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MINIMUM VERTEX DEGREE THRESHOLD FOR C3
4-TILING

JIE HAN AND YI ZHAO

Abstract. We prove that the vertex degree threshold for tiling C3

4
(the 3-

uniform hypergraph with four vertices and two triples) in a 3-uniform hyper-

graph on n ∈ 4N vertices is
(

n−1

2

)

−
( 3

4
n

2

)

+ 3

8
n+ c, where c = 1 if n ∈ 8N and

c = − 1

2
otherwise. This result is best possible, and is one of the first results

on vertex degree conditions for hypergraph tiling.

1. Introduction

Given k ≥ 2, a k-uniform hypergraph (in short, k-graph) consists of a vertex set

V and an edge set E ⊆
(

V
k

)

, where every edge is a k-element subset of V . Given a
k-graph H with a set S of d vertices (where 1 ≤ d ≤ k − 1) we define degH(S) to
be the number of edges containing S (the subscript H is omitted if it is clear from
the context). The minimum d-degree δd(H) of H is the minimum of degH(S) over
all d-vertex sets S in H.

Given a k-graph G of order g and a k-graph H of order n, a G-tiling (or G-
packing) of H is a subgraph of H that consists of vertex-disjoint copies of G. When
g divides n, a perfect G-tiling (or a G-factor) of H is a G-tiling of H consisting of
n/g copies of G. Define td(n,G) to be the smallest integer t such that every k-graph
H of order n ∈ gN with δd(H) ≥ t contains a perfect G-tiling.

As a natural extension of the matching problem, tiling has been an active area
in the past two decades (see surveys [15, 21]). Much work has been done on the
problem for graphs (k = 2), see e.g., [7, 2, 12, 16]. In particular, Kühn and
Osthus [16] determined t1(n,G), for any graph G, up to an additive constant. Tiling
problems become much harder for hypergraphs. For example, despite much recent
progress [1, 5, 10, 11, 17, 24, 26], we still do not know the 1-degree threshold for a
perfect matching in k-graphs for arbitrary k.

Other than the matching problem, only a few tiling thresholds are known. LetK3
4

be the complete 3-graph on four vertices, and let K3
4 − e be the (unique) 3-graph

on four vertices with three edges. Recently Lo and Markström [18] proved that
t2(n,K

3
4 ) = (1+o(1))3n/4, and independently Keevash and Mycroft [9] determined

the exact value of t2(n,K
3
4 ) for sufficiently large n. In [19], Lo and Markström

proved that t2(n,K
3
4 − e) = (1 + o(1))n/2. Let C3

4 be the unique 3-graph on four
vertices with two edges. This 3-graph was denoted by K3

4 − 2e in [4], and by Y in
[8]. Here we follow the notation in [14] and view it as a cycle on four vertices. Kühn
and Osthus [14] showed that t2(n, C3

4) = (1 + o(1))n/4, and Czygrinow, DeBiasio
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2 JIE HAN AND YI ZHAO

and Nagle [4] recently determined t2(n, C3
4) exactly for large n. In this paper we

determine t1(n, C3
4) for sufficiently large n. From now on, we simply write C3

4 as C.
Previously we only knew t1(n,K

3
3 ) [11, 17] and t1(n,K

4
4 ) [10] exactly, and t1(n,K

5
5 )

[1], t1(n,K
3
3(m)) and t1(n,K

4
4 (m)) [18] asymptotically, where Kk

k denotes a single
k-edge, and Kk

k (m) denotes the complete k-partite k-graph with m vertices in each
part. So Theorem 1.1 below is one of the first (exact) results on vertex degree
conditions for hypergraph tiling.

Theorem 1.1 (Main Result). Suppose H is a 3-graph on n vertices such that
n ∈ 4N is sufficiently large and

δ1(H) ≥
(

n− 1

2

)

−
(3

4n

2

)

+
3

8
n+ c(n), (1.1)

where c(n) = 1 if n ∈ 8N and c(n) = −1/2 otherwise. Then H contains a perfect
C-tiling.

Proposition 1.2 below shows that Theorem 1.1 is best possible. Theorem 1.1 and

Proposition 1.2 together imply that t1(n, C) =
(

n−1
2

)

−
( 3

4
n
2

)

+ 3
8n+ c(n).

Proposition 1.2. For every n ∈ 4N there exists a 3-graph of order n with minimum

vertex degree
(

n−1
2

)

−
( 3

4
n
2

)

+ 3
8n+c(n)−1, which does not contain a perfect C-tiling.

Proof. We give two constructions similar to those in [4]. Let V = A∪̇B 1 with
|A| = n

4 − 1 and |B| = 3n
4 + 1. A Steiner system S(2, 3,m) is a 3-graph S on n

vertices such that every pair of vertices has degree one – so S(2, 3,m) contains no
copy of C. It is well-known that an S(2, 3,m) exists if and only if m ≡ 1, 3 mod 6.

