information Requested in the An-
notation of Biochemical Models (MIRIAM) consists of six rules that must be met
by a model in order to correspond to the defined standard. Instead of predetermin-
ing a particular specification language, MIRIAM only requires the use of a public,
machine-readable format that is supported by specific software applications such
as Mathematica or MATLAB. The authors mention SBML and CellML as exam-
ples and require that the models fully comply with the standard that is defined by
the selected language. Furthermore, a reference description must be provided such
that the user is aware of the process the models reproduce and the models’ structure
must correspond to the biological process that is referred to in the reference descrip-
tion. Finally, the model must be equipped with a parametrization such that it can be
instantiated and executed without further ado. In this regard, the results defined in
the reference description must be reproduced by the simulation. This includes both
qualitative reproduction, e.g., oscillation or chaos, and quantitative reproduction,
e.g., values of variables or relationships between variables.

The MIRIAM requirements for simulation models are extended by the MIASE
guidelines which define “Minimum Information About a Simulation Experiment”
(Waltemath et al., 2011). By this means, the reproducibility of simulation experi-
ments can be facilitated and improved. MIASE does not define a specific language
in which the information must be provided. Instead, it can be used with any descrip-
tion formalism for simulation experiments, e.g., experiment specification languages
(cf. Section 3.1.1). The MIASE guidelines can be divided with respect to three sub-
jects: information about the models, information about the simulation steps, and
information about the output (cf. Table 3.3). As this thesis pursues a black box
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approach and only focuses on the experimentation part of simulation studies, infor-
mation about the model itself is not discussed. For the reproduction of simulation
steps, the authors define four requirements for a sufficient description. Besides a
detailed description of the algorithm and the model that was used for the simula-
tion, all information required for the implementation of the simulation steps as well
as the order of these steps must be stated. The authors emphasize that reproduc-
tion of experiments extends the repetition of experiments and that the provision of
algorithms used by closed-source computer programs is necessary. Finally, for the
reproduction of the results of stochastic models, a detailed description is required of
how to execute the models such that the results can be reproduced. This includes all
post-processing steps of output analysis.

Table 3.3: MIASE rules for the description of simulation experiments (Waltemath
et al., 2011).

1. All models used in the experiment must be identified, accessible, and
fully described.
2. A precise description of the simulation steps and other procedures used
by the experiment must be provided.
3. All information necessary to obtain the desired numerical results must be
provided.

In its early days, SED-ML was named MIASE-ML, which emphasizes that the
intended use of this markup language was the realization of the respective guide-
lines. Furthermore, the MIASE guidelines were developed in accordance with the
MIRIAM requirements. Both MIASE and MIRIAM are projects related to the
MIBBI initiative for “Minimum Information for Biological and Biomedical Inves-
tigations” (Taylor et al., 2008). MIBBI comprises various efforts and recommenda-
tions to ensure that research data can be verified, analyzed, and interpreted by the
respective community.

Analogous to MIASE, the MIAME guidelines define a standard for “Minimum
Information About a Microarray Experiment” (Brazma et al., 2001). Microarray
analysis refers to techniques that are applied in life sciences for analyzing data gen-
erated from DNA-related experiments after genome sequencing. As the amount of
data is very large, a need for standardization was identified to compare gene expres-
sion data. This affects both databases of microarray laboratories as well as publica-
tion data. The authors identified six components that are essential for representing a
microarry experiment: experimental design, array design, samples, hybridizations,
measurements, and normalization controls (cf. Figure 3.4). Even though most com-
ponents are domain-specific, the gap MIAME closes between empirical data, central
repositories, and publications is also applicable for other disciplines. The samples
that are described by means of MIAME and that are used for experiments consist
of biological material as well as a corresponding taxonomic definition of respective
organisms. Based on these samples, the goal of the proposed approach is to provide
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a systematic array design considering how the samples were used in specific experi-
ments. This takes place with respect to the publication of these experiments in pub-
lic repositories or gene databases where they can be accessed by other researchers.
Furthermore, an experimental design must be provided for each experiment that is
published, i.e., the contact information regarding the author as well as detailed in-
formation on the experiment itself, e.g., experiment type, variables, parameters, or
research questions.
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Fig. 3.4: A schematic representation of six components of a microarray experiment
according to the MIAME guidelines (Brazma et al., 2001).

In addition to the presented domain-specific guidelines, more general multi-
domain guidelines also exist. The “guidelines for designing simulation experiments”
by Sanchez (2007) cannot be broken down into a list of recommendations or in-
structions. Instead, they introduce basic concepts of experimental design and em-
phasizes their importance for simulation. Accordingly, Sanchez discusses pitfalls to
be avoided during experimentation and presents helpful use cases. A common pitfall
in simulation experiments is the application of poor designs, e.g., the one-factor-at-
a-time method. When analyzing the importance of a model’s inputs by varying one
factor at a time, one can easily forget to analyze whether correlations exist between
different inputs. Accordingly, effects of the model are ignored and wrong decisions
might be made. Similar guidance was also provided by Kleijnen et al. (2005), who
published a user’s guide to designing simulation experiments. In their work, the au-
thors present a toolkit of designs whose target group are users of simulation with
limited knowledge about designing experiments.

In his guidelines for designing successful experiments, Casler (2015) emphasized
that experimental designs are more than just general-purpose instructions. Instead,
he describes experimental designs as “creative series of decisions that are meant to
solve one or more problems“ (Casler, 2015, p. 692). To solve these problems in a
methodologically sound way, he defines four basic pillars of experimental design
that require proper consideration: replication, randomization, blocking, and size of
experimental units. Identifying the optimal size of experimental units, i.e., the small-
est units which are observed in experiments, as well as blocking or grouping of
experimental units are challenges that are of particular relevance for life sciences.
In contrast, replication and randomization are also of cross-domain relevance. The
guidelines aim at reducing the probability of failure and thus increase the repro-
ducibility of simulation experiments.
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An example of more mandatory guidelines is the DSEEP standard for distributed
simulation engineering and execution (Lutz, 2011). DSEEP was proposed by the
IEEE and is a high-level process framework that provides recommended practices.
It consists of seven steps that guide the user when developing and executing simu-
lation environments. The steps cover the entire process, from the definition of the
objective of the simulation environment to the analysis and evaluation of the results.
For each step, different activities are stated that should be executed by the user. Even
though the processual structure of DSEEP also fortifies a classification as system-
atization (cf. Section 3.1.3), it was classified as a guideline due to the mandatory
recommendations. An example of a well-known framework that was developed ac-
cording to the IEEE DSEEP standard is HLAcloud (cf. Subsec 3.2.2).

Similar mandatory guidelines that specify the application of simulation in lo-
gistical, material flow, and production system are published by the VDI (Verein
Deutscher Ingenieure; English: Association of German Engineers). VDI is the asso-
ciation of German engineers and has the goal of promoting technological advances
as well as representing the interests of both individual engineers and companies that
work in the field of engineering. The association has issued more than 2,000 guide-
lines on the state of the art in engineering. Multiple guidelines discuss the utilization
of simulation in various areas of application. However, only guideline 3633 provides
a comprehensive overview and defines the simulation process from an engineering
perspective (VDI, 2016). Even though the guidelines are published by a German
association, they are provided both in German and English to avoid language and
application barriers. In 13 different sheets, VDI guideline 3633 specifies all aspects
of simulation that are relevant for the simulation of logistics systems. This includes
but is not limited to organizational tasks such as the definition of functional specifi-
cation documents and differentiation criteria for the choice of adequate simulation
tools. Furthermore, more technical aspects of simulation are also considered, e.g.,
experiment planning, optimization, verification, and validation. Finally, as engineers
embody practitioners of simulation, cost aspects as well as the integration of simu-
lation into operational processes are also addressed.

The proposition of guidelines that assist the conducting of simulation is not a
new phenomenon. Almost 30 years ago, Balci (1990) presented guidelines for suc-
cessful simulation studies as a life-cycle model (cf. Figure 3.5) which practition-
ers can follow to increase their chances of conducting successful simulation stud-
ies. The life-cycle model consists of 10 phases (rectangular boxes), 10 processes
(dashed arrows), and 13 stages of credibility assessment (solid arrows). Even though
Figure 3.5 depicts a sequential process, the author emphasizes that the life-cycle is
meant to be iterative and that reverse transitions are intended. The process of the
life-cycle consists of 10 phases, which reminds of standard procedure models for
simulation studies (cf. Section 2.3.3). In contrast to existing procedure models, Balci
focuses on the transitions between the phases. He discriminates between processes
that relate the steps to each other and credibility assessment stages that provide an
overall evaluation scheme to ensure the credibility of the simulation results. With re-
spect to the model building part of simulation studies, the life-cycle model provides
detailed guidance and systematization. However, the design, execution, and evalua-



3.1 Description Languages and Theoretical Frameworks 55

tion of simulation experiments is only considered by two processes. This does not
correspond to the extensive requirements of this thesis.

Even though Balci refers to the life-cycle model as guidelines, it does not fully
correspond to this thesis’s definition of guidelines. The primary goal of the pre-
sented approach is not to formulate recommendations for the conducting of simula-
tion studies. Instead, what is provided by Balci can also be considered as a detailed
systematization of the entire process of simulation studies.

Fig. 3.5: The life-cycle of a simulation study (Balci, 1990).

The guidelines presented in this subsection assist the conducting of simulation
studies as they provide a theoretical framework. These guidelines facilitate the ex-
ecution of simulation studies as they consist of best practices or recommendations
for performing specific tasks. However, not all guidelines are non-mandatory col-
lections of recommendations for action by other researchers. Standards can also be
considered as guidelines even though they have a more prescriptive character. They
enforce a specific procedure and require the user to comply with these standards.
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3.1.3 Systematizations

In this thesis, a distinction is made between guidelines and standardizations (sys-
tematizations). Like guidelines, systematizations provide a theoretical framework
for simulation studies. While guidelines often embody optional or mandatory rec-
ommendations for actions, systematizations structure the simulation process so that
relationships and hierarchical dependencies between the steps are emphasized and
specified. This subsection presents different systematizations. This includes work-
flow specifications, method comparisons, and life-cycle considerations of simula-
tion processes.

To assist or even automate recurring processes in research, data centric science
(eScience) makes use of scientific workflows (Taylor, 2011). The conducting of
methodologically sound simulation studies, which is the subject of this thesis, is a
process which is well-suited for the specification as scientific workflow. The poten-
tial for the assistance and management of simulation experiments was also recog-
nized by other scientists from the simulation domain. Thus, custom workflow sys-
tems for simulation were developed and multi-purpose workflow systems were cus-
tomized and applied to simulation-specific tasks. A major shortcoming of general-
purpose scientific workflow systems is that domain-specific concepts are not con-
sidered, e.g., statistical approaches for input and output data analysis or expertise
for the design of experiments (Teran-Somohano et al., 2014).

Kepler is an open-source system for capturing, designing, and executing research
activities as scientific workflows (Altintas et al., 2004). Kepler extends Ptolemy II,
another open-source software framework that supports the design and simulation
of actor-oriented models (Hylands et al., 2003). Scientific workflows are similar
to workflows as they occur in business processes, e.g., job shops in manufacturing
or the application of service-oriented architectures. Yet, scientific workflows also
consider aspects that are not necessarily part of business workflows. Altintas et al.
(2004) emphasized two major differences: First, scientific workflows operate on
complex heterogeneous databases and produce large amounts of data, which need
to be stored and maintained for reutilization in future workflows. Second, in con-
trast to control-oriented business workflows, scientific workflows are more dataflow-
oriented and thus are more closely related to signal-processing tasks. Kepler’s fea-
tures include prototyping as well as distributed execution of scientific workflows but
also the connection of databases and other execution environments like Python or R.
Yilmaz et al. (2017) demonstrate how Kepler can be utilized for the specification of
simulation experiments.

The problem solving environment SCIRun allows for the specification of model-
ing and simulation processes as scientific workflows (Johnson et al., 2000). It sup-
ports the execution of large-scale simulations as well as the visualization of the
generated data and is closely related to Kepler. However, SCIRun supports only a
single dataflow execution model while Kepler allows for the parallel execution of
multiple dataflow models (Altintas et al., 2004). In practice, SCIRun is used for
technical and biomedical simulations and visualizations such as electrocardiogra-
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phy (Coll-Font et al., 2014) as well as for transcranial direct current stimulation of
the human head (Dannhauer et al., 2012).

Another scientific workflow environment which comes from the domain of bioin-
formatics is Taverna (Oinn et al., 2004). In contrast to SCIRun and Kepler, Taverna
models each step of the workflow as an individual web service. For the specifica-
tion of workflows, Taverna makes use of the Scufl (simple conceptual unified flow)
language. In Scufl, workflows consist of three major entities: processors (transfor-
mations), data links (flow of data), and coordination constraints (links and con-
trols processors). Furthermore, each step of a workflow is modeled as an individual
atomic task. By this means, Taverna allows for the integration of services from all
over the bioinformatics community into one scientific workflow.

Systematizations of simulation processes do not necessarily need to consist of
workflows. Lorscheid et al. (2012) pursue an alternative approach towards increas-
ing the understanding and transparency of simulation studies. By “opening the black
box of simulations”, the authors’ goal is to facilitate the systematic design of sim-
ulation experiments and to contribute to the establishment of more standardized
research processes. For this purpose, they present a systematic procedure for the
assistance and guidance of simulation practitioners (cf. Figure 3.6). The presented
approach particularly focuses on the experimental analysis of models as well as on
the communication and reusability of results.

Yet, the authors are not alone in their endeavor. According to Lorscheid et al.
(2012), other authors pursue similar efforts to define more standardized research
processes and for further establishing computer simulation as a scientific method.
For instance, Grimm et al. (2006) proposed ODD, a protocol for the specification
of agent-based models. The ODD sequence covers seven elements: purpose, state
variables, process overview, design concepts, initialization, input, and submodels.
They can be divided into three aspects of modeling: overview, design concepts, and
details (cf. Table 3.5).

Table 3.5: Elements of the ODD protocol (Grimm et al., 2006).

Aspect Element

Overview
Purpose
State variables and scales
Process overview and scheduling

Design concepts Design concepts

Details
Initialization
Input
Submodels

The authors describe the logic behind ODD as follows: First, the overview aspect
provides general information as well as the context of the model. This includes the
purpose of the model (why the model was built), information on state variables (en-
tities that are described by the model as well as hierarchical dependencies between
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Fig. 3.6: Simulation model analysis process (Lorscheid et al., 2012).

the entities), and a process overview (a conceptual specification of the processes that
are modeled). Second, design concepts are stated in terms of more strategic consid-
erations of the model’s structure. Concepts that should be considered in here include
sensing, interactions, and resulting emergent effects. Finally, technical details are
provided so that the execution of the model is facilitated. This aspect specifies the
initialization of the models in terms of initial values of the state variables, the dy-
namics of the model that are determined by the model’s inputs and how they change
over time, as well as potential submodels that are integrated into the considered
model. When specifying the design of the model, the authors refer to “the mathe-
matical skeleton of the model” (Grimm et al., 2006, p. 119) which consists of rules
and equations that define the model. This facilitates the replication of agent-based
models.

Richiardi et al. (2006) proposed a common protocol for agent-based social sim-
ulations. To develop this common protocol, the authors identified methodological
pitfalls that might occur in agent-based simulations or that are made in scientific
contributions that present agent-based simulations. These pitfalls include the link
with the literature (i.e., the number of pages granted in scientific papers and journals
is not sufficient to present the model’s structure in sufficient detail) and the structure
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of the model (i.e., the main features of the model are not clearly stated in scien-
tific publications which makes them difficult to understand). Besides, analyzing the
model’s behavior as well as the replicability of the model’s results are subject to
methodological pitfalls. Both tasks are more challenging in agent-based simulation
as respective models do not consist of a compact set of differential equations, which
can be solved by means of algebraic techniques. Furthermore, diverse program-
ming languages and representation formalisms are used during the model building
process. To address these pitfalls, the authors propose a three-staged process with
respect to the definition of a common methodological protocol in agent-based social
simulation. The steps consist of the creation of working groups to develop a ques-
tionnaire, which will then be sent to authors that submit their work to journals or
conferences. Next, the authors are asked to fill in the questionnaire and the results
are used for the definition of standards for each type of simulation model. Finally,
reviewers can be provided with checklists that correspond to these standards to eval-
uate future submissions.

In addition to systematizations that can only be applied to specific types of simu-
lations, domain-specific systematizations exist as well. To facilitate simulation and
analysis of potential automated material handling system alterations in semicon-
ductor manufacturing, Wagner et al. (2013) proposed a systematic approach for the
automated planning, execution, and evaluation of simulation experiments. To this
end, the authors specify a five-step workflow starting with the construction of a
suitable model (cf. Figure 3.7). Afterwards, the process continues twofold: On the
one side, alterations of the model’s parametrization are systematically defined and
applied and respective simulations are automatically generated and executed to ob-
serve and evaluate the model’s behavior. On the other side, the real-world system
with respect to which the model was built is observed under the same conditions to
receive reference data. Finally, the simulations’ output data are analyzed with regard
to the reference data collected from the real-world system.
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Fig. 3.7: Workflow for the automation of simulation experiments with models of
automated material handling systems (Wagner et al., 2013).
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From a more general-purpose perspective, efforts were made to unify processes
in Modeling & Simulation to improve the reuse of practices across disciplines. The
MS-SDF (M&S System Development Framework) proposed by Tolk et al. (2013a)
pursues this goal by unifying systems engineering processes and modeling and sim-
ulation processes. By this means, a systems engineering approach for capturing re-
quirements, conceptual modeling, as well as verification and validation are adapted
and transferred according to the requirements of modeling and simulation. For this
purpose, assumptions made by the decision makers are aligned with theoretical con-
cepts to derive suitable approaches for their implementation.

The goal-hypothesis-experiment framework by Yilmaz et al. (2016) specifies
connections between goals, hypotheses, and experiments in simulation studies. The
authors pursue a model-driven science approach from which an iterative discovery
process emerges. The framework’s underlying architecture supports the classifica-
tion of the three mentioned components with respect to the discovery process. To
specify goals of simulation experiments on a conceptual level, the consideration of
multiple dimensions is required. This includes the object of study as well as the
purpose, focus, viewpoint, and context of the experiment. The specification of hy-
potheses takes place on an operational level. On this level, the authors discriminate
between three types of hypotheses: phenomenological, mechanistic, and control hy-
potheses. Finally, on a tactical level, experiments are specified. The aim of experi-
ments is to answer the hypotheses stated on the previous level. Thus, the outcomes
of the experiments are fed back into the system with respect to the revision of goals,
hypotheses, and experiments. The presented framework implements the concept of
experiment life-cycle management proposed by Teran-Somohano et al. (2015).

Peng (2017) proposed TAECS (Tool for Adaptation, Execution and Checking of
Simulation experiments), which links simulation experiments that were conducted
for validation purposes with respective models. By this means, the reuse of exper-
iments is enabled in case the models they were annotated with are reused, e.g., for
building new models. The comparison of the results of the experiments then allows
for the evaluation of whether the original model’s behavior is still shown by the new
model or to assess how the model behavior changed due to reuse. The specification
of the experiments is implemented using SESSL.

The AssistSim approach targets the systematization and assistance of simulation
experiments in manufacturing and logistics (Lattner et al., 2011a). The presented
methodology addresses two aspects of simulation studies, the design of experiments
and the execution of experiments. While the design is assisted via the thorough iden-
tification and capturing of relevant information about the object of investigation, the
parameter space is systematically investigated and measurements are stored in a cen-
tral experiment database. The resulting process is specified by means of an extensive
procedure model, that systematizes and aligns relevant tasks and decisions.

With regard to systematizations for the assistance and automation of simulation,
state of the art approaches that only target the experimentation part of simulation
studies need to be mentioned as well. Relevant contributions especially include the
proposition of a life-cycle management framework for reproducible simulation ex-
periments (Lorscheid et al., 2012). Yet, as these works are of great relevance for
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the specification of Hypothesis-Driven Simulation Studies, they were discussed in
detail in the foundations chapter (cf. Section 2.2.2). To extend their approach and
to increase the practical applicability of the proposed methodological framework,
Teran-Somohano et al. (2015) also developed a web-application. In this regard,
they propose a more application-oriented systematization of the experiment life-
cycle approach. The authors pursue a model-driven engineering approach and define
a framework for the interchange of design of experimentation strategies between
platform-specific and platform-independent domains. For this, experiment feature
models as well as design of experiment ontologies are developed and presented.
The resulting distributed system consists of multiple interconnected services and
can be considered as a software framework for the automation of simulation experi-
ments. Other related software-technical approaches for the automation of simulation
are discussed in the following section of this chapter.

Finally, systematizations that focus on specific areas of application are often pro-
vided as workflows. The number of individual experiment workflows is too large to
be presented here. To enable the central management, sharing, and reusing of work-
flows, the use of research repositories is reasonable. myExperiment is an example
of a repository for bioinformatics workflows where computer experiments and data
analyses can be specified as a series of composed activities (Goble et al., 2010).
The user can choose between three approaches to search the repository for work-
flows. This includes tags that describe the topic of the workflow, a full-text keyword
search, or the workflow’s affiliation to specific groups or users. As of beginning of
2018, myExperiment consisted of more than 3800 workflows contributed by over
10,500 registered users.

This section provides a systematic and comprehensive overview of theoretical
frameworks for the assistance and automation of simulation (cf. Table 3.6). This
includes formal description and specification languages by means of which aspects
of simulation can be unambiguously described and published, e.g., in public sim-
ulation repositories or as part of scientific publications. Moreover, guidelines that
provide mandatory or non-mandatory recommendations on how to conduct spe-
cific simulation-related tasks are presented and discussed. Finally, an overview of
systematizations that structure the simulation process or specific sub-processes is
provided. Such systematizations emphasize how entities that are involved in this
process interact with each other and define hierarchical dependencies between these
components. Often, scientific workflows are used to specify such processes. In sum-
mary, it can be concluded that many valuable approaches exist which serve as a the-
oretical frame for the assistance and automation of simulation. However, aspects of
systematic hypothesis testing as well as specific recommendations for actions are
rarely provided.
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3.2 Toolkits and Software Frameworks

To complement the view on theoretical approaches for the assistance of simula-
tion that was presented in the previous section, this section’s goal is to present
and compare practical approaches and implementations of assistance functionali-
ties. In particular this includes software toolkits and frameworks for the assistance
and automation of simulation. A major distinctive feature of such framework is the
range of application. While some frameworks were only developed with respect to
the assistance of simulation in specific domains or disciplines, others provide more
general-purpose assistance. Thus this section is structured as follows: First, in Sec-
tion 3.2.1, domain-specific toolkits and frameworks are introduced. Subsequently,
in Section 3.2.2, general-purpose toolkits and frameworks are presented.

Most of the approaches, frameworks, and software toolkits that are presented and
discussed in this section pursue model-driven engineering approaches. Unlike other
software development methodologies, where the model is used for documentation
purposes, the model takes a key role in model-driven engineering (da Silva, 2015).
Respective approaches provide sophisticated methods for the formulation and con-
struction of models. These models then serve as a basis for the automated creation
of software systems.

In this regard, a paradigm shift can be identified (Schmidt, 2006). Conventional
software development methodologies often pursue a “construct-by-correction” ap-
proach. Here, an incomplete software artifact is developed at first and completed ac-
cording to a specific development process, e.g., test-driven development. In contrast
to this, model-driven engineering pursues a “correct-by-construction“ approach. Its
goal is the development of complete and fully functional software artifacts based on
conceptual models of specific systems or mechanisms. By the use of standardized
models and domain-specific design guidelines or patterns, this improves reusability
of and compatibility between the resulting systems.

Besides the frameworks presented in this section, there are a large number of fur-
ther frameworks and toolkits. This includes commercial software such as AnyLogic,
Arena, Enterprise Dynamics, Plant Simulation, or Simio. However, open source
frameworks exists as well, e.g., MASON, NetLogo, Repast Symphony, or SeSAm.
Even though assistance or even automation functionalities are provided by most of
these frameworks, their primary goal is to facilitate the building and execution of
models. Hence, such Modeling & Simulation frameworks are not presented in this
section and the focus lies on software whose main contribution is the automation of
simulation.

3.2.1 Domain-Specific Toolkits and Frameworks

The assistance or automation of simulation is challenging as it consists of multiple
sophisticated and interdependent steps that need to be executed in a methodologi-
cally sound way. As simulation is applied across various domains and for various
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purposes, it seems reasonable to develop software toolkits or frameworks for spe-
cific domains or purposes as well. To this end, this subsection presents toolkits and
frameworks which are only applicable to specific areas.

For the simulation of computer networks, the ns-3 network simulator is a com-
monly used framework (Riley and Henderson, 2010). After ns-1 and ns-2, which
are no longer maintained, it is the third and most recent software product in this
family of simulators. It is a discrete-event simulator with a focus on realism, reuse,
and ease of debugging of the developed models. The implementation of a simulation
experiment workflow in ns-3 can be divided into four distinct steps. First, the user
is required to implement the network topology, i.e., nodes, channels between nodes,
and network protocols. Then, the data demand of the network is implemented. In
computer networks, data is generated by network applications that either send data
to the network or receive data from the network. As a third step, the model is ex-
ecuted according to the event list and until the event list contains no more entires.
Finally, the trace files generated by ns-3 are analyzed. To simplify the operation of
ns-3, specification languages like ns3xml, NEDL, and NSTL were developed (cf.
Section 3.1.1).

SWAN is another framework from the domain of network simulation (Liu et al.,
2001). It is a high-performance framework which can be utilized for large-scale
simulations of wireless ad hoc networks. SWAN was developed with respect to
achievements in signal processing and microelectronics, which allow for the con-
struction of large-scale sensor networks. As such networks easily consist of several
thousand nodes, simulation is challenging. The SWAN framework emerged from the
combination of two existing softwares: the Dartmouth Scalable Simulation Frame-
work (DaSSF) and WiroKit, a software developed by BBN Technologies. The DaSSF
framework facilitates the development of discrete-event simulation models of Inter-
net protocols as well as large and complex networks (Cowie et al., 1999). It serves
as “structural glue” (Liu et al., 2001, p. 10) for the integration of models. WiroKit is
a router for wireless ad hoc networks, which uses the same interface definitions in
both the code that is used for the simulation and the one that is used in the real-world
mobile radio units. By this means, configurations that were analyzed by means of
simulation can easily be distributed to the corresponding devices in reality. How-
ever, the assistance SWAN provides mainly focuses on the aggregation of different
types of sub-models, i.e., terrain models, dispersion models, operating system mod-
els, and wireless sensor models.

The web-based interface developed by Kenna (2008) is part of the SWAN project.
It extends SWAN and its primary goal is to enhance the believability of simulation
studies by replicating the behavior of real-world mobile ad hoc networks via com-
puter simulation. It supports the parallel and distributed execution of experiments,
stores the respective results in a central database, and facilitates the analysis of gath-
ered data.

To overcome SWAN’s shortcomings in assisting systematic experimentation with
network models, SAFE (Simulation Automation Framework for Experiments) was
developed (Perrone et al., 2012). According to the authors, the development of
SWAN was only a proof-of-concept, which is why the project was discontinued.
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Instead, the authors made use of the experiences they collected during SWAN’s de-
velopment and from then on focused on the extension of the ns-3 simulator (cf.
Section 3.1.1). In this regard, SAFE aims at providing assistance to novice users
that are inexperienced in the design and conducting of simulation studies using the
ns-3 simulator. The assistance consist of an automation of the workflow that starts
with the initialization of the model’s parameters, includes the launching of relevant
experiments, and ends with the visualization of the generated results.

The Java-based VSEit (Versatile Simulation Environment for the internet) sim-
ulation environment focuses on the application of simulation in social sciences,
especially for analyzing interdependencies between social, economic, and natural
processes (Brassel, 2001). It provides a visual interface that facilitates the specifi-
cation, control, and recording of simulation experiments. However, the amount of
implemented functionalities is small compared to other frameworks.

For the automation of MATLAB simulations, Dominka et al. (2008) developed
a tool that replaces the operator during simulation and optimization runs. The pre-
sented simulation-automation-system automatically compares the actual state of the
simulation results to a defined target state and operates the simulation accordingly.
The assistance provided by this tool is rather static as specific objective functions
are selected and applied automatically.

The approach proposed in this thesis is not limited to specific domains or areas
of application. Accordingly, domain-specific toolkits and software frameworks are
only briefly introduced in this chapter. The number of existing frameworks is con-
siderably higher than the selection presented here. However, with respect to the goal
of this thesis, the most relevant frameworks were introduced in this section (cf. Table
3.7). This provides an overview of how frameworks are used in different domains
and disciplines to assist and automate the conducting of simulation studies.

Table 3.7: Domain-specific frameworks for the automation of simulation studies.

Reference Name Purpose Languages Domain Relatedness
(Brassel, 2001) VSEit Simulation envi-

ronment
JAVA Social sci-

ences
(Dominka et al.,
2008)

Simulation-
automation-
system

Automated opti-
mization

MATLAB Engineering

(Kenna, 2008) - Web-based
interface for
experiments

Ad hoc net-
works

Web in-
terface for
SWAN

(Liu et al., 2001) SWAN Large-scale sim-
ulations

C++ Ad hoc net-
works

Combination
of DaSSF
and WiroKit

(Perrone et al.,
2012)

SAFE Automation of
experiments

Ad hoc net-
works

Replaces
SWAN

(Riley and Hen-
derson, 2010)

ns-3 Network simula-
tor

ns3xml,
NEDL,
NSTL

Ad hoc net-
works
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3.2.2 Multi-Purpose Toolkits and Frameworks

Based on a SysML system specification, the HLAcloud framework proposed by
Bocciarelli et al. (2013) enables the automated implementation of a distributed sim-
ulation model. It makes use of general HLA-based model transformations for the
automated generation, deployment, and execution of the model. The framework is
capable of generating Java code from SysML models and thus facilitates the de-
velopment of distributed simulation models. A similar approach was presented by
Schonherr and Rose (2009) where simulation models are generated based on SysML
specifications as well. However, they do not utilize cloud computer infrastructure for
the automated implementation of model code.

The idea of a simulation framework that makes use of plug-ins for the dynamic
loading and integration and exchange of simulation components and services is not
new. TORNADO, a framework that is mostly used in the water quality domain, dy-
namically integrates numerical solvers that are required for solving non-linear ordi-
nary differential equations (Claeys et al., 2006). This is required for the evaluation
and optimization of simulation models during modeling and virtual experimenta-
tion. By this means, the maintainability of the framework as well as the computa-
tional efficiency increase while the diversity of programming languages decreases.

In some situations, it is not reasonable to systematically derive necessary ex-
periment configurations from the hypothesis a simulation study tries to answer. In-
stead, it is more suitable to execute a large number of simulation runs with different
parametrizations to generate a vast amount of data to investigate a phenomenon.
This approach to analyzing the landscape of a simulation model is referred to as
data farming. To facilitate large-scale data farming, Król et al. (2013) introduced
SCALARM.

The assistance provided by Çakırlar et al. (2015) also focuses on the validation
of simulation models. RatKit, a repeatable automated testing toolkit for agent-based
modeling and simulation, facilitates verification and validation of agent-based sim-
ulation models as well as the automated execution of tests. For this purpose, test
scenarios are defined in which the investigated model is executed under different
circumstances. Instead of developing RatKit from scratch, the authors made use of
the generic testing framework developed by Gürcan et al. (2013) and extended it.

Teran-Somohano et al. (2015) presented a model-driven engineering approach
for managing the design, execution, and analysis of simulation experiments. By this
means, the management of the entire life-cycle of simulation experiments is facili-
tated (Teran-Somohano et al., 2014). The authors introduce a web-based experiment
design wizard, which addresses simulation practitioners that are capable of model
building but lack training regarding the conducting of experiments. For this purpose,
an experiment ontology as well as a feature model are utilized to capture and man-
age experimentation knowledge. The ontology covers basic terms from design of
experiment and the relationship between these terms, for instance, sampling meth-
ods or design matrices. In addition, the feature model specifies components that are
not equal between multiple experiments such as the number of input factors and
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respective factor levels. Finally, a prototypical implementation of the developed ex-
periment management system is presented (cf. Figure 3.8).
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Fig. 3.8: Prototype of an assistance system for the design of experiments (Teran-
Somohano et al., 2015).

Griffin et al. (2002) developed and introduced SOS, a set of “Scripts for Orga-
nizing ’Speriments”. With the aim of supporting the execution of a large number
of simulation experiments, SOS provides functionalities for the automated variation
of input parameter values as well as for the management of the resulting output
data generated by the model. Additionally, output data can be plotted to enable vi-
sual analyzes of the generated output landscape. SOS was developed using Perl and
MySQL which makes it difficult for users that are unfamiliar with the respective lan-
guages and programs. Furthermore, basic expertise with bash commands is required
as it is intended to control the scripts via the command line interface. According to
the developers, a web interface does not exist and they do not intend to develop such
an interface.

The FASE approach provides a framework for the formal automated analysis of
simulation experiments as well as for hypothesis testing (Doud and Yilmaz, 2017).
In contrast to the goal of this thesis, FASE focuses on mechanistic hypotheses,
which make assertions on the inner structure of simulation models. The framework
is platform independent, includes a domain-specific language for the specification
of hypotheses, and makes use of automated model checking to evaluate hypotheses.
FASE is closely related to the Goal-Hypothesis-Experiment framework by Yilmaz
et al. (2016), which defines and provides its scope. While the Goal-Hypothesis-
Experiment framework provides a domain-specific language for the specification of
experiments, FASE extends these efforts by the analysis of the results of such ex-
periments. The only input of the FASE system is a specification of a simulation ex-
periments using the domain-specific language of the Goal-Hypothesis-Experiment
framework. The specification is then transformed into two separate tasks. On the
one side, the hypothesis is converted into linear temporal logic. For this purpose,
the hypothesis is syntactically analyzed and corresponding temporal properties are
identified. Furthermore, a distinction is made whether the hypothesis refers to an
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event or a logic statement. On the other side, experiments are prepared and exe-
cuted by the system. This includes the identification of relevant variables for the
data recording as well as the generation of batch files for the execution of individual
simulation runs. The output data generated during all simulation runs is then used to
build a Markov Chain in accordance with the underlying hypothesis. At this point,
a PRISM model is generated, which allows for formal model checking. Addition-
ally, an omega automata is constructed by the PRISM system based on the linear
temporal logic for assessing the probability of acceptance and for evaluating the ini-
tial hypothesis. As a conclusion, the authors emphasize that the speed of scientific
discovery can be increased by means of automation.

Finally, the workgroup of Adelinde M. Uhrmacher from University of Rostock
proposed a variety of frameworks, toolkits, and assistance systems with the aim
of facilitating the methodologically sound and technically rigorous conduction of
computer simulation. These software systems are complemented by the SESSL lan-
guage, which was presented in the previous section (cf. Section 3.1.1).

Systematically guiding simulation experiments is the primary goal of the GUISE
(GUIding Simulation Experiments) tool developed by Leye and Uhrmacher (2012).
By integrating multiple experimentation methods, different goals of experimenta-
tion such as optimization or validation can be flexibly pursued. In GUISE, sim-
ulation experiments are divided into six tasks that provide an explicit structure:
specification of the experiment, selection of model parameters, execution of sim-
ulations, data collection, analysis of collected data, and evaluation of the results. In
this regard, GUISE facilitates the identification and combination of suitable meth-
ods and thus assists each of these steps. For this purpose, it utilizes the plug-ins of
the JAMES II framework which it is based on.

A more technical assistance framework that focuses on the selection of well-
suited simulation algorithms for a specific task was proposed by Ewald (2012). Of-
ten, simulation systems provide a large number of different problem solving algo-
rithms. In this case, the user is often overwhelmed by the task of selecting one of
these algorithms, as criteria for the assessment of each algorithms’ appropriateness
are unclear. The approach presented by the author is implemented as an extension of
the JAMES II system. This also allows for the automatic configuration of simulation
systems as adequate algorithms can be identified and selected independently.

Most of the presented approaches from the University of Rostock extend the
multi-domain modeling and simulation framework JAMES II or serve as plug-ins
(Himmelspach, 2007). JAMES II assists both major components of simulation stud-
ies, the creation of simulation models as well as the flexible, scalable, and parallel
execution of simulation experiments. It allows for switching the simulation engine at
runtime as model and simulator are entirely separated. To retain the flexibility of the
simulation framework, JAMES II implements a “plug ’n simulate” concept (Him-
melspach and Uhrmacher, 2007), which enables the integration and reuse of external
algorithms. JAMES II is not limited to specific modeling paradigms or languages,
however, the authors focus on variants of DEVS such as PDEVS or PdynDEVS.

Even though the assistance provided by JAMES II is comprehensive, the detailed
documentation of the study’s process was not supported by the framework. To im-



70 3 Assistance and Automation of Simulation

prove the credibility of scientific results that were generated by means of simulation,
a thorough documentation of applied methods and techniques is inevitable. Espe-
cially when considering the large number of plug-ins that might be integrated into
the process of simulation studies using JAMES II, the need for rigorous documenta-
tion arises. As plug-ins are dynamically integrated during runtime of the framework,
the identification of selected and utilized plug-ins is challenging or even impossible
once the simulation study is finished. At the same time, the combination of different
perspectives on simulation studies in one framework makes the system more trans-
parent which simplifies the generation of respective documentations. Still, the task
of collecting relevant information is extensive and time-consuming. The WorMS
(WORkflows for Modeling and Simulation) workflow system developed by Ry-
backi (2016) addresses this issue of automatically documenting the execution of
predefined workflows in JAMES II. By this means, gathering relevant information
regarding the creating, verification, and validation of the model but also of the exe-
cution of simulation experiments is facilitated.

Besides the presentation of JAMES II, in his work Himmelspach (2007) pro-
vides an extensive comparison of 23 related simulation frameworks. Criteria that
were applied for presenting the frameworks include the utilized simulation formal-
ism (discrete, continuous, or hybrid), the execution of the model (distributed or
sequential), the user interface (editor, debugger, visualization, and analysis). Fur-
thermore, information is provided regarding utilizable types of models (Java, XML,
etc.) and whether model building, experimentation, or both aspects are supported
by the frameworks. Considering the goal that is pursued in this thesis, the presented
survey provides only technical details regarding functionalities provided by each
framework. Information on the experimentation assistance is limited to the general
support of experiments. Specific aspects of experimentation such as design, execu-
tion, and analysis are not discussed in detail. Similar surveys on platforms that assist
the development of simulation models as well as the execution of experiments are
also provided by Railsback et al. (2006), Tobias and Hofmann (2004), Kravari and
Bassiliades (2015), and Nikolai and Madey (2009).

Compared to the domain-specific frameworks, the number of frameworks that
are not limited to a specific discipline is higher in this literature review. Most of
the presented frameworks focus on the automation of isolated steps of simulation
studies, e.g., distribution, execution, or documentation (cf. table 3.8). In this regard,
they provide a valuable contribution to the automation of simulation. However, it
must be noted that an assistance or automation of the entire life-cycle of a study
is not provided by these frameworks and that hypotheses are mostly not consid-
ered. FASE stands out, because it automates testing of mechanistic hypotheses by
means of temporal logic. Yet, this approach is not applicable for the verification of
phenomenological hypotheses on the behavior of a model.
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3.3 Methodological Shortcomings and Research Gap

The goal of this thesis is to enable and assist the design, execution, and evaluation of
Hypothesis-Driven Simulation Studies. As shown in this chapter, there are a variety
of valuable specification languages, formalisms, theoretical frameworks for the de-
scription as well as functionalities and frameworks for the assistance and automation
of simulation. Most of these approaches focus on individual aspect or specific steps
of simulation studies (e.g., verification and validation of models, data preparation
and processing, or execution of predefined experiments) or are limited to particular
domains (e.g., biology, logistics, or engineering). Others cover the multiple steps of
the process of simulation studies or can be applied across different domains. Frame-
works exist which combine and interrelate individual assistance functionalities to
integrated workflows with the aim of providing more a extensive assistance of the
entire life-cycle of simulation studies.

With respect to the required assistance for both formal specification and system-
atic revision of hypotheses in simulation studies that is pursued in this thesis, deficits
of existing assistance systems can be identified. This chapter presented a variety of
systematizations for the assistance and automation of computer simulation. Besides
general-purpose systematizations, many of the presented approaches are either in-
tended for specific types of simulation or only applicable to specific domains. Most
of the discussed systematizations consist of a high-level perspective on simulation
and fail to provide specific instructions regarding their application. Furthermore, the
verification of research hypothesis is not considered by most of these systematiza-
tions. They instead focus on the automated variation of parameter configurations.
However, the identification of relevant parameterizations of the model is not consid-
ered. Moreover, most of the presented approaches only address individual aspects
related to hypothesis testing and systematic experimentation in simulation studies.
As a consequence, the experimenter still has to make important design decisions
regarding the selection and integration of suitable components. This might result in
experimenter bias that negatively influences both reproducibility and credibility of
the study’s results.

In simulation, like in other disciplines, the formation and verification of hypothe-
ses plays an important role in the process of knowledge acquisition and decision sup-
port. Yet, approaches for systematically integrating research hypotheses into simula-
tion studies rarely exist. As shown in this chapter, automating both formulation and
testing of scientific hypotheses by means of simulation is not a new idea. In other
scientific disciplines, e.g., biochemistry or wireless networking, such approaches are
well established. Accordingly, a research gap can be identified such that scientific
hypotheses in simulation studies need to be formally described for their integration
into the simulation process. This allows for the systematic design, execution, and
evaluation of relevant simulation experiments, for providing evidence for or against
the stated research hypotheses, and for accomplishing the goal of the study.



Part II
Hypothesis-Driven Simulation Studies





Chapter 4
Requirements Analysis on Hypotheses in
Simulation

The research gap identified in the previous section reflects an insufficient represen-
tation and consideration of research hypotheses in the process of simulation studies.
This stands in contrast with the vision of this thesis of enabling and facilitating the
methodologically sound and reproducible verification of research hypotheses on the
behavior of simulation models. To overcome this gap, existing procedure models,
which define the methodology of simulation studies, must be extended so that the
entire life-cycle of a study is covered, from the formulation of hypotheses to their
reliable and replicable answering. For this purpose, the process must be advanced
to allow for the dynamic integration of hypotheses as well as for the adaptation of
the individual steps of the process. To achieve this, this thesis proposes an innova-
tive methodology for the conducting and intelligent assistance of Hypothesis-Driven
Simulation Studies.

In contrast to existing procedure models, this thesis aims at the formal specifi-
cation of the research hypothesis as part of the simulation study. To this end, an
integrated procedure model is proposed so that the hypothesis becomes the key el-
ement of the study and accordingly is able to guide the process of the study. This
allows for the systematic design, execution, and evaluation of relevant simulation
experiments based on a specific hypothesis. Furthermore, the aggregation of the ex-
periments’ results with respect to proving or disproving the hypotheses is facilitated.
The presented process serves as a methodological framework for planning and con-
ducting Hypothesis-Driven Simulation Studies. Nevertheless, it is not limited to the
theoretical integration of hypotheses into simulation studies but also allows for their
automated conduction.

As a first step towards conceptualizing and enabling Hypothesis-Driven Simula-
tion Studies, this chapter performs a requirement analysis to determine the specifi-
cations of the developed approach. With respect to the integration of hypotheses into
the process of simulation studies, the theoretical concept of scientific hypotheses is
investigated first. This includes the analysis of the structure of scientific hypotheses
with regard to their formulation and formalization for the use in an intelligent assis-
tance system. This theoretical perspective on research hypotheses is aligned with the
requirements that arise from the epistemology of simulation and to derive require-
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ments on scientific hypotheses in simulation. Moreover, this chapter analyzes how
the identified theoretical requirements are met in practice. This requires the thor-
ough investigation of the methodological integration of hypotheses in the process
of simulation studies as well as the identification of methodological shortcomings.
Together, the defined requirements as well as the identified shortcomings serve as a
basis for the development of an integrated procedure model for the conduction and
assistance of Hypothesis-Driven Simulation Studies.

4.1 Scientific Hypotheses

To improve the targeted integration of hypotheses into simulation studies, a first nec-
essary step is the definition of requirements regarding to what extent and for which
purposes hypotheses shall be integrated. In the approach presented here, hypothe-
ses contribute to the production and validation of knowledge in simulation studies.
Thus, the aim of this section is to identify and derive epistemological requirements
for the conceptualization and integration of hypotheses in simulation.

Before systematically integrating hypotheses into the process of simulation stud-
ies, this section provides a discussion as well as a definition of the term hypothesis
in the context of simulation. First, the scientific process of developing and veri-
fying hypotheses is analyzed in different disciplines and over time. Perspectives
from logical-analytical, empirical, and philosophical domains are presented. Based
on this, the theoretical structure of hypotheses as well as different reasoning tech-
niques for drawing conclusions from hypotheses are introduced and distinguished.
Secondly, these approaches are compared to the epistemological demands of simu-
lation. To this end, the epistemic contribution simulation results can make is defined
by the purpose or context of the application of simulation. Thus, a respective discus-
sion of the epistemological opportunities and limits of verifying scientific hypothe-
ses in computer simulation is presented in this section. The identified requirements
are then summarized and general requirements on scientific hypotheses in simula-
tion are defined.

4.1.1 Formalization of Scientific Hypotheses

This first step towards the systematic integration of scientific hypotheses into the
process of simulation studies analyzes the history of as well as the scientific dis-
course on hypotheses. It derives common characteristics of hypotheses and provides
a definition of hypotheses as it is used in this thesis. To conceptualize scientific hy-
potheses in terms of simulation studies, a discussion of respective approaches and
techniques for their formulating and testing is provided. The presented techniques
are then aligned with the theoretical concept of hypotheses to derive implications
for Hypothesis-Driven Simulation Studies.
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The term hypothesis was already used by ancient philosophers. However, it dif-
fered from today’s use and originally did not involve an approach in science (Storey
and Allan, 2014). In the late modern period, one of the first debates that involved
hypotheses as part of a scientific method was held between John Stuart Mill and
William Whewell. The reason for this debate was a disagreement on how the validity
of suppositions can be methodically proven by different techniques of experimental
inquiry (Achinstein, 1990).

In the 19th century, Mill defined hypotheses in a scientific context as follows:

“An hypothesis is any supposition which we make (either without actual evidence, or on
evidence avowedly insufficient) in order to endeavour to deduce from it conclusions in
accordance with facts which are known to be real; under the idea that if the conclusions to
which the hypothesis leads are known truths, the hypothesis itself either must be, or at least
is likely to be, true.“

(Mill, 1872, Book III, Chapter XIV, §4)

The driving idea of Mill’s inductive approach for the verification of hypothesis is
to make generalizations from observed facts. This bottom-up-approach is based on
an argumentation such that the presence of the hypothesized cause implies the pres-
ence of the hypothesized effect. Vice versa, the absence of the hypothesized cause
implies the absence of the hypothesized effect. According to the observation that
mortality can sooner or later be observed for any human, a generalization can be in-
ferred that any newborn human is mortal, too. Based on individual observations of
a phenomenon (mortality), common patterns and circumstances that are capable of
explaining the phenomenon are searched for (being human). Based on such similari-
ties between the observed objects, hypotheses are formulated regarding the cause of
the observation and general theories are derived (“All humans are mortal.”). As the
conclusion is only based on a certain number of observations, the correctness of the
inferred theory remains uncertain. Consequently, it is still possible that the theory is
false as one contradictory observation is sufficient to disprove it (Mill, 1882).

Instead of classifying such hypothesis as valid or invalid, inductive conclusions
need to be assessed by their strength based on the number of confirming observa-
tions (cf. Figure 4.1). If the suppositions of the hypothesis provide probable support
for the conclusion, the hypothesis is strong on a structural level. Furthermore, if the
hypothesis is strong and there is empirical evidence for all suppositions to be true,
one should believe in the conclusion. Such a hypothesis is referred to be cogent.
However, according to Giere (1997), a strong and cogent inductive hypothesis or
theory can never be proven with certainty, no matter how many affirming observa-
tions are made.

In contrast to inductive reasoning, Whewell argued in favor of Deduction, which
pursues an argumentative top-down approach (Whewell, 1847). Here, the hypoth-
esis is not defined based on observations. Instead, a theory serves as a basis for
the definition of one or many hypotheses. Unlike the inductive approach, empiri-
cal observations are made after the statement of the hypothesis, e.g., by means of
experiments that prove or disprove the hypotheses. The structural precondition of
a deductive hypothesis is validity. For valid hypotheses, it is impossible that true
suppositions result in a false conclusion. Based on deductive validity, soundness is
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Fig. 4.1: Terminology of deductive and inductive arguments (Hurley, 2012).

defined such that the suppositions are in fact true. Thus, the conclusion is logically
certain (Hurley, 2012).

“Deduction justifies by calculation what Induction had happily guessed.”

(Whewell, 1847, Vol. 2, pp. 92-93)

For the justification of hypotheses, Whewell demands the underlying theories to
pass a number of tests before they can be confirmed as truth. The tests evaluate
prediction, consilience, and coherence of the theory. Firstly, the theory must be ca-
pable of correctly predicting phenomena. As theories consist of universal principles
and rules, respective hypotheses that are derived from true theories must be able
to foretell phenomena. Secondly, consilient theories must be able to explain phe-
nomena that are different from those that have been thought of when formulating
the hypotheses. Finally, a theory is coherent if the hypotheses are able to predict
and explain new classes of phenomena without adding new suppositions to the the-
ory itself. Thus, the coherence should increase over time when the theory develops
(Zack, 2010).

Besides test criteria for confirming theories and hypotheses, Whewell also pro-
posed a method for performing these tests. His hypothetico-deductive model consists
of three components: hypotheses, deduction, and conclusions (Grove and Menton,
2015). Based on a theory, hypotheses are defined such that the predicted observa-
tions contradict the theory. This is done in a way that all potential influencing factors
are considered which can be used for explaining the theory. In case the hypothe-
sized observation, which contradicts the theory, can indeed be made, the theory is
disconfirmed and the respective factor must be ignored when improving the theory.
Otherwise, if the observation does not follow the contradictory phenomenon, the hy-
pothesis must be rejected, the factor is of importance, and the theory remains valid.
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In summary, the hypothetico-deductive model makes the assumption that hypotheses
aim at explaining observations. However, experiments and further observations are
required to verify such hypotheses. This stands in contrast to the inductive approach
which pursues a vice versa approach (cf. Figure 4.2).
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Fig. 4.2: Deductive versus inductive reasoning (Repko et al., 2017).

The modern understanding of hypotheses in science is particularly attributed to
the thoughts of philosopher John Dewey and mathematician Karl Pearson (Mani-
cas, 2011). Around the turn of the 20th century, both scientists presented method-
ical approaches for scientific investigations (Dewey, 1910a; Pearson, 1900). Even
though Pearson focused on science and Dewey addressed inquiry in general, both
approaches are similar and promote a data-based scientific method. Dewey was es-
pecially critical of the notion of science being the body of acquired knowledge.
In his opinion, a shift from the imparting of knowledge, concepts, and theories
to an improved understanding of methods for scientific inquiry was necessary to
advance science. The focus of the proposed methodical approach to science lies
on improving and establishing empirical reasoning as scientific “habit of mind”
(Dewey, 1910b, p. 143).

The scientific method proposed by Dewey consists of multiple steps (Dewey,
1910a). Based on a perceived and defined problem, one or many possible solutions
are suggested. The quality of the solutions is then evaluated through experiments,
which are not necessarily physical. Thus, by means of contradiction, possible so-
lutions are discarded until only one solution remains. Pearson proposed a similar,
yet more data-driven, process where scientific laws are discovered from empirical
observations (Pearson, 1900). From today’s perspective, both Dewey’s suggestion
of possible solutions and Pearson’s creative discovery of laws from measured data
whose final acceptance requires critical assessment match previous definitions of
hypotheses. Dewey’s scientific method in particular can be classified as an advanced
hypothetico-deductive method following Whewell’s definition.

The scientific method has evolved since its first proposition and domain-specific
adaptations have been made. However, its main characteristics have not changed.
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Fig. 4.3: Formulation and testing of hypotheses as part of the scientific method
(Haig, 1995).

The formulation and testing of hypotheses as well as systematic observations and
experiments for proving or disproving these hypotheses are still essential elements.
This results in an iterative and universal process for developing general theories,
which consists of multiple steps (cf. Figure 4.3) (Haig, 1995). The first step of the
process is the formulation of a research question proceeding from observations or
thoughts that were made. At this point, the answer to the question is still uncertain.
Based on the research question, possible factors as well as explanations for the phe-
nomenon are identified and research hypotheses are formulated. Assuming the cor-
rectness of each hypothesis, testable predictions are developed whose occurrence is
expected in case the hypothesis is correct. In a following step, data is acquired from
literature or as part of an experiment to evaluate whether or not the predicted phe-
nomenon indeed occurs. The empirical or experimental contradiction of a hypothe-
sis requires a reformulation of the hypothesis until the assumed predictions can be
confirmed. Finally, general theories are developed based on the confirmed hypothe-
sis. In the scientific method, the definition of research hypotheses still meets Mill’s
definition of a hypothesis. The suggested explanation provided in a hypothesis is
neither proven or disproved. It might be the result of an educated guess.

The process shown in Figure 4.3 corresponds to Whewell’s hypothetico-deductive
model where testable predictions are developed based on the research hypotheses
and data is used to accept or reject these hypotheses. Even though both methods
provide valuable and well-established approaches for working with hypotheses in
science it is challenging to assist or automate these methods by means of informa-
tion systems (Uhrmacher, 2012). For automatically processing hypotheses, both a
machine-readable formalization of hypotheses and an algorithmic representation of
the respective methods are required. Yet, neither of these requirements are provided
in the hypothetico-deductive model or in the scientific method.

Nowadays, hypothesis-related reasoning methods, as presented in this chapter,
belong to the scientific discipline of logic. Logic is the scientific discipline that aims
at developing methods and techniques for evaluating arguments (Hurley, 2012).
This includes formalisms for the specification of facts and circumstances as well
as automatable reasoning approaches. Even though the term hypothesis is used dif-
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ferently in formal logic, the described characteristics of research hypotheses corre-
spond with the definition of arguments.

Inductive and deductive reasoning, as discussed by Mill and Whewell, are the
two most common approaches for revising theories in logic. In both approaches,
theories are formulated as arguments. Thus, in the following, the logical concept
of arguments is introduced well as other logical concepts that are closely related to
arguments, i.e., nonarguments and conditional statements (Hurley, 2012).

Both deductive and inductive arguments consist of one or many premises that are
linked to one conclusion. In deductive arguments, the premises provide evidence
that implies or supports the conclusion and the conclusion is claimed to necessarily
follow from the premises. Consequently, if all premises are true, the conclusion must
as well be true. Inductive arguments are less certain with respect to the inferential
claim. The premises claim to support the conclusion as well, but only with limited
certainty. Even though the premises are true, one can only infer that the conclusion
is also likely to be true. This is because of the fact that opposing observations might
falsify the argument and corresponds to Popper’s concept of falsifiability (Popper,
2002). The following example emphasizes the inferential link between the premises
and the conclusion.

Premise 1: The payment of the employees was increased by 15%
Premise 2: and the number of vacation days was increased by 5,
Conclusion: therefore, the manufacturing rejection rate decreased by 9%.

In logic, premises and conclusion of arguments are statements that are either true
or false. To this end, groups of statements can be logically connected. Yet, a group
of statements is not per se an argument, Depending on the link of the logical state-
ments, they can also be classified as nonarguments. An example of a nonargument
is an explanation where the statements are differentiated into explanandum and ex-
planans. In contrast to arguments, explanations do not provide evidence for new
theories but describe established knowledge or facts instead. Unlike the conclusion
of an argument, the explanandum is the statement which describes a phenomenon
that is generally accepted. Accordingly, the explanans is a single statement or a
group of multiple statements that aims at explaining the explanandum.

Explanans: Because the supplier was not able to deliver in time,
Explanandum: the production of the goods was delayed.

A more elementary form of a nonargument is a conditional statement. The struc-
ture of a conditional statement can be separated into the antecedent followed by the
consequent part or vice versa. Even though the structure is similar to arguments,
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conditional statements differ from arguments in a way that arguments require the
premises to provide evidence and thus to be true. Furthermore, the conclusion of
an argument must be implied by the premises. In a conditional statement, both the
antecedent and the consequent may either be true or false. The assertion of a con-
ditional statement is that in case the antecedent is true, the consequent must be true
as well. For a true antecedent and a false consequent, the conditional statement is
false. If the antecedent is false, the conditional statement is always true, regardless
of whether the consequent is true or false. The fact that anything follows from con-
tradiction is referred to as the principle of explosion (ex falso quodlibet) (Bertossi
et al., 2005).

