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ABSTRACT
Recently proposed voice query interfaces translate voice input into
SQL queries. Unreliable speech recognition on top of the intrinsic
challenges of text-to-SQL translation makes it hard to reliably inter-
pret user input. We present MUVE (Multiplots for Voice quEries),
a system for robust voice querying. MUVE reduces the impact of
ambiguous voice queries by filling the screen with multiplots, cap-
turing results of phonetically similar queries. It maps voice input to
a probability distribution over query candidates, executes a selected
subset of queries, and visualizes their results in a multiplot.

Our goal is to maximize probability to show the correct query
result. Also, we want to optimize the visualization (e.g., by color-
ing a subset of likely results) in order to minimize expected time
until users find the correct result. Via a user study, we validate a
simple cost model estimating the latter overhead. The resulting
optimization problem is NP-hard. We propose an exhaustive algo-
rithm, based on integer programming, as well as a greedy heuristic.
As shown in a corresponding user study, MUVE enables users to
identify accurate results faster, compared to prior work.
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1 INTRODUCTION
Voice interfaces are popular, as evidenced by the rise of devices
and services such as Google Home, Amazon Alexa, or Apple’s Siri.
They provide a particularly natural way to interact with computers
and benefit population groups, such as visually impaired users,
who cannot use traditional interfaces. This has recently motivated
systems that enable relational databases for voice access, including
for instance EchoQuery [8], CiceroDB [18], SpeakQL [15, 16], and
approaches for voice-based OLAP [2, 19], among others.

Voice query interfaces (VQIs) typically built on prior work on
natural language querying [4–7, 11, 13, 14, 21]. Here, the goal is to
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translate natural language text into corresponding SQL queries. De-
spite significant recent advances, text-to-SQL translation is a hard
problem. The intricacies of natural language as well as similarly
named database elements lead to ambiguities in query interpreta-
tion. This ambiguity translates to VQIs which built on the latter.
On top of that, VQIs rely on speech recognition which is notori-
ously difficult. As established in prior studies [1], this makes query
interpretation for VQIs very hard.

Prior work on natural language and VQIs typically requests user
feedback to resolve ambiguities. For instance, users may provide
feedback on candidate queries [6] or select query fragments [1,
3]. Alternatively, users may get asked specific clarification ques-
tions [8] (e.g., in case of columns with similar names). All of those
methods have in common that users need to provide additional
input, costing them time.

In this demo, we explore a complementary approach to resolve
ambiguity in voice querying. We consider scenarios in which users
query by voice but obtain visual result output. This is suitable for
devices that accept voice input but feature displays (e.g., cell phones,
desktop computers, or the newest generation of smart speakers
such as “Echo Show” and Google’s “Smart Displays”). Instead of
resolving ambiguities with the help of the user, we try to display
results for all of themost likely query interpretations. This approach
is implemented in the MUVE system (Multiplots for Voice quEries),
the focus of our demonstration.

MUVE relies on existing components for speech recognition and
to translate input text into a probability distribution over queries.
The primary research challenge we address in MUVE is the auto-
mated design of result multiplots. We formalize the generation of
the result output as an optimization problem. Our input is a set of
Candidate Queries with associated probabilities. Each candidate
corresponds to one possible interpretation of voice input. The out-
put is a Multiplot, containing multiple rows of Plots. Each plot
presents results for a set of queries instantiating the same query
template. Our search space is constrained by the screen resolution
and minimal requirements on font sizes and plot space. This means
that we can only fit a limited number of plots and data points onto
the output screen. The goal of optimization is to maximize the
probability that the correct result is shown on the output screen.
Given the initial query probabilities, this probability corresponds
to the sum of probabilities over all displayed query results.