Let H0 = (V,E0) be the 3-graph on n ∈ 8N vertices as follows. Let E0 be the
set of all triples intersecting A plus a Steiner system S(2, 3, 34n+1) in B. Since for

the Steiner system S(2, 3, 34n + 1), each vertex is in exactly 3
4n/2 = 3

8n edges, we

have δ1(H0) =
(

n−1
2

)

−
( 3n

4

2

)

+ 3
8n. Furthermore, since B contains no copy of C, the

size of the largest C-tiling in H0 is |A| = n
4 − 1. So H0 does not contain a perfect

C-tiling.
On the other hand, let H1 = (V,E1) be the 3-graph on n ∈ 4N \ 8N vertices as

follows. Let G be a Steiner system of order 3
4n+4. This is possible since 3

4n+4 ≡ 1
mod 6. Then pick an edge abc in G and let G′ be the induced subgraph of G on
V (G)\{a, b, c}. Finally let E1 be the set of all triples intersecting A plus G′ induced
on B. Since G is a regular graph with vertex degree 1

2 (
3
4n + 4 − 1) = 3

8n + 3
2 , we

have that δ1(G′) = 3
8n+ 3

2 − 3 = 3
8n− 3

2 . Thus, δ1(H1) =
(

n−1
2

)

−
( 3n

4

2

)

+ 3
8n− 3

2 .
As in the previous case, H1 does not contain a perfect C-tiling. �

As a typical approach of obtaining exact results, we distinguish the extremal
case from the nonextremal case and solve them separately. Given a 3-graph H of
order n, we say that H is C-free if H contains no copy of C. In this case, clearly,
every pair of vertices has degree at most one. Every vertex has degree at most n−1

2

because its link graph2 contains no vertex of degree two.

Definition 1.3. Given ǫ > 0, a 3-graph H on n vertices is called ǫ-extremal if there
is a set S ⊆ V (H), such that |S| ≥ (1 − ǫ)3n4 and H[S] is C-free.

1Throughout the paper, we write A∪̇B for A ∪ B when sets A, B are disjoint.
2Given 3-graph H = (V, E) and x ∈ V , the link graph of x has vertex set V \ {x} and the edge

set {e \ {x} : e ∈ E(H), x ∈ e}.
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Theorem 1.4 (Extremal Case). There exists ǫ > 0 such that for every 3-graph H
on n vertices, where n ∈ 4N is sufficiently large, if H is ǫ-extremal and satisfies
(1.1), then H contains a perfect C-tiling.
Theorem 1.5 (Nonextremal Case). For any ǫ > 0, there exists γ > 0 such that
the following holds. Let H be a 3-graph on n vertices, where n ∈ 4N is sufficiently
large. If H is not ǫ-extremal and satisfies δ1(H) ≥

(

7
16 − γ

) (

n
2

)

, then H contains a
perfect C-tiling.

Theorem 1.1 follows Theorems 1.4 and 1.5 immediately by choosing ǫ from The-
orem 1.4. The proof of Theorem 1.4 is somewhat routine and will be presented in
in Section 4.

The proof of Theorem 1.5, as the one of [4, Theorem 1.5], uses the absorbing
method initiated by Rödl, Ruciński and Szemerédi, e.g., [22, 23]. More precisely, we
find the perfect C-tiling by applying the Absorbing Lemma below and the C-tiling
Lemma [8, Lemma 2.15] together.

Lemma 1.6 (Absorbing Lemma). For any 0 < θ ≤ 10−4, there exist β > 0 and
integer n1.6 such that the following holds. Let H be a 3-graph of order n ≥ n1.6
with δ1(H) ≥ (14 + θ)

(

n
2

)

. Then there is a vertex set W ∈ V (H) with |W | ∈ 4N and
|W | ≤ 2049θn such that for any vertex subset U with U ∩ W = ∅, |U | ∈ 4N and
|U | ≤ βn both H[W ] and H[W ∪ U ] contain C-factors.
Lemma 1.7 (C-tiling Lemma, [8]). For any 0 < γ < 1, there exists an integer n1.7
such that the following holds. Suppose H is a 3-graph on n > n1.7 vertices with

δ1(H) ≥
(

7

16
− γ

)(

n

2

)

,

then H contains a C-tiling covering all but at most 219/γ vertices or H is 211γ-
extremal.

We postpone the proof of Lemma 1.6 to Section 3 and prove Theorem 1.5 now.

Proof of Theorem 1.5. Without loss of generality, assume 0 < ǫ < 1. Let γ = 2−13ǫ
and θ = 10−4γ (thus θ < 10−4). We find β by applying Lemma 1.6. Choose
n ∈ 4N such that n > max{n1.6, 2n1.7, 218/(γβ)}. Let H = (V,E) be a 3-graph

on n vertices. Suppose that H is not ǫ-extremal and δ1(H) ≥
(

7
16 − γ

) (

n
2

)

. First
we apply Lemma 1.6 to H and find the absorbing set W with |W | ≤ 2049θn. Let
H′ = H[V \ W ] and n′ = n − |W |. Note that 2|W | < 104θn = γn and thus
n′ > n− γn/2 > n1.7. Furthermore,

δ1(H′) ≥ δ1(H)− |W |(n− 1) ≥
(

7

16
− 2γ

)(

n

2

)

≥
(

7

16
− 2γ

)(

n′

2

)

.

Second we apply Lemma 1.7 to H′ with parameter 2γ in place of γ and derive that
either H′ is 212γ-extremal or H′ contains a C-tiling covering all but at most 218/γ
vertices. In the former case, since

(1− 212γ)
3n′

4
> (1 − 212γ)

3

4

(

n− γn

2

)

> (1− 213γ)
3n

4
= (1− ǫ)

3n

4
,

H is ǫ-extremal, a contradiction. In the latter case, let U be the set of uncovered
vertices in H′. Then we have |U | ∈ 4N and |U | ≤ 218/γ ≤ βn by the choice of n.
By Lemma 1.6, H[W ∪ U ] contains a perfect C-tiling. Together with the C-tiling
provided by Lemma 1.7, this gives a perfect C-tiling of H. �
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The Absorbing Lemma and C-tiling Lemma in [4] are not very difficult to prove
because of the co-degree condition. In contrast, our corresponding lemmas are
harder. Luckily we already proved Lemma 1.7 in [8] (as a key step for finding a
loose Hamilton cycle in 3-graphs). In order to prove Lemma 1.6, we will use the
Strong Regularity Lemma and an extension lemma from [3], which is a corollary of
the counting lemma.