Antecedent: If the number of machines is doubled,
Consequent: the number of manufactured goods will increase by 50%.

Concluding, arguments, explanations, and conditional statements consist of groups
of statements (cf. Figure 4.4). However, the order but also requirements regarding
the relation between statements and the truth values of statements are defined dif-
ferently. While arguments are based on true premises with the purpose of prov-
ing a statement, the explanans in explanations only claims to explain a statement,
which consists of accepted facts. Also, arguments are based on the foundation of the
claimed link (the premises) while explanations are based on the result of the claimed
link (the explanandum). Conditional statements are similar to arguments. Yet, the
statements that are part of conditional statements must neither express evidence nor
imply something. Still, a conditional statements might be part of an argument as
premise or conclusion.
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Fig. 4.4: Inferential structure of arguments, explanations, and conditional statements
(Hurley, 2012).
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At first, Mill’s definition of hypotheses seems to correspond to the definition
of a conditional statement. Mill defined hypotheses as a supposition whereby facts
which are known to be true are used to deduce a conclusion. In conditional state-
ments, the consequent is a logical consequence of the antecedent as well. However,
the expression of a causal connection between the antecedent and the consequent
is not necessary for a conditional statement. In Mill’s definition of hypotheses, the
ability to deduce the conclusions from the facts is essential. This is more similar
to logical arguments where the conclusion must be implied by the arguments as
well. Furthermore, sound (deductive) arguments require all premises to be true and
the argument to be valid such that it is impossible for the conclusion to be false.
Thus, it can be concluded that the logic concept of arguments seems to mostly cor-
respond to the definition of scientific hypotheses. To evaluate whether respective
testing approaches can be applied in a simulation context as well, it has to be inves-
tigated whether further parallels exist between the two approaches. Thus, the next
subsection analyzes if the steps of the scientific method correspond to the approach
pursued when utilizing computer simulation in research.

4.1.2 Epistemological Demands of Simulation

To assist the integration and verification of scientific hypotheses in simulation stud-
ies, this section adapts the previously presented techniques to the epistemological
demands of simulation. For this purpose, the presence and importance of hypothe-
ses in simulation is analyzed as well as their contribution to the epistemic process.
The contribution primarily depends on the expressiveness and scope of simulation
results, which is determined by the simulation’s purpose of application. To this end,
this section provides a differentiation and discussion of different purposes of sim-
ulation and derives implications on the epistemological contribution of simulation.
This includes but is not limited to simulation’s ability to verify research hypotheses.

Axelrod (1997, p. 4) postulates that simulation has established as a “third way of
doing science” between theory and experiment, a view, which is also shared by other
researchers (Dodig-Crnkovic, 2002). Considering real-world experiments, e.g., in
empirical research, statistics provides suitable methods for the evaluation of ob-
served results. In this regard, in particular the concept of statistical hypotheses is
applied where an assertion is made regarding the parameter or parameters of an un-
known distribution of a random variable (Hanneman et al., 2013). Similarly, the aim
of simulation is to gain knowledge by means of virtual experiments (Tolk, 2015).
Thus, the questions arises how the quality of the knowledge that is obtained by
simulation can be evaluated and how their trustworthiness can be ensured. These
questions are related to the epistemology of simulation.

This thesis aims at the integration of formally specified hypotheses into the pro-
cess of simulation studies in accordance with the approaches presented in Sec-
tion 4.1.1. To this end, an analysis is required of the implications hypotheses have
for the epistemology of simulation. Simulation is applied in many different ways
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and for many different purposes. To understand the epistemological challenges in
simulation, which arise from such diverse applications, different scientific uses of
simulation are compared and differentiated first. Based on this, specific epistemo-
logical demands on the application of hypotheses in simulation are derived with
regard to the sound acquisition and validation of knowledge.

Perspectives on the Epistemology of Simulation

As simulation is a scientific method, the epistemology of simulation was exam-
ined by researchers and practitioners from various domains. The domains range
from computer science to philosophy of science but also include practical aspects.
In the following, different perspectives are introduced, differences and similarities
between the presented perspectives are identified, and the epistemic contribution
is classified that can be provided by simulation. As the perspective of each author
must be taken into account when analyzing different purposes of simulation, their
respective professional background is illustrated in Figure 4.5. Additionally, Ta-
ble 4.1 provides an aggregated overview of the different purposes of simulation that
are presented by the authors.
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Fig. 4.5: Professional background of the surveyed authors.
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Grüne-Yanoff and Weirich (2010) take a philosophical perspective on the epis-
temology of simulation, which is inspired by social sciences. They discriminate
between four different scientific usages of computer simulation: proof, prediction,
explanation, and policy formulation.

To discuss the suitability of simulations to prove theories and assumptions, the
authors quote the computer-assisted proof for Kelper’s sphere packing problem,
which was initially presented by Thomas Hales around the turn of the millennium
(Hales, 2005). As no formal analytical proof was available at that time, Hales devel-
oped a computer program to solve a minimization problem for proving the theory.
The computational results he presented were too extensive and the reviewers were
not able to confirm the presented proof with absolute certainty. Still, the results
were published by the Annals of Mathematics journal and Hales was awarded the
Fulkerson Prize for outstanding papers (American Mathematical Society, 2010).
Grüne-Yanoff and Weirich describe the shortcomings of computer-assisted proof as
epistemic opacity. Even though proof can be provided, hardware problems and soft-
ware bugs might unknowingly bias the results. Simulations and other computations
can be used for theorem proving. Yet, the verification of every detail of the results
is challenging and partially not possible at all.

Moreover, the authors claim that simulation is often used for predicting that a
certain event will occur at any point. However, the prediction of an event is not nec-
essarily associated with the explanation of the event. Even though the simulation of
an airplane’s flow behavior in a wind tunnel might be used for predicting the plane’s
flight characteristics, it cannot be used to explain them physically and through laws
of nature.

In contrast to this, simulations cannot predict phenomena whose principles and
mechanisms that are not part of the conceptual model. As the observed behavior
results from these mechanisms it can be assumed that explanations can be provided,
too. Some simulations are based on natural laws but discrete-event simulations of
production, logistics, or customer queuing models do not primarily depend on natu-
ral laws. Instead, mechanisms and algorithms as well as their respective probabilities
are statistically estimated from empirical data or expert knowledge. Grüne-Yanoff
and Weirich conclude that the predictive power of simulations depends on the mod-
eled mechanisms and that the validity of these mechanisms is limited due to its
empirical origin. Thus, they discriminate between structural and predictive validity.
In structurally valid models, the mechanisms of the real system are used to produce
the behavior of the model. Predictive validity only describes the simulation’s ca-
pability to match a set of data. Thus, they conclude that some simulations indeed
predict phenomena but fail to explain them.

Despite this, the authors state that scientific papers still claim the presented sim-
ulation is capable of explaining phenomena. Thus, they differentiate the explanatory
power of simulations into three categories: full explanations, partial explanations,
and possible explanations. Full explanations are provided by simulations that ex-
plain the reason as well as the characteristics of a certain phenomenon that oc-
curred. This relates to the mechanisms that produced the phenomenon or the history
of causalities that lead to it are provided. Yet, Grüne-Yanoff also argues that full ex-
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planations are challenging as the used model most likely lacks validity. In contrast
to full explanations, partial explanations do not consider all factors for the expla-
nation of a phenomenon. Due to complexity, most models abstract the real system
and disregard some factors that are not relevant for the purpose of the simulation.
Nonetheless, these simulations can still be applied to explain some of the factors
that are responsible for the occurrence of a phenomenon.

Finally, some simulation models cannot be adequately validated, e.g., because the
real system does not exist or because it cannot be accessed. Thus, such simulations
can neither provide full nor partial explanations. In this case, simulations can still
provide possible explanations or candidate explanations (Epstein, 2006). Possible
or potential explanations are not actual explanations but do support the development
of them. Thus, Grüne-Yanoff (2009, p. 43) described the epistemic contribution of a
simulation as “an instance of the simulated system’s functional capacities”. Rather
than expecting causal explanations, possible functional settings are provided and
may be used to explain the observed phenomenon.

The fourth purpose of simulation presented by Grüne-Yanoff and Weirich is
policy formulation. Simulation is applied to support the formulation of policies,
for instance in terms of computational economics. In agent-based computational
economics, intelligent software agents are used to analyze economic processes by
modeling them as system of interacting agents (Tesfatsion, 2003). Yet, policy for-
mulation by means of agent-based simulation is not limited to computational eco-
nomics. Agent-based social simulation has been established for modeling and ana-
lyzing complex social phenomena in many areas including sociology (Gilbert and
Troitzsch, 2005), management (Hare and Deadman, 2004), and psychology (Smith
and Conrey, 2007).

The authors argue, that the kind of policy decisions which can be made strongly
depends on the validity of the simulation. As agent-based simulations do not usually
allow for correct predictions, cost-benefit-analyses and utility maximizations are not
possible. Instead, they provide a set of possible scenarios based on the modeled
mechanisms and allow for exploring the plausibility of these scenarios with respect
to the real system. Policies can then either be formulated to minimize the worst-
case outcome of the model or to perform better than other policies regarding a set of
scenarios and a defined goal of the new policy. The term scenario, as it is used by the
authors, refers to the general circumstances under which a simulation is executed. It
is not to be mistaken with the term scenario as it is used in this thesis and which is
introduced and defined in Section 5.1.

In contrast to Grüne-Yanoff and Weirich, the view of Axelrod (1997) on simula-
tion is more practical. He presents a differentiation of seven purposes of simulation.
Besides prediction and proof, Axelrod names performance, training, entertainment,
education, and discovery as further purposes. These additional purposes shed a more
practical light on simulation. They include but are not limited to the conducting of
simulation for the performance of specific tasks and decision making, e.g., speech
recognition and medical diagnosis.

The purpose of training, e.g., by simulating an environment, work tool, or object
to be investigated, is closely related to the purposes of entertainment and education.
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Flight simulation, for example, can either be used to educate pilots or as computer
game for leisure-time activities. Educational simulation are often referred to as se-
rious games, as they are similar to computer games, yet, entertainment is not their
only purpose. They also enable the user to experiment with the system to play-
fully experience how mechanisms work and what impacts changes or interventions
have on a system’s behavior, e.g., to illustrate transformation processes of socio-
ecological systems (Lorig et al., 2016) or to teach Distributed Artificial Intelligence
(Timm et al., 2008).

Finally, Axelrod states the discovery of new relationships and principles as an-
other purpose of simulation and describes it, together with prediction and proof, as
the major value of simulation. He identifies these three purposes as the main pur-
poses of simulation with respect to its scientific application. Discovery is closely
related to the purpose of explanation which has been discussed previously.

The purpose of discovery, as described by Axelrod, is part of what Grüne-Yanoff
and Weirich outline as the purpose of policy formulation. Axelrod describes simula-
tive discovery as the process of discovering and understanding the effects the mod-
eled mechanisms have on the system’s behavior. According to Grüne-Yanoff and
Weirich, an important part of policy formulation is exploratory modeling. Simula-
tion experiments are executed to observe the behavior of the system and to explore
the effects of the modeled mechanisms. Summarizing, the discovery of the effects
or mechanisms can be used for evaluating the impact different policies have on the
behavior of a system.

Davidsson and Verhagen (2013) described potential purposes for simulation
from a computer science perspective. With regard to other work published by the
authors it seems that this view on purposes of simulation is also motivated by the
practical application of simulation in social sciences (Davidsson, 2002). The au-
thors discriminate between purposes of simulation where the user is observing the
simulation and purposes where the user actively participates in the simulation. The
observation of a simulation takes place for analyzing the system. Mentioned exam-
ples of use are management, design, or engineering of a system as well as eval-
uation, verification, and understanding of a system. In this regard, Davidsson and
Verhagen refer to the use of simulation as a tool when introducing advantages for
the support of design decisions when developing a system. Furthermore, they also
emphasize the methodical application of simulation for evaluating, comparing, and
verifying theories, models, or hypotheses. In contrast to this, the user’s participa-
tion in the simulation might be reasonable with respect to education, training, or
entertainment. These purposes were as well identified by Axelrod.

The perspective of Davidsson and Verhagen is closely related to the perspective
of Gilbert and Troitzsch (2005). In addition to Davidsson and Verhagen, Gilbert
and Troitzsch provide a social science view on the utilization of simulation as re-
search technique. They discriminate between seven uses of simulation: understand-
ing, prediction, substitute for human capabilities, training, entertainment, discov-
ery, and formalization. The purpose of understanding is defined in accordance with
Davidsson and Verhagen and the purpose of prediction corresponds to the defini-
tions provided by Grüne-Yanoff and Weirich as well as Axelrod. The use of sim-
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ulation as a tool for the substitution of human capabilities has not been mentioned
before. However, in correspondence with the purpose of management which was
proposed by Davidsson and Verhagen as Gilbert and Troitzsch name expert systems
as an example for such a substitute. Training and entertainment are as well uses of
simulation which were mentioned by other authors. Finally, discovery and formal-
ization is emphasized as a major reason for social science’s interest in simulation.
The authors describe the discovery of consequences of theories which is facilitated
by modeling parts of a real system. Yet, the purpose of discovery was also identified
by Axelrod.

Winsberg (2010), whose research mainly focuses on epistemological consider-
ations of simulation from a philosophy of science perspective, describes three main
purposes of application (cf. Figure 4.6). For one thing, it can be used for heuristic
reasons. In this case, a distinction is made according to the purpose of the simula-
tion. It can either be used for communicating knowledge (e.g., visualizing (natural)
processes by simulation for improving the understanding of the process) or for rep-
resenting information (e.g., to communicate features of a system or structure to
others by making them explorable using simulation). Summarizing, and referring
to Axelrod’s purposes of education and training, this view on simulation makes the
user experience the results and thus imparts knowledge. Furthermore, depending
on the availability of input data, simulation can as well be used for understanding
and prediction purposes. In case data is not available, simulation can create artifi-
cial copies of real-world systems for further consideration. In doing so, the expected
behavior of a system can be evaluated under certain conditions and data can be col-
lected. In case data exists which describes the system’s behavior, simulation can be
used for understanding the mechanisms leading to this behavior and how certain
events occur. This corresponds to the purpose of explanation as defined by Grüne-
Yanoff and Weirich (2010).
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Fig. 4.6: Purposes of simulation according to Winsberg (2015).

They focus on simulation as a scientific technique and how research can be con-
ducted and supported by means of simulation. Axelrod, in contrast, presented a more
comprehensive and more practical perspective on purposes of simulation. Davids-
son and Verhagen complement a computer science perspective and combine both
a theoretical and practical perspective. The view of Gilbert and Troitzsch is more
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practical as they utilize simulation as research technique in social sciences. Finally,
Winsberg provides a meta perspective seizing aspects from all other perspectives.
Table 4.1 summarizes all purposes of simulation that were presented by the authors.

Author(s) Purpose
(Axelrod, 1997) discovery

education
entertainment
performance
prediction
proof
training

(Davidsson and design
Verhagen, 2013) education

engineering
entertainment
management
training

Author(s) Purpose
(Gilbert and discovery
Troitzsch, 2011) entertainment

formalization
prediction
substitute of human

capabilities
training
understanding

(Grüne-Yanoff and explanation
Weirich, 2010) policy formulation

prediction
proof

(Winsberg, 2010) heuristic
prediction
understanding

Table 4.1: Overview of purposes of simulation by authors in alphabetical order.

Classification of the Use of Simulation

On closer inspection, similarities can be identified between the discussed purposes
of simulation. Based on the presented definitions, the purposes of education and
training as well as the heuristic purposes presented by Winsberg, i.e., communi-
cation of knowledge and representation of information, seem to target the same
circumstance. All three uses of simulation provide information to the user or with
the aim of educating the user by extending his or her knowledge or skills. This pur-
pose is closely related to entertainment where educational simulations are utilized
as well. However, as the transfer of knowledge or skills is not of primary interest, the
purpose of entertainment is considered separately. Another major use of simulation
is the imitation and substitution of human capabilities. This includes tasks, which
can be executed by humans, yet the use of simulation is more efficient, economic,
or faster. Examples are the performance of certain tasks, e.g., speech recognition,
decision support for the management of systems, and proof. Considering the three
previously presented purposes it can be observed that they imply a practical use of
simulation.

The remaining purposes can also be divided into three groups. In the first group,
uses of simulation can be summarized, which analyze consequences of theories or
mechanisms. This includes discovery, formalization, and policy formulation. The
aim is to model specific aspects of a system to discover the consequences or phe-
nomena that occur when certain theories, policies, or mechanisms apply. The second
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group includes purposes where simulation provides explanations for a specific be-
havior of the modeled system and improves the understanding of the considered
system. Finally, in the third group, purposes can be summarized, which evaluate
systems. This use of simulation is common in case the real-world evaluation is too
uneconomic and difficult or even impossible. Yet, this stands in contrast to the ques-
tion of the appropriateness of the application of simulation, which can be questioned
here (cf. Section 2.3.2). It includes the design and engineering of complex systems
as well as the evaluation and verification of theories, models, systems, and corre-
sponding hypotheses. Furthermore, in this regard one must refer to the prediction
of phenomena and possible futures which result from a set of inputs and modeled
mechanisms. In contrast to the three practical purposes of simulation which were
presented prior to this, the latter uses of simulation imply a more scientific and sys-
tematic application of simulation.
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Fig. 4.7: Classification of systematic and practical use of simulation.

The presented purposes are derived from the presented contributions (cf. Fig-
ure 4.7) and lead to an even greater variety of aspects and goals of simulation. Re-
garding the heterogeneous areas of application discussed here it is obvious that no
methodological silver bullet exists for the conducting of all simulation studies. De-
pending on the purpose, individual procedure models must be applied. Hence, a
suitable differentiation of simulation purposes is required.

Considering the presented purposes, a twofold usage of computer simulation can
be observed. In literature, the terms tool and method are used when differentiating
the application of simulation. However, it appears that these terms are often used
without questioning their actual meaning or even as synonyms. Still, they seem to
be appropriate for a fundamental differentiation of the fields of application (Timm
and Lorig, 2015).
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On the one side, there are purposes for simulation that imply an instrumental-
ized use of simulation, which can be compared to the use of a tool. In the context
of simulation, Fishwick described a tool as “handy and useful” (Fishwick, 1997,
p. 59). This description corresponds to the statements of other authors, classifying
simulation as a research tool. Schmidt (1984), for example, described the use of
simulation for evaluating whether components of a system accomplish their pur-
poses during systems analysis. He justified this statement by outlining the similarity
of necessary steps being conducted to those of other modeling approaches. Hence,
he described particular functions fulfilled by simulation in the context of operations
research and thus declared it to be a tool.

The purposes of simulation that were presented by Gogg and Mott (1993) im-
ply a use of simulation as a tool as well. From their point of view, simulation is an
“analytical tool that can significantly facilitate the problem-solving process” (Gogg
and Mott, 1993, p. 9). When creating a representation of a real process or system,
simulation can help to determine which input is most qualified for generating a de-
sired output. Corresponding to the opinion of Maria (1997) it may be summed up
that simulation is frequently considered to be a useful technology for the evalua-
tion of the performance of a, possibly artificial, system by applying and comparing
different configurations.

Compared to the tool-like use of simulation, a procedural manner is essential for
the methodical use of simulation. Contrary to the aforementioned practical under-
standing of simulation, a method emphasizes systematic and adaptive properties of
a technology. Especially when seen from an epistemological perspective, a method
describes the entire process. Analogous to the scientific method, the method of sim-
ulation starts with a hypothesis and aims at generating causal explanations for a
hypothesized phenomena (Carter and Little, 2007).

According to Tolk (2015), simulation is able to support the process of theory
building and testing which makes it a useful method. A variety of disciplines, which
are traditionally not familiar with the use of software systems, took note of these
opportunities and adopted simulation as an essential part of their research process.
Sociologists, for instance, create artificial societies using simulation. Based on these
virtual worlds, experiments, which cannot be performed in real-world environments,
can be carried out. Thus, the possibility of detailed observation can be provided and
new insights can be gained.

Gilbert refers to the new set of opportunities becoming available to research
disciplines by the use of simulation as simulation-based research (Gilbert and
Troitzsch, 2005). Social scientists, for example, are enabled to set up hypotheses
or research questions concerning theoretical scenarios and complement the model
by using assumptions or empirical observations. However, the demand of simulation
approaches initiated or requested by other research disciplines, e.g., social sciences,
is not unilateral. It has been perceived by computer science as well. Davidsson
(2002) took up the social scientists’ demand of a computer science view on social
simulation and positioned it as a research method between the two disciplines. The
mentioned examples represent the methodical use of simulation, as they describe a
procedure for approaching a particular goal.
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Seen individually, both of the presented ways of using simulation are scientif-
ically justified and provide practical benefits (cf. Figure 4.7). However, they are
not equally well-suited for being assisted by the approach proposed by this thesis.
The focus of the approach presented here lies on the use of simulation as research
technique for answering questions regarding the behavior of a simulation model
in accordance with the scientific method. Thus, this thesis only considers purposes
of simulation that are related to the systematic and scientific use of simulation as
research method.

Utilizing simulation as a tool for evaluating the performance of a system or for
visualizing system behavior is an important area of application. However, this pur-
pose of simulation does not always correspond to the scientific method and cannot
be generally represented by a comprehensive research process. When using simula-
tion as a tool, the experimentation itself is in focus. The process is mostly reduced to
the execution of the model and the observation of results. In contrast to this, a me-
thodical approach of simulation implies a systematic and adaptive procedure where
the experimentation is embedded into the epistemological process. This results in a
more extensive and dynamic procedure as multiple scientific requirements need to
be met to ensure the soundness of both the process and the generated results.

Still, the two major purposes of simulation that have been differentiated can be
transferred into each other. The methodical use of simulation can be limited and
reduced to the experimentation. As a result of this, the expressiveness of the sim-
ulation’s results decreases as the interpretive framework is removed. One can still
measure or observe the behavior of the model during experiments. However, due
to a lack of systematics, the results of the experiment may not be used as a basis
for generalizations or for deriving insights. Otherwise, in case the user who applies
simulation as a tool can formulate an appropriate model-related research question,
a methodical approach can be pursued. This results in additional effort compared
to the initial way of application. The process becomes more comprehensive at the
expense of the simple and straightforward conducting of simulation experiments.
Yet, these opportunities and the associated consequences might not be in the users’
interest.

4.1.3 Requirements on Scientific Hypotheses in Simulation

As shown in Section 4.1.1, the concept of hypotheses is not exclusive to simula-
tion. It is used in many scientific disciplines and is an inherent part of the scien-
tific method. For the formulation and testing of scientific hypotheses, different ap-
proaches have been proposed. Yet, these approaches are of general nature and cannot
be applied to simulation without adaptations. Thus, initially, a conceptualization of
research hypotheses in simulation is required. The aim of this conceptualization is to
enable the integration of such hypotheses into a methodology for simulation studies.
Both the intelligent and hypothesis-based design as well as the systematic conduct-
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ing of simulation experiments shall be facilitated by this means. Consequently, the
first requirement reads as follows:

Requirement 1: Research hypotheses in simulation must be specified such that they
can be integrated into a methodology for assisting the systematic design and auto-
mated conduction of experiments.

To achieve this requirement, two preconditions need to be achieved first, which
build on one another. In Section 4.1.1 it has been concluded that the concept of
arguments, as it is used in logic, seems to mostly correspond to the definition of sci-
entific hypotheses. When transferring hypotheses to concepts from logic, reasoning
and testing approaches that are applied for proving or disproving these hypothe-
ses need to be adapted as well. The approach developed in this thesis aims at the
systematic verification of research hypotheses by means of experiments. Thus, the
structure (syntax) of simulation-related hypotheses must be defined such that it be-
comes machine-readable and that reasoning and testing approaches can be system-
atically applied. This results in the following subrequirement, which specifies and
substantiates requirement 1:

Requirement 1.1: The structure of hypotheses in simulation must be defined by
means of relevant components to allow for the systematic application of reasoning
or testing approaches.

After defining the structure of hypotheses as they are used in the methodical ap-
plication of simulation, the next step is the development of a formalisms that can
be used for specifying hypotheses. Current approaches describe hypotheses using
natural language. On the one hand, this is beneficial as the hypothesis can be read
and understood by anyone. On the other hand, this results in two difficulties. Firstly,
natural language is often not sufficiently specific to avoid misinterpretations and
misunderstandings. Secondly, the computer-aided processing of natural language is
challenging. Even though the characters can be easily interpreted on a syntactical
level, the semantical interpretation of natural language and the assessment of a state-
ment’s intention also involves the risk of misinterpretations. To avoid this, formal
specifications are used to describe properties or systems and to generate machine-
readable statements. Still, the interpretation of such specifications is challenging in
terms of controlling simulation studies. The resulting subrequirement 1.2 is related
to the definition of semantics of formally specified hypotheses:

Requirement 1.2: Taking account of the superior structure of hypotheses, a for-
malism must be developed which allows for the specification, interpretation, and
systematic integration of hypotheses in simulation studies.

Besides the logical structure of hypotheses, the epistemological classification of
hypotheses in simulation as well as the scientific contribution they provide must be
considered by the developed approach. From a methodical perspective, the content
of hypotheses is neither predetermined nor limited. Any conceivable claim can be
formulated as a scientific hypothesis. Yet, for facilitating the systematic formulation
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and testing of hypothesis, it has been concluded that arguments in logic correspond
to the concept of scientific hypotheses. According to Section 4.1.1, the truth con-
tent of the comprised statements is crucial for logical arguments. Additionally, the
epistemology of simulation further limits the claims that can be verified by means
of simulation experiments. This results in the second main requirement:

Requirement 2: The explanatory power of hypotheses in simulation must be ana-
lyzed to define and adequately consider epistemological opportunities and limita-
tions of Hypothesis-Driven Simulation Studies.

As discussed in Section 4.1.2, the explanatory power of hypotheses is predefined
and restricted by the purpose of simulation. Considering all potential applications
of simulation, a distinction between the use of simulation as tool and method was
made. The focus of this thesis lies on the scientific use of simulation as a research
method. To ensure that the developed approach adequately meets the demands of a
research technique, the first specification of this second requirement is:

Requirement 2.1: The methodical use of simulation as research technique shall be
assisted and facilitated by the developed approach.

The purpose of prediction is an area of application which is often described in
simulation literature. When building a model, one might be interested in how the
model’s behavior changes under certain parametrizations or and how likely it is for
a phenomenon or event to occur. The prediction of the behavior of a modeled sys-
tem, which is based on a specific set of input parameter values, may not be mistaken
by the explanation of the system’s behavior. Even though a phenomenon may be
predicted in case the structure of the original system is modeled correctly and suffi-
ciently detailed, the simulation does not necessarily provide an explanation for the
behavior. In simulation, where all mechanisms need to be explicitly modeled, these
two purposes are intercoupled. Virtual models cannot predict phenomena whose
mechanisms are not explicitly modeled. Still, structural validity of the model must
be assumed such that the model correctly reproduces the behavior of the modeled
system. This results in the following requirement:

Requirement 2.2: The developed approach must be capable of integrating hy-
potheses that predict the behavior of structurally valid models.

The following third subrequirement is closely related to the second one, as pre-
diction and explanation are inseparable in simulation. Still, it is argued that full and
also partial explanations, which causally explain why and how a phenomenon oc-
cured, can mostly not be provided by simulation. This results from a lack of validity
and from simplifications, which are part of the model building process. Instead,
simulation provides possible functional explanations as the functional capacities of
the simulated system are discovered during simulation experiments. Consequently,
when simulation is expected to systematically provide explanations, the developed
approach must allow for the identification and determination of potential functional
explanations. The corresponding requirement can be formulated as follows:
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Requirement 2.3: The approach must be capable of providing and verifying po-
tential functional explanations that explain the behavior of the model.

Considering requirements 2.2 and 2.3 as well as the fact that a black box ap-
proach is pursued in this thesis, it is challenging to predict and functionally explain
the behavior of a model without a structural analysis of the model itself. Still, the ap-
proach can explore the outer behavior of the model under different parametrizations
and use this information to verify research hypotheses. By this means, a variety of
plausible behaviors of the model is simulated and can be used for predictions and
for providing functional explanations. The challenge is to identify and restrict the
relevant parameter space and to systematically test a large set of possible scenarios
to adequately analyze the model’s behavior. Consequently, the fourth requirement
is:

Requirement 2.4: Hypotheses must be systematically tested over a sufficiently
large set of possible parametrizations to evaluate the performance of the model.

The requirements on the logical structure and the epistemological classification
of hypotheses in simulation are defined with respect to the integration of a hypothe-
sis into the process of simulation studies. To enable the systematic design and con-
duction of simulation experiments and to identify relevant experiments, hypotheses
must be integrated into and aligned with other existing methods. In simulation, a va-
riety of valuable and sophisticated methods, services, and techniques exists. Yet, the
identification of appropriate and reasonable methods for the verification of specific
hypotheses as well as the targeted and dynamical logical linking of these methods
is challenging. This results in the third main requirement for the approach which is
developed in this thesis:

Requirement 3: Suitable methods must be identified and logically linked to allow
for the systematic design and conducting of relevant simulation experiments based
on a given formalized research hypothesis.

To guide the identification and linking process, the first necessary step is the
development of a procedure model. By providing a methodology, both the episte-
mological and the structural perspective of hypotheses in simulation can be com-
bined in a joint framework. On the one hand, a methodology defines an operational
framework and thus guides the user’s actions and decisions during the research pro-
cess. On the other hand, the contribution of a methodology facilitates a more stan-
dardized, replicable, and reproducible application of simulation with respect to the
verification of hypotheses. Therefore, the first subrequirement with respect to the
targeted integration of methods is:

Requirement 3.1: To allow for a systematic experimentation, an integrated and
adaptive procedure model for Hypothesis-Driven Simulation Studies must be de-
signed.

In addition to this, enabling and facilitating the practical application of the de-
veloped methodology is part of this thesis. Methodologies provide a valuable guide
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for the operation of processes. However, transferring the approaches and procedures
of a theoretical framework into practice is challenging. Methodologies only define
a scope of action which does not prevent variations in the practical application. For
this purpose, the development of an assistance system is reasonable. Such systems
provide aid to the experimenter as they keep track of the procedure, which is defined
by the methodology. Furthermore, when the sequence of process steps is defined by
case-specific decisions, an assistance system can support the experimenter to plan a
suitable and methodologically sound progress for the study in accordance. This is,
to reduce experimenter bias and results in the seconds subrequirement:

Requirement 3.2: An assistance system must be designed and developed that fa-
cilitates the conducting of Hypothesis-Driven Simulation Studies.

This subsection aimed at defining general requirements on scientific hypotheses
in simulation. For this purpose, the logical and scientific requirements for formu-
lating and testing research hypotheses (cf. Section 4.1.1) were compared as well
as the epistemological demands from simulation as scientific method (cf. Section
4.1.2). To bridge the identified gap, requirements were defined on the logical struc-
ture and the epistemological classification of hypotheses in simulation. Furthermore,
this subsection presented general requirements for integrating hypotheses into the
methodological process of simulation and for aligning existing methods with hy-
potheses. The next step, after defining theoretical requirements, is the analysis of
practical approaches to simulation. It is analyzed if and to what extent they meet the
defined requirements. In case a gap can also be identified here, approaches must be
developed that close this gap and meet the requirements.

4.2 Hypotheses in Simulation Studies

This section analyzes whether the previously defined requirements are sufficiently
met by practical implementations of simulation. The practical scientific application
of simulation as a scientific method takes place in simulation studies. Accordingly,
this section provides a perspective on how hypotheses practically contribute to the
epistemological process in simulation studies and whether the defined requirements
are met.

This section provides two perspectives on simulation studies: a processual per-
spective and a structural perspective. The process of simulation studies is defined
by procedure models. Thus, methodological procedure models for simulation stud-
ies are introduced and it is evaluated how the theoretical concept of hypotheses
is considered by these procedure models. Additionally to providing a logical seg-
mentation of the study’s process, procedure models also structurally organize sim-
ulation studies. While the processual structure of a simulation study represents the
sequence in which the individual steps take place, the logical components of the
study hierarchically represent the artifacts of the simulation study. They define hi-
erarchical dependencies between the structural components of simulation studies as
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well as transitions to convert these components into one another. Thus, the structure
of simulation studies is also addressed by this section. From both perspectives, it is
analyzed how hypotheses are integrated into simulation studies as well as the effect
hypotheses have on the both the structural and processual elements of the simulation
study.

After discussing the structural decomposition of simulation studies, the aggrega-
tion of the outputs that are generated by the individual components of simulation
studies has to be conceptualized as well. Here, two aspects must be considered. On
the one hand, the outputs of the simulation steps and iterations need to be summa-
rized and statistical measures of central tendency must be applied for averaging the
responses. On the other hand, it has to be ensured that the aggregated results are
interpreted within their context. To this end, this section discusses requirements for
the aggregation of simulation outputs. Finally, considering the requirements defined
in Section 4.1, methodological shortcomings are identified in the integration of hy-
potheses in simulation studies. They serve as a basis for the design of a process of
Hypothesis-Driven Simulation Studies in Section 5.

4.2.1 Methodological Integration of Research Hypotheses

After terminologically defining and epistemologically classifying hypotheses in
terms of simulation, the role is analyzed that hypotheses play in simulation stud-
ies. For this purpose, this subsection presents the results of a literature survey on
procedure models for the conduction of simulation studies. In addition to this the-
sis, the results of this survey were separately published by Timm and Lorig (2015).
Based on these models, it is assessed what impact hypotheses have on the process
of simulation studies.

Procedure models are developed and used to ensure reliable results in simulation
studies. Describing the simulation process by means of procedure models improves
and accounts for quality assurance (Kettinger et al., 1997). To evaluate the commu-
nity’s state of discussion regarding process organization in simulation, this section
presents the results of a literature survey of the archive of the Winter Simulation
Conference (WSC) for articles proposing or discussing procedure models in simula-
tion. Since 1968, WSC has taken place annually (except for 1972) and presents itself
as “the premier forum on simulation practice and theory” (Wilson et al., 1996, p. 6)
which, considering the conference’s history, indicates an overview of relevant work
conducted in context of simulation. The online archive of the WSC contains more
than 8500 contributions1, is publicly available, and due to the long existence of
the conference it seems appropriate to be used for reflecting the community’s state
of discussion and its evolution. Based on this, a preselection of the most relevant
articles was performed by evaluating both titles and abstracts of all on-topic con-

1 According to Alexopoulos et al. (2017), Barton et al. (2017), and Sargent et al. (2017), more
than 8500 papers, Titan talks, case studies, and vendor presentations were presented at the Winter
Simulation Conference between 1982 and 2017.
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tributions as well as their references. These articles were then analyzed in detail
and classified with respect to the creation of an overview on relevant steps and their
order in simulation studies.

As a result of the previous advances in simulation research, the first procedure
models considering the entire simulation process were presented as part of WSC
in the early 1980s. However, even though simulation is used by diverse scientific
disciplines, a review of the relevant contributions reveals a number of apparently
universal procedure models (cf. Table 4.2).

Considering the most cited publications in the context of simulation processes,
Law and its former coauthor Kelton are mentioned frequently. As long ago as in
1982, the two researchers identified and published essential steps in simulation stud-
ies. In ten steps they describe the procedure of a simulation study. Each step is
explained briefly and in a comprehensible way and most of the elements of a sim-
ulation study mentioned by Law appear in later models as well, even though inter-
pretation and order might vary. The authors reference Shannon (1975) and Gordon
(1978) as influences on their work. Yet, Gordon is not considered any further within
this section as his work focuses on techniques for system simulation and ignores the
modeling aspect.

Even though Shannon did not propose a procedure model to WSC until 1998, he
suggested stages of simulation studies that “may be distinguished” (Shannon, 1975,
p. 23) already back in 1975. Shannon’s as well as Law’s procedure models mainly
differ in two aspects. On the one hand, Shannon makes a distinction between system
data, describing the boundaries and behaviors of a system, and input data, for exe-
cuting the model. On the other hand, the experimental design is double-checked in
Shannon’s model. After a preliminary experimental design is defined, the final de-
sign is specified after the verification and validation process, before the experiments
are conducted (Shannon, 1998).

The remaining models are not presented in detail as they mainly refer to the
works of Shannon and Law. Instead, only remarkable extensions, comments or
unique features are emphasized that are relevant for this thesis. The entire outline of
each model is shown in Table 4.2.

For visualizing procedure models, most authors have chosen sequence diagrams.
By this means, they illustrate the modular structure of the models and underline
the interdependency between the individual steps. These requirements, which are
closely related to software projects, indicate that simulation studies have to be
planned properly as well, in order to support a successful progress. While Law and
Shannon recommend this step, the other surveyed approaches do not mention it.

Another central component of most procedure models analyzed during the survey
is the aspect of verification and validation (Sargent, 2013). To validate a program
or model, the verification needs to be completed successfully. In case of simulation,
verification and validation is applied to the conceptual model and the simulation
model as well as to the results. However, all authors, except for Montgomery and
Sadowski, recommend verification and validation of the simulation model, whereas
validating the conceptual model is not even suggested by half of them. Balci even
complements verification and validation with testing techniques and proposes ap-
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Table 4.2: Comparison of different simulation procedure models: Steps numbered
consecutively in chronological order. Additional letters imply the combined execu-
tion of the steps.
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Define the problem 1 1 1a 1 1a 1a 1 1a 1a 1a 1a 1 1 1a
Formulate objectives 2a 2 1b 2/4 1b 1b 1b 1b 1b 1b 2 2 1b
Plan the project/study 3 1c 1c 1c 2 1c 3 2
Collect real system data 2b 5 3/4 3 2a 2a 2a 2 2 3 3b 4a 3 3
Create conceptual model 3a 4 2 3a 2b 3 3 4 2 4b 4/6 4
Validate conceptual
model 3b 3 5 5

Identify/collect input data 3b 2b 2b 4 6 7 6
Select response variables 2c 3
Translate the model in
simulation language

4 6 3/4 5 4a 4a 4a 5 7 3a 6 8 7

Verification of the model * 7 5a 6a 4b 4b 4b 6a 8a 4a 9 8a
Validation of the model * 8 5b 6b 4c 6 5 6b 8b 4b 10 8b
Experimental design 5 9 6a 5a 7 7 4 5/9 3c 5/9
Conduct experiments 6a 10 6b 7a 6 5/8a 8 5 10a 10 5 7 11a 10a
Sufficient number of runs 12 5b 8b 10b 10b
(Statistical) analysis
of output data

6b 11 7 7b 7 9 9 6 7 11 6 8 11b 11

Documentation of results 8 13 8 8 10 6 8 12 7 9 12
Validation of the results,
revalidation of the model

7 7 12

plying them during the entire study. Finally, the validation of the results and, as
the circumstances require, a revalidation of the model are only proposed by Mont-
gomery and Schmidt.

When executing simulation experiments, the steps proposed by the procedure
models differ the most. Some authors limit their requirements to the execution of
the simulation experiments. Other authors, in contrast, emphasize the importance
of defining variables for the surveillance of the model during experimentation.
Furthermore, estimating a sufficient number of simulation runs is another underesti-
mated challenge when performing simulation studies. These general conditions are
taken into account by less than half of the procedure models.
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In summary, it can be concluded that most of the procedure models presented
here consist of three major components: The planning of the simulation study in-
cluding the collection of relevant data describing the system to be modeled, the
definition and development of a simulation model and environment (tool or frame-
work), and the conducting of the actual simulation experiments. Considering, that
individual experts are required for the realization of these components, a main chal-
lenge in simulation studies is to integrate and synchronize the collaboration in a
suitable way.

The simulation domain proposed various procedure models for the conduction of
simulation studies. The profession of the authors varies from theorists to practition-
ers and they have different professional backgrounds as they come from different
domains. Regardless of the authors’ perspectives, all procedure models share the
definition of the problem to be solved as first necessary step of a simulation study.
In most procedure models, this step is immediately followed by a the formulation
of objectives and the planning of the study. Besides a planning phase, all surveyed
procedure models for simulation studies have two more phases in common: the
definition and development of the simulation model and the conduction of the ex-
periments. However, differences can be observed in the level of detail in both the
number of steps of each phase as well as the specific guidance that is provided for
each step.

Some of the presented procedure models provide very detailed descriptions or
specification of important steps in simulation studies and how can be transfered
into practice. Yet, with respect to the goal of this thesis, the initial definition of the
study’s problem is not sufficiently integrated and referenced in the following steps.
Even though the overall problem is occasionally mentioned in later steps, specific in-
structions or approaches for individually addressing the problem’s epistemological
demands and for verifying underlying research hypotheses can rarely be identified.

Taking into account the requirements that were defined in Section 4.1 leads to
the identification of two major shortcomings: First, the problem of the study and
consequently also the resulting hypothesis of the study are not sufficiently speci-
fied for the application of respective concepts from logic. All presented procedure
models require the definition of a problem the study addresses. Yet, with respect to
the reproducibility of they study, they do not provide approaches or techniques for
specifying and communicating the identified problem. When published, the prob-
lem is stated in natural language which is not sufficient for the scientifically sound
reproduction of the study’s results. Second, the purpose of the simulation study is
not adequately represented by the procedure models. In Section 4.1.2, it was con-
cluded that the purpose of simulation studies strongly influences and predetermines
the epistemological contribution of the study’s results. Both the opportunities and
limitations of different purposes were introduced and a methodical differentiation
of the purposes has been presented. The surveyed procedure models are neither
purpose-specific nor is the methodology adjusted depending on the purpose of the
study. Only general purpose procedure models are proposed which obviously cannot
take specific epistemological demands into account. As a consequence, existing pro-
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cedure models must be extended such that they can dynamically adapt to different
purposes of simulation.

4.2.2 Structural Components of Simulation Studies

In addition to the process of simulation studies, structural components of simula-
tion studies can be derived from these procedure models as well. The process of
simulation studies consists of multiple steps, some of which take place in an iter-
ative and parallel manner. During these steps, different structural components of
simulation studies are created, modified, and transferred into one another. In this
subsection, these different components are identified, specified, and their hierarchi-
cal dependencies are outlined. Based on this, each components’ contribution to the
verification of research hypotheses is examined.

Simulation studies are conducted to achieve a better understanding of how a
system works and behaves under different conditions by conducting experiments
with a model of the system. In the classical sense, simulation studies consist of two
parts, the conception and implementation of the simulation model (modeling) as
well as the design, execution, and evaluation of simulation experiments based on
the model (experimentation) (Shannon, 1998). The modeling part requires a high
domain-specific expertise for the development of a valid model which appropriately
represents the real-world system (cf. Figure 4.8) (Huang et al., 2011). As a result
of this, models are highly individual, it is difficult to compare or assess a model’s
quality, and the assistance of the modeling part of a simulation study is challenging.
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Fig. 4.8: Disciplines involved in simulation study and their task fields.

To successfully conduct simulation studies, the modeling part is not always of
primary interest. A model of the studied system may already exist and can be reused.
Furthermore, depending on the aim of the study, the use of an existing model might
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be necessary, e.g., if the study aims at reproducing results of previous research or
when hypotheses of earlier studies are revised and need to be tested again. Never-
theless, even though the individual assessment of the model’s appropriateness may
vary, the credibility and replicability of a simulation study also depends on the de-
sign, execution, and evaluation of the experiments. No matter how high the model’s
quality is, if the process that is applied to test the assumption and hypotheses of
the model does not follow scientific standards, the results lack expressiveness and
soundness (Tolk, 2017a). In contrast, when studying a poor model with a sound ex-
perimentation process, the derived results are expressive with respect to the model.
Yet, the appropriateness of the underlying model must be questioned and thus the
modeling part of simulation studies is neglected in the approach presented here. In-
stead, the focus lies on the well-documented, replicable, and assisted conduct of the
experimentation part of simulation studies.

The experimentation aims at investigating the system’s behavior (input-output
relationship) with the objective of providing evidence for or against the simulation
studies’ leading question or assumption, i.e., the goal of the study (Montgomery,
2013). Thus, the inner structure of the model is of less relevance, i.e., states and
mechanisms of the model. Besides, it cannot be assumed that the inner structure of
models is published or accessible. Consequently, when developing a universal pro-
cess for systematically answering research questions based on a simulation model, it
is reasonable to pursue a black box approach where the experimentation only relies
on the observable behavior of a model. Hence, this thesis defines the term simu-
lation study as the targeted and systematic process of experimenting with a black
box model and the goal of investigating a question or an assumption regarding the
model’s behavior.

Simulation studies implement a hierarchical structure, where experiments need
to be derived from the study’s goal on the one hand and consist of complex processes
and respective sub-processes on the other side. Thus, a terminological distinction of
both the components that are relevant in simulation studies and the interdependen-
cies between the components needs to be made to allow for the systematic assistance
of simulation studies. The suggested distinction is presented in Figure 4.9.

Regardless of the separation between modeling and experimentation, Wins-
berg (2010) defines simulation studies as inferential processes that investigates
complex phenomena by means of computational techniques. In contrast to this,
Law (2003, p. 66) provided a more practical definition of simulation studies. He de-
scribes it as “a sophisticated systems-analysis activity” and underlines that knowl-
edge of simulation methodology, probability theory, statistics, and project manage-
ment are required. In practice, most users who perform simulation studies do not
have these skills as their training is often limited to the application of a specific sim-
ulation framework. At the same time Law (2003) emphasizes that programming the
model is only a minor task in simulation studies, which demands 25% to 50% of the
overall time.

With regard to the survey of procedure models for simulation studies (cf. Sec-
tion 4.2.1) it must be emphasized that simulation studies cover more than just
the implementation and execution of a model. They consist of a large number of
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Fig. 4.9: Structural components of a simulation study.

steps or stages with the aim of investigating properties of a real system (Shan-
non, 1975). Simulation studies enable the investigation “of the dynamics of a
system, how it changes over time and how subsystems and components interact”
(Carson, 2004, p. 11). As pointed out, the key element of a simulation study is its
goal. It specifies the objective and purpose of the study and thus drives the entire
experimentation process.

To achieve the objective of a simulation study, i.e., addressing specific research
questions (Shannon, 1998), corresponding performance measures are specified and
simulation experiments are conducted. The aim is to analyze and compare the influ-
ence different parametrizations of the model have on the values of the performance
measures (Law and McComas, 1991). Each experiment describes a “series of tests”
where changes are made to the inputs of the model to observe changes of the outputs
(Maria, 1997, p. 9). They are conducted with regard to the investigation of which
inputs are responsible for the observed behavior of the model (Montgomery, 2013).
A simulation study consists of at least one simulation experiment per question that
is stated about the system.

For each experiment, an appropriate design must be defined. The main goal of ex-
perimental design is to provide an estimation of how different levels of the model’s
factors affect the outputs of the model (Kelton and Barton, 2003). According to
Maria (1997), relevant aspects or questions that must be considered during the de-
sign of experiments include type, quantity, and form of data, which are required
to accomplish the study’s goal. Generally speaking, this includes the selection of
a performance measure as well as a small set of input factors which influence the
performance measure and respective factor levels. In case the number of possible
factor-level-combinations is too large to be simulated, Maria recommends the use
of fractional factorial designs to reduce the number of simulated configurations.
Finally, if the simulation model is not designated to terminate or in case specific
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parametrizations or software faults result in infinitive loops of simulation, termina-
tion conditions must be defined for each experiment (Barton, 2013).

As defined by Montgomery (2013, p. 1), experiments are “series of runs”, where
each experimental run represents an individual test of the model with a specific
parametrization. For each simulation experiment, one or many simulation runs are
designed in which the system’s response to a specific set of inputs is observed
(Maria, 1997). Usually, each factor-level-combination which was defined during the
design of experiment defines one parametrization of the model and thus an individ-
ual simulation run.

In contrast to deterministic simulation models that do not contain random vari-
ables, simulation runs that execute stochastic models with probabilistic inputs re-
quire multiple simulation iterations (replications). This is to allow for a statistical
assessment of the distribution of the results and to achieve reliable results (Hoad
et al., 2007). Centeno (1996) pointed out the risk of confusion and illustrated the
difference between simulation runs and iterations as follows. When executing sim-
ulation models, a run is defined by a specific parametrization and starts when the
experimenter clicks on the start button of the simulation framework or sends the
respective command line instruction. It ends when the framework simulated the last
event or time step. When the model is executed, multiple iterations can be simulated
in sequence. The simulation iteration is defined to take place between the start of
the simulation watch and its end, i.e., from the first to the last tick. Consequently,
the outputs of the iterations differ, while the summarized outputs from each run are
the same. However, this only applies if a run is initiated multiple with equal random
number streams. In summary, each iteration of a stochastic simulation run is initi-
ated with the same inputs but a different stream of random numbers, which results
in different output values (Carson, 2004).

Finally, depending on how progress is calculated in the simulation model, each
simulation iteration consists of multiple simulations steps (tick). Each step repre-
sents progress of the simulation clock and the computation of a new state of the
model. Especially for the consideration of warm-up periods or for defining the time-
based termination of simulation iterations, the application of simulation steps is rea-
sonable (Sanchez, 2007).

The presented differentiation of structural components in simulation studies il-
lustrates, how each component is logically linked to the goal of the study and to the
hypothesis whose verification the study pursues (cf. Figure 4.10). Out of the five
presented structural components, the hypothesis is closest related to the simulation
study itself. It defines the goal of the simulation study and thus provides direct and
fundamental implications for the execution of the study. Simulation experiments
are directly derived from the study. Each experiment consists of a series of tests, in
which different parametrizations are applied to analyze the model and their effect on
the behavior of the model (Maria, 1997). Thus, the aim of simulation experiments
is to define a landscape of relevant parametrizations or to cover all parametrizations
that are of interest. Because of the black box approach which is pursued in this the-
sis, potential functional explanations for the model’s behavior must be defined as
different parametrizations of the model. Thus, experiments define and test a variety
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Fig. 4.10: Hierarchical dependencies between simulation studies, experiments, runs,
iterations, and steps.

of potential functional explanations for a certain hypothesized behavior. Simulation
runs, which are dependent on experiments, define individual scenarios with spe-
cific parametrizations of the model. With respect to the hypothesis, each run then
provides a prediction of one possible future of the model.

As this thesis focuses on probabilistic models, repeating a simulation run must
not necessarily lead to the same outputs, even though the parametrization of the
model remains unchanged. To take probabilistic model behavior into consideration,
the observed behavior must be evaluated stochastically. In this regard, each itera-
tion of a simulation run contributes to minimizing the statistical uncertainty of the
results. Accordingly, the necessary number of iterations must be estimated individ-
ually and the required level of certainty must be defined as part of the research
hypothesis. Finally, the use and specification of simulation steps is not mandatory.
They can be beneficial for modeling specific circumstances and thus for answer-
ing particular research questions. If applied, the concept of step-wise simulations
allows for answering more detailed research questions. As each step provides time-
discrete outputs of the model, the temporal progress of the model can be observed,
time series can be derived, and more specific information regarding the behavior
of the model is obtained. Based on this, more specific potential functional explana-
tions are provided, which enables the researcher to formulate more detailed research
questions.
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4.2.3 Aggregation and Interpretation of Results

Each of the presented structural entities either produces genuine outputs themselves
or they process outputs from other, hierarchically subordinate, entities and pass them
along the hierarchical structure of the study. With respect to the systematic verifi-
cation of hypotheses, these outputs must be reaggregated. This subsection presents
pitfalls that might occur during the aggregation of outputs and systematizes the ag-
gregation process to cope with these pitfalls.

The presented process combines two aspects, the numerical summarization and
averaging of the generated output values as well as the contextual interpretation
of the aggregated results. In a simulation study, the fragmentation of the study’s
hypothesis into individual simulation experiments, runs, and iterations in only one
half of the overall task. After performing simulation runs and their respective itera-
tions, the responses of each iteration must be collected and aggregated in a suitable
and sound way to allow for drawing conclusions and to confirm or disconfirm the
assumptions of the study (see Figure 4.11). The outputs of the simulation model are
gathered in every simulation iteration or, if supported by the model, in each sim-
ulation step. After a successful simulation iteration, the model returns the current
values of all output variables. These values allow for the analysis of the response of
the model.

In contrast to this, each simulation step provides a snapshot of the system’s be-
havior at a specific point in time. These time-discrete pieces of data, the stepwise
responses of the model, can be assembled. This results in a time series of response
for the respective simulation iteration. In this case, either the model’s outputs at a
specific point in time, e.g., the last step of the simulation, or the arithmetic mean of
the outputs over a period of time can be defined as the response of the respective
simulation iteration. When averaging output values, both the consideration of the
values of all steps or the reset of the statistical measures of central tendency after a
defined warm-up period are feasible (Chung, 2004). In addition, each step’s outputs
can be seen as an individual sample and analyzed accordingly.

To overcome the expressiveness gap between the outputs of the model and the
performance measures that are part of the study’s underlying hypothesis, target vari-
ables are formally specified based on the model’s output variables. First, the itera-
tions’ responses are defined and extracted from the time series of output data in
step-based simulation models or directly by observing the output values in unspec-
ified simulation models. Next, the values of the specified target variables need to
be calculated based on the model’s output and aggregated for each simulation run
to obtain each run’s results. Here, the order in which these two steps are applied
is of particular relevance as they are not interchangeable without the risk of gener-
ating biased and incorrect results. This is because the summarization of output or
target variables and the calculation of target variables are not necessarily commuta-
tive (Lorig et al., 2017a). The issue is formally defined, discussed, and a solution to
overcome this issue by means of an assistance system is presented in Section 6.1.3.
At this point, for the definition of the integrated procedure model, it is important
to take the existence of this pitfall into account. Otherwise, methodological uncer-
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Fig. 4.11: Aggregating output variables to target variables and performance mea-
sures in simulation studies.

tainties may lead to epistemological weaknesses in terms of the interpretation of the
results. Ultimately, this impacts the testing of the statistical hypothesis and conse-
quently also the verification of the initial research hypothesis as the sampled data
basis is biased.

The consequences of disregarding this issue can be illustrated by the follow-
ing example. It assumes an ABSS study, where the transactions on a marketplace
are simulated as interactions between customers and companies. From a company’s
perspective, relevant performance indicators might be the customer lifetime value
(CLV) as well as the economic order quantity (EOQ). Neither of the two indicators
is provided as output of the model and thus has to be defined as a new variable. As
the marketplace is a probabilistic model, several iterations of the simulation model
are executed for each parametrization and the gathered outputs need to be summa-
rized to gain every run’s results. The CLV must be calculated for each iteration, as
it relates to the decisions and actions a specific customer has performed in each ex-
ecution of the simulation model. It represents the profit that has been generated by a
customer during its relationship with the company (Berger and Nasr, 1998) and can
be simplified as follows:

CLV = (Revenue per customer and year⇥Customer relationship in years)
�Promotion costs per customer and year

In this example, the CLV is equal to the price of all products the customer has bought
during the simulation. Assuming that the simulation’s output includes information
on all purchases that have been made by the customers, the required target variable
needs to add up the price of the purchases per customer. The CLV per customer
and iteration can then be calculated and the average CLV can be determined over



108 4 Requirements Analysis on Hypotheses in Simulation

all iterations. However, one could also first summarize the purchase data from each
iteration and calculate the CLV based on the aggregated dataset. In this specific case,
the results would not differ as addition and averaging are commutative operations.

Considering the EOQ, this is not possible. The EOQ results from a trade off
between the order costs, i.e., fixed setup cost and cumulated unit costs, and both
interest and depreciation on stored goods (Harris, 1990). It can be determined by
dividing the double sum of the annual demand and the fixed costs per order by the
annual storage cost per good:

EOQ =

s
2⇥Annual demand⇥Fixed order cost

Annual storage cost per unit
.

Assuming that all required values are provided as outputs of the model, each itera-
tion’s outputs must be calculated before averaging each iteration’s EOQ to achieve
the result of the simulation run. Averaging annual demand, fixed costs per order, and
the annual storage cost per good before calculating the EOQ would cause mathemat-
ically incorrect results. The concatenation of division and averaging is not commu-
tative and thus needs to be differentiated with respect to the study’s hypothesis. The
same differentiation applies for the aggregation of results from different simulation
runs for drawing conclusions from a simulation experiment. To avoid this pitfall,
and for receiving sound results, the process of aggregating performance measures
needs to be planned thoroughly.

In conclusion, the following challenge can be summarized for the consideration
in Hypothesis-Driven Simulation Studies. The behavior of the simulation model is
observed on the lowest structural layer. Here, outputs are generated which must be
summarized and aggregated to allow for a targeted interpretation with respect to
the initial hypothesis. During this process, methodological uncertainties may lead
to epistemological weaknesses in terms of the interpretation of the results.