The optimization problem becomes challenging due to constraints
between plots and queries. Each plot presents results for a subset
of query candidates. Each query result is represented as one bar
in such a plot (we consider aggregation queries that result in a
single numerical result). The y axis of a plot measures the result
quantity. The x axis varies a query property. For instance, we may
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Figure 1: Overview of the MUVE system: voice queries are
mapped to a probability distribution over queries, the visual-
ization planner (our research focus) determines an optimal
multiplot covering results for the most likely queries.

vary the aggregation function on the x axis. Alternatively, we may
vary the constant used in one specific query predicate. Besides the
query property varied on the x axis, each plot contains results for
a fixed query template. In doing so, we avoid having to associate
each data point with a complete SQL query (which would require
disproportional amounts of space). It motivates however a judicious
choice of plots to display. For instance, it may not always be best
to display the single, most likely query result. Instead, it may be
better to choose a plot that can contain results for a large number
of likely queries, whose accumulated probability is dominant.

The multiplot selection problem is NP-hard. This can be seen by
a reduction from the knapsack problem. We can map any knapsack
instance to a multiplot selection instance using one row of plots,
considering only plots that each contain one single query result.
In this transformation, knapsack weights map to (horizontal) plot
dimensions, utility maps to probability, and weight constraints map
to the resolution constraint. MUVE features two solvers (which can
be selected on a per-query basis in the demo software). The first one
translates a multiplot selection problem instance into an integer
linear program. It uses corresponding solver software to obtain an
optimal solution (which is then translated into a visualization). In
addition, MUVE features a greedy heuristic. This algorithm does
not guarantee an optimal solution. However, it typically generates
near-optimal solutions fast.

Our work connects to prior work on natural language query in-
terfaces [4–7, 11, 13, 14, 21] and VQIs [2, 8, 15, 16, 18, 19]. However,
unlike most prior work in this domain, MUVE does not request
further user input to resolve input ambiguities. Instead, it tries to
cover an optimal set of input interpretations via a single visual-
ization. To do so, it uses cost-based planning. More broadly, our
work connects to prior work on data visualization [9, 10, 12, 17, 20].
However, our work differs by its focus on visualizing alternative
interpretations of voice queries.

In the remainder of this paper, we first give a more detailed
overview of MUVE in Section 2. Next, we present an extract from
our experimental results, including results of a user study, in Sec-
tion 3. Finally, we describe our demonstration plan in Section 4.

2 SYSTEM OVERVIEW
Figure 1 shows an overview of the MUVE system. MUVE enables
voice-based access to a relational database. It answers voice queries
with a multiplot, capturing results for the most likely query trans-
lations. Next, we discuss components of MUVE (some of which are
shown in Figure 1) in more detail.

Voice Query (Input).MUVE supports voice queries on a rela-
tional database. Currently, MUVE supports SQL aggregation queries
with predicates on a single table that produce a single, numerical
result. The result of each such query can be represented as one data
point in a corresponding plot. Users formulate their queries in natu-
ral language. This means that user input needs to be translated into
corresponding SQL queries (a process that leads to ambiguities).

Multiplot (Output). MUVE answers voice queries by showing
a multiplot. A multiplot consists of several bar plots, each of them
showing results for different query candidates. We arrange plots in
multiple rows. Each plot is associated with a query template that
is shown as plot title. The template contains one placeholder (e.g.,
the value of a constant in a query predicate). Values on the plot x
axis are associated with different substitutes for the placeholder
(e.g., different values for the predicate constant). Plot data points
correspond to results of query candidates, covering different in-
terpretations of the user input. Figure 2 shows an example output
(which is discussed in more detail in Section 4).

Speech Recognition. MUVE is targeted at voice queries. In a
first step, user voice input needs to be transcribed to text. For that,
MUVE uses the browser-based Web Speech API1.

Despite recent advances, automated speech recognition remains
a challenging task. The challenges of speech recognition can be
exacerbated by factors such as background noise, less common di-
alects, or low-quality microphones. Even under ideal circumstances,
it may not be possible to distinguish certain spellings via speech
input alone (e.g., “John” versus “Jon”). For those reasons, speech to
text transcription is a first source of uncertainty with regards to
query interpretation.