The rest of the paper is organized as follows. We introduce the Regularity
Lemma in Section 2, prove Lemma 1.6 in Section 3, and finally prove Theorem 1.4
in Section 4.

2. Regularity Lemma for 3-graphs

2.1. Regular complexes. Before we can state the regularity lemma, we first define
a complex. A hypergraph H consists of a vertex set V (H) and an edge set E(H),
where every edge e ∈ E(H) is a non-empty subset of V (H). A hypergraph H is
a complex if whenever e ∈ E(H) and e′ is a non-empty subset of e we have that
e′ ∈ E(H). All the complexes considered in this paper have the property that every
vertex forms an edge.

For a positive integer k, a complex H is a k-complex if every edge of H consists
of at most k vertices. The edges of size i are called i-edges of H. Given a k-complex
H, for each i ∈ [k] we denote by Hi the underlying i-graph of H: the vertices of Hi

are those of H and the edges of Hi are the i-edges of H.
Given s ≥ k, a (k, s)-complex H is an s-partite k-complex, by which we mean

that the vertex set of H can be partitioned into sets V1, . . . , Vs such that every edge
of H is crossing, namely, meets each Vi in at most one vertex.

Given i ≥ 2, an i-partite i-graph H and an i-partite (i− 1)-graph G on the same
vertex set, we write Ki(G) for the family of all crossing i-sets that form a copy of

the complete (i− 1)-graph K
(i−1)
i in G. We define the density of H with respect to

G to be

d(H|G) := |Ki(G) ∩E(H)|
|Ki(G)|

if |Ki(G)| > 0,

and d(H|G) = 0 otherwise. More generally, if Q = (Q1, . . . , Qr) is a collection of r
subhypergraphs of G, we define Ki(Q) :=

⋃r
j=1 Ki(Qj) and

d(H|Q) :=
|Ki(Q) ∩ E(H)|

|Ki(Q)| if |Ki(Q)| > 0,

and d(H|Q) = 0 otherwise.
We say that H is (d, δ, r)-regular with respect to G if every r-tuple Q with

|Ki(Q)| > δ|Ki(G)| satisfies |d(H|Q) − d| ≤ δ. Instead of (d, δ, 1)-regularity we
simply refer to (d, δ)-regularity.

Given a (3, 3)-complexH, we say thatH is (d3, d2, δ3, δ, r)-regular if the following
conditions hold:

(1) For every pair K of vertex classes, H2[K] is (d2, δ)-regular with respect to
H1[K] unless e(H2[K]) = 0, where Hi[K] is the restriction of Hi to the
union of all vertex classes in K.

(2) H3 is (d3, δ3, r)-regular with respect to H2 unless e(H3) = 0.
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2.2. Statement of the Regularity Lemma. In this section we state the version
of the regularity lemma due to Rödl and Schacht [25] for 3-graphs, which is almost
the same as the one given by Frankl and Rödl [6]. We need more notation. Suppose
that V is a finite set of vertices and P(1) is a partition of V into sets V1, . . . , Vt,
which will be called clusters. Given any j ∈ [3], we denote by Crossj = Crossj(P(1))
the set of all crossing j-subsets of V . For every set A ⊆ [t] we write CrossA for all
the crossing subsets of V that meet Vi precisely when i ∈ A. Let PA be a partition
of CrossA. We refer to the partition classes of PA as cells. Let P(2) be the union
of all PA with |A| = 2 (so P(2) is a partition of Cross2). We call P = {P(1),P(2)}
a family of partitions on V .

Given P = {P(1),P(2)} and K = vivjvk with vi ∈ Vi, vj ∈ Vj and vk ∈ Vk,
the polyad P (K) is the 3-partite 2-graph on Vi ∪ Vj ∪ Vk with edge set C(vivj) ∪
C(vivk) ∪ C(vjvk), where e.g., C(vivj) is the cell in Pi,j that contains vivj . We
say that P (K) is (d2, δ)-regular if all C(vivj), C(vivk), C(vjvk) are (d2, δ)-regular

with respect to their underlying sets. We let P̂(2) be the family of all P (K) for
K ∈ Cross3.

Now we are ready to state the regularity lemma for 3-graphs.

Theorem 2.1 (Rödl and Schacht [25], Theorem 17). For all δ3 > 0, t0 ∈ N and
all functions r : N → N and δ : N → (0, 1], there are d2 > 0 such that 1/d2 ∈ N

and integers T, n0 such that the following holds for all n ≥ n0 that are divisible
by T !. Let H be a 3-graph of order n. Then there exists a family of partitions
P = {P(1),P(2)} of the vertex set V of H such that

(1) P(1) = {V1, . . . , Vt} is a partition of V into t clusters of equal size, where
t0 ≤ t ≤ T ,

(2) P(2) is a partition of Cross2 into at most T cells,
(3) for every K ∈ Cross3, P (K) is (d2, δ(T ))-regular,

(4)
∑ |K3(P )| ≤ δ3|V |3, where the summation is over all P ∈ P̂(2) such that
H is not (d, δ3, r(T ))-regular with respect to P for any d > 0.

