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Abstract

Protein-peptide interactions play a crucial role in a variety of cellular processes. The protein-

peptide complex structure is a key to understand the mechanisms underlying protein-peptide 

interactions and is critical for peptide therapeutic development. We present a user-friendly protein-

peptide docking server, MDockPeP. Starting from a peptide sequence and a protein receptor 

structure, the MDockPeP Server globally docks the all-atom, flexible peptide to the protein 

receptor. The produced modes are then evaluated with a statistical potential-based scoring 

function, ITScorePeP. This method was systematically validated using the peptiDB benchmarking 

database. At least one near-native peptide binding mode was ranked among top 10 (or top 500) in 

59% (85%) of the bound cases, and in 40.6% (71.9%) of the challenging unbound cases. The 

server can be used for both protein-peptide complex structure prediction and initial-stage sampling 

of the protein-peptide binding modes for other docking or simulation methods. MDockPeP Server 

is freely available at http://zougrouptoolkit.missouri.edu/mdockpep.

Graphical abstract

MDockPeP is a publicly accessible web server (http://zougrouptoolkit.missouri.edu/mdockpep) for 

predicting protein-peptide complex structures. The server requires only the peptide sequence and 

the protein structure. MDockPeP docks the all-atom, flexible peptide onto the whole protein 

without the knowledge of the binding site. MDockPeP is computationally efficient, and achieves 

excellent performance on mode sampling and good performance on mode prediction.
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Introduction

Protein-peptide interactions are crucial to a variety of cellular processes including 

transcription regulation, signal transductions and immune response [1]. An increasing 

number of peptides have been designed and approved as drugs [2]. The structure of the 
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protein-peptide complex is a key to understand the underlying mechanism of the protein-

peptide interaction, and is therefore critical for peptide therapeutic development. Yet, the 

number of the resolved protein-peptide complex structures deposited in the Protein Data 

Bank (PDB) [3] is only a fraction of the whole protein-peptide interaction universe, due to 

the difficulty and cost for determining complex structures by experimental techniques such 

as X-ray crystallography and NMR.

Facing this challenge, several in silico methods have recently been developed for predicting 

protein-peptide complex structures and can be categorized into three classes: template-based 

modeling, molecular docking, and molecular dynamics (MD) simulation. The template-

based methods are computationally efficient, but suffer from limited available protein-

peptide templates [4–5]. On the other hand, regarding MD simulations, impractically 

expensive computational cost is the major stumbling block to their large-scale applications 

[6–7]. Molecular docking is a compromising strategy, which aims to account for both 

accuracy and computational efficiency. Among the recently developed docking methods, 

Rosetta FlexPepDock [8] and HADDOCK [9] focus on local docking with known binding 

sites. pepATTRACT [10] and AnchorDock [11] start with crudely sampling the whole 

protein surface, followed by extremely time-consuming MD refinement. The CABS-dock 

server [12] has the ability to dock a fully flexible peptide onto the whole protein surface 

within reasonable computational time. It uses a coarse-grained model for both the protein 

and the peptide; the peptide secondary structure either is provided by the user or is generated 

by PSI-PRED, a protein secondary structure prediction tool. PIPER-FlexPepDock [13] is 

another approach that performs the global blind docking. Briefly, a number of pre-generated 

peptide conformers are docked to a whole protein surface using a rigid sampling algorithm, 

and then the selected models are refined by considering the peptide flexibility and the 

protein sidechain flexibility. A thorough summary of state-of-the-art in the field can be 

found in a very recent review [14].

We recently developed a novel, ab initio protein-peptide docking method, referred to as 

MDockPeP [15]. The method starts with a given peptide sequence and a protein structure, 

and globally docks the all-atom, flexible peptide to the protein (Fig. 1). MDockPeP was 

systematically validated and achieved good performance based on the peptiDB 

benchmarking database [9,16]. Here, we present the MDockPeP Server, which is free and 

open to all users without registration. The server can be used for both protein-peptide 

complex structure prediction and initial-stage sampling of the protein-peptide binding modes 

for other docking or simulation methods.

