
Automated Identification of Uniqueness in JUnit Tests

JIANWEI WU, University of Delaware, USA

JAMES CLAUSE, University of Delaware, USA

In the context of testing, descriptive test names are desirable because they document the purpose of tests and facilitate

comprehension tasks during maintenance. Unfortunately, prior work has shown that tests often do not have descriptive names.

To address this limitation, techniques have been developed to automatically generate descriptive names. However, they often

generated names that are invalid or do not meet with developer approval. To help address these limitations, we present a

novel approach to extract the attributes of a given test that make it unique among its siblings. Because such attributes often

serve as the basis for descriptive names, identifying them is an important irst step towards improving test name generation

approaches. To evaluate the approach, we created a prototype implementation for JUnit tests and compared its output with

human judgment. The results of the evaluation demonstrate that the attributes identiied by the approach are consistent with

human judgment and are likely to be useful for future name generation techniques.

CCS Concepts: · Software and its engineering → Software testing and debugging; · Theory of computation →

Program analysis.

Additional Key Words and Phrases: unit testing, formal concept analysis

1 INTRODUCTION

Comprehension is a frequent task in test maintenance because understanding the purposes of tests is the irst
step towards modifying existing tests, adding new tests, or removing unnecessary tests. This task can be diicult
because the necessary information is not always explicitly stated, rather it exists implicitly in the source code of
unit tests and the classes under test. As an alternative to reading tens or hundreds of lines of code, summary
information, written in natural language, is often provided in the form of a descriptive test name. If every test
in a test suite has a descriptive name, a developer can locate a test and understand its purpose quickly by only
reading its name. The collection of test names can also serve as detailed documentation for a test suite. Therefore,
descriptive test names can signiicantly beneit test maintenance activities.
Unfortunately, prior work has demonstrated that tests often do not have descriptive names [56]. Poor names

are often written by developers and widely exist in the test suites of real world projects. For example, developers
often create test names for convenience (e.g., test1, testB, etc.) and ignore future maintenance needs [15, 53, 56].
In addition, during maintenance, developers may make existing test names erroneous when they change the
source code of tests without changing corresponding names [30].

Existing approaches have tried to address the problem of poor names by automatically generating descriptive
test names. Some of these approaches use predeined rules (e.g., [25, 56]), API-level coverage goals, or language
models (e.g., [4, 15]). Other approaches attempt to solve the problem by automatically generating unit tests (i.e.,
both name and body) [8, 17, 55]. While these types of approaches can be successful at generating descriptive

Authors’ addresses: Jianwei Wu, University of Delaware, 18 Amstel Ave, Newark, DE, USA, wjwcis@udel.edu; James Clause, University of

Delaware, 18 Amstel Ave, Newark, DE, USA, clause@udel.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that

copies are not made or distributed for proit or commercial advantage and that copies bear this notice and the full citation on the irst

page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy

otherwise, or republish, to post on servers or to redistribute to lists, requires prior speciic permission and/or a fee. Request permissions from

permissions@acm.org.

© 2022 Association for Computing Machinery.

1049-331X/2022/5-ART $15.00

https://doi.org/10.1145/3533313

ACM Trans. Softw. Eng. Methodol.

Accepted Manuscript
Version of record at: https://doi.org/10.1145/3533313

https://doi.org/10.1145/3533313

2 • Jianwei Wu and James Clause

names or test cases, such names often do not meet with developer approval (e.g., because the generated names do
not follow the developer’s preferred naming rationales, as discussed in Section 5). More recent work attempts
to generate names that more closely match existing names by using machine learning to create approaches
that can map method bodies to method names (e.g., [6, 7]). However, the success of these approaches heavily
depend on their training sets and they are not always successful at creating models that match well with human
cognition [32]. In addition, these approaches are primarily geared towards general methods and have problems
when applied to test name generation. For example, we have found that, due to the similarity of test bodies, these
state-of-the-art approaches (i.e., [6, 7]) often generate duplicate names for tests in the same class (see [30]). While
such names may make sense individually, they are useless in practice as duplicate names are not possible and,
even if they were, they would not serve the goal of helping developers comprehend the purposes of their tests.
Because of the above limitations of existing approaches, further work is needed in order to automatically

generate test names that are both descriptive, take into account the diferences between test names and general
method names, and meet with developer approval. Our work in this direction is inspired by a belief, informed
from our experiences with many tests from many projects, that a test’s name is often based on what makes the
test unique from its siblingsÐtests declared in the same class. To investigate this belief, we conducted a large-scale
empirical study, considering tests drawn from 11 open-source projects, that asks whether tests are named after
what makes them unique. The results of the study: (1) conirm our impression that the majority of tests are
named after what makes them unique, and (2) identify additional aspects that inluence how tests are named.

Based on the results from the study, we designed a novel, automated approach that can extract the attributes of
a test that make it unique among its siblings. Because descriptive names are often based on such unique attributes,
the approach is a crucial building block for future name generation techniques. At a high-level, the approach
uses a combination of static program analysis to extract a variety of candidate attributes, identiied as part of the
study, from a test suite and formal concept analysis to identify which combination of attributes is unique to the
test under consideration.
To evaluate the approach, we implemented it as a working prototype for applications written in Java using

the JUnit testing framework. We chose these technologies as they are commonly used. Using this prototype, we
conducted an empirical evaluation based on 920 tests taken from 17 open source projects hosted on GitHub. The
results of the evaluation show that our proposed approach is consistent with human judgment. More speciically,
this paper makes the following contributions:

(1) an empirical study to investigate if unit tests are named after what makes them unique
(2) an automated approach that identiies the unique attributes of unit tests
(3) a prototype implementation of the approach for JUnit tests
(4) an empirical evaluation that demonstrates the approach’s output is consistent with human judgment and

requires less efort to be transformed into descriptive test names

The remainder of this paper is organized as follows: Section 2 describes our empirical study of unit tests that
motivates the uniqueness-based approach. Section 3 describes the details of the approach and the prototype
implementation of the approach. Section 4 presents the empirical evaluation of the approach with a research
question. Finally, Section 7 presents our conclusions and planned future work, and Section 5 discusses the related
work.

2 EMPIRICAL STUDY: ARE TESTS NAMED FOR WHAT MAKES THEM UNIQUE?

Our belief is that developers often name unit tests based on what aspects of the test makes the test unique among
its siblings. To validate this assumption, we conducted an empirical study of 440 existing tests. First, we examined
each test in order to identify what makes it unique from its siblings. Then we examined the test’s name and
judged whether the name is based on, either entirely or in part, the unique aspects of the test.

ACM Trans. Softw. Eng. Methodol.

Accepted Manuscript
Version of record at: https://doi.org/10.1145/3533313

Automated Identification of Uniqueness in JUnit Tests • 3

Table 1: Experimental Subjects.

Project Version LoC # Tests

Guice 9b371d3 183,049 1,280
Moshi dbed99d 22,168 716
Picasso a087d26 11,006 229
Fastjson e05f1f9 195,511 4,950
Guava 368c337 400,801 13,962
Mockito 22c82dc 59,839 2,145
Socket.io-client 661f1e7 9,478 85
Scribejava ea42bc9 15,184 110
ExoPlayer 79da521 172,148 1,510
Javapoet e9460b8 10,755 302
Barbecue 44a8632 10,760 170

2.1 Experimental Subjects

To gather the tests we examined in our study, we started with the 11 Java projects shown in Table 1. In the table,
the irst column, Name, shows the name of the project; the second column, Version, shows the version of the
project (either as a Git hash or version number); the third column, LoC, shows the number of non-comment,
non-blank lines of code as computed by SLOC count [35]; and the inal column, # Tests, shows the number of unit
tests in the project. In total, these 11 projects contain 25,459 unit tests.
The irst ten projects were randomly selected from the top 50 Java projects hosted on Github [27]. Because

these projects encompass a variety of domains (e.g., JavaPoet is a library for generating Java programmatically
and ExoPlayer is a media player for Android) and have many contributors (e.g., Moshi’s test suite contains
contributions from 8 diferent people), their tests are more likely to be representative of tests in general which
helps mitigate a potential threat to validity. In addition, we also included Barbecue, a commonly used subject
in the testing literature (e.g., [53, 55, 56]). Because Barbecue is signiicantly smaller than the other subjects, it
served as a useful starting point for the study.
Because our investigation is manual, it is necessary to reduce the 25,459 unit tests to a more manageable

number. Because the projects vary widely in their numbers of tests (e.g., Guava contains 13,962 tests while
socket.io-client contains 85 tests), we decided to select a ixed number of tests from each project rather than
choosing in proportion to test suite size. This also helps control for threats associated with an unbalanced sample.
We found that it took about 5 minutes to understand and encode a single test. Therefore, referencing from similar
studies [53, 56], we selected 40 tests from each project, giving us a total of 440 tests; an amount which could be
analyzed in around 37 hours (i.e., approximately a week’s worth of efort).

When performing the selection of tests, we also had an additional requirement which was to only select tests
without poor names. Because we are not interested in generating poor names nor understanding how poor names
are chosen (although this may be an interesting area of future work), it makes sense to eliminate tests with poor
names from consideration. Therefore, if a randomly selected test had a name that the authors judged was poor it
was replaced with another randomly selected test. We considered a name to be poor if, with the exception of a
leading łtestž, the name (1) contains only numbers (e.g., test12), or (2) contains only numbers, punctuation, and
mathematical symbols (e.g., test_1_2). We also made sure not to select any of the 179 tests with empty bodies
contained in these applications. The inal set of 440 tests is available online, and the complete set of siblings of
each chosen test can also be found by its corresponding test class name [30].

ACM Trans. Softw. Eng. Methodol.

Accepted Manuscript
Version of record at: https://doi.org/10.1145/3533313

4 • Jianwei Wu and James Clause

2.2 Phase 1: Discovering Uniqueness of Tests

The goal of the irst part of our study is to identify what makes tests unique. Note that in this work we are
assuming that each test has some aspect that makes it unique. While we have observed cases where more than
one test has the same body (i.e., duplicate tests with diferent names), this situation is rare, did not occur among
our set of tests, and is likely indicative of a bug as there is no obvious beneit to executing the same test twice.

2.2.1 Code Creation Methodology. Identifying what makes a test unique involves comprehending not only the
test under consideration but also the test’s siblings (i.e., tests that inluence or restrict the name of a test). In this
study we consider tests declared in the same class as siblings. We chose this granularity for several reasons. First,
the Java programming language forbids methods with the same signature in the same class. Because tests have
no parameters, this means that each test (method) in a class must have a unique name. Second, tests in the same
class are likely to be related (e.g., they share the same class under test). This means that the aspects that make
them unique are more likely to be limited in scope and therefore more interesting with respect to how tests are
named.

Because there is no pre-existing classiication scheme for identifying what makes a test unique, we used open,
axial, and selective coding to qualitatively analyze the tests [21, 45]. First, each author individually examined
each of the 440 considered tests and tagged the portions of the test body that they believe are the unique aspects
of the test. These portions of the test body are the potential components of the tagged text in the following
sections and can be diferent types of code elements such as method invocations, parameters, and objects. Each
tag consisted of a word or short phrase that characterizes the type of uniqueness. After each author tagged each
test individually, the authors together examined the tagged tests in order to reach consensus on which portion
of a test’s body makes it unique and to discuss the open codes. Then the authors used axial coding to establish
relationships among the open codes and generated a inal list of selective codes.

2.2.2 Selective Codes. The set of selective codes is based partly on the Java language elements [37] that can
comprise a test (e.g., variable declarations, method calls, control low structures, parameters and arguments,
etc.). However, we found that it was desirable to both reine these codes and to include other, broader codes, in
order to more precisely capture concepts that are speciic to unit tests. More speciically, we created four primary
codes that correspond to the high-level structure of the test (i.e., parts of test [56]) and multiple secondary codes
that refer to test-speciic elements (e.g., calls to methods of the class under test, expected or actual arguments to
assertions, etc.) which are mentioned by existing approaches [15, 20, 53]. Because the secondary codes reine the
primary codes, they can only be applied if their corresponding primary code is applied irst. Below, we discuss
each primary code and its associated secondary codes in detail. Moreover, Fig. 1 shows code examples for each of
the primary codes.

2.2.3 Action. The Action code is a primary code that is applied to a test when no sibling shares the test’s ActionÐ
the part of the test that is the primary interaction with the application under test. The secondary codes for the
Action code relate to: (1) the elements of the action, speciically methods calls and arguments, and (2) whether
the method calls and arguments are related to the class under test.