2.3. The Reduced 3-graph and the Extension Lemma. Given t0 ∈ N and
δ3 > 0, we choose functions r : N → N and δ : N → (0, 1] such that the output of
Theorem 2.1 satisfies the following hierarchy:

1

n0
≪

{

1

r
, δ

}

≪
{

δ3, d2,
1

T

}

, (2.1)

where r = r(T ) and δ = δ(T ). Let H be a 3-graph on V of order n ≥ n0 such that
T ! divides n. Suppose that P = {P(1),P(2)} satisfies Properties (1)–(4) given in
Theorem 2.1. For any d > 0, the reduced 3-graph R = R(H,P , d) is defined as the
3-graph whose vertices are clusters V1, . . . , Vt and three clusters Vi, Vj , Vk form an
edge of R if there is some polyad P on Vi ∪Vj ∪Vk such that H is (d′, δ3, r)-regular
with respect to P for some d′ ≥ d.

Fact 2.2. Let R = R(H,P , d) be the reduced 3-graph defined above. If ViVjVk ∈
E(R), then there exists a (3, 3)-complex H∗ on Vi ∪ Vj ∪ Vk such that H∗

3 is a
subhypergraph of H and H∗ is (d′, d2, δ3, δ, r)-regular for some d′ ≥ d.

Proof. Since ViVjVk ∈ E(R), there exists a polyad P on Vi ∪ Vj ∪ Vk such that
H is (d′, δ3, r)-regular with respect to P for some d′ ≥ d. Let H∗

2 = P and H∗
3 =

E(H)∩K3(P ). By Theorem 2.1, H∗ is a (d′, d2, δ3, δ, r)-regular (3, 3)-complex. �
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The following lemma says that the reduced 3-graph almost inherits the minimum
degree condition from H. Its proof is almost identical to the one of [13, Lemma
4.3], which gives the corresponding result on co-degree. We thus omit the proof.

Lemma 2.3. In addition to (2.1), suppose that

δ3, 1/t0 ≪ d ≪ θ ≪ µ < 1.

Let H be a 3-graph of order n ≥ n0 such that T ! divides n and δ1(H) ≥ (µ+ θ)
(

n
2

)

.
Then in the reduced 3-graph R = R(H,P , d), all but at most θt vertices v ∈ V (R)
satisfy degR(v) ≥ µ

(

t
2

)

.

Suppose that H is a (3, 3)-complex with vertex classes V1, V2, V3, and G is a
(3, 3)-complex with vertex classes X1, X2, X3. A subcomplex H′ of H is called a
partition-respecting copy of G if H′ is isomorphic to G and for each i ∈ [3] the
vertices corresponding to those in Xi lie within Vi. We write |G|H for the number
of (labeled) partition-respecting copies of G in H.

Roughly speaking, the Extension Lemma [3, Lemma 5] says that if G′ is an
induced subcomplex of G, and H is suitably regular, then almost all copies of G′ in
H can be extended to a large number of copies of G in H. Below we only state it
for (3, 3)-complexes.

Lemma 2.4 (Extension Lemma [3]). Let r, b, b′,m0 be positive integers, where
b′ < b, and let c, θ, d2, d3, δ, δ3 be positive constants such that 1/d2 ∈ N and

1/m0 ≪ {1/r, δ} ≪ c ≪ min{δ3, d2} ≤ δ3 ≪ θ, d3, 1/b.

Then the following holds for all integers m ≥ m0. Suppose that G is a (3, 3)-complex
on b vertices with vertex classes X1, X2, X3 and let G′ be an induced subcomplex of
G on b′ vertices. Suppose also that H∗ is a (d3, d2, δ3, δ, r)-regular (3, 3)-complex
with vertex classes V1, V2, V3, all of size m and e(H∗) > 0. Then all but at most
θ|G′|H∗ labeled partition-respecting copies of G′ in H∗ are extendible to at least

cmb−b′ labeled partition-respecting copies of G in H∗.

3. Proof of Lemma 1.6

In this section we prove Lemma 1.6 by using the lemmas introduced in Section 2.
We remark that the constant 1

4 in Lemma 1.6 is best possible because if H consists

of two disjoint cliques of order n/2 each, then δ1(H) is about 1
4

(

n
2

)

and any 4-vertex
set that intersects both cliques can not be absorbed.

For α > 0, i ∈ N and two vertices u, v ∈ V , we say that u is (α, i)-reachable to
v if and only if there are at least αn4i−1 (4i− 1)-sets W such that both H[u ∪W ]
and H[v ∪W ] contain C-factors. In this case, we call W a reachable set for u and
v. Similar definitions for absorbing method can be found in [18, 19]. Suppose that

1/n0 ≪ {1/r, δ} ≪ c ≪ min {δ3, 1/T, d2} ≤ δ3, 1/t0 ≪ d ≪ θ ≤ 10−4,

and n0 ≥ 4T !/θ. LetH be a 3-graph on n ≥ n0+T ! vertices with δ1(H) ≥ (14+θ)
(

n
2

)

.
We will prove that almost all pairs of vertices of H are (β0, 2)-reachable to each
other, where β0 = c2/(5T 7).