4.2.4 Methodological Shortcomings

With respect to the epistemological requirements that were defined in Section 4.1,
this section discusses and analyses the integration of scientific hypotheses in sim-
ulation studies. To this end, three relevant perspectives were identified. First, the
methodological integration of hypotheses in simulation studies in terms of proce-
dure models was investigated. Second, in addition to the processual perspective, a
structural perspective was chosen and the components of simulation studies as well
as their hierarchical dependencies were presented with respect to the integration
of hypotheses. Finally, the aggregation and interpretation of the model’s outputs
that were generated during the study was addressed to allow for sound hypothesis
testing. Based on these perspectives, gaps were identified between the defined the-
oretical requirements and the perceived practical implementation and integration of
hypotheses in simulation studies. These gaps are consolidated in this subsection and
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addressed during the development of an integrated procedure model for the design,
conduction, and evaluation of Hypothesis-Driven Simulation Studies.

Different purposes for the application of simulation that were presented in Sec-
tion 4.1.2 were revisited in Section 4.2.1. Depending on the purpose of the study, the
epistemological contribution simulation can make is influenced and predetermined.
The presented investigation and comparison of different procedure models for sim-
ulation studies revealed that they are neither designed for purpose-specific modifi-
cations nor enable methodological adjustments of the process. All models that were
part of the survey focused on general-purpose simulation studies and did not take
specific epistemological demands into account. As a result of this, the purpose of
the simulation study cannot be adequately considered. Furthermore, the hypothesis
is not sufficiently specified by the investigated procedure models so that the imme-
diate application of hypothesis-testing concepts from logic is not possible.

Subsequently, Section 4.2.2 differentiated structural components of simulation
studies and defined the hierarchical relationships between the components. In the
presented distinction, the simulation study itself was introduced as superior compo-
nent from which experiments, runs, iterations, and optional steps are derived. The
study results from the scenario and thus represents the research hypothesis. The de-
gree to which experiments, runs, and iterations can take the research hypothesis into
account is predetermined by existing logical connections. Consequently, hypothesis-
specific adaptations of the process must be planned and implemented in a top-down
approach. The proper and targeted definition of the study as well as the systematic
derivation of dependent components is challenging. To facilitate different purposes
of simulation, e.g., the provision of functional explanations, the structural compo-
nents of the study must be derived accordingly. Yet, the logical and contextual de-
pendencies and transitions between the structural components of the study are not
sufficiently conceptualized.

Finally, Section 4.2.3 investigated the aggregation and interpretation of the out-
puts that were generated by the structural components introduced in Section 4.2.2.
Identified shortcomings do not address the aggregation of basic output values but
the application and integration of more advanced performance indicators. Exam-
ples presented in this regard are key performance indicators which are domain-
specifically defined and utilized for measuring the performance of a system. Under-
lying formulas may contain various mathematical operators, which interrelate the
values of different input or output variables of the model. Pitfalls occur as it cannot
be assumed that these operations are commutative. The correct order of the oper-
ations must be derived from the hypothesis to avoid methodological uncertainties
and misinterpretations.

4.3 Conclusions

This chapter presented and discussed the results of a requirement analysis. To this
end, it defined requirements for scientific hypotheses in simulation and presented an
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investigation of the status quo of the practical integration of hypotheses in simula-
tion studies. A gap can be identified such that the stated requirements are not ade-
quately met in practice. To close this gap, existing procedure models for simulation
studies must be extended to allow for the integration and verification of scientific
hypotheses.

With respect to the vision of this thesis, a need for research arises, which can
be summarized in terms of three major challenges: First, there is a need to tighten
the methodological alignment of the study’s process on the investigated research
hypothesis. Instead of only recommending the definition of a problem as a first step
of a study, it is necessary to formally specify testable hypotheses. Each subsequent
step of the study must then be planned and executed with respect to answering this
hypothesis. For this purpose, an integrated procedure model is required that focuses
on answering scientific hypotheses by means of simulation.

Second, the logical link between the structural components of the study must
be conceptualized. This link allows for the integration of external methods or tech-
niques into the process of the study such that existing approaches can be reused
as part of the integrated procedure model. Moreover, the specification of the logi-
cal link between all involved components enables the intelligent assistance of the
process by means of a software. This is essential to relieve the experimenter from
repetitive tasks and to avoid experimenter bias.

Finally, the targeted and consistent aggregation and interpretation of the gener-
ated outputs must be enabled over all structural layers of the study and with regard to
the verification the initial hypothesis. Each iteration and run of a simulation experi-
ments generated individual outputs that must be gathered, analyzed, and interpreted
to provide evidence for or against the validity of the investigated hypothesis. In this
regard, the process of aggregating these outputs strongly depends on the hypothesis
and must take the underlying assumption into account.



Chapter 5
Hypothesis-Driven Simulation Studies

As part of the requirement analysis, challenges were defined for the formalization of
hypotheses. Yet, it seems that these requirements are insufficiently met in practice.
With respect to the replicable and reproducible verification of hypotheses in sim-
ulation studies, shortcomings of existing procedure models for simulation studies
were identified. To overcome these limitations, this section proposes an integrated
procedure model for the conducting of Hypothesis-Driven Simulation Studies. In
contrast to conventional procedure models, the one developed and presented in this
thesis focuses on the methodological integration of research hypotheses in the pro-
cess of simulation studies. For this purpose, the procedure of the study must be
aligned with the research hypothesis and the steps of the study need to be adjusted
and combined accordingly.

This chapter addresses the logical connection of existing assistance functionali-
ties with respect to facilitating and automating the conducting of Hypothesis-Driven
Simulation Studies. It provides an overview of all involved entities (i.e., tasks, func-
tionalities, and services) that contribute to the process of a simulation study. Further-
more, this chapter provides a specification of all connections between the interfaces
and outline the way each component contributes to achieving the goal of a simula-
tion study.

Finally, the development of an assistance system seems reasonable consider-
ing the large number of entities that are involved in the practical conducting of
Hypothesis-Driven Simulation Studies. Thus, the last section of this chapter pro-
poses an abstract architecture for an assistance system and illustrates how simula-
tion users and experts operate with this system. This allows for the automation of
large parts of the simulation study and relieves the experimenter of repetitive tasks.
Examples of such tasks are the systematic variation of model parameters or the ex-
ecution of respective simulation runs.

111
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5.1 Integrated Procedure Model

In this subsection, different perspectives on hypotheses in simulation studies are
joined into an integrated procedure model for the assistance of Hypothesis-Driven
Simulation Studies. For this purpose, classical procedure models for simulation
studies are extended and refined to overcome the described shortcomings of existing
approaches and to meet the identified requirements for systematically integrating re-
search hypotheses in simulation studies.

The requirements for formulating and testing scientific hypotheses serve as a ba-
sis for the proposed procedure model. Based on this, conventional procedure models
for simulation studies are adapted such that the entire process of the study is aligned
with the formulated hypothesis. By this means, structural components of the study
can be systematically derived, modified, and connected with respect to the study’s
goal. Additionally, not only the decomposition of the study’s components but also
the aggregation of the outputs generated by these components is systematized.

The presented process aims at closing the gap between the structure and proce-
dure of simulation studies on the one side and the epistemological requirements for
systematically answering research questions by means of simulation on the other
side (cf. Figure 5.1). This section introduces the integrated procedure model step-
wise. Both the process steps as well as the transitions between the steps are pre-
sented in detail. Moreover, the process’s potential for assisting the design and con-
ducting of Hypothesis-Driven Simulation Studies is illustrated. For this purpose,
this section introduces and applies an example from the domain of industrial manu-
facturing process simulation.

The structure of this section follows Figure 5.1. First, the scenario is introduced,
which provides the context of the simulation study (top of the figure; Section 5.1.1)
Based on this scenario, the study’s hypothesis is specified (Section 5.1.2). To il-
lustrate how both scenario and hypothesis are interconnected to the process of the
study, this section introduces and applies an exemplary case from logistics. Next,
and referring to the presented example, all relevant steps for the design of experi-
ments, runs, iterations, and steps are presented (left side of the figure; Section 5.1.3).
Subsequently, the outputs generated during these steps are aggregated in reversed
order which allows for answering the stated hypothesis (right side of the figure;
Section 5.1.4). This section considers each step of the study, assuming the provision
of an implemented, executable, and verified simulation model.

5.1.1 Introduction of the Study’s Scenario

According to most simulation procedure models, e.g., Law (2014), Banks (1998), or
Shannon (1998), the necessary first step of a simulation study is the proper definition
of the goal (cf. Section 4.2.1). This is essential, as the study’s goal specifies the
objective and implies the purpose of the study. It drives and influences the entire
experimentation process as relevant experiments need to be derived from the goal
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Fig. 5.1: Process model for the conducting of Hypothesis-Driven Simulation Stud-
ies.

to achieve it (Conway and McClain, 2003). The boundaries for defining reasonable
goals are determined by the model under study, as it mainly provides the study’s
context. In the literature, this context is often referred to as the scenario of the study.
To adapt this terminology in this thesis, the term scenario is discussed and defined in
tis section. Furthermore, to illustrate how the scenario of the study affects each step
of the proposed procedure model, an exemplary case from logistics is introduced
and used through this chapter.

Scenarios in Simulation Studies

In information technology, the term scenario is defined in various ways. Ahmed
and Sundaram (2009) discussed different perspectives on and definition of scenar-
ios from an information systems perspective. The definition they provide describes
scenarios as “a complex combination of data, model, and solver” (Ahmed and Sun-
daram, 2009, p. 1030). In this regard, a scenario is defined as a model that is instan-
tiated by a certain set of data and that is tied to solvers. In their definition, a solver
is described as an algorithmic software component, which applies behaviors to the
model. The aim is to separate the behavior of the model from its structure.

Transferred to simulation, the solver can be compared to the simulation software,
which executes the model and thereby generates its behavior. In most cases, this is a
specific and possibly commercial simulation framework or toolkit, e.g., AnyLogic,
Repast Symphony, or Enterprise Dynamics. However, proprietary and individual
solutions may also be used.
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In practice, most simulation models are inseparably tied to a specific simulation
software. Hence, the exchange of this software often results in additional effort as
specific interfaces must be reimplemented or even newly development. Approaches
exist where simulation models are defined using particular meta description lan-
guages, e.g., Modelica (Fritzson and Engelson, 1998). This improves the cross-
platform flexibility as such models can be imported into and utilized by multiple
of simulation frameworks. However, the number of frameworks is still limited and
the extension of the scope of supported frameworks requires the development of
additional wrapper or importer classes. Furthermore, cross-compatibilities exist be-
tween certain frameworks, e.g., between Repast Symphony and NetLogo, where the
ReLogo language allows for the execution of simpler NetLogo models using the
more powerful Repast Symphony engine (Ozik et al., 2013). In summary, the simu-
lation software used for implementing and executing simulation models corresponds
to the definition of a solver given by Ahmed and Sundaram (2009).

In accordance with the presented definition of a scenario, in this thesis the sce-
nario of the simulation is defined as the combination of simulation data, model, and
software. Ahmed and Sundaram (2009) defined data as the representation of facts
that describe value and data type of discrete information. Accordingly, in the black
box approach which is pursued here, data is provided and integrated via the inputs
of the model (cf. Section 2.2.1) and the scenario of the simulation study consists of
a set of data. It can be one specific full parametrization of the model, which strongly
predetermines the behavior of the model. Yet, partial parametrizations that leave
out variables or the definition of admissible values or ranges of values for the input
variables of the model are also possible data sets. The simulation model together
with an explicit parametrization and an appropriate framework form an executable
system. Thus, the scenario can be used to generate the behavior of the simulation
model and to analyze possible futures of the modeled system.

Here, the epistemological importance and impact of scenarios in simulation stud-
ies becomes apparent. On the one hand, the scenario of a study limits the extent to
which questions can be answered by the simulation. The more restrictive the sce-
nario has been designed, i.e., due to a specific parametrization of the model, the less
explanatory power the simulation has as the dynamics are restricted as well. Accord-
ingly, the amount of possible hypotheses is also restricted as variations of parameter
values are not longer intended. On the other hand, the scenario provides a context
for the interpretation of the results. Without a scenario, the results of a simulation
are only plain values whose sound and context-related interpretation is challeng-
ing. The simulation’s scenario defines and provides the semantics that are required
for the interpretation. Both the direction of each variable’s effect and the range of
admissible values for the relative classification of a specific value are defined.

Exemplary Case: Production Line Logistics

To illustrate how the scenario influences each step of a simulation study, this chapter
introduces an example from the practical application of simulation. In manufactur-
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ing, simulation is applied to analyze, plan, and optimize production processes in
factories. This example case assumes a factory that operates an assembly line for
the production of a simple unspecified product, e.g., chairs or tables. The assem-
bly of the product consists of multiple consecutive steps and each step is executed
by a specific type of machines (cf. Figure 5.2). For reasons of parallelization and
redundancy, groups of equal machines of each type exist and incomings orders are
distributed among the machines within a group.
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Fig. 5.2: Setup of the exemplary case.

The assessment and optimization of the performance of a production line is a
common aim of a simulation study. In the presented setup, the performance of a
production line can be evaluated via the number of orders that are finished during a
day shift or in a specific time slot. In this case, the maximum number of products that
can theoretically be manufactured in the considered time slot serves as a reference
for the highest performance of the production line. Other potential performance
measures are the average utilization of the machines or the rate of products that are
rejected due to manufacturing defects.

This example emphasizes that it is essential to take the scenario and particularly
the underlying data of the model into account when evaluating simulations. Assum-
ing that 20 orders arrive on a simulated day, the average number of products per
order is 4, and the standard deviation of the number of products per order is negli-
gibly small. The simulation’s result is the successful manufacturing of 10 orders. In
another model, 20 orders arrive on one day as well. In contrast to the first simula-
tion, the average number of products per order is only 2, the standard deviation is
likewise small, and the result of the simulation is the completion of 18 orders. By
only comparing the number of completed orders, one could conclude that the second
model results in a higher performance of the system as almost the double amount of
orders was completed, e.g., due to improved queuing disciplines. Yet, the scenarios
of the two simulations differ and consequently the results of the simulation cannot
be directly compared. Interpreting the results in the context of each simulation’s
scenario reveals the potential bias. Relating the number of completed orders to the
average number of products per order indicates that the first model manufactured 40
products while the second model was only able to manufacture 36 products. With
due regard to the data of the model, the performance of the first models seems to be
higher. However, further experiments are required to finally and reliably assess and
compare the performance of the two models.
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To utilize the presented exemplary case for the conduction of a Hypothesis-
Driven Simulation Study, a research questions must be stated first. In the domain
of manufacturing simulation, a variety of research questions can be thought of.
Lattner et al. (2011a, p. 122) presented the following manufacturing-related inves-
tigation question in their work: “Is the current storage still sufficient in case of a
change in volume and content of the orders?”. They point out, that verbal state-
ments like the one presented are often stated as research questions in simulation
studies. At the same time, they also emphasize that experiments cannot directly be
derived from such verbal statements.

For illustrating the methodology of the proposed procedure model, a more com-
prehensible research question is required to demonstrate the hypothesis-driven pro-
cess of a simulation study. In contrast to the storage-related research question that
consists of an ambiguous and hardly testable assertion, there is a need to formulate
a more specific and quantifiable goal of the simulation study. In the initial situation,
a fully implemented simulation model of a production line in a factory is available,
which can be run by means of a corresponding simulation framework. As part of a
manufacturing simulation, a possible question that drives the simulation study could
read as follows:

Will the manufacturing cycle efficiency increase by more than 50%
if the number of machines increases from 3 to 5?

To evaluate and compare business processes, quantitative criteria (key perfor-
mance indicators) are defined in economics (Parmenter, 2015). These performance
indicators enable and facilitate the assessment of the success of a specific process.
Success can be defined narrowly, e.g., as rejection rates in a manufacturing pro-
cess, but also as the achievement of superior process goals, e.g, the satisfaction of
customers. The manufacturing cycle efficiency (MCE) is a performance indicator,
which is used to assess the relative amount of wasteful or uneconomic time in a
production process (Mowen, 2013). This is important, as the goal of process man-
agement is to increase the efficiency of business processes by decreasing or even
eliminating uneconomic times. The equation that defines the MCE calculates the
ratio between the value-added time and the manufacturing cycle time (throughput
time) of a process. Accordingly, it can take values between 0 and 1 (0 - 100%). An
MCE of 0.25 implies that 75% of the production time is spend on activities where
no value is added to the products, e.g, waiting, moving, or queuing. The ideal or
most desirable MCE is 1, implying the elimination of all non-value-added time in a
process.

MCE =
Processing Time

Manufacturing Cycle Time(MCT )

MCT = Processing Time+Move Time+ Inspection Time+Waiting Time
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In the following sections, the presented example case is used to illustrate how the
stated question can be systematically answered as part of a simulation study. To this
end, the behavior of the model is measured via the MCE performance indicator.

5.1.2 Specification of Hypotheses

After emphasizing the importance of the scenario of a simulation study and in-
troducing an exemplary case, the process model for Hypothesis-Driven Simulation
Studies is presented in three consecutive steps. This includes the specification of hy-
potheses, the design and structural decomposition of relevant experiments, as well
as the aggregation and analysis of the generated outputs. As a first step, one or more
testable hypotheses need to be specified for each research question that is stated as
a goal of a simulation study. In accordance with the types of experiment hypotheses
that were defined by Yilmaz et al. (2016) (cf. Section 3.1.3), only phenomenological
hypotheses are considered by the proposed approach. Such hypotheses make asser-
tions about the behavior (input-output-relationship) of a model, i.e., which form the
outputs take in the case of specific input values.

When evaluating and verifying phenomenological hypotheses according to the
requirements defined in Section 4.1.1, it is most challenging to check whether or not
the observations from the experiments do indeed contradict the hypothesis. When
applying probabilistic models in simulation, a single observation rarely allows draw-
ing sound conclusions about the modeled system. It is unclear, how the observation
can be classified compared to the amount of possible observations defined by the
model’s basic population. This challenge is closely related to hypothesis testing in
statistics (Montgomery, 2013). Hence, this section introduces and applies an ap-
proach for the specification of hypotheses on the behavior of simulation models
which is inspired by statistical hypotheses.

Specification of Statistical Hypotheses

In contrast to computer science and theory of science, statistical hypotheses are not
expressed as a statement, which consists of a number of premises and one inferen-
tially linked conclusion. Instead, in statistics, pairs of hypotheses are constructed in
which the outcome of a probabilistic experiment is supposed. The pair of hypothe-
ses is mutually exclusive, meaning that each possible outcome of the experiment is
covered by either of the two hypotheses. Here, the hypothesis that formulates the
default statement, i.e., that the observed outcome of the experiment is a result of
chance, is referred to as null hypothesis, while the hypothesis claiming the existence
of causality is the alternative hypothesis. The distribution of the system’s population
is unknown and the observations from the experiments are considered as a random
sample drawn from this population. The aim of the statistical hypothesis test is then
to assess how likely or unlikely the made observations is compared to the result



118 5 Hypothesis-Driven Simulation Studies

expected from pure chance or in relation to other possible outputs. The threshold
defining the boundary between chance and causality (significance level) is defined
in advance and domain-specific standards apply.

The assumptions as well as the approach of statistical hypothesis testing corre-
spond to the requirements of hypothesis testing as identified in Section 4.1. In com-
puter science, the outcome which is generated by a model during experimentation
can also be viewed as a sample drawn from an unknown probability distribution. Ac-
cordingly, the question of whether or not the observed outcome is representative for
the population or whether the observed improvement was a result of chance arises as
well. The approach’s limitation on phenomenological hypotheses furthermore im-
plies that the conclusion of the initial research hypothesis makes a statement on the
behavior of the model. This can be measured via the output variables of the model or
respective performance indicators derived from or based on these variables. The av-
erage value of such an output variable or performance indicator can analogously be
used as a test statistic in statistical hypothesis testing. Thus, in this thesis, statistical
hypotheses testing approaches are applied to evaluate and verify phenomenological
hypotheses in simulation studies.

To make preparations for the application of hypothesis tests, some requirements
must be met. Mainly, a null hypothesis as well as a corresponding alternative hy-
pothesis have to be formulated and a data sample needs to be drawn respectively.
As the aim of this approach is to test the initial research hypothesis of the simu-
lation study by means of statistical hypothesis tests, both null and alternative hy-
pothesis need to be derived from the goal of the study. Accordingly, the alternative
hypothesis describes the assumption that the model’s behavior will change under
the defined conditions while the null hypothesis assumes that any changes made to
the parametrization of the model or the model itself will not have any effect on the
model’s behavior, i.e., the model’s response. For defining a set of corresponding hy-
potheses, measures need to be defined first, which provide information that can be
used for assessing the response of the model. To verify phenomenological hypothe-
ses it has been argued that output variables or performance indicators seem to be
suitable measures.

Specification of Hypotheses on the Performance of Simulation Models

Performance indicators are goal-specific and usually not part of the outputs of a sim-
ulation model. Instead, output variables need to be mathematically combined to new
variables (target variables), which can then be used for assessing the performance
of the model. Referring to the manufacturing example introduced in this chapter, all
output variables that represent non-value-added times, i.e., waiting time, inspection
time, and move time, must be summed up and added to the processing time. The
result is the length of time that has passed from the start of a product’s production
until its completion. In logistics, this timespan is referred to as manufacturing cycle
time (MCT) and it is reasonable to label the resulting variable accordingly. As such
variables are created artificially with respect to assessing the performance of the
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model, but are not directly used as performance measures, they are termed interme-
diate variables (Barton, 2013). As a next step, the output value of the process time is
divided by the intermediate variable MCT to receive the target variable MCE, which
was defined as a performance indicator.

In the example provided here, the formulated question consists of a relative state-
ment regarding the behavior of the model, i.e., a 50% increase of the MCE in case
the number of machines is increased by two. For applying statistical hypotheses
tests, a test statistic has to be defined that summarizes the dataset. As the study’s
goal consists of the assessment of the MCE indicator, the central tendency (e.g., the
arithmetic mean) of the MCE’s distribution is a suitable test statistic. Consequently,
a possible pair of statistical experiment hypotheses can read as follows:

H0: If the number of machines increases from 3 to 5,
the mean MCE will not increase by more than 50%.

H1: If the number of machines increases from 3 to 5,
the mean MCE will increase by more than 50%.

To enable a systematical assistance of this process, the goal of the study in terms
of the resulting research hypothesis, the respective pair of experiment hypotheses,
and the process for deriving these hypotheses from the study’s goal need to be for-
mally specified. This allows for the systematic parametrization and evaluation of
simulation studies and thus also for the automated evaluation of the constructed
hypotheses. For the formal specification of hypotheses and with respect to their au-
tomated evaluation, three relevant components are identified.

Formally specified and statistically testable hypotheses on the behavior of models
in simulation studies must consist of three parts: the parametrization of the model,
information on the statistical hypothesis, and additional test constraints. This allows
for both the automated parametrization and evaluation of simulation studies as nec-
essary experiments are systematically derived from the hypothesis, resulting sim-
ulation runs are executed, and outputs are analyzed with suitable hypothesis tests.
In addition to this thesis, the presented approach for the formal specification and
automated verification of hypotheses in simulation studies was published by Lorig
et al. (2017a).

Figure 5.3 illustrates the structure of a formally specified experiment hypothesis.
The three parts of the hypothesis are linked in a way that the parametrization of
the model implies the hypothesis information and additional test constraints apply
globally. In the parametrization part, specific values or ranges of values are assigned
to the independent variables of the model. This approach presumes the closed world
assumption and thus demands either the explicit declaration of the input values or
the use of predefined standard values. Based on the parametrization of the model,
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Fig. 5.3: Structure of a experiment hypothesis in simulation studies.

detailed information on both null and alternative hypothesis is provided in the hy-
pothesis information part of the expression. In particular the expected behavior of
the model is defined here. Besides the definition of both a set of output or target
variables that serve as performance measures and a respective statistical measure,
which is used for determining the central tendency of the performance measures,
e.g., arithmetic mean, both null and corresponding alternative hypothesis are for-
mulated based on values or value ranges of performance measures. Finally, supe-
rior test constraints, e.g., significance level and sample size, must be stated. As the
proper definition of test constraints is challenging, assistance is provided for this
step of the simulation study as well. Approaches for assisting the definition of test
constraints are formally presented and integrated in the next chapter. Leaving out the
test constraints at first, the following expression illustrates how a formally specified
hypothesis could be stated in the context of the manufacturing example.

ParSet1(machines(5)) ^ ParSet2(machines(3)) ^ #
) µ1(MCE) ^ µ2(MCE) ^ (H0(µ1 �µ2  50%) _ H1((µ1 �µ2 > 50%))

The parametrization part of the formalized hypothesis consists of two distinct
parameter sets, ParSet1 and ParSet2. The increase of the mean MCE, as it is stated
in the pair of statistical experiment hypotheses, is not stated as absolute value but
relative to the increase of the number of machines. Consequently, two samples need
to be drawn with individual parametrizations of the model to enable the compar-
ison of the mean MCE before and after increasing the number of machines. The
samples only differ in the value of the factor machines and further specific factor
values are not stated in the experiment hypotheses. Thus, the ceteris paribus symbol
(#) is added to the parametrization part implying the use of standard values for all
remaining inputs.

As two sampled need to be compared in this example, the hypothesis information
part of the formally specified hypothesis must relate both samples to each other.
First, the feature must be defined to enable the execution of statistical hypothesis
tests. In this case, the arithmetic mean of the MCE measured for each of the two
parameter sets is defined as feature of the test (µ1 and µ2). Then, null and alternative
hypothesis (H0 and H1) are formulated such that the difference between the two
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mean values is calculated and a threshold is defined (µ1 � µ2). According to the
experiment hypotheses, the threshold is 50%. While the null hypothesis assumes
that the difference is less or equal to 50% (no effect) and the alternative hypothesis
assumes that the difference is greater than 50% (causality).

To enable the automated testing of experiment hypotheses, a gap needs to be
closed between the outputs that are provided by the model and the data that are
required to verify whether or not the hypothesis holds. Different approaches have
been proposed for the formal specification of dependent variables such as perfor-
mance measures, e.g., the use of MathML (Teran-Somohano et al., 2015). These
approaches as well as their advantages and shortcomings were discussed in Chap-
ter 3.

5.1.3 Design and Structural Decomposition of Experiments

As a next step, simulation experiments need to be conducted to generate outputs and
to test whether or not the experiment hypotheses hold (left side of Figure 5.1). Ac-
cording to the definition of simulation experiments that is provided in Section 4.2.2,
conducting experiments includes the systematic variation of the model’s inputs for
observing changes of the outputs. Design of Experiment is challenging, as decisions
need to be made regarding which input variables (factors) are altered and which
values are both relevant and feasible with respect to computational complexity and
coverage of the parameter space (Kleijnen et al., 2005). Furthermore, as the required
test statistic needs to be defined in advance, a suitable hypothesis test needs to be
selected at this stage (Montgomery, 2013). This also influences the design of the ex-
periments, as the experimentation process must be aligned with the hypothesis tests’
requirements to be able to observe and gather the values of the test statistic during
the experimentation process. For each resulting relevant parametrization, individual
simulation runs must be executed to obtain comprehensive and sound results.

In the example presented here, the simulation study consists of a single simula-
tion experiment with a corresponding set of experiment hypotheses. Based on this
pair of hypotheses, a two-sample test is required for testing whether or not the null
hypothesis holds. In the presented example, a two-sample t-test for normal popula-
tions and independent observations is suitable for testing the hypotheses (Lehmann
and Romano, 2005). Consequently, individual yet comparable samples need to be
drawn by means of simulation for each of the parameter sets, i.e., 3 and 5 machines.
This results in two major groups of simulation runs, those with a parametrization
of 3 machines and those who require that the number of machines is set to 5 as
part of the parametrization. For executing simulation runs, specific values need to
be assigned to all input variable, also the ones whose factor levels are not part of
the experiment hypothesis’ parametrization. This is challenging, as relevant factor
levels of the remaining input variables depend on the performance measure of the
study. Furthermore, for important factors, the execution of multiple simulation runs
with different factor levels is reasonable to fully assess the response surface of the
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model’s performance measure. Thus, important factors need to be identified among
the input variables as the variation of all factor’s levels is impracticable due to the
combinatorial explosion of the number of simulation runs. This limitation especially
applies for extensive and complex models with a large number of input factors.

The identification of relevant factors is challenging. As the importance of each
factor is relative and depends on the considered performance indicator, it is hardly
possible to determine such dependencies ex ante and without detailed knowledge
of the model’s mechanisms. Thus, the determination of important factors must be
performed individually for each performance measure. When identifying important
factors, two results can be expected. Either a small number of factors has a major
impact on the observed outputs or a great number of factors is of importance for
the observed behavior. The second case contradicts the idea of limiting the parame-
ter space in favor of the computational complexity of the simulation study. In case a
large number of factors is identified as having a strong influence on the outputs of the
model, the conclusiveness of such a model must be questioned as well. If the effect
cannot be attributed to a small number of factors, there is a reason to doubt the sim-
plicity and thus also the testability of the model and accordingly of the results that
were generated by it. In this case, the model’s suitability for the epistemologically
sound verification of phenomenological research hypotheses is inherently limited.
This scientific issue has also been discussed in the domain of simulation. Accord-
ing to the parsimony principle (Occam’s razor), the identification of a minor set of
factors that has a major impact on the performance measure is advisable (Kleijnen,
2015).

For this specific purpose, different factor screening approaches have been pro-
posed and improved during the last years (Morris, 2006), e.g., Morris method (Mor-
ris, 1991) or sequential bifurcation (Bettonvil and Kleijnen, 1996). Compared to the
Morris method, the advantage of sequential bifurcation is that it requires a smaller
number of simulation runs (Shi et al., 2016). All variations and extensions of sequen-
tial bifurcation, e.g., CSB, or CSB-X, provide promising and reliable approaches for
identifying important factors of a simulation model. They extend the initial approach
and take dependencies between input factors into account as well. Yet, each ap-
proach requires an individual set of conditions to be met by the model, e.g., whether
correlations between factors are allowed. Thus, and because of the advanced math-
ematical understanding, which is required for applying sequential bifurcation, it is
desirable to assist the selection and application of factor screening approaches in
simulation studies. Technically, sequential bifurcation pursues a divide and conquer
approach for identifying each factors effect on the simulation output by systemati-
cally altering the input factor levels (Bettonvil and Kleijnen, 1996). The results of
this approach can be visualized as tree where each layer is the result of splitting a
group of factors in two smaller groups (cf. Figure 5.4).

After identifying a set of factors that is of importance with respect to the study’s
performance measures, the systematic variation of suitable factor levels in terms of
individual simulation runs must be planned. To decrease both the number of required
simulation runs as well as the computational efforts, different factorial designs were
proposed in the design of experiments field, e.g., 2k factorial designs or latin hy-
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Fig. 5.4: Search tree of the sequential bifurcation factor screening.

percube designs. They systematically limit the amount of factor levels to be tested
by defining a subset of levels for each factor, which is applied to parametrize the
model for the simulation (Sanchez, 2007). In the example presented in this chapter
it seems promising to apply sequential bifurcation for identifying important factors.
Furthermore, the 2k factorial design seems well suited as both techniques use two
levels for each factor, i.e., a low and a high value. Each possible combination of
the identified factor levels results in a specific configurations of the model (design
point) and consequently defines an individual simulation run.

Finally, when performing the designed simulation runs, the impact stochastic in-
puts have on the variation of the simulation outputs needs to be taken into account.
By replicating simulation runs, i.e., executing a model multiple times with the exact
same parametrization, a larger sample is drawn. Accordingly, statistical measures
of dispersion can be applied, the variance can be quantified, and statements can
be made about the underlying population. To determine or estimate the number of
replications that is required to allow for a sufficient estimate of the performance
measure’s mean, different approaches exist. According to Hoad et al. (2007), these
include the rule of thumb, different graphical methods, and the utilization of confi-
dence interval with specified precision. Neither the rule of thumb, where the number
of required iterations is estimated based on experiences from previous studies and
without considering specific features of the model, nor graphical methods, where the
sufficiency of the number of iterations is determined by expert estimations based on
the smoothness of the plotted mean value, seem to be sufficiently reliable and re-
producible for the assistance of simulation studies. Thus, to assist and automate the
simulation process, an approach that is based on confidence intervals seems most
applicable. It depends least on the individual expertise of an analyst, makes use
of statistical inference, and thus can be algorithmically described based on a given
significance level (Lattner et al., 2011b).

Each simulation iteration that is derived from the same simulation run shares
the same parametrization but differs in the random number stream. The variation
of the random number stream is important to take into account all possible random
events that can take place in a probabilistic model when drawing a sample for hy-
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pothesis testing (L’Ecuyer, 1990). Seed values are used to initialize a pseudorandom
number generator at different positions of the random number stream. For drawing
representative samples, the seed value of each simulation iteration must be deter-
mined randomly. Yet, the seed values must still be recorded as they are required for
the replication of simulation iterations. When executing a simulation model with
both equal parametrization and equal random number stream, an exact replication
of the results is assumed. However, reproducibility of simulation is challenging due
to different aspects, e.g., human factors and technical issues as software bugs or
interferences with the operating system (Dalle, 2012).

For some types of models, simulation iterations can be divided into individual
simulation steps. An example are discrete-event simulations, where the states of the
model change at discrete points in time and a simulation clock keeps track of the
model’s current time. In contrast to real-world time progress, simulation time skips
periods where no events occur and instantly jumps forward to the point of time the
next event takes place (Fujimoto, 2000). Each simulated point in time is an individ-
ual step of the simulation. By this means, the implementation of time constraints that
are part of the study’s hypothesis is facilitated. This includes temporal termination
conditions or warm-up periods where approaches exist for the automated estimation
of the length (Hoad et al., 2010b). Furthermore, the simulation analyst as well as the
assistance system can keep track of the response variables’ progress over time.

5.1.4 Aggregation and Analysis of Outputs

After the simulation study has been fragmented into its structural components with
due regard to the study’s hypothesis, simulation runs and their respective iterations
are performed. For each iteration, the values of all output variables must be col-
lected and aggregated in a suitable and sound way (right side of Figure 5.1). This is
to allow for drawing conclusions and to confirm or disconfirm the assumptions of
the study (cf. Figure 4.11). Pitfalls which have to be considered when aggregating
outputs in simulation studies were presented and discussed in Section 4.2.3. They
address possible methodological uncertainties that may result in misinterpretations
of the simulation model’s behavior when summarizing and averaging observations
inappropriately.

Model outputs are generated on the lowest structural layer of a simulation study.
Depending on the type of model used during the study, the simulation’s progress
is either segmented and observable as time-discrete steps or occurs as one single
coherent step from the experimenter’s perspective. In case the model allows for
a stepwise execution, the current value of all output variables might be observed
after each step. This results in a time series of output values, which represent the
model’s response in the form of discrete steps. To obtain the aggregated response
of the model, these step-wise responses can either be averaged, with or without
taking into account the values generated during a specific warm-up period, or the
last value is chosen as it represents the final result of the simulation (Rossetti, 2016).
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When performing simulation studies with models that do not implement a step-
wise progress of time or do not allow for observing output values respectively, the
model’s response is defined by the simulation iteration’s output values.

Subsequently, each iteration’s responses must be aggregated with respect to the
assessment of the superior simulation run. The result of each simulation run de-
pends on and follows from the responses that were observed or determined in the
respective simulation iterations. As the simulation run is the structural layer of a
simulation study on which the specific parametrization of the model is defined, the
result of a simulation run provides information on how this parametrization affects
the model’s behavior. When utilizing probabilistic models for the verification of hy-
potheses, output values cannot be assessed individually as the stochastic variations
of the values do not allow for drawing conclusions on the underlying distribution
function. Instead, they need to be assessed under consideration of multiple output
values generated by the model or the underlying distribution of possible values.
Thus, it is not sufficient if the result of simulation runs only consist of a summarized
value. Instead, statistical measures of central tendency e.g., arithmetic mean or me-
dian, must be applied together with suitable measures for quantifying the dispersion
of the summarized data, e.g., standard deviation or interquartile range (Lehmann and
Romano, 2005). By this means, the result of a simulation run can be contextualized
as the variation of the underlying iterations is specified.

In the further process, the calculated results of the simulation runs are used for
verifying the experiment hypothesis that has initially been stated. After aggregat-
ing both the responses of all performed simulation iterations and the results of each
run, statistical hypothesis tests are applied to the data of each experiment to draw
respective conclusions. The aim is to statistically test the pair of hypotheses that
was defined at the beginning of the study based on the study’s goal and to prove or
disprove the respective hypotheses. The selection of an appropriate test has taken
place at an earlier stage of the process as the experiments have to be designed ac-
cordingly to ensure all samples that are required for performing the hypothesis test
are correctly drawn. After rejecting the null or alternative hypothesis based on the
results of the hypothesis test, the initial assumption or research question of the study
can be assessed or answered and the simulation study is completed. However, the
discoveries from the study will only gain significance when interpreted with respect
to the study’s explanatory framework, i.e., the scenario of the study. The interpre-
tation of the results takes place outside of the scope of the procedure model and is
performed by the user of the system (cf. Section 4.2.3).

5.1.5 Implications for the Assistance of Simulation Studies

To take into account the stated requirements and the three presented steps for the
verification of hypotheses, this section presented an integrated procedure model for
the conducting of Hypothesis-Driven Simulation Studies (cf. Figure 5.1). The aim
of this procedure model is to provide a frame for addressing the shortcomings that
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were identified in Section 4.2 to accomplish the requirements from Section 4.1. In
this regard, requirement 2 is addressed in particular by the proposed process. The
epistemological challenges that arise from Hypothesis-Driven Simulation Studies
are addressed by a systematic frame. Likewise, the methodical use of simulation as
research technique is facilitated as the process defines and guides the conduction of
studies. Epistemological demands are met in different ways. Potential functional ex-
planations for the model’s behavior can be tested if formulated as parametrizations
of the model, derived as set of important factors, or provided as part of the experi-
ments’ conclusions. Additionally, the process intends and promotes the systematical
investigation of the model under different scenarios. Due to the full integration of
all relevant structural components, different parametrizations that result from one or
many scenarios can be systematically applied to the model and the respective results
can be analyzed accordingly.

Furthermore, shortcomings that were identified in Section 4.2 can be overcome
with the aid of the presented procedure model. From a structural perspective, the
procedure model implements a multilayered architecture. Beginning with the sim-
ulation study itself and its guiding research question, a top-down-approach is pur-
sued to derive and specify all hierarchically subordinated structural components of
the study, i.e., experiments, runs, and iterations. Different purposes of simulation
can thus be represented by this approach as the required components can be derived
accordingly. Also the pitfalls that might occur during the aggregation of the model’s
responses can be weakened or eliminated by utilizing the process. Methodologi-
cal uncertainties that promote these pitfalls can be controlled through the presented
approach. Finally, the defined scenario serves as an explanatory framework of the
entire study and the research hypothesis is formulated based on the scenario. Thus,
methodological shortcomings can be addressed such that suitable steps existing pro-
cedure models for simulation can be individually identified, adjusted, and combined
with respect to specific hypothesis. This ensures that hypothesis testing in simula-
tion studies is performed in a targeted and reproducible manner.

The presented procedure model defines an extensive process. It consist of multi-
ple layers that are bidirectionally linked, transitions between the layers are defined
by a plurality of methods, and in each step the respective actions must be be planned
and executed with regard to the study’s research hypothesis. Numerous model- and
hypothesis-related questions have to be answered during the process and decisions
that might have epistemological consequences have to be made. In Section 4.1, it
was argued that experimenters, which meet important design decisions in simula-
tion studies, might unwillingly bias the results (Uhrmacher et al., 2016). To address
this issue, the development and provision of an assistance system seems reasonable
(Lattner, 2013).
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5.2 Logical Connection of Services

This section lays the foundations for the implementation of an assistance system.
The goal of this assistance system is to dynamically link, adjust, and apply existing
approaches and services to facilitate the conducting of Hypothesis-Driven Simula-
tion Studies. It covers all aspects of the proposed procedure model, starting from
the design and execution of relevant experiments to the analysis of the generated
outputs. Through this, the task of the experimenter is limited to the specification
of a research hypotheses in accordance with the study’s scenario and the interpre-
tation of the generated results. To achieve this, this section identifies relevant log-
ical components that are involved in the process of the study based on the process
model. Moreover, it outlines how each component contributes to the conducting of
Hypothesis-Driven Simulation Studies.

Figure 5.5 illustrates the identified logical components as well as their interac-
tions. The figure consists of two major parts: the left side it shows the steps of the
simulation study as it is conducted by the researcher who is using the assistance
system. The right side, in contrast, illustrates the flow of information into, within,
and out of the assistance system. Each rectangle represents a logical entity within
the process. On the side of the researcher, each rectangle is a step of the simulation
study, as defined by common procedure models (cf. Subsec 4.2.1). In the assistance
system, each rectangle describes an individual service that is required for the sys-
tematic design, execution, and conduction of the study’s experiments. The arrows
between the rectangles represent the unidirectional flow of information or data. The
arrowheads indicate the direction of the information flow and the shape of the ar-
rows, e.g., solid or dashed, expresses whether transitions are explicit or implicit. A
transition is implicit if the respective part of the process is accomplished by other
steps, which finally lead to the same result. Considering the illustrated process of the
researcher, the experimentation part of the study is marked as implicit. This empha-
sizes the aim of this thesis, where the user provides only a research question and an
executable model, the assistance system identifies, executes, and analyzes necessary
experiments, and the results are returned to the user of the system.

To outline how the components contribute to the implementation of the proposed
integrated procedure model, the process of Hypothesis-Driven Simulation Studies is
revisited, which was presented in Section 5.1. In contrast to the processual perspec-
tive that was chosen in the preceding section, the focus lies on the technical interac-
tions of the referred components. Still, an example applied here as well to improve
the understanding of the emerging system’s functionality. The following description
of a simulation study’s process emphasizes the contribution of each component as
well as the links between the components and the information which is exchanged
between the components. Each step of the study is considered, starting from the pro-
visioning of the simulation model, the experimental design as well as the conduction
of the experiments through to the evaluation and interpretation of the results.
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To adequately illustrate the use and procedure of the assistance system, a more
detailed and advanced example is required. Thus, to outline the entire process, a
more comprehensive model and respectively also a more sophisticated research
question are introduced. Furthermore, this subsection is not limited to the functional
introduction of the assistance system itself. It also presents how the assistance sys-
tem can be integrated into the user’s research process. For this purpose, the presented
use case covers the entire process of conducting a scientific simulation study, as it
was introduced in Section 4.2.2.

Simulation studies consist of an initial model building step. For this example, it is
assumed that the collection of data and the structural definition of a modeled system
as well as the implementation, verification, and validation of a computer program are
complete. Thus, in the initial situation of this example, the experimenter provides a
simulation model, which was implemented using a common simulation framework.

For consistency reasons, the model used as an example in this section describes
a manufacturing process as well. It models a production line where products are
manufactured on different machines or groups of machines, which are connected.
Machines are controlled by employees and a lack of employees results in delays
or even the idleness of the machines. In each stage of production, the products are
stored in machine-specific storages and are processed according to global queuing
disciplines. To quantify how the measured cycle time changes depending on the
number of employees that are part of the manufacturing process, it is assumed the
experimenter wants to conduct a simulation study.

In summary, a possible goal of the study can be formulated as follows:

The study aims to show that an increasing number of employees will result in
an increase of the MCE.

For enabling the systematic and computer-aided design and conducting of sim-
ulation experiments with respect to accomplish the study’s goal, a formal spec-
ification of the simulation model as well as its input and output variables is
required. This includes the formal description of inputs and outputs, i.e., label, ad-
missible values, and data type, as well as the initialization of the model by means
of the used simulation framework. Furthermore, minimum and recommended sys-
tem requirements for the execution of the model must be part of this specification
as well, e.g., operating system, number of processor cores, memory, or external li-
braries. Usually, detailed instructions on how to initialize and execute the model
are part of the documentation or the manual, yet, such documents lack machine-
readability. Information regarding the operation of the simulation model needs to
be systematically accessed by the developer of the model or a user that is at least
aware of how to parametrize, adjust, and execute the model. In this thesis, the pro-
vided simulation model is treated as a black box. Thus, it is not possible to apply
deductive approaches for automatically deriving information about inputs and out-
puts from the inner structure of the model, e.g., static model testing techniques like
structural analysis (Balci, 1998).
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To construct a machine-readable specification of the simulation model’s at-
tributes, the assistance system has to systematically question the user with respect
to the model. Here, the focus lies on the detailed description of the model’s input
and output variables. This includes but is not limited to the data type of the variable
as well as minimum, maximum, and standard values. Furthermore, this includes
technical details as the variables’ labels, which are used in the model and additional
command line parameters which are required to execute the model. As the model’s
internal labels for variables are often shortened and difficult to read, the definition
of self-explanatory labels as well as a short description of each variable’s purpose
are reasonable. A standardized language for the specification of a model’s inputs
and outputs can facilitate this step as necessary information can be provided along
with the model by the developer. After this step, the assistance system can make use
of the formal specification of the simulation model for providing a model-specific
guidance of the user through the process of the simulation study and for automating
or semi-automating the execution of each process step.

In this thesis, simulation studies are applied to answer research hypotheses. Thus,
as a first step after formally specifying the model, the research hypothesis needs to
be defined based on the study’s goal and must be formally specified as well. Sta-
tistically, a hypothesis consists of an assumption about the probability distribution
of a variable under specific conditions. Transferred to simulation, a hypothesis is an
assumption on the distribution of an output or target variable under a specific set
of input variables. Considering the presented example, a possible hypothesis which
corresponds to the goal of the study reads as follows:

If the input variable representing the number of employees is increased by 10
units and the input variable representing the order queuing discipline is set
to FIFO, the assumption is that the value of the performance indicator MCE
increases by at least 20%.

Performance indicators or target variables are not initially part of the simulation
model. They are calculated or derived from output variables and serve as individual
performance measures for evaluating the behavior of a simulation model. Conse-
quently, after formally specifying the input and output variables of the simulation
model, the specification of the performance measures that are used for formu-
lating the hypothesis is an important step. In this step, the experimenter must be
provided with a list of the model’s output variables and needs to logically and math-
ematically define or construct the required performance measures. Intuitively, when
formulating hypotheses, it can be assumed that the input variables (Explanans) must
be defined prior to the specification of the assumption about the output variables
(Explanandum). This is not reasonable in simulation studies. The Explanandum has
to logically result from the Explanans by means of deduction to make a reliable
statement. Hence, with respect to the formulation of a testable and sound research
hypothesis, it is necessary to assess whether or not it is feasible to draw conclusions
from specific input variables about the chosen performance measure.
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Certainly when dealing with complex models that provide a large number of
input variables, the process of testing which input variables influence which output
variables or performance measures is challenging and cannot be executed for all
possible combinations of inputs and outputs (Kleijnen, 2015). Instead, it seems more
promising to first define a performance measure of interest and to use approaches
for identifying important factors of this specific performance measure afterwards.

The identification of important factors is conducted based on the performance
measure that was defined or selected in the previous step. By executing a set of sim-
ulation runs where the values of the input variables are systematically changed, it
can be determined which input variables influence the selected performance mea-
sure (Kleijnen, 2005a). For this purpose, metamodels are used as an approximation
of the input-output-behavior of simulation models. As a full coverage of all pos-
sible values of input variables is too extensive, factorial designs are used here to
reduce the computational effort (Sanchez and Lucas, 2002). If available, informa-
tion regarding factor levels that are expected to result in low and high outputs may
be provided by the user and applied here.

After both the performance measure of interest and the respective important input
variables were identified, the formal specification of the research hypothesis can
be conducted. This is required, as design as well as conducting and evaluating the
simulation experiments is assisted with respect to answering the hypothesis. Thus,
a formal representation of the hypothesis is required for planning and adjusting the
process of the simulation study. To specify the experiment hypothesis, the experi-
menter must be provided with an overview of all input, output, and target variables
that were defined up to this point. For the specification of the parametrization part of
the hypothesis, each of the model’s input variables may be assigned a specific value.
However, the use of important factors is recommended here and input variables that
were not shown to be important regarding the selected performance measure should
be avoided. This reduces the complexity of the study as only parametrizations that
are likely of relevance are evaluated. The expressiveness and efficiency of the sim-
ulation study can be increased by the assisted construction of the hypothesis as the
design and conduction of promising runs is facilitated.

To test the specified experiment hypothesis, a suitable statistical hypothesis test
must be identified. Even though data for the test was not generated yet, the selection
of a hypothesis test is important at this point of the process. There exists a large
number of different hypothesis tests which can be differentiated by various criteria,
e.g., parametric or non-parametric tests, dependency of the samples, and one- or
two-sided tests (Freedman et al., 2007). As each test requires specific preconditions
for its application, the assistance system must pursue and ensure the fulfillment of
these requirements. In particular the extent and number of required samples affect
the specification of simulation experiments. Therefore, the selection of an appropri-
ate hypothesis test takes place before the design of experiments.

After the hypothesis was formally specified and a suitable test was selected, the
experiments of the simulation study must be designed. The experimental design
defines the combinations of values that are simulated for each input variable. This
is challenging, as extensive hypotheses with a large number of factors might result
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in an combinatorial explosion of possible parametrizations. In addition to full fac-
torial designs, where all possible combinations of values for each input variable are
simulated, there are experimental designs that try to minimize the complexity. Such
fractional factorial designs derive a subset of parametrizations from all possible
parametrizations following a specific pattern (Sanchez and Wan, 2012). As part of
the assistance system, experimental designs have to ensure that all factors that influ-
ence a specific performance measure are considered and that a set of factor values
is chosen to cover the relevant parts of the parameter space.

The experimenter is encouraged to specify the hypothesis by using factors that
were identified as important with respect to the defined performance measure. How-
ever, he or she might refuse to do so, which does not decrease the quality of the hy-
pothesis but affects the further procedure. In case input variables that were classified
as important are not included in the hypothesis, they still need to be considered by
the experimental design. This is to ensure that all relevant simulation runs are con-
ducted that are required to answer the hypothesis by taking into account the effect
these factors have on the model’s behavior. When lacking alternative approaches,
low and high values of each input variable that were specified during the model
description phase can be applied. Yet, more sophisticated factorial designs are also
possible (Kleijnen, 2005a).

When performing experiments with probabilistic models, the number of neces-
sary replications needs to be determined for each run that was defined during the
design of experiment step. Due to the randomness of the model’s behavior, formu-
las for calculating a statistically sufficient number of replications in advance do not
exist. Instead, different techniques were proposed to estimate the number of repli-
cations based on the observed behavior. Besides expert estimations, which are not
viable in an semi-automated assistance system, statistical approaches that make use
of confidence intervals were proposed. The estimated replication count defines how
many simulation iterations are required for each simulation run. Most approaches
that can be utilized for a replication estimation require the sample to be normally
distributed, which must be tested first.

As a next step, all specified simulation runs and their respective iterations need to
be processed to executable and queueable simulation tasks that contain all necessary
information for the execution of the simulation model. The specification of simula-
tion iterations as individual tasks enables the parallel but also unsupervised and
time-independent execution. For one thing, a central simulation (task) queue can
be used for storing tasks and sorting them based on established queuing disciplines
or other priority rules. For another thing, simulation tasks can be distributed to dif-
ferent servers where the actual simulation is conducted. This enables an efficient
utilization of available hardware as task generation and conduction are decoupled.
By this means, a dynamic distribution to suitable hardware is facilitated and paral-
lelization of simulation runs and iterations is enabled. For example at night or on
the weekend, when servers and other IT hardware are less or not at all occupied and
have free capacities, simulation tasks can be taken from the central queue which
allows for an even utilization of available hardware.
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Even though the queuing of simulation tasks takes place centrally, the conduct-
ing of simulation is performed in a decentralized manner. For this reason, each
simulation task contains all necessary information for the execution of the respec-
tive run or iteration. This includes the file, archive, or link to the executable simu-
lation model as well as a specification of the model itself in terms of its input and
output variables including performance measures. Additionally, the parametrization
of the simulation run and necessary technical details are provided, e.g., commands
for stating the simulation, if required the paths of input files, and break conditions
in case the simulation does not terminate.

Available hardware for executing simulation runs usually varies in the provided
computing capacity, e.g., number of processor cores or available memory, but also
simulation models impose different requirements, e.g., minimal number of CPUs for
parallelization or minimal amount of RAM. Still, neither a full utilization of all CPU
cores that are provided by the hardware, e.g., due to the application of single-thread
simulation frameworks like MASON, nor the demand of a large amount of memory
can be observed for many simulation runs (Lorig et al., 2015). Consequently, a need-
based assignment of hardware and simulation tasks seems reasonable to achieve an
adequate utilization of the available servers.

Finally, after all necessary simulation runs and iterations for answering the ini-
tially stated hypothesis have been conducted, the outputs of all runs need to be
collected, centrally aggregated, and evaluated. The evaluation of the results is per-
formed by means of the statistical hypothesis test, which has been selected in ad-
vance. For this purpose, data cleansing needs to be performed to exclude sets of
inaccurate, inplausible, or missing output data (outliers) from the statistical analy-
sis. However, excluded samples must be documented properly to allow for the re-
production of the results. Afterwards, the selected hypothesis test is applied to the
cleansed data set and the user of the assistance system is provided the hypothesis
testing results, i.e., whether or not the experiment hypothesis needs to be rejected
based on the outcome of the hypothesis test. Additionally to this, a detailed docu-
mentation of all steps and decisions as well as applied approaches and techniques
within the process of the simulation study is generated and provided.

5.3 Abstract Architecture of an Assistance System

To implement and facilitate the logical connection of services, this section proposes
an abstract architecture for a software system that assists and partially automates
the conducting of Hypothesis-Driven Simulation Studies. For the application of the
presented procedure model, a variety of different services and methods must be
adapted, executed, and coordinated. To relieve the simulation user of these tasks and
to facilitate conducting a study, the development of an assistance systems seems rea-
sonable. In this regard, the introduced procedure models provides the methodolog-
ical frame of the assistance system and the outlined logical components represent
the entities that must be coordinated by the system.
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Fig. 5.6: Abstract architecture of the simulation experiment assistance.

The abstract architecture of the assistance system consists of three major com-
ponents: simulation operators, simulation hardware, and the simulation experiment
assistance. Each of these components consists of multiple entities such as services,
methods, or actors which can be human or virtual entities. This section outlines
the tasks and responsibilities of each of the three components and illustrate how
they control each other. Moreover, it presents the entities that are dedicated to each
component and outlines their interactions with other entities within the same com-
ponents or between different components. To this end, this thesis focuses on the
specification of the simulation experiment assistance to support the procedure of
the study. Thus, the design of both the interface agent of the operator as well as
the technical utilization of simulation hardware are presented and discussed on a
conceptual level.

The simulation experiment assistance is the key feature of the assistance system
and of this thesis. It combines and controls all simulation services that were intro-
duced in this chapter. This includes services for the design, execution, and analysis
of simulation experiments that are required to conduct Hypothesis-Driven Simula-
tion Studies. In the proposed architecture (cf. Figure 5.6), these three components
represent all services and methods that are related to the respective step of the study.
For instance, the design component comprises services that are required for factor
screening or the application of experimental designs.

Besides this, a documentation service and a simulation executor service are pro-
posed in the architecture as part of the simulation services. The documentation ser-
vice receives data from the design, execution, and analysis services. This allows for
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the reproduction of each step and decision that was made during the assistance of
the study. Moreover, intermediate data and final results of the simulation are stored
and can be used for further analysis. The simulation executor provides an interface
for the connection of external simulation hardware. As the execution of simula-
tion runs often requires technically sophisticated hardware, specific requirements
are made regarding the number of CPU cores or the RAM capacity. To efficiently
utilize this server hardware and to execute the simulation model, simulation frame-
works are used. These frameworks serve as an execution layer between the server
and the model.

As a high number of different simulation frameworks exists, the execution of
the model must be planned with due regard to specific features or restrictions of
the used framework. This contrasts with the concept of a general simulation ex-
periment assistance. Thus, it is necessary to decouple the simulation experiment
assistance from specific hardware and software requirements of the model or the
framework. Instead of accessing and operating the simulation framework directly
from the simulation executor, the proposed architecture suggests the use of a simula-
tion framework wrapper. The wrapper is a framework-specific service that converts
instructions and data from the simulation executor into commands and formats that
can be processed by the framework. Hence, an individual wrapper service must be
developed for each framework that shall be supported by the assistance system.

Finally, to manage all services that contribute to the study, the simulation ex-
periment assistance requires a central coordinator. Instead of fully connecting all
services of the simulation experiment assistance, this section proposes the imple-
mentation of a central unit that is in charge of the management of the study. Each
service is connected to the coordinator, receives tasks from it, and returns the re-
sults back to it. This design decision allows the knowledge base of the experiment
assistance to be maintained by the coordinator. It includes information on the pro-
cedure of the simulation study such as the order of the steps as well as guidelines or
instructions for the adaptation, execution, and assessment of data generated during
the steps.