Because, in the context of testing, method calls to the class under test are more important than calls to methods
declared by other classes and method calls in general are more important than method arguments, the secondary
codes are prioritized as shown below; a lower ranked code can only be applied if no high-ranked code has been
applied. This ranking is based on our intuition as well as recent studies that use eye-tracking technology to
understand the importance of code elements for diferent software engineering tasks (e.g., [11, 39, 40]).

(1) The Class Under Test (CUT) Method Call code is applied when (i) the test’s action contains a call to a
method declared by the class under test, and (ii) no other sibling contains a call to the same method in its
action, irrespective of the method arguments

ACM Trans. Softw. Eng. Methodol.

Accepted Manuscript
Version of record at: https://doi.org/10.1145/3533313

Automated Identification of Uniqueness in JUnit Tests • 5

(a) Action. (b) Predicate.

(c) Scenario. (d) Combination.

Fig. 1: Examples of primary codes.

(2) The non-CUT (other) Method Call code is applied when (i) the test’s action contains a call to a method
declared by a class that is not the class under test, and (ii) no other sibling contains a call to the same
method in its action, irrespective of the method arguments

(3) The CUT call arguments code is applied when the test’s action contains a call to a method declared by the
class under test (CUT) that has a unique set of method call arguments

(4) The non-CUT (other) call arguments code is applied when the test’s action contains a call to a method
declared by a class that is not the class under test that has a unique set of method call arguments.

For example, Fig. 1a shows an example of the Action primary code from Barbecue’s ’raphicsOutputTest
class, and the colored box (i.e., circled in blue) indicates where we should be looking for in the test body [56].
In this test, the Action code can be applied to its irst statement: output.drawBar(0, 0, 10, 100, false); as a
method invocation, and no other sibling from the same class shares its Action.

2.2.4 Predicate. The Predicate code is applied to a test when no sibling shares the test’s predicateÐthe part
of the test that checks the result of performing the action. The secondary codes for the Predicate code relate
to: (1) the assertions used by the test and, and (2) the arguments passed to the assertions. Again, the secondary
codes are prioritized based on their relative importance in the context of testing and a lower-ranked code can
only be applied if a higher-ranked code has not already been used. The Predicate code has noticeably more
secondary codes than other primary codes. First, the deinition of unit testing is to test a minimum component of
a software, so the testing process is usually involved with checking the produced results. Second, when checking
the produced results, there are many diferent kinds of result-checking statements that can be used in a test,
which will make the test unique.

(1) The actual and expected parameters code is applied when (i) the test’s predicate contains a pair of actual
and expected parameters that is extracted from an assertion call, and (ii) no other sibling has the same pair
of actual and expected parameters in its assertion calls

(2) The actual parameter code is applied when (i) the test’s predicate contains an actual parameter that is
extracted from an assertion call, and (ii) no other sibling has the same actual parameter in its assertion calls

(3) The expected parameter code is applied when (i) the test’s predicate contains an expected parameter that is
extracted from an assertion call, and (ii) no other sibling has the same expected parameter in its assertion
calls

(4) The assertion call code is applied when (i) the test’s predicate contains an assertion call that is extracted
from the assertions of the test, and (ii) no other sibling has the same assertion call and uses it as its predicate

ACM Trans. Softw. Eng. Methodol.

Accepted Manuscript
Version of record at: https://doi.org/10.1145/3533313

6 • Jianwei Wu and James Clause

(a) Test cases with tagged text from Scribejava. (b) Test cases with tagged text from Picasso.

Fig. 2: Examples of test cases with tagged text.

(5) The other result-checking call code is applied when (i) the test’s predicate contains other types of re-
sult-checking calls that serve the same functionality as JUnit assertions, and (ii) no other sibling has the
same set of result-checking calls and uses it as its predicate

(6) The only assertion code is applied when the test’s predicate contains a call to an JUnit assertion method
and no other sibling calls any JUnit assertion method (i.e., the only test with JUnit assertion).

For example, Fig. 1b shows an example of the Predicate primary code from Barbecue’s ’raphicsOutputTest
class, and the colored box indicates where we should be looking for in the test body. In this test, the Predicate
code can be applied to its last two statements: assertTrue(r.getWidth() > 0); assertTrue(r.getHeight()

> 0); as assertions, and no other sibling from the same class shares its Predicate.

2.2.5 Scenario. The Scenario code is applied to a test when no sibling shares the test’s scenarioÐthe part of the
test that conigures or sets up the environment under which the action will be performed.
The secondary codes for the Scenario code relate to: (i) the elements of the scenario, speciically variable

initialization and arguments in assertions, (ii) whether the variable initialization and arguments are related to the
object under test, and (iii) control low variable and state-changing CUT call.
Because, in the context of testing, variable initialization to the object under test are more important than

variable initialization to other objects and variable initialization in general are more important than variable
initialization arguments and control low variables. And the state-changing CUT method call code is added in the
list to meet the possible case of having a focal method call [20]. Therefore, the secondary codes are prioritized as
shown below and a lower ranked code can only be applied if no high-ranked code has been applied.

(1) The Object Under Test (OUT) variable initialization code is applied when (i) the test’s scenario contains a
variable initialization that is used in a variable declaration for an object under test, and (ii) no other sibling
contains the same variable initialization for its variable declaration for OUT and uses it as its scenario,
irrespective of the arguments used in the variable initialization. The OUT variable initialization will be
the tagged text, and the rest of the secondary code of the Scenario code follows the same rule (i.e., code
elements are converted to the tagged text).

ACM Trans. Softw. Eng. Methodol.

Accepted Manuscript
Version of record at: https://doi.org/10.1145/3533313

Automated Identification of Uniqueness in JUnit Tests • 7

(2) The non-OUT (other) variable initialization code is applied when (i) the test’s scenario contains a variable
initialization that is used in a variable declaration but not for any object under test, and (ii) no other sibling
contains the same variable initialization for its variable declaration (i.e., not for OUT) and uses it as its
scenario, irrespective of the arguments used in the variable initialization.

(3) The non-OUT (other) variable initialization arguments code is applied when (i) the test’s scenario is
composed of a set of arguments that are used in the variable initialization of a variable declaration but
not for any object under test, and (ii) no other sibling contains the same set of arguments that are used in
variable initialization of a non-OUT variable declaration and uses it as its scenario.

(4) The control low variable code is applied when (i) the test’s scenario contains a variable that is used in
the conditional statement of a control low-based statement (i.e., loop, if-else, or other type of statement),
and (ii) no other sibling contains the same variable that is used in the same type of control low-based
statement and uses it as its scenario.

(5) The state-changing CUT method call code is applied when (i) the test scenario is composed of a CUT
method call that changes the state of the test [20], and (ii) no other sibling contains the same state-changing
CUT method call in its scenario, irrespective of the method arguments.

For example, Fig. 1c shows an example of the Scenario primary code from Barbecue’s ’raphicsOutputTest
class, and the colored box indicates where we should be looking for in the test body. In this test, the Scenario code
can be applied to its irst statement: output = new ’raphicsOutput(g, null, fgColour, bgColour); as object
initialization, and no other sibling from the same class shares its Scenario.

2.2.6 Combination. The Combination code is applied to a test when none of the other primary codes is applicable
(i.e., the test’s action, predicate, and scenario are shared with other tests). The secondary codes for the Combination
code enumerate the possible combinations of the irst three primary codes: Action and Predicate, Action and
Scenario, Scenario and Predicate; Action, Scenario, and Predicate. For example, the Action and Predicate code will
be applied when the action and predicate of the tests are not unique on their own but the combination of both of
them is unique among other tests in the same test class. The rest of the secondary codes of the Combination code
follow the same pattern. The tagged text of each secondary code of the Combination code will be the structure of
the combination, such as action and predicate or action and scenario.
For example, Fig. 1d shows an example of the Combination primary code from Barbecue’s ModuleTest class,

and the colored box indicates where we should be looking for in the test body. In this test, the Combination code
can be applied to its several statements as a speciic combination of Scenario and Predicate, and no other sibling
from the same class shares this combination of Scenario and Predicate.

2.3 Coding Process

Using the selective codes and guidelines described above, each author individually recoded all of the 440 tests.
This was more straightforward than the initial open coding process because we were now familiar with the test
and the results of the open and axial coding processes were already available. Each test was irst assigned one or
more of the four primary codes. Then, for each primary code that was assigned, one or more of its associated
secondary-codes were assigned.
As an example of the selective coding process, consider the examples in Fig. 2 (i.e., codes are highlighted in

blue). The top-half of each igure shows an excerpt of a test class from one of the subjects considered in the study.
Note that some minor reformatting has been done to improve the presentation (i.e., all spaces and comments are
removed). The bottom of each igure shows the codes applied to each test using the format: ⟨top level code⟩ -
⟨secondary code⟩: ⟨tagged text⟩ where tagged text shows the portion of the test body that is tagged by the
secondary code.

ACM Trans. Softw. Eng. Methodol.

Accepted Manuscript
Version of record at: https://doi.org/10.1145/3533313

8 • Jianwei Wu and James Clause

271 257 128 33

0% 25% 50% 75% 100%

Primary Code Action Predicate Scenario Combination

Fig. 3: Frequency of primary codes.

For example, in Fig. 2a, the test shouldReturnTimestampInSeconds is tagged with Action - method call
(CUT): łgetTimestampInSecondsž because no sibling shares the test’s action, which is to call the service’s
timestamp functionality (i.e., the CUT Method łgetTimestampInSeconds()ž). This test is also tagged with
Predicate - actual parameter: łservice.getTimestampInSeconds()ž because no sibling uses the result of calling
łgetTimestampInSecondsž as the actual parameter to an assertion method.

In Fig. 2b, the test completeSetsBitmapOnRemoteViews is tagged with Action - CUT method call: łcompletež
because no sibling shares the test’s action, which is to call a method to the action’s complete functionality (i.e., the
CUT Method łcomplete()ž). This test is also tagged with Predicate - actual parameter: łsetImageViewBitmap(1,
BITMAP_1)ž because no sibling utilizes the setImageViewBitmap(1, BITMAP_1) as the actual parameter in an
assertion. The test errorWithNoResourceIsNoop is tagged with Predicate - other result-checking call: łverify-
ZeroInteractionsž because no sibling shares the test’s predicate, which is to call a veriication method verify-
ZeroInteractions to check the behavior of the remoteViews variable. The test errorWithResourceSets-
Resource is tagged with Predicate - actual parameter: łsetImageViewResource(1, 1)ž because no sibling shares
the test’s predicate, which is to verify the behavior of remoteViews variable with a speciic parameter and
utilizes the setImageViewResource(1, 1) as the actual parameter in an assertion. This test is also tagged with
Scenario - variable initialization (OUT): łcreateAction(1)ž because no sibling shares the test’s scenario because
no other test initializes the łactionž variable (i.e., the object under test) using the createAction(1) as its variable
initialization.

The agreement between the raters was high (Fleiss’ κ = 0.92) which suggests that the guidelines are detailed
enough to support a repeatable process. After each author coded each test individually, the authors together
examined the tagged tests in order to discuss and address any disagreements in the results. During the process of
coding each test, the tagged text was manually extracted from each tagged test by using the coded results to
locate the exact code elements (i.e., converted to text) that make the test unique among its siblings in the same
class. At the end of this coding process we created a topical concordance that shows, for each code, the tests that
were tagged with the code. For the 440 tests that were selected from 11 projects, all the tagged results are shown
in the online document [30].

2.3.1 Data and Discussion. To better understand the results of the coding process we gathered some descriptive
statistics. Figure 3 shows the frequency of the primary codes across the sampled tests. In this horizontal stacked
bar-chart, the color legend shows the name of each primary code and the stacked four bars, Action through
Combination, show the number of times each primary code was applied to tests among the 440 subjects. For
example, the irst stacked bar shows that, for the tests sampled from the 11 projects, the Action code was applied
271 times, the second shows that the Predicate code was applied 257 times, and the third shows that the Scenario
code was applied 128 times, and the Combination code was applied 33 times.

Figure 4 shows the frequencies of each secondary code in four horizontal stacked bar-charts. In each plot, the
upper text (e.g., Action, Predicate) shows the primary code that each secondary code corresponds to; the color
legend, Secondary Code, shows how often the secondary code was applied. For example, the top bar-chart shows

ACM Trans. Softw. Eng. Methodol.