Materials and Methods

Overview of MDockPeP

Here, we briefly introduce the MDockPeP method; the details are available in our recently 

published paper [15]. MDockPeP includes three primary stages (Fig. 1):

(1) Model the peptide conformers based on the given peptide sequence;

(2) Sample putative peptide binding modes on the whole protein surface;
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(3) Rank the sampled binding modes according to their energy scores with our 

newly derived scoring function for protein-peptide docking.

For a given peptide sequence, first, MDockPeP models up to 3 non-redundant conformers 

based on the similar-sequence fragments from monomeric proteins with lengths longer than 

50 amino acids. This strategy is based on the argument that binding of a peptide on a protein 

is similar to the protein folding process and that protein-peptide binding interfaces share 

remarkable similarities with the interior of proteins [17]. Our systematic assessment showed 

that the modeled peptide conformer was within 5.3 Å of the backbone RMSD (bRMSD) in 

comparison with the bound peptide structure when the best conformer among the top 3 

peptide models was considered [15], for the 103 non-redundant peptides in the peptiDB 

benchmarking database [9,16].

Next, the modeled peptide conformers are independently docked to the whole protein using 

a method modified from AutoDockVina [18]. The grid box was defined by extending 20 Å 

to both the minimum and the maximum of the coordinates of the protein structure in three 

dimensions. First, the peptide conformer is rigidly docked to the whole protein by randomly 

generating 105 translational and rotational configurations within the grid box. The generated 

models are ranked by the built-in Vina scoring function. Then, flexible sampling is 

performed for the model that has the lowest score. All rotatable bonds in the peptide are 

treated as flexible during sampling, by using the iterated local search (ILS) global optimizer 

approach in AutoDock Vina. If the peptide conformation of a Vina-accepted mode strays too 

far from the initial peptide conformer (e.g., with bRMSD > 5.5 Å), the rigid global sampling 

process will be repeated for the initial peptide conformer, followed by flexible sampling. 

The procedure stops when the maximum step number for ILS, N, is reached. N is dependent 

on both the number of torsional angles and the number of the movable atoms. The 

exhaustiveness value in Vina is set to 100 for the MDockPeP server, which means 100 

independent runs are performed for each docking. Finally, up to 2×104 binding modes are 

generated for each initial peptide conformer.

These binding modes generated from different initial peptide conformers are combined and 

ranked according to their energy scores calculated by our recently developed scoring 

function ITScorePeP [15]. ITScorePeP is a statistical potential-based scoring function that is 

developed for protein-peptide dockings. Contributions from both interactions between the 

protein and the peptide (inter-score) and interactions among non-neighbored residues within 

the peptide (intra-score) are considered in the scoring function. For any two modes with 

ligand RMSD (Lrms) less than a cutoff, only the one with the lower score is kept. Lrms is 

calculated based on the backbone atoms of the peptide between the predicted binding mode 

and the native binding mode after the optimal superimposition of the protein structures. The 

cutoff is set to 4.0 Å for the prediction of top 10 models. For the enrichment of high-quality 

models (Lrms ≤ 3.0 Å) in top 500 models that are provided to the user as the sampling 

results, the cutoff is set to 2.0 Å.

The peptiDB benchmarking database

The non-redundant protein-peptide database peptiDB was employed to validate the 

MDockPeP Server. After the examination of the 103 bound protein-peptide complex 
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structures and 69 unbound protein receptor structures, 3 bound complexes and 5 unbound 

protein receptors were discarded from the database [15]. The remaining entries, 100 bound 

cases and 64 unbound cases (see Table S1) were used to evaluate the sampling performance 

of the MDockPeP Server. The results in this study are slightly different from our original 

paper (Fig. 5 in ref. 14), in which the binding modes were sampled more exhaustively at a 

cost of longer computational time.

Server Description

Inputs

As shown in Fig. 2A, two inputs, a peptide sequence and a protein structure, are required for 

job submission on the MDockPeP Server. The email address is optional but recommended. 