Claim 3.1. There are at most 4θn2 pairs u, v ∈
(

V
2

)

such that u is not (β0, 2)-
reachable to v.
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Proof. Let n′ ∈ N such that n− n′ < T ! and T ! divides n′. Then n′ ≥ n0 ≥ 4T !/θ.
As θ ≤ 10−4, we have n′ ≥ 40000

40001n.
Let H′ be an induced subhypergraph of H on any n′ vertices. Since n ≥ 4T !/θ,

we have

δ1(H′) ≥
(

1

4
+ θ

)(

n

2

)

− T !(n− 1) ≥
(

1

4
+

θ

2

)(

n′

2

)

.

We apply Theorem 2.1 to H′, and let P be the the family of partitions, with clusters
V1, . . . , Vt. Let m = n′/t be the size of each cluster. Define the reduced 3-graph
R = R(H′,P , d) on these clusters as in Section 2.3.

Let I be the set of i ∈ [t] such that degR(Vi) < (14 +
θ
4 )
(

t
2

)

and let VI =
⋃

i∈I Vi.
By Lemma 2.3, we have |I| ≤ θt/4 and thus |VI | ≤ (θt/4) · m = θn′/4. Let N(i)
be the set of vertices Vj ∈ V (R) \ {Vi} such that {Vi, Vj} ⊆ e for some e ∈ R. For
any i ∈ [t] \ I,

(

1

4
+

θ

4

)(

t

2

)

≤ degR(Vi) ≤
(|N(i)|

2

)

implies that |N(i)| ≥ (12 + θ
8 )t. Thus |N(i) ∩N(j)| ≥ θ

4 t for any i, j ∈ [t] \ I.
Fix two not necessarily distinct i, j /∈ I and Vk ∈ N(i) ∩N(j). We pick Vi′ and

Vj′ such that ViVkVi′ , VjVkVj′ ∈ R. Note that it is possible to have i′ = j′ or i′ = j
or j′ = i. Let H∗ be the (d3, d2, δ3, δ, r)-regular (3, 3)-complex with vertex classes
Vi, Vk, Vi′ provided by Fact 2.2, where d3 ≥ d.

Let G be the (3,3)-complex on X1 = {x, u}, X2 = {y, v}, X3 = {w} such that
G3 = {xvw, uyw, uvw} and G2 is the family of all 2-subsets of the members of G3.
Note that in G3 both {x, u, v, w} and {y, u, v, w} span copies of C. Let G′ be the
induced subcomplex of G on {u, v}. Since H∗

3, the highest level of the complex H∗,
is not empty, by Lemma 2.4, all but at most θm2 ordered pairs (vi, vk) ∈ Vi × Vk

are extendible to at least cm3 labeled copies of G in H∗, which implies that vi is
(cm3n−3, 1)-reachable to vk. By averaging, all but at most 3θm vertices vi ∈ Vi are
(cm3n−3, 1)-reachable to at least 2

3m vertices of Vk. We apply the same argument
on Vj , Vk, Vj′ and obtain that for all but at most 3θm vertices vj ∈ Vj , vj is
(cm3n−3, 1)-reachable to at least 2

3m vertices of Vk. Thus for those vi and vj , there

are 1
3m vertices vk ∈ Vk such that both vi and vj are (cm3n−3, 1)-reachable to vk.

Fix such vi, vj , vk. There are at least cm3 −m2 reachable 3-sets for vi and vk from
(Vi, Vi′ , Vk) avoiding vj .

3 Fix one such 3-set, the number of 3-sets from (Vj , Vj′ , Vk)
intersecting its three vertices is at most 3m2. So the number of reachable 7-sets for
vi, vj is at least

m

3
· (cm3 −m2) · (cm3 − 3m2) >

c2

4
m7 ≥ c2

4

(

n′

T

)7

>
c2

5

n7

T 7
= β0n

7,

which means that vi is (β0, 2)-reachable to vj , where the last inequality holds be-

cause (n
′

n )7 ≥ (4000040001 )
7 > 4

5 . Note that this is true for all but at most 2 · 3θm ·m =

6θm2 pairs of vertices in (Vi, Vj). Since there are at most
(

t
2

)

+ t choices for Vi and
Vj , |VI | ≤ θn′/4, and T ! ≤ θn′/4, there are at most

6θm2

((

t

2

)

+ t

)

+ (|VI |+ T !)(n− 1) ≤ 3θm2(t2 + t) +
θ

2
n′(n− 1) ≤ 4θn2

pairs u, v in V (H) such that u is not (β0, 2)-reachable to v. �

3Recall that it is possible to have vj ∈ Vi or vj ∈ Vi′ (when j = i or j = i′).
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Proof of Lemma 1.6. Let β = β10
0 . Let V ′ be the set of vertices v ∈ V such that at

least n
64 vertices are not (β0, 2)-reachable to v. By Claim 3.1, |V ′| ≤ 512θn.

There are two steps in our proof. In the first step, we build an absorbing family
F ′ such that for any small portion of vertices in V (H) \ V ′, we can absorb them
using members of F ′. In the second step, we put the vertices in V ′ not covered by
any member of F ′ into a set A of copies of C. Thus, the union of F ′ and A gives
the desired absorbing set.

We say that a set A absorbs another set B if A ∩ B = ∅ and both H[A] and
H[A ∪ B] contains C-factors. Fix any 4-set S = {v1, v2, v3, v4} ∈ V \ V ′, we will
show that there are many 24-sets absorbing S. First, we find vertices u2, u3, u4

such that

• v1u2u3u4 spans a copy of C,
• ui is (β0, 2)-reachable to vi, for i = 2, 3, 4.