Accepted Manuscript
Version of record at: https://doi.org/10.1145/3533313

Automated Identification of Uniqueness in JUnit Tests • 9

Action

Predicate

Scenario

Combination

123774427

1347826181

9425531

151143

0% 25% 50% 75% 100%

Secondary Code Other Method Call Other Call Arguments CUT Method Call CUT Call Arguments

0% 25% 50% 75% 100%

Secondary Code
Other Result−checking
Call

Assertion Call
Actual and Expected
Parameters

Expected Parameter Actual Parameter

0% 25% 50% 75% 100%

Secondary Code Control Flow Variable
State−changing CUT Method
Call

Non−OUT (other) Variable
Initialization Arguments

Non−OUT Variable,
Initialization

OUT Variable
Initialization

0% 25% 50% 75% 100%

Secondary Code Action+Scenario Action+Predicate Scenario+Predicate Action+Scenario+Predicate

Fig. 4: Frequency of secondary codes.

that the secondary code łCUT method callž was applied 77 times which is approximately ≈28 % of the 271 times
the primary Action code was applied (i.e., when it was possible to apply the secondary code).

Based on the data shown in these plots, we can draw two general observations. The irst observation is about
the relative frequencies of the top level codes: the Action and Predicate codes are the most common and occur
about the same amount of the time (271 out of 689, ≈39 % and 257 out of 689, ≈37 %, respectively); the Scenario
code is less common (128 out of 689, ≈19 %); and the Combination code is the least common and is relatively
rare (33 out of 689, ≈5 %). This suggests that there is often a single part of a test that makes it unique among its
siblings and the action and predicate are what makes it unique most often. The second observation is about the
relative frequencies of the secondary codes. With the exception of the OUT Variable Initialization secondary
code (94 out of 128, ≈73 %), there are no dominant secondary codes (e.g., >70 %). This suggests that while there
may be trends among the part of a test that makes it unique (e.g., action, scenario, and predicate), the speciics
of what make each of these parts of the test unique varies greatly. In addition, with the exception of Javapoet
(which relies on the secondary codes under the predicate primary code, 35 out of 59, ≈60 %), there are also no
dominant secondary codes (e.g., ≥60 %) at the project level, and the rest of the detailed data can be found in the
online document [30].

ACM Trans. Softw. Eng. Methodol.

Accepted Manuscript
Version of record at: https://doi.org/10.1145/3533313

10 • Jianwei Wu and James Clause

2.4 Phase 2: Deciding Whether Unit Tests Are Named Ater What Makes Them Unique

The goal of the second part of our study is to investigate whether tests are named, either wholly or in part,
after what makes them unique. In order to decide whether tests are named after what makes them unique, we
investigated two research questions:

• RQ1: Is uniqueness used as a naming rationale for JUnit tests?
• RQ2: When uniqueness is the naming rationale, does the tagged text appear directly in the name or is it
transformed?

2.4.1 RQ1: Is Uniqueness Used as a Naming Rationale in JUnit Tests? To investigate RQ1, we manually compared
the name of each test against the aspects that make it unique which were identiied in the irst part of the study.
The comparison between the test name and tagged text (i.e., the aspects of the test that make it unique) was
performed as follows. First, we automatically split the test name and the tagged text into a set of tokens using a
customized tokenizer for identiiers [16]. Then we convert all tokens to lower case remove any leading łtestž
as well as connectors that are rarely used in the test body (e.g., not, to, then, etc.) [30]. For example, the test
name testPostReturnsBarcodeImage is parsed into a set of tokens: ⟨post , returns, barcode, imaдe⟩. Finally,
we manually compared the two sets of tokens. Each author did this comparison individually and classiied the
tests into one of the following categories based on the degree to which the name appears to be based on the
tagged text.

• Full: The tests in the Full category appear to be named wholly after what makes the test unique (i.e.,
every token from the name appears to be derived from a token from the tagged text). For example, for
testPutAll from Guava, the tokens from the name are ⟨put , all⟩ and the tokens from the tagged text are
also ⟨put , all⟩. Because each token in the token set of the name originates from a corresponding token
from the token set of the tagged text (e.g., both tokens are literally the same or share the same meaning),
testPutAll is included in the Full category. As another example, consider test_geo from FastJson. For
this test, the tokens from the name are ⟨дeo⟩ and the tokens from the tagged text are ⟨дeometry⟩. Because
łgeož appears to be an abbreviation for łgeometryž, each token from the name is derived from a token from
the tagged text and the test is also included in the Full category.
• Partial: The tests in the Partial category appear to be named partially after what makes the test unique (i.e.,
at least one token from the name appears to be derived from a token in the tagged text). For example for test-
ChecksumIsNull from Barbecue, the tokens from the name are ⟨checksum, is, null⟩ and the tokens from
the tagged text are ⟨calculate, checksum⟩. Because the token łchecksumž in the token set of the test name
is directly derived from the token łchecksumž in the token set of the tagged text, testChecksumIsNull is
included in the Partial category. As another example, consider testChildBindingsNotVisibleToParent
from Guice, the tokens from the test name are ⟨child, bindinдs, visible, parent⟩ and the tokens from the
tagged text are ⟨дet , bindinд⟩. Because the token łbindingsž from the test name is the plural of the token
łbindingž from the tagged text, testChildBindingsNotVisibleToParent is also included in the Partial
category.
• None: The tests in the None category do not appear to be named after what makes the test unique (i.e.,
none of the tokens from the name appear to be derived from a token from the tagged text). For example, for
testValueIsRequired from Barbecue, the tokens from the test name are ⟨value, is, required⟩ and the
tokens from the tagged text are ⟨remove, servlet , exception⟩. Because none of the tokens from the test
name appears to be derived from the tokens from the tagged text, testValueIsRequired is listed in the
None category.

ACM Trans. Softw. Eng. Methodol.

Accepted Manuscript
Version of record at: https://doi.org/10.1145/3533313

Automated Identification of Uniqueness in JUnit Tests • 11

Table 2: Results to check if the tokens are Identical or Transformed.

Project Full Partial None

Tests Identical Transformed # Tests Identical Transformed # Tests

Barbecue 2 0 2 32 27 5 6
Moshi 5 5 0 18 16 2 17
Mockito 4 3 1 27 24 3 9
Guava 2 2 0 30 27 3 8
Guice 1 1 0 36 29 7 3
ExoPlayer 3 3 0 19 16 3 18
Scribejava 5 5 0 31 28 3 4
Socket.io-client 0 0 0 36 22 14 4
Fastjson 1 1 0 20 19 1 19
Picasso 2 2 0 29 25 4 9
Javapoet 0 0 0 31 28 3 9

Overall 25 22 3 309 261 48 106

The agreement between the raters was high (Fleiss’ κ = 0.88) which suggests that the category descriptions
are detailed enough to support a repeatable process. Again, after each author classiied each test individually, the
authors together examined the classiication in order to resolve any disagreements.

The results of the rectiied classiication are shown in Table 2. In the table, the irst column, Project, shows the
name of each project and the subsequent three columns, Full, Partial, and None, show the number of tests in each
category, respectively. The irst sub-column, # Tests, indicates the total number of tests that is under each main
category and the other two sub-columns, Identical and Transformed, will be explained later. For example, the irst
row shows the data collected from Barbecue: a total of 2 tests are in the Full category, a total of 32 tests are in the
Partial category, and a total of 6 tests are in the None category (i.e., sum to 40 per project). Finally, the last row
shows the totals for each category across all inspected projects.
As the data in Table 2 shows, most of the tests (334 out of 440, ≈76 %) are in either the Full or the Partial

category, with Partial being the largest category. However, there are also a signiicant fraction of tests in the
None category (106 out of 440, ≈24 %). We found this surprising, especially considering that tests with bad names
were excluded from our set of tests.

To better understand the tests that are not named after what names them unique, we further investigated the
tests in the None category. We found that while these test names are not based on what makes the test unique,
they do often follow a reasonable naming rationale. The most common rationale (34 out of 106, ≈32 %) is naming
a test after something that is out of the scope of test bodies such as the setup of the testing environment or an
implicit behavior of the program. For example, testValueIsRequired from Barbecue is designed to make sure
when there is a missing value in the required parameters of the setup of its test class, an exception will be thrown
and caught. The second most common rationale (30 out of 106, ≈28 %) is to name a test after after a user behavior
(i.e., during integration testing). For example, loadThrowsWithInvalidInput from Picasso is designed to make
sure that when the user enters an invalid input (i.e., URL for this test), a corresponding exception must be thrown.
The third most common rationale (29 out of 106, ≈27 %) is to name the test after a part of the test that is not
unique. For example, testReadFull from Exoplayer is designed to check if a speciic data source can be fully
read. This test is named after the method call ⟨read⟩, which is also called by this test’s siblings.

ACM Trans. Softw. Eng. Methodol.

Accepted Manuscript
Version of record at: https://doi.org/10.1145/3533313

12 • Jianwei Wu and James Clause

Overall, we found that 88 of the tests the None category were named using a reasonable rationale. The remaining
tests (13 out of 106, ≈12 %) were tests with poor names that were not caught by our conservative iltering. For
example, JavaPoet contains a test named łusagež that does not describe the purpose of the test. In our planned
future work, we will investigate approach to identify these other rationales so that the can be used to generate
descriptive names.
Based on the data in Table 2 and our additional investigation of tests in the None category, we conclude that

the answer to RQ1 is łyesž: uniqueness is indeed commonly used as a naming rationale when constructing the
names of JUnit tests. From the 440 selected tests, most of them are named under the uniqueness-based naming
rationale, and their test names at least partially relect the uniqueness by containing some or all of the tokens
from the tagged text.

2.4.2 RQ2: When Uniqueness Is the Naming Rationale, does the Tagged Text Appear Directly in the Name or Is It

Somehow Transformed? To gain some additional insights in to how much extra work an automated tool might
need, we further examined the tests in the Full and Partial categories to determine whether the information about
what makes the test unique has the same form in the name or if it was transformed in some way. In order to
get the information from the collected data, we performed a manual classiication of all the tests in the full and
partial categories. In this case were classiied the tests as either Identical or Transformed.

• Identical: The tests in the Identical sub-category have this feature: each token from the test name that
appears to come from the tagged text is identical to the token from the tagged text. For example, for
shouldIncludePort8080 from Scribejava, the tokens from the name are ⟨should, include, port8080⟩ from
the name, and tokens from the tagged text are ⟨request , port8080⟩. The token port8080 from the tokens
of the name appears to come from the token port8080 from the tokens of the tagged text, and they are
identical to each other, so shouldIncludePort8080 is included in the Identical category.
• Transformed: The tests in the Transformed sub-category have this feature: each token from the test
name that appears to come from the tagged text is transformed to the token from the tagged text, and it
often indicates that both tokens from the name and tagged text have the same meaning but in diferent
forms (i.e., abbreviation, plural and singular form, etc.). For example, for shouldReturnUrlParam from
Scribejava, the tokens from the name are ⟨should, return, url , param⟩, and the tokens from the tagged
text are ⟨дet , parameter , null , access, secret⟩. The token łparamž from the name appears to come from
the token łparameterž from the tagged text, and it is a transformation of the token łparameterž from the
tagged text by using the abbreviation of the word.

The results of this additional classiication are also shown in Table 2. The Identical and Transformed sub-
columns show the number of tests with their names in the identical and transformed categories, respectively. For
example, the data from the third row shows the project Mockito has 4 tests that are fully named after the tokens
from the tagged text. Of these 4 test names, 3 are under the Identical category, which indicates each of them has
a shared subset of tokens between the tokens from its name and the tagged text. Each token in the shared subset
is identical when comparing between the name and the tagged text (i.e., a physical intersection exists between
the two sets of tokens from the name and the tagged text). The remaining test name is under the Transformed
category. However, unlike for the other three, each token in the shared subset is transformed from its appearance
in the tokens of the name to its corresponding appearance in the tokens of the tagged text (i.e., a conceptual
intersection exists between the two sets of tokens from the name and the tagged text).

The third row also shows that Mockito has 27 tests that are partially named after the tokens from the tagged
text. Of these 27 test names, 24 of them have the identical tokens between the name and the tagged text, and 3 of
them has the same tokens between the name and the tagged text but the tokens of the name are transformed from
the tokens of the tagged text. At the end, there are 9 tests in Mockito that are not named after the tokens from the
tagged text at all. The data for each project slightly varies from each other, but the distribution of the identical

ACM Trans. Softw. Eng. Methodol.

Accepted Manuscript
Version of record at: https://doi.org/10.1145/3533313

Automated Identification of Uniqueness in JUnit Tests • 13

<Test, Attributes> Step 2: Check for UniquenessStep 1: Extract Attributes
Do the attributes

make the test
unique? Yes

No
Unit Test

Siblings

<Test, Attributes>

Fig. 5: Overview of the automated approach.

and transformed tokens are largely consistent. For example in Table 2, the number of identical tokens for each
project is usually greater than the number of transformed tokens, and the majority of tokens from the name
are identical to those from the tagged text (i.e., 22 out of 25 for full, and 261 out of 309 for partial). Therefore,
RQ2 is answered with łyesž and łbothž since both the identical and the transformed tokens were found in the
comparison between the tokens from the name and the tagged text.
Judging from the results of both RQ1 and RQ2, the majority of the test names are indeed named after the

tokens from the tagged text, and the tokens between the name and tagged text are mostly identical to each other,
so we decided to proceed to build the automated tool.