The coordinator is also the only service of the simulation experiment assistance
that provides an interface for the simulation operators. Accordingly, simulation tasks
that are submitted to the system are taken by the coordinator. It is feasible to design
the coordinator as intended by the mediator design pattern (cf. Figure 5.7), which
intends the encapsulation of interactions between other objects, in this case, of the
simulation services (Gamma, 1995). In this regard, the coordinator takes the role
of the mediator which coordinates the communication between multiple colleague
objects, e.g., the services for the design, execution, and analysis of the experiments.
For this purpose, each colleague object is aware of its mediator and communication
which usually directly occurs between colleague objects takes place with the me-
diator instead. The mediator then routes requests of the colleague objects between
them. By applying the mediator design pattern, the colleague classes are decoupled,
the interactions are simplified, and the control of the system is centralized. A sim-
ilar approach is used in the architecture of the simulation experiment management
system presented by Teran-Somohano et al. (2015).
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Fig. 5.7: Structure of the mediator design pattern (Gamma, 1995).

A differentiation can be made between two types of operators that interact with
the coordinator of the experiment assistance. To maintain the knowledge base of the
coordinator, detailed information on the procedure of the study must be provided
by a simulation expert. In this thesis, the proposed procedure model contains this
process knowledge as it determines the order of the study’s steps. Moreover, the
knowledge base must also include information on the logical connections of the
services as well as of the interfaces of each service. The proposed architecture is
inspired by expert systems from Artificial Intelligence. Thus, reasoning algorithms
can be applied to the knowledge base to determine a specific sequence of actions to
verify a hypothesis by means of simulation experiments.

A study is initiated by a simulation user (experimenter) who might be inexperi-
enced in conducting simulation studies or who might want to reduce its effort. Thus,
the provision of a user-centered assistance seems reasonable here. The required as-
sistance corresponds to the interface agent concept introduced by Maes (1994).
Here, specific tasks are delegated to a virtual representative (agent) which then
solves these tasks independently. Initially, the agent is provided with a minimum
of background knowledge on conducting simulation studies. It then autonomously
acquires further knowledge that is required to solve specific tasks.

Four sources are available for the acquisition of additional knowledge and for the
learning of further competences (cf. Figure 5.8): First, interface agents can directly
learn from the user of the system and imitate its behavior when controlling the
application or system. Especially when observing the user’s actions over a longer
period of time, recurring behavior pattern can be identified and adapted by the agent.
Second, the user can provide the agent with feedback on its actions and inform the
agent to omit certain actions. This feedback can also be given indirectly in case
the user does not follow the suggestions of the agent. Third, the agent can learn new
behavior from examples given by the user. In these examples, the user might suggest
suitable actions for certain situations. Finally, if multiple interface agents exist, one
agent can ask other agents for assistance.

In summary, for the conceptualization of the simulation experiment assistance, a
decentralized architecture seems suitable such that functionalities are provided by
independent services. The use of decentralized services enables the development of
a highly dynamic system. First, the same functionality can be provided by one or
more different services ensuring a permanent supply of the service, e.g., in case of
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Fig. 5.8: Different ways of learning by an interface agent (Maes, 1994).

system failures or increased demand. For implementing a specific service, different
approaches might exist, e.g., the estimation of the number of replications can be
based on confidence intervals or be performed graphically. Even though both ap-
proaches lead to suitable results, users of the assistance system might have different
preferences regarding which implementation of the service should be used. Like-
wise, specific disciplines or research areas might require the use of certain services
for the verification of knowledge.

The implementation of these functionalities as individual services has further
benefits. On the one hand, the services do not have to be centrally provided. Instead,
anyone may contribute to such an assistance system by developing webservices ac-
cording to predefined requirements, e.g., interfaces, datatypes, or namespaces. This
also allows the provider to host the service itself and keep the algorithms closed
source. On the other hand, it improves the flexibility and adaptability of the assis-
tance system. The process of simulation studies is model-driven, highly individual,
and not standardized. Thus, the selection and order of services to perform a simula-
tion study varies and flexible approaches are required. Web services are not statically
connected but can be dynamically combined and recombined to an extensive pro-
cess. To achieve this, the interface of each type of web service needs to be defined,
i.e., what type and quantity of data is expected and returned by the web service,
such that an exchange of data between the services is enabled and the development
of new compatible services is facilitated.

5.4 Conclusions

The goal of this chapter was the presentation of an integrated procedure model
for the conducting of Hypothesis-Driven Simulation Studies. The model addresses
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shortcomings in current procedure models for simulation study and allows for the
systematic integration and verification of hypotheses by means of simulation exper-
iments. Based on the scenario of the study, which provides the context of the study,
a testable hypothesis is formalized on the behavior of a model. In the course of the
study, relevant simulation experiments, runs, and iterations are derived with respect
to the stated hypothesis and to provide evidence for or against its validity. The re-
sponses of the iterations, runs, and experiments are then aggregated so that statistical
hypotheses tests can be applied. By this means, the experimenter is guided through
the process of the study and the initial hypothesis can be confirmed or refuted in a
replicable and reproducible way.

Useful approaches and methods exist that implement most functionalities that are
presented and aligned in the procedure model. Yet, the main challenge is to identify,
adapt, and combine functionalities that are required to conduct Hypothesis-Driven
Simulation Studies. To this end, this chapter not only identifies relevant logical com-
ponents but also logically links them in terms of the procedure model. The result is
a sequence of steps that can be practically executed to answer hypothesis by means
of simulation experiments.

To answer a hypothesis, it might be necessary to execute a large number of ex-
periments to cover the relevant parameter space. Moreover, with respect to the sta-
tistical reliability of the generated results, the execution of a sufficient number of
replications must be ensured. For the operator, this results in monotonous and repet-
itive tasks that need to be carried out with adequate care. To support the work of
an operator, this chapter finally presented an abstract architecture for the develop-
ment of an assistance system. To this end, the proposed procedure model and the
logical connection of the required components provide a theoretical frame for the
automation of the process of conducting Hypothesis-Driven Simulation Studies.

With respect to the implementation of such an assistance system, the logical con-
nection of the services is not sufficient. Instead of considering each service as a
black box, the mechanics of the services must be specified. This also includes the
specification of information that is required by each service and information that is
provided by each service. Based on these specifications, it can be assessed whether
existing services are applicable for the assistance of the study’s process. Further-
more, the specification enables the identification of shortcomings of existing func-
tionalities so that they can be adapted or extended.



Chapter 6
Services for the Assistance of Simulation Studies

This thesis presents a methodology for the conducting of Hypothesis-Driven Sim-
ulation Studies. Unlike existing procedure models for simulation studies, the pre-
sented process fully integrates the study’s goal as a specific research hypothesis on
the behavior of the model. By this means, all important steps of the study are aligned
with the research question, in order to answer it in a sound and reproducible way.
When conducting studies in accordance with the procedure model, the experimenter
is still in charge of the process management which might unwillingly result in ex-
perimenter bias. To avoid this and to assist the application of the procedure model
as well as conducting simulation studies, the development of an assistance system
is reasonable. Yilmaz et al. (2014, p. 2798) emphasize that

“the provision of such automated tools will help to improve the state of the art in practice
in replicability of models and reproducibility of simulation experiments”.

With the aim of facilitating the conducting of Hypothesis-Driven Simulation
Studies, an abstract architecture for the implementation of an assistance system was
proposed in the previous chapter. The architecture requires the combination of dif-
ferent methods and techniques to provide a comprehensive assistance of the entire
process of the study. To facilitate the selection of appropriate components, this chap-
ter formally specifies all logical entities that are required for assisting the scientific
process of knowledge generation in simulation studies (cf. Figure 5.5). To this end,
this chapter specifies the interfaces of these components, i.e., mandatory inputs and
returned outputs. Moreover, it defines the task that is expected from each entity and
how this task contributes to the overall goal of the assistance.

Aligned in accordance with the abstract architecture, these components form
a distributed system that serves as a platform for the systematic verification of
phenomenological hypotheses. Rather than developing a new simulation system
or framework, the presented specification and combination of simulation services
forms an assistance, which operates in accordance with a simulation system instead
of replacing it. In this regard, the assistance consists of the logical combination of
methods and techniques. This is challenging, as a large number of potential ap-
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proaches exist that must be selected and joined up depending on the hypothesis to
be tested.

The selection of services that is introduced in this chapter is based on the require-
ments of the proposed procedure model. Most services can be assigned to a specific
step of the study, i.e., the design, execution, or analysis of experiments. These ser-
vices are not directly accessed or operated by the user of the assistance. In contrast
to this, the simulation model as well as the research hypothesis are components of
the assistance that are provided and defined by the experimenter. As other services
rely on the model and the hypothesis, these two components are specified first. The
remaining services are then introduced and formally specified according to the steps
of simulation studies which are assisted by the respective services. They are intro-
duced ordered by their utilization in the three major steps of simulation studies that
are assisted by the proposed system: design of experiments, conduction of experi-
ments, and analysis of experiments. Finally, conclusions for the implementation of
the resulting assistance system are discussed in the last section of this chapter.

6.1 Simulation Model

To assist Hypothesis-Driven Simulation Studies, the simulation model must be exe-
cuted as specified by the process proposed in Section 5.1. Thus, the assistance sys-
tem must, among other things, systematically identify important factors, apply dif-
ferent parametrizations, run simulations, and aggregate as well as interpret results
for assessing the model’s behavior under certain conditions. To minimize experi-
menter bias in this process, both control of and decision-making within the process
are the primary responsibility of the assistance introduced in this chapter. For this
purpose, the assistance must be capable of perceiving and operating the simulation
model. The specification of a simulation model that is presented here includes the
inputs and outputs of the model, the execution function for generating the model’s
behavior, and metadata that describe the model.

Simulation models are computer-based representations of theoretical models of
real-world systems (Vincent, 1998). According to Maria (1997), a simulation model
consist of four components: system entities, input variables, performance measures,
as well as functional relationships. This thesis pursues a black box approach where
the inner states and mechanisms of the model are not accessible or considered. Thus,
the model is only defined by its input-output-behavior instead of its inner states
(cf. Figure 6.1). For the human user of the simulation model, relevant information on
the model itself as well as on its operation are part of the respective documentation.
Such documents are written in natural language and usually do not follow a general
standard. Thus, it is not feasible to automatically interpret model documentations for
identifying the model’s interfaces or controls and a formal specification is required.

In this section, all components are presented that are required for the black box
specification of a simulation model. Besides metadata that describe the model, this
section specifies inputs and outputs as essential components of a simulation model.
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Fig. 6.1: Black box representation of a simulation model (Zeigler et al., 2000).

6.1.1 Model Metadata

To allow for the replicable conduction of simulation experiments and for the repro-
duction of results, it is not sufficient to store detailed information on the experi-
mentation process, e.g., parametrizations and results. A detailed description of the
utilized model needs to be documented as well. In this subsection, such information
is referred to as metadata of the model. As simulation is used in various disciplines,
it is challenging to define a general standard for model and experiment metadata.
In the following, different definitions and perspectives on model metadata are pre-
sented and discussed to specify required metadata for the assistance.

Meléndez-Colom (2001) discussed the challenge of a model metadata standard
from an ecology perspective. She examined both computer models and ecological
models and identified seven common metadata elements: identifiers, responsible
parties, descriptors, access or availability, metadata source, variable description,
and literature.

Table 6.1: Common metadata elements of simulation models (Meléndez-Colom,
2001).

Common category
of element definition

Specific corresponding element definitions

Identifiers Model long name or ID, model short name or acronym
Responsible parties Model creator or author, metadata creator, contact person, institu-

tion
Descriptors Keywords, temporal coverage, geographic coverage, cross refer-

ence to other datasets or models, additional information source
Access or availability Constraints, availability, ordering procedures, costs, software re-

quirements
Metadata source Metadata related information
Variable description Name, acronym, definition, max and min values, range, units, data

type
Literature Title, year, journal or publisher, pages, volume, issue, editor, ISBN,

ISSN, URL
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Typical identifiers for simulation models are the model’s name or any other ID
code. As models are advanced and extended over time, multiple versions of the
same model might exist with the same name. Hence, the version number seems to
be suitable metadata, too, assuming that the combination of model name or ID and
version number serves as an unique identifier. By this means, other researchers are
able to relate to the specific model which was used during the simulation study.

The development of simulation models is an extensive process and the docu-
mentation of the model creation might be incomplete, incomprehensible, or non-
existent. Thus, when utilizing models of other researchers, contact information of
the responsible developer are valuable. This includes the name and affiliation of
the contact person, postal or e-mail address, and even a phone number. As many
models are developed in an academic context, keeping such information up to date
is challenging due to changes of the employer, PhD students leaving academia, or
retirement (Himmelspach, 2007).

To facilitate the usage of a model, a description of the model should be provided
by the developer. Similar to scientific publications, feasible means are an abstract
and a list of keywords. This allows for a first classification of the model’s subject
or purpose. Additionally, it is reasonable to provide the scope of the model, related
models or datasets, and further information.

Another major issue is the permanent availability of the model, which is related
to the challenge of up-to-date contact information. Often, models are provided as
download via the website of the researcher’s institution. In this case, the model’s
availability cannot be guaranteed when the researcher leaves the institution. For this
reason, repositories for collection and long-term archiving of simulation models
are founded and developed, e.g., OpenABM1 (Janssen et al., 2008) or AnyLogic
Cloud2. Other information that is related to access and availability of the model is
more technical. This includes software and hardware requirements, restrictions of
the operating system, and specific expertise which is required for controlling and
executing the model.

Remaining information, the source of the metadata, the description of the model’s
variables, and respective literature, are not discussed in this subsection. The meta-
data source includes technical information regarding name, version, and date of the
metadata. However, this information is not relevant during this phase of the ap-
proaches specification. In contrast, the description of the model’s variables is highly
relevant and thus is subject to the following two subsections. Finally, the literature
might well be part of the description of the models which was already presented.

The presented common metadata elements are the result of a domain-specific
analysis of requirements. In accordance with the model repositories that were in-
troduced for long-term archiving models, frameworks and repositories also require
the user to provide metadata. In the following, three environments are introduced:
a simulation framework (Simulink3; Angermann et al., 2007), a framework that

1
https://www.comses.net/codebases/ [Retrieved Jun. 2018]

2
https://cloud.anylogic.com/ [Retrieved Jun. 2018]

3
https://de.mathworks.com/products/simulink.html [Retrieved Jun. 2018]

https://www.comses.net/codebases/
https://cloud.anylogic.com/
https://de.mathworks.com/products/simulink.html
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also provides an own repository for models (NetLogo; Tisue and Wilensky, 2004),
and a framework-independent online repository for agent-based simulation models
(OpenABM4; Janssen et al., 2008).

Simulink is closely related to MATLAB and enables the simulation of dynamic
systems, which are modeled as block diagrams. For each simulation, Simulink pro-
vides the user with a metadata object that consists of five properties: model, exe-
cution, and timing information as well as two user-defined fields for single string
or arrays of data. While the latter two properties are empty by default, the simu-
lation framework collects relevant model, execution, and timing information dur-
ing the simulation. Model information consists of general information such as the
model’s name, version, and path. It also includes information on the used simulation
framework, operating system, and Simulink version as well as simulation specific
information such as the start and stop time of the simulation. Execution information
can be used for debugging simulation runs. It contains information on the reason
why the simulation stopped and provides detailed insights into diagnostics. Finally,
times which were measures during the simulation, e.g., initialization, execution, and
termination time, as well as the wall clock time are stored as timing information.
Considering the metadata described by Meléndez-Colom (2001), only the collected
model information corresponds to what was described as model metadata.

In NetLogo, the concept of metadata is more prosaic. According to the official
documentation of NetLogo, the info section of the model shall provide an introduc-
tion to the model. However, there are no mandatory fields which have to be specified
by the developer. In Version 6.0, newly created models provide nine headings and
the developer is recommended to provide sufficient information for each section.
Yet, the developer might change the headings or even delete them without replace-
ment. The default headings address general model information such as what the
models is trying to show or explain, how the model works, how it can be used, what
the user should notice or try when conducting experiments, how the model can be
extended, and specific NetLogo features that are utilized by the model. Furthermore,
the developer is asked to refer to related models and provide credits and necessary
references. Due to the lack of structured information, searching the associated Mod-
elingCommons repository5 for models is difficult and only possible by the model’s
name, optional tags, or free text search.

The OpenABM repository provides more structured and detailed information on
each model. Besides name, affiliation, and contact information on the developer,
the repository provides a description of the model’s purpose and keywords as well
as publications associated with the model. Furthermore, technical information is
provided, e.g., platform (framework), programming language, operating system, and
instructions how to run the model. Finally, all required model files (code, docs, and
other files) are provided as well as all available versions of the model. In contrast
to the NetLogo repository, metadata of OpenABM models is more detailed and

4 As of mid-2018, the OpenABM repository has become part of the CoMSES Net Computational
Model Library. As a result of this, the repository is no longer limited to agent-based models and
consists of different computational models of social and ecological systems.
5
http://modelingcommons.org/ [Retrieved Jun. 2018]

http://modelingcommons.org/
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structured. Furthermore, it corresponds to the common metadata elements presented
by Meléndez-Colom (2001).

Other approaches like the model description language (MDL) have the goal of
sharing knowledge by facilitating and unifying the understanding of models (Smith
et al., 2017). The structure of MDL consists of multiple objects which define model,
parameters, data, and task properties (cf. Figure 6.2). For particular tasks, which
includes simulation studies, the MOG object (Modeling Objects Group) is used to
specify all objects required for this task. In terms of the model’s meta-information,
only the MOG object is of relevance. The other objects are used to describe specific
information which are relevant during experimentation. Similar to NetLogo, only a
brief set of information is provided by the MOG object which includes the model’s
name and the problem statement. In summary, even dedicated model description
languages do not provide comprehensive meta information on the model itself and
focus on the description of experiments instead.
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Fig. 6.2: Objects of the Model Description Language (Smith et al., 2017).

The aim of the proposed assistance is to enable and improve the reliable and
replicable conducting of simulation studies. For this purpose, a thorough and con-
sistent meta description of the simulation model is essential. On the one hand, the
name of the model is not sufficient for the unambiguous identification of simulation
models. A combination of name, version, and platform of the model together with
detailed information on the developer of the model is required to describe which
model was used for a particular simulation study. On the other hand, for storing and
managing the results of simulation studies in a suitable repository, detailed informa-
tion is required for comfortably searching for simulation models and studies and for
enabling reutilization and reproduction.
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ModelMetadata = { Identi f ier,
Responsibility,
Description,
Requirements,
Files }

Identi f ier = { Model Name,
ID (URI),
Date of Creation,
Version,
Citation,
Initial Model (URI) }

Responsibility = { Full Name,
Mail Address,
Postal Address,
Affiliation,
Phone }

Fig. 6.3: Specification of simulation model metadata (part 1).

Definition 6.1 (Model Metadata).
Model metadata provides basic information for the identification and descrip-
tion of a simulation model. This includes a unique Identifier of the model, in-
formation on the developer of the model (Responsibility), a Description of the
model, as well as Requirements and Files for the execution of the model.

Based on the presented perspectives on model metadata, the specification pro-
posed in this thesis consists of five objects: Identifier, Responsibility, Description,
Requirements, and Files (cf. Figures 6.3 and 6.4 as well as Definition 6.1). The iden-
tifier provides all information required for the ambiguous identification of a simula-
tion model. Furthermore, in case a model is the result of an advancement of another
model, a reference to this model should be provided. The responsibility object con-
tains detailed information on the person who is or was in charge of the model’s
development and who accordingly can answer questions regarding the model. The
description of the model consists of a brief abstract on the model’s purpose and re-
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Description = { Abstract,
Keywords,
Related Work,
Related Models,
Instructions }

Requirements = { Framework,
Operating System,

Programming Language,
Software Requirements,
Hardware Requirements,
Expertise }

Files = { Model Files,
Data Files,
Documentation Files,
Additional Files }

Fig. 6.4: Specification of simulation model metadata (part 2).

spective keywords but also refers to related work or related models. Additionally,
instructions on how to utilize and execute the model are given. For the execution
of the model, requirements apply and specific expertise might be assumed. If used,
the framework the model was developed in, for instance, NetLogo or Repast Sym-
phony, but also requirements with respect to the operating system, programming
language and other software and hardware requirements are summarized here. Fi-
nally, files that are required for the execution of the model must be provided. Besides
the model files itself, input data files but also the developers documentation files are
part of this.

6.1.2 Input Variables and Parameters

Two major components that define a model are its inputs and outputs. They are
essential for generating and analyzing the model’s behavior. The inputs influence
the behavior of the model as they affect the states as well as the transition of states
within the model. In the approach presented in this thesis, these dynamics are not
directly observable as the model is a black box and its inner operations and processes
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cannot be viewed during runtime. Still, outputs allow for detailed insights and enable
the observation of the model’s behavior retrospectively, i.e., after the execution of
the model or of a single simulation step. This subsection specifies the inputs of a
model (cf. Figure 6.6) while the following subsection defines the outputs.

Inputs of a simulation model represent exogenous factors that independently af-
fect the model’s behavior (Banks, 2014). As they are not influenced by or dependent
on other factors, they need to be defined and their values need to be set before the
execution of the model. Inputs can be divided into input variables and parameters
(cf. Figure 6.5).
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Fig. 6.5: Differentiation of model inputs into input variables and parameters.

Input variables represent changing inputs of the model whose values depend on
probability distributions. Their purpose is to represent external factors that physi-
cally or logically affect the model, e.g., the arrival of orders in a factory. Parameters,
in contrast, are constant values that influence the system’s behavior, e.g., the number
of machines in a factory (cf. Section 2.2.1).

Definition 6.2 (Inputs and Domain of Inputs).
Let X be the set of model inputs. For all inputs xi 2X with i= 1, ...,n and n2N,
there is a domain Di that defines the range of admissible values.

Regardless of whether an input xi 2 X with i = 1, ...,n and n 2 N is an input
variable or a parameter, each xi is defined by both a type and range of values
(domain; Di) it can take. Both properties are determined by the model (cf. Defi-
nition 6.2). An example of the type of an input are whole numbers (Z or integer).
The domain of an input might be defined as an interval (e.g., [1,100]), where 1 is the
smallest and 100 the largest admissible value. In this case, the corresponding formal
specification of the domain reads as follows:

Di = {z 2 Z|1  z  100}.

The values of simulation inputs can either be constant or stochastic. Inputs with
constant values (input parameters) are used to represent basic features of the real-
world system in the model. Examples of parameters are steady quantities of objects,
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e.g., the number of machines in a production system, or constant periods of time,
e.g., the maintenance interval of a machine that is defined by the manufacturer. Suit-
able values of parameters can either be observed in the real-world system or result
from calibration processes. In special cases, a parameter’s range of admissible val-
ues may contain only one value, which helps avoiding calibration difficulties. An
example is the weight of an industrial feedstock, if the weight of an manufactured
product is required as an output of the simulation. Assuming that pure iron is used
during the production process, the only reasonable admissible value of the density
parameter is 7.874 g/cm3 (Bauccio, 1993). Such parameters are referred to as con-
stants or constant parameters.

In simulation models, the values of parameters are not necessarily limited to sin-
gle constant values (cf. Definition 6.3). Time series or any other collection of con-
stant inputs can as well be a parameter of a simulation model. For example, an order
list that defines the arrival times of orders in the production process. In this case, the
parameter’s values are represented by an ordered n-tuple (ordered list) of 1  n < •
elements. However, for some input parameters the representation as a tuple or list
is not reasonable with respect to the conducting of sound simulation studies. Even
though the use of specific order lists and arrival times seems promising, the estima-
tion and use of probability distributions is recommended here (Kleijnen, 2001).

Definition 6.3 (Input Parameter).
An input xi 2 X with i = 1, ...,n and n 2 N is called parameter, if xi equals one
specific value or a specific tuple (time series) of values xi = {xi1, ...,xin} of its
domain Di.

Regardless of the constant values parameters have, they might cause stochas-
tic behavior of the simulation model. Depending on the structure of the model, the
parameter of a stochastic probability function can be defined by an input of the sim-
ulation model, e.g., the l -parameter of a Poisson distribution that is used to model a
randomized arrival process in queuing simulation (Law, 2014). In contrast to input
parameters of simulation models, the quantity of parameters of probability distri-
butions can not directly be derived from the real system but needs to be estimated
based on empirical observations.

In contrast to parameters, some inputs of simulation models are not constant
and cannot be controlled. For example the daily number of orders that arrive at a
manufacturing facility or the size of each order are uncertain and might vary. As
variation and uncertainty of inputs affect the behavior of the system, they need to be
considered as part of the inputs of the system’s model. Input variables, as a second
type of inputs, represent random inputs whose values cannot be determined with
certainty but by means of probabilities (cf. Definition 6.4). To describe and specify
the randomness of input variables, stochastic processes are used (Nelson, 2010).
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Definition 6.4 (Input Variable).
An input xi 2 X with i = 1, ...,n and i 2 N is called input variable, if

xi = j(wi) with j : [0,1]!Di, wi 2 [0,1].

Here, j is the inverse cumulative distribution function (quantile function) of a
specific probability distribution.

For stochastic input variables, the range of admissible values is implicitly given
by the probability distribution. In this regard, wi is a random variate drawn from
a continuous uniform distribution on the interval [0,1]. Based on wi, the inverse
cumulative distribution function of any desired probability distribution function can
be used to generate respective random variates. For a specific probability wi 2 [0,1],
the inverse cumulative distribution function (quantile function) defines the value
of the random variable such that the probability is less or equal to this probability
(Gilchrist, 2000).

An example of a probability distribution is the Bernoulli distribution. A Bernoulli
distributed variable can take exactly two values with probabilities p (0 < p < 1,
p 2 R) and q = 1� p. Bernoulli distributions can for example be used to describe
the outcome of a fair coin toss with p = q = 0.5. In this case, the outcomes 0 and 1
would represent head and tail.

j(wi) =

(
0, wi < 0.5,
1, wi � 0.5.

A differentiation between admissible values and reasonable values of an input
parameter needs to be made. The range of admissible values of an input parameter
which defines the number of machines in a manufacturing simulation are all natural
numbers including zero (N0). Negative values are excluded by definition as a nega-
tive number of machines cannot exist. In contrast, defining the number of machines
as zero is not reasonable, as no production can take place even though this value is
admissible. While the estimation of reasonable values of a simulation model’s input
parameters is part of the user’s responsibility, the restriction of admissible values
is part of the model building process (Biller and Gunes, 2010). Thus, an assistance
must ensure the parametrization’s compliance with the range of admissible values
during the conduction of simulation experiments.

Besides input variables and parameters, Montgomery (2013) distinguished ex-
ogenous variables of simulation models between potential design factors and nui-
sance factors. While potential design factors are the inputs which the experimenter
intends to vary during the study, nuisance factors are not of primary interest even
though the effect they have on the model’s behavior might be large. Potential design
factors can be differentiated according to their relevance for the current experiment



150 6 Services for the Assistance of Simulation Studies

into design factors, held-constant factors, and allowed-to-vary factors. Design fac-
tors are those factors which were chosen to be varied during the experiments, i.e.,
the model is executed with different levels of each design factor during each simu-
lation run. Accordingly, factors which are not of interest for the current experiment
and whose values are not varied, for instance because it is challenging to vary those
factors, are referred to as held-constant factors. Finally, allowed-to-vary factors are
represented by probability distributions to cover possible values by means of ran-
domization. Analogously, nuisance factors can be discriminated into controllable,
uncontrollable, and noise factors (Sanchez, 2007). While controllable factors can
be set by the experimenter, uncontrollable factors are part of the experiment’s en-
vironment, e.g., humidity or gravity. Noise factors are uncontrollable as well, how-
ever, they are controllable in simulation experiments. An example of a noise factor
is “weather”.
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Fig. 6.6: Inputs of a simulation model.

The determination of a factor’s importance is challenging. It depends on the
performance indicator, which has been selected for measuring the behavior of the
model. As it is part of the design of experiments, respective approaches are pre-
sented and formally specified in Section 6.3.1.

Based on the definition and differentiation of simulation model inputs, character-
istics of inputs can be derived. Depending on whether the value of an input describes
a specific value or a distribution of probable values, a distinction between quantita-
tive and qualitative inputs can be made. Furthermore, the controllability as well as
the constancy of the inputs’ values can be differentiated. In conclusion, simulation
models consist of different types of inputs, which can be differentiated and specified
as illustrated in Figure 6.6.
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The decision whether an input is classified as potential design factor or nuisance
factor is another potential source of experimenter bias. Even though nuisance fac-
tors are not of primary interest, they might still have a major impact on the model’s
behavior and thus must be considered when designing experiments. Likewise, the
experimenter might define potential design factors that do not influence the behav-
ior of the model and thus do not need to be varied during the experimentation. By
assessing the significance of the inputs, the presented assistance is capable of re-
assigning the model’s inputs. Accordingly, two new sets of inputs arise: important
factors that must be varied as they affect the behavior of the model and control vari-
ables that are held constant. It is the goal of the experimentation to investigate how
important factors influence the behavior of the model and whether the hypothesized
behavior can be observed.

6.1.3 Output Variables and Performance Measures

Analogously to inputs of simulation models, outputs of simulation models can be
differentiated into more specific types of variables. In contrast to the independent
inputs of a model, its outputs are dependent (endogenous) variables. They are gen-
erated by the model and enable the experimenter to observe the behavior of the
model. Often, the observable variables that are provided by the model differ from
the demands for measuring the performance of the model, which are defined by the
simulation study. Already in an early step of the study, case-specific measures or
indicators are defined. They are later used to assess the performance of the model.
Based on these measures, it is defined whether or not the goal of the study is fulfilled
or accomplished. Thus, a gap needs to be closed between the observable outputs
that are provided by the model and the measures that are required to allow for the
achievement of the study’s goal. This subsection differentiates and specifies outputs
that are provided by the model as well as different types of variables and measures
that need to be derived from the model’s outputs with respect to the study’s goals
(cf. Figure 6.7).
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Fig. 6.7: Outputs of a simulation model.
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According to Law (2015), the output of a DES simulation model is the output of
a stochastic process resulting from the randomness of inputs or components of the
model. The output of the model, also referred to as the output data of the model, con-
sist of one or many output variables. Each output variable describes the observable
behavior of one of the system’s components, e.g., the total amount of breakdowns a
machine has had during a shift, or provides information on the performance of the
system, e.g., the processing time of each manufactured product. Law emphasizes
that neither the independence of these variables nor the fact that these variables are
identically distributed can be assumed. As a result of this, classical statistics are not
applicable or only applicable with limitations for the analysis of simulation outputs.
Even though this issue results from the characteristics of the model’s outputs, it must
be taken into account during the analysis of the results. Thus, approach for handling
these specific features are introduced, specified, and applied in Section 6.5.3.

To enable the targeted conducting of simulation studies, specific performance
indicators are defined as part of the study’s problem statement. Zeigler et al. (2000)
emphasized these indicators’ characteristics to measure how effective systems are
in accomplishing specific goals. He described how different parametrizations of the
model can be evaluated making use of such outcome measures. Even though Maria
(1997) referred to performance measures instead, the definitions correspond mostly.
She defined performance measures as "quantitative criteria on the basis of which
different system configurations will be compared and ranked" (Maria, 1997, p. 8).
In accordance with most definitions, Zeigler pointed out that outcome measures are
computed based on output variables that are provided by the model. Accordingly,
output variables itself are not considered as performance measures of simulation
models even though their values might be used to assess the performance of a model.
Law and McComas (1998, p. 88) affirmed this view and discriminated between
“basic simulation output data” and “performance measures computed from them”.

In contrast to the definition of simulation models presented in Section 6.1, per-
formance measures are not necessarily an inherent part of simulation models. Even
though performance measures may be represented by output variables, they are not
limited to them. A performance measure might for instance be an arithmetic combi-
nation of output variables. An example from the manufacturing domain for a poten-
tial performance measure is the rejection rate of a manufactured product. The rejec-
tion rate is defined by the quotient of the output variables that represent the number
of accepted and the number of rejected products. However, any other mathemati-
cal combination, modification, or extension of the output variables’ values, e.g., the
normalization of logistical key performance indicators for comparing the perfor-
mance of different scenarios, are also potential performance measures in simulation
studies. The specification of performance measures based on a provided simulation
model includes the combination and modification of the model’s output variables in
a way that new variables are created. As these new variables often serve as target
functions to the simulation, they are also referred to as target variables.

The decision regarding which performance measures are required for assessing
the model’s behavior in a simulation study strongly depends on the identified goal
and cannot be met ex ante, during the development of the model. Instead, the defini-
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tion and implementation of performance measures must be conducted as part of the
simulation study. To guide users though the process of defining target variables and
performance measures of a simulation model, the definition of intermediate steps
seems reasonable to facilitate the process. One approach is to divide the definition
of a complex target variable into the definition of many simple intermediate vari-
ables (Dekker, 1984). Such intermediate variables are also referred to as auxiliary
variables (Biles et al., 2007) and are directly computable from the model’s output
variables or from other auxiliary variables. They may be used as performance indi-
cators even though, by definition, this is not their main purpose (Bossel, 2014).

Definition 6.5 (Logistical performance indicator: Inventory range in days).

Inventory range in days =
Average inventory

Average demand per day

Average inventory =
Inventory current period + Inventory prior period

2

The assisted combination of existing intermediate variable to target variables is
more reasonable than the definition target variables from scratch considering the
susceptibility to error. For example, when simulating logistical processes, the use
of storekeeping parameters as performance indicators is suitable, e.g., the inventory
range in days (cf. Definition 6.5). The inventory range is defined as the consumption
time in days of the average inventory assuming a steady demand of goods. Thus, the
intermediate variable average inventory should be calculated first, which is defined
as the mean of the current and the last period’s inventory.

To provide a service that is capable of assisting the definition of performance
measures of a simulation model by means of intermediate and target variables, the
service requires model-specific information in advance. This includes the formal
description of the model as well as of its output variables (Y ) that were defined in
Section 6.1. Each output variable y j 2 Y ( j = 1, ...,m and j 2 N) can be linked to
an intermediate variable yI 2 Y I by the function ḡ : Y ! Y I . Intermediate variables
may also consist of other intermediate variables, i.e, ḡ can also be provided elements
of its co-domain as input. However, as all elements of Y I can also be expressed by
elements of Y , the domain of ḡ does not need to be extended. The same applies for
target variables and the corresponding function ĝ : Y I ! Y T . It links elements from
Y I or elements from Y T to elements in Y T (cf. Definitions 6.6 and 6.7).
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Definition 6.6 (Output and Target Variables).
With respect to the analysis of the behavior of a simulation model, the outputs
of a model can be divided into:

– a set of output variables Y = {y1, ...,ym}, f (X) = Y , m 2 N and
– a set of target variables Y T as a result of the combination of output vari-

ables with g(Y ) = Y T .

Y T is a o-dimensional space with

g :=

0

BB@

g1(Y )
...

go(Y )

1

CCA .

Each function g1, ...,go is a combination of admissible operators (cf. Figure
6.9). To facilitate the process of defining target variables, the use of intermedi-
ate variables is reasonable (cf. Definition 6.7).

Definition 6.7 (Intermediate Variables).
An intermediate variable Y I = {Y I

1 , ...,Y
I
P}, p 2N is any variable that is defined

as an interim stage between output and target variables.

Consequently, the composition g(Y ) = (ĝ� ḡ)(Y ) = ĝ(ḡ(Y )) applies where

ḡ : Y ! Y I and ĝ : Y I ! Y T .

Both intermediate and target variables may not only consist of one but of mul-
tiple output variables or respective mappings of output variables (cf. Figure 6.8).
The linkage of variables can be defined by arithmetical operations, e.g., elementary
arithmetic operations such as addition, subtraction, multiplication or division but
also more advanced operations are possible as for instance modulo or the least com-
mon multiple. Furthermore, numeric values can be applied to output, intermediate,
and target variables by means of arithmetical operations. This is reasonable, if for
example a multiple or fraction of a specific variable if required for the definition of
a performance measure, e.g., the taxation of a price by a certain factor.

To enable the definition of performance measures for a simulation models as part
of the assistance, the set of output variables (Y ) that was specified for the model
must be extended by the experimenter. The respective service must allow for the
definition of one or many output variables as performance measures. Alternatively,
it must allow for the definition of new intermediate and target variables based on
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Fig. 6.8: Relationship between output, intermediate, and target variables.

the given output variables, which will be used as performance measures. The de-
cision of which variables are supposed to serve as performance measures is highly
individual and depends on the hypothesis the experimenter wants to test. Thus, the
implementation of a guided user dialogue seems reasonable. During this process, the
concept of intermediate variables can be used to facilitate the user-driven definition
of new variables that are required for conducting the study. However, algorithmic
solutions for defining a set of performance measures based on model criteria, e.g.,
standardized performance indicators based on the domain of the model, can further
facilitate the process. The result is a set of performance measures (P), which are de-
fined by a set of mapping rules based on the model’s output variables. Additionally,
the intermediate (Y I) and target (Y T ) variables that are defined during the process are
also part of the process’s result and extend the formal specification of the simulation
experiment.

Definition 6.8 (Performance Measures).
Performance measures P := Y [Y T , P 6= /0 are one or many output (Y ) and
target variables (Y T ) that are used for the investigation of the model’s behavior
with respect to answering the research hypothesis.

This section focuses on the formal specification of performance measures for
simulation models (cf. Definition 6.8). To utilize such performance measures for
the assistance of Hypothesis-Driven Simulation Studies, this approach as well as
the requirements and dependencies that were defined must be made applicable. For
this purpose, the use of a language seems suitable. Grammar 6.1 formally specifies
respective dependencies and constraints for linking of output, intermediate, and tar-
get variables as a language. The syntax of the language is defined using the Backus-



156 6 Services for the Assistance of Simulation Studies

Naur form. The structure of the language is defined by rules that specify how valid
expressions are build. Moreover, performance measures can be formally specified,
using and combining operators and variables according to the defined rules and in
accordance with Figure 6.24. Here, only the basic mathematical operators addition,
subtraction, multiplication, division, and modulo are presented. This selection can
be expanded by any other operator that combines numeric or symbolic inputs or
outputs of simulation models. In the grammar presented here, an input can be both
input variable or parameter (cf. Section 6.1.2).

hOperatori ::= + | - | * | / | %

hInputi ::= x1 | ... | xn

hOutput Variablei ::= y1 | ... | yn

hIntermediate Variablei ::= hOutput Variablei hOperatori hOutput Variablei

| hOutput Variablei hOperatori hIntermediate Variablei
| hIntermediate Variablei hOperatori hOutput Variablei

| hInputi hOperatori hPerformance Measurei
| hPerformance Measurei hOperatori hInputi
| hOutput Variablei hOperatori hPerformance Measurei
| hPerformance Measurei hOperatori hOutput Variablei
| hPerformance Measurei hOperatori hIntermediate Variablei
| hIntermediate Variablei hOperatori hPerformance Measurei

hTarget Variablei ::= hIntermediate Variablei
| hOutput Variablei hOperatori hTarget Variablei
| hTarget Variablei hOperatori hOutput Variablei
| hIntermediate Variablei hOperatori hTarget Variablei
| hTarget Variablei hOperatori hIntermediate Variablei
| hTarget Variablei hOperatori hTarget Variablei

hPerformance Measurei ::= hOutput Variablei
| hIntermediate Variablei
| hTarget Variablei

Grammar 6.1: Backus-Naur form of the specification of performance measures.

As with previous steps in the process of a simulation study that is pursued in this
thesis, a black box specification of the simulation model under investigation was
presented. Besides metadata, the specification consist of a set of input and output
variables that can be used for assessing behavioral aspects of the model. The formal
description of the service in Section 6.1.3 determines that a set of specified output
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variables is passed to the service. Consequently, the service is capable of utilizing
information regarding type, name, description, and identifier of each output variable
of the model for the process of defining performance measures.

The methodology for simulation studies that is presented in this thesis aims at
proving or disproving a research hypothesis on the distribution or value of a perfor-
mance measure of a simulation model. The hypothesis, which is formally specified
at a later stage of the simulation study, is provided by the user of the assistance
system and represents the user’s individual assumption on how the models behaves.
Thus, it can be assumed that the user is aware of both the performance measures that
are required for testing a specific hypothesis and the way output variables can be
suitably combined to define required target variables. Because of this, the definition
of performance measures by means of a guided user dialog seems reasonable and
a fully automated approach for defining performance measures is not pursued, e.g.,
based on standardized performance indicators. Yet, experienced users might provide
the required specification of the performance measure along with the model.

Code 6.1: XML specification of simulation model output variables.
<outputVariable uid="var_out_736537">

<type>int</type>
<label>Average processing time</label>
<description>

The average processing time of all products that have been manifactured.
</description>
<identifier>avgProcTime</identifier>

</outputVariable>

Based on information on all output variables (cf. Code 6.1), the process of defin-
ing performance measures is initiated. The user is presented with all of the model’s
output variables (Y ). In case that all required performance measures are represented
by individual output variables, the process ends after selecting the respective output
variables as performance measures. If output variables need to be combined to cre-
ate target variables first, a set of operators (O) is required that define how variables
can be combined to intermediate variables Y I (cf. Definition 6.9).

Definition 6.9 (Operators for Intermediate and Target Variables).
To combine output variables to intermediate and target variables, opera-
tors O are required. Each operator ol 2 O is defined by a set of functions
ol = {al1, ...,aln} where each function a defines a possible linkage of the vari-

ables with l = 1, ...,n and l 2 N.

Each operator (ol) is defined by a set of functions {al1, ...,aln}, where the do-
mains of each function alk with k = 1, ...,n and n 2N describe permissible variable
types of the arguments, e.g., only numerical variables as Integer (N) and Double (R)
(see Figure 6.9). For numerical variables, a possible definition of the “+” operator
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Fig. 6.9: Specification of performance measures based on operators and output vari-
ables.

is the addition of two arguments (addends) as it is defined for real numbers. Each
addend can either be the value of a variable of the model or a real number. When
the addends are of type Integer, the result of the addition operation (N�N ! N)
is a new numerical variable that is of type Integer, too. Like all operators, the “+”
operator can be individually defined for multiple variable types. Besides the ad-
dition of real numbers, it can for example also be defined as the concatenation
of characters for two or more textual variables, e.g., String (S), or the addition of
Time and Date values (D). In this case, the resulting variable is of a textual respec-
tively temporal variable type. For each operator ol and each number of arguments,
the permissible variable types of each argument, the type of the resulting variable,
and the specific operation are to be defined separately as an individual function
alk 2 ol . For instance, for the addition operator ol = +, possible functions al are:
al1 : N�N ! N, al2 : R�R ! R, al3 : N�R ! R, and al4 : S� S ! S with
N ⌘ Integer, R ⌘ Double and S ⌘ String. To this end, each variable Y I that has
been newly defined may serve as argument of an operator for the specification of
further variables.

At first, all created variables are considered as intermediate variables. They are
neither genuine output variables nor were they selected as performance measures
or defined as target variables, yet. This step is a necessary interim stage for the
specification of the actual performance measures. In a second step, the performance
measures are selected from the sets of output and intermediate variables. Through
the selection of an intermediate variable as performance measure, this variable be-
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comes a target variable by definition while output variables remain output variables
when selected as performance measure.

The resulting set of performance measures (P) consists of elements of Y and
former elements of Y I that became elements of Y T by selection and definition. Each
element of P that was selected directly from Y is a new variable Y I , a combination
of elements of Y by means of operators O. Each operator ol is defined by a set
of functions alk, where each alk defines the types and the quantity of arguments
(variables) that are demanded by the operator as well as the specification of the
operation, i.e., how the operator’s arguments are combined to new variables.

6.1.4 Specification of the Simulation Model

In summary, the specifications of model metadata as well as inputs and outputs
presented in the previous sections result in the following definition of a simula-
tion model. In this thesis, a black box representation is chosen so that the model
is reduced to its input-output-behavior. Accordingly, the behavior of the model is
represented by an execution function which generates the observable outputs based
on a set of inputs.

Definition 6.10 (Simulation Model).
A simulation model M is defined by a four-tuple M := (X ,Y, f ,M) with

– X is the set of Inputs, i.e., X = {x1, ...,xn} with n 2 N and X 6= /0,

– Y is the set of Outputs, i.e., Y = {y1, ...,ym} with m 2 N and Y 6= /0,

– the execution function f : X ! Y ,

– and a setM of metadata.

A simulation model (M) can be specified by the following four components: its
inputs (X), its outputs (Y ), a function ( f ) for executing the model and for conduct-
ing simulation experiments, and the model’s metadata (M) (cf. Definition 6.10).
f executes the model with a tuple of inputs X = (x1, ...,xn), the parametriza-
tion of the model, and returns the observed behavior of the model as outputs
Y = (y1, ...,ym). In this regard, n is the number of inputs and m is the number of
outputs where both n and m are by definition greater or equal one. It is assumed,
that the model either comprises the simulation framework or can be linked to a sim-
ulation framework by defined interfaces, e.g., based on wrapper classes. Relevant
information for the execution of the model is part of the model metadata (M). Ei-
ther way, it is ensured that the conducting of experiments is possible such that the
corresponding outputs Y can be determined for a specific set of inputs X : X ! Y .
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6.2 Research Hypothesis

After specifying the simulation model as well as the model’s input and output vari-
ables, the research hypothesis that shall be answered as goal of the simulation study
is another relevant component of the assistance. It is the most challenging input,
as it has to be provided by the user and is usually formulated in natural language.
For the systematic and (semi-)automated conduction of simulation studies, the re-
search hypothesis must be specified formally to allow for answering it precisely,
reproducibly, and in an automated way. For this purpose, this section analyzes the
structure of research hypotheses and specifies essential components of formalized
hypotheses.

6.2.1 Formal Specification of Hypotheses

To specify research hypotheses in simulation studies, this thesis presents the FITS
language. Parts of this section such as the concept of FITS and an approach for the
automation of simulation experiments based on formalizes hypotheses were sepa-
rately published by Lorig et al. (2017a). Approaches for testing the hypothesis that
complement FITS are not part of this section and are addressed in the analysis sec-
tion of this chapter instead (cf. Section 6.5.3).

As a first step towards the formal specification of research hypotheses that make
assumptions on the behavior of a simulation model, the concept of research hypothe-
ses is revisited (cf. Section 4.1.1). In accordance with the theory of science view pre-
sented in Section 4, the term hypothesis refers to an operationalized proposition that
assumes relations between two or more variables in information systems research
(Recker, 2013). This can be a speculative guess or a scientifically grounded assump-
tion. In this definition, the variables describe the object of investigation. To allow for
testing such hypotheses, the application of approaches and techniques from statis-
tics seems suitable. In simulation, it is common to use statistical hypothesis tests
for analyzing outputs of simulation studies (Banks, 2014). However, the statistical
definition of hypothesis is more technical and specific. In statistics, a hypothesis
is an assumption about the partially known probability distribution of one or more
random variables, which is examined in a test (Tietjen, 1986). To formally specify
research hypotheses in a way that they are compatible with these requirements, rel-
evant attributes and components of hypotheses must be identified first. After that,
it is necessary to consider and define the interdependencies between the hypothesis
and the simulation model.

The aim of the specification presented in this subsection is the description of a
hypothesis such that it is testable by means of parametric hypothesis tests. The t-
test, as an example of a parametric hypothesis test, is used to determine if the mean
values of two datasets differ. Depending on whether a one-sample or two-sample
test is used, one empirical and one synthetic and idealized dataset or two empiri-
cally sampled datasets are required. Either way, the research hypothesis specified in
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this subsection must provide information on the circumstances (model parametriza-
tion) under which the sample is drawn. Furthermore, an assumption regarding the
mean values of the datasets must be formulated. With respect to the application of
hypothesis tests, the formulation of both a null hypothesis and a corresponding alter-
native hypothesis is reasonable. Finally, additional information such as the required
significance level or the number of replications of the model must be specified.

parametrization hypothesis 
information test constraints! !
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Fig. 6.10: Structure of a hypothesis in FITS.

For this purpose, a FITS expression of an experiment hypothesis consists of
three parts: parametrization. hypothesis information, and test constraints (cf. Fig-
ure 6.10). The parametrization part contains information on the values of the inputs
under which the stated assumption is supposed to apply. In addition, the test con-
straints part defines the model’s performance measure and states the values of the
performance measure for which the hypothesis applies. Finally, FITS expressions
specify test constraints for the application of statistical hypotheses tests.

Definition 6.11 (Parametrization Part of a Research Hypothesis).
The parametrization of a hypothesis assigns a specific value or series of values
from its domain Di to each input parameter xi 2 X with i = 1, ...,n and n 2 N
of a model.

The first part, the parametrization, includes the assignment of specific values to
the model’s inputs X (cf. Definition 6.11). Depending on the number of model in-
puts, this part of the hypothesis can be extensive. Thus, in a FITS expression it is
possible to shorten the assignment by using the number sign (“#”). Here, the symbol
has the meaning “ceteris paribus” (all else being equal). Accordingly, initial stan-
dard values are assigned to the remaining variables whose values were not explicitly
defined. Alternatively, an assignment of values which was used in previous studies
or any other predefined assignment could be used.

After this parametrization part of the hypothesis, a separator and the hypothesis
information part follow, which define properties of the hypothesis (cf. Definition
6.12). For the first separator of a FITS expression, an arrow is used in accordance
with describing implications in logic. This reminds of the formal structure of a
conditional clause which a scientific hypothesis is (implicitly) based on (cf. Sec-
tion 4.1.1). Hypothesis information includes information on the considered feature
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(performance measure) as well as an assumption regarding a specific value or the
relationship between the mean values. For example, in an model where the aver-
age processing time (PT) of a product (µ(PT )) is measured, it can assumed that
the average processing time is less or equal to 120 minutes (H0: µ(PT )  120). A
potential corresponding alternative hypothesis is the assumption that the production
takes longer than 120 minutes (i.e., H1: µ(PT )> 120).

Definition 6.12 (Hypothesis Information Part of Research Hypothesis).
Hypothesis information I consists of a triple I := (P̃,H0,H1) such that

– P̃ are the aggregated values of the performance measures (P) with

P̃ := Ỹ [ Ỹ T , Ỹ =
wS

t=1
Ỹt , and Ỹ T =

wS

t=1
Ỹ T

t where

- Ỹt is the set of aggregated output variables from experiment t,
- Ỹ T

t is the set of aggregated target variables from experiment t,
- w is the total number of executed experiments, and

– two mutually exclusive statements on the actual value of the performance
measure, a null hypothesis H0 and a corresponding alternative hypothesis
H1.

Hypothesis information consists of aggregated values of the performance mea-
sures (P̃) as well as a mutual exclusive pair of statistical hypotheses (H0 and H1). As
performance measures of a simulation model are either output or target variables,
the aggregated values of the respective variables (Ỹt and Ỹ T

t ) must be gathered over
all executed simulation experiments w. A more detailed specification of the aggre-
gation process is provided in Definition 6.35.

Between the hypothesis information part and the final test constraints part, an-
other separator is inserted. To avoid misinterpretations and as the test constraints
part refers to the hypothesis in general, the vertical bar symbol ("|") is used, which
also serves as delimiter in other contexts. In the test constraints part, the exper-
imenter defines overall conditions for testing the hypothesis such as significance
level a and sample size n for the subsequent execution of a significance test (cf. Def-
inition 6.13). Depending on the type of hypothesis, additional information might be
required, which can be stated in the test constraints part of the hypothesis as well.

Definition 6.13 (Test Constraints Part of Research Hypothesis).
Test constraints C are defined as tuple C := (l ,n) with significance level l and
sample size n.
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Within all three introduced parts, the conjunction symbol “^” is used to concate-
nate multiple subexpressions. The disjunction symbol “_” is used to separate the
null hypothesis from the alternative hypothesis.

The use of a language such as FITS seems reasonable for the specification of
hypotheses in simulation studies. A trade-off between the expressive power and the
efficiency of the reasoning needs to be made. Natural language in writing (e.g.,
English or German) is capable of expressing a desired content in great detail. How-
ever, computer-aided processing of natural language is challenging and error-prone.
In order to formulate hypotheses on the behavior of an investigated model, a formal
language seems more suitable. This can be used by researchers independent of their
subjects. The language is used to specify a parametrization of the simulation model
and to determine which significance level is required. Thus, the acronym FITS was
chosen as name of the language which stands for “Formulating, Integrating and
Testing of Hypotheses in Computer Simulation”. The language can be used with-
out a simulation system to formulate hypotheses and to share them with other re-
searchers. Grammar 6.2 defines how valid FITS expressions can be constructed by
means of the Backus-Naur form.

hStatementi ::= hParametrizationi ’)’ hHypothesis Inf.i ’|’ hTest Constraintsi

hParametrizationi ::= hValue Assignmentsi

hValue Assignmentsi ::= hValue Assignmenti
| hValue Assignmenti ’^’ hValue Assignmentsi

hValue Assignmenti ::= hInput Variablei ’(’ hInstancei ’,’ hValuei ’)’
| hInput Variablei ’(’ hClassi ’,’ hValuei ’)’
| #

hHypothesis Inf.i ::= hFeaturesi ’^’ ((H0(µ’ hRelationi hValuei ’)) _
(H1(µ’ hRelationi hValuei ’)))’

hFeaturesi ::= hFeaturei | hFeaturei ’^’ hFeaturesi

hFeaturei ::= ’µ(’ hPerformance Indicatori ’)’

hRelationi ::= ’<’ | ’’ | ’>’ | ’�’ | ’=’ | ’6=’ | ...

hTest Constraintsi ::= ’a(’ hValuei ’) ^ n(’ hValuei ’)’

Grammar 6.2: Backus-Naur form of the FITS language for expressing hypotheses.
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Using FITS, a possible specification of a hypothesis from the manufacturing do-
main might look as follows:

machines(8) ^ workers(3) ^ queuingDiscipline(SPT ) ^ #
) µ(ProcessingTime) ^ (H0(µ  240) _ H1((µ > 240)) ^ a(5) ^ n(100)

The stated example specifies a hypothesis about a simulation model of a produc-
tion line. In this model, the number of machines and workers can be varied as well as
the queuing discipline used for processing incoming orders. A possible translation
of the example in natural language could read as follows:

If the production line consists of 8 machines and 3 workers control
these machines and the queuing discipline “shortest processing time”
is applied for processing orders ceteris paribus, then the observed pro-
cessing time per order will be lower than 240 minutes on average and
this assumption will be tested with a significance level of 5% and a
sample size of 100 simulation runs.

The character “µ” denotes the expected value of a random output variable of the
model. In this sample, this is the operation time which is also the feature of investi-
gation. The subexpressions of the null hypothesis H0 and the alternative hypothesis
H1 consist of a statement about that feature which will be evaluated by means of
hypotheses testing approaches. In summary, in this thesis research hypotheses on
the behavior of simulation models are defined as specified in Definition 6.14.

Definition 6.14 (Research Hypothesis).
In simulation studies, a research hypothesis H is defined as tuple H := (X , I,C)
with

– X the parametrization of the model (cf. Definition 6.10),
– hypothesis information I := (P̃,H0,H1), and
– test constraints C := (l ,n).

6.2.2 Documentation of the Solution Process

To confirm or refute a given hypothesis in a replicable and reproducible way, it is
essential to thoroughly document all steps that were executed to receive a solution.
The goal of this step is to preserve the explanatory potential of the conducted study
and evidence for or against the validity of the hypothesis. Documented information
includes all decisions that were made during the process of the study as well as in-
terim and final results. The documentation is not a single step of a simulation study
but accompanies the entire process, starting with the formulation of the research



6.2 Research Hypothesis 165

hypothesis, the design, execution, and analysis of experiments, through to the inter-
pretation of the results. This subsection presents criteria and best practices for the
documentation of simulation studies. Furthermore, it specifies information and data
that need to be documented to allow for the reproduction of the study’s results.

Approaches for the documentation of simulation studies exist for both models
and experiments. To allow for the documentation of simulation models, taxonomies
for the classification of simulation models (Highland, 1979) or minimum informa-
tion for the annotation of models (LeNovère et al., 2005) were proposed. But also
for the documentation of simulation experiments, approaches exist that propose a
minimum set of required information (Waltemath et al., 2011) or that define an ex-
perimental frame (Zeigler et al., 2000).