If the email address is provided, the user will receive an email notification after the job is 

completed.

Advanced options

The MDockPeP Server provides several advanced options for the user to improve prediction 

results (as shown in Fig. 2B).

First, the server allows the user to upload one initial peptide 3D structure. The server will 

generate up to two other initial peptide conformers. As the peptide conformation during 

sampling is restricted to be relatively close to the initial peptide conformation, a reliable 

initial peptide structure would significantly reduce the search space and improve the 

prediction. Furthermore, the user is also allowed to control the degree of restriction of the 

peptide conformations in the sampling process by changing the cutoff value (default = 5.5 

Å) of the backbone RMSD (bRMSD).

Another option is the exhaustiveness value. By increasing the exhaustiveness value, a larger 

conformational space can be reached during the sampling process at the cost of the increase 

in computational time. The default exhaustiveness value is set to 100, namely, each docking 

calculation (docking one initial peptide conformer onto the protein) contains 100 

independent runs.

In addition, the user is allowed to define a binding location by providing the XYZ 

coordinates of the center of the grid box. The box (cubic) size will be automatically 

determined according to the peptide length. Specifically, the side of the cubic box equals 

(3.8×peptide_sequence_length+40) Å. The value 3.8 is the distance between two CA atoms 

in adjacent residues. This option is recommended for a large protein receptor with known 

binding location.

Outputs

Once a job is submitted successfully, the job status is monitored on the “Queue” page. If the 

email address is given, the user will receive an email notification with a link of the results 

after the job is completed. As shown in Fig. 2C, the top 10 predicted protein-peptide 

complex structures are displayed via 3Dmol.js [19] on the result page. In addition, top 500 

predicted protein-peptide binding modes are provided as the initial sampling results.
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Computational resources and run time

Jobs being submitted are performed on a computing node containing 24 Intel Xeon cores 

[Intel(R) Xeon(R) CPU E5–2650 v3 @ 2.30GHz]. For our test on the peptiDB database, the 

MDockPeP server normally takes less than 10 hours for a job depending on the length of the 

peptide and the size of the protein.

Performance

The MDockPeP Server was assessed with a non-redundant protein-peptide benchmarking 

database peptiDB (Table S1). As shown in Fig. 3A, the MDockPeP server successfully 

predicted at least one near-native (Lrms ≤ 5.5 Å) mode among the top 10 models for 59% of 

the bound docking cases (high quality model with Lrms ≤ 3.0 Å: 36%; medium quality 

model with 3.0 Å < Lrms ≤ 5.5 Å: 23%), and for 40.6% of the more challenging unbound 

docking cases (high quality: 3.1%; medium quality: 37.5%). Here, Lrms is the ligand RMSD, 

which is calculated based on the backbone atoms of the peptide between the predicted 

binding mode and the native binding mode after optimal superimposition of the protein 

structures.

Fig. 3B shows the rates for successfully ranking at least one near-native mode among the top 

N models. Impressively, bound docking achieved a high success rate of 77% when top 100 

models were considered. The success rate decreased to 60.9% for the challenging unbound 

docking cases. For enrichment studies (see Fig. 3C), when considering the top 500 models 

that are provided for the user in the sampling results, the successful rate is 85% for bound 

docking cases (high quality: 65%; medium quality: 20%), and 71.9% for the unbound 

docking cases (high quality: 36%; medium quality: 36.9%).

Discussion

In our previous MDockPeP method paper [15], we analyzed the relationship between the 

best sampled binding mode (the mode with the lowest Lrms) and bRMSD of the best 

modeled peptide conformer. Because a smaller exhaustiveness value (100) was used for the 

web server than the exhaustive value for the method paper (500), we re-calculated the 

correlations. Fig. 4A and 4B show the results for the bound docking cases and the unbound 

docking cases, respectively. Similar to those observed in the method paper, Lrms and 

bRMSD show very weak correlations, with Pearson correlation coefficients of 0.19 (for 

bpro-upep) and 0.14 (for upro-upep), respectively. Encouragingly, our sampling method 

successfully generated medium-quality or even high-quality models for several cases in 

which no high-quality peptide conformers were modeled (using bRMSD = 4.0 Å as the 

threshold).