Text to Multi-SQL. Users describe their queries in natural lan-
guage. Hence, we need to translate text into corresponding SQL
queries. Typically (“text to SQL”), the goal is to translate input into
one single query (whose result is displayed). MUVE’s output covers
multiple alternative query interpretations. Therefore, we translate
input into a probability distribution over candidate queries instead
(“text to multi-SQL”).

We generate candidate queries in multiple steps. First, MUVE
uses sequence-to-sequence translation to map text input to a most
likely query. More precisely, we use the recently proposed SQLova
approach [5]. Next, we take into account uncertainties due to noisy
speech recognition and uncertain text to query translation. We
generate query variations by replacing query fragments by phonet-
ically similar alternatives. Specifically, we iterate over all schema
element names and constants that appear in the query. We use a
functionality offered by Apache Lucene2 to find the 𝑘 most pho-
netically similar entries for each query element (typically, we set 𝑘
to 10). Candidate queries are derived from the original query (raw
output of text to query translation) by replacing elements with

1https://wicg.github.io/speech-api/
2https://lucene.apache.org/
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those alternatives. Finally, we assign probabilities to the different
query candidates (probabilities of all candidates sum to one). The
probability of a single replacement is based on a distance function
that measures phonetic similarity between text fragments. The
probability of multiple replacements corresponds to the product
of probabilities for single replacements. Note that we do not need
to explicitly represent the set of query candidates (which can be
large) for any of those steps.

Visualization Planner. Our research focus is on the visual-
ization planner. The goal of visualization planning is to generate
a multiplot that optimally covers the set of candidate queries. A
candidate query is covered, if one of the result plots contains that
query’s result. More formally, the visualization planner obtains a
set𝑄 of candidate queries with probabilities 𝑟 (𝑞) for 𝑞 ∈ 𝑄 as input.
The result of a query 𝑞 can be shown in one or several plots 𝑃 (𝑞),
covering templates with placeholders that match query 𝑞. Each plot
𝑝 is associated with minimal plot dimensions 𝑚(𝑝), determined
for instance by the plot title. Adding more data points to a plot
increases the (horizontal) width proportionally. Furthermore, the
visualization planner obtains the screen resolution, together with
the desired number of plot rows, as input. The goal is to generate
a visualization maximizing

∑
𝑞∈𝐷 𝑟 (𝑞) where 𝐷 ⊆ 𝑄 is the set of

queries whose result is on display. This visualization must respect
constraints imposed by plot dimensions and the resolution. We call
this optimization problem “multiplot selection”.

MUVE implements two approaches to solve multiplot selection:
an approach based on integer programming and a greedy variant.
Next, we discuss them in more detail.

Integer Programming Visualization Planner. Multiplot se-
lection is NP-hard (we briefly sketch a corresponding reduction in
Footnote 1). A commonmethod to solve such optimization problems
is to transform them into integer linear programming. This allows
applying sophisticated solver tools targeted at that formalism.

Multiplot selection is based on the output of the text to multi-SQL
component, as well as the screen dimensions. Our first approach
to multiplot selection entails the following steps. First, we asso-
ciate all queries with candidate plots in which their results could
appear as data point. Also, we calculate minimal plot dimensions.
Second, we transform the multiplot selection problem into an inte-
ger linear program. Third, we use the GLPK integer programming
solver3 to find an optimal solution (the solution may not be optimal
only if optimization time reaches a user-specified timeout). Finally,
we transform the solution to the integer program back into the
corresponding multiplot.

Greedy Visualization Planner. The first planner guarantees
optimal solutions (unless a timeout is reached). For complex prob-
lem instances, planning overheads can become prohibitive. This is
why MUVE offers an additional greedy planner with polynomial
complexity in the input problem dimensions. As shown in more
detail in our experiments, this planner tends to be very fast (order
of milliseconds) while producing near-optimal solutions. MUVE
allows users to switch between those planners on a per-query basis
to explore the differences.

3https://www.gnu.org/software/glpk/

Query Executions. After selecting queries for visualization,
those queries are executed to obtain their results. MUVE does not ex-
ecute different candidates independently but merges similar queries
together, e.g. via group by clauses, to reduce overheads.