The definition varies of what extent of information is sufficient to be considered
as documentation. Some authors argue that a written report or presentation of the
simulation which describes how to run the model might already serve as documen-
tation (Rossetti, 2016). In this regard, Chung (2004) discussed ten written report
guidelines that should be considered when writing a final report. The guidelines
include the problem statement, project planning, system definition, input data col-
lection and analysis, model formulation, model translation, verification, validation,
experimentation and analysis, and recommendations and conclusions. However, the
author does not provide detailed information regarding what aspects must be consid-
ered for each guideline. With respect to the goal of this thesis, the experimentation
and analysis guideline seems to be most suitable. Rossetti (2016) presented ques-
tions that might be answered to fulfill this guideline. This includes the description
of a typical simulation run, the determination of both run length and number of
replications, a detailed description of the experimental plan, and a discussion of the
results.

To ensure the correctness, completeness, consistency, and unambiguity of all
documentations that were created during a simulation study, Balci (1998) proposed
documentation checking as an informal verification and validation technique. This is
especially important if the logic of the model or the conducted experiments are mod-
ified. In this case, the documentation must be updated, however, this step is often
forgotten or ignored. Uhrmacher et al. (2016) also addressed the incompleteness of
documentation which results in a lack of reproducibility. The authors emphasized
that existing approaches for the facilitation of simulation documentation require
major effort. Yet, they attribute shortcomings in the reproducibility of simulation
results not only to an insufficient description of the model. In addition, they outline
how a lack of documentation might hide other mistakes in the execution of simula-
tion experiments, e.g., a too small number of replications. To overcome such issues,
Uhrmacher et al. (2016) proposed the use of domain-specific languages for the de-
scription, specification, and execution of simulation experiments (cf. Section 3.1.1).

When discussing the thorough documentation of experiments, approaches from
medicine should be considered as well. Especially in clinical trials but also in med-
ical laboratories in general, standardized protocols and procedures are defined to
ensure the reproducibility of conducted experiments and studies. Lazzari (2009)
presented a standard protocol for clinical laboratories as a checklist. As one of the
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considered implementation points, both creation and maintenance of a documenta-
tion is proposed. Besides the procedure of the conducted tests and a quality control
log, the documentation consists of supplemental documents such as result forms,
flow diagrams, and comparison study sheets.

In some parts of medical research, mandatory legal guidelines exist that also
define the documentation of studies. As an example, EU regulation No 536/2014
defines the conducting of clinical trials on medicinal products for human use (Euro-
pean Commission, 2014). In this regard, the documentation of the clinical trial must
“allow effective supervision” (European Commission, 2014, L 158/7). In an earlier
version of the guidelines on Good Clinical Practice, a more detailed specification
of documentations was provided. It must include “all records, in any form [...] that
describe or record the methods, conduct, and/or results of a trial, the factors affect-
ing a trial, and the actions taken” (European Commission, 1996, p. 8). Furthermore,
a list of essential documents that are required for conducting clinical trials must
be provided. This includes information on the randomization of the trial popula-
tion and how blinded trials can be decoded. To learn from such approaches and to
address the lack of information in experiment protocols in published manuscripts,
Soldatova et al. (2008) developed the EXACT ontology. Using the presented ontol-
ogy, biological laboratory protocols can be formalized using predefined experiment
actions. Presented actions include information on how chemicals were combined
(e.g., mixed or dissolved) or separated (e.g., centrifuged or filtered). The use of this
ontology facilitates the generation and publication of detailed and reproducible ex-
periment protocols.

In simulation, a lack of documentation can be identified which results in a de-
creased reproducibility of studies and experiments. Approaches exist for the docu-
mentation of simulation studies. Simulation frameworks like NetLogo provide func-
tionalities that automatically generate documentations of specific simulation steps,
i.e., spreadsheets of simulation runs or searchconfigs of the included Be-
haviorSearch plugin. However, such documentations are often limited to specific
aspects and do not cover the entire life-cycle of the conducted experiments. Further-
more, general specifications of the documentation process are not provided even
though approaches for the standardized documentation of experiments by means of
specific guidelines exist in other disciplines.

6.3 Design of Experiments

The two previous sections formally specified simulation models and the research
hypotheses. Both components must be provided by the experimenter to conduct
Hypothesis-Driven Simulation Studies. The following three sections introduce and
specify services that are required for assisting each individual phase of experimen-
tation during the study. This section particularly focuses on services that must be
provided to assist the design of experiments. This includes factor screening services
to identify important input factors of the model as well as design of experiment ser-
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vices for the efficient definition of factor-level-combinations to be investigated for
answering the research question. Furthermore, as the assistance system focuses on
analyzing the behavior of stochastic models, the estimation of a sufficient number
of replications must be part of the experimental design as well, to ensure statistical
certainty of the results.

6.3.1 Factor Screening

Especially when applying simulation to complex models that describe sophisti-
cated systems, the number of input variables might be great. Thus, the execution
of the model with all possible factor-level-combinations is often not feasible due
to the combinatorial explosion of all potential parametrizations. With respect to the
sparsity-of-effect principle (parsimony principle), a full coverage is not necessary
as in most systems a small set of factors is sufficient to explain most of the behavior
of a system (Kleijnen, 2015). At the same time, it is challenging to identify these
relevant factors as well as the necessary factor-level-combinations of the model,
which must be simulated to answer the study’s research question. For this purpose,
the conducting of a sensitivity analysis (what-if analysis) is reasonable (Kleijnen,
2010). Just like the method presented in this thesis, sensitivity analysis pursues a
black box approach, which allows for investigation and optimization of inaccessible
systems. A review of different sensitivity analysis approaches is presented by Iooss
and Lemaître (2015).

As a first necessary step towards the intelligent design of simulation experiments,
factors must be identified that influence the performance measure the hypothesis
makes an assumption about. For this purpose, factor screening techniques were de-
veloped. The aim of these approaches is to dynamically identify important factors
of simulation models with many factors. At the same time, Kleijnen et al. (2003)
emphasize that the importance of each factor depends on the experimental frame
(domain of the model). This is why the importance of each factor cannot be identi-
fied without detailed knowledge about the question or goal that drives the study. It is
the experimenter’s responsibility to provide information on the model and to define
the scenario of interest as accurately as possible.

Kleijnen provides a definition of “importance” in terms of factor screening ap-
proaches. He describes the simplest form of importance as factors having an additive
effect towards a single response of the model. In this case, the input-output relation-
ship can be described by a first-order polynomial and the importance of each factor
is assessed based on the absolute value of its first-order effect (main effect; cf. Defi-
nition 6.15). Likewise, the least important factors have a main effect which is close
or equal to zero. Accordingly, the result of factor screening is a set of important fac-
tors as subset of the set of all potential factors a model provides. Preferably, the set
is sorted according to each factor’s relevance. The cumulated main effect the impor-
tant factors have on the model’s performance measure is considerably higher than
the main effect of the remaining input factors. By definition, the cumulated main
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effect of all input factors is 100% and the observable changes of the performance
measure can almost entirely be explained by the effect the input factors of the model
have.

Definition 6.15 (Effect of Inputs).
The effect each input and each combination of inputs has on a specific perfor-
mance measure P? 2 P can be measured.

8p 2 P, 8xi 2 X

9bi := Influence of input xi on performance measure p (individual main effect)

9bi j := Influence of the combination of the inputs xi and x j

on performance measure p (group effect).

Consequently it follows:

n

Â
i=1

bi +
n

Â
i=1

n

Â
j=1
i6= j

bi j

2
 100

with i, j,n2N, assuming that interactions of three and more factor do not occur.

Definition 6.16 (Important Factors).
From Definition 6.15 it follows: The inputs can be permuted according to the
strength of their effect on a specific performance measure (importance). With
bi being the effect of a single factor bi or the effect of the interaction of two
factors bi j, an order B = {b1, ...,bn n+1

2
} can be defined with |b1| � |bi+1| for

i, j = 1, ...,n, i 6= j, and i, j,n 2 N.

With respect to a threshold q (e.g., 80%), index k that splits B into a set of
important factors and a set of unimportant factors can be defined as

k

Â
i=1

bi � q and
k�1

Â
i=1

bi < q

such that the cumulated effect of b1, ...,bk exceeds threshold q with i,k 2 N.

By quantifying the influence individual factors or combinations of factors have
on a performance measure of a model, the factors can be ordered by the impact
they have. To this end, a differentiation between important and unimportant factors
can be made using a specific threshold q (cf. Definition 6.16). This allows for the
selection and limitation of factors to be investigated more closely during the study.
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Factor screening, as defined and presented by Kleijnen, pursues a black box ap-
proach (cf. Definition 6.17). Information on the inner structure of the model, of its
states, or the transition between the states, is not required. Instead, these approaches
assess the importance of each factor by means of systematic parametrization of and
experimentation with the model. They make use of the sequential collection of sim-
ulation data, which enables the experimenter to examine the model’s observed be-
havior before designing and executing the next simulation experiment, run, or itera-
tion. More specifically, the factor screening technique presented by Kleijnen (2015)
pursues a divide-and-conquer approach to systematically identify the main effects
of the most important factors (bi) or groups of factors (bi j) of a simulation model
with respect to a specific performance measure. For this purpose, the extreme sce-
narios of the model are simulated first. In case the most important factors with the
largest main effects have been identified, it might be sufficient to terminate the factor
screening process after k of the n factors were investigated.

Definition 6.17 (Factor Screening).
Factor screening is the process FS of determining the effects individual fac-
tors and combinations of factors have on a specific performance measure of a
simulation model with respect to identifying the most important factors or com-
binations of factors. The result of a (two factor interaction) factor screening is
set B that consists of bi and bi j for i, j = 1, ...,k, k  n, i 6= j, and i, j 2 N (cf.
Definition 6.16).

FS : (M,X ,P)! B

In practice, many approaches for factor screening exist, which can be differenti-
ated by the design of the screening procedure. In discrete-event simulation, the se-
quential bifurcation approach introduced by Bettonvil and Kleijnen (1996) is most
commonly used. In addition to sequential bifurcation, Kleijnen (2009) discriminated
between four further types of screening designs when introducing competitors to
sequential bifurcation: classic two-level factorial designs, frequency domain exper-
imentation, supersaturated designs, and group-screening designs. What all of the
presented approaches have in common is that they pursue black box approaches.
While classic two-level factorial designs require a large number of parametrizations
to be executed (at least n = k+ 1 with k being the number of model factors), fre-
quency domain experimentation factor values are oscillated during the simulation
runs and thus their application is more challenging. In supersaturated designs, the
number of factor-level-combinations is smaller than the number of factors (n < k).
However, Kleijnen (2009) argued that these designs are not sufficiently efficient as
the procedure is not sequential and observations made at runtime cannot be taken
into account for optimizing the process. Finally, group-screening designs reduce the
number of combinations by summarizing factors in groups. These groups are then
executed and evaluated stepwise for determining the main effect of the model’s fac-
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tors. Besides sequential bifurcation, the Morris method is an approach from this
group of screening designs and as well established in simulation (Morris, 1991).

The Morris method is a one-factor-at-a-time screening design whose implemen-
tation is simple compared to other factor screening designs (Campolongo et al.,
2005). For the application of the approach, the value range of each of the model’s
input factors (k) is discretized in a number of levels (l). From the resulting grid of
possible factor-level-combinations (lk), a subsample of points is randomly drawn.
For each selected design point, the model is repeatedly executed with the respective
parametrizations while the factor levels are changed one-at-a-time for observing re-
sults in the behavior of the model. This results in a comparatively high number of
required executions of the model. The observations made during the simulation then
serve as a basis for estimating the distribution of elementary effects of the model’s
factors. The Morris method discriminates between three types of effects: negligible
effects, large linear effects, and large interaction effects (Iooss and Lemaître, 2015).

Due to the high number of required model executions, the sequential bifurca-
tion approach introduced by Bettonvil and Kleijnen (1996) is most commonly used
for factor screening in discrete-event simulation. In contrast to Morris’s method,
sequential bifurcation pursues a sequential divide-and-conquer approach for esti-
mating the main effect of each factor. As a result of this, observations and findings
from each iteration of the algorithm can be used for optimizing the target-oriented
identification of important factors. Accordingly, sequential bifurcation is more effi-
cient as it requires fewer executions of the simulation model compared to the Morris
method (Kleijnen, 2009).

For the application of sequential bifurcation, multiple assumptions need to be
met. The first assumption of sequential bifurcation is that the input-output behavior
of a model can be approximated by a metamodel, which is a first-order polynomial
(cf. Definition 6.18). For sequential bifurcation, Kleijnen defined a metamodel as
an “adequate approximation of the Input/Output (I/O) function that is implicitly
determined by the underlying simulation model” (Kleijnen, 2009, p. 159). For this
purpose of defining a metamodel, each quantitative input variable of the model is
standardized such that only two levels remain. One that results in a low output of
the model and one that generates a high output. Additionally, first-order polynomial
used for the approximation consists of the main effects of each factor (b j) as well
as an overall effect (b0). The approximation error is assumed to be smaller than the
effects of the factor and thus is neglected in the approach.

Definition 6.18 (Metamodel for Sequential Bifurcation).
According to Kleijnen (2015), sequential bifurcation requires that the input-
output behavior of the model can be approximated by a metamodel such that a
linear combination of each factor’s main effect (b ) as well as its standardized
level (x) estimates the model’s output:

y = b0 +b1x1 + ...+bnxn , with n = |X | and n 2 N.
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The second assumption that has to be met by the model concerns the direction of
the factor’s influence on the model’s output. Bettonvil and Kleijnen (1996) defined,
that the effect must be known and non-negative such that each b must be greater
or equal to zero (cf. Definition 6.19). Based in this assumption, the minimal output
(y0) of a model can be observed when setting the value of each input factor to 0 (low
value) and the maximum output (yk) of the model can be observed when setting the
value of each input variable to 1 (high value). Thus, as the first step of sequential
bifurcation, y0 and yk are experimentally gathered to receive an estimate of the main
effect b0�k. As the minimal and maximal output of the model are used to calculate
b0�k, the respective value must be greater than zero (assuming y0 6= yk) and thus
is important by definition. To estimate the main effect each factor has or groups of
factors have on the model’s outputs and to identify the most important factors, the
divide-and-conquer approach bifurcation pursues sequentially and systematically
sets the values of input factors or groups of input factors to their low and high values.

Definition 6.19 (Sequential Bifurcation).
y( j) is defined as the output of the model, when

– factors 1 to j are set to their high value and
– factors j+1 to k are set to their low value.

Based on this, b j0� j with j > j0 is defined as the sum of main effects of the fac-
tors j0 � j and b̄ j0� j as the average main effect calculated from n > 1 replicates
with

b̄ j0� j =
Ân

r=1 br
n and b j0� j =

(y( j)�y�( j))�(y( j0�1)�y�( j0�1))

4

where y�( j) is the mirror observation of y( j) and j0, j,k,n 2 N.

Accordingly, y(0) and y(n) with y(0) < y(n) define b1�n, the aggregated main
effect.

The approaches’ sequentiality is that after the effect of a group of factors is exper-
imentally estimated, the following iteration splits the group with the highest iden-
tified effect into two new groups of factors and estimates their effects. Thus, in a
second step, yk/2 and accordingly b1�k/2 as well as bk/2�k are determined and the
respective importance of each group of factors is assessed. This procedure is then
repeated until the most important factors are isolated and identified. An example
of a potential resulting search tree is illustrated in Figure 6.11. In this example, b4,
b8, and b12 were identified as most important factors. Together, these three factors
explain more than 75% of the model’s total effect (b4�12 = 91.75).

In practice, it must be assumed that in most models the factors do not indepen-
dently influence the model’s output. Instead, often interactions exist between the
factors. Sanchez (2007) illustrated such interactions and respective challenges this
results in. Taking the example of the “Capture-the-Flag” game, where two oppos-
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Fig. 6.11: Search tree of application of sequential bifurcation (Lorig et al., 2017b).

ing teams try to sneak up to the other team’s flag to steal it and escape with it, she
pointed out the importance of the obvious factors stealth and speed (cf. Figure 6.12).
Measuring the success of a team based on low and high values for the factors speed
and stealth, it can be observed that low speed and low stealth do not lead to success
in the game. Likewise, neither high speed and low stealth nor high stealth and low
speed will result in a successful capture of the enemies flag. However, the combina-
tion of high speed and high stealth makes the team win the game. This implies, that
an interaction exists between the two factors. This is not detectable by one-at-a-time
factor screening approaches. Even though sequential bifurcation might identify the
importance of the group that contains both factors (if they are by chance located in
the same group), dividing the group will make the observable effect vanish as the
factors are no longer simultaneously set to their high values.

Speed
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High
Low

  Success?               
No
No
No

 Stealth
Low    
Low
High  

Speed

St
ea

lth

b. One-at-a-time sampling effects

Fig. 6.12: Design matrix of a one-at-a-time sampling applied to a capture the flag
simulation model (Sanchez and Wan, 2012).

Numerous extensions of the approach were proposed to take this and other re-
strictions of the initial sequential bifurcation approach into account. Some exten-
sions of the sequential bifurcation approach take interactions between factors into
account (Wan et al., 2010; Kleijnen, 2015). Examples are sequential bifurcation
for two-factor interactions or fold-over designs (Kleijnen, 2008). As discrete-event
simulation and the approach presented in this work focus on stochastic simulations,
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Controlled Sequential Bifurcation must be emphasized which extends sequential
bifurcation by hypothesis-testing to control error and power (Wan et al., 2006).

Kleijnen noted, that a major shortcoming of sequential bifurcation is the lack
of suitable software (Kleijnen, 2009). Therefore, he encourages the development of
software for simplifying the application of sequential bifurcation in simulation ex-
periments. He places especial stress on the sequential context switches between sim-
ulations and calculations that are required when applying and conducting sequential
bifurcation. Thus, to facilitate the integration of sequential bifurcation in simulation
studies, the automated exchange of runtime information between the model and the
screening algorithm is reasonable. After initializing sequential bifurcation, its fur-
ther procedure does not need to be supervised. The algorithms for estimating the
main effects are defined and respective simulation runs can be executed automati-
cally based on a parametrization that is defined by sequential bifurcation.

To conclude, factor screening in simulation provides promising approaches for
the identification of important factors. Such information regarding the simulation
model is required for the intelligent assistance presented here. By this means, the
sparsity-of-effects principle can be taken into account. The identification of impor-
tant factors allows for a more targeted and efficient investigation of the parameter
space that influences a specific performance measure of the model.

6.3.2 Experimental Design

After a set of important factors was identified, the next step in a simulation study is
the identification of relevant experiments and runs. As described in Section 6.1.2,
the number of factors in simulation models is usually too large to cover the entire
parameter space when analyzing the behavior of a model in a simulation study. To
overcome this issue, the identification of important factors is a first step towards
the limitation of the parameter space. However, the number of levels per identified
relevant factor might still be too large to cover the entire parameter space and to
simulate all resulting factor-level combinations. Furthermore, factors that were not
identified as important might still have a minor impact on the performance measure.
This is why the systematic and justified selection of one or even multiple levels for
each factor is important with respect to the soundness of the study and its results.

Design of experiments comprises approaches (experimental designs) for planning
scientific experiments. The aim of experimental designs is to facilitate the system-
atic, efficient, and methodologically sound specification of experiments. In simula-
tion, such techniques can be used for the methodologically-grounded selection of
parametrizations that are applied to the model during the study. The definition of
experiments depends on both the research hypothesis which ought to be answered
by the simulation study as well as the estimated importance of the model’s factors.
Accordingly, experimental designs provide a sampling of investigated values for all
input variables of the model that are not explicitly defined by the hypothesis but
are still of importance for the sound observation of the model’s behavior. For this
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purpose, this subsection focuses on the combination as well as the formal specifica-
tion of experimental designs for answering research questions in Hypothesis-Driven
Simulation Studies.

Definition 6.20 (Experimental Design).
An experimental design (ED) is a set (design matrix) that systematically defines
all observations (design points) of a model’s behavior where

– L1 = (1, ..., l1) defines the levels of the first factor x1 2 X ,
– L2 = (1, ..., l2) defines the levels of the second factor x2 2 X ,
– Lk = (1, ..., lk) defines the levels of the k-th factor xk 2 X ,
– R = (1, ...,n) defines the replications of each design point.

Thus, for a model with two factors x1 and x2 it follows:

– 8i = 1, ..., l1, j = 1, ..., l2,k = 1, ...,n 9hi, j,k 2 ED and
– |ED|= l1 · l2 ·n with
– l1, l2, lk, i, j, k, and n 2 N.

The parameter space of a model defines the maximum possible number of factor-
level-combinations (cf. Definition 6.20). Based on this, experimental designs sys-
tematically define those factor-level-combinations, which are applied to the model
as parametrizations in a simulation study (design points) (Montgomery, 2013). For
each input variable (factor) xi of a model M, a set of admissible values (levels) Di
exists (cf. Definition 6.2). The number of levels for the 1st factor x1 2 X is l1, for the
2nd factor x2 2 X it is l2, and lk for the kth factor xk 2 X . The following definitions
refer to two-factor designs where only two factors (x1 and x2) are processed by the
experimental design. When initializing and executing a model with a specific factor-
level-combination according to a defined design point hi, j 2 ED, the corresponding
observable output (response) Y of model M is defined as yi j. Here, factor x1 is set to
level i and factor x2 is set to level j with i = {1, ..., l1} and j = {1, ..., l2}.

In stochastic simulations, n is the estimated number of required replications for
statistical certainty. Accordingly, yi jk is defined as the output Y of model M when
factor x1 is at level i, factor x2 is at level j for the k-th replication of the parametriza-
tion with i = {1, ..., l1}, j = {1, ..., l2}, and k = {1, ...,n}. When the same factor-
level-combination is simulated multiple times (n > 1), µi j is the arithmetic mean of
all respective yi j, i.e., the mean of the i j-th cell of the design matrix shown in Fig-
ure 6.13. Making use of this aggregation of responses for equal parametrizations in
probabilistic simulation, experimental designs can be defined by their means model
(cf. Definition 6.21). For this purpose, the model’s response yi jk is defined via a
metamodel as the sum of µi j and a respective error term ei jk. Commonly used ex-
perimental designs are the 2k factorial design or Latin Hypercube Sampling.
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Definition 6.21 (Model Response).
According to Montgomery (2013), the model’s responses that are observed
based on an experimental design (ED; cf. Definition 6.20) are defined by a
means model so that for each design point hi, j,k 2 ED the observed response
can be described by

yi jk = µi j + ei jk

8
><

>:

i = 1, ..., l1
j = 1, ..., l2
k = 1, ...,n

with

µi j =
1
n

n

Â
k=1

yi jk

and the random error component ei jk for l1, l2, i, j,k,n 2 N.

Factor!"#
1 2 ... $#

Factor!"%

1 y111, y112, y121, y122, ... y1b1, y1b2,

..., y11n ..., y12n ..., y1bn

2 y211, y212, y221, y222, ... y2b1, y2b2,

..., y21n ..., y22n ..., y2bn

... ... ... ... ...

$% ya11, ya12, ya21, ya22, ... yab1, yab2,

..., ya1n ..., ya2n ..., yabn

Fig. 6.13: General design matrix and corresponding results for a two-factor factorial
design (Montgomery, 2013).

Experimental designs are not limited to two factors. For each further factor, the
definitions can be extended by the respective factors. Accordingly, three-factor de-
signs are a simple extension of two-factor designs by a third factor x3 (Montgomery,
2013). In this case, the new third factor x3 2 X consists of l3 levels and the total
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number of observations increases to l1 · l2 · l3 ·n for probabilistic models. yi jmk is the
model’s response when factor x1 is at level i, factor x2 is at level j, factor x3 is at level
m for the k-th replication of the parametrization with i = {1, ..., l1}, j = {1, ..., l2},
m = {1, ..., l3}, and k = {1, ...,n}. For more than three factors, the extension of the
experimental design is implemented similarly.

Experimental designs consist of l1 · l2 · ... ·n independent observations and the or-
der in which the observations are made is not specified. In this regard, Lattner et al.
(2011a) presented two fundamental strategies that provide an order in which the
observations are made: replication-based execution and parameter configuration-
based execution (cf. Figure 6.14). This is relevant for stochastic simulations. If all
required replications per run are executed for each parametrization, the generated re-
sults have a high statistical reliability. However, the response surface is investigated
gradually and remains incomplete during the execution of this strategy. Another ap-
proach is to iteratively simulate one iteration per parametrizations to receive a first
vague impression of the shape of the resulting response surface as soon as possible.
In this case, the statistical certainty of the results is achieved as multiple iterations
(replications) are performed.
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Fig. 6.14: Orders for performing simulation runs: a) replication-based execution and
b) parameter configuration-based execution (Lattner et al., 2011a).

The most basic experimental design is the full factorial design. As the name
implies, the full factorial design consist of all possible factor-level-combinations of a
model. This provides highest-confidence results and thus is well suited for analyzing
the entire parameter space of a model. Yet, Sanchez and Wan (2012) compared full
factorial designs to a brute force approach and emphasize its inefficiency for models
with a large number of factors.

In practice and in terms of computational complexity, this is only applicable if
the model consists of a small number of input factors and a small number of levels
per factor. Hence, in case information on the interaction of a large number of factors
in a more complex model is required, the range of factor levels must be limited. An
example of an fractional factorial design with limited factor levels is the 2k factorial
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design where only two levels per factor are considered, i.e., a low (-1) and a high
(+1) value (cf. Definition 6.22). The process of normalizing the levels of each factor
to the domain [�1,1] is referred to as coding (cf. Table 6.2) (Natrella, 2012). For the
application of this design, and with respect to the quality of the generated results, the
type of factors must be considered. While the 2k design works well with a smaller
number of quantitative factors, it is not well-suited for qualitative factors. In case the
number of levels is limited (m  10), the mk design can be applied instead (Sanchez
and Wan, 2012). Here, m levels are investigated instead of only two levels as in the
2k design.

Definition 6.22 (Experimental Design: 2k factorial design).
According to Sanchez and Wan (2012), for two factors xA and xB with the low
(�) and high (+) levelsDxA = {A�,A+} andDxB = {B�,B+}, the observations
made by a 2k factorial design

yi j with i 2 {1,2} and j 2 {1,2}

are defined as

y11 = yA�B� , y12 = yA+B� , y21 = yA�B+ , and y22 = yA+B+

by a k⇥2k design matrix (cf. Table 6.2).

Considering a model with 10 factors and 10 levels per factor, the increase in
efficiency provided by fractional factorial designs can be illustrated. While the un-
controllable amount of 1010 = 10,000,000,000 design points needs to be analyzed in
a full factorial design only 210 = 1,024 design points result from a 2k factorial de-
sign. However, considering Sanchez’s capture-the-flag example from the previous
subsection (cf. Figure 6.12), reducing the parameter space by means of a fractional
factorial design might result in a bias perception of the actual shape of the model’s
response that must be considered as well (Sanchez and Wan, 2012).

Table 6.2: Design matrix of a 2k factorial design (Sanchez and Wan, 2012).

Design Point Factor A Factor B Response
1 A� B� y11

2 A+ B� y12

3 A� B+ y21

4 A+ B+ y22

It is important to note that the low and high values of a factorial design must not
be mistaken with the low and high values of factor screening approaches. In contrast
to the factor screening terminology, where low or high is defined by the factor level’s
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impact on the model’s behavior, low and high levels in factorial designs represent
numerically low and high values of the respective factor. This does not apply for
factors whose values are nominally scaled as they cannot be sorted. In this case, low
and high levels of the factor must be defined by the experimenter.

To overcome shortcomings in the coverage of the model’s response of classical
fractional factorial designs like the 2k factorial design, more advanced designs need
to be applied. A widely used and efficient design for models with a large number
of factors and levels is the Latin Hypercube Design (Hernandez et al., 2012). It
was developed with respect to reducing the variance when drawing samples but is
also well suited as screening technique (Saliby, 1997). In contrast to 2k and other
mk factorial designs, the space-filling properties of latin hypercube designs must
be emphasized. Design points do not cover the model’s response like a grid but can
randomly cover any point on the entire response of the model. Thus, latin hypercube
designs are well suited for visualizations and visual analysis of the model’s input-
output relations for a low number of dimensions.

Definition 6.23 (Experimental Design: Latin Hypercube Sampling).
For each of the model’s k random factors x1,x2, ...,xk, the probability distri-
bution is known. Based on this, the range of possible levels is divided into n
intervals (strata) of equal probability (1/n). For each factor, one random value
is drawn from each interval.

The design matrix (ED) of a Latin Hypercube Design is then represented by a
(k⇥n) latin square such that each of the k columns consist of a permutation of
the levels that were randomly drawn for the respective factor.

ED =

2

64
h11 ... h1k

... ... ...

hn1 ... hnk

3

75

For generating a random latin hypercube design, it is assumed that the probability
distribution of the random input variables is known (cf. Definition 6.23). As a next
step, the range of levels for each input factor of the model is divided into n parts
(stratum) such that the probability of drawing a random sample from each segment
is equal (1/n) (McKay et al., 1979). Finally, a random value of drawn from each
stratum which serves as design point. In practice, the selection of each stratum’s
median value is applied, which again results in a grid-like order of the design points
(Hernandez et al., 2012). Based on the random values from or medians of the strata,
the design matrix is generated columns-wise for each of the model’s factors. For
each column, a random permutation of the sampled levels of the respective factor
is generated such that the values are randomly assigned to the n design points. Out
of nk potential design points, a latin hypercube design randomly selects a subset
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of n design points such that only one design-point is selected for each row and
column (cf. Figure 6.15). The identification of an admissible design and the resulting
optimization problem is related to the mathematical n queens problem. However, in
this case, diagonals are not part of the search problem.

!
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!
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Fig. 6.15: Latin hypercube design for two factors and five design points (Matala,
2008).

The result of this process is a (k⇥ n) design matrix where specific factor levels
of each of the k factors are defined for each of the n design points. In total, (n!)k

possible designs exist (Joseph and Hung, 2008). To facilitate the process of generat-
ing valid latin hypercube designs, numerous algorithms exist, e.g, the columnwise-
pairwise algorithm (Park, 1994).

Many helpful designs exist for the specification of simulation experiments. How-
ever, the identification and selection of adequate designs is challenging and depends
on multiple criteria. To facilitate the determination of a design for a specific appli-
cation, Sanchez and Wan (2012) presented different criteria for the differentiation
of factorial designs and assess common designs accordingly (cf. Figure 6.16). Cri-
teria include the number of factors, discreteness of factors, and the type of factors
(e.g., controllable and uncontrollable factors). Especially with respect to the assis-
tance of the design of experiments, a decision support that supports the selection of
a well-suited design is valuable.

6.3.3 Replication Estimation

The two previous steps of the design of experiments included the screening for
important factors and the specification of design points for the execution of the
model. This thesis focuses on the use of stochastic models for answering research
questions by means of simulation studies. Thus, and in contrast to deterministic
simulation models, equal parametrizations of the model do not necessarily result in
the same observed values of the model’s output variables. In contrast, a value from
an (unknown) probability distribution is observed. To assess shape and density of
this probability distribution and to estimate its mean value, multiple samples with
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Figure 7: Design comparison chart.Fig. 6.16: Comparison of different factorial designs (Sanchez and Wan, 2012).

different random number streams need to be drawn from the distribution to achieve
statistical certainty. Thus, the required number of replications (simulation iterations)
must be estimated during the process of a simulation study, i.e., how often the model
needs to be executed and how many observations are needed.

In most simulation textbooks, replication estimation is part of the output analysis
of simulation studies. This is reasonable, as many approaches provide an estimation
of whether or not a performed number of simulation iterations is sufficient based
on the respective output data (cf. Definition 6.24). In the approach presented in this
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thesis, the number of replications must be sufficient to draw conclusions while con-
ducting as few simulation iterations as possible to ensure the efficiency of the study.
When not conducting a sufficient number of replications, wrong conclusions might
be drawn while a too large number of replications is inefficient as hardware capaci-
ties are needlessly utilized (Hoad et al., 2007). Thus, the ex post estimation whether
or not a specific number of iterations is sufficient or not is not suitable as the system
can not respond to it. Likewise, in a black box approach as pursued in this thesis, the
estimation of the number of replications before executing the model is challenging
due to a lack of information on the model and its behavior. It seems most reason-
able to evaluate at runtime whether or not a sufficient number of iterations have
been conducted. For this purpose, termination criteria must be defined before exe-
cuting the model which define the required precision when checking if the number
of replications is sufficient. The definition of criteria for replication estimation takes
place before conducting the experiments. Hence, related approaches are presented
and discussed as part of the design phase.

Definition 6.24 (Replication Estimation).
The required sample size of a simulation is defined as the minimum number
(n) of independent replications of a simulation model that need to be executed
to estimate the mean (µ) of the underlying probability distribution of an out-
put (y j) based on the mean value of n observations with a given satisfactory
precision dn.

In accordance with Law (2014), Hoad et al. (2010a) formulated the underlying
problem as follows: The goal of a simulation study is to estimate the mean value
(µ) of an output (y j) of a simulation model, e.g., the mean waiting time of cus-
tomers in a queuing model. For this purpose, the model is executed n times with
the same parametrization to gather a set of output values y1, ...,yn where output y j
is one independent and identically distributed observation of the value of an output.
For a large number of independent replications (n), it is assumed that the mean of
a model’s output variable or performance measure is approximately normally dis-
tributed. Thus, an increasing number of replications (n) results in the convergence
of y j to a normal distribution.

A statistical standard means for estimating the number of required replications
are confidence intervals, which make use of this feature of simulation outputs. Other
approaches for estimating the sample size of simulation iterations exist as well, e.g.,
the rule of thumb (Law, 2014) or graphical methods (Robinson, 2004). However,
these approaches are highly subjective as the estimation of whether or not a number
of replications is sufficient is made based on a user’s subjective judgment and not
based on objective measures or algorithms. Thus, both reproducibility and compa-
rability of the results are limited. Banks (2014) proposed an automatable method for
predicting the number of replications based on a small (n < 5) initial set of obser-
vations. Yet, the sample size estimated based on this small dataset’s variance might
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lead to an overestimation or underestimation of the required number of replications.
While a response to an underestimation is the conduction of further replications,
an overestimation is inefficient as too many replications are executed. Confidence
intervals, in contrast, enable the user to specify a precision for the mean of the con-
sidered output variable. Furthermore, a significance level must be stated to define
the probability of the sampling error. In this regard, a confidence interval for esti-
mating the mean value of the probability distribution of a simulation model’s output
variable with a specific precision as defined in Definitions 6.25 and 6.26. To ensure
that the precision remains within the defined bounds, an additional number of kLimit
iterations is performed when the precision is met.

Definition 6.25 (Confidence Interval).
For independent and identically distributed observations of the value of a
model’s performance indicator, a 100(1�a)% confidence interval is defined
as

X̄n ± tn�1,a/2 ·
Snp

n

with the performance measure’s mean X̄n, standard deviation Sn, and the Stu-
dent t-distribution’s quantile tn�1,a/2 for n 2 N.

Definition 6.26 (Confidence Interval: Precision).
To obtain a satisfactory estimate of the mean value, the precision (dn) is de-
fined as the percentage deviation of the confidence interval about the cumula-
tive mean

dn =
100tn�1,a/2 · Snp

n

X̄n
.

Two shortcomings of the approach must be taken into account when applying
confidence intervals for estimating the required number of replications in simulation
studies (Hoad et al., 2007). First, due to a random sequence of similar observations
that are all distant from the actual mean (outliers), the precision criterion might be
met too early. This results in poor accuracy of the result (Heidelberger and Welch,
1981). In the presented approach, the precision (dn) of the n-th iteration of the algo-
rithm is defined as the half width of the confidence interval and stated as percent-
age share of the cumulative mean for easier understanding. According to Robinson
(2004, p. 156), the precision “acts as a measure of the narrowness of the inter-
val”. With the help of an example, the authors illustrate that the number of required
simulation runs increases considerably when decreasing the maximum permissible
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deviation: 3 replications for <10% deviation, 6 replications for <5% deviation, and
12 replications for <3% deviation. Second, a small number of replications in com-
bination with data that is not normally distributed might result in a coverage which
is too low. To avoid this issue and to prevent biased results when automating the
confidence interval approach for estimating the required sample size in a simulation
study, Hoad et al. (2007) introduced the replications algorithm (cf. Figure 6.17).
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Fig. 6.17: Sequence of the confidence interval replications algorithm (Hoad et al.,
2007).

The presented algorithm sequentially defines and executes replications of a spe-
cific simulation run until a termination criterion is met. To initialize the algorithm,
the experimenter is required to provide values for the level of precision as well as for
the significance level of the confidence interval. However, general standards for re-
quired threshold values do not exist and many disciplines defined minimal standard
values. According to Hoad et al. (2007), the algorithm executes three replications of
the simulation before calculating the confidence interval for the first time. In case
the required precision (drequired) is not met after three initial runs, individual runs are
performed until it is met. Once the required precision is met (Nsol = n), which might
be the result of early and misleading convergence due to outliers, it is reasonable to
analyze whether the precision criteria is met permanently and not violated during
the following replications. For this purpose, an additional number of f (kLimit) iter-
ations is performed when dn  drequired . If the precision of all f (kLimit) iterations is
less or equal to the required precision, Nsol is defined as minimum required number
of replications. A graphical representation of the results is shown in Figure 6.18.

The shortcoming of the replication algorithm presented by Hoad et al. (2007) is
that for some models it might take a long time until the required precision is met.
Certainly for simulations where the execution of a single run takes a long time,
this is unsatisfactory for the user as the remaining time cannot be assessed. To ad-
dress this issue, Banks (2014) presented a formula for estimating the number of
replications required to achieve a specific precision (cf. Definition 6.27). However,
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Fig. 6.18: Graphical example of the replication algorithm (Hoad et al., 2007).

Hoad et al. (2007) concluded that Nsol is not likely to be valid for n < 30. Still, as
the number of replications increases, this formula provides an increasingly accurate
estimate of the remaining number of replications until the precision is met. Another
benefit of the presented approach is that its execution does not require human super-
vision after the definition of the threshold values.

Definition 6.27 (Iterative replication estimation).
According to Banks (2014), the sample size required to reach the desired preci-
sion (Nsol) can be estimated based on an estimate of the mean and the standard
deviation of a simulation output:

Nsol⇤ =
100tn�1,a/2sn

X̄ndrequired

�2
.

This section presented approaches for assisting and automating the design of
simulation experiments. This includes the screening for important factors, the appli-
cation of experimental designs for systematically limiting the investigated parameter
space, and the estimation of the required number of replications. With regard to the
assistance of the automated conduction of Hypothesis-Driven Simulation Studies,
these approaches allow for the identification and specification of required simulation
experiments for answering the initial research question. Based on the performance
measure, whose behavior under specific circumstances is hypothesized as part of
the research question, relevant input factors can be identified and a set of factor-
level-combinations can be defined for the experimentation, i.e., individual simula-
tion runs. Furthermore, to ensure statistical reliability of the results for answering
the research question, the number of required replications can be estimated auto-
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matically as well. This enables the assisted design of experiments that are required
to answer the hypothesis.

6.4 Execution of Experiments

In the previous subsection, relevant experiments were designed which are required
to decide whether to confirm or refute the study’s initial hypothesis. As a next step,
these experiments must be executed to observe the behavior of the model.

Experimentation in simulation studies consist of two aspects: the execution of
experiments as well as the management of experiments. According to Maria (1997),
important tasks for the execution of the experiments include the selection of the run
length and the definition of appropriate starting conditions, e.g., the initial amount of
customers in a queuing model. Besides the definition of specific starting conditions
that require detailed model knowledge and the possibility to modify the model’s
state, warm-up periods might be required to realistically fill the model (Robinson,
2002). Furthermore, the random number stream used for the execution of the model
is important with respect to the comparability and reproducibility of simulation runs
(Uhrmacher et al., 2016). In addition to data and the model itself, the execution
system (framework) is defined as part of the simulation’s scenario. It is required to
execute the model and to generate its behavior.

Finally, a thorough management of the experiments as well as of the generated
data is necessary. One or more simulation runs with individual parametrizations of
the model are derived from each designed simulation experiment. Each of these sim-
ulation runs can be seen as an individual simulation task which combines a scenario,
consisting of the model, and a specific parametrization. This allows for the paral-
lelization of the execution of simulation tasks. For this purpose, a central unit, e.g., a
queue, is required for the collection and management of these simulation tasks and
the respective results.

To facilitate and assist the conducting of experiments in simulation studies, three
aspects are considered in this section: simulation frameworks for the execution of
the model, the concept of a simulation queue for storing and parallelizing simulation
tasks, as well as use and importance of random numbers.

6.4.1 Simulation Framework

As part of the assistance presented in this thesis, the experimenter provides only
the model and a respective research question. Thus, for the automated execution of
the model, the simulation framework must be part of the assistance, connected to the
assistance, or accessible by the assistance (cf. Definition 6.28). This can be achieved
by means of suitable wrapper classes or by using (standardized) interfaces that are
provided by the frameworks.
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Definition 6.28 (Simulation Framework).
The model execution function f (cf. Definition 6.10), which is implemented by
model M, is executed by framework F . Accordingly, F generates the model’s
outputs based on a specific set of inputs and the model’s execution function f .

The simulation framework is accessed, executed, and controlled by the
assistance via wrapper classes. An individual wrapper class must be developed
for each framework. To execute a model by means of a wrapper class, the
framework must at least provide the following interfaces or functionalities:

– specification or reference of the simulation model to be executed,
– specification of the parametrization of the model,
– functionalities to start and stop the simulation run,
– and an interface to return the outputs of the simulation.

In this thesis, NetLogo serves as an example framework for the specification
and evaluation of the presented approach. It is an established framework that was
first released in 1999 and is still maintained (release of version 6.0.4 in June 2018).
NetLogo focuses on agent-based simulation, does not require advanced modeling
and simulation skills, and still enables the construction of complex models (Abar
et al., 2017). The model building is further facilitated by a comprehensive graphical
interface that allows for the visualization of both the model execution as well as the
evaluation of the results. Hence, it is well-suited for novices as well as experienced
users. It is free to use (GNU General Public License) and includes an extensive
library of example models from different domains.

NetLogo provides two ways of conducting experiments: with and without using
the graphical interface (headless). With respect to the automation of simulation
studies, the headless execution seems more suitable. Neither the assisted oper-
ation of the model, e.g., to parameterize the model, nor a graphical illustration of
the model’s outputs are necessary in such a system. Furthermore, the operation of a
graphical interface has a negative impact on the performance of the simulation runs
and unnecessarily slows down the execution of the model. Therefore, the headless
option of NetLogo (org.nlogo.headless.Main class) is well-suited for the
conceptualization of the assistance system.

When executing simulations in NetLogo by means of the headless option, six
arguments can be specified (cf. Definition 6.29). The model (the path to the model) is
mandatory as well as either the reference to a predefined experiment, which is part of
the model or the path to a XML file that defines an experiment. By default, NetLogo
does not display or save the outputs generated by the model. Still, they are required
to analyze whether or not the hypothesis holds. For this purpose, either the spread-
sheet, the more detailed table option, or both options can be used in case a logging
of results was not implemented when building the model. Finally, the headless
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option of NetLogo allows for the definition of the number of CPU threads that shall
be utilized by NetLogo to execute model runs in parallel. For the assistance that is
specified in this thesis, this option is not relevant. The parallelization of model exe-
cutions is managed globally by the experiment queue and is not subject to specific
parallelization algorithms provided by the simulation frameworks. Thus, this option
is set to 1 to disable parallel runs.

Definition 6.29 (Specification of a Simulation in NetLogo).
The minimal requirements for the execution of simulations in NetLogo are:

fNetLogo : (model,(setup- f ile� experiment),(table_ spreadsheet), threads)
! (table0 _ spreadsheet 0)

with

– model: nlogo model that shall be executed,

one of the inputs

– setup- f ile: XML definition of experiment,
– experiment: name of predefined experiment in the model,

optionally one or both outputs

– table0: row-wise data of each run and step, chronologically sorted by the
completion of the step (updating table),

– spreadsheet 0: column-wise data of each run, with aggregated and chrono-
logical step-wise results (updating spreadsheet),

and the number of threads which defined how many runs are executed at the
same time.

Besides the model, a specification of an experiment is required for conducting
simulation runs. In NetLogo, experiments are defined in XML and consist of 4 at-
tributes and 8 different types of elements (cf. Definition 6.30). The structure for
specifying experiments in XML is defined by the provided behaviorspace.dtd
file (cf. Code 6.2). Attributes define basic characteristics of experiments such as its
name, in which order the runs are executed, and how the outputs are logged. Fur-
thermore, the number of repetitions is statically defined and applied for each run of
the simulation experiments.

Section 6.3.3 outlined the importance of a sufficient number of replications and
introduced approaches for individually estimating the required number of replica-
tions. Yet, the specification of one sample size for all simulation runs of an exper-
iment is neither efficient nor methodologically reasonable. To ensure the statistical
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soundness of each runs’ results, the sample size of all runs must be equal to the
number of replications estimated for the most extensive simulation run. Especially
in simulation experiments where the required sample size of the runs varies greatly,
this would result in the execution of unnecessary replications.

Definition 6.30 (Specification of an Experiment in NetLogo).
In NetLogo, an experiment expNetLogo is defined by the following attributes

– name: unique identifier (name) of the experiment
– repetitions: the number of iterations for each simulation run
– sequentialRunOrder: whether or not the order of runs is of importance
– runMetricsEveryStep: whether or not the values of the output variables are

logged after each step

and elements

– setup: procedure for initializing the model
– go: procedure for starting the simulation
– f inal: procedure which is executed at the end of each run
– timeLimit: number of steps before forced termination of simulation
– exitCondition: simulation terminates when this expression applies
– metric: output variables
– steppedValueSet: step-wise values of an input (e.g., 10 to 40 in steps of 5)
– enumeratedValueSet: specific values of an input (e.g., 10, 25, and 60).

The decision whether or not to save the values of the output variables after each
simulation step depends on both the model and the hypothesis. For example, in some
models it is necessary to reset statistical measures after a specific warm-up period
to eliminate bias resulting from an unrealistic under-utilization of the model.

Considering the elements for specifying experiments, there must be discrimi-
nation between elements to configure and execute the model that require detailed
knowledge of the model’s structure and elements for specifying the parametriza-
tion of the model. With respect to Hypothesis-Driven Simulation Studies, the latter
group of elements is most relevant. Stepped and enumerated value sets define the
factor levels that are tested in simulation runs. While stepped value sets define start
and end values as well as the stepsize, enumerated value sets define a number of
individual values. Furthermore, time limits and exit conditions can be set as required
by the hypothesis.

6 The Document Type Definition (DTD) file that specifies XML experiment setups in NetLogo
is part of the NetLogo.jar file that is provided by the official NetLogo installer or
archive (https://ccl.northwestern.edu/netlogo/download.shtml [Retrieved
Aug. 2018]).

https://ccl.northwestern.edu/netlogo/download.shtml
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Code 6.2: Document type definition of NetLogo experiments (behaviorspace.dtd6).
<?xml version=’1.0’ encoding=’us�ascii’?>

<!�� This is the format for the BehaviorSpace experiment setups section of a NetLogo
model file: https://ccl.northwestern.edu/netlogo/docs/behaviorspace.html ��>

<!ELEMENT experiments (experiment⇤)>
<!ELEMENT experiment (setup?,go?,final?,timeLimit?,exitCondition?,metric⇤,
(steppedValueSet|enumeratedValueSet)⇤)>
<!ATTLIST experiment
name CDATA ""
repetitions CDATA "1"
sequentialRunOrder (true|false) "true"
runMetricsEveryStep (true|false) "true">

<!ELEMENT setup (#PCDATA)>
<!ELEMENT go (#PCDATA)>
<!ELEMENT final (#PCDATA)>

<!ELEMENT timeLimit EMPTY>
<!ATTLIST timeLimit steps CDATA #REQUIRED >
<!ELEMENT exitCondition (#PCDATA)>
<!ELEMENT metric (#PCDATA)>

<!ELEMENT steppedValueSet EMPTY>
<!ATTLIST steppedValueSet
variable CDATA #REQUIRED
first CDATA #REQUIRED
step CDATA #REQUIRED
last CDATA #REQUIRED>

<!ELEMENT enumeratedValueSet (value+)>
<!ATTLIST enumeratedValueSet variable CDATA #REQUIRED>
<!ELEMENT value EMPTY>
<!ATTLIST value value CDATA #REQUIRED>

An example of an XML definition of an experiment in NetLogo is presented
in Code 6.3. The model, based on which this experiment was designed, simulates
the spread of a virus in a human population. A certain percentage of a predefined
number of people is infected with a virus and infects other people while moving
around in an environment. The model can be used to analyze how the density of the
population, different levels of infectiousness, chances to recover from the virus, and
the timespan between infection and recovery affect the spread of the virus. NetLogo
experiment exp1 is specified by this XML file and consists of three simulation
runs. Each of the runs is replicated only once. The values of the output variables are
gathered after the simulation has terminated and not after each step. Both setup

and go are functions provided by the model to trigger its initialization as well as
its execution. A time limit of 100 steps implies that the model will at the latest



190 6 Services for the Assistance of Simulation Studies

terminate after 100 simulation steps have passed. In case the exit condition is met
before, the simulation will terminate even though 100 steps were not yet simulated.
In the presented experiment, an infection of 100% of the population will also result
in the termination of the model as no further infections can occur. However, the
model might also terminate independently and while none of the two criteria is met.
Possible causes are internal termination criteria such as the eradication of the virus
or an error that occurred during the execution of the model. Metric defines, which of
the model’s variables serves as output. The values of this variable are logged after
each simulation run or even after every step of the simulation if required. Finally,
the enumerated value set defines that three different simulation runs are executed
and that the model is parametrized with three different values (50, 60, and 70) of the
input variable infectiousness. The remaining input variables are set to their
standard values, which are defined by the model.

Code 6.3: XML specification of a simulation experiment for the NetLogo virus
model (Wilensky, 1999).

<experiment name="exp1" repetitions="1" runMetricsEveryStep="false">
<setup>setup</setup>
<go>go</go>
<timeLimit steps="100"/>
<exitCondition>%infected = 100</exitCondition>
<metric>count turtles with [ sick? ]</metric>
<enumeratedValueSet variable="infectiousness">

<value value="50"/>
<value value="60"/>
<value value="70"/>

</enumeratedValueSet>
</experiment>

Based on an XML description of an experiment and a runnable model, NetLogo
executes simulation runs and returns the observed values of the output variables
(metrics). Both the spreadsheet and the table format for exporting the outputs of the
model save the data as CSV files where each row or column represents the (stepwise)
output values of one simulation runs. Aggregation, advanced statistical processing,
and interpretation of these results are not part of NetLogo’s range of functions. It
is limited to the indication of basic minimum, maximum, and mean values of the
output variable or variables for each simulation runs. Thus, to draw conclusions
from results generated using NetLogo, external tools must be utilized.

To use, integrate, and utilize a simulation framework as part of the simulation
assistance, a wrapper class is required (cf. Definition 6.28). In the case of NetLogo,
the minimal requirements for the execution of a simulation consist of two manda-
tory components: a model and a specification of one or many experiments. While
the NetLogo model that is required for the simulation study is directly provided
by the experimenter, the experiments are specified by the assistance and exist in
a framework-independent format. For the use in NetLogo, the wrapper class must
first convert these experiments into XML files that correspond to the NetLogo ex-
periment specification standards (cf. Code 6.2). After executing all experiments, the
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NetLogo framework returns CSV output files that contain all results. All data from
these files must be aggregated and converted into a unified format such that they can
be processed by the assistance (cf. Figure 6.19).
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Fig. 6.19: Integration of a simulation framework (NetLogo) into the assistance.

The simulation framework is an important component to execute the simulation
models, to generate and observe the behavior of the model, and to record values
of the output variables for further analyses. Even though some frameworks support
the design of simulation experiments, this is no standard functionality of simula-
tion frameworks. To execute experiments and to observe the behavior of the model
under specific circumstances, both a runnable simulation model as well as a speci-
fication of an experiments must be provided in a format which is determined by the
framework. Yet, the step of a simulation study in which experiments are conducted
is not limited to the operation of a simulation framework. Especially in experiments
where a large number of factor-level-combinations is simulated, the parallelization
of simulation runs is reasonable. Even though some frameworks support the parallel
execution if simulation runs, the approach presented in this thesis decouples conduc-
tion and parallelization of simulation runs by means of a central experiment queue.
By this means, model-specific adaptations that allow for the parallelization are not
required. With respect to parallel discrete event simulation, the synchronization of
the distributed execution of simulation models is challenging so that results cor-
respond to those received during the sequential execution of the model (Fujimoto,
2000).

6.4.2 Scaling and Parallel Execution of Simulation Runs

Simulation frameworks provide functionalities to execute simulation runs based on a
specification of an experiment and the corresponding model. In simulation studies,
a great number of simulation experiments and runs might be required to answer
the initial research question. A reason for this is the large number of factor-level-
combinations that results when multiple factors as well as multiple levels per factor
must be considered.
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Accelerating the efficient execution of simulation experiments is challenging and
many common simulation frameworks perform poorly when scaling experiments
(Lorig et al., 2015). These shortcomings often cannot be avoided by providing bet-
ter simulation hardware such as more RAM and CPU cores. To reduce the time that
is required to execute a model with all identified parametrizations, parallelization
of simulation runs seems reasonable as no model specific adaptations are required.
Both technical hardware limitations as well as issues related to the economic ineffi-
ciency of upgrading existing hardware can be overcome by this means.

Distributed systems are a possible approach for the parallelization of simula-
tion runs. Yet, for parallelizing simulation runs with distributed simulation systems,
queuing mechanisms must be provided to manage and distribute simulation tasks.
In this subsection, metrics for measuring how simulation performs in scaled and
parallel environments are presented.

When distributing simulation runs to a network of simulation servers, an allo-
cation problem occurs. Usually, both servers and simulation runs differ in their ca-
pacities and requirements. Thus, to swiftly execute simulation runs while efficiently
utilizing available hardware, criteria for solving the allocation problem are required.
Speedup and efficiency can serve as indicators to compare different hardware config-
urations with respect to efficiently executing simulation runs (cf. Definition 6.31).
Both measures are commonly used to assess the performance of parallel algorithms
and systems (Eager et al., 1989). Pawlaszczyk and Strassburger (2009) proposed
the application of these measures to quantify the performance of distributed simula-
tions.

Definition 6.31 (Simulation Performance Metrics).
The speedup is defined as the ratio between the execution time of a simulation
run in serial execution (Zserial) and the execution time of the same simulation
run in parallel execution (Zparallel) with multiple CPU cores:

speedup =
Zserial

Zparallel

Based on this, efficiency is defined as the ratio between the achieved speedup
and the number of CPU cores that were provided for the parallel execution:

efficiency =
speedup

#CPU cores

The speedup metric can be calculated when simulation runs are scaled to multiple
CPU cores. When doing so, the effect a parallel execution of a simulation model
has compared to the serial execution is measured and compared to the time that
is required for the single-core execution. In practice, the ideal scenario (a linear
speedup of 100%) can hardly be measured due to additional efforts that are required
to distribute and coordinate parallelized simulation runs. In theory, values between
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0% (doubling the number of CPU cores does not affect the execution time at all) and
100% (doubling the number of CPU cores halves the execution time) are possible.
Efficiency is based on the speedup and is defined as the ratio between speedup and
the number of used CPU cores. Accordingly, it is a measure for the utilization of
the provided CPU cores. Negative values are possible as parallelization might also
affect the execution time of a simulation run in a negative way.

With respect to the distribution of simulation runs and the efficient utilization of
available simulation hardware, the two presented metrics can be used to measure
how different simulation models and parametrizations of a model are affected by
scaled hardware resources (Lorig et al., 2015). Accordingly, individual simulation
tasks can be distributed to appropriate servers in a distributed system. By this means,
each simulation run can be assigned to a well-suited server so that unused compu-
tation capacities are minimized while considering the potential for acceleration of
each simulation task. To generate data for the calculation of the presented metrics,
simulation models must be benchmarked using different hardware configurations.

6.4.3 Random Numbers

For the execution of probabilistic models, random numbers are required (cf. Sec-
tion 2.2.2). It is challenging to generate random numbers from a specific probability
distribution in a convenient and efficient way. In this regard, Law (2014) empha-
sized, that the phrase “generating random variables” is misleading as random vari-
ables are defined by probabilistic distributions. Instead, the process of generating
random numbers as values of input variables should be referred to “generating ran-
dom variates”. For the purpose of generating a random number stream, random
number generators are used, which produce a deterministic sequence of random
numbers (L’Ecuyer, 2012). Yet, not all random number generators are equally use-
ful and L’Ecuyer (2012) argued that results of simulation studies are meaningless in
case a poor random number generator was used. Especially with respect to the repli-
cation and verification of simulation results, the generation of random variates must
comply with methodological requirements. With respect to the sound integration of
random number generators, this subsection specifies and discusses the concept of
random numbers in simulation studies as well as the integration of random number
generators.