Fig. 4C and 4D show the dependence of the sampling performance on the peptide size for 

the bound docking cases and the unbound docking cases, respectively. The peptide lengths in 

the peptiDB benchmark range from 5 to 15. MDockPeP was able to generate high-quality 

models (Lrms ≤ 3Å) for most cases with short- or medium-size peptides (less than 12 

residues). For a number of cases with peptide length ≥ 12, our method failed to generate 

high-quality models or even medium-quality models. This is reasonable, because long 
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peptides typically contain more rotatable bonds than short peptides and therefore require 

larger conformational spaces for sampling. Another concern is the use of the same Lrms 

threshold for different peptide lengths. It is well known that the RMSD value is dependent of 

the size of a ligand [20]. How to normalize the RMSD value based on the ligand size 

remains an open question.

It is further noted that to optimize the performance of the MDockPeP server for users, the 

whole peptiDB database were used for the training of the scoring function. Overfitting is not 

expected to be an issue, because in our method paper [15] 3-fold cross-validation was used 

to assess the scoring function to avoid overlap between the training set and the test set; no 

significant difference was found between the two scoring performances. In both scoring 

studies, the success rate of unbound docking is significantly lower than the success rate of 

bound docking. A possible reason is that the decoys used in the training process were 

generated using bound protein structures and the protein structures were treated as rigid 

bodies in the sampling process. The scoring function needs to be improved in future studies.

Conclusion

The MDockPeP Server provides a useful and efficient means to produce models of protein-

peptide complexes via a user-friendly web interface. The server can be used for both protein-

peptide complex structure prediction and initial-stage sampling of the protein-peptide 

binding modes for other docking or simulation methods.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
The flowchart of the MDockPeP Server.
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Figure 2. 
Snapshots of the MDockPeP server. (A)Two inputs, a peptide sequence and a protein 

structure, are required for job submission. The email address is optional but recommended. 

The user will receive a notification through email once the job is completed. (B) Prediction 

results can be improved by adjusting the parameters in “Advanced options”. For example, 

the sampling performance can be significantly improved by either increasing the 

exhaustiveness value (default = 100) or providing the binding site information. (C) The top 

10 protein-peptide complex structures are reported and can be viewed online.
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Figure 3. 
The performance of MDockPeP server on the peptiDB database. (A) The performance 

according to the top 10 binding modes for the bound docking cases (bpro-upep) and 

unbound docking cases (upro-upep), respectively. (B) The success rates of ranking at least 

one near native (Lrms ≤ 5.5 Å) mode among the top N models for the bound docking cases 

(bpro-upep) and the unbound docking cases (upro-upep), respectively. The dashed black line 

denotes the case in which N equals 100, for which the total success rates are 77% and 60.9% 

for the bound docking cases and the unbound docking cases, respectively. (C) The 

performance regarding the top 500 modes based on the criterion of Lrms for the bound 

docking cases (bpro-upep) and unbound docking cases (upro-upep), respectively.
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Figure 4. 
The dependence of MDockPeP sampling performance on the quality of initial peptide 

conformers and on the peptide length. The thresholds for the high-quality sampled binding 

mode (Lrms = 3.0 Å) and the medium-quality sampled binding mode (Lrms = 5.5 Å) are 

shown as the horizontal dashed lines and broken lines, respectively. (A-B) The relationship 

between Lrms of the best sampled binding mode and bRMSD of the best peptide conformer 

for the bound docking cases (A) and the unbound docking cases (B), respectively. The 

threshold for effective peptide modeling (bRMSD = 4.0 Å) is shown as the vertical dashed 

line. (C-D) The distribution of Lrms of the best sampled binding mode as a function of the 

peptide length for the bound docking cases (C) and the unbound docking cases (D), 

respectively.
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