For the first condition, consider the link graph Hv1 of v1, which contains at least
(14 + θ)

(

n
2

)

edges. By convexity, the number of paths of length two in Hv1 is

∑

x∈V \{v1}

(

degHv1

(x)

2

)

≥ (n− 1)

( 1
n−1

∑

x∈V \{v1}
degHv1

(x)

2

)

≥ (n− 1)

(

(14 + θ)n

2

)

>
1

32
n3,

where the last inequality holds because θn ≫ 1. Since v1u2u3u4 spans a copy of C
if u2u3u4 is a path of length two in Hv1 , then there are at least 1

32n
3 choices for

such u2u3u4. Moreover, the number of triples violating the second condition is at
most 3 · n

64 ·
(

n
2

)

< 3
128n

3. Thus, there are at least 1
128n

3 such u2u3u4 satisfying both
of the conditions.

Second, we find reachable 7-sets Ci for ui and vi, for i = 2, 3, 4, which is guar-
anteed by the second condition above. Since in each step we need to avoid at most
21 previously selected vertices, there are at least β0

2 n7 choices for each Ci. In total,

we get 1
128n

3 · (β0

2 n7)3 > β4
0n

24 24-sets F = C1 ∪ C2 ∪ C3 ∪ {u2, u3, u4} (because

β0 < c2 < 10−8). It is easy to see that F absorbs S. Indeed, H[F ] has a C-factor
since Ci ∪ {ui} spans two copies of C for i = 2, 3, 4. In addition, H[F ∪ S] has a
C-factor since v1u2u3u4 spans a copy of C and Ci ∪ {vi} spans two copies of C for
i = 2, 3, 4.

Now we choose a family F ⊂
(

V
24

)

of 24-sets by selecting each 24-set randomly

and independently with probability p = β5
0n

−23. Then |F| follows the binomial
distribution B(

(

n
24

)

, p) with expectation E(|F|) = p
(

n
24

)

. Furthermore, for every
4-set S, let f(S) denote the number of members of F that absorb S. Then f(S)
follows the binomial distribution B(N, p) with N ≥ β4

0n
24 by previous calculation.

Hence E(f(S)) ≥ pβ4
0n

24. Finally, since there are at most
(

n
24

)

· 24 ·
(

n
23

)

< 1
2n

47

pairs of intersecting 24-sets, the expected number of the intersecting pairs of 24-sets
in F is at most p2 · 1

2n
47 = β10

0 n/2.
Applying Chernoff’s bound on the first two properties and Markov’s bound on

the last one, we know that, with positive probability, F satisfies the following
properties:

• |F| ≤ 2p
(

n
24

)

< β5
0n,

• for any 4-set S, f(S) ≥ p
2 · β4

0n
24 = β9

0n/2,

• the number of intersecting pairs of elements in F is at most β10
0 n.
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Thus, by deleting one member from each intersecting pair and the non-absorbing
members from F , we obtain a family F ′ consisting of at most β5

0n 24-sets and for
each 4-set S, at least β9

0n/2− β10
0 n > β10

0 n = βn members in F ′ absorb S.
At last, we will greedily build A, a collection of copies of C to cover the vertices

in V ′ not already covered by any member of F ′. Indeed, assume that we have built
a < |V ′| ≤ 512θn copies of C. Together with the vertices in F ′, there are at most
4a + 24β5

0n < 2049θn vertices already selected. Then at most 2049θn2 pairs of
vertices intersect these vertices. So for any remaining vertex v ∈ V ′, there are at
least

deg(v)− 1025θn2 ≥
(

1

4
+ θ

)(

n

2

)

− 2049θn2 > n/2

edges containing v and not intersecting the existing vertices, where the last inequal-
ity follows from θ ≤ 10−4. So there is a path of length two in the link graph of v
not intersecting the existing vertices, which gives a copy of C containing v.

Combining the vertices covered by A and F ′ together, we get the desired ab-
sorbing set W satisfying |W | ≤ 4 · 512θn+ 24β5

0n < 2049θn. �

4. Proof of Theorem 1.4

In this section we prove Theorem 1.4. Our proof is similar to the one of [4,
Theorem 1.4]. First let us start with some notation. Fix a 3-graph H = (V,E).
Recall that the link graph of a vertex v ∈ V is a 2-graph on V \ {v}. Then for a set

E of pairs in
(

V
2

)

(which can be viewed as a 2-graph), let degH(v, E) = |NH(v)∩E|.
When E =

(

X
2

)

for some X ⊆ V , we write degH(v,
(

X
2

)

) as degH(v,X) for short.

Let degH(v, E) = |E ∩
(

V \{v}
2

)

| − degH(v, E). Given not necessarily disjoint subsets
X,Y, Z of V , define

eH(XY Z) = {xyz ∈ E(H) : x ∈ X, y ∈ Y, z ∈ Z}

eH(XY Z) =

{

xyz ∈
(

V

3

)

\ E(H) : x ∈ X, y ∈ Y, z ∈ Z

}

.

We often omit the subscript H if it is clear from the context.
The following fact is the only place where we need the exact degree condition

(1.1).

Fact 4.1. Let H be a 3-graph on n vertices with n ∈ 4N satisfying (1.1). If
S ⊆ V (H) spans no copy of C, then |S| ≤ 3

4n.

Proof. Assume to the contrary, that S ⊆ V (H) spans no copy of C and is of size
at least 3

4n + 1. Take S0 ⊆ S with size exactly 3
4n + 1. Then for any v ∈ S0,

deg(v, S0) ≤ |S0|−1
2 = 3

8n. We split into two cases.