Traditionally, random numbers are generated based on physical probabilistic pro-
cesses such as throwing a dice, drawing numbers from an urn, or based on ra-
dioactive decay (Grimmett and Stirzaker, 2001). Such processes can be used for
generating real random numbers. However, with respect to simulation studies, the
generation of real random numbers is not feasible. For one thing, physical processes
cannot be accelerated and they are cost-intensive. For another thing, the exact repro-
duction of such processes is often not possible unless the drawn random numbers
are recorded thoroughly and the record is used for the reproduction of the simulation
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runs. In this case, an extension of either the model or the simulation is not possible
as additional numbers from the same sequence cannot be drawn retrospectively.

To simplify the generation of streams of random variates, the use of pseudo
random numbers is reasonable. Pseudo random number generators pursue a nu-
merical approach for generating random variates. Just like real random numbers,
good pseudo random numbers must fulfill statistical criteria such as uniformity and
independence (L’Ecuyer and Simard, 2007). Yet, in contrast to real random num-
bers, they are both predictable and reproducible, which makes them well suited for
the conduction of simulation experiments. With respect to conducting simulation
studies, the benefits of real random numbers do not compensate their shortcomings
which is why pseudo random numbers are used in the proposed approach. Further-
more, when referring to “random numbers” and “random number generators” in this
thesis, and unless explicitly stated otherwise, the interpretation as pseudo random
numbers is implied.

Formally, a pseudo random number generator is defined by a state (sn) from a
state space (S) as well as a transition function ( f : S ! S) that calculates the fol-
lowing state based on a given state (cf. Definition 6.32). The initial state (s0) of a
random number generator is also referred to as the seed value. This value can be
used to exactly reproduce a sequence of random numbers. As the state space of the
random number generator is finite and as the transition function is defined for each
possible state, the generated sequence of random numbers is periodic, i.e., repeti-
tive and infinite. In this regard, it is desirable that the period length (p) of a random
number generator is close or equal to the cardinality of the set of possible states
(L’Ecuyer, 1997).

Definition 6.32 (Random Number Generator).
According to L’Ecuyer (1997), a random number generator (RNG) is defined
by a sequence of states from a finite state space S with the transition function
f : S ! S and sn = f (sn�1) where n enumerates the steps with n � 1 and n 2N.
The initial state s0 2 S is also referred to as seed value of the RNG.

The output of the RNG at step n is un = g(sn) with the output function
g : S ! [0,1] and the output sequence {un, n � 0} with un 2 [0,1],un 2 R.

As S is finite, the sequence is periodic with periodic length p, where p near |S|
is desirable.

The output of a random number generator is a sequence of numbers in the real
interval [0,1]. The numbers of the resulting sequence are referred to as random
numbers. To assess the quality of random numbers, the aforementioned criteria of
uniformity and independence can be used (L’Ecuyer and Simard, 2007). The unifor-
mity of a sequence of random numbers is given if the generated random numbers are
equally distributed over the range of possible values. This can be tested by dividing
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the interval [0,1] into k equal groups. The chance, that a generated random number
falls into one of these groups should always be 1/k. A sequence of random numbers
is independent if no relation exists between the individual numbers of the sequence.
Accordingly, the probability that a random number falls into a specific group is not
influenced by other random numbers that were previously drawn. Further tests for
assessing the quality of random number generators were developed and published as
part of the diehard and dieharder test suites (Marsaglia, 1997; Brown et al., 2013).

In simulations, random numbers that correspond to these criteria are referred to
as independent and identically distributed random numbers (Law, 2014). Based on
the real interval [0,1], such random numbers can also be described by a continuous
uniform probability distribution (U(0,1)). Yet, for most simulation models, random
numbers from U(0,1) are not sufficient. They require a more advanced distribution
of the generated random numbers.

In manufacturing simulations, the time required to assemble a product results
from the time of each involved operation. Normal distributions are well suited for
the representation of the underlying stochastic distribution of manufacturing times.
In contrast to this, exponential probability distribution are appropriate to represent
the time to failure of a machine in a manufacturing system (Biller and Gunes, 2010).
Furthermore, a differentiation between continuous and discrete probability distribu-
tions needs to be made (Ross, 2013) (cf. Figure 6.20). While continuous probability
distributions can (theoretically) produce any possible value x 2 R within a defined
range of values, the amount of observable values is exactly specified and finite for
discrete distributions. In the case of manufacturing simulations, where the order
quantity of a customer varies between 1 and 10 products, discrete distributions (e.g.,
a Poisson distribution) can be used as only whole numbers of products exist.
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Fig. 6.20: Continuous (normal) and discrete (Poisson) probability distribution.
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Statistically, a probability distribution is defined by its probability density (cf. Def-
inition 6.33). For a specific range of values, the respective probability density func-
tion specifies relative probability to observe a value from this range. This applies
only for continuous random variables where it is nearly impossible to observe one
specific value x 2 R. Discrete random variables, in contrast, are defined by a count-
able number of values. Thus, discrete random variables are specified by a proba-
bility mass function where the exact likelihood to observe value x can be obtained.
For many probability distributions, the probability density function or probability
mass function is dependent on further parameters which specify the shape of the re-
spective function. The normal distribution, as an example for a common continuous
probability distribution, is defined by its mean (µ) and its variance (s2). Thus, µ
can be utilized to shift the probability density function along the x-axis while s2

vertically stretches or compresses the function (cf. Figure 6.21).

Definition 6.33 (Cumulative Distribution Function).
According to Abramowitz and Stegun (1965), the cumulative distribution func-
tion FX of random variable X specifies, for a given x, the probability that X will
generate a value less or equal to x with

Fx(x) = P(X  x).
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Fig. 6.21: Comparison of the shape of the probability density function of normal
distributions with µ = 0 and s2 = 1 (solid), µ = 2 and s2 = 1 (dashed), as well as
µ = 0 and s2 = 0.6 (dotted).
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To construct random number generators for each required probability distribu-
tion and ensuring that they correspond to the quality criteria of uniformity and in-
dependence is challenging. It is more desirable to generate random variates from all
required probability distributions based on random numbers from U(0,1) for which
the compliance with the criteria can be guaranteed. In simulation studies, the chal-
lenge of expressing probabilistic inputs by probability distributions is part of the
simulation input modeling (Leemis, 1999). Distribution fitting, as respective tech-
nique, is applied to express a set of input data by a suitable probability distribution
(Law and McComas, 2003). For the fitting procedure, parameters of common prob-
ability distributions, e.g., Uniform, Lognormal, or Beta distribution, are adjusted
such that a satisfactory goodness-of-fit is achieved. By this means, well-suited prob-
ability distributions as well as respective values for the parameters of the distribution
can be identified (cf. Figure 6.22). Collections of probability distributions as the one
provided by Leemis and McQueston (2008) can be used for the fitting.
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Fig. 6.22: The role of theoretical probability distributions (Chung, 2004).

When applying distribution fitting to model more complex input data, e.g., input
data that is not curve-, parable-, or line-shaped when plotted, highly sophisticated
and uncommon probability distributions must be used in the fitting process. As this
process is challenging, Law (2011) emphasized two common pitfalls that must be
avoided to ensure the quality of the simulation: simply replacing a distribution by its
mean value and using the wrong distribution. For the purpose of distribution fitting,
the experimenter must be aware of the shape of the underlying distribution to con-
sider respectively shaped probability distributions. This facilitates the identification
of well-suited distributions and the removal of unsuitable probability distributions
to reduce the runtime of the algorithm. Either way, it cannot be ensured that any of
the selected probability distributions can be modified so that a specific goodness-of-
fit is achieved. When comparing the goodness-of-fit of the most suitable parameter
configurations of different probability distributions to represent a set of input data,
relative scores are stated by commercial software products. Such software products
provide a ranking of a set of predefined probability distributions as well as the most
suitable parametrizations for each distribution. It is possible that all predefined dis-
tributions perform poorly due to the specific shape of the input data’s distribution.
In this case, one could say that such tools are only able to identify the “least unsuit-
able” probability distribution. When conducting simulation experiments, variations
in the distribution’s appropriateness to represent a specific set of input data can re-
sult in a model output error (Law, 2011). During the interpretation of the results of
a simulation experiment, this error which is induced by the input distribution needs
to be taken into account as well.
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Instead of fitting existing distributions, it is more desirable to define individual
distributions that adequately represent the underlying dataset regardless of the shape
of its distribution. This might be achieved by means of numerical interpolation.
First, one must be able to model the shape of the input data’s distribution as a high-
order polynomial, e.g., by using splines or polygonal chains. In this step, it might be
reasonable to divide the input data values into x classes and to calculate the relative
probabilities that an observed values falls into each class. The resulting probability
density function can then for example be interpolated by a polynomial of degree x.
To proceed, it is important that the resulting function is normalized and integrates
to 1.

As for all probability distributions, the generation of random numbers via a valid
random number generator on U(0,1) is desirable. This can be achieved by means
of inverse transformation sampling where random numbers are be generated from
any probability distribution that is defined via a cumulative distribution function
(FX : R ! [0,1]; cf. Definition 6.33). Thus, to enable the generation of random
numbers based on an individual probability density function, the corresponding cu-
mulative distribution function is required. For continuous input variables, the cu-
mulative distribution function is defined as the integral of the probability density
function. Instead, the cumulative distribution function of the dataset can also be in-
terpolated directly and from the relative probabilities of the defined classes. Based
on the cumulative distribution function, the inverse transformation sampling method
requires the calculation of the inverse distribution function (quantile function) such
that Q = F�1 and Q : [0,1] ! R. This enables the generation of random numbers
from the interpolated density function of the underlying input dataset by means of
random numbers drawn from U(0,1). The feasibility of a related approach has been
shown for Monte Carlo simulations (Avramidis and Wilson, 1994).

For conducting of Hypothesis-Driven Simulation Studies and especially for the
reproduction of results, the appropriate and replicable generation of random num-
bers is of high relevance. Both the selection of an adequate probability distribution
that fits the distribution of the input data with sufficient accuracy as well as the
generation of reproducible random number streams are important tasks with respect
to conducting sound simulation studies. Thus, the random number service which is
required to provide assistance must be capable of two tasks. The first task is the gen-
eration of random numbers as required by the model, e.g., by fitting common prob-
ability distributions or by generating custom distributions based on provided input
data. The second task is the documentation of the generated random number stream.
This can be accomplished by a detailed documentation of the random number gen-
erator which includes the applied cumulative distribution function as well as the
specification and configuration of the underlying U(0,1) pseudo-random number
generator including the used seed value. Alternatively, the list of generated random
numbers can be stored. This is more simple than documenting the random number
generator. However, the replication of simulation experiments is not possible in case
the model has been changed and requires a larger stream of random numbers. An
example of a service that allows for both generation and testing of random numbers
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with respect to simulation studies is the JAMES II add-on presented by Ewald et al.
(2008).

6.5 Analysis of Experiments

After the design and execution of all relevant simulation experiments, the analysis
of the observed data must be executed with respect to confirming or refuting the
underlying research hypothesis is another essential part of the simulation study. To
this end, this section specifies services that are required for analyzing simulation
output data. Due to the separation of simulation experiments into multiple simula-
tion runs with specific parametrizations of the model as well as the execution of
multiple replication of each simulation run, the outputs of the iterations must be
reaggregated before they can be analyzed by means of hypothesis testing. When ag-
gregating simulation outputs, incorrect values such as outliers or missing values can
occur, e.g., in case the simulation terminated unexpectedly due to an error that took
place during runtime. Thus, before aggregating output values, a decision whether
or not the output of a simulation iteration is included into the results or whether an
output is substituted by another value must be made. Finally, statistical hypothesis
testing approaches are be applied for determining whether the aggregated outputs
provide sufficient evidence for confirming the initial research hypothesis.

6.5.1 Outliers and Missing Values

After all designed simulation experiments and the respective runs were executed,
the generated results must be aggregated and analyzed. By this means, a data basis
is generated that allows for the confirmation or refutation of the initial research hy-
pothesis. Law (2008) emphasized that simulation output data must not be treated as
abstract numbers. When aggregating simulation results, also the process of data gen-
eration need to be taken into account. This is especially important when observing
unexpected values (outliers) or when values are missing. With respect to outliers, a
thorough consideration of the simulation process allows for assessing whether the
observed data is legitimate or whether it is a result of simulation or measurement
errors. Either way, procedures for handling implausible or missing data points are
required. This subsection presents methods for the identification as well as for the
handling of outliers and missing values.

While the identification of missing values is simple, the identification of outliers
in simulation output data results requires a definition in what case an observed value
is considered as outlier. A statistical definition of outliers is provided by Hawkins
(1980):

“the intuitive definition of an outlier would be ’an observation which deviates so much from
other observations as to arouse suspicions that it was generated by a different mechanism”.
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(Hawkins, 1980, p. 1)

In this regard, Hawkins (1980) discriminated between inlying and outlying ob-
servations such that the deviation of these values can be perceived as a large gap.
Furthermore, he presents two possible mechanisms of drawing samples, which can
lead to the observation of outliers. First, if samples are drawn from a distribution
with a infinite variance (heavy-tailed distribution), values can be observed that dif-
fer greatly from the distributions mean value. Second, if observed data does not
originate from a single but from two different distributions. In this case, the “basic
distribution” is the one that should to be observed and the “contaminating distribu-
tion” generates outliers (Hawkins, 1980, p. 2).
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Fig. 6.23: Landscape of a boxplot (Mohindra, 2011).

A more specific rule for the identification of outliers is the 1.5⇥IQR rule, which
is for example applied in boxplots (Moore et al., 2009). The rule makes use of the
interquartile range, which is defined as the distance between the first and third quar-
tile and in which 50% of the observations around the median fall. For this purpose,
an inner fence and an outer fence are defined each of which each cover an area of
1.5 interquartile ranges starting from the first and third quartile (cf. Figure 6.23)
(Schwertman et al., 2004). According to the 1.5⇥IQR rule, observed values that lie
outside the inner fences are outliers (Moore et al., 2009). Some authors distinguish
between different types of outliers and refer to observations outside the outer fence
as extreme or far out outliers (Schwertman et al., 2004). For the assisted detection of
outliers, the EDAsim approach proposed by Bogon et al. (2012) provides respective
functionalities.

In statistics, more advanced techniques for the identification of outliers exist.
Those approaches make use of the 1.5⇥IQR rule for identifying potential candi-
dates for outliers. In a second step, and depending on the number of identified po-
tential outliers, different tests can be applied to verify whether those values are ac-
tual outliers. The most common test is Grubbs’ test for outliers, which can also
be iteratively applied for samples with multiple outliers. To apply this test, it must
be assumed that the dataset can be approximated by a normal distribution. Outputs
of simulation models are not in general identically and normally distributed (Law,
2014). Considering a queuing model of a service counter, the waiting time of a
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customer depends on the waiting time of the persons that stand in front of him or
her. In stochastic simulations, the model is executed multiple times and a specific
output is observed in multiple replications. In contrast to multiple observations of
an output variable in one simulation iteration, the observations made over differ-
ent iterations of the model are independent and identically distributed (Law, 2015).
However, not all datasets that are independent and identically distributed are also
normally distributed (Nakayama, 2008). Thus, to test whether a dataset is normally
distributed, adequate tests must be applied first. Examples are the Shapiro–Wilk test
or the Kolmogorov–Smirnov test. Due to its high power, the Shapiro–Wilk test should
be preferred (Razali et al., 2011).

Definition 6.34 (Outliers).
According to Moore et al. (2009), an observed output of a simulation model
is called potential outlier or outlier candidate, if it lies more than 1.5⇥ IQR
outside the first oder third quartile. Whether or not a potential outlier is an
outlier can be tested by means of outlier tests (e.g., Grubbs’ test), if the sample
is normally distributed.

After successfully identifying missing values and potential outliers, the next step
consists of the handling of these data points. In this regard, different procedures
were proposed in statistics, which include imputation (substitution of values) and
elimination (removal of values). Imputation aims at replacing outliers or missing
values with suitable values whereas elimination removes these data points without
substitution. For the imputation of outliers or missing values, different statistical ap-
proaches exist such as mean substitution and hot deck imputation (Hawthorne and
Elliott, 2005). After identifying a missing or outlying value, mean substitution cal-
culates the mean value of all remaining valid observations for this variable and uses
the calculated value as a substitute. In contrast to this, hot deck substitution selects
a similar data records and substitutes the outlier or missing value with a random
value from one of the similar datasets. With respect to simulation, a simulation run
in which similar results were generated can be used as a basis for the application of
hot deck substitution. Yet, approaches that assist or automate the identification and
substitution of outliers and missing values in results of simulation studies could not
be identified.

Outliers in simulation studies can be compared to survey errors in empirical stud-
ies. However, in simulation, the observation of outliers or missing values often result
from implementation errors. The removal of such program errors within the model
can be difficult due to a lack of skills or if the model is not accessible. Furthermore,
ignoring these measured values is also not an option to maintain the statistical ac-
curacy and soundness of the results. Accordingly, approaches for the substitution of
outliers or missing values must be applied.
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6.5.2 Aggregation of Results

When conducting a simulation study, sets of values of output (Y ), intermediate (Y I),
and target variables (Y T ) are generated whose values provide information for an-
swering a hypothesis (cf. Section 6.1.3). With respect to the analysis of the gen-
erated results, these values must be first aggregated to allow for the application of
hypothesis testing approaches. This subsection presents challenges that occur dur-
ing the aggregation of simulation outputs. Furthermore, it proposes a methodology
to avoiding misinterpretations and the soundness of the results.

Output, intermediate, and target variables consist of three subsets, as all three
types of variables may exist on three different levels of the study, i.e., for each ex-
periment, run, and iteration. For example, output variables (Y ) are gathered for each
iteration of the simulation and can be summarized stepwise for both each run (Ȳ )
and each experiment (Ỹ ). The same applies for intermediate variables (Y I) and target
variables (Y T ). For each iteration r (r = 1, ...,u and r 2N), a set Yr is generated that
contains aggregated values of the r output variables {yr1, ...,yrn}. All iterations of a
run are executed with the same parametrization, while only the seed value used the
generation of the random number stream differs. Thus, the sets of measured values
of the output variables can be summarized by means of descriptive statistics, e.g.,
by determining central tendency and dispersion. By calculating mean and standard
deviation of all values that were measured for each output variable over the total
number of iterations, the distribution of the output variable can be estimated. The
resulting summary of output data of run s (s = 1, ...,v and s 2 N) is stored in set
Ȳs. Here, each element {Ȳs1, ...,Ȳsn} represents the statistical summary µ of each of
the n output variable over all u iterations with Ȳsi = µ(y1i, ...,yui) (i = 1, ...,n and
i 2 N). For each experiment, the set of summarized output values Ỹt is determined
analogously based on the run data that have been summarized before (cf. Defini-
tion 6.35).
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Definition 6.35 (Aggregation of Output and Target Variables).
For each execution (iteration) r of the model, a set of output variables Y is
observed:

Yr := (Yr1, ...,Yrn) from iteration r with r = i, ...,u and r 2 N

Ȳs is a set of aggregated output variables from run s with s = i, ...,v and s 2 N.

Ȳs := (µ(y11, ...,yu1), ...,µ(y1n, ...,yun)) = (Ȳs1, ...,Ȳsn)

Ỹt is a set of aggregated output variables from experiment t with t = i, ...,w and
t 2 N.

Ȳt := (µ(Ȳ11, ...,Ȳv1), ...,µ(Ȳ1n, ...,Ȳvn))

Function µ that is applied for the aggregation of outputs is a statistical function
of central tendency, e.g., arithmetic mean.

On each of the 3 layers (iteration, run, and experiment), target variables are
defined and calculated by function g such that:

g(Yr) = Y T
r

g(Ȳs) = Ȳ T
s 6= Ȳ

0T
s

g(Ỹt) = Ỹ T
t 6= Ỹ

0T
t .

Like output data, performance measures also exist for all three levels of simu-
lation studies. In contrast to output data, the unreflected summarization of perfor-
mance measures might lead to misinterpretations. On the iteration level, this phe-
nomenon does not occur as target variables are directly derived from output data
of each iteration. However, when summarizing values of output and target vari-
ables on run or experiment levels, the order of the performed steps is crucial for
the generation of sound results. Intuitively, it seems appropriate to apply the sum-
mary function µ to the set of values of each output {y1, ...,yu} and target variable
{ȳ1, ..., ȳv}. For the resulting summarized target variables this implies the applica-
tion of g(µ(Yr)). In contrast, summarizing output variables first and then applying g
for defining new target variables on the next higher level (µ(g(Yr))) is also possible.
In terms of functional composition, the commutativity of (µ � g) is only given by
certain functions and under particular circumstances, which is why (g�µ) = (µ �g)
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can not be assumed without thorough proof. Accordingly, Ȳ T
s 6= Ȳ

0T
s and Ỹ T

t 6= Ỹ
0T

t
must be assumed where Ȳ

0T
s and Ȳ

0T
s describe the set of aggregated outputs where g

was applied before µ .
Thus, when applying the concept of target variables to evaluate the performance

of simulation runs and experiments, the experimenter needs to be aware of how the
target variables are defined and which conclusions the target variables allows for.
With regard to the sound aggregation and interpretation of the model’s outputs, Fig-
ure 6.24 provides an overview of permissible aggregations and transformations of
output variables as well as of resulting intermediate and target variables. To facili-
tate the compliance with these dependencies the assistance is required to determine
the correct order of aggregation based on the initial hypothesis. Depending on both
the model and the formulated hypothesis on its behavior, a large number of runs
and iterations might be required. As this easily results in a great amount of model
output data, the assisted aggregation of these outputs is reasonable. This is not only
to avoid mistakes made by the experimenter but also to relieve the experimenter of
this monotonous task. Depending on the specified performance measure, the assis-
tance can determine how to correctly aggregate generated output data to allow for
the application of hypothesis tests.
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Fig. 6.24: Multi-layer dependencies between output and target variables.

6.5.3 Hypothesis Testing

With respect to a justified and statistically reliable confirmation or refutation of a
hypothesis, hypothesis testing approaches are applied. As defined in Section 4.1.1,
statistical hypotheses make an assumption about a not fully known probability dis-
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tribution of one or many random variables (Moore et al., 2009). Statistical hypoth-
esis tests aim at verifying such hypotheses by providing evidence for or against its
validity. Due to the lack of information on the partially or totally unknown probabil-
ity distribution, such approaches cannot verify hypotheses with absolute certainty.
They must make use of a sample drawn from this probability distribution (popula-
tion) to decide whether or not the hypothesis holds (Hanneman et al., 2013). This
approach is referred to as statistical inference, where sample data is used to make
and confirm propositions about a population, i.e., to draw conclusions about the
overall population based on a sample. Inferential statistics stand in contrast to de-
scriptive approaches, which only summarize information from a sample without the
aim of deriving a theory.

The assumption made in a statistical hypothesis either focuses on the relation-
ship between two datasets or compares the sample against an idealized dataset. The
aim of hypothesis tests is to evaluate whether or not the hypothesized relationship
between two datasets exists. Due to the uncertainty regarding the population of the
distribution, the existence of the relationship can not be claimed with certainty. In-
stead, hypothesis tests assess whether the existence of the relationship is statistically
significant, taking a probability threshold into account to observe a relationship even
though it does not exist (Freedman et al., 2007) (cf. Definition 6.36).

Definition 6.36 (Hypothesis Test).
Based on a null hypothesis (H0) and an alternative hypothesis (H1), a hypoth-
esis test investigates the relationship between two variables. In this regard, the
null hypothesis assumes that no relationship exists between the variables while
the alternative hypothesis assumes the opposite. In case the existence of the re-
lationship is unlikely a result of chance, the results are significant with respect
to a predefined significance level (a).

To test for statistical significance, two mutually exclusive hypotheses are formu-
lated and evaluated: the null hypothesis and the alternative hypothesis. It is neces-
sary that the pair of hypotheses is formulated such that any possible observation is
considered by either of the hypotheses. Under the assumption that the null hypothe-
sis holds, i.e., that the hypothesized parameter of the distribution corresponds to the
real population, hypothesis tests evaluate whether the probability for the outcome
of the examination to be a result of chance is sufficiently small to assume that the
alternative hypothesis is valid instead. Most commonly, a probability of ten, five,
or one percent (the significance level) is assumed to be sufficiently small to reject
the null hypothesis in favor of the alternative hypothesis (Moore et al., 2009). How-
ever, the selection of a required yet reasonable significance level (p) depends on the
respective scientific discipline as well. While some empirical disciplines argue that
p < 0.05 is sufficient, natural sciences often demand significance levels of 0.01 or
even less (Lambdin, 2012). In this case, it is assumed that the observation of the
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hypothesized relationship is not a result of chance due to its unlikeliness under the
assumption that the null hypothesis holds.
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Fig. 6.25: Significance level and rejection region in hypothesis testing.

A large number of different statistical hypothesis tests exist and identifying an
appropriate test for a specific hypothesis is challenging (Haq and Nazir, 2016).
Common criteria to characterize and distinguish hypothesis tests include but are
not limited to the number of samples, whether or not the samples are independent,
and whether a parameter of the distribution or the distribution itself is tested. Addi-
tionally, the application of most tests is linked to preconditions that must be met to
generate valid results. Both the one sample t-test and the one sample Z-test can be
applied to test for the mean value of a distribution. Either of the tests requires the
population to be normally distributed or that the central limit theorem applies, i.e.,
that the sample size is sufficiently large. Yet, while the one sample t-test assumes
that the variance of the population is unknown, knowing about the population’s vari-
ance is a precondition of the one sample Z-test (Montgomery et al., 2010). In sum-
mary, the application of statistical hypothesis tests depends on multiple factors such
as the content of the hypothesis as well as the assumption of a particular distribution
of the population.

The decision which hypothesis test to apply for evaluating the results of a simu-
lation study strongly depends on how the hypothesis is formulated at the beginning
of the study. An initial differentiation needs to be made according to the number
of parametrizations that are part of the hypothesis. Here, two classes of hypotheses
must be distinguished into: hypotheses that make an assumption about the model’s
behavior under one parametrization and hypotheses that make an assumption about
how the model’s behavior will change between two or more parametrizations. As
statistical hypotheses tests require a statement about the relationship between two
datasets, hypotheses whose parametrization part only consists of one input configu-
ration of the model can not be tested without further information. A reference dataset
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is required, even though it might be artificial or idealized. Often when a hypothesis
is stated with just one parametrization of a model as part of a simulation study, it is
implied that the assumed behavior shall be compared to a standard or initial config-
uration of a model. Here, changes regarding the parametrization of the initial model
can either be relative or absolute.

In the following, this difference is illustrated on the basis of a manufacturing sim-
ulation. It is assumed that the model’s behavior, which is measured via the average
processing time, is of interest in a simulation study in dependence of the number of
machines that are used in the manufacturing process. A single absolute parametriza-
tion of the model could be formulated as follows:

If 17 machines are used in a manufacturing process,
the average processing time will decrease to 145 minutes or less.

The evaluation of whether the change of the number of machines is indeed the
causal reason for the observed decrease in the average processing time is not pos-
sible based on this hypothesis. Instead, an additional dataset is required containing
the average processing time before the number of machines was changed. This can
be achieved by providing simulation results from experiments that were executed
independently or by providing the mean value of the respective (artificial) refer-
ence distribution. Alternatively, the hypothesis can be extended so that a second
parametrization is provided as reference value. The same applies, if the observed
behavior is stated relatively, e.g., a decrease of the average process time by 10% is
assumed, where a reference is required as well.

In contrast to this, a relative parametrization would assume the average process-
ing time will increase or decrease as a result of an increased or decreased number
of machines. Such a hypothesis could read as follows:

If the number of machines increases by 2,
the average processing time will decrease by at least 10%.

To apply hypothesis tests, further datasets are required. In this case, the defini-
tion of a reference dataset is more crucial with respect to the reproducibility of the
results. It must be assumed that an increasing number of machines will not have the
same linear effect on the processing time for all possible initial configurations of the
model. While an increase from 2 to 4 machines is a 100% increase, the step from
100 to 102 machines is only an increase by 2%. Accordingly, it must be assumed
that the average processing time will not decrease equally in both cases. Thus, ei-
ther a specific reference value or a range of values must be defined along with the
hypothesis. The range of values can then be evaluated stepwise from the minimal to
the maximal value, e.g., the relative increase of the number of machines by 2 from
starting from 10 machines up to a total number of 100 machines in steps of 5. Here,
the definition of a more specific and unambiguous hypothesis is reasonable to avoid
misinterpretations. This can be achieved by means of FITS (cf. Section 5.1).

For hypotheses whose parametrization part includes two or more configurations
of the model, the task of generating reference datasets is less inconvenient. The
datasets on which the hypothesis test is applied on are specifically defined and the
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required simulation runs can be derived directly from the hypothesis. A potential
hypothesis with two parametrizations could be:

If the number of machines increases from 15 to 17,
the average processing time will decrease by 10%.

In this example, a dataset where the input variable number of machines is set to
15 and another dataset where this variable is set to 17 can be generated by means of
simulation and under consideration of the challenges that arise from the segmenta-
tion and aggregation of experiments into runs and iterations (cf. Section 4.2.2).

To conclude, the conducting of hypothesis tests is essential for the assessing
whether or not a hypothesized relationship between two datasets exists, taking the
chance of random observations into account. In terms of simulation studies, hypoth-
esis tests can be used to verify whether or not the behavior of the model that is
assumed as part of the hypothesis can be confirmed based on the observed simula-
tion outputs. In this regard, the selection as well as the application of an appropriate
hypothesis test is challenging due to limiting preconditions that apply for most hy-
pothesis tests. It is necessary to specify the study’s research hypothesis as precisely
and as comprehensive as possible such that the compliance with the preconditions
of potential tests can be investigated. This includes in particular the statement of a
reference scenario or value when only including one parametrization of the model
in the hypothesis. FITS, the language that enables the formal specification of hy-
potheses in simulation studies, can be utilized to facilitate this process.

6.6 Conclusions

This chapter introduced formal specifications of all logical entities that are required
for the assistance of Hypothesis-Driven Simulation Studies. In this regard, the focus
of this chapter lies on the identification and definition of required functionalities
rather than on the selection of specific approaches or methods. The presented entities
can be divided into five groups according to the phase of the study they assist or
automate. While the simulation model and the research hypothesis affect all phases
of the study, other entities can be explicitly assigned to the design, conducting, or
analysis of simulation experiments. Figure 6.26 shows all presented entities as well
as the interactions between them.

Both the simulation model and the research hypothesis must be provided by
the experimenter. Based on these two entities, all necessary steps of the study are
planned and conducted by the assistance. To enable the automated processing of
these entities, this chapter specified the structure of the required data and informa-
tion. For the simulation model, this includes metadata for the identification of the
model as well as a specification of the inputs and outputs of the model, i.e., data
types, range of admissible values, and labels. As the research hypothesis is usu-
ally provided by the experimenter in natural language, this chapter presented the
machine-readable language FITS. It can be used to specify assumptions on the be-
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Fig. 6.26: Logical entities for assisting Hypothesis-Driven Simulation Studies.

havior of simulation models such that the assistance can automatically design and
execute all experiments that are required to confirm or refute the hypothesis.

In the following steps of the simulation study, the active participation of the ex-
perimenter is not required. Instead, the following steps are automated by the pre-
sented assistance. Based on the provided hypothesis, this chapter introduced speci-
fications of entities that are necessary to design relevant experiments. This includes
the screening for important factors whose impact on the model behavior must be
analyzed as well as the application of experimental design for the systematic inves-
tigation and limitation of the resulting parameter space. In this thesis, the evaluation
of stochastic simulation models is pursued. Thus, it is necessary to estimate the
required number of simulation iterations to achieve a desired level of statistical cer-
tainty. As a result of this phase of the study, the assistance proposes a limited set of
model parametrizations that must be executed to provide evidence for or against the
validity of the hypothesis.

Furthermore, this chapter specified entities that are required for the execution of
the designed experiment. Most simulation models are developed using particular
simulation frameworks. As these frameworks are usually also required for the ex-
ecution of the model, unified interfaces must be provided such that the assistance
can control the framework. In this thesis, the use of wrapper classes is proposed,
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which convert the designed experiments into a format that can be interpreted by the
respective framework. Likewise, outputs that are generated by the framework are
transformed to be processed by the assistance. To facilitate the parallelization of
simulation runs in distributed systems, this chapter presented measures, which can
be used to assess the effect parallelization and scaling has on the execution of the
model. Yet, conducting simulation experiments is not limited to the execution and
parallelization of given designs. With respect to the reproduction of the generated
outputs, the random number stream that was used for the execution of a design is of
utmost importance. The focus lies not only on ensuring the quality of the random
number generator and the respective random number stream that is provided during
the execution of the model must be ensured. Also the configuration of the generator
must be documented, which includes the used seed values. In this regard, the auto-
mated parametrization, distribution, and execution of simulation models is a typical
task for an assistance system.

Finally, the outputs which are observed during the execution of the model must
be analyzed to allow for the verification of the study’s research hypothesis. For this
purpose, this chapter specified entities that are required for analyzing the results of
the conducted experiments. Like in empirical studies, the quality of each individual
observation of a study must be assessed before applying descriptive statistics for the
interpretation of the results. Upon consideration of the outputs, outliers and missing
values can be identified and a decision whether to include, substitute, impute, or
eliminate respective values needs to be made. After the correction of the dataset, the
output values of the simulation runs as well as of the respective iterations must be
aggregated. This is done with regard to confirming or refuting the initial research
hypothesis by means of statistical hypothesis testing. The results generated by the
presented services serve as a basis for the interpretation of the simulation study’s
outcome. However, this task cannot or not entirely be accomplished by the assis-
tance. Instead, the experimenter is provided with relevant data whose interpretation
must take place in accordance with the real world.

The appropriateness of individual approaches or methods strongly depends on
the scope of the study which is defined by the model and the corresponding hy-
pothesis. This thesis presents a selection of components that are suitable for the
verification of phenomenological hypotheses on the behavior of a simulation mod-
els. Yet, as part of future work, the development of mechanisms for the automated
selection and combination of required components is desirable.
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Chapter 7
Case Study: Supply Chain Management

The previous chapters proposed a methodology for Hypothesis-Driven Simulation
Studies and specified the assistance of this process. Through this, a methodical
frame for the systematic design, execution, and evaluation of simulation studies
is provided, which allows for the replicable and reproducible verification of hy-
potheses on the behavior of simulation models. With respect to the feasibility of the
presented approach, its quality must be evaluated first. Most methods and theories
that were used for the development of the procedure model were deductively derived
from established theories and approaches. It must be assumed that each of these en-
tities has been evaluated and approved. Based on this, the contribution of this thesis
lies in the identification as well as the logical combination of the individual enti-
ties. To ensure the applicability and suitability of the resulting integrated procedure
model, this chapter evaluates the proposed approach by means of two case studies.

For this purpose of the evaluation, this chapter is structured as follows: First, a
scenario is introduced for each case study. This includes the presentation of the
used manufacturing simulation model, the definition of reasonable research hy-
potheses, and the ex-ante analysis of the model’s response surface. Subsequently,
the presented methodology for conducting Hypothesis-Driven Simulation Studies is
applied to the two scenarios. To this end, also a conventional investigation of the
model’s behavior is conducted, which allows for the comparability of the gener-
ated results. Subsequently, the proposed procedure model is applied, the executed
steps are presented, assisted design decisions are emphasized, and the results of the
simulation study are illustrated.

7.1 Introduction of the Simulation Model and Definition of the
Scenario

In this section, a model and a corresponding scenario are introduced based on which
the entire process of Hypothesis-Driven Simulation Studies is applied, to evaluate
the assistance presented in the previous chapter of this thesis. With respect to the
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reproducibility of this evaluation, restrictions that are related to the framework must
be considered when selecting a model. In this regard, it is desirable to chose a model
which has been developed by means of a free-to-use framework. For the evaluation
presented in this chapter, a NetLogo model of a supply chain is selected. Compared
to other simulation frameworks, NetLogo is freely available, commonly applied by
researchers, and easy to use. Likewise, the selected supply chain model can be ac-
cessed via the open NetLogo community repository Modeling Commons1. In con-
trast to other models, a supply chain model has numerous advantages, which are
beneficial for this evaluation. Supply chains are a standard concept from economics
whose operations and procedures are easy to understand. At the same time, effects
and phenomena that occur in supply chains are sufficiently sophisticated to be in-
vestigated as part of a simulation study. Thus, as a foundation for the following case
studies, this section introduces the simulation framework NetLogo as well as the
selected supply chain model. Moreover, this section presents scenarios and related
research hypotheses for the two case studies.

With respect to the reproducibility of all experiments and respective results that
are conducted and generated during the evaluation, two major criteria must be met
by the simulation model. First, the simulation model must be available for the public.
One possibility is that models are hosted in a public repository for simulation data
which does not require the user to login in order to download the model and whose
availability is ensured for the near future. Simulation models are often provided
via the website of a research group or via cloud services. It often shows that these
download options are not persistently available as researchers change universities or
institutes, leave the research sector, or files are removed from cloud storages due to
inactivity. Second, the simulation framework which was used for the development
of the simulation model should also be available freely and without any charges. In
this regard, the licensing model of the simulation frameworks as well as the potential
for maintenance must be considered. In particular, professional frameworks provide
a large number of functionalities which results in high license fees.

7.1.1 NetLogo Simulation Framework

A large number of simulation frameworks was developed during the last decades.
Many of these frameworks emerged from scientific research projects and were de-
veloped by smaller research groups rather than by large companies. Thus, most
simulation frameworks are free-to-use and often the sourcecode is available to ei-
ther verify the correctness of the framework or to extend the framework with re-
spect to specific needs. However, most simulation frameworks are only applicable
for specific research domains and detailed knowledge is assumed for the operation
of these frameworks. Multi-purpose and domain-independent frameworks that were
developed considering the ease of use are often distributed with a commercial back-

1
http://modelingcommons.org/ [Retrieved Jun. 2018]

http://modelingcommons.org/
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ground and subject to a payment model, i.e., AnyLogic, Rockwell Arena, Siemens
Plant Simulation, or Simio. Considering free-to-use frameworks only, NetLogo2 is a
common simulation frameworks. The first version of NetLogo was published by Uri
Wilensky in 1999 and currently the 6th major release of NetLogo is available under
the GPL licence. As the framework is written in Java, it can be executed on any
platform that supports the Java virtual machine. The developers describe NetLogo
as a “multi-agent programming language and modeling environment for simulating
complex phenomena” (Tisue and Wilensky, 2004, p. 2). It can be used in research
as well as in education across various disciplines and on different education levels.
Therefore, NetLogo is well-suited for the evaluation of the approach presented in
this work. It is not limited to specific domains and can be used for the exchange of
knowledge between disciplines.

Fig. 7.1: User interface of NetLogo (version 6).

In NetLogo, models consist of three components: interface, info, and code. The
interface provides a visual representation of the modeled world as well as optional
controls (cf. Figure 7.1). The model’s world is represented by a 2-dimensional grid
on which each agent is located. To improve the understanding of the model, agents
can be visualized as shapes or icons and relationships between agents can be illus-
trated as connecting lines. By means of optional control panels, the values of input
parameters can be set, events can be triggered, and output values can be observed.
If implemented, this facilitates the experimentation with the models as parametriza-
tions can be easily changed to observe the resulting behavior. The info section of
the model consists of user-defined text fields in which the developer of a model can
provide additional information on the model. The developer is encouraged to add
information regarding what the model is trying to show, rules the agents follow,

2
http://ccl.northwestern.edu/netlogo/ [Retrieved Jun. 2018]

http://ccl.northwestern.edu/netlogo/
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what the user might notice when executing the model, or parametrizations the user
should try when executing the model. Additionally, technical information should be
provided such as a description and explanation of the model’s interface, information
on how to extend the model, and a reference to netlogo specific features that are uti-
lized by the model. Finally, the developer might reference related models, scientific
papers that are related to the model, or a website.

The code section contains the source code of the model and its logics. NetLogo
models are written in the Logo programming language, which is related to the func-
tional programming language Lisp. The language was developed for educational
purposes and pursues a procedural approach (Feurzeig, 1969).

NetLogo’s stand-alone desktop version as well as the browser-based web version
provide access to a model library from which a large amount of sample models
from different disciplines. This includes a selection of sample models from natural
sciences like Biology, Chemistry, and Mathematics, but also from humanities such
as Philosophy and Social Science. Additionally, NetLogo provides the Modeling
Commons Repository where users can upload their NetLogo models to make them
available to the public.

7.1.2 Supply Chain Simulation Model

For the purpose of this evaluation, the “Supply Chain” model by Alvaro Gil is cho-
sen (Gil, 2012). It is available via the modeling commons repository and can be
downloaded without the need of a registration. To provide an overview, the model’s
metadata is presented in Table 7.1.

In its basic form, a supply chain consists of a number of independent firms that
are involved in the manufacturing of a product. Materials and components that are
required for the manufacturing process of the product are processed and passed for-
ward by these firms. The resulting chain of firms, which reaches from raw materials
to the final product, is then referred to as supply chain (La Londe and Masters,
1994). Simulation models of supply chain facilitate the comprehension of supply
chain processes as they can be used for studying occurring phenomena. This in-
cludes an advanced understanding of the effect minor changes of the process have on
individual components of the supply chain. These effects often result from slightly
changed purchase strategies, which affect the stock levels and demand calculations
of other participants and have major impact on the behavior of the entire supply
chain. One of the most common effects in supply chains is the bullwhip effect
(cf. Figure 7.2). Forrester (1961) first described the delayed reaction of inventories
to incoming orders. As a result of this, minor variations in the demand of low-level
participants of the supply chain escalate at higher levels and result in major varia-
tions and inconsistencies of order and production quantities (Lee et al., 1997). Ul-
timately, the occurrence of the bullwhip effect leads to an inefficiency of the entire
supply chain (Kurbel, 2013).
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Table 7.1: Metadata of the supply chain model according to Gil (2012).

Object Item Entry
Identifier Model Name Supply Chain

ID
Date of Creation 2012
Version 1
Citation Gil, Alvaro (2012). Artificial supply chain. École Poly-

technique de Montréal.
Initial Model -

Responsibility Full Name Alvaro Gil
Mail Address alvaro.gil@polymtl.ca
Postal Address École Polytechnique de Montréal, Montréal, Canada
Affiliation Department of Mathematics and Industrial Engineer-

ing
Phone -

Description Abstract This model is an artificial market with four types of
participants. The model can help students and profes-
sionals to understand better the supply chain with a
single product, and how simple changes as the promo-
tions, can affect the stocks levels and the demand cal-
culation with a considerable amplitude, which is know
as the bullwhip effect.

Keywords logictics, supply chain
Related Work -
Related Models -
Instructions The user should fix some values and play the model (I

recommend at least 720 periods for having some stable
results), then collect statistics and play again. Differ-
ent values will result in different costs and stock levels
which can be compared in the analysis and conclusions
phase.

Requirements Platform NetLogo 5.0
Operation System Windows, Mac OS, Linux
Programming Language Logo
Software Requirements -
Hardware Requirements -
Expertise -

Files Model Files Supply_Chain.nlogo
Data Files not required
Documentation Files part of the model
Additional Files Jama-1.0.2.jar;

matrix.jar;
Supply Chain.png;
table.jar
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Fig. 7.2: Increasing order quantity in supply chains (Lee et al., 1997).

The supply chain model by Gil was built using NetLogo version 5.0. For the pur-
pose of this thesis, it was upgraded to NetLogo version 6.0 using built-in conversion
functionalities. The model describes an artificial market in which goods are traded
between four types of participants: consumers, retailers, distributors, and factories.
Each of the participants purchases and consumes the traded products in accordance
with common supply chain mechanisms (cf. Figure 7.3). Customers have a specific
demand and purchase products from the retailers following individual stock keeping
strategies. This can occur in periodical or irregular intervals depending on when the
stock of the customer falls under a specific reorder level. Depending on the quantity
of sold products, retailers individually forecast their demand as well and purchase
products from distributors. The distributors behave exactly as the retailers and fore-
cast their demand based on the quantity of products requested by the respective
retailers. As a last step of the supply chain, factories produce products when their
stock falls below a specific level.
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Fig. 7.3: Relationships between customers, retailers, distributors, and factories.

In this model, each participant has only one purchase relationship to the next-
higher level, i.e., a consumer only purchases from exactly one retailer and a retail-
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ers only purchases from exactly one distributor. However, retailers, distributors, and
factories can supply products to multiple vendees. By this means, a four-tier supply
network emerges in which only a few central nodes (factories) supply the demand
of a large number of consumers via intermediate layers of retailers and distributors.
Depending on the number of factories, this supply chain model may consist of mul-
tiple disjoint supply networks. When the model is initialized, relationships between
the participants are defined with regard to the distance between the participants so
that each consumer is linked to its closest retailer et cetera. However, this initial
network configuration is subject to change in case of delivery problems during the
simulation.

The model implements a step-wise simulation where each step represents one
business day (cf. Figure 7.4). To generate the model’s behavior, a sequence of tasks
is executed for every simulated day. It consists of multiple tasks for each participant
in the supply chain. Additionally, the model consist of 14 input parameters, which
can be used to configure the circumstances of the supply chain execution such as
the number of customers or their purchase strategy (cf. Table 7.2).
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Fig. 7.4: Procedure of the NetLogo supply chain simulation model.
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The procedure that is implemented by the model follows a static pattern. As a
first step of the simulation, the products that were ordered in previous steps of the
simulation are delivered by the vendors to the respective vendees (send_products).
The lead time of distributors (Lt0) and retailers (Lt1) are equal for all participants
and defined via model parameters. In a second step, the customers purchase new
products according to their demand and their current stock (buy_products). Whether
or not a consumer purchases goods on a specific day is determined by its purchase
strategy (Customers_Strategy). Finally, demand, forecast, and costs are updated for
each participant and orders are placed if required (main_sequence). Customers only
have one task (update_demand). They update their demand according to a normal
distribution (Demand_W) and a corresponding standard deviation (DS_D).

In contrast to customers, retailers, distributors, and factories have multiple tasks.
They update their expectations regarding the number of products that will probably
be purchased in the next step of the simulation (update_forecast). For the purpose
of this forecast, they make use of extrapolation and linear regression. At this step,
safety values of the stock (SS_%) are taken into account. In accordance with the
forecasted quantities, retailers and distributors determine the optimal order quantity
considering holding cost and order cost with respect to their inventory policy (In-
ventory_Policy). The optimal quantity is then calculated using the economic order
quantity formula (Harris, 1990). In a next step, orders are placed and costs are up-
dated with respect to the current situation (place_orders and update_costs). Holding
costs are calculated as the product of holding cost (HC), current stock, and product
cost (Product_cost). Order cost (K) do not have to be calculated as they are pro-
vided as model parameter. Accordingly, the total costs results from the sum of both
holding and order cost.

To execute the model and to analyze its behavior, the developer recommends the
simulation of at least 720 periods (steps). This includes a warp-up phase and allows
for the observation of unbiased outputs. One period or step of the model corresponds
to one business day in the real world. Accordingly, the recommended number of
periods is equal to almost two years. In this calculation, the year consist of workdays
only. Weekends, holiday seasons, and vacations are not taken into account.

In case simulation experiments are executed with respect to this advice, the de-
veloper of the model recommends the observation of the stock levels of the different
types of participants. Even though the stock levels differ between the participants,
the pattern the stock levels follow are similar and the bullwhip effect can be observed
(cf. Figure 7.5).

7.1.3 Scenario and Research Hypothesis

To evaluate the proposed procedure model for Hypothesis-Driven Simulation Stud-
ies, a scenario as well as a research hypothesis are must be provided by the experi-
menter in addition to the simulation model. The following two case studies assume
an experimenter, which is a researcher in the domain of logistics. Out of many po-



222 7 Case Study: Supply Chain Management

0 100 200 300 400 500 600 700

Time in days

20�000

40�000

60�000

80�000

M
a

x
s
to

ra
g

e

Fig. 7.5: Variations in the maximum storage capacity of a factory in the NetL-
ogo supply chain model over 720 days (Lt0 = 4, Lt1 = 4, K = 400, SS_% = 0.7,
Demand_W = 30, DS_D = 7, HC = 0.1, Client_N = 263, Product_cost = 30,
random-seed = 19890206).

tential disciplines, the choice of logistics seems reasonable for this thesis due to the
experience of the work group from which this thesis originates. As part of earlier
work, the group participated in the AssistSim project, which focused on the automa-
tion of simulation studies in logistics (Lattner et al., 2011a). By choosing a logistics
context for this evaluation, research questions from this project can be taken up and
results can be compared.

The NetLogo manufacturing model that was introduced in Section 7.1.2 can be
used to investigate whether and how different factors influence the occurrence and
intensity of the bullwhip effect in a four-tier supply chain. By this means, the model
can be utilized as a serious game. It enables the user to experience the effect differ-
ent stock and purchase strategies might have on order quantities of different types
of participants in supply chains. However, the presented model can also be used
for scientific investigations such as the search for an optimal parametrization with
respect to minimizing or maximizing a specific output variable or the investigation
how changes of the parameters affect the model’s performance measures. An exam-
ple of such an application could be the attempt of a participant of a supply chain
to analyze the maximum required storage capacity. For the purpose of this inves-
tigation, the participant might want to simulate how different circumstances affect
order quantities and which storage capacity is sufficient to store the traded products.
To allow for the generation of sound and reliable results, such questions should be
answered by means of a simulation study. This subsection presents a scenario for
such a simulation study as well as a testable research hypothesis. They serve as a
basis for the evaluation presented in Sections 7.2 and 7.3.
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The scenario used in this evaluation assumes that a model of a supply chain pro-
cess was developed to analyze how different factors influence specific performance
measures (cf. Section 7.1.2). For the development of the model, the NetLogo sim-
ulation framework was used and verification as well as validations techniques were
applied to ensure the model’s adequacy with respect to the use in simulation studies.
The model is available and executable without the need of further data or applica-
tions. It must be initialized and executed with a parametrization that assigns specific
values to each of the model’s inputs.

A simulation study of a supply chain model likely has a goal that is related to
the acquisition of information a decision maker requires to manage existing or plan
future scenarios. The simulation model presented in the previous subsection focuses
on the observation of the daily stock level of customers, retailers, distributors, and
factories. A reasonable goal of a simulation study that examines this model is the
investigation of how changes of the model’s inputs affect the stock levels of each
of the participants. As an indicator for the efficiency of a specific configuration
of the model, the maximum stock level in a specific period of time seems to be
reasonable. It provides information about the required storage capacity, which is
a key variable with respect to cost effectiveness. To this end, a potential research
question that was introduced as part of the AssistSim is whether a specific storage
capacity is sufficient in case of changing circumstances, e.g., increasing volume of
orders (cf. Section 5.1.1).

As a goal of a simulation study, it is desirable to understand which circumstances
lead to the requirement of large storage capacities to reduce or prevent their occur-
rence. This is especially relevant for the factory that participates in the supply chain.
It must be assumed that fluctuations in demand affect the factory’s production vol-
ume the most and thus also the required storage capacity. With regard to identifying
how different factors influence the storage capacity of the factory, this subsection
presents two possible assumptions that can be evaluated by means of a simulation.

The first assumption supposes a direct dependency between the number of cus-
tomers and the maximum storage capacity. It is formulated so that a stable threshold
of the performance measure will not be exceeded in case the value of a defined in-
put remains under a specific level. About the behavior of the remaining inputs of the
model, no assumption is made.

Assumption 1: In the modeled supply chain, a maximum storage capacity
of 60,000 units is sufficient for the factory, if the number of customers does
not exceed 150.

The second assumption hypothesizes an interdependency between the values of
one of the model’s inputs and the defined performance measure. Altering the de-
mand of the customers (Demand_W) will systematically affect the maximum stor-
age capacity. Unlike the first assumption, no specific values or dimensions are stated.
Instead, disproportionality is the only mentioned criterion that specifies the depen-
dency.
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Assumption 2: In the modeled supply chain, the customer demand and the
maximum storage capacity required by the factory interdepend so that an
increase of the customer demand results in a overproportional increase of
the maximum storage capacity per customer.

Considering the published version of the model, the maximum storage capacity,
which is used as performance measure in both assumptions, is not initially provided.
However, it can be calculated based on the output daily stock as the maximum value
returned during the execution of the model. Modifications of the model are not re-
quired and accordingly the black box assumption is not violated that is pursued in
this thesis.

To enable the systematic and reproducible identification, design, execution, and
evaluation of simulation experiments, the formulation of an assumption regarding
the behavior of a model is not sufficient. With respect to the method presented in
this thesis, a testable hypothesis needs to be specified first (cf. Section 4.1.1). The
testability criterion of a hypothesis aims at the indication of specific values for the
application of statistical hypothesis testing techniques. Furthermore, the hypothesis
must be structured so that one or many premises are logically linked to a conclu-
sion. Following this structure, a hypothesis that is formulated in natural language
can be formally specified by means of the FITS language (cf. Section 6.2). This al-
lows for the automated execution of the steps that are required to provide evidence
for or against the validity of the initial assumption. Based on the aforementioned
assumptions, potential corresponding hypothesis can read as follows:

Hypothesis 1: If the number of customers increases to 150, the factory’s
required maximum storage capacity of will be less than 60,000 units.

Hypothesis 2: If the average customer’s demand increases by 10 units, the
required maximum storage capacity of the factory will increase by more
than 100 units per customer.

In contrast to the initial assumptions, hypotheses must be reduced to comprehen-
sible and testable if-then-statements. Moreover, specific values have to be provided
for the application of hypothesis tests. In this regard, it is also essential that hypothe-
ses are formulated such that the statement can only be true or false. Additionally,
sufficient information must be provided to determine in which case the statement
is true or false. With respect to the significance of the result, it is essential that the
observation of a specific model behavior is unlikely a result of chance. This can only
be ensured, in case relevant experiments are properly identified and executed.

It is challenging to identify those parametrizations of the model that must be eval-
uated by experiments to prove or disprove a research hypothesis. Considering the
ranges of admissible values of each of the model’s inputs results in a total number of
19,813,248,000,000,000 (1.98⇥10�16; 19.8 quadrillion) possible design points that
constitute the model’s response surface. It is apparent, that the scale of the response
surface is too large to allow for the complete analysis of the model’s behavior. Ac-
cordingly, a limited and more manageable subset of inputs values is specified and
considered as scenario. Instead of analyzing different quantities of factories, distrib-
utors, and retailers, this chapter only investigates one specific configuration. With
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respect to the assumptions presented in this section, this enables a more realistic
investigation. A decision maker most likely has one specific supply chain configu-
ration in mind when conducting a simulation study. Customer strategy and inventory
policy are predetermined as well. In this scenario, customers purchase products on
a daily basis and all participants apply the (s,Q) inventory policy (cf. Table 7.3).
Finally, the number of customers (Clients_N) is further discretized such that the
new step size of 25 reduces the amount of possible values from 250 to 15. By this
means, a reduction of the parameter space by factor 324,000,000 is achieved and
61,152,000 possible design points remain.

Table 7.3: Parameter values of the scenario used for the evaluation.

Parameter Min value Max value Step size #Possible values
Fact 1 1 1 1
Distr1 3 3 1 1
Distr2 7 7 1 1
Clients_N 25 350 25 15
Lt0 0 7 1 7
Lt1 0 7 1 7
SS_% 0.5 0.95 0.5 10
Demand_W 5 30 1 26
DS_D 0 3 1 4
HC 0.01 0.1 0.01 10
K 50 400 50 8
Product_cost 5 50 5 10
Customers_Strategy 1 - Daily Purchase 1
Inventory_Policy 1 - (s, Q) 1

In summary, this subsection limited the parameter space of the presented NetLogo
model and presented two assumptions that can be analyzed by means of simulation
experiments. Additionally, a potential resulting research hypothesis was specified
for each assumption. Each of the two hypotheses formulates the corresponding as-
sumption as an inferential link such that it can be tested by means of statistical
approaches. The resulting scenarios are used in the following sections to evaluate
the approach presented in this thesis. In this regard, the limitations and reductions
are not part of the simulation assistance. Their purpose is to define the scenario of
the study as well as the parameter space of the model for the two presented case
studies.
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7.2 Scenario 1: Maximum Required Storage Capacity for a
Specific Number of Clients

The first scenario presented in this evaluation addresses hypothesis 1 as stated in the
previous section. To investigate the hypothesis that the factory’s required maximum
storage capacity of less than 60,000 units is sufficient if the number of customers
(clients) increases to 150, a simulation study is conducted in accordance with the
Hypothesis-Driven Simulation Study methodology proposed in Chapter 5. In this
section, all steps that are required for confirming or refuting this hypothesis are
executed as specified by the assistance, i.e., the design, execution, and analysis of
relevant simulation experiments. This section provides detailed insights into how
the proposed intelligent assistance can facilitate and control the entire procedure
based on the provided hypothesis. Important design decisions are outlined, gen-
erated datasets as well as interim results are presented, and hypothesis tests are ap-
plied. By this means, the replicability of the conducted simulation study is increased
to facilitate the reproduction of the presented results.

