Computer Science > Multimedia
[Submitted on 8 Oct 2021]
Title:Cross-modal Knowledge Distillation for Vision-to-Sensor Action Recognition
View PDFAbstract:Human activity recognition (HAR) based on multi-modal approach has been recently shown to improve the accuracy performance of HAR. However, restricted computational resources associated with wearable devices, i.e., smartwatch, failed to directly support such advanced methods. To tackle this issue, this study introduces an end-to-end Vision-to-Sensor Knowledge Distillation (VSKD) framework. In this VSKD framework, only time-series data, i.e., accelerometer data, is needed from wearable devices during the testing phase. Therefore, this framework will not only reduce the computational demands on edge devices, but also produce a learning model that closely matches the performance of the computational expensive multi-modal approach. In order to retain the local temporal relationship and facilitate visual deep learning models, we first convert time-series data to two-dimensional images by applying the Gramian Angular Field ( GAF) based encoding method. We adopted ResNet18 and multi-scale TRN with BN-Inception as teacher and student network in this study, respectively. A novel loss function, named Distance and Angle-wised Semantic Knowledge loss (DASK), is proposed to mitigate the modality variations between the vision and the sensor domain. Extensive experimental results on UTD-MHAD, MMAct, and Berkeley-MHAD datasets demonstrate the effectiveness and competitiveness of the proposed VSKD model which can deployed on wearable sensors.
Current browse context:
cs.MM
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.