3 EXPERIMENTAL EVALUATION
We present an extract from our experiments, illustrating differences
between the two visualization planners (Section 3.1), and comparing
MUVE to a baseline in a user study (Section 3.2).

We use three datasets, one covering contacts for advertising,
provided by a partner in industry, data about the department of
buildings in NYC (DOB)4, and data on NYC’s 311 service requests5.

3.1 Comparison of Visualization Planners
We compare the two planners in terms of optimization time and
quality of output. This experiment was conducted on a MacBook
Pro (15-inch, 2018) with a 2.9 GHz 6-Core Intel Core i9 processor
and 32 GB of DDR4 memory. MUVE is implemented in Java, we
use GLPK 4.65 to solve integer programs with a timeout of 10 sec-
onds. We randomly generated count queries on DOB by selecting
columns and constants for unary equality predicates with uniform
distribution. We used the process described before to obtain a set of
phonetically similar query candidates. We measure planning time
and result utility (i.e., sum of probabilities of all query interpreta-
tions whose results are shown), scaled to the maximum value. Each
data point corresponds to the arithmetic average of five runs.

Figure 3 shows time and utility as a function of the number of
candidate queries (with two rows of plots). Clearly, integer pro-
gramming generates slightly better solutions but suffers from high
overheads for some range of candidate counts. Figure 4 varies the
number of rows in the multiplot for 100 candidate queries. Integer
programming works well up to two rows, the greedy algorithm
is preferable after that. Note that the greedy algorithm even finds
better solutions than the ILP solver starting from four rows. This is
due to the high ratio of timeouts, preventing the ILP solver from
finding optimal solutions.

3.2 User Study
We conducted a user study over Zoom with 10 participants, nine
of them college students with four CS students, comparing MUVE
against a baseline. Our baseline lets users resolve ambiguities by
choosing correct columns and constants via a drop down menu
(showing likely alternatives), inspired by systems such as Data-
Tone [3]. We measured time after the voice query was processed
and until the user verbally reports the query result. Each user is-
sued 30 queries, 10 on each of the three aforementioned datasets,
alternating between MUVE and the baseline (half of participants
started with MUVE). We discard the first 10 queries per participant
as warmup and report arithmetic averages in Figure 5. Clearly, vi-
sually identifying the desired result in a multiplot is faster than
resolving ambiguities by clicking buttons.

4https://data.cityofnewyork.us/Housing-Development/DOB-Job-Application-
Filings/ic3t-wcy2
5https://data.cityofnewyork.us/Social-Services/311-Service-Requests-from-2010-to-
Present/erm2-nwe9
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Figure 2: MUVE allows users to select dataset and visualization planner (a) and to speak (or type) natural language queries (b).
The resulting multiplot contains results for similar queries whose common elements are outlined in the headline (c), while
covering specific templates in specific plots (d, e). The bar color is the probability of the associated query interpretation (f).
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Figure 3: Time and utility for different visualization plan-
ners, dependent on the number of query candidates. Dashed
red lines mark timeouts.
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Figure 4: Time and utility for different visualization plan-
ners, dependent on the number of multiplot rows. Dashed
red lines mark timeouts.

4 DEMONSTRATION
We will make our demo available on a publicly accessible Web site
(the interface is Web browser-based). Figure 2 shows the demo
interface and explains its primary components.

Participants can select among the three datasets used in the ex-
periments. Dataset columns and example queries are shown on
the left side of the interface. Users activate voice recognition by

Dataset 1 Dataset 2
0
2
4
6

Ti
m
e
(s
) Baseline

MUVE

Figure 5: Average ambiguity resolution time for users with
MUVE, compared to baseline.

clicking a corresponding button, then formulate their query (alter-
natively, users can enter queries via keyboard). The voice query is
transcribed and a multiplot is shown, containing results for differ-
ent query interpretations. Also, participants can select between the
two visualization planners and click on the red button to obtain
additional information (e.g., planning time).
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