The described scenario requires the application of a one-tailed hypothesis test,
more specifically a lower-tailed test, for verification of the formulated assumption.
Thus, the null and alternative hypothesis must be formulated as follows. As the
investigated assumption states that less than 60,000 units of storage capacity are
required, it is defined as an alternative hypothesis. Complementary to this statement,
the null hypothesis states that the storage capacity is not sufficient.

H0: µ � 60,000 H1: µ < 60,000

To initialize the assistance, both an executable model and a respective experiment
hypothesis must be provided by the user of the assistance. The first requirement is
met, since a simulation model from an open repository is used, which can be exe-
cuted by the NetLogo simulation framework. Thus, to meet the second requirement,
a formalized and testable hypothesis must be generated from the assumption that ex-
ists in natural language only. This hypothesis must express both null and alternative
hypothesis as defined above. For the formal specification of research hypotheses on
the behavior of simulation models, the FITS language was introduced. Transferred
to and specified in FITS, a possible formalization of the natural language hypothesis
could read as follows:

Clients_N(150) ^ #
) µ(Maxstorage) ^ (H0(µ � 60,000) _ (H1(µ < 60,000)) | a(0.05) ^ n(dn  0.05)

Unlike the static definition of a sample size, which was presented upon the in-
troduction of FITS, a dynamic replication estimation is applied here as proposed by
Hoad et al. (2010a). Accordingly, n is specified as dn  0.05, implying a sample size
such that a precision of at least 5% is achieved. Moreover, the performance measure
Maxstorage is not provided by the original version of the simulation model. Still,
one of the model’s outputs represents the factory’s storage capacity after each step
of the simulation. To derive the maximum storage capacity from this output, the
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maximum value of the factory’s storage capacity output over all simulation steps
must be determined as target variable, i.e., Maxstorage = max(storage capacity).

7.2.1 Conventional Investigation of the Model’s Behavior

To evaluate whether the results that are generated by the approach proposed in this
thesis are plausible and sound, a conventional investigation and discussion of the
model’s behavior is provided in advance. For this purpose, this section analyzes
the influence the selected factors and their ranges of admissible values have on the
model’s behavior. The investigation is conducted by means of standard features that
are provided by NetLogo, i.e., the BehaviorSearch tool for exploring the parameter
space of a model with heuristic optimization methods.

Parameter Space of the Model

As a first step, an analysis determines whether the observed behavior of the model
can be attributed to one or many of the model’s inputs or if it is the result of chance.
By systematically searching for minima and maxima in the response surface of the
simulation model, dependencies between input values and observed model behavior
can be identified. Hence, conclusions can be drawn regarding the importance of
the inputs with respect to their ability to influence the behavior of the model. The
identification of dependencies between factor levels and observed model behavior
is valuable to further limit the considered parameter space and to focus on specific
areas that provide evidence for or against the initial assumption.

The automated exploration of parameter spaces of simulation models is the pri-
mary goal of the BehaviorSearch3 tool. Initially, BehaviorSearch was implemented
as a stand-alone tool that enables the application of genetic algorithms and other
mathematical optimization techniques for searching parameter-spaces and for ap-
proximating or identifying local and global optima. Since NetLogo version 6.0.1,
BehaviorSearch is an inherent part of the NetLogo framework and provided upon
installation. BehaviorSearch pursues a four-step approach to explore the parameter-
space of NetLogo models. First, the user is required to define a measure by which the
behavior of the model can be assessed in a quantitative way. This corresponds to the
definition of a performance measure as it is required by the presented Hypothesis-
Driven Simulation Study approach. Second, admissible values or ranges of values
must be specified for each of the model’s input parameters. A reasonable size of
the parameter-space that is defined during this step is a trade-off between two cri-
teria: precision and computational cost. Narrow parameter-spaces result in a faster
termination of the search algorithm as optima are found more quickly. However, the
n-dimensional grid of design points that results from the specified parameter values

3
http://www.behaviorsearch.org/ [Retrieved Jun. 2018]

http://www.behaviorsearch.org/


228 7 Case Study: Supply Chain Management

might not include relevant optima in case the grid cells are too wide. In contrast
to this, the specification of a parameter space that consist of a large number of de-
sign points might cause the search algorithm to not properly identify optima due to a
lack of computational power. As a third step, either one of the four pre-implemented
search algorithms (genetic algorithm, hill climbing, simulated annealing, or random
search) can be selected or a custom algorithm can be added. After this step, the
exploration of the parameter-space takes place in an automated way and relevant
experiments are designed and executed by the BehaviorSearch tool. To accelerate
the execution of the experiments, the parallelization of different experiments is rea-
sonable at this step. Finally, the results are presented in tabular form and in different
granularities. This includes files that contain the full results of each simulation step
and run but also excerpts that only contain the final best results of each run.

The first and second step of the BehaviorSearch procedure are model-specific.
For the first step, the definition of a quantitative measure that is utilized to mea-
sure the model’s behavior, the maximum storage capacity is required. Instead of the
maximum value, the model only provides the storage capacity of the current time
step. Hence, the overall maximum value (MAX_ACROSS_STEPS) must be extracted
from the time series of storage capacity data. To define the parameter space in the
second step, the range of values that are admissible by definition of the model is
chosen. For Clients_N and Demand_W, the number of admissible values is limited
in accordance with the defined scenario to avoid the over representation of these
factors (cf. Table 7.3). This results in the search space shown in Table 7.4.

Table 7.4: Specification of the parameter’s search space for BehaviorSearch.

Parameter Search Space
Fact [1]
Distr1 [3]
Distr2 [7]
Clients_N [25 50 75 100 100 125 150 175 200 225 250 275 300 325 350]
SS_% [0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95]
Lt0 [0 1 2 3 4 5 6 7]
Lt1 [0 1 2 3 4 5 6 7]
Demand_W [5 7 9 11 13 15 17 19 21 23 25 27 29 30]
DS_D [0 1 2 3]
HC [0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1]
K [50 75 100 125 150 175 200 225 250 275 300 325 350 375 400]
Product_cost [5 10 15 20 25 30 35 40 45 50]
Customer_Strategy ["1-Daily Purchase"]
Inventory_Policy ["1 - (s, Q)"]

For the third step, the definition and execution of the search algorithm, specific
parameters of the search need to be stated (cf. Table 7.5). The inconsiderate defi-
nition of some parameter values might result in incorrect results. For example the
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specification whether the objective of the search algorithm is to maximize or min-
imize the fitness function or the collection of the performance measure as median,
mean, maximum, or minimum across the simulated steps. Other parameters can also
bias the results if they are not defined with due regard to simulation principles. Ex-
amples are the number of replications per parameter configuration that is evaluated
by the search algorithm or the evaluation limit that terminates the search.

Table 7.5: Search configuration for BehaviorSearch.

Setting Value
fitnessMinimized true
fitnessCollecting MAX_ACROSS_STEPS
fitnessSamplingReplications 10
fitnessCombineReplications MEAN
evaluationLimit 300
chromosomeRepresentation GrayBinaryChromosome

BehaviorSearch provides four pre-implemented search algorithms: standard ge-
netic algorithm, mutation hill climber, simulated annealing, and random search
(cf. Table 7.6). Genetic Algorithms adapt the idea of natural selection and make
use of historical information to direct the direction of search (Russell et al., 2010).
Hill climbing is inspired by the idea of ascending an unknown mountain by search-
ing for the steepest way for each step. In case all possible steps result in a descent,
a local maxima was found. This algorithm is well-suited if only one maximum or
minimum exists. From a random position, random search samples a random point
from the neighborhood of the current position. In case the fitness of the sampled
point is better than the current point’s fitness, the algorithm moves to this position.
Simulated annealing pursues an approach that is similar to hill climbing, yet, solu-
tions that are worse than the previous one can be accepted. By this means, simulated
annealing explores the response surface more extensively. The name is inspired by
metallurgy, where materials are annealed to alter their physical properties. All al-
gorithms except random search can be parametrized and modified by the user of
Behavior Search. Yet, initial parametrizations are provided for each algorithms so
that they can be executed immediately.

For the purpose of this evaluation, all four algorithms are applied and the results
are compared. Each algorithm is applied twice, once with the goal of maximizing
the fitness and once with the goal of minimizing the fitness. A maximum of 300
models runs, a model step limit of 720 simulation steps, and 10 iterations per pa-
rameter configuration are executed. The observed fitness values from each of the 10
iterations are combined by their arithmetic mean.

Figures 7.6 and 7.7 visualize the dispersion of the final best results of all search
runs as boxplots. For each input parameter, an individual boxplot is presented. The
best fitness values found in each of the 1000 executed searches are visualizes by
their quartiles and grouped by the search algorithm and the respective goal. The up-
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Table 7.6: Configuration of search algorithms supported by BehaviorSearch.

Search Method Parameters
StandardGeneticAlgorithm (GA) mutation-rate 0.03

population-size 50
crossover-rate 0.7
population-model generational
tournament-size 3

MutationHillClimber (HC) mutation-rate 0.05
restart-after-stall-count 0

RandomSearch (RS) not required
SimualtedAnnealing (SA) initial-temperature 1.0

mutation-rate 0.05
temperature-change-factor 0.99
restart-after-stall-count 0

per and lower bounds of the box represent the 25% and 75% quartile such that 50%
of all observed values as well as the median (marked with a line) fall in this inter-
val. The antennas (whisker) represent 1.5 times the interquartile range and outliers
are visualized as points (cf. Section 6.5.1). In the following figures, the boxplots
are grouped according to the apparent relevance of the respective parameter. The
assessment is based on the dispersion as well as the distinctness between maximiza-
tion and minimization results. For each of the parameters, the maximization results
are depicted on the right-hand side of the plot and the minimization results on the
left-hand side. On each side, one box represents one of the four applied search al-
gorithms.

Figure 7.6 visualizes the results generated by BehaviorSearch for the parameters
Client_N, Demand_W, HC, and Product_cost. At first view, it can be detected that
the median of all four parameters is very similar or even equal for all four mini-
mization or maximization searches. For Client_N, the median for a maximal fitness
is between 275 and 300 and between 25 and 50 for a minimal fitness. The size
of the whiskers implies that the dispersion of the parameter values is higher dur-
ing the maximization. During the minimization, outliers for almost every parameter
value were observed even though the occurrences are rare. The observations made
for the Demand_W parameter correspond to those of Client_N. However, no vari-
ations of the median can be identified for different search algorithms. The median
is 25 during the maximization, while the median during the minimization is 7. It
can be concluded, that both parameters influence the model’s performance measure
such that low values of Client_N and Demand_W result in low output values of the
model while high values result in high output values.

The opposite can be observed when analyzing the boxplots of HC and Prod-
uct_cost. Here, the relationship between low and high parameter and output val-
ues is reversed. Low values of both parameters maximize the output of the model
whereas high parameter values minimize the output. Another notable observation is
that the parameter values that maximize the output are mostly located at the lower
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a) b)

c) d)

Fig. 7.6: Final best values of parameters a) Client_N, b) Demand_W, c) HC,
and d) Product_cost to minimize and maximize output Maxstock.

end of the range of possible values, i.e., between 0.01 and 0.02 for HC and between
5 and 10 for Product_cost. The whiskers are relatively shorter and higher parameter
values are only classified as outliers. For the minimization, the median of the param-
eter values corresponds to the center of the range of possible values (0.06 for HC
and 30 for Product_cost) and the whiskers cover the entire range of values. Thus,
no statement can be made about the importance and influence of these factors.

The boxplots of the remaining parameters are shown in Figure 7.7. It can be noted
that the two upper plots, that represent the parameters K and Lt0, are similar to those
shown in Figure 7.6. High values of both parameters result in a maximization of the
model’s performance measure and low values result in a minimization. While the
lower median of K is between 100 and 125, the higher median is between 300 and
250. For Lt0, the minimization median is exactly 1 and the maximization median
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is equal to 6. For both parameters, the whiskers almost cover the entire range of
admissible values.

The boxplots of Lt1, SS_%, and DS_D differ from the other plots. A visual
distinction between maximization and minimization searches can hardly be made.
None of the median values of the searches is located at the outer parts of the pa-
rameter value ranges. Instead, the values of both searches are situated in the middle
part of the range of values. Furthermore, the whiskers cover the entire range of ad-
missible values such that no outliers exist. It can be assumed that the parameters
Lt1, SS_%, and DS_D do not systematically influence the behavior of the simu-
lation model. However, whether these parameters have a random influence on the
performance measure or no influence is subject to further analysis. Likewise, the
existence of two- or multi-factor interactions (correlations) cannot be determined
based on this first brief analysis and further investigations are required.

The results of this first pre-analysis of the model’s parameters show that three
of the nine existing model parameters seems to be relevant for the storage capacity
that can be observed when executing the model. While Clients_N and Demand_W
have a positive effect of the storage capacity, Product_cost has a negative effect.
Accordingly, low values of Product_cost result in a high storage capacity and vice
versa. The models’ performance measures of the two presented hypotheses are very
similar. The only difference is that the second scenario does not make an assumption
on the total storage capacity but on the storage capacity per customer. Hence, it can
be assumed that the directions of the factors’ effects are similar except for parameter
Client_N where an inversion of the effect must be expected. As the number of clients
is the denominator of the performance measure, an increasing number of clients
decreases the value of the performance measure, assuming a constant numerator.

Response Surface of the Model

Before applying the assistance for conducting a Hypothesis-Driven Simulation
Study, this section investigates the shape of the expected response surface. By this
means, those areas of the response surface in which the stated hypothesis is violated
can be identified and serve as reference data for the assessment of the results. This
allows for a comparison of the evidence provided by the presented approach to the
data generated during the pre-analysis and to evaluate the approaches’ validity.

Due to spatial limitations, the response surface of the investigated model can only
be visualized as a 3D plot. Accordingly, the plots can only contain information re-
garding how two input parameters of the model influence the specified performance
measure with respect to all possible parameter value combinations. In both assump-
tions presented in Section 7.1.3, the performance measure maximum required stock
level is used to assess the behavior of the model. Accordingly, the z-axis of the
following response surface plots represents the observed value of the model’s per-
formance measure. It can be considered as the function value of the model execution
function f (x1,x2) where x1 and x2 are the values of two model inputs. When execut-
ing simulation models, specific values need to be assigned to all input parameters.



7.2 Scenario 1: Maximum Required Storage Capacity for a Specific Number of Clients 233

a) b)

c) d)

e)

Fig. 7.7: Final best values of parameters a) K, b) Lt0, c) Lt1, d) SS_%, and
e) DS_D to minimize and maximize output Maxstock.
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Hence, constant values are applied for all remaining parameters except x1 and x2. In
this subsection, those constant parameter values are referred to as low, medium, and
high values. Unlike the terminology used in factor screening (cf. Section 6.3.1), this
does not refer to the impact these values have on the output of the model. Instead, it
refers to the region of the value range such that low input values originate from the
numerically lower part of the range of admissible values, etc.

Because of the aforementioned visual limitations, a small set of input parameters
must be selected to generate and plot the respective response surfaces of the model.
Considering the boxplots in Figures 7.6 and 7.7 as well as the inputs that are men-
tioned as part of the presented assumptions, potentially relevant parameters can be
identified. The number of clients (Client_N) as well as the demand of the clients
(Demand_W) are subject to the presented assumptions. As the quartiles are rela-
tively smaller compared to the other parameters, the boxplots affirm the assumption
that these two parameters influence the performance measure. Furthermore, a clear
distinction can be made between the minimization and maximization median values
of both parameters. The costs of the product (Product_cost) are chosen as a third
parameter for the investigation of the model’s response surface. It can be assumed,
that the price that must be paid for the product has a major influence of the order
quantity and accordingly also on the required storage level.

The response surface plots that are presented are arranged as follows: x- and
y-axis of the plots consist of the values of the parameters (Client_N) and (De-
mand_W). Vertically, on the z-axis, the value of the maximum required storage
capacity is plotted. Both product cost and the remaining parameters have constant
values for each plot. Each group of plots that is presented in the remainder of this
subsection visualizes a different level of the remaining parameters. The plots sum-
marized in one group only differ in the level of the Product_cost parameter. In this
regard, low Product_cost represent a value of 5, medium cost a value of 25, and
high cost a value of 50.
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Fig. 7.8: Response surface of interactions between parameters Clients_N and De-
mand_W with low and high values of remaining parameters.
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Fig. 7.9: Response surface of interactions between parameters Clients_N
and Demand_W with medium values of remaining parameters.

In Figure 7.8, the interactions between the parameters Client_N and Demand_W
are depicted for low values of the remaining parameters. Accordingly, the remaining
parameter values are specified such that SS_% = 0.5, Lt0 = 0, Lt1 = 0, DS_D = 0,
HC = 0.01, and K = 50. Considering the response surfaces for low and high values of
the Product_cost parameter, it can be observed that these plots appear identical. Yet,
not only the shape of the plots but also the underlying data are equal in these plots.
The same applied for medium Product_cost even though this plot is not shown. This
behavior of the model is plausible, as lead times (Lt0 and Lt1) do not exist. Thus,
forecasting demands is no longer required just like the calculation of the economic
order quantity.

Figure 7.9 illustrates the response surface when the values of the remaining pa-
rameters are set to medium values, i.e., SS_% = 0.7, Lt0 = 3, Lt1 = 3, DS_D = 2,
HC = 0.05, and K = 225. In contrast to the low values presented in Figure 7.8, dif-
ferences can be observed between the three plots. For one thing, increasing product
cost results in a smoother surface even though the number of replications is equal for
all three plotted scenarios. For another thing, the plot that visualizes the surface with
low product costs shows a steeper surface compared to the two remaining plots. As
the lead time is no longer equal to 0, it is plausible that low product costs result in
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Fig. 7.10: Response surface of interactions between parameters Clients_N and De-
mand_W with high values of remaining parameters.

increasing order quantities and thus requirer larger maximum storage capacities of
the factory. Additionally, it can be observed that low product costs result in a convex
response surface while medium and high product costs shape a concave surface.

Finally, in Figure 7.10, the response surface for high values of the remaining
parameters is shown. Similar to the plots of the medium values, a smoothing of the
surface can be observed as the product costs increase. Furthermore, also a change
of the surfaces’ shapes can be observed from a convex to a concave shape with
increasing product costs.

In summary, it can be stated that the shape of all presented surfaces is similar.
The lowest values of the performance measure are observed at the zero point where
x- and y-axis meet. The highest values are located the opposite corner where the
maximum x and y values are visualized. It can be concluded that both parameters
Clients_N and Demand_W have a positive effect on the performance measure. This
applies individually for each of the parameters as well as for the interaction between
both parameters. Hence, it must be assumed that the effects of both parameters in-
tensify each other and that the effects of the factors correlate.

It can also be observed that the surface of lower parameter values tend to be
convex while the surfaces that results from higher parameter values have a more
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c) Prod_cost = 50 and low values
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Fig. 7.11: Response surface for Prod_cost = 5 with a) low and b) high values of the
remaining parameters and for Prod_cost = 50 with c) low and d) high values of the
remaining parameters. Areas in which the maximum storage capacity is over 60,000
are colored in dark gray.

concave shape. Accordingly, for lower parameter values, the required maximum
storage capacity increases quickly as a result of increasing values of Clients_N and
Demand_W and flattens the more the values increase. For higher values of the re-
maining parameters, a flat ascent of the surface can be observed at first, which in-
creases as the values of Clients_N and Demand_W increase. With respect to the
maximum storage level, it can be stated that the remaining parameters seem to have
a positive influence on this performance measure while increasing product costs de-
crease the maximum required storage capacity. The highest storage capacity values
can be observed in Figure 7.10 for low Product_cost.

With regard to the two assumptions and the corresponding hypotheses stated in
this section, it can be ascertained that a storage capacity of 60,000 is not sufficient
if the number of clients increases to 150. In Figure 7.11, those parts of the response
surface in which this assumption does not hold are marked in gray, i.e., where the
number of clients is greater than 150 and where the required storage capacity is
greater than 60,000. In this regard, the area in which the maximum storage capacity
requirement is violated is marked in a darker gray while the area in which the num-
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ber of clients in greater than 150 is colored in a brighter gray. When applying the
approach for Hypothesis-Driven Simulation Studies that is proposed in this thesis,
the challenge is to correctly identify those areas of the response surface in which the
initial assumption is violated and to provide evidence that the hypothesis does not
hold.

7.2.2 Design of Experiments

With respect to the design of relevant simulation experiments, a limitation of the
considered parameter space is necessary. It is not possible to simulate all potential
factor-level combinations in reasonable time. Thus, those inputs must be determined
that are varied and tested in simulation experiment. In the parametrization part of the
presented formalized hypothesis, a specific value is only provided for the Clients_N
input parameter. The values of the remaining inputs are summarized under the ce-
teris paribus sign (#). This implies that no specific values are defined for these inputs
as part of the hypothesized assumption and that standard values are used instead. Ac-
cording to sparsity-of-effects principle (cf. Section 5.1), it is likely that only a small
numbers of these factors is of relevance for the observed behavior of the model.
Consequently, as a next step, those factors that are important for the investigated
performance measure must be identified based on the specified hypothesis.

As a commonly used approach for factor screening, sequential bifurcation was
introduced and specified in the previous chapter (cf. Section 6.3.1). To apply se-
quential bifurcation in this scenario, two assumptions must be met. First, a first-
order polynomial with noise must be a suitable metamodel for the output of the
simulation model. Second, the signs of all main effects must be known and not neg-
ative. This refers to the awareness of low and high values for each parameter of the
model, which result in a minimization or maximization of observed performance
measure of the model. Usually, the model builder can provide such information or
at least an educated guess whether parameters have a positive or negative influence
on the model’s outcome. As part of the assistance, this knowledge cannot be sup-
posed. However, using the BehaviorSearch optimization tool, the direction of each
parameter’s effect as well as suitable low and high values can be identified (cf. Sec-
tion 7.2.1). This applies only for quantitative inputs. For the qualitative inputs of
the presented model, factor screening cannot be applied. This includes the pursued
purchase and inventory strategies as well as the model extension that implements
retailer scoring. In the presented scenario, it seems reasonable to set these inputs to
constant values and consider them as part of the scenario description. Accordingly,
for the application of sequential bifurcation, low, high, and constant values of the
model’s inputs are defined as shown in Table 7.7.

To estimate the main effects of each of the model’s input parameters, differ-
ent extensions and modifications of sequential bifurcation were proposed. Standard
sequential bifurcation is not capable of estimating effects which result from the
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ID Name Purpose Value

- Fact #Factories 1
- Distr1 #Distributors 3
- Distr2 #Retailers 7

- Cust._strat. Purchase strat. 1 - daily
- Inv._pol. Inventory strat. 1 - (s,Q)
- Score_Retailers Score purchase

and choose best
supplier

false

ID Name Purpose # "

1 Clients_N #Clients 25 350
2 Lt0 Lead time (Dist.) 0 7
3 Lt1 Lead time (Ret.) 0 7
4 SS_% Safety value .5 .95
5 Demand_W mean(demand) 5 30
6 DS_D s (demand) 0 15
7 HC Holding cost .1 .01
8 K Cost per order 50 400
9 Product_cost Cost of product 50 5

Table 7.7: Low (#), high ("), and constant values of inputs for factor screening.

correlation of two or more factors. Instead, foldover designs must be used for the
identification of such effects.

When applying standard sequential bifurcation to a model with n parameters, the
output of the model must be analyzed for n+1 different parametrizations. Besides
the outputs of the extremes y(0) (all factors set to their low levels) and y(n) (all n
factors set to their high levels), sequential bifurcations requires stepwise outputs
where the value of one additional factor is set to its high level. Moveover, for the
calculation of the foldover design, output values for the respective mirror scenarios
are required as well. In the mirror scenarios, all factors that were set to the high
levels in the corresponding original scenario are set to their low levels and vice
versa. Accordingly, the parametrization and consequently also the output value of
the scenario y(0) and the mirror scenario y⇤(9) are equal. The same applies for y(9)
and y⇤(0).

The output values y(0) to y(9) as well as the outputs of the respective mirror sce-
narios y⇤(0) to y⇤(9) are presented in Table 7.8. Here, the IDs of the factors correspond
to the IDs defined in Table 7.7. Kleijnen (2015) suggested that knowledge of the
model and respective assumptions of the potential importance of each factor can be
used to presort the factors. By this means, the efficiency of sequential bifurcation
can be increased as a large number of unimportant factors can be removed in the first
iteration of the algorithm when performing the first separation of the search space.
With respect to the goal of this thesis, knowledge of the model’s behavior cannot
be assumed. Accordingly, a random permutation of the factors is used as a basis for
factor screening.

As a first step, the extreme scenarios y(0) and y(9) are simulated to obtain the
group effect (b̄1�9 = 373,763.32) of all 9 considered factors. It can be observed,
that the values of the outputs increase, the more factors are set to their high levels.
Likewise, a decrease of the output values can be noticed for the mirror scenarios,
where the levels of the factors are stepwise set to their low levels. Upon the inclu-
sion of factors 3 (K) and 4 (Lt0), no increase of the output values y(3) and y(4) can
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Table 7.8: Averaged observations y(k) and mirror observations y⇤(k) based on 50 repli-
cates (seed-values = 19890206-19890255).

mean (µ) st. dev. (s )

y(0) 811.98 169.46

y(1) 4,835.22 1,007.98

y(2) 70,350.00 12,369.32

y(3) 70,350.00 12,369.32

y(4) 70,350.00 12,369.32

y(5) 79,200.38 25,976.23

y(6) 176,161.60 59,899.45

y(7) 206,118.70 64,723.53

y(8) 621,161.40 93,836.59

y(9) 748,338.62 108,706.12

mean (µ) st. dev. (s )
y⇤(0) 748,338.62 108,706.12

y⇤(1) 240,964.20 48,053.50

y⇤(2) 53,784.80 10,833.48

y⇤(3) 23,001.52 6,112.43

y⇤(4) 21,641.42 9,148.56

y⇤(5) 6,482.88 3,022.89

y⇤(6) 2,122.06 601.86

y⇤(7) 2,788.26 518.75

y⇤(8) 1,309.48 142.72

y⇤(9) 811.98 169.46

be perceived and the values remain the same. Based on this observation, it can be
assumed that the effect and thus also the importance of these factors with regard to
the maximum storage capacity is relatively smaller.

By definition, the sequential bifurcation factor screening approach pursues a di-
vide and conquer approach. After the determination of the model’s overall effect
b̄(1�9), the set of factors is divided into two subsets (b̄(1�4) and b̄(5�9)) and the re-
spective effect of each of the resulting sets is estimated. What follows is an iterative
process where the group with the largest effect is again divided into two subgroups
until the most important factors were identified. The resulting search tree is pre-
sented in Figure 7.12. In the figure, factors and groups of factors whose relative
effect explains more than 15% of the model’s overall effect are colored gray. Ap-
plying sequential bifurcation, factors 1, 2, and 8 are identified to be most important.
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Fig. 7.12: Search tree of the sequential bifurcation factor screening. Factors and
groups of factors whose relative effect explains more than 15% of the model’s over-
all effect are colored gray.
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Together, Demand_W, Clients_N, and Product_cost explain more than 75% of the
model’s overall effect. Moreover, the observation that outputs y(3) and y(4) do not
increase when setting the values of the respective inputs to their high levels can be
explained such that both factors together have an effect of less than 3%.

According to Kleijnen et al. (2003), the described divide and conquer approach
allows for the efficient identification of important factors for models with a large
number of inputs (>100). This is because groups of unimportant factors are cut
off and do not need to be analyzed in detail. The supply chain model that is used
for the purpose of this evaluation only consist of 9 factors that are considered as
potential important factors. Accordingly, the main effects of each factor can be cal-
culated directly and without calculating group effects first. To assess whether factor
interactions exist that cannot be taken account of by the chosen foldover design, the
application of the step-wise divide and conquer approach is reasonable. This allows
for the identification of group effects that vanish when splitting groups into smaller
subgroups or individual factors. Furthermore, this indicates that the selected design
is not capable of correctly identifying the actual effect. Based on the observed out-
put values shown in Table 7.8, the main effects of each factor can be calculated
directly. In sum, the individual main effects of each factor presented in Table 7.9 are
equal to the estimated overall effect of the model (b̄1�9 = 373,763.32). Thus it can
be assumed, that the selected foldover design was appropriate for the supply chain
model.

The result of the factor screening show that the cumulated main effect of the
inputs Demand_W, Clients_N, and Product_cost corresponds to approximately
75% of the model’s overall effect. Thus, with respect to the parsimony principle,
Clients_N and Product_cost should be considered as well when selecting factorial
designs for the limitation of the model’s parameter space.

In the case study presented here, the response surface of the investigated sim-
ulation model is still unknown at this point. Only a small amount of information
is available based on the factor screening results. In this regard, Sanchez (2007)
proposed the application of Latin Hypercubes for models with a large number of

Table 7.9: Average main effects b̄(k) of each factor, calculated based on the output
values from Table 7.8.

Factor b̄(k)

b̄(1) Demand_W 127,849.40
b̄(2) Clients_N 63,173.54
b̄(3) K 7,695.82
b̄(4) Lt0 340.03
b̄(5) HC 6,002.23
b̄(6) Lt1 25,330.50
b̄(7) DS_D 7,322.75
b̄(8) Product_cost 104,130.40
b̄(9) SS_% 31,918.68
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factors. Latin Hypercubes are a well suited general-purpose design which allows
for a first exploration of a model’s response surface. It is well suited for quantitative
factors only such as the parameters of the presented simulation model (Deng et al.,
2015). In contrast to other designs, Latin Hypercubes have space-filling properties
such that a small number of design points can provide first impression of the shape
of the response surface.

For this evaluation, the Latin Hypercube Sampling with k = 9 factors and n = 10
levels is executed. The calculation of a valid design is not trivial as exactly one
design point must be identified for each group of possible levels of each factor. To
generate a set of design points that corresponds to this constraint, existing software
libraries can be used. An example is the R project package lhs4 (Carnell, 2018).
The provided randomLHS function generates a valid set of design points as a k⇥n
matrix for k variables and n design points. The resulting matrix for a sampling with
k = 9 factors and n = 10 levels is shown in Table 7.10.

Table 7.10: Design points (DP) generated by R Project package lhs for k = 9 fac-
tors and N = 10 levels with seed = 19890206.

DP Cl_N Lt0 Lt1 SS_% Dem_W DS_D HC K Prod_c
1 0.7007 0.6613 0.9779 0.3354 0.5914 0.2904 0.4972 0.6756 0.0760
2 0.5425 0.0436 0.5924 0.1785 0.2636 0.4357 0.0868 0.8992 0.4941
3 0.4055 0.7808 0.7683 0.5612 0.8631 0.5870 0.8187 0.5645 0.6796
4 0.9819 0.8830 0.6843 0.2771 0.4499 0.6736 0.1502 0.7515 0.5482
5 0.2127 0.4816 0.3077 0.9600 0.9862 0.7996 0.2810 0.3795 0.2327
6 0.1236 0.5483 0.2828 0.8678 0.0390 0.8868 0.7353 0.2083 0.9859
7 0.0833 0.1712 0.0036 0.7763 0.1097 0.9004 0.3252 0.9614 0.8117
8 0.3638 0.3914 0.8372 0.0799 0.6362 0.1032 0.9091 0.4706 0.1437
9 0.6035 0.2234 0.4026 0.6538 0.7038 0.3183 0.6671 0.1935 0.3688
10 0.8902 0.9570 0.1269 0.4260 0.3400 0.0056 0.5578 0.0545 0.7853

To illustrate how the parameter space of the model is covered and that the space-
filling properties of Latin Hypercube Sampling apply, all resulting factor-level com-
binations are visualized in Figure 7.13. The presented scatterplot matrix can be read
such that each subplot illustrates the considered pairs of values for all possible com-
binations of two inputs. Accordingly, in this example of nine factors, the scatterplot
matrix consists of 81 fields. The diagonal of the matrix is irrelevant, as it shows the
same variable on both axes. Furthermore, each subplot appears twice, once below
and once above the diagonal, which results in only 36 distinct subplots.

By default, the design points generated by the lhs package are normalized to
the interval [0,1]. Considering the model, the interval of admissible values is differ-
ent for each factor and not equal to [0,1] (cf. Table 7.3). Accordingly, the generated
values must be transformed to correspond to the range of admissible values of each

4
https://cran.r-project.org/web/packages/lhs/ [Retrieved Aug. 2018]

https://cran.r-project.org/web/packages/lhs/
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Fig. 7.13: Scatterplot matrix for N = 10 design points for each of the k = 9 control-
lable parameters of the supply chain model.

of the model’s parameters. Table 7.11 shows the design points that result from the
transformation process. For the parameters SS_%, HC, and Product_cost, the num-
ber of admissible values is equal to the number of desired design points. Accord-
ingly, each possible value of these parameters is used in exactly one design point.
The number of admissible values of the parameters Lt0, Lt1, DS_D, and K is smaller
than the number of design points. Because of that, certain values must be used in
two or more design points. Finally, the range of admissible values of Clients_N
and Demand_W is larger than the number of design points. Here, 10 equal groups
of possible factor levels are defined. As the number of admissible values is not a
multiple of the required number of design points, the size of the groups varies.

To receive a first impression of the shape of the model’s response surface, all
10 parametrizations are executed that are defined in Table 7.11. For this evaluation,
a sample size of 50 replications is chosen. At this point of the evaluation, a high
level of statistical certainty is not of primary relevance. Instead, receiving a first
impression of the shape of the response surface and the identification of potentially
relevant areas for the verification of the underlying research hypothesis must be
achieved. For this purpose, the number of replications is set to a static level (n= 50),
which is assumed to be sufficiently high to receive unbiased results. The results of
the respective simulation runs are presented in Table 7.12.

Due to the space-filling properties of Latin Hypercube Sampling, the generated
outputs can be used to gain a first impression on the model’s response surface. This
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Table 7.11: Transformation of design points from Table 7.10 to the range of admis-
sible values of each factor.

DP Cl_N Lt0 Lt1 SS_% Dem_W DS_D HC K Prod_c
1 253 5 7 0.65 20 1 0.05 300 5
2 201 0 4 0.55 12 1 0.01 400 25
3 157 5 5 0.75 27 2 0.09 250 35
4 344 6 5 0.60 16 2 0.02 350 30
5 94 3 2 0.95 30 2 0.03 200 15
6 65 4 2 0.90 6 3 0.08 150 50
7 52 1 0 0.85 8 3 0.04 400 45
8 143 3 6 0.50 21 0 0.10 250 10
9 221 2 3 0.80 23 1 0.07 150 20
10 314 7 1 0.70 14 0 0.06 100 40

Table 7.12: Simulation outputs: Average maximum storage capacity of each design
points of the Latin Hypercube Sampling. (random� seed = 19890206�19890255
and n = 50)

Design Maxstorage
Point Mean Standard Deviation

1 172,904.08 36,818.45
2 24,144.20 128.45
3 47,547.44 3,840.50
4 103,954.10 28,226.55
5 46,482.72 10,786.90
6 5,768.00 1,284.94
7 7,801.90 1,864.89
8 41,219.42 12,150.43
9 53,853.66 2,008.28
10 49,671.02 1,722.84

is possible, even though only a comparatively small number of design points was
simulated. In Figure 7.14, the outputs observed for the 10 defined design points
are plotted as black points for all considered combinations of Clients_N and De-
mand_W. To illustrate the response surface that is defined by these observations,
thin plate splines are used for the interpolation of the resulting surface. Especially
for high values of Clients_N in combination with low values of Demand_W, the
randomly generated design points result in a lack of information of these parts of
the surface. Due to the steep slope of the surface that is defined by the surround-
ing measured values, the interpolation algorithm continues this trend in areas where
measured data is missing. Thus, the resulting descent of the interpolated surface to
negative z values is a result of missing measured values in this area. Considering the
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logic of the model, such observations cannot be made as a negative storage capacity
is not possible. Accordingly, it can be assumed that the storage capacity is close to
zero in these areas.

The observed outputs as well as the interpolated surface suggest that some parts
of the parameter space result in a violation of the stated hypothesis. For medium
and high factor levels of Clients_N and Demand_W, maximum storage capacity
values of more than 60,000 are observed. This shape of the response surface can
be attributed to a potential interaction of these factors. Thus, to analyze whether
the study’s underlying assumption is indeed violated for medium and high factor
levels of Clients_N and Demand_W, a thorough investigation of this area of the pa-
rameter space is required. Likewise, the third important factor (Product_cost) that
was identified by means of sequential bifurcation factor screening must be investi-
gated. Considering design points with high levels of Product_cost where the level
of Clients_N was high as well, e.g., design points 4 and 10, high maximum storage
capacity values can be observed. The same applies for combinations of high levels
of Product_cost and Demand_W (design point 3) or of all three important factors
(design point 10).

As a next step, a suitable factorial design must be identified to design simulation
experiments with respect to the more detailed investigation of the model’s param-
eter space. To reduce the number of resulting design points and to maintain the
efficiency of the simulation study, a larger set of levels must be investigated for each
of the important factors. At the same time, the number of analyzed levels should be
reduced for less important factors, to avoid a combinatorial explosion of the con-
sidered parameter space. In this regard, the focus of the investigation should be on
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Fig. 7.14: Scatterplot of maximum storage capacity for design points from Latin
Hypercube Sampling (cf. Table 7.12). The surface is interpolated using thin plate
splines.
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the medium and high levels of the important factors, as implied by the results of the
Latin Hypercube Sampling.

With respect to the design of experiments, the level of the Clients_N parameter
must be held constant during the study as defined by the investigated hypothesis
(Clients_N= 150). Thus, only the important factors Demand_W and Product_cost
are considered for the design of the experiments. The surface interpolated based on
the results of the Latin Hypercube Sampling implies, that the response surface of the
model has a concave shape (cf. Figure 7.14). Accordingly, it can be assumed that it
ascends steadily and that no maxima must be expected in the lower and middle part
of the surface. In this regard, the application of a mk design with m = 3 seems suffi-
cient to investigate low, medium, and high levels of the important factors. Defining
low and high values for Demand_W and Product_cost is simple, as the lowest and
highest admissible values can be selected. Considering the admissible minimum and
maximum values as well as the defined step size of Demand_W and Product_cost,
the definition of a medium value is more challenging, as the exact center of both
the value ranges of both parameters is not a whole number and thus by definition
not an admissible value. To solve this inaccuracy, the next larger admissible value
is selected. For Demand_W, 18 is defined as a medium value and for Product_cost
30 is defined as a medium value. For the remaining unimportant parameters, a less
comprehensive design seems sufficient and thus only two settings of these parame-
ters will be investigated: all low and all high levels. This results in a total number of
18 design points (simulation runs), that are executed during the simulation study to
verify whether or not the stated hypothesis holds (cf. Table 7.13).

After the relevant simulation runs were successfully designed, the required num-
ber of replications per simulation run must be determined. Unlike the simulation
runs were conducted as part of the Latin Hypercube design, a thorough estimation
of the required number of replications is of high relevance here to assess the sta-
tistical significance of the generated results. As all 18 simulation runs execute the
model with a different parametrization, it must be assumed that the required number
of replications is not equal for all runs. Instead, the number of replications must be
estimated individually for each parametrization.

In this thesis, confidence intervals are applied for replication estimation. As de-
fined by Hoad et al. (2010a), a precision criterion must be met to automatically
select the number of replications for a simulation run. The authors define the preci-
sion as “the half-width of the confidence interval expressed as a percentage of the
cumulative mean of the replications performed” (Hoad et al., 2010a, p. 1634) and
recommend a precision of 5%. Unlike other approaches for replication estimation
which can be applied before executing the model, e.g., rule of thumb, the selected
replication estimation method pursues an a posteriori approach. After the execu-
tion of a specific number of simulation runs, the algorithm can determine whether
the current number of performed simulation replications is sufficient or whether ad-
ditional replications are required to reach the desired precision. Accordingly, and
even though replication estimation is by definition a design of experiments task, it
is reasonable to apply the confidence interval approach for replication estimation by
Hoad et al. (2010a) during the conduction of experiments step of the study. By this
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means, a more efficient experimentation is enabled as the number of required model
executions is reduced.

Table 7.13: Simulation runs that are executed as part of the simulation study.

DP Cl_N Dem_W Prod_c Lt0 Lt1 SS_% DS_D HC K
1 150 5 5 0 0 0.5 0 0.1 50
2 150 18 5 0 0 0.5 0 0.1 50
3 150 30 5 0 0 0.5 0 0.1 50
4 150 5 30 0 0 0.5 0 0.1 50
5 150 18 30 0 0 0.5 0 0.1 50
6 150 30 30 0 0 0.5 0 0.1 50
7 150 5 50 0 0 0.5 0 0.1 50
8 150 18 50 0 0 0.5 0 0.1 50
9 150 30 50 0 0 0.5 0 0.1 50
10 150 5 5 7 7 0.95 3 0.01 400
11 150 18 5 7 7 0.95 3 0.01 400
12 150 30 5 7 7 0.95 3 0.01 400
13 150 5 30 7 7 0.95 3 0.01 400
14 150 18 30 7 7 0.95 3 0.01 400
15 150 30 30 7 7 0.95 3 0.01 400
16 150 5 50 7 7 0.95 3 0.01 400
17 150 18 50 7 7 0.95 3 0.01 400
18 150 30 50 7 7 0.95 3 0.01 400

7.2.3 Conducting of Experiments

In this case study, the simulation framework NetLogo is utilized for the execution of
the designed simulation runs. It provides all functionalities that are required to run in
on different platforms and its handling does not require detailed simulation knowl-
edge. This subsection discusses different aspects that must be considered during the
execution of simulation experiments. This includes the utilization and integration
of functionalities that are provided by the framework such as approaches for the
parallel execution of simulation runs. Furthermore, it presents techniques for the
generation of random variates which are required for the execution of the model as
well as the replication estimation which is executed as the model is executed.

For the parallel execution of simulation runs, NetLogo provides its own function-
alities. This does not include the multi-thread execution of one simulation run of a
model. Instead, NetLogo enables the parallel execution of multiple simulation runs.
For this purpose, the thread parameter of the headless command line instance
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of NetLogo can be used to configure how many threads of the host system shall
be used to execute simulation runs parallel. At this step, the user is able to define
any desired number of threads, while the definition of only one thread disables this
feature. However, with respect to the physical architecture of the host system, the
default setting of one thread per physical processor seems reasonable. This paral-
lelization approach is only promising if multiple simulation runs or iterations of the
same parametrization are executed. The execution of a single extensive simulation
run cannot be accelerated.

As default pseudorandom number generator, NetLogo implements Mersenne
Twister (Matsumoto and Nishimura, 1998; NetLogo, 2018). Mersenne twister is one
of the most popular pseudorandom number generator for use in simulation due to its
large state as well as due to the quality of the generated random variates (L’Ecuyer,
2015). Furthermore, NetLogo’s implemented MersenneTwisterFast class has
the benefit of being 33% faster than the standard Java pseudorandom number gen-
erator (java.util.Random), according to an own statement.

To initialize a pseudorandom number generator, a seed value is required (cf. Sec-
tion 6.4.3). By default, a seed value is generated randomly when executing a model
in NetLogo. This process is hidden and the experimenter is not informed about the
selected seed value. The probabilistic quality of the outputs generated when execut-
ing simulation models is not affected by this. However, the reproduction of outputs
is challenging as the same sequence of pseudorandom numbers cannot be gener-
ated multiple times as the seed value is unknown. To overcome this, specific seed
values are defined in for all simulation runs that are executed in the context of this
evaluation. The initial seed value chosen is random�seed = 19890206 and for each
further iteration of the same parameterization of the model, this value is incremented
by one.

To generate data that can serve as a basis for the purpose of this evaluation, the
18 defined parametrization are executed in parallel in accordance with the described
procedure. At the same time, the replication algorithm is applied to assess whether
the number of executed simulation iterations is sufficient. In case the desired pre-
cision is not met, the random seed value is incremented by one and an additional
iteration of the same parametrization of the model is executed. This procedure is
repeated until the specified precision criterion applies.

In Table 7.14, the results of the application of the replications algorithm are pre-
sented for each of the defined simulation runs. The desired precision dn is set to
5% and when the required precision is met kLimit = 4 additional replications are
executed to evaluate whether the precision criterion remains valid. Considering de-
sign points 1-9, it can be observed that the same number of replications (n = 57) is
suggested. Furthermore, the same mean values occur three times and depending on
the level of Demand_W. It can be concluded, that for low values of the unimportant
factors, the parameter Product_cost does not influence the results of the simulation
runs. Yet, differences in the results and in the calculated number of replications can
be identified for design points 10-18. The range of suggested replications reaches
from 20 replications (design point 12) to 59 replications (design point 18). The
step-wise smoothening of the maximum storage capacity’s cumulative mean, which
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Table 7.14: Number of replications for each simulation run (design point) with pre-
cision dn  5% and kLimit = 4.

DP #Replications Mean Standard Dev. Precision (dn)
1 57 4,895.21 920.02 4.987%
2 57 17657.54 3,317.51 4.985%
3 57 29,141.60 5,526.80 4.985%
4 57 4,895.21 920.02 4.987%
5 57 17,657.54 3,317.51 4.985%
6 57 29,414.60 5,526.80 4.985%
7 57 4,895.21 920,02 4.987%
8 57 17,657.54 3,317.51 4.985%
9 57 29,414.60 5,526.80 4.985%
10 44 132,022.50 21,512.06 4.954%
11 45 291,541.80 48,293.67 4.977%
12 20 408,763.00 42,513.17 4.982%
13 23 68,277.29 7,233.16 4.816%
14 35 157,055.20 21,353.91 4.902%
15 42 224,407.00 34,503.86 4.917%
16 22 59,133.14 6,572.73 4.928%
17 42 132,483.00 20,223.66 4.882%
18 59 162,591.20 31,148.48 4.992%

is measured in each replication of the model, is visualized in Figure 7.15. In the pre-
sented simulation, the desired precision of 5% or less is met after 59 replications.

NetLogo provides the results of each simulation run in two different ways. Even
though the structure and the content of the two output formats differs slightly, most
relevant information is provided in both formats. This includes the path of the used
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Fig. 7.15: Step-wise calculation of the confidence interval for simulation run 18.
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model, the name of the executed experiment, the used NetLogo version, the time
the experiment was executed, and complete information on each executed run and
iteration. The first possible output format are spreadsheets. Spreadsheets focus on
the analysis and provide an aggregated overview on the results of the experiment.
This includes different measures such as minimum, maximum, and final values of
each of the model’s outputs (cf. Table 7.15). In a second section of the spreadsheet,
stepwise run data are provided in detail and for each execution of the model.

As an alternative, the output of the results as table is possible. In contrast to
spreadsheets, the table output format does not analyze the generated data. Instead,
each row of the table consist of the detailed data of a single simulation run or step,

Table 7.15: Spreadsheet of a NetLogo experiment.

BehaviorSpace results (NetLogo 6.0.2)
Supply_Chain.nlogo
Exp_1
03/06/2018 12:27:14:949 +0100
[run number] 1 2 3 4
random-seed 19890206 19890207 19890208 19890209
Fact 1 1 1 1
Distr1 3 3 3 3
Distr2 7 7 7 7
Clients_N 150 150 150 150
Demand_W 5 5 5 5
Product_cost 5 5 5 5
Lt0 0 0 0 0
Lt1 0 0 0 0
SS_% 0.5 0.5 0.5 0.5
DS_D 0 0 0 0
HC 0.1 0.1 0.1 0.1
K 50 50 50 50
Show_Network FALSE FALSE FALSE FALSE
Customers_Strategy "1-Daily P." "1-Daily P." "1-Daily P." "1-Daily P."
Inventory_Policy "1 - (s, Q)" "1 - (s, Q)" "1 - (s, Q)" "1 - (s, Q)"
[reporter] wsc_maxstock wsc_maxstock wsc_maxstock wsc_maxstock
[final] 3745 5618 3745 3745
[min] 0 0 0 0
[max] 3745 5618 3745 3745
[steps] 720 720 720 720

[all run data] wsc_maxstock wsc_maxstock wsc_maxstock wsc_maxstock
0 0 0 0
3745 5618 3745 3745
3745 5618 3745 3745
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depending on the settings defined in NetLogo’s behaviorspace. This includes the
full parametrization of the model as well as the values of each output. With respect
to human readability, the spreadsheet visualization of the results is preferable. How-
ever, for the machine-aided analysis of the outputs, as it is provided by the assistance
proposed in this thesis, the table format is preferable.

At this point of the study, all required experiments were designed and success-
fully executed. It was ensured that the number of performed replication was suffi-
cient to allow for a statistically reliable verification of the study’s research hypoth-
esis. Furthermore, simulation data is available in a format that can be automatically
processed. In the next step, the generated outputs must be analyzed with respect to
confirming or refuting this hypothesis.

7.2.4 Analysis of Experiments

As a final step of the simulation study, the generated results must be analyzed. The
goal of this step is to provide sufficient statistical evidence for or against the study’s
initial research hypothesis. To this end, this subsection reassesses the outputs gener-
ated during the execution of the model and substitutes outliers and missing values.
Subsequently, the generated output data are aggregated and statistical hypothesis
tests are applied to determine whether or not to the stated hypothesis holds.

By this means of outliers detection, the assistance can compensate for potential
measuring or modeling errors. As the overall results of the study are affected by
this step, it must be documented thoroughly. Such interventions must be considered
when interpreting the results of the study. The substitution of outliers is reasonable
when deriving recommendations for action as potential bias resulting in inaccuracies
can be identified and eliminated. However, in a strict sense, these results no longer
represent the original behavior of the simulation model. It is the responsibility of
the user of the intelligent assistance to decide on this trade-off in accordance with
the hypothesis and to determine whether or not outliers and missing values shall
be substituted. Either way, the assistance provides necessary guidance to ensure the
generation of reproducible and reliable results.

To detect potential outliers in the set of generated data, it is necessary to deter-
mine the interquartile range of each simulation run. For this purpose, the values of
the lower and higher quartile are required, i.e., the values that split the highest and
lowest 25% of the observed values from the rest of the sorted dataset. The interquar-
tile range is then defined as the middle 50% of values, which is the distance between
the lower and higher quartile. Candidates for outliers are defined as observed values
that fall outside the lower and higher inner fence. In this regard, the lower inner
fence is the quartile which lies 1,5 times the interquartile range outside the lower
quartile. The higher inner fence is defined accordingly based on the higher quartile.

Applying this definition to the simulation outputs, the values shown in Table 7.16
are identified as potential outliers. They occur only in 3 of the 18 designed and
executed simulation runs. In run 14, two candidates for outliers can be identified,
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Table 7.16: Potential outliers, that fall outside the upper or lower fence.

DP replic. Output value Median 1.5⇥IQR Lower fence Upper fence
14 8 218,960.00 159,630.00 42,096.38 96,805.88 209,062.90
14 34 213,986.00 159,630.00 42,096.38 96,805.88 209,062.90
15 1 150,102.00 219,533.50 43,740.38 165,907.60 282,548.60
15 8 317,590.00 219,533.50 43,740.38 165,907.60 282,548.60
15 12 272,923.00 219,533.50 43,740.38 165,907.60 282,548.60
15 26 298,337.00 219,533.50 43,740.38 165,907.60 282,548.60
15 34 280,900.00 219,533.50 43,740.38 165,907.60 282,548.60
15 37 275,599.00 219,533.50 43,740.38 165,907.60 282,548.60
15 41 149,232.00 219,533.50 43,740.38 165,907.60 282,548.60
16 7 41,640.00 59,174.50 7,850.63 48,774.12 69,709.12
16 8 75,472.00 59,174.50 7,850.63 48,774.12 69,709.12

which are the output of replication 8 and 34. Here, the observed values of 218,960
and 213,986 lie outside the upper inner fence (209,062.90). Likewise, the outputs
of replications 1, 8, 12, 26, 34, and 37 of run 15 as well as replications 7 and 8 of
run 16 are identified as potential outliers. All of these output values fall outside the
lower or higher fences.

As a next step after detecting potential outliers, suitable tests must be applied
to determine whether or not these values are indeed outliers, e.g., Grubbs’ test for
outliers, which requires the dataset to be normally distributed. The application of
the Shapiro–Wilk test shows that most results of the 18 simulation runs are not
normally distributed with a p� value  0.05 (cf. Table 7.17). However, for runs
12, 13, 14, 16, and 17, the Shapiro–Wilk test reveals p12 = 0.1087, p13 = 0.7602,
p14 = 0.1779, p16 = 0.7587, and p17 = 0.1865. Using a significance level of 5%,
it must be assumed that the outputs of these five simulation run are normally dis-
tributed. Accordingly, Grubbs’ test for outliers may not be applied to the results of
the remaining runs.

For simulation runs 14 and 16, Grubbs’ test for outliers can be applied to calcu-
late test static Ĝ = 2.4882 and p-value of 0.2095 for run 14 as well as Ĝ = 2.5480
and p-value of 0.1719 for run 16. Both p-values are not smaller than the significance
level a = 0.05. Thus, the null hypothesis holds, and the existence of outliers is not
confirmed. Still, removing all data points that were identified as potential outliers
from the dataset without substitution results in a decrease of the required number of
replications. For simulation run 14, the number of required replications, such that
a precision of 5% is met, decreases from 35 to 21 replications. For simulation run
16, the number of required replications decreases to 7. With and without removing
outliers, 22 replications are required.

Another approach for outlier handling that was presented in this thesis is im-
putation where outliers are substituted by the median value of the dataset. Using
the median values from Table 7.16 as substitute, the number of replications can be
decreased from 35 to 21 for simulation run 14 as well. For simulation run 16, a de-
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Table 7.17: P-values of Shapiro-Wilk test of normality applied to the outputs of each
simulation run.

DP p-value normally distributed?
1 6.33⇥10�11 not normally distributed
2 6.26⇥10�11 not normally distributed
3 6.25⇥10�11 not normally distributed
4 6.33⇥10�11 not normally distributed
5 6.26⇥10�11 not normally distributed
6 6.25⇥10�11 not normally distributed
7 6.33⇥10�11 not normally distributed
8 6.26⇥10�11 not normally distributed
9 6.25⇥10�11 not normally distributed
10 0.0159 not normally distributed
11 0.0037 not normally distributed
12 0.1087 normally distributed
13 0.7602 normally distributed
14 0.1779 normally distributed
15 0.0364 not normally distributed
16 0.7587 normally distributed
17 0.1865 normally distributed
18 0.0291 not normally distributed

crease from 22 to 7 replications can be identified. These observations are identical
to those made when removing outliers without substitution. In this evaluation, out-
liers are accepted as given by the model and will not be removed or substituted for
the further course of the model analysis. Nevertheless, depending on the goal of the
analysis, experts might consider substituting them.

After outlying and missing data points were identified and removed or substi-
tuted, the observed outputs of the simulation model must be aggregated. By doing
so, a data basis is generated that can be used as a basis for the application of sta-
tistical hypothesis tests. The aggregation must be conducted in accordance with the
structural components of simulation study, which were presented in Section 4.2.2.
At this point of the study, the first and second step of the output aggregation were
already performed as part of the runtime replication estimation.

In the scenario presented here, NetLogo is used for the execution of the simula-
tion model. Even though NetLogo enables the implementation of continuous time
simulations, most modes implement time-progress in discrete steps. For this pur-
pose, NetLogo provides a tick counter, which can be used for both changing or
retrieving the current time in time. By this means, time can be advanced in specific
granularities and simulated entities can make decisions dependent on the current
simulation time.
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This also results in a time-discrete advance of the model’s states. Accordingly, the
outputs of the model can be measured after every step of the simulation. In NetLogo,
the experimenter can decide whether or not outputs are stored for every step of the
simulation. In case this option is not selected, the outputs of the model are only
observed after the last simulation step. With respect to the aggregation of simulation
outputs, NetLogo performs this first task of aggregating the outputs of simulation
steps for each simulation iteration. However, warm-up periods of the model cannot
be considered when using this build-in functionality of NetLogo. In the scenario
presented in here, the warm-up period of the model is part of the scenario definition.
A minimum number of 720 ticks are simulated as suggested by the developer of the
model to ensure the observation of unbiased results. Furthermore, it can be assumed
that the warm-up period does not result in the observation of storage levels that
are too high. Instead, in this scenario, the warm-up period is required to generate
demand and to fill the storages that are empty at the beginning of the simulation.
Summarizing, it is assumed that the simulation of 720 ticks is sufficient to observe
unbiased behavior of the model and that the included warm-up period does not bias
these observations. Even though NetLogo enables the automated aggregation of the
outputs of each simulation step, this functionality cannot be used in the assistance
presented here. Instead, all 720 outputs are provided as time series data for each
simulation iteration.