3 AN AUTOMATED APPROACH FOR IDENTIFYING THE UNIQUE ATTRIBUTES OF TESTS

Figure 5 presents a high-level overview of our approach for automatically identifying the unique attributes of
tests. As the igure shows, the approach takes a unit test and its siblings as input and identiies a set of unique
attributes for the given test in two main steps. Step 1 is to extract attributes from the test and its siblings. The
attributes are extracted using information matchers that correspond to the various selective codes identiied as
part of the empirical study in Section 2. Step 2 is to determine whether the extracted attributes are the portions
of the test that make it unique from its siblings. If the attributes do make it unique, the approach proceeds to
output the current attributes for the test. However, if the attributes are not unique, the approach returns to Step 1
and extracts a diferent set of attributes. The order in which Step 1 extracts attributes is based on the results of
the empirical study; attributes that correspond to selective codes that are more likely to be what makes a test
unique are tried before attributes that correspond to codes that are less likely to be unique. The loop between
Step 1 and Step 2 proceeds until either a set of unique attributes are found or, if none of the attributes uniquely
identiies the test, the approach terminates with an empty set of attributes. Additional details about each of the
approach’s steps are provided in the following subsections.

3.1 Step 1: Extract Atributes

The goal of Step 1 is to extract attributes from each test that correspond to the information identiied as part of
the empirical study. Essentially, this step is attempting to automate the manual process of identifying relevant
portions of tests that was used in the study. To do this, we built a set of information matchers, one for each
selective code. These matchers extract attributes from the tests and produce a set of ⟨test , attributes⟩ pairs, one
for each test given as input. Each ⟨test , attributes⟩ pair contains the test and its corresponding attributes, and
each test is identiied by its name in the following examples. This set of pairs are then used by the rest of the
approach to generate a set of unique attributes.
Because the selective codes identify information at two levels (i.e., primary and secondary codes), there are

two corresponding types of information matchers. Matchers for primary codes are primarily concerned with
segmenting tests into their various parts (i.e., action, predicate, scenario). The division of the test into blocks

ACM Trans. Softw. Eng. Methodol.

Accepted Manuscript
Version of record at: https://doi.org/10.1145/3533313

14 • Jianwei Wu and James Clause

(a) Primary Codes. (b) Secondary Codes.

Fig. 6: Example outputs of information matchers.

Fig. 7: Example of state-change methods.

is implemented primarily via elimination. First, the predicate matcher identiies calls to JUnit assertions and
other predeined result-checking/veriication methods. For example, in Fig. 2b, the call to verify is included as a
predeined result-checking/veriication method provided by the Mockito library. Such calls become the predicate
block. Note that calls to methods embedded inside assertions (e.g., to calculate the actual parameter) or nested
after assertions (e.g., to change state of the unit test) are not included as part of the predicate block. These calls
are left for consideration by the matchers for the action and scenario.
Second, the action matcher identiies the remaining calls to CUT and non-CUT methods jointly with their

corresponding arguments. Such calls become the action block. Note that those nested calls to non-CUT methods
that reside after assertions are not included as part of the action block. These calls are left for consideration by
the matchers for the scenario.
Finally, the scenario matcher identiies the OUT variable initializations, non-OUT variable initializations,

control-low variables, and calls to state-changing methods. The combination of these code elements becomes
the scenario block. The scenario matcher irst includes the calls to the state-changing methods of the test as
part of the scenario block, which were previously excluded by the action matcher [53, 56]. For example in Fig. 7,
for testDescendingIterator from Redisson, the call to the state-changing method is the irst nested call after
the assertion call: toIterable. Then it also selects all of the OUT variable initializations, non-OUT variable

ACM Trans. Softw. Eng. Methodol.

Accepted Manuscript
Version of record at: https://doi.org/10.1145/3533313

Automated Identification of Uniqueness in JUnit Tests • 15

initializations (i.e., diferentiate from OUT by checking if it is used in the CUT method calls or assertions), and
control-low variables from the declaration and control-low statements in the test.
As an example of how the high-level matchers work, consider the example shown in Fig. 6 which consists

of three tests from Barbecue’s BarcodeTest class. In the example, testSettingFontChangesDrawnFont is the
target test and the other two are the siblings. The target test’s predicate, action, and scenario are identiied as
follows: The matcher for the Predicate code marks all of the JUnit assertions in the test body as the predicate
block (i.e., one statement circled in blue, tagged with Predicate). Next, the matcher for the Action code marks
all of the CUT method calls in the test body as the action block (i.e., one full and one partial statements circled in
blue, tagged with Action). Finally, the matcher for the Scenario code marks all of the OUT variable initializations
in the test body as the scenario block (i.e., two statements circled in blue, tagged with Scenario).
Matchers for secondary codes are primarily concerned with identifying speciic features within the blocks

identiied by the primary information matchers. To accomplish this, these secondary matchers select the corre-
sponding code elements from the action, predicate, or scenario block. Because the secondary codes align with Java
code elements (e.g., method call, object initialization, etc.), extracting them can be done with a straight-forward
application of static analysis. Each matcher for the secondary codes is designed to search for and collect every
code element that matches its speciication. For example, the matcher for the CUTMethodCall code would extract
all calls to methods declared by the class under test that are part of primary block under consideration.
As an example of how the information matchers for the secondary codes work, consider again the example

shown in Fig. 6. Assume that the approach is extracting attributes for the ⟨Action, CUTMethodCall⟩ code. In this
case, the matcher for the CUTMethodCall code searches in each test’s action block and the set of ⟨test , attributes⟩
pairs that would be passed to Step 2 are:

• ⟨testBoundsAreNotZero, ⟨getWidth, getHeight⟩⟩
• ⟨testAllSizesAreActualSize, ⟨getSize, getPreferredSize, getMinimumSize, getMaximumSize⟩⟩
• ⟨testSettingFontChangesDrawnFont, ⟨getFont, setFont⟩⟩

Similarly, if the approach was extracting attributes for the ⟨Scenario, OUTVariableInit⟩ code, the matcher for
the OUTVariableInit code searches in the test’s scenario block and and the set of ⟨test , attributes⟩ pairs that
would be passed to Step 2 are:

• ⟨testBoundsAreNotZero, ⟨new BarcodeMock("12345"), barcode.getBounds()⟩⟩
• ⟨testAllSizesAreActualSize, ⟨new BarcodeMock("12345")⟩⟩

• ⟨testSettingFontChangesDrawnFont, ⟨new BarcodeMock("12345"), Font.getFont("Arial")⟩⟩

3.2 Step 2: Check for Uniqueness

The goal of Step 2 is to identify whether the current set of attributes extracted by Step 1 make the target test unique
among its siblings. This is accomplished using formal concept analysis (FCA) on the set of ⟨test , attributes⟩
pairs from Step 1 to build a concept lattice. The lattice is then analyzed to determine which, if any, of the target
test’s attributes, make it unique.

FCA is a data mining technique that is designed to facilitate the investigation of (implicit) relationships between
a set of objects and a set of attributes. It has been successfully used in a variety of software engineering contexts
(e.g., [49, 51]). In our approach, objects are the tests and attributes are the attributes extracted by Step 1.

As examples of a concept lattice, consider Fig. 8. As the igure shows, a concept lattice is a lattice that groups
objects which share common attributes (i.e., a formal concept) and orders such groupings as a hierarchy (i.e.,
using subconcept/superconcept relations) of formal concepts [50]. A formal concept is a pair consisting of a
subset of objects and a subset of attributes that is closed by Galois connection [43]. For example, if the formal
concept is a pair like ⟨objs, attrs⟨, objs should consist of all objects that share the attributes in attrs, and
attrs should consist of all attributes that are shared by the objects in objs. The topmost node in a lattice is the

ACM Trans. Softw. Eng. Methodol.

Accepted Manuscript
Version of record at: https://doi.org/10.1145/3533313

16 • Jianwei Wu and James Clause

(a) Concept latice for atributes extracted using the Action-CUTMethodCall matcher.

(b) Concept latice for atributes extracted using the Predicate-ActualParameter matcher.

Fig. 8: Example concept lattices derived using FCA.

concept that contains all attributes, and the bottommost node is the concept that contains all objects [10]. In
Fig. 8, each lattice was built for our running example from Fig. 6 using diferent sets of attributes.

In order to simplify the presentation, the lattices are shown in a reduced form, which means that each object
and attribute only appears once, in the highest or lowest concept, rather than being duplicated in all super/
sub-concepts. For example, in Fig. 8a the concept with no objects and attributes getwidth and getheight, is
a super-concept of the two lower concepts which it connects to and a super-concept of the upper objects it
connects to. This means that, beyond the attributes that are shown, this concept includes additional objects
testBoundsAreNotZero and testWidthAndHeightAreNotZero.

ACM Trans. Softw. Eng. Methodol.

Accepted Manuscript
Version of record at: https://doi.org/10.1145/3533313

Automated Identification of Uniqueness in JUnit Tests • 17

Fig. 9: Example output showing the unique attributes for two tests.

To check the uniqueness of a set of attributes, we implemented an algorithm to traverse the concept lattice. As
input, the algorithm takes a concept lattice and a given test. The algorithm then performs a depth-irst search of
the concept lattice to attempt to locate a concept whose objects contains only the given test. If such a concept
can not be be located, the approach returns to Step 1. Otherwise, if such concept can be located, the approach
then extracts the subset of attributes that make the test unique.
The subset of attributes that make the test unique is extracted by looking at the reduced attributes of the

identiied concept. If the set of reduced attributes is not empty, it uniquely identiies the given test. For exam-
ple, in Fig. 8a testSettingFontChangesDrawnFont is uniquely identiied by the attributes: getfont, setfont.
Otherwise, if the set of reduced attributes is empty, the algorithm returns to Step 1. For example, Fig. 8a shows
that testBoundsAreNotZero can not be uniquely identiied based on the CUTMethodCall code and another
code needs to be considered. The algorithm moves on to the next code until it inds a set of reduced attributes
that can uniquely identify the test. For example, while testBoundsAreNotZero can not be uniquely identiied in
Fig. 8a, Fig. 8b shows that it can be uniquely identiied based on the ActualParameter code by the corresponding
set of reduced attributes (bounds.getwidth()>0, bounds.getheight()>0). Finally, if all codes are tried with-
out producing a valid set of reduced attributes, the algorithm outputs an empty set of attributes. For example,
testPaintingDoesNotAffectBounds has an empty set of reduced attributes in all subigures in Fig. 8.

As the last step, the attributes are processed to improve their legibility. First, white space and special symbols
(e.g., ł%ž and ł#ž) are removed. Second, if a predicate code was used to generate the attributes, some further
manipulation is performed. Instances of ł<ž, ł>ž, ł=ž, or numbers are replaced with corresponding English words
like łGreaterThanž or łZerož using a predeined lookup table. If the attribute starts with łsetž or łgetž, it is preixed
by łWhenž. If the attribute starts with łassertž, it is preixed by łIfž. Otherwise, it is preixed by łCheckž. Third, if
the attribute contains Java method calls, the stop words such as łsetž or łgetž are removed from them. Finally, the
set of processed attributes is paired with the original test as the output of the approach.

As examples of unique attributes identiied by the approach, consider Fig. 9. For the irst test, the unique attribute
(offerFirst) is identiied for this test, which is fully consistent with the original name testOfferFirst. For
the second test, the unique attributes (CheckBoundsHeight’reaterThanZero,CheckBoundsWidth’reaterThan-
Zero) are identiied for this test, which are partially consistent with the original name testBoundsAreNotZero.

ACM Trans. Softw. Eng. Methodol.

Accepted Manuscript
Version of record at: https://doi.org/10.1145/3533313

18 • Jianwei Wu and James Clause

Table 3: Additional considered applications.

Project Version LoC # Tests

Sentinel 10c92e6 79,385 488
Jedis d7aba13 36,582 684
Jfreechart 4e0a53e 133,540 2,176
Redisson 6feb33c 150,703 2,036
Spark 7551a7d 11,956 310
Webmagic 96ebe60 15,774 98

4 EMPIRICAL EVALUATION

The overall goal of empirical evaluation is to determine if our approach can match human judgment and to
estimate the amount of efort needed to transform the extracted attributes into descriptive test names. More
speciically, we considered three research questions:

(1) RQ1ÐFeasibility. Can the approach automate our guidelines for extracting unique attributes?
(2) RQ2ÐConsistency. Do the attributes identiied by the approach agree with human judgement?
(3) RQ3ÐEfort. Howmuch efort may be needed to transform the extracted attributes into descriptive names?

