Очікує на перевірку

Ліпшицеве відображення

Матеріал з Вікіпедії — вільної енциклопедії.
Перейти до навігації Перейти до пошуку

Ліпшицеве відображеннявідображення між двома метричними просторами, застосування якого збільшує відстані не більше, ніж в деяку константу раз.

Визначення

[ред. | ред. код]
Для будь-якої ліпшицевої функції, існує подвійний конус (показаний білим) чия вершина може пересуватись уздовж графіка, так що сам графік залишається повністю поза конусом.

Відображення метричного простору у метричний простір називається ліпшицевим, якщо знайдеться деяка константа (константа Ліпшиця цього відображення), така, що

при будь-яких . Цю умову називають умовою Ліпшиця.

Відображення з (1-ліпшицеве ​​відображення) називають також коротким відображенням.

Пов'язані визначення

[ред. | ред. код]
  • Відображення, що задовольняє вищенаведеній умові, називається також -ліпшицевим.
  • Нижня грань чисел , що задовольняють вищенаведену нерівність, називається константою Ліпшиця відображення .
  • Відображення називається локально ліпшицевим, якщо для довільної точки області визначення існує окіл в якому відображення є ліпшицевим.
  • Відображення називається біліпшицевим, якщо у нього існує обернене і обидва і є ліпшицевими.
  • Відображення називається коліпшицевим, якщо існує константа , така, що для будь-яких і знайдеться таке, що

Властивості

[ред. | ред. код]

Варіації і узагальнення

[ред. | ред. код]
  • f(t,x) є Lipx(Ω), якщо для будь-яких x1, х2, х1≠х2 ||f(t,x1)-f(t,х2)|| ≤ η||(x1- х2)|| існує η(t):R+→R+, η(t)→0 R+:[t0,∞], η(t) є C[t0,∞],

||f(t,x1)-f(t,х2)||< η(t)||x1- х2|| при n=1  ||…||→|…|   η(t)≤ L    для будь-яких t ≥ t0

L=const Lipshits.

  • Поняття ліпшицевої функції природним чином узагальнюється на функції з обмеженим модулем неперервності, оскільки умова Ліпшиця записується так:

Див. також

[ред. | ред. код]

Посилання

[ред. | ред. код]