As a next step, the data of all simulation iterations must be aggregated for each
respective simulation run. In Section 6.5.2, it was emphasized that the order in which
this step and the following steps are executed depends on the performance measure
as well as on the fact whether or not the aggregation and target variable function
commute with each other. At this point, time series data Yr is available for each
simulation iteration, which consist of 720 data points. They provide information
how the storage capacity changed over time during the execution of the simulation
model. By aggregating these datasets, e.g., by calculating the arithmetic mean, the
maximum value will be lost and cannot be reconstructed from the resulting mean
storage capacity value. Thus, the target variable maximum storage capacity (Y T

r )
must be calculated first before aggregating the maximum values of each simulation
iteration. All Y T

k with k = 1, ...,n where n is the required number of replications
can then be summarized by their mean value. The resulting Ȳ 0T

k value represents
the mean maximum storage capacity of a specific simulation run. It consists of the
values of all replications that were executed with the same parametrization of the
model. The statistical certainty of Ȳ 0T

k is given, as the required number of executed
replications was calculated by means of confidence intervals.

In this scenario, the composition of functions µ (arithmetic mean) and g (max-
imum value of output variable storage capacity) is not commutative. Bias could
result, when calculating the mean storage capacity of each time series first and ap-
plying g afterwards. In this case, the maximum of the mean storage capacity is
calculated (Ȳ T

k ). Even though Ȳ T
k is a valid target variable, it does not represent the

performance measure, which is part of the hypothesis. Thus, it cannot be used to
investigate the model’s behavior and to verify the hypothesis.
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Finally, the Ȳ 0T
k values of each simulation run must be aggregated for each sim-

ulation experiment they originated from. In the presented scenario, only one single
simulation experiment with a corresponding experiment hypothesis is defined. All
18 defined simulation runs are part of this simulation experiment. With respect to
the initial hypothesis, the aggregation of the results of all 18 simulation runs is not
reasonable. By generating one aggregated result, the areas of the response surface
in which the critical maximum storage capacity of 60,000 units is exceeded will be
smoothened. It must be assumed, that this will result in inconclusive results where
possible violations of the 60,000 unit limit can no longer be observed. Instead, the
aggregation of the results of specific simulation runs seems more reasonable, e.g.,
only those that were executed with the same levels of the unimportant factors.

To evaluate whether the initial hypothesis holds for each of the designed sim-
ulation runs, the statistical significance of the results must be determined. In this
scenario, the presented hypothesis makes an assumption about the value of one per-
formance measure. More specifically, the maximum value this performance measure
can take is assumed. With respect to statistical hypothesis testing, the relationship
between the sample dataset (simulation outputs) and a synthetic dataset is assumed.
In this regard, significance implies that it is unlikely to observe the sampled dataset
under the assumption that the null hypothesis is true. The null hypothesis assumes
that a maximum storage capacity of 60,000 units is not sufficient and will be vi-
olated during the simulation. Accordingly, in case a maximum storage capacity of
less then 60,000 units is observed, statistical hypothesis testing assesses how likely
or unlikely this observation is assuming that 60,000 units are not sufficient. This
approach is based on the idea that the observation of a maximum storage capacity
of less than 60,000 units is the result of change and does not imply causality.

Considering the initial hypothesis, a one sample hypothesis test is required in
this scenario. Moreover, as a less-than relationship between the datasets is assumed,
a one-tailed (left-tailed) test is required to assess the statistical significance of the
results. The most common hypothesis test that corresponds to these requirements
is the one sample t-test. It tests, whether the mean of a sample is different from
the provided mean of a population. For this scenario, the rejection region approach
is used instead of the p-value approach for determining whether or not the null
hypothesis holds. In this approach, a rejection region is defined and H0 is rejected
if the value of the test static falls into this region. For a left-tailed one sample t-test,
the rejection region is defined as the interval (�•,�t(1�a,n�1)). Here, �t(1�a,n�1)
is defined as the 1�a quantile of the t-distribution with n� 1 degrees of freedom
(Freedman et al., 2007). In the presented example, the degrees of freedom are equal
to the sample size (number of estimated replications) minus 1.

In Table 7.18, the result of the t-test are shown for each of the 18 simulation runs
that were executed as part of this simulation study. To assess the significance of the
results, the t-value must be compared to the critical t-value (�t(1�a,n�1)). As the
required number of replications is estimated for each simulation run, the degrees of
freedom differ between the simulation runs. Therefore, the critical t-value must be
calculated individually for each simulation run. The resulting critical t-values define
rejection regions from (�•,�1,672) to (�•,�1,729). Hence, the null hypothesis
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Table 7.18: Results of t-test for each design point with a = 0.05.

DP t-value critical value degrees of p-value mean Reject H0?
�t(1�a,n�1) freedom

1 -452.198 -1.673 56 9.386⇥10�102 4,895.21 reject
2 -96.361 -1.673 56 3.190⇥10�64 17,657.54 reject
3 -41.781 -1.673 56 3.327⇥10�44 29,414.60 reject
4 -452.198 -1.673 56 9.386⇥10�102 4,895.21 reject
5 -96.361 -1.673 56 3.190⇥10�64 17,657.54 reject
6 -41.781 -1.673 56 3.327⇥10�44 29,414.60 reject
7 -452.198 -1.673 56 9.386⇥10�102 4,895.21 reject
8 -96.361 -1.673 56 3.190⇥10�64 17,657.54 reject
9 -41.781 -1.673 56 3.327⇥10�44 29,414.60 reject
10 22.208 -1.681 43 1.000 132,022.50 do not reject
11 32.162 -1.680 44 1.000 291,541.80 do not reject
12 35.845 -1.729 19 1.000 408,763.00 do not reject
13 5.666 -1.717 22 0.999 69,145.04 do not reject
14 25.910 -1.691 34 1.000 158,764.80 do not reject
15 29.605 -1.683 41 1.000 222,598.10 do not reject
16 -0.619 -1.721 21 0.271 59,133.14 do not reject
17 22.356 -1.683 41 1.000 131,524.30 do not reject
18 25.299 -1.672 58 1.000 162,591.20 do not reject

that more than 60,000 units of storage capacity are required can be rejected for
simulation runs 1 through 9. For runs 10 to 18, the calculated t-value does not fall
into the defined interval and accordingly, the null hypothesis cannot be rejected. This
implies, that 60,000 units of storage capacity are not sufficient. Only the result of
simulation run 16 stands out. Even though the mean storage capacity is lower than
60,000 units (59,133.14), the t-test indicates the rejection of the null hypothesis with
a significance level of 5%. The probability of observing a mean storage capacity of
59,133.14 units under the assumption that the null hypothesis holds is too high.

To further aggregate the presented results of each simulation run, the scenario of
the simulation study must be considered. The underlying hypothesis is formulated
from the perspective of a factory that is part of a supply chain. It can be assumed that
the results of the simulation study serve as a basis for decision-making processes in
the factory. In this regard, the customers’ demand is an uncontrollable factor while
production costs can be addressed within the company, e.g., by means of business
process management such as process improvement. Accordingly, the aggregation of
the results with respect to the factor product_cost is reasonable and the simulation
runs must be aggregated in groups of three, i.e., 1-3, 4-6, 7-9, 10-12, 13-15, and
16-18. The results are presented in Table 7.19.

As a final step of the conducted simulation study, the generated results must be
interpreted with respect to the scenario of the study. The factory assumes that a
maximum storage capacity of 60,000 units is sufficient to satisfy the demand that
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Table 7.19: Aggregated results of the hypothesis test.

DP Cl_N Prod_c Unimp.
factors

Reject H0?

1-3 150 5 low reject
4-6 150 30 low reject
7-9 150 50 low reject

10-12 150 5 high do not reject
13-15 150 30 high do not reject
16-18 150 50 high do not reject

occurs in the supply chain. After designing, executing, and analyzing all relevant
experiments, it must be concluded that 60,000 units of storage capacity are not suf-
ficient in any case. Even though there are parametrizations of the model which do
not exceed this limit, other parametrizations of the model indicate a required storage
capacity which lies far above the defined threshold. For low levels of those factors,
which were identified as unimportant during the factor screening, a storage capacity
of 60,000 units seems to be sufficient. However, for high levels of these factors, an
extension of the storage capacity is required. Especially the product costs, a factor
which can be influenced by the factory, has no impact of the maximum required ca-
pacity. In this regard, if an extension of the storage area is not an option, a limitation
of the number of clients must be considered. Still, the identification of a maximum
number of clients such that the existing storage capacity is sufficient requires the
conduction of further simulation studies. In summary, the initial hypothesis of the
simulation study cannot be confirmed for the first scenario.

7.3 Scenario 2: Dependency Between Customer Demand and
Storage Capacity

Compared to the first scenario, the hypothesis that is stated as part of the second
scenario is more sophisticated. The hypothesis presented in scenario 1 makes an
assumption about the influence one parameter has on the behavior of the model.
Hence, a specific level of the considered parameter is defined as well as a threshold
for the performance measure. In contrast to this, the hypothesis presented in the
second scenario assumes an interdependency between a parameter of the model
and a performance measure such that an increasing customer demand results in a
certain increase of the required storage capacity. Instead of an absolute threshold
value, the presented hypothesis formulates a relative measure, which describes the
relationship between two datapoints. Thus, it is challenging to identify relevant parts
of the response surface based on the hypothesis.

When formulated as a statistical hypothesis pair, a more advanced expression is
required. Unlike the hypothesis of scenario 1, where only one sample was given,
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it is not sufficient to assume whether or not the observed mean of a performance
measure of lower or higher than the mean of a idealized distribution. In this scenario,
two samples must be drawn and the difference between the means of these samples
must be assessed. Here, the second sample has to be drawn dependent on the first
sample so that the customer demand of the second sample is 10 units lower than the
one of the first sample. The mean values of both underlying populations (µ1 and µ2)
can be used to formulate a hypothesis pair regarding the difference between the two
means. As the underlying assumption presumes that the maximum storage capacity
per customer will increase by more than 100 units, the alternative hypothesis states
that the difference between the the means is greater than 100. Accordingly, the null
hypothesis claims the opposite and assumes that the difference is not greater than
100 but less or equal to 100.

H0: µ2 �µ1  100 H1: µ2 �µ1 > 100

As a next step, the stated hypotheses must be converted into a machine-readable
FITS expression. In the statistic hypothesis, a statement is made regarding the dif-
ference between the means of two populations. In contrast to scenario 1, two distinct
samples are drawn, one from each of the investigated populations. Each population
is defined by a different parametrization of the investigated model. To model this
in FITS, an extension of the language is required so that different parameter sets
can be taken into account. While parameter set 1 (ParSet1) consists of a wildcard
character that represents any possible level of the parameter Demand_W, parameter
set 2 (ParSet2) takes a level which is 10 units higher than the one selected in param-
eter set 1. By this means, FITS can be extended and the increasing demand of the
customers can be formally specified. For the remaining parameters, no values are
defined, which is why the ceteris paribus sign is used in the parametrization part of
the hypothesis.

ParSet1(Demand_W(x)) ^ ParSet2(Demand_W(x+10)) ^ #
) µ1(Maxstorage/Clients_N) ^ µ2(Maxstorage/Clients_N) ^

(H0(µ2 �µ1  100) _ (H1(µ2 �µ1 > 100)) | a(0.05) ^ n(dn  0.05)

In the hypothesis information part of the FITS expression, the difference is quan-
tified between the means of the populations that are defined by the two parametriza-
tions of the model. The measured feature that is used for the calculation of the means
is in both cases the maximum storage capacity which is required by the factory (µ1
and µ2). Yet, in contrast to scenario 1, the maximum storage capacity is divided by
the amount of customers. As the underlying statistical hypothesis assumes that the
difference between these two means (µ2 �µ1) is greater than 100 units, null and al-
ternative hypothesis are formulated accordingly in FITS. Finally, like in scenario 1,
both a significance level and a replication estimation precision of 5% are assumed.
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7.3.1 Conventional Investigation of the Model’s Behavior

In the second case study, the parameter space of the model does not differ from
the parameter space of the first case study. Accordingly, the results that were pre-
sented in Section 7.2.1 apply here as well. Yet, the performance measure that is
used to investigate the behavior of the model differs between the presented case
studies. Instead of the overall maximum storage capacity, the maximum storage ca-
pacity per customer is considered. Null and alternative hypothesis are formulated
as assumption regarding the difference between the maximum storage capacity per
customer of two parametrizations of the model. In contrast to the parameter space,
the response surface of the second case study differs and is not equal to the one pre-
sented in Section 7.2.1. Hence, in this subsection, the response surface of scenario
2 is investigated to assess the quality of the results of the simulation study. Even
though the performance measures differ, the analysis presented in this subsection
methodically corresponds to the analysis presented in the previous section. Based
on the analysis of the parameter space presented in Section 7.2.1, it is assumed that
Clients_N and Product_cost are also relevant factors in this scenario. The impor-
tance of Demand_W is not questioned as this parameter is part of the performance
measure.

To generate a data basis for this more advanced performance measure, which is
required for plotting the response surface of the investigated model, a modification
is necessary of the simulation results from scenario 1. In the previous scenario, the
required maximum storage capacity was analyzed for multiple factor level combi-
nations. As a first step, each data points was divided by the number of customers
(Clients_N) as defined in the corresponding parametrization. By this means, a data
basis is generated, which can be used to visualize how different parametrizations of
the model systematically affect the maximum storage capacity per customer. How-
ever, in the presented scenario the hypothesis assumes a difference between the

a) low Product_cost b) high Product_cost

Fig. 7.16: Response surface of interactions between parameters Clients_N and De-
mand_W with low values of remaining parameters.
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maximum storage capacity required per customer and thus the difference between
the data points in the data set must be calculated. In accordance with the hypothesis,
pairs of data points are selected such that the difference between the values of the
Demand_W parameter is 10 while the values of all other parameters are equal. The
resulting response surfaces are presented grouped by the values of the remaining
parameters and for different levels of the Product_cost parameter.

Figure 7.16 illustrates the surface that results when simulating different parame-
ter combinations of Clients_N and Demand_W. As the shape of the response surface
is equal for low, medium, and high values of Product_cost, it shows only the plots
of the extreme values. Furthermore, in this first figure, low values are chosen for
all remaining parameters of the model. What can be observed is a surface which is
parallel to the x- and y-axis. None of the plotted data points has a z-value which is
greater than 50 units. As the surface is flat, it can be concluded that the formulated
hypothesis holds for each parametrization of the model in case the less important
parameters are assigned low values.

In Figure 7.17, the response surfaces are shown for medium values of the remain-
ing parameters. As the shape of the surfaces differs, the resulting plots for three dif-

a) low Product_cost b) medium Product_cost

c) high Product_cost

Fig. 7.17: Response surface of interactions between parameters Clients_N and De-
mand_W with medium values of remaining parameters.
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ferent levels of Product_cost are shown. In contrast to Figure 7.16, a surface which
is almost parallel to the x- and y-axis can only be observed for high Product_cost
as well as for high values of both Clients_N and Demand_W. All other parameter
configurations result in a convex shape of the response surface. The difference be-
tween the required maximum storage capacity per customer is generally higher for
lower levels of Product_cost. Moreover, an increasing value of Clients_N as well
as an increasing value of Demand_W seem to result in a decreasing difference be-
tween the required stock levels per customer. In other words, for a high number of
customers and a high initial demand of each customer, an increasing demand results
in a proportionally lower increase of the required maximum storage capacity per
customer. Based on these observations it can be assumed that a higher number of
clients as well as a higher demand of each client weaken the extent of the bullwhip
effect.

The plots shown in Figure 7.18 correspond to those in Figure 7.17. Yet, for high
values of the remaining parameters, the observed effect of the investigated param-
eters seems to be greater. Especially for medium and high levels of Product_cost,
those parts of the surface that are parallel to the x- and y-axis are smaller in Figure

a) low Product_cost b) medium Product_cost

c) high Product_cost

Fig. 7.18: Response surface of interactions between parameters Clients_N and De-
mand_W with high values of remaining parameters.
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7.18. Only a small part of the response surface for high Product_cost is even, for
high values of Clients_N and Demand_W. This provides further evidence for the
assumption that a high price of the product, a great number of clients, and a high
demand of each client weakens the bullwhip effect.

In conclusion, it must be expected that the stated hypothesis cannot be confirmed
or refuted for the entire parameter space of the investigated model. Similar to sce-
nario 1, the results of the simulation study that are generated when applying the
proposed process of the intelligent assistance most likely consist of multiple design
points. For some of these design points, the null hypothesis can be rejected based
on the observed behavior of the model. However, for other design points the ob-
served data will not provide sufficient evidence to reject the null hypothesis. In this
regard, the interpretation of the results might lead to the discovery that high levels
of Clients_N and Product_cost prevent an increase of the required storage capacity
per customer if the demand rises.

7.3.2 Design of Experiments

The following three subsections present the execution of all steps of a Hypothesis-
Driven Simulation Study with respect to answering the second hypothesis. The pro-
cedure corresponds to the one presented in Section 7.2, where the first scenario was
evaluated. To avoid redundancies, all steps, assumptions, and results that are simi-
lar or equal in both scenarios will not be repeated in detail. Instead, references are
provided to corresponding subsections of the first scenario.

As part of the design of experiments step of the first scenario, the limitation of the
model’s parameter space was discussed. Due to the high number of possible factor-
level combinations, the investigation of all potential parametrizations of the model is
not feasible. A factor screening approach was applied to determine which factors are
of importance for the observed output of the model. By this means, a differentiation
can be made between important and unimportant factors. It can be assumed that
variations of the level of unimportant factors do not considerably influence the value
of the performance measure. Thus, only a greatly reduced number of levels can be
investigated for all unimportant factors.

In this thesis, sequential bifurcation is presented and used as a method for factor
screening. To apply sequential bifurcation, low and high levels must be defined for
each of the investigated parameters. Even though the performance measure that is
used in this second scenario of the evaluation differs from the one in the first sce-
nario, both performance measures consist of the maximum storage capacity. In the
second scenario, the maximum storage capacity is divided by the number of cus-
tomers. Compared to scenario 1, it can be assumed that this modification of the per-
formance measure does not generally influence the effect the parameters have on the
model behavior. Thus, the low and high levels that were defined in scenario 1 (cf. Ta-
ble 7.7), which are based on results generated with the BehaviorSearch tool, are
used in the second scenario as well (cf. Table 7.20). Only the effect of the Clients_N
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parameter might have changed due to the modification of the performance mea-
sure. While a positive effect was assumed in scenario 1, where a low level of the
Clients_N parameter results in a low model output and vice versa, an inverted effect
must be assumed for the second scenario. During the calculation of the performance
measure, the maximum storage capacity is divided by Clients_N. Accordingly, as
Clients_N is the denominator of the performance measure, low values of Clients_N
lead to high values of the performance measure and high values of Clients_N re-
duce the overall result. It must be investigated whether the effect a higher value of
Clients_N has on the numerator of the performance measure (maximum storage ca-
pacity) outperforms the effect it has as the denominator of the performance measure.

The application of optimization algorithms seems to be a promising approach for
investigating how different levels of the factors influence the output of the model.
For this purpose, the BehaviorSearch tool is executed with the same configurations
that were used in Section 7.2.1 for the new performance measure of scenario 2, i.e.,
the required maximum storage capacity per customer. In accordance with the rec-
ommendations of the model’s developer, the model step limit is set to 720 and the
maximum storage capacity per customer is measured over all 720 steps. To improve
the statistical certainty of the results, 10 sampling replications are conducted and
the mean value of these replications is used for further investigations. As no major
difference can be identified between the different optimization algorithms, only the
standard genetic algorithm is used with the previously presented standard configu-
ration and the gray binary chromosome (cf. Table 7.6).

The factor screening is executed in accordance with the procedure described in
Section 7.2.2. Using the low and high values from Table 7.20 results in the obser-
vations that are shown in Table 7.21. When all factor are set to their low levels, the
minimum effect of the model is y(0) = 37,50. In contrast to this, when all factors are
set to their high level, y(9) = 6,235.40 is the maximum effect of the model. Thus,
the resulting group expected effect of all 9 factors is b̄1�92 = (y(9)�y(0))/2 = 3,098.95.
As stated in the Table, observations y(2) and y(3) are equal. Thus, it can be noted

ID Name Purpose Value

- Fact #Factories 1
- Distr1 #Distributors 3
- Distr2 #Retailers 7

- Cust._strat. Purchase strat. 1 - daily
- Inv._pol. Inventory strat. 1 - (s,Q)
- Score_Retailers Score purchase

and choose best
supplier

false

ID Name Purpose # "

1 Clients_N #Clients 350 25
2 Lt0 Lead time (Dist.) 0 7
3 Lt1 Lead time (Ret.) 0 7
4 SS_% Safety value .5 .95
5 Demand_W mean(demand) 5 30
6 DS_D s (demand) 0 15
7 HC Holding cost .1 .01
8 K Cost per order 50 400
9 Product_cost Cost of product 50 5

Table 7.20: Low (#), high ("), and constant values of inputs for factor screening.
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Table 7.21: Averaged observations y(k) and mirror observations y⇤(k) based on 50
replicates (seed-values = 19890206-19890255).

mean (µ) st. dev. (s )

y(0) 37.50 0.00

y(1) 225.00 0.00

y(2) 187.31 43.20

y(3) 187.31 43.20

y(4) 226.15 63.37

y(5) 543.68 412.57

y(6) 2,085.92 143.88

y(7) 1,859.87 658.91

y(8) 4,022.80 942.67

y(9) 6,235.40 687.06

mean (µ) st. dev. (s )
y⇤(0) 6,235.40 687.06

y⇤(1) 2,186.90 199.38

y⇤(2) 846.89 132.17

y⇤(3) 344.02 65.93

y⇤(4) 128.25 84.70

y⇤(5) 45.11 6.50

y⇤(6) 46.29 7.87

y⇤(7) 52.25 4.50

y⇤(8) 37.50 0.00

y⇤(9) 37.50 0.00

that factor 3 (K) does not influence the behavior of the model in this configuration.
Furthermore, the standard deviation of observations y(0) and y(1) is equal to zero.
This provides evidence, that the model does not show stochastic behavior for these
parametrizations.

As a next step, the main effects of each factor must be estimated to distinguish
between important and unimportant factors. For this purpose, the observations and
mirror observations from Table 7.21 are used. In contrast to scenario 1, the observa-
tions in this table do not always increase when adding factors respectively decrease
when removing factors. For mirror observation y⇤(2), an increasing mean value can
be observed even though less factors are set to their high levels. A possible explana-
tion for this behavior is the existence of a multi-factor interaction such that the first
factor correlates with one or multiple other factors. Accordingly, when the level of
the first factor is set to its low value, the effect is no longer observable which results
in relatively lower output values.

Based on the presented observations, the average main effects of each factor can
be calculated (cf. Table 7.22). It is notable, that the b̄ value of the factor Clients_N
is strongly negative. Comparing the absolute values of the effects, Clients_N has
the third largest effect of the model’s factors. When applying sequential bifurcation,
negative main effects indicate the existence of multi-factor interactions. Yet, in this
case, the absolute value of the effect does not provide evidence for the strength of the
effect. For Clients_N, the existence of such an interaction is reasonable considering
the performance measure used in this scenario.

All remaining factors have positive or just slightly negative main effects, which
are close to zero. Like in the first scenario, the main effects of Demand_W (398.67)
and Product_cost (345.83) are greater than those of the other factors. Thus, De-
mand_W, Product_cost, and Clients_N are as well considered as important factors
in this second scenario.
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Table 7.22: Average main effects b̄(k) of each factor, calculated based on the output
values from Table 7.21.

Factor b̄(k)

b̄(1) Demand_W 398.67
b̄(2) Clients_N -325.58
b̄(3) K 276.53
b̄(4) Lt0 38.00
b̄(5) HC 164.15
b̄(6) Lt1 122.59
b̄(7) DS_D -2.03
b̄(8) Product_cost 345.83
b̄(9) SS_% 99.99

After identifying those factors that are of major importance for the observed
behavior, the more detailed investigation of the model’s response surface is the next
step of the simulation study. For this purpose, the Latin Hypercube general-purpose
design is used to explore the unknown shape of the model’s response surface at this
early stage of the study. As the same model is used in both presented scenarios, the
same configuration of the sampling is used, i.e., k = 9 factors with n = 10 levels.
The investigated factor-level combinations are drawn randomly from the 10 defined
groups of values. Due to the randomization of the process, it is not necessary to
generate new data points and the data points that were generated for scenario 1 are
reused (cf. Table 7.23). The space-filling properties of the generated design points
were illustrated in Figure 7.13.

Table 7.23: Transformation of design points from Table 7.10 to the range of admis-
sible values of each factor of the second scenario.

DP Cl_N Lt0 Lt1 SS_% Dem_W DS_D HC K Prod_c
1 253 5 7 0.65 20 1 0.05 300 5
2 201 0 4 0.55 12 1 0.01 400 25
3 157 5 5 0.75 27 2 0.09 250 35
4 344 6 5 0.60 16 2 0.02 350 30
5 94 3 2 0.95 30 2 0.03 200 15
6 65 4 2 0.90 6 3 0.08 150 50
7 52 1 0 0.85 8 3 0.04 400 45
8 143 3 6 0.50 21 0 0.10 250 10
9 221 2 3 0.80 23 1 0.07 150 20
10 314 7 1 0.70 14 0 0.06 100 40
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Table 7.24: Simulation outputs: Average maximum storage capacity of each design
points of the Latin Hypercube Sampling. (random� seed = 19890206�19890255
and n = 50)

Design Maxstorage per customer
Point Mean Standard Deviation

1 683.42 145.53
2 120.12 0.64
3 302.85 24.46
4 302.19 82.05
5 494.50 114.75
6 88.74 19.77
7 150.04 35.86
8 288.25 84.97
9 243.68 9.09
10 158.19 5.49

The execution of the simulation models with the parametrizations from Table
7.23 leads to the results shown in Table 7.24. Like in scenario 1, interpolation tech-
niques must be applied to approximate the shape of the response surface based on
the small number of observed outputs. As thin plate splines performed well in sce-
nario 1, the same approach is applied here as well. The resulting interpolated re-
sponse surface is shown in Figure 7.19.
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Fig. 7.19: Scatterplot of maximum storage capacity per customer for design points
from Latin Hypercube Sampling (cf. Table 7.24). Surface interpolated by means of
thin plate splines.
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The shape of the response surface that was presented for the first scenario is
similar to the one from this second scenario. For design point 1, the highest output
of the model is measured, which results in a maximum in the rear corner of the
chart. Moreover, in accordance with scenario 1, a local minimum exists next to this
maximum for medium levels of Clients_N and for high levels of Demand_W. Yet,
in contrast to the response surface of the first scenario, it can be observed that the
surface of the second scenario ascends for lower levels of Client_N. This most likely
can be attributed to the modified performance measure used in this scenario.

To properly investigate the parameter space of the model with the goal of an-
swering the initially stated hypothesis, the simulation of the 16 design points shown
in Table 7.25 seems suitable. These 16 design points represent a compromise be-
tween the reduction of the number of executed simulation runs and the coverage of
the relevant parameter space. Obviously, the amount of evidence for or against the
validity of the hypothesis can be improved by increasing the number of simulation
runs and thus the coverage of the parameter space. However, increasing the number
of design points results in a proportional increase of the required simulation runs
and replications so that the increased benefit must be traded off against additional
efforts.

The presented hypothesis makes an assumption about an increase of the cus-
tomers’ demand by 10 units. Thus, each selected parametrization of the model
must be executed for at least two values of Demand_W which lie 10 units apart,
e.g., Demand_W = 5 and Demand_W = 15. The range of admissible values of
Demand_W reaches from 5 to 30 in steps of 1. The design points specified in Table

Table 7.25: Simulation runs that are executed as part of the simulation study.

DP Dem_W Prod_c Cl_N Lt0 Lt1 SS_% DS_D HC K
1 5 5 350 0 0 0.5 0 0.1 50
2 15 5 350 0 0 0.5 0 0.1 50
3 5 50 350 0 0 0.5 0 0.1 50
4 15 50 350 0 0 0.5 0 0.1 50
5 5 5 25 7 7 0.95 3 0.01 400
6 15 5 25 7 7 0.95 3 0.01 400
7 5 50 25 7 7 0.95 3 0.01 400
8 15 50 25 7 7 0.95 3 0.01 400
9 20 5 350 0 0 0.5 0 0.1 50
10 30 5 350 0 0 0.5 0 0.1 50
11 20 50 350 0 0 0.5 0 0.1 50
12 30 50 350 0 0 0.5 0 0.1 50
13 20 5 25 7 7 0.95 3 0.01 400
14 30 5 25 7 7 0.95 3 0.01 400
15 20 50 25 7 7 0.95 3 0.01 400
16 30 50 25 7 7 0.95 3 0.01 400
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7.25 cover the lower and upper end of the range of values. This seems sufficient,
as the Latin Hypercube Sampling provides evidence for a linear effect the demand
has on the storage capacity per customer. Yet, to consider non-linear effects as well,
it is possible to specify additional pairs of design points for medium values of De-
mand_W, e.g., Demand_W = 12 and Demand_W = 22.

Similar to the first case study, confidence intervals are applied for estimating the
required number of replications. In contrast to other replication estimation methods,
this approach for determining whether or not a specific number of replication is
sufficient with respect to a given precision must be applied stepwise during the
execution of the simulation runs. Hence, the required number of replications can
not be defined during the design phase of the study.

7.3.3 Conducting of Experiments

Similar to the first case study, the simulation framework NetLogo is utilized for
the execution of the designed simulation runs. To maintain the comparability of
the generated results, the same seed value is chosen for the initialization of the
pseudo random number generator (random-seed = 19890206). As the execution of
the model is very similar in both case studies, this subsection focuses in particular
on the results of the replication estimation.

As specified during the design phase of the study, the required number of replica-
tions is estimated based on the confidence interval approach. The required number
of replications of each simulation runs with a precision of dn  5% is shown in Ta-
ble 7.26. Similarities can be observed between the results of all design points where
the remaining (unimportant) factors are set to their low levels, i.e., design points
1-4 and 10-13. The replication estimation of these eight design points is equal with
52 replications that are required for all runs. Moreover, it appears that the factor
Product_cost does not influence the behavior of the model for low values of the
unimportant factors, even though the factor itself was identified as important factor.
The mean values and standard deviations are equal for all pairs of design points in
which only the level of Product_cost is changed and the unimportant factors are set
to their low levels.

This behavior of the model cannot be observed for high levels of the unimportant
factors. In contrast, the changing of the level of factor Product_cost from its low
to its high value results in a decrease of the output of more than half of its initial
value. Likewise, for three of the four pairs of simulation runs, the required number
of replications decreases. Only for design points 5 and 7, changing the level of Prod-
uct_cost from 5 to 50 results in an increase of the required number of replications
(from 89 to 118). With 118 replications, design point 7 requires the most simulation
iterations of all presented simulation runs.

Figure 7.20 shows the step-wise calculation of the confidence interval for simu-
lation run 7. Here, a potential explanation can be observed for the relatively higher
number of required replications. After the first three executions of the model, the
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Table 7.26: Number of replications for each simulation run with precision
dn  5% and kLimit = 4.

DP #replications Mean SD dn

1 52 33.41 5.92 4.933%
2 52 100.24 17.76 4.933%
3 52 33.41 5.92 4.933%
4 52 100.24 17.76 4.933%
5 89 2,224.43 524.57 4.968%
6 47 3,520.77 593.10 4.946%
7 118 893.89 243.67 4.970%
8 38 1,451.28 216.91 4.912%
9 52 133.65 23.68 4.933%
10 52 200.48 35.52 4.933%
11 52 133.65 23.68 4.933%
12 52 200.48 35.52 4.933%
13 49 4,108.09 711.08 4.972%
14 53 5,131.96 927.21 4.980%
15 33 1,787.81 248.48 4.928%
16 24 2,442.38 287.36 4.968%

mean of the performance indicator is 1,024.40. This value lies considerably higher
than the final mean of 893.89. Considering the outputs of each execution of the
model, the outputs of iterations 1-3 range from 904.00 to 1,112.80. This explains
the sudden decrease of the cumulative mean as more iterations are executed. These
executions of the model generate lower outputs. For instance, in iteration 19, the
maximum storage capacity that is required per customer is only 544.36. Yet, after
118 iterations, the confidence interval reaches a precision which is less or equal to 5.

0 50 100 150

Number of replications

C
u

m
u

la
ti
v
e

 m
e

a
n

7
0

0
9

0
0
�

1
�1

0
0

1
�3

0
0

Precision ≤ 5%

Fig. 7.20: Step-wise calculation of the confidence interval for simulation run 7.
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To obtain the mean value of the specified performance measure for all 16 simu-
lation runs and with a precision of 5%, a total number of 867 simulations must be
conducted during the study. The observed maximum storage capacity ranges from
33.41 to 4,108.09 units per customer. Compared to the results from the application
of sequential bifurcation, the minimum storage capacity per customer which was
observed for design points 1 and 3 corresponds to the identified minimum effect
of the model which was identified by the factor screening. The mean output of the
study’s experiments is slightly lower, however, this might be the result of stochastic
variations. A greater difference can be observed between the maximum from the
factor screening and the maximum from the executed simulation runs. While the
maximum storage capacity per customer from the factor screening is 6,235.40, the
mean output of design points 14 is only 5,131.96, which is approximately 20% less.

In summary, all designed simulation runs were executed and sound model behav-
ior was observed. The outputs generated during the execution of the design matrix
confirm the observations from the factor screening. Furthermore, the minimum and
maximum effects identified during the factor screening were not obviously violated
such that the outputs can be used for the following analyze step of the study. It
seems, that a relevant part of the parameter space was investigated and that the out-
puts from the simulation runs provide a profound data basis for the verification of
the study’s hypothesis.

7.3.4 Analysis of Experiments

The last step of the experimentation aims at analyzing the data that was generated
during the simulation study. After the design and execution of all relevant experi-
ments that provide evidence for or against the validity of the study’s hypothesis, this
is the third necessary step towards answering hypotheses by means of simulation. In
this step of the study, the dataset is tested for outliers. This allows for the identifica-
tion and substitution of output values that greatly differ from the observed median
value. Furthermore, a statistical hypothesis test is applied to investigate whether the
study provided sufficient evidence to conform the study’s hypothesis or whether it
must be refuted.

Table 7.27 shows potential outliers that were identified using the 1.5 ⇥ IQR
rule. In contrast to the first case study, outliers can be observed in 6 out of the 16
parametrizations. Considering the great number of replications that were required
for simulation run 7 as well as the shape of the confidence interval, the results of the
outliers analysis provide new insights. Even though the first three outputs that were
generated during the execution of simulation run 7 were greater than the final cumu-
lative mean, these outputs were still considerably lower than the identified outliers.
While the cumulative mean of the first three outputs was 1,024.40, this analysis re-
vealed that only values that are greater than 1,496.80 are potential outliers. Thus, it
can be concluded that the dispersion of the observed outputs of simulation run 7 is
great which is also why a great number of replications is required.
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Table 7.27: Potential outliers, that fall outside the upper or lower fence.

DP replic. Output value Median 1.5⇥IQR Lower fence Upper fence
5 53 3,971.20 2,124.40 1,138.80 681.20 3,718.00
7 49 1,509.68 857.00 467.16 251.04 1,496.80
7 65 1,658.80 857.00 467.16 251.04 1,496.80
7 93 1,749.60 857.00 467.16 251.04 1,496.80
8 1 2,000.64 1,436.38 398.57 989.83 1,961.67
8 15 1,970.80 1,436.38 398.57 989.83 1,961.67

13 15 5,846.40 4,100.80 1,207.80 2,485.80 5,706.60
14 15 7,841.60 4,934.40 1,764.60 2,675.40 7,381.00
15 24 2,517.68 1,753.00 400.62 1,256.30 2,324.62

Grubbs’ test for outliers can be applied to analyze whether the identified candi-
dates for outliers. As a precondition of this test, the data must originate from a data
set which is normally distributed. To test whether a sample comes from a normally
distributed population, the Shapiro-Wilk test is applied. Table 7.28 shows the results
of the Shapiro-Wilk test for each of the 16 simulation runs that were conducted in
this second case study. Out of the simulation runs in which outliers were identified,
only runs 8, 13, and 15 are normally distributed such that Grubbs’ test for outliers
can be applied.

Table 7.28: P-values of Shapiro-Wilk test of normality applied to the outputs of each
simulation run.

DP p-value normally distributed?
1 8.70⇥10�9 not normally distributed
2 8.70⇥10�9 not normally distributed
3 8.70⇥10�9 not normally distributed
4 8.70⇥10�9 not normally distributed
5 0.0086 not normally distributed
6 0.5432 normally distributed
7 6.70⇥10�5 not normally distributed
8 0.0585 normally distributed
9 8.70⇥10�9 not normally distributed
10 8.70⇥10�9 not normally distributed
11 8.70⇥10�9 not normally distributed
12 8.70⇥10�9 not normally distributed
13 0.3033 normally distributed
14 0.0083 not normally distributed
15 0.4970 normally distributed
16 0.0193 not normally distributed
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For simulation run 8, the p-value of observation 2,000.64 is 0.1146 and the p-
value of observation 1,970.80 is 0.0532. Thus, with a significance threshold of 5%,
the null hypothesis that no outliers exist cannot be rejected and it cannot be con-
firmed that these observations originate from a different population. The same ap-
plied for simulation run 13, where observation 5,846.40 can not be classified as an
outlier because of the the p-value 0.3642. Only for simulation run 15, the null hy-
pothesis that output 2,517.68 is not an outlier must be rejected due to the p-value
0.0264. Accordingly, it is recommendable to substitute this data point.

As a final step of the analysis of the simulation outputs, a statistical hypothesis
test is applied to the data set of each simulation run. In this case study, the one
sample t-test cannot be used as the investigated hypothesis makes an assumption
regarding the difference between the means of two populations. Thus, Welch’s t-
test is applied, which extends the two sample t-test for populations with unequal
variances. Table 7.29 presents the results for each of the 16 designed simulation
runs.

Table 7.29: Results of Welch’s t-test for each design point with a = 0.05.

DP t-value critical value degrees of p-value mean of x / Reject H0?
�t(1�a,n�1) freedom mean of y

1+2 12.776 -1.670 62.195 1.000 33.413 /
100.240

do not reject

3+4 12.776 -1.670 62.195 1.000 33.413 /
100.240

do not reject

5+6 -11.633 -1.663 84.333 1.615⇥10�19 2,224.431 /
3,520.765

reject

7+8 -10.961 -1.667 69.553 4.175⇥10�17 893.892 /
1,451.279

reject

9+10 5.603 -1.662 88.856 0.999 133.654 /
200.480

do not reject

11+12 5.603 -1.662 88.856 0.999 133.654 /
200.480

do not reject

13+14 -5.671 -1.661 96.776 7.354⇥10�8 4,108.088 /
5,131.963

reject

15+16 -7.609 -1.679 45.207 6.240⇥10�10 1,787.806 /
2,442.383

reject

In accordance with the study’s hypothesis, the pairs of model parametrizations
whose mean outputs are compared only differ in the level of the Demand_W factor.
Referring to Table 7.25, in which all 16 design points are specified, the eight con-
secutive pairs of parametrizations can be identified, i.e., design points 1 and 2, 3 and
4, et cetera.

For the application of Welch’s t-test, two data sets x and y are required that con-
tain independent samples drawn from two different populations. In terms of the
conducted simulation study, the data sets consist of the observed outputs from each
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replication that was executed for the respective simulation run. In Table 7.29, the
means of these datasets are referred to as mean of x for the mean output of the first
data point and mean of y for the mean output of the second data point. As it cannot
be assumed that the variances of both populations are equal, the degrees of freedom
must be estimated using the Welch-Satterthwaite equation (Satterthwaite, 1941). As
in the first case study, the results of the hypothesis test can be evaluated by compar-
ing the t-value to the critical value of the Student’s t-distribution or by comparing
the p-value to the significance level.

In summary, the assumption that the maximum storage capacity will dispropor-
tionately increase by more than 100 units per customer in case the per customer
demand increases by 10 units does not apply for all parametrizations of the model.
The designed experiments provide evidence, that the hypothesis indeed holds for
high levels of the unimportant factors and for a low number of clients. In contrast,
for low levels of the unimportant factors and for a great number of clients, this as-
sumption is violated. Here, only a moderate increase of the required per customer
storage capacity of less than 100 units per customer can be observed. This can po-
tentially be explained by the greater level of uncertainty which results from a greater
number of clients. It is easier to compensate individual fluctuations in demand for a
smaller number of clients.

7.4 Conclusions

The goal of this chapter was to evaluate the applicability and appropriateness of
the proposed procedure model for Hypothesis-Driven Simulation Studies. To facil-
itate the practical application of the procedure model, an assistance was specified
in this thesis, which logically links existing approaches and techniques with respect
to the verification of a given hypothesis. As the applied methods are established
and were validated in their respective domains, there is no need to investigate and
evaluate the individual appropriateness of these components. Instead, this chapter
investigated and assessed whether the combination of these methods is suitable for
the systematic generation of knowledge that can be used for the verification of hy-
potheses by means of simulation. To this end, two case studies were presented in
which the assistance was applied to two different scenarios from supply chain man-
agement. By this means, evidence was gathered to confirm or refute two hypotheses
on the behavior of a simulation model.

The same NetLogo simulation model was used in both case studies. It imple-
ments a four-staged supply chain and allows the experimenter to dynamically in-
vestigate how stock levels are affected by fluctuations in demand. While the first
case study analyzed whether a specific storage capacity threshold is sufficient, the
second case study assumed a relationship between an input and an output of the
model. For both scenarios, a conventional investigation of the model’s parameter
space and response surface was provided in advance to assess the results generated
during the simulation study. In a second step, the assistance was applied to conduct
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a study in accordance with the proposed procedure model. Here, the focus lay on
the interplay between the individual logical components during the design, execu-
tion, and analysis of the relevant experiments with respect to the verification of the
hypothesis.

For both case studies, the feasibility and suitability of the approach was con-
firmed. The design phase consisted of the identification of important factors, the sys-
tematic limitation of the parameter space, and the selection of relevant parametriza-
tions based on the formally specified research hypotheses. Subsequently, during
the execution phase, the designed runs were conducted by means of the simulation
framework under due consideration of the required number of replications. Finally,
outliers were identified and substituted in the observed outputs and the outputs were
aggregated to allow for the application of statistical hypothesis tests. The results
from the conventional investigation of the response surface confirm the results that
were generated using the proposed procedure model for Hypothesis-Driven Sim-
ulation Studies. Yet, the number of investigated parametrizations is considerably
smaller, the efforts of the experimenter are reduced, and the systematics of the ap-
plied procedure allow for the thorough documentation of each decision and action
that was executed during the study. This is crucial to ensure the replicability and
reproducibility of the generated results.



Chapter 8
Conclusions and Outlook

This thesis addressed the methodological and epistemological shortcomings of sim-
ulation studies in the verification of hypotheses on the behavior of a model. Con-
ducting sound studies is challenging as different steps as well as respective methods
and techniques must be individually aligned and adapted to answer hypotheses. In
this regard, the design, conducting, and analysis of relevant experiments consist of
repetitive, yet crucial tasks. These tasks require the thorough and impartial opera-
tion of the experimenter to ensure the generation of reliable results. To counteract
experimenter bias, which is a threat to the credibility of simulation results, this the-
sis proposed a concept for conducting and assisting Hypothesis-Driven Simulation
Studies. The presented approach is inspired by aviation and clinical trials, where
standardized procedures ensure the replicability and reproducibility of study results.
Likewise, the assistance introduced by this thesis aims at linking methods and func-
tionalities to facilitate the systematic generation of knowledge in simulation studies.
To this end, this thesis lays foundations for the systematic verification of research
hypotheses by means of simulation experiments.

This chapter is structured as follows: The first section summarizes the content
of this thesis and outlines the contribution this thesis makes for information sys-
tems research. Subsequently, the second section provides an outlook and discusses
possible directions for future research.

8.1 Summary and Contribution

The introductory chapter of this thesis presented the leading research question,
which aims at the development of a methodology to overcome existing challenges in
the verification of hypotheses in simulation studies. To address the identified issues,
the goal of the remaining chapters was the elaboration of different aspects of this
research question. In this regard, the first chapter derived five more specific research
questions, which represent important milestones towards the conceptualization of
Hypothesis-Driven Simulation Studies.

275
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1. What is the current status quo in the application, assistance, and automation of
simulation?

2. How can both specification and testing of phenomenological hypotheses be as-
sisted?

3. How can relevant simulation experiments be derived and designed from hy-
potheses?

4. What is a suitable methodology for conducting Hypothesis-Driven Simulation
Studies?

5. How must existing methods, frameworks, and tools be logically linked to pro-
vide assistance for the systematic testing of hypotheses in simulation studies?

To answer the first research question, Part 1 of this thesis surveyed relevant liter-
ature on foundations of simulation as well as the current state of the art in the ap-
plication, assistance, and automation of simulation. Chapter 2 provided an overview
of the concept of simulation and introduced models and experiments as the two key
components. The epistemological challenge of simulation lies in the thorough de-
sign of experiments for the systematic investigation of models. Models often consist
of parameter spaces that are too large to be investigated completely. Thus, the limi-
tation of the investigated parameter space must be achieved under due consideration
of the stated research question to be answered. But also the execution and analysis
of experiments must be conducted thoroughly to ensure the generation of replica-
ble and reproducible results. To this end, Chapter 2 investigated methods for the
systematic application of simulation in simulation studies.

The sound conduct of simulation studies and the generation of credible results
is challenging as the process of a study is sophisticated, error-prone, and time-
consuming. To assist the experimentation process and to automate specific steps,
Chapter 3 surveyed the current state of the art in the assistance and automation of
simulation. This chapter introduced and discussed theoretical as well as practical
approaches and methods to facilitate the application of simulation. This included
specification languages and guidelines but also toolkits and software frameworks.
In summary, a variety of approaches exist that provide a valuable contribution to the
assistance and automation of different aspects of simulation. However, most of the
presented approaches only address individual steps of simulation studies or neglect
hypothesis-driven experimentation. Important design decisions still have to be made
by the experimenter, which runs the potential risk of bias. Hence, methodological
shortcomings were identified and a research gap was formulated so that research
hypotheses can be thoroughly integrated into the process of simulation studies.

To overcome the presented research gap, the second part of this thesis proposed
a concept for conducting Hypothesis-Driven Simulation Studies. By this means, re-
search questions 2 to 4 were addressed. Respective requirements for the developed
approach were presented in the fourth chapter. To this end, the chapter provided a
discussion of the structure of such hypotheses as well as epistemological demands
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that arise from scientific hypotheses. In a next step, it was evaluated how these
requirements are met in practice during the conducting of simulation studies. The
status quo of the methodological integration of hypotheses was introduced and struc-
tural components were derived that are part of simulation studies. Accordingly, the
developed approach must consider the requirements from scientific hypotheses to
improve the current integration of hypotheses in simulation studies.

The fifth chapter is the key chapter of this thesis. It addressed the identified
methodological shortcomings of simulation studies by proposing an integrated pro-
cedure model for the systemized verification of hypotheses on the behavior of sim-
ulation models. Based on the scenario of a study, the procedure model assists the
specification of phenomenological hypotheses and automates both the design of rel-
evant experiments as well as the aggregation of the generated results. As the re-
sulting process is extensive, and as repetitive tasks might lead to carelessness of
the experimenter, it is reasonable to support the execution of the proposed proce-
dure model by means of an assistance system. With respect to the development of
such an assistance system, Chapter 5 also specified how existing services can be
logically combined to address research question 5 and to facilitate the conducting
of Hypothesis-Driven Simulation Studies. Lastly, this chapter presented an abstract
architecture for the implementation of an assistance system.

The components that are required for the development of the proposed assistance
were formally specified in Chapter 6. Besides a detailed specification of the simu-
lation model as well as the research hypothesis, this chapter introduced services for
the design, execution, and analysis of experiments. To this end, inputs and outputs of
all required services were specified and the transformation process was formalized.

The third part of this thesis evaluated the applicability of the proposed approach.
As an example of its application, Chapter 7 presented two case studies from the
domain of logistics. The NetLogo model that was used for the case studies consists
of a four-tiered supply chain and can be applied to investigate both the occurrence
and consequences of the bullwhip effect. Based on this model, two fictitious sce-
narios were presented for conducting simulation studies and two potential resulting
research hypotheses were introduced for the application of the proposed approach.
To evaluate the plausibility of the generated results, a thorough investigation was
conducted in advance of the parameter space that results from each hypothesis. This
allowed for the comparison and assessment of the results that were generated during
the exemplary application of the procedure model. To further evaluate the feasibility
of the proposed approach, all steps and interim results generated by the procedure
model are presented in great detail. In summary, the feasibility and applicability of
the proposed approach was demonstrated and confirmed.

This thesis lays the foundations for the assisted and hypothesis-driven conduct-
ing of simulation studies, with the aim of replicable and reproducible verification
of assumptions regarding the behavior of a simulation model. In contrast to existing
approaches that only assist single steps of simulation studies or neglect the investiga-
tion of specific hypotheses, the hypothesis becomes the key element of the study in
the presented approach. By this means, every step and design decision made during
the study can be aligned with the hypothesis and contribute to the efficient gener-
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ation of credible results. In summary, the contributions made by this thesis can be
summarized as follows. The proposed approach for conducting Hypothesis-Driven
Simulation Studies as well as the presented assistance enable:

– the formal specification of phenomenological hypotheses on the behavior of
simulation models,

– the hypothesis-based reduction of the parameter space for the design of relevant
experiments,

– the systematic disaggregation of simulation studies into its structural compo-
nents as well as the reaggregation of the generated results,

– the facilitation and assistance of the process of simulation studies to prevent or
reduce the occurrence of experimenter bias,

– and the logical combination of existing services for the automated verification
of hypotheses by means of an assistance system.

This thesis does not focus on the development of services for the automation of
simulation but on the targeted combination of existing services. The presented ar-
chitecture for the assistance of simulation studies does not rely on specific services.
Instead, the modular architecture of the assistance system allows for the integration
of different services that correspond to the specifications presented in Chapter 6.
Accordingly, the services presented in this thesis only serve as examples for the re-
spective types of service. They can be individually modified, extended, or exchanged
by other suitable methods or techniques.

The presented assistance is beneficial for two groups of users: practitioners and
scientists. Both groups of experimenters impose different requirements on simula-
tion studies. Practitioners often apply simulation to answer specific questions re-
garding the behavior of a model or compare two or more models in terms of their
performance. To thoroughly answer such questions, it might be necessary to execute
a large number of parametrizations of the model. This task is monotonous but still
has to be carried out with the utmost care to avoid generating false results and draw-
ing incorrect conclusions. The development of an assistance system as proposed in
this thesis facilitates this task and allows for a more effortless and simplified execu-
tion of simulation experiments.

In contrast to this, scientists apply simulation studies to generate knowledge and
to investigate theories. Here, the methodological soundness and the epistemological
credibility of the study are of high relevance. The proposed process assistance fa-
cilitates the scientific application of simulation as well. As researchers are capable
of specifying their hypothesis by means of the introduced FITS language, relevant
experiments can be derived directly from the question the study aims at answering.
This increases both replicability and reproducibility of the generated results, as all
steps of the study that are executed by the assistance system are transparent and can
easily be documented for publication and further evaluations.
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8.2 Outlook and Future Work

Considering the potential for the scientific generation of knowledge this thesis lays
foundations for an emerging research topic which requires further efforts in terms of
future work. This section presents an outlook of potential future developments and
derives prospects for future research that ought to be conducted to further promote
the assistance and automation of simulation.

In the past decades, the application of simulation has increased remarkably and
experts believe that this development will continue in the future (Yi et al., 2006; Sar-
gent, 2017). Hence, information systems research is under an obligation to facilitate
the application of simulation, to ensure the credibility of the generated results, and
thus to make simulation available to a greater audience. These goals are addressed
by a large number of simulation frameworks, toolkits, and suites, which facilitate
various aspects of simulation. However, such softwares provides insufficient guid-
ance for novice experimenters and often does not consider simulation studies as a
coherent and rigorous process. To overcome these shortcomings in existing software
artifacts, the development of a comprehensive software assistance is advisable from
an information systems research perspective.

This thesis provided specifications for necessary services and proposed an ab-
stract architecture for the implementation of an assistance system. Thus, as a next
step, it is necessary to implement an information system that corresponds to these
requirements. An evaluation must be made whether it is reasonable to extend an
existing simulation framework or to implement the assistance system from scratch.
With respect to the diffusion and usability of the system it seems reasonable to pro-
vide the presented approach as an add-on that can easily be integrated into several
existing frameworks. Yet, this intention is accompanied by increased development
efforts compared to a stand-alone system. Moreover, a stand-alone system allows
for the provision of a central repository for both the execution and storing of re-
sults from simulation studies. Individual simulation services that were developed
by different researchers and practitioners can be connected to this central repository
and dynamically integrated into the process of simulation studies. By this means,
the experimenter can flexibly chose between general services that are provided by
the assistance system or integrate their own services that correspond to individual
needs, e.g., an experimental design or factor screening approach that performs well
for a specific model type. In addition to the execution of experiments, a central
repository facilitates the documentation, publications, and reproduction of the gen-
erated simulation results. A reference to the repository that contains all information
on the conducted study can for instance be provided in scientific publications. It
enables other researchers to further investigate and reproduce the results or to carry
out additional experiments with different parametrizations or hypotheses.

The development of a repository that governs data and results from simulation
studies can also improve and facilitate the scientific generation of knowledge. The
underlying assumption of a scientific hypotheses might be highly sophisticated.
Thus, an assistance system must dynamically adapt the study’s process and might
even require supplementation with additional services. Considering the abstract ar-
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chitecture that was presented in Chapter 5, the automation of this task can be ac-
complished by the simulation experiment assistance. Based on a suitable knowl-
edge base, the coordinator agent is able to identify potential missing information,
which can be dynamically acquired by adjusting the process of the study. For this
purpose, approaches from Artificial Intelligence can be applied, such as case based
reasoning or machine learning. In doing so, well-suited procedures can be derived
from the results of previously conducted studies to answer specific hypotheses. In
this regard, a repository for simulation studies can serve as a data base. However,
this functionality is not part of the assistance that is presented in this thesis and must
be addressed by future work.

Another aspect of future research is the integration of different types of hypothe-
ses. This thesis focused on phenomenological hypotheses that make assertions on
the input-output-behavior of a simulation model. To investigate such hypotheses, it
is sufficient to consider the model as a black box whereby no information of the
inner structure and mechanisms of the model is available. Yet, Yilmaz et al. (2016)
moreover distinguished between mechanistic hypotheses and control hypotheses.
In contrast to phenomenological hypotheses, these two types of hypotheses require
white box approaches where the mechanisms of the model are known. In particu-
lar, the automated assessment of mechanistic hypotheses is still a topic of future re-
search. Even though Doud and Yilmaz (2017) proposed the FASE framework for the
automated analysis of simulation experiments and mechanistic hypotheses, the pre-
sented approach does not fully integrate the model. Instead of automatically deriving
relevant experiments, FASE requires simulation results as inputs for the generation
of Discrete-Time Markov Chains. To this end, the frameworks does not assist the
design and execution of experiments and thus cannot be applied to the conducting
of simulation studies.

The discussed perspectives on required future work contribute to further estab-
lishing simulation as a tool for practitioners, as method in scientific research, and
to cope with future developments. In the years to come, it must be expected that
higher requirements will be imposed on simulation studies due to the increasing ex-
tent and mechanistic complexity of the investigated models. Thus, the advancement
of existing approaches as well as the development of innovative techniques for the
assistance of automation of simulation will gain in relevance. Especially with re-
spect to the establishment of simulation as an “epistemological engine of our time”
(Tolk et al., 2013b, p. 1154), new methods and techniques in the field of simulation
must be developed as individual services so that they can be dynamically combined
and integrated into the process of simulation studies. This necessity also corresponds
to the vision of Yilmaz et al. (2014), who claimed that the automation of simulation
is essential to improve the reproducibility of simulation experiments.
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Test Constraint, 119, 161, 162
Thin Plate Splines, 244
Tick, see Simulation Step
Time Series, 148
Traffic Simulation, 33

Uniform Distribution, 149
Unimportant Factor, 168

Validated Model, see Validation
Validation, 25

Conceptual Model Validation, 38
Face Validity, 39
Predictive Validity, 85
Results Validation, 39
Structural Validity, 85

Verification, 25

Warm-Up Period, 124
Welch’s t-test, 272
Welch-Satterthwaite Equation, 273
What-If Analysis, see Sensitivity Analysis

Z-test, 206
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