In the context of future work, these are the most important evaluation metrics. If the approach can not accurately
identify what makes a test unique or if it does not agree with human judgement, it can not be used for generating
descriptive names. Or if our extracted attributes requires too much efort to be transformed into descriptive test
names, it might not be suitable to be the foundation of future name generation approaches.

In order to conduct the evaluation, we implemented the approach as an IntelliJ IDEA Plugin [29]. IntelliJ IDEA
is a full-featured IDE that can import projects from many diferent build systems (e.g., Maven and Gradle). This
gives us more lexibility in choosing applications when building our set of experimental subjects. To use the
plugin, developers can click on a menu item that analyzes all tests in the current project and it could easily be
extended to support other interaction mechanisms (e.g., to run only for a speciic test class).

The plugin was used to gather the necessary data for performing the evaluation. When running on a MacBook
Pro (2.4GHz Intel i5 processor and 8GB RAM) with MacOS Mojave, Kotlin version 1.3.10, and Java version 13.0.2,
the plugin analyzed all 31,251 tests from the 17 projects considered in the evaluation of RQ1 in about 78 minutes
(i.e., an average of 0.15 seconds per test). We believe that this level of performance is reasonable and is fast enough
to support using the tool as part of future name generation approaches.
The remainder of this section describes methodology and results for each research question in more detail.

4.1 RQ1: Feasibility

The goal of RQ1 is to evaluate whether the approach can automate our guidelines for extracting unique attributes.
This serves as a feasibility check for the implementation.

4.1.1 Experimental Subjects. As the subjects for RQ1, we started with the 440 labeled tests that we used in the
empirical study. Because of the signiicant amount of human work in manually identifying what makes a test
unique, it makes sense to reuse them. However, because of the threat that the approach may be over-it to these
subjects, we decided to augment them. To do this we irst chose 6 additional projects from GitHub. The additional
projects, shown in Table 3, were selected using the same rational that was used for selecting the 11 applications
from the study. Then, we again sampled the set of tests in order to manage the amount of manual efort. In this
case, we selected 480 tests, 80 from each application. Finally, using the same procedure as for the empirical study,

ACM Trans. Softw. Eng. Methodol.

Accepted Manuscript
Version of record at: https://doi.org/10.1145/3533313

Automated Identification of Uniqueness in JUnit Tests • 19

Table 4: Data showing the consistency between author-provided annotations and the output of the approach.

Levels of consistency (%)

Project Equivalent Approach+ Approach− Mismatch

Barbecue 25.0 10.0 50.0 15.0
Moshi 35.0 37.5 12.5 15.0
Mockito 30.0 35.0 25.0 10.0
Guava 32.5 37.5 22.5 7.5
Guice 10.0 45.0 32.5 12.5
ExoPlayer 45.0 32.5 12.5 10.0
Scribejava 32.5 27.5 37.5 2.5
Socket.io-client 35.0 40.0 15.0 10.0
Fastjson 35.0 32.5 30.0 2.5
Picasso 47.5 12.5 25.0 15.0
Javapoet 12.5 40.0 30.0 17.5

Sentinel 25.0 58.8 12.5 3.7
Jedis 37.5 30.0 32.5 0.0
Jfreechart 42.5 36.3 21.2 0.0
Redisson 40.0 22.5 33.7 3.8
Spark 31.2 41.3 27.5 0.0
Webmagic 7.5 33.8 55.0 3.7

Overall 30.8 34.6 28.5 6.1

each of the 480 tests was manually analyzed to identify what makes it unique among its siblings. As a result, we
have 920 tests, labeled with what makes them unique, that serve as the subjects for this part of the evaluation. A
copy of this data set is publicly available, and a Readme ile is also provided [30].

4.1.2 Discussion. To answer the question about whether the approach can automate our guidelines for extracting
unique attributes or not, it is necessary to establish a procedure for comparing the manually identiied attributes
with the automatically identiied attributes. To do this, we employed a manual review and comparison process
that is similar to one used in the empirical study (see: Section 2). Together, the authors compared the manually
identiied attributes with the automatically identiied attributes of each test and classiied the tests into one of
the categories below. In total, performing the 920 comparisons took around 20 hours.

(1) Equivalent: A test is included in the Equivalent category when (1) the two sets of attributes contain the
same number of elements, and (2) each element in one set expresses the same information as an element in
the other set. For example, testOfferFirst from Redisson is included in the Equivalent category because
its set of automatically identiied attributes (OfferFirst) is the same as the manually identiied attributes
(OfferFirst). Similarly, testSerialization from Guava is also included in the Equivalent category
because its set of automatically identiied attributes (reserialize) and its set of manually identiied
attributes (reserialized) represent the same information (i.e., łreserializež and łreserializedž difer only
in their tenses).

(2) Approach Plus (+): A test is included in the Approach Plus category when (1) the set of automatically
identiied attributes contains more elements than the set of manually identiied attributes, and (2) each
element in the set of manually identiied attributes expresses the same information as an element in the

ACM Trans. Softw. Eng. Methodol.

Accepted Manuscript
Version of record at: https://doi.org/10.1145/3533313

20 • Jianwei Wu and James Clause

set of automatically identiied attributes. For example, clientIdReconnect from Jedis is included in the
Approach Plus category because its set of automatically identiied attributes (disconnect, connect) is
larger than its set of manually identiied attributes (disconnect) and the element in the manually identiied
set (disconnect) is also present in the automatically generated set.

(3) Approach Minus (−): A test is included in the Approach Minus category when (1) the set of automatically
identiied attributes contains fewer elements than the set of manually identiied attributes, and (2) each
element in the set of automatically identiied attributes expresses the same information as an element in the
set of manually identiied attributes. For example, testExitLastEntryWithDefaultContext from Sentinel
is included in the Approach Minus category because its set of automatically identiied attributes (getFake-
DefaultContext, runOnContext) contains fewer elements than its set of manually identiied attributes
(getFakeDefaultContext, runOnContext, defaultContext.getCurEntry) and each element in the
set of manually identiied attributes is also in the set of automatically identiied attributes.

(4) Mismatch: A test is included in the Mismatch category when it does not meet the deinitions of any of
the above categories. For example, flattenTopLevel from Moshi is included in the Mismatch category
because its set of automatically identiied attributes (hasMessage) has nothing in common with the set of
manually identiied attributes ("Nesting problem.").

A result in the irst three categories indicates cases where the approach is able to follow the guidelines that
we provided for extracting unique attributes from unit tests. For tests in the Equivalent category, our approach
identiies the same unique attributes as the guidelines describes, which could be directly applied to future
name generation approaches. For tests in the Approach Plus category, our approach identiies the same unique
attributes as the guidelines describes but includes some additional information. And for tests in the Approach
Minus category, our approach identiies some of the same unique attributes the guidelines describes. Only in the
case of the Mismatch category does the approach fail to provide useful information.

Table 4 presents the results of the classiication process. In the table, the irst column shows the name of each
project and the following four columns show the percentage of tests in the Equivalent, Approach Plus, Approach
Minus, and Mismatch categories, respectively. The irst eleven rows show the data for the 11 original projects,
the following six rows show the data for the 6 additional projects, and the inal row shows the distribution
across all projects. For example, the twelfth row shows that for the considered tests from Sentinel, the Equivalent,
Approach Plus, Approach Minus, and Mismatch rates are 25.0 %, ≈58.8 %, ≈12.5 %, and ≈3.7 %, respectively.

Overall, we believe the performance of the approach is positive judged by our authors. As the last row of the
table shows, the average Equivalent, Approach Plus, and Approach Minus rates are ≈30.8 %, ≈34.6 %, and ≈28.5 %,
respectively, while the average Mismatch rate is only ≈6.1 %. This means that in ≈93.9 % of cases, the approach
can automate our guidelines for extracting unique attributes.
While the overall performance is strong, the data shows that our approach performed noticeably better on

some projects than others. For example, the approach has a 0.0 % Mismatch rate on Jedis and Jfreechart, while it
has a ≥15.0 % Mismatch rate on Picasso and Javapoet. To understand the causes of the variation and to potentially
identify avenues for improving the approach, we further investigated the cases in the Approach Plus, Approach
Minus, and Mismatch categories.
First, for the subjects from the Mismatch category, we found that there are many cases (i.e., ≥60.0 %) where

the human-identiied attributes were extracted using a lower-ranked code than the code used by the approach.
For example, for shouldHandleSchemeInsensitiveCase from Picasso, the approach used a higher-ranked code
Action-OtherMethodCall, but the human judgment corresponds to a lower-ranked code Predicate-Actual-
Parameter. In these cases, if the approach were to use the lower-ranked code, it would identify the same attributes
as the human rater. This suggests that, while our current ordering of the codes is efective for many projects, it is

ACM Trans. Softw. Eng. Methodol.

Accepted Manuscript
Version of record at: https://doi.org/10.1145/3533313

Automated Identification of Uniqueness in JUnit Tests • 21

Fig. 10: Example of a participant-labeled test.

not universally suitable. In future work, we could investigate ways of customizing the order of code for individual
projects.
Second, for the subjects from the Approach Minus category, we found that the attributes that were missing

from the set of automatically identiied attributes could always be found by using an additional code or codes. For
example, for nullBitmapOptionsIfNoResizingOrPurgeable from Picasso, the manually identiied attributes
are (noResize, isNull()) and the automatically identiied attributes are (noResize). The missing attributes
(isNull()) could be identiied by using the code Predicate-ExpectedParameter which is lower-ranked than
the code Action-OtherMethodCallArgument which was used to extract the automatically identiied attributes.
This suggests that extending the approach to consider multiple codes may result in identifying attributes that
more diference indicates it might be useful to extend the approach to be capable of applying multiple codes
when extracting unique attributes.

Last, for the subjects from the Approach Plus category, we found that the additional attributes identiied by the
approach are unnecessary to uniquely identify a given test among its siblings. For example, for testSlowRequest-
Mode from Sentinel, the manually identiied attributes are (current, nextInt), and the automatically identiied
attributes are (setSlowRatioThreshold, entryAndSleepFor, nextInt, current). While the automatically
identiied attributes do uniquely identify the test, the attributes (setSlowRatioThreshold, entryAndSleep-

For) are unnecessary; (current, nextInt) are suicient. These additional attributes are included because the
approach extracts all attributes in a given category. In this case, the code used by the approach is Action-Other-
MethodCall and the attributes are all of the non-CUTmethod calls in the test. In future work, we could potentially
address this issue by modifying the approach to check whether subsets of attributes are suicient to uniquely
identify test (i.e., if all attributes uniquely identify a test, determine the smallest subset that is suicient).

4.2 RQ2: Consistency

The goal of RQ2 is to evaluate whether the unique attributes identiied by the approach agree with human
judgment. If the attributes identiied by the approach are signiicantly diferent from what humans believe are
the unique aspects of a test it is unlikely that the approach will be useful for generating descriptive names.

4.2.1 Experimental Subjects. In order to address a potential source of bias associated with using data labeled by
the authors, we recruited three participants to create an additional data set. The participants are PhD students at
the University of Delaware who are unailiated with this work. In addition, they each have at least three years of
experience with Java and JUnit.

The new data set consists of 45 tests, 5 randomly selected from 9 projects, the 6 additional projects selected as
part of RQ1 and Picasso, Fastjson, and Moshi. Each participant was asked to consider each test and its siblings and
then to annotate the parts of the test that they believe make it unique. Note that participants were not informed
about the research nor the guidelines developed as part of the empirical study before performing the task. An
example of the full instructions given to each participant are publicly available [30]. In total, a labeling session
took each participant around 4 hours to complete. An example of the results of the labeling process is shown in
Fig. 10. In the igure, the part of testFindRangeBounds that the participant believes makes it unique, the method

ACM Trans. Softw. Eng. Methodol.

Accepted Manuscript
Version of record at: https://doi.org/10.1145/3533313

22 • Jianwei Wu and James Clause

Table 5: Precision and recall for diferent projects.

Percentage (%)

Project Precision Recall F1

Picasso 100.0 100.0 100.0
Fastjson 100.0 100.0 100.0
Moshi 100.0 100.0 100.0
Redisson 100.0 100.0 100.0
Spark 100.0 100.0 100.0
Webmagic 88.9 100.0 94.1
Jedis 100.0 100.0 100.0
Sentinel 50.0 100.0 66.7
Jfreechart 100.0 100.0 100.0

call findRangeBounds inside the last assertion, is shown with a green highlight. A copy of all collected data is
publicly available, and a Readme ile is also provided [30].