Case 1. n ∈ 8N.

In this case, for any v ∈ S0, since deg(v, S0) ≤ 3
8n, we have that

deg(v) = deg(v, S0) + deg

(

v,

(

V

2

)

\
(

S0

2

))

≤ 3

8
n+

(

n− 1

2

)

−
(3

4n

2

)

< δ1(H),

contradicting (1.1).

Case 2. n ∈ 4N \ 8N.
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In this case, for any v ∈ S0, deg(v, S0) ≤ 3
8n implies that deg(v, S0) ≤ 3

8n − 1
2

because n ∈ 4N \ 8N. So we have

3e(S0) =
∑

v∈S0

deg(v, S0) ≤
(

3

8
n− 1

2

)(

3

4
n+ 1

)

=
3n− 4

8
· 3n+ 4

4
.

However, neither 3n−4
8 or 3n+4

4 is a multiple of 3. Thus
∑

v∈S0
deg(v, S0) <

3n−4
8 ·

3n+4
4 , which implies that there exists v0 ∈ S0 such that deg(v0, S0) < 3

8n − 1
2 .

Consequently,

deg(v0) = deg(v0, S0)+deg

(

v0,

(

V

2

)

\
(

S0

2

))

<
3

8
n−1

2
+

(

n− 1

2

)

−
(3

4n

2

)

≤ δ1(H),

contradicting (1.1). �

Proof of Theorem 1.4. Take ǫ = 10−18 and let n be sufficiently large. We write
α = ǫ1/3 = 10−6. Let H = (V,E) be a 3-graph of order n satisfying (1.1) which
is ǫ-extremal, namely, there exists a set S ⊆ V (H) such that |S| ≥ (1 − ǫ)3n4 and
H[S] is C-free.

Let C ⊆ V be a maximum set for which H[C] is C-free. Define

A =

{

x ∈ V \ C : deg(x,C) ≥ (1 − α)

(|C|
2

)}

, (4.1)

and B = V \ (A ∪ C). We first claim the following bounds of |A|, |B|, |C|.
Claim 4.2. |A| > n

4 (1 − 4α2), |B| < α2n and 3n
4 (1− ǫ) ≤ |C| ≤ 3n

4 .

Proof. The estimate on |C| follows from our hypothesis and Fact 4.1. We now

estimate |B|. For any v ∈ C, we have deg(v, C) ≤ |C|−1
2 , which gives deg(v, C) ≥

(

|C|−1
2

)

− |C|−1
2 . By (1.1), deg(v) ≤

( 3

4
n
2

)

− 3
8n+ 1

2 . Thus

deg

(

v,

(

V

2

)

\
(

C

2

))

≤
(3

4n

2

)

− 3

8
n+

1

2
−
(|C| − 1

2

)

+
|C| − 1

2

≤
(3

4n

2

)

−
(|C| − 1

2

)

because |C| ≤ 3

4
n

=

(

3

4
n− |C|+ 1

)

· 1
2

(

3

4
n+ |C| − 2

)

.

The estimate on |C| gives 3
4n ≤ |C|

1−ǫ < (1 + 2ǫ)(|C| − 1). Hence

deg

(

v,

(

V

2

)

\
(

C

2

))

<

(

3

4
n− |C|+ 1

)

· 1
2

(

(1 + 2ǫ)(|C| − 1) + |C| − 1

)

=

(

3

4
n− |C|+ 1

)

· (1 + ǫ)(|C| − 1) (4.2)

≤
(

3

4
ǫn+ 1

)

· (1 + ǫ)(|C| − 1) < ǫn · (|C| − 1). (4.3)

Consequently e(CC(A ∪B)) < 1
2 |C| · ǫn · (|C| − 1) = ǫn ·

(

|C|
2

)

. Together with the
definition of A and B, we have

(|A ∪B| − ǫn)

(|C|
2

)

< e(CC(A ∪B)) ≤ (1− α)

(|C|
2

)

|B|+
(|C|

2

)

|A|,
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so that |A ∪ B| − ǫn < |A| + |B| − α|B|. Since A and B are disjoint, we get that
|B| < α2n. Finally, |A| = n− |B| − |C| > n− α2n− 3

4n = n
4 (1− 4α2). �

In the rest of the section, we will build four vertex-disjoint C-tilings Q,R,S, T
whose union is a perfect C-tiling of H. In particular, when |A| = n/4, B = ∅ and
|C| = 3n/4, we have Q = R = S = ∅ and the perfect C-tiling T of H will be
provided by Lemma 4.4. The purpose of C-tilings Q,R,S is covering the vertices
of B and adjusting the sizes of A and C such that we can apply Lemma 4.4 after
Q,R,S are removed.

The C-tiling Q. Let Q be a largest C-tiling in H on B ∪C and q = |Q|. We claim
that |B|/4 ≤ q ≤ |B|. Since C contains no copy of C, every element of Q contains
at least one vertex of B and consequently q ≤ |B|. On the other hand, suppose
that q < |B|/4, then (B ∪ C) \ V (Q) spans no copy of C and has order

|B|+ |C| − 4q > |B|+ |C| − |B| = |C|.
which contradicts the assumption that C is a maximum C-free subset of V (H).

Claim 4.3. q + |A| ≥ n
4 .

Proof. Let l = n
4 − |A|. There is nothing to show if l ≤ 0. If l = 1, we have

|B ∪ C| = 3
4n + 1, and thus Fact 4.1 implies that H[B ∪ C] contains a copy of C.

