Очікує на перевірку

Ромбозрізаний ікосододекаедр

Матеріал з Вікіпедії — вільної енциклопедії.
Перейти до навігації Перейти до пошуку
Ромбозрізаний ікосододекаедр
Типархімедове тіло
Граней62: 30 квадратів
20 шестикутників
12 десятикутників
Ребер180
Вершин120
Конфігурація вершин4.6.10
Символ Витофа2 3 5 |
Символ Шлефліtr{5,3}
Діаграма Коксетера
Група симетріїIh (ікосаедрична)
Площа поверхні
Об'єм
Двогранний кут (градуси)6-10: 142,62°
4-10: 148,28°
4-6: 159,095°
Дуальний многогранникгекзакісікосаедр
опуклий, ізогональний
Вершинна діаграма
Розгортка

Ромбозрізаний ікосододекаедр[1] або зрізаний ікосододекаедр[2][3] — напівправильний многогранник (архімедове тіло) з 62 гранями, складений із 30 квадратів, 20 правильних шестикутників і 12 правильних десятикутників.

У кожній з його 120 однакових вершин сходяться одна квадратна грань, одна шестикутна та одна десятикутна. Тілесний кут при вершині дорівнює рівно

Має 180 ребер рівної довжини. При 60 ребрах (між квадратною та шестикутною гранями) двогранні кути рівні при 60 ребрах (між квадратною та десятикутною гранями) при 60 ребрах (між шестикутною та десятикутною гранями)

Споріднений многогранник, що не є напівправильним.

Назва «зрізаний ікосододекаедр», яку спочатку дав цьому многограннику Кеплер, здатна ввести в оману. Справа в тому, що в результаті операції зрізання, «зрізавши» з ікосододекаедра 30 чотирикутних пірамід, можна отримати лише дещо інший многогранник, чотирикутні грані якого — золоті прямокутники, а не квадрати. Отриманий многогранник напівправильним не є; втім, він ізоморфний справжньому ромбозрізаному ікосододекаедру і його можна перетворити на такий за допомогою невеликої деформації.

У координатах

[ред. | ред. код]

Ромбозрізаний ікосододекаедр можна розташувати в декартовій системі координат так, щоб координати його вершин були всілякими циклічними перестановками наборів чисел

де  — відношення золотого перетину.

Початок координат буде при цьому центром симетрії многогранника, а також центром його описаної та напіввписаної сфер.

Метричні характеристики

[ред. | ред. код]

Якщо ромбозрізаний ікосододекаедр має ребро довжини , його площа поверхні та об'єм виражаються як

Радіус описаної сфери (що проходить через усі вершини многогранника) при цьому дорівнюватиме

радіус напіввписаної сфери (що дотикається до всіх ребер у їх серединах) —

Вписати в ромбозрізаний ікосододекаедр сферу так, щоб вона дотикалася до всіх граней, неможливо. Радіус найбільшої сфери, яку можна помістити всередині ромбозрізаного ікосододекаедра з ребом (вона дотикатиметься лише до всіх десятикутних граней у їхніх центрах), дорівнює

Відстані від центра многогранника до шестикутних і квадратних граней перевищують і рівні відповідно

Визначні властивості

[ред. | ред. код]

Серед усіх платонових тіл, архімедових тіл і тіл Джонсона із заданою довжиною ребра ромбозрізаний ікосододекаедр має найбільший об'єм, найбільшу площу поверхні та найбільший діаметр.

Серед усіх платонових тіл, архімедових тіл і тіл Джонсона ромбозрізаний ікосододекаедр має найбільшу кількість вершин і найбільшу кількість ребер (але не найбільшу кількість граней — тут перше місце займає кирпатий додекаедр).

Пов'язані многогранники

[ред. | ред. код]
Сімейство однорідних ікосаедричних багатогранників
Симетрія: [5,3], (*532) [5,3]+, (532)
{5,3} t{5,3} r{5,3} t{3,5} {3,5} rr{5,3} tr{5,3} sr{5,3}
Двоїсті до однорідних багатогранників
V5.5.5 V3.10.10 V3.5.3.5 V5.6.6 V3.3.3.3.3 V3.4.5.4 V4.6.10 V3.3.3.3.5

Примітки

[ред. | ред. код]

Посилання

[ред. | ред. код]

Література

[ред. | ред. код]