4.2.2 Discussion. Inter-rater reliability measures are a standard way of assessing levels of agreement. In our
situation, Fleiss’ Kappa makes sense as it supports multiple raters (i.e., our participants). However, Fleiss’ Kappa
is designed to operate on categorical data so it is necessary to transform both the attributes identiied by the
approach and the annotations provided by the participants to a uniied form.
To transform our data, we created a set of boolean questions, one for each line in each test case, where each

question asks whether the approach or the participants consider the line to contain a unique aspect of the test. A
participant’s answer to a question is true if they highlighted part of the corresponding line and false otherwise.
Similarly, the approach’s answer to a question is true if an attribute it identiies is taken from the corresponding
line and false otherwise. We chose to work at the line-level because we found that alternatives such as considering
tokens or characters were too low-level and were unnecessarily sensitive to inconsequential diferences (e.g., was
a terminating semicolon highlighted or not?).
After transforming the data, we irst investigated the level of agreement among the raters and calculated a

kappa score of 0.27. Under the standard interpretation metric, this is within the łfairž range of 0.21 to 0.40. This
suggests that the participants often have diferent opinions about what makes a test unique among its siblings
and that there is not a single łcorrectž answer to which we can compare our approach. Because there is not a
single correct answer, we decided to further investigate this question in two ways (1) looking at the agreement
between the approach and each participant individually, and (2) calculating precision and recall when comparing
the approach against any participant.

When investigating the level of agreement between the approach and each participant, we found kappa scores
of 0.68, when comparing against Participant 1, 0.28, when comparing against Participant 2, and 0.23, when
comparing against Participant 3. Overall, we believe that these results are positive. The level of agreement
between the approach and Participant 1 is łsubstantialž and the levels of agreement between the approach and
Participants 2 and 3 are łfairž and similar to the level of agreement among all participants. This suggests that the
attributes identiied by the approach can pass for human judgement.

To compare to any participant, we calculated precision and recall where true positive (TP), false positive (FP),
true negative (TP), and false negative (FN) are deined as follows. A true positive occurs when the approach’s
answer to a question is true and at least one of the participants’ answers is true. A false positive occurs when
the approach’s answer to a question is true and all of the participants’ answers are false. A true negative occurs

ACM Trans. Softw. Eng. Methodol.

Accepted Manuscript
Version of record at: https://doi.org/10.1145/3533313

Automated Identification of Uniqueness in JUnit Tests • 23

when the approach’s answer to a question is false and at least one of the participant’s answers is false. A false
negative occurs when the approach’s answer to a question is false and all of the participants’ answers are true.

Under these deinitions, the average precision and recall for the 5 selected tests from each project are shown in
Table 5. In the table, the irst column, Project, shows the name of each project, and the second and third columns,
Precision and Recall, show the average precision and recall, respectively, for each the corresponding project. For
example, the sixth row shows that the average precision and recall for the questions from the tests for Webmagic
are ≈88.9 % and 100.0 %, and the average F1-score for the questions from the tests is ≈94.1 %.
As the table shows, the average precision and recall across most projects is high. This indicates that the

attributes identiied by the approach nearly always match with the judgement of at least one participant. One
exception to this trend is the lower precision for Sentinel. In this case, we found the speciic application domain
of Sentinel likely causes the diference. As we igured out that Sentinel is not an ordinary Java project like
others in our evaluated project but a Java-based throttling-control framework [3]. Because of its domain and our
conservative approach, their testing is more likely to be designed for verifying software performance and low of
network traic, not normal unit tests. For example in AbstractSofaRpcFilterTest of Sentinel, because this
class is intended to test a service provider ilter that requires many setups and subtle comparisons, every test (e.g.,
test service performance) in this class is hard to perform any static analysis on. Therefore, our raters are more
likely to identify those subtle diferences (e.g., order of service parameters, number of speciic assertion calls,
etc) as experienced developers and choose diferent elements than our approach for what makes the test unique.
Surprisingly, in Table 4 from RQ1, comparing to other projects, we can also see a signiicant increase of tests
categorized as Approach Plus (i.e., our approach picked up more attributes than humans) for Sentinel at the
twelfth row. This observation also supported our assumption about why Sentinel had a lower precision than
others. Despite this outliner, these results further emphasize our belief that the approach is capable of extracting
information about what makes a test unique that agrees with human judgment.

Additionally, we also looked into what kind of statements developers often agree on as being what makes the
test unique. For example, some developers might prefer to select the uniqueness of test from assertions, and
others might not. Overall, from our three participants, the count of assertions that get selected as the uniqueness
of test is about equal to the count of non-assertion statements. We plan to further investigate on this topic with
more subjects as future work.

4.3 RQ3-Efort

The goal of RQ3 is to investigate how much efort may be needed to transform the extracted attributes into
descriptive test names. To help place the results for our approach in context, we also considered two alternative
approaches. The irst alternative is Code2vec [7]. We chose Code2vec because it is a state-of-the-art machine
translation approach for generating method names that signiicantly outperforms alternative approaches (i.e., [5,
6, 28]). The second alternative is the original, developer provided name for the test.
Because our approach produces sets of attributes, it was necessary to convert the original name and the

name generated by Code2vec into a comparable form. For the original names, we accomplished this by using an
identiier splitter to break the name into tokens. These tokens served as the attributes for the original name. For
Code2vec, we were able to slightly modify the implementation to output the predicted set of words before they
were joined to form a name. These words served as the attributes for Code2vec.

To compare the results of the approaches, we asked human participants to answer a series of questions about
the attributes identiied by each approach. The participants we used for this part of the evaluation are the same
three students that we used for RQ2. To avoid potential biases related to the participants having already seen the
tests, we created a new data set for RQ3. Like we did for RQ2, we randomly selected 5 tests from 9 projects for a
total of 45 tests. But in this case, we made sure not to select a test that was used in the investigation of RQ2. We

ACM Trans. Softw. Eng. Methodol.

Accepted Manuscript
Version of record at: https://doi.org/10.1145/3533313

24 • Jianwei Wu and James Clause

Fig. 11: Example of a participant response for constructing descriptive name.

then used each approach to generate a set of attributes for each test. Each of the 135 sets of attributes was then
used to generate a series of questions. Figure 11 shows an example of the questions for each attribute. First, we
showed each participant the test body and the set of attributes. Then we asked, if they were to create a name for
the test based on the attributes: (1) if any words or phrases should be added, (2) if any words of phrases should be
removed, and (3) what name they would chose.

Each participant answered each set of questions and took approximately 8 hours in total to answer all questions.
In the example shown in Fig. 11, participant believes that the phrase łImageViewActionž should be added, nothing
should be removed, and that an appropriate name for the test is łImageViewActionCancelIsNullTestž.
As a post-processing step, we slightly edited the responses to remove edits strictly related to formatting. For

example, additions of the word łtestž where the intent was to use it to preix the test name were removed. This
process was done in consultation with the participants to ensure that their original intentions were retained.

4.3.1 Discussion. To quantify the amount of manual efort that may be needed to convert a set of attributes
generated by an approach into a descriptive name, we irst looked at the number of modiications that the
participants believe are necessary.
Figure 12 presents a series of scatter plots that show the total number of modiications (i.e, additions plus

removals) that each participant would make to attributes identiied by each approach for each test. The plot is
faceted horizontally by project (i.e., each column shows the results for a project) and vertically by participant
(i.e., each row shows the results for a participant). Within each plot, each tick on the x-axis represents a test
from the corresponding project, the y-axis shows the number of modiications, and the color of a point indicates
which approach was used to generate the attributes. Note that a small amount of horizontal jitter was applied
to each point to make situations where multiple approaches require the same number of modiication more
obvious. For example, the upper-left most plot shows that Participant 1 believes that, for the irst test selected

ACM Trans. Softw. Eng. Methodol.

Accepted Manuscript
Version of record at: https://doi.org/10.1145/3533313

Automated Identification of Uniqueness in JUnit Tests • 25

Fastjson Jedis JFreeChart Moshi Picasso Redisson Sentinel Spark Webmagic

P
a
rtic

ip
a
n
t 1

P
a
rtic

ip
a
n
t 2

P
a
rtic

ip
a
n
t 3

0

2

4

6

8

0

2

4

6

8

0

2

4

6

8

Test

#
 M

o
d
if
ic

a
ti
o
n
s

Approach code2vec original ours

Fig. 12: Data showing the count of modiications for each approach and for each project.

from Fastjson (left-most tick on the x-axis), the attributes identiied by both Code2vec and the original name
require 2 modiications and the attributes identiied by our approach require 0 modiications.
From this data, we looked at each combination of test (45) and participant (3) and calculated: (1) how often

each approach requires 0 modiications: ≈4 % (6 out of 135) for Code2vec, ≈24 % (32 out of 135) for the original
name, and ≈46 % (62 out of 135) for our approach,, (2) how often each approach requires the fewest modiications:
≈25 % (34 out of 135) for Code2vec, ≈44 % (60 out of 135) for the original name, and ≈67 % (90 out of 135) for our
approach, and (3) how often each approach requires the most modiications: ≈47 % (64 out of 135) for Code2vec,
≈51 % (69 out of 135) for the original name, and ≈31 % (42 out of 135) for our approach.
We also investigated, again for each combination of test and participant, how much worse each approach

performs compared to the best approach. To do this, we irst identiied the fewest number of modiications
required across the approaches. For example, if, for Test 1, Participant 1 indicates 6 modiications for Code2vec, 4
modiications for the original name, and 1 modiication for our approach, the fewest number of modiications is
0. We then subtracted this number from the number of modiications required by each approach to compute the
increase in the number of modiications required by each approach over the best. Using the example from above,
the increase is 5 for Code2vec (6 − 1, 3 for the original name (5 − 1, and 0 for our approach (1 − 1.

Table 6 shows the mean of the increase in the number of modiications across each project and across the entire
data set. In the table, the irst column, Project, shows the name of each project, and the next three columns,Code2vec,
Original, and Ours, show, for the corresponding approach, the mean increase in the number of modiications over
the best approach. The inal row in the table shows the mean of the increase for each approach over the entire
data set. For example, the inal row shows that the attributes identiied by Code2vec, the original name, and our
approach required, on average, 1.9, 1.78, and 0.98 more modiications than the approach that required the fewest
modiications.
Across all four these metrics, our approach performs better than both Code2vec and the original name. It

requires the most modiications the least often, the fewest modiications the most often, and, more importantly, 0
modiications the most often. In addition, its mean increase in the number of modiications is lower than both

ACM Trans. Softw. Eng. Methodol.

Accepted Manuscript
Version of record at: https://doi.org/10.1145/3533313

26 • Jianwei Wu and James Clause

Table 6: Mean increase in the number of modiications over the fewest number of modiications.

Project Code2vec Original Ours

Fastjson 1.00 0.47 0.73
Jedis 2.40 1.07 0.87
JFreeChart 1.73 1.40 0.13
Moshi 1.27 1.47 1.27
Picasso 1.13 2.80 0.67
Redisson 2.27 1.20 0.87
Sentinel 1.93 2.07 1.20
Spark 3.00 4.20 2.07
Webmagic 2.33 1.33 1.00

Overall 1.90 1.78 0.98

Table 7: Mean ration of additions to removals.

Project Code2vec Original Ours

Fastjson 0.58 0.59 0.52
Jedis 0.49 0.44 0.50
JFreeChart 0.61 0.63 0.83
Moshi 0.50 0.31 0.52
Picasso 0.74 0.20 0.71
Redisson 0.42 0.40 0.66
Sentinel 0.54 0.32 0.37
Spark 0.62 0.31 0.32
Webmagic 0.55 0.60 0.37

Overall 0.56 0.42 0.53

Code2vec and the original name overall and for 7 out of 9 projects. The only exceptions are for Fastjson where
the original name has a lower mean increase (0.47 compared to 0.73) and for Moshi where Code2vec has the same
mean increase (1.27). This means that, among the considered approaches, the our approach is the most likely
to identify the attributes that require the least modiication and are therefore the most useful for generating
descriptive names.

In addition to looking at the data in terms of modiications, we also considered the ratio between the number
of additions and the number of removals. This is a potentially interesting metric as the types of modiications
may not have the same cost. For example, additions may be more expensive than removals as additions require
additional comprehension work to create something new whereas removals do not. To calculate the ratio of
additions to removals, we irst iltered instances where a participant indicated that the attributes identiied by an
approach required 0 modiications. This left us with 305 of the original 405 data points. We then calculated the
percentage of modiications that are additions (e.g., 3 additions and 2 removals results in a 60 % addition ratio.).
Table 7 shows the results of this calculation in the same format as Table 6. For example, the irst row shows that,
for Fastjson, the mean ratio of additions to removals for Code2vec, the original name, and our approach is 0.58,
0.59, and 0.52, respectively.

ACM Trans. Softw. Eng. Methodol.

Accepted Manuscript
Version of record at: https://doi.org/10.1145/3533313

Automated Identification of Uniqueness in JUnit Tests • 27

Across the entire data set, the ratio of additions to removals is close to 50 % with Code2vec and our approach
tending to have more additions than removals and the original name tending to have more removals than
additions. Within a project though, the ratio is sometimes more lopsided. For example, for JfreeChart the ratio of
additions to removals for our approach is 0.83 while for Spark it is 0.32. We believe that these results indicate
that none of the approaches is signiicantly biased towards requiring more additions or removals. This means
that, overall, the total number of modiications is the more important factor to consider when comparing the
suitability of the approach for identifying attributes that will be used to generate descriptive names. Therefore,
our approach is more likely to be useful in future name generation approaches since it requires less efort to be
transformed into descriptive test names.

5 RELATED WORK

In this paper, we present an automated approach to extract unique attributes from JUnit tests based on the
uniqueness-based naming rationale mentioned in Section 2. This approach uses several diferent techniques,
including static analysis, program analysis, formal concept analysis, and lattice traversal, so this section is needed
to review the most closely related works that come from each ield.

5.1 Generating Descriptive Names

Daka et al. introduced a test name generation technique that can summarize a series of coverage goals under the
associated test suite [15]. They tried to generate descriptive names for a set of automatically generated JUnit
tests [18] that are produced by an automated test generation tool named EvoSuite [17]. Their proposed work
utilized a set of unique coverage goals to construct unique names for the automatically generated tests. Both their
and our works aimed for a similar goal that is to provide uniqueness-based information to construct test names.
However, some key diferences exist between their work and ours. Rather than the unit tests written by human,
Daka et al. mainly focused on constructing descriptive names for the automatically generated tests. Our technique
is primarily designed for the manually written tests that appear in nearly every existing projects. Second, instead
of using a set of extracted coverage goals that does not represent the real test intent (i.e., stated in their paper),
we consider every code element that developers could see in a test. For example, our technique considers CUT
methods, methods, assertions, parameters, and objects into the process of extracting unique attributes. All of
these code elements are directly related to the action, predicate, and scenario of each test. Therefore, they can
formally describe the real test intent for each test in a speciic test class.

Schäfer et al. proposed an extensible technique that can address the renaming problem of classes, methods, and
ields [41]. The goal of their technique is to provide descriptive names for Java code elements (i.e., classes, variables,
and etc.) by inverting lookup functions without sacriicing their deined correctness invariant. Nonetheless, there
are two limitations of their technique. First, their technique is primarily developed for the general code elements
of Java rather than speciically for the unit tests. Second, they used the lookup functions to build their technique
instead of using formal concept analysis, which is capable of processing explicit data like humans. Recent work
tried to solve the naming problem of unit tests by using machine learning-based approaches [6, 7]. Although
using machine learning-based models can accurately summarize information of the tests, their predicted test
names often do not it developer need which is to be unique among its siblings as the pilot study mentioned
in [30]. The observation from the pilot study indicates there is a need to develop an automated approach to
extract attributes that can uniquely identify a test from its siblings.
Wu and Clause provided a valuable insight about how to suggest descriptive test names using information

comparison, but their work is still limited to a subset of existing tests [53]. In order to provide descriptive names,
existing work aimed at provide better names for methods or unit tests by predeined rules, neural probabilistic
language model, and natural-language program analysis [4, 25, 41, 56]. To address the importance of identiiers

ACM Trans. Softw. Eng. Methodol.

Accepted Manuscript
Version of record at: https://doi.org/10.1145/3533313

28 • Jianwei Wu and James Clause

and other names in programming, many researchers utilized diferent approaches to show the importance
of naming the identiiers and present diferent solutions for the naming issue of identiiers [9, 12, 13, 31, 46].
Although their approaches could be modiied to generate descriptive test or method names, they focused on more
on name-generation rather than providing distinctive information for unit tests to facilitate better naming.

5.2 Investigating Developer Focus in Sotware Development

To reine the primary selective codes with the secondary codes, we looked into a series of work that investigated
developer focus in software development. In recent years, a novel study of tracking the eye movement of
developers emerged in the efort to understand the behavior of developers in the process of software development.
Rodeghero andMcMillan conducted an empirical study to discover the patterns of eye movement when developers
perform summarization tasks [40]. Begel and Vrzakova performed a pilot study of capturing the eye movements
of multiple developers in the process of code review, which was inspiring for building a automated tool for code
review [11]. Abid et al. focused on building a mental cognition model to understand how developers understand
codes [1]. Obaidellah et al. conducted a throughout survey on the usage of the eye-tracking technology in the
research of program comprehension [36]. Abid et al. presented a eye-tracking study that shows the behavior of
developers when summarizing Java methods [2]. Ioannou et al. proposed a series of reading pattern by mining
the eye-tracking data for comprehending the behavior of developers [26]. All of these techniques provided an
important insight for us to choose which of the code elements should be selected as the secondary codes and
helped us to have a profound understanding of the focus of actual developers. Nevertheless, their approaches
primarily focused on the eye-tracking of developers when reading the general Java methods and classes, not
unit tests. Their approaches did work well for their proposed eye-tracking studies, but no formal approach is
proposed to extract unique information from tests that can motivate future name generation approaches.

5.3 Formal Concept Analysis

As a well-developed technique for deriving a concept hierarchy from objects through a set of attributes, formal
concept analysis (FCA) is an excellent method to use for analyzing data like the process of human thinking [19, 54].
Moreover, a early survey has already been conducted to discover the possibility of solving software engineering
problem by using concept analysis [49]. Many researchers focused on using FCA as an eicient method to
provide solutions for various software engineering problems [14, 23, 24, 34, 38], and they used concept analysis
to mock how human (i.e., developers) thinks about writing software or trace the thinking inside existing software.
However, rather than applying FCA to unit tests, their techniques focused more on using FCA to understand the
high-level structure of software rather than improving the naming of unit tests.

5.4 Program Analysis and Automated Test Generation

Techniques in this category are related to our work because they tried to solve some related problems (i.e., about
method or test naming in general) by using program analysis. A group of researchers tried to automatically
generate comments, summarization, and perform software analysis [16, 33, 44, 58]. Another group of researchers
focused on analyzing an existing test suite and improving its efectiveness with diferent techniques [22, 42, 52, 57].
Furthermore, existing approaches also attempted to automatically generate test cases to solve the test naming
problem [8, 17, 47, 48, 55]. The research goals of these techniques are essentially diferent from our approach, but
they provide necessary references for us to build our automated, uniqueness-focused approach.

6 THREAT TO VALIDITY

While the overall results of the study and evaluation are positive, they also revealed some threats to validity
that can be addressed in our planned future work in Section 7. Three threats to validity exist for the automated

ACM Trans. Softw. Eng. Methodol.

Accepted Manuscript
Version of record at: https://doi.org/10.1145/3533313

Automated Identification of Uniqueness in JUnit Tests • 29

approach: (1) although we did our best efort to include diferent types of experimental subjects (i.e., unit tests),
our selective codes might still not be able to capture some test cases from other Java projects, (2) the automated
approach is currently not tried on other programming languages, and (3) our invited participants included
students with JUnit programming experience but did not include the original developers.
For the irst two threats, we plan to resolve them by adding more experimental subjects to a larger scale

evaluation and try our approach on other programming languages like CppUnit. For the last threat, although
inviting PhD students with a reasonable amount of development experience might not be suicient for a more
comprehensive study (i.e., inviting the original developers would be themost ideal method), it is a common practice
in software engineering research [13, 15, 44, 55, 58]. In our planned future work, we will try to communicate
with some of the original developers of the experimental subjects and invite them to a more comprehensive study
and evaluation.

7 CONCLUSION AND FUTURE WORK

In this paper, we conducted a large-scale empirical evaluation, using tests extracted from 11 projects, that
investigated the rationale behind naming unit tests. We found that a majority of tests are named, either wholly or
in part, after what makes them unique from their siblings. This inding motivated a new, automated approach for
extracting the unique attributes of JUnit tests. Such attributes can then be used as the basis for future unit test
name generation techniques.
Based on the results of the empirical study, we developed the automated approach to extract the unique

attributes of tests. Overall, our automated approach achieves this goal in two steps. For Step 1, the approach
used the matchers for the selective codes to extract attributes of the test. For Step 2, the approach used FCA to
determine if the extracted attributes can uniquely identify the test among its siblings. To evaluate our approach,
we implemented it as a working prototype, and an empirical evaluation was conducted on a set of random
subjects. The results of the evaluation shows that the attributes identiied by the approach are consistent with
human judgment and therefore are likely to useful for future name generation techniques.

For the imminent step of our planned future work, we will randomly select another set of 100 Java projects and
invite a diferent team of human raters to perform a similar comparison between our approach and other baselines.
Based on this broader range of subjects, we also plan to further investigate the diference between diferent
types of statements from our human-labelled results, which might show us if some kinds of statements are more
łstablež judged by our human raters than others. Another step is to investigate if the automated approach could
be applicable to the unit tests of other programming languages like CppUnit or PyUnit.
For the rest of our planned future work, irst, as we stated in Section 2, we are going to look into the less

common naming rationales and try to formulate a more speciic framework to cover them. Second, from the
results of the empirical study, we are going to further inspect the Partial category since it takes up a majority of
test names that are partially constructed after what makes the test unique. For this part, we hope to have a better
understanding of the origin of other types of tokens (i.e., not the tokens that makes the test unique) in those
test names, so it would be possible to upgrade our current approach to extract them as well. Last, we already
gathered a suicient amount of descriptive test names constructed by human developers as part of the empirical
evaluation in Section 4. Combined with the knowledge we gained from previous steps, we plan to build a name
generation tool to automatically provide descriptive test names in the same way as developers would do.

REFERENCES

[1] Nahla J Abid, Jonathan I Maletic, and Bonita Sharif. 2019. Using developer eye movements to externalize the mental model used in code

summarization tasks. In Proceedings of the ACM Symposium on Eye Tracking Research & Applications. ACM, Denver, Colorado, USA, 1ś9.

[2] Nahla J Abid, Bonita Sharif, Natalia Dragan, HendAlrasheed, and Jonathan IMaletic. 2019. Developer reading behavior while summarizing

java methods: Size and context matters. In Proceedings of the IEEE/ACM 41st International Conference on Software Engineering. IEEE,

ACM Trans. Softw. Eng. Methodol.

Accepted Manuscript
Version of record at: https://doi.org/10.1145/3533313

30 • Jianwei Wu and James Clause

Montréal, Canada, 384ś395.

[3] Alibaba. 2021. Sentinel: Throttling framework for distributed systems. https://developer.alibabacloud.com/opensource/project/sentinel.

Accessed: 2021-10-07.

[4] Miltiadis Allamanis, Earl T Barr, Christian Bird, and Charles Sutton. 2015. Suggesting accurate method and class names. In Proceedings

of the Joint Meeting on Foundations of Software Engineering. ACM, ACM, Lombardy, Italy, 38ś49.

[5] Miltiadis Allamanis, Hao Peng, and Charles Sutton. 2016. A convolutional attention network for extreme summarization of source code.

In International conference on machine learning. PMLR, New York, NY, USA, 2091ś2100.

[6] Uri Alon, Omer Levy, and Eran Yahav. 2018. code2seq: Generating Sequences from Structured Representations of Code. CoRR

abs/1808.01400 (2018), 1ś22. arXiv:1808.01400 http://arxiv.org/abs/1808.01400

[7] Uri Alon, Meital Zilberstein, Omer Levy, and Eran Yahav. 2019. code2vec: Learning distributed representations of code. Proceedings of

the ACM on Programming Languages 3, POPL (2019), 40.

[8] Andrea Arcuri and Gordon Fraser. 2016. Java enterprise edition support in search-based junit test generation. In Proceedings of the

International Symposium on Search Based Software Engineering. Springer, Raleigh, North Carolina, USA, 3ś17.

[9] Venera Arnaoudova, Laleh M Eshkevari, Massimiliano Di Penta, Rocco Oliveto, Giuliano Antoniol, and Yann-Gael Gueheneuc. 2014.

Repent: Analyzing the nature of identiier renamings. IEEE Transactions on Software Engineering 40, 5 (2014), 502ś532.

[10] Jamal Atif, Isabelle Bloch, Felix Distel, and Céline Hudelot. 2013. Mathematical morphology operators over concept lattices. In

International Conference on Formal Concept Analysis. Springer, Dresden, Germany, 28ś43.

[11] Andrew Begel and Hana Vrzakova. 2018. Eyemovements in code review. In Proceedings of theWorkshop on EyeMovements in Programming.

ACM, Warsaw, Poland, 1ś5.

[12] Simon Butler, Michel Wermelinger, Yijun Yu, and Helen Sharp. 2009. Relating identiier naming laws and code quality: An empirical

study. In Proceedings of the Working Conference on Reverse Engineering. IEEE, Lille, France, 31ś35.

[13] Simon Butler, Michel Wermelinger, Yijun Yu, and Helen Sharp. 2010. Exploring the inluence of identiier names on code quality: An

empirical study. In Proceedings of the European Conference on Software Maintenance and Reengineering. IEEE, Madrid, Spain, 156ś165.

[14] Peggy Cellier, Mireille Ducassé, Sébastien Ferré, and Olivier Ridoux. 2008. Formal concept analysis enhances fault localization in

software. In International Conference on Formal Concept Analysis. Springer, Montréal, Canada, 273ś288.

[15] Ermira Daka, José Miguel Rojas, and Gordon Fraser. 2017. Generating unit tests with descriptive names or: Would you name your

children thing1 and thing2?. In Proceedings of the SIGSOFT International Symposium on Software Testing and Analysis. ACM, Santa

Barbara, CA, USA, 57ś67.

[16] Eric Enslen, Emily Hill, Lori Pollock, and K Vijay-Shanker. 2009. Mining source code to automatically split identiiers for software

analysis. In Proceedings of the International Working Conference on Mining Software Repositories. IEEE, IEEE, Vancouver, Canada, 71ś80.

[17] Gordon Fraser and Andrea Arcuri. 2011. EvoSuite: Automatic test suite generation for object-oriented software. In Proceedings of the

SIGSOFT Symposium and the European conference on Foundations of software engineering. ACM, Szeged, Hungary, 416ś419.

[18] Erich Gamma and Kent Beck. 2006. JUnit.

[19] Bernhard Ganter and Rudolf Wille. 2012. Formal concept analysis: mathematical foundations. Springer Science & Business Media, TU

Dresden.

[20] Mohammad Ghafari, Carlo Ghezzi, and Konstantin Rubinov. 2015. Automatically identifying focal methods under test in unit test cases.

In Proceedings of the International Working Conference on Source Code Analysis and Manipulation. IEEE, IEEE, Bremen, Germany, 61ś70.

[21] Barney Glaser and Anselm Strauss. 1967. The discovery of grounded theory. 1967. Weidenield & Nicolson, London 17, 4 (1967), 1ś19.

[22] Patrice Godefroid, Peli de Halleux, Aditya V Nori, Sriram K Rajamani, Wolfram Schulte, Nikolai Tillmann, and Michael Y Levin. 2008.

Automating software testing using program analysis. IEEE software 25, 5 (2008), 30ś37.

[23] Robert Godin and Petko Valtchev. 2005. Formal concept analysis-based class hierarchy design in object-oriented software development.

In Formal Concept Analysis. Springer, Lens, France, 304ś323.

[24] Wolfgang Hesse and Thomas Tilley. 2005. Formal concept analysis used for software analysis and modelling. In Formal Concept Analysis.

Springer, Lens, France, 288ś303.

[25] Einar W Hùst and Bjarte M Østvold. 2009. Debugging method names. In Proceedings of the European Conference on Object-Oriented

Programming. Springer, Genoa, Italy, 294ś317.

[26] Constantina Ioannou, Indira Nurdiani, Andrea Burattin, and Barbara Weber. 2020. Mining reading patterns from eye-tracking data:

method and demonstration. Software and Systems Modeling 19, 2 (2020), 345ś369.

[27] IssueHunt. 2019. 50 Top Java Projects on GitHub. https://medium.com/issuehunt/50-top-java-projects-on-github-adbfe9f67dbc. Accessed:

2019-06-24.

[28] Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, and Luke Zettlemoyer. 2016. Summarizing source code using a neural attention model.

In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). ACL, Berlin, Germany,

2073ś2083.

[29] JianweiWu, James Clause. 2021. Implementation of Approach. https://bitbucket.org/udse/concept-analysis-plugin/src/master/. Accessed:

2021-11-06.

ACM Trans. Softw. Eng. Methodol.

Accepted Manuscript
Version of record at: https://doi.org/10.1145/3533313

https://developer.alibabacloud.com/opensource/project/sentinel
https://arxiv.org/abs/1808.01400
http://arxiv.org/abs/1808.01400
https://bitbucket.org/udse/concept-analysis-plugin/src/master/

Automated Identification of Uniqueness in JUnit Tests • 31

[30] Jianwei Wu, James Clause. 2022. Supplemental documents. https://zenodo.org/record/6416043#.Ykysp27MJK0. Accessed: 2022-04-05.

[31] Dawn Lawrie, Christopher Morrell, Henry Feild, and David Binkley. 2006. What’s in a Name? A Study of Identiiers. In 14th IEEE

International Conference on Program Comprehension. IEEE, Athens, 3ś12.

[32] Pierre Lison. 2015. An introduction to machine learning. Language Technology Group (LTG) 1, 35 (2015), 291.

[33] Inderjeet Mani. 2001. Automatic summarization. Vol. 3. John Benjamins Publishing, Sunnyvale, CA.

[34] Kim Mens and Tom Tourwé. 2005. Delving source code with formal concept analysis. Computer Languages, Systems & Structures 31, 3-4

(2005), 183ś197.

[35] Vu Nguyen, Sophia Deeds-Rubin, Thomas Tan, and Barry Boehm. 2007. A SLOC counting standard. In Cocomo ii forum, Vol. 2007.

Citeseer, Los Angeles, CA, USA, 1ś16.

[36] Unaizah Obaidellah, Mohammed Al Haek, and Peter C-H Cheng. 2018. A survey on the usage of eye-tracking in computer programming.

ACM Computing Surveys (CSUR) 51, 1 (2018), 1ś58.

[37] Oracle. 2020. Chapter 8. Classes. https://docs.oracle.com/javase/specs/jls/se14/html/jls-8.html#jls-8.4.7. Accessed: 2020-09-10.

[38] Young Park. 2000. Software retrieval by samples using concept analysis. Journal of Systems and Software 54, 3 (2000), 179ś183.

[39] Paige Rodeghero, Cheng Liu, Paul W McBurney, and Collin McMillan. 2015. An eye-tracking study of java programmers and application

to source code summarization. IEEE Transactions on Software Engineering 41, 11 (2015), 1038ś1054.

[40] Paige Rodeghero and Collin McMillan. 2015. An empirical study on the patterns of eye movement during summarization tasks. In

Proceedings of the ACM/IEEE International Symposium on Empirical Software Engineering and Measurement (ESEM). IEEE, Beijing, China,

1ś10.

[41] Max Schäfer, Torbjörn Ekman, and Oege De Moor. 2008. Sound and extensible renaming for Java. In Proceedings of the Sigplan Notices,

Vol. 43. ACM, Nashville, TN, USA, 277ś294.

[42] Sina Shamshiri, Rene Just, Jose Miguel Rojas, Gordon Fraser, Phil McMinn, and Andrea Arcuri. 2015. Do automatically generated unit

tests ind real faults? An empirical study of efectiveness and challenges. In Proceedings of the International Conference on Automated

Software Engineering. IEEE, Lincoln, NE, USA, 201ś211.

[43] Prem Kumar Singh and Aswani Kumar Ch. 2014. A note on constructing fuzzy homomorphism map for a given fuzzy formal context. In

Proceedings of the Third International Conference on Soft Computing for Problem Solving. Springer, IIT Roorkee, India, 845ś855.

[44] Giriprasad Sridhara, Emily Hill, Divya Muppaneni, Lori Pollock, and K Vijay-Shanker. 2010. Towards automatically generating summary

comments for java methods. In Proceedings of the International Conference on Automated software engineering. ACM, Antwerp, Belgium,

43ś52.

[45] Anselm Strauss and Juliet Corbin. 1998. Basics of qualitative research techniques. Sage publications, Thousand Oaks, CA.

[46] Armstrong A Takang, Penny A Grubb, and Robert D Macredie. 1996. The efects of comments and identiier names on program

comprehensibility: an experimental investigation. J. Prog. Lang. 4, 3 (1996), 143ś167.

[47] Kunal Taneja and Tao Xie. 2008. DifGen: Automated regression unit-test generation. In Proceedings of the IEEE/ACM International

Conference on Automated Software Engineering. IEEE, L’Aquila, Italy, 407ś410.

[48] Suresh Thummalapenta, Tao Xie, Nikolai Tillmann, Jonathan De Halleux, and Wolfram Schulte. 2009. MSeqGen: Object-oriented

unit-test generation via mining source code. In Proceedings of the joint meeting of the European Software Engineering Conference and the

SIGSOFT Symposium on the Foundations of Software Engineering. ACM, Amsterdam, Netherlands, 193ś202.

[49] Thomas Tilley, Richard Cole, Peter Becker, and Peter Eklund. 2005. A survey of formal concept analysis support for software engineering

activities. In Formal concept analysis. Springer, tilley2005survey, 250ś271.

[50] Paolo Tonella. 2003. Using a concept lattice of decomposition slices for program understanding and impact analysis. IEEE transactions

on software engineering 29, 6 (2003), 495ś509.

[51] Paolo Tonella. 2004. Formal concept analysis in software engineering. In Proceedings of the International Conference on Software

Engineering. IEEE, Edinburgh, UK, 743ś744.

[52] Jan Tretmans. 2008. Model based testing with labelled transition systems. In Formal methods and testing. Springer, UK, 1ś38.

[53] Jianwei Wu and James Clause. 2020. A pattern-based approach to detect and improve non-descriptive test names. Journal of Systems

and Software 168 (2020), 110639.

[54] Yiyu Yao. 2004. A comparative study of formal concept analysis and rough set theory in data analysis. In International Conference on

Rough Sets and Current Trends in Computing. Springer, Uppsala, Sweden, 59ś68.

[55] Benwen Zhang, Emily Hill, and James Clause. 2015. Automatically generating test templates from test names. In Proceedings of the

IEEE/ACM International Conference on Automated Software Engineering (ASE). IEEE, Lincoln, NE, USA, 506ś511.

[56] Benwen Zhang, Emily Hill, and James Clause. 2016. Towards automatically generating descriptive names for unit tests. In Proceedings of

the International Conference on Automated Software Engineering. ACM, Singapore, Singapore, 625ś636.

[57] Sai Zhang, Darioush Jalali, Jochen Wuttke, Kıvanç Muşlu, Wing Lam, Michael D Ernst, and David Notkin. 2014. Empirically revisiting

the test independence assumption. In Proceedings of the International Symposium on Software Testing and Analysis. ACM, San Jose, CA,

USA, 385ś396.

ACM Trans. Softw. Eng. Methodol.

Accepted Manuscript
Version of record at: https://doi.org/10.1145/3533313

https://zenodo.org/record/6416043#.Ykysp27MJK0
https://docs.oracle.com/javase/specs/jls/se14/html/jls-8.html#jls-8.4.7

32 • Jianwei Wu and James Clause

[58] Yu Zhou, Xin Yan, Wenhua Yang, Taolue Chen, and Zhiqiu Huang. 2019. Augmenting Java method comments generation with context

information based on neural networks. Journal of Systems and Software 156 (2019), 328ś340.

ACM Trans. Softw. Eng. Methodol.

Accepted Manuscript
Version of record at: https://doi.org/10.1145/3533313

	Abstract
	1 Introduction
	2 Empirical Study: Are tests named for what makes them unique?
	2.1 Experimental Subjects
	2.2 Phase 1: Discovering Uniqueness of Tests
	2.3 Coding Process
	2.4 Phase 2: Deciding Whether Unit Tests Are Named After What Makes Them Unique

	3 An Automated Approach for Identifying the Unique Attributes of Tests
	3.1 Step 1: Extract Attributes
	3.2 Step 2: Check for Uniqueness

	4 Empirical Evaluation
	4.1 RQ1: Feasibility
	4.2 RQ2: Consistency
	4.3 RQ3-Effort

	5 Related Work
	5.1 Generating Descriptive Names
	5.2 Investigating Developer Focus in Software Development
	5.3 Formal Concept Analysis
	5.4 Program Analysis and Automated Test Generation

	6 Threat to Validity
	7 Conclusion and Future Work
	References