Thus q ≥ 1 = l and we are done. We thus assume l ≥ 2 and l > q ≥ |B|/4, which
implies that |B| ≤ 4(l − 1). In this case |B| ≥ 2 because |C| ≤ 3

4n.

For any v ∈ C, by (4.2), we have deg(v,BC) <
(

3
4n− |C|+ 1

)

· (1 + ǫ)(|C| − 1).

By definition, 3
4n− |C| = |A|+ |B| − n

4 = |B| − l. So we get

e(BCC) <
1

2
|C|

(

3

4
n− |C|+ 1

)

· (1 + ǫ)(|C| − 1) = (1 + ǫ)(|B| − l + 1)

(|C|
2

)

.

Together with |B| ≤ 4(l − 1), this implies

e(BCC) > (|B| − (1 + ǫ)(|B| − l + 1))

(|C|
2

)

= ((1 + ǫ)(l − 1)− ǫ|B|)
(|C|

2

)

≥ ((1 + ǫ)(l − 1)− 4ǫ(l − 1))

(|C|
2

)

= (1− 3ǫ)(l − 1)

(|C|
2

)

. (4.4)

On the other hand, we want to bound e(BCC) from above and then derive a
contradiction. Assume that Q′ is the maximum C-tiling of size q′ such that each
element of Q′ contains exactly one vertex in B and three vertices in C. Note that
q′ ≥ 1 because C is a maximum C-free set and B 6= ∅. Write BQ′ for the set of
vertices of B covered by Q′ and CQ′ for the set of vertices of C covered by Q′.
Clearly, |BQ′ | = q′, |CQ′ | = 3q′ and q′ ≤ q ≤ l − 1. For any vertex v ∈ B \ BQ′ ,
deg(v, C) ≤ 3q′(|C| − 1) + 1

2 |C| < 4q′|C|. Together with the definition of B and
Claim 4.2, we get

e(BCC) = e(BQ′CC) + e((B \BQ′)CC)

≤ q′(1 − α)

(|C|
2

)

+ |B| · 4q′|C| < q′(1− α)

(|C|
2

)

+ 4α2nq′|C|. (4.5)
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Putting (4.4) and (4.5) together and using q′ ≤ l − 1 and |C| > n/2, we get

1− 3α3 = 1− 3ǫ < 1− α+
8α2n

|C| − 1
< 1− α+ 16α2 < 1− α

2
,

which is a contradiction since α = 10−6. �

Let B1 and C1 be the vertices in B and C not covered by Q, respectively. By
Claim 4.2,

|C1| ≥ |C| − 3q ≥ |C| − 3|B| > 3

4
n(1− ǫ)− 3α2n >

3

4
n− 4α2n+ 1. (4.6)

The C-tiling R. Next we will build our C-tiling R which covers B1 such that every
element in R contains one vertex from A, one vertex from B1 and two vertices from
C1. Since Q is a maximum C-tiling on B∪C, for every vertex v ∈ B1, we have that

deg(v, C1) ≤ |C1|
2 . Together with (4.6), this implies that

deg(v, C1) ≥
(|C1|

2

)

− |C1|
2

=
|C1|(|C1| − 2)

2
>

(34n− 4α2n)2 − 1

2
.

Together with (1.1), we get that for every v ∈ B1,

deg(v,AC1) <

(3
4n

2

)

− 3

8
n+

1

2
− (34n− 4α2n)2 − 1

2

=
1

2

(

3

2
n− 4α2n

)

4α2n− 3

4
n+ 1 < 3α2n2.

By Claim 4.2 and (4.6), we have that |A||C1| > (1−4α2)n4 ·(34−4α2)n > 3
17n

2. Thus,

deg(v,AC1) < 3α2n2 < 17α2|A||C1|, equivalently, deg(v,AC1) > (1−17α2)|A||C1|.
For every v ∈ B1, we greedily pick a copy of C containing v by picking a path of
length two with center in A and two ends in C1 from the link graph of v. Suppose
we have found i < |B1| copies of C, then for any remaining vertex v ∈ B1, by Claim
4.2, the number of pairs not intersecting the existing vertices is at least

deg(v,AC1)− 3i · (|A| + |C1|) > (1 − 17α2)|A||C1| − 3|B1| · 2|C1| > |A|,
which guarantees a path of length two centered at A, so a copy of C containing v.

Now all vertices of B are covered by Q or R. Let A2 denote the set of vertices of
A not covered by Q or R and define C2 similarly. By the definition of Q and R, we
have |A2| = |A|− |B1| and |C2| = |B|+ |C|−4q−3|B1|. Define s = 1

4 (3|A2|− |C2|).
Then

s =
1

4
(3|A| − 3|B1| − |B| − |C|+ 4q + 3|B1|) =

1

4
(4|A| − n+ 4q) = q + |A| − n

4
.

Thus s ∈ Z, and s ≥ 0 by Claim 4.3. Since q ≤ |B|, by Claim 4.2,

s = q + |A| − n

4
≤ |B|+ |A| − n

4
=

3

4
n− |C| ≤ 3

4
ǫn. (4.7)

The definition of Q and R also implies that |C \ C2| ≤ 3|B| and
|C2| ≥ |C| − 3|B| > |C| − 3 · 2α2|C| = (1− 6α2)|C|, (4.8)

where the second inequality follows from |B| < α2n < 2α2|C|.
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The C-tiling S. Next we will build our C-tiling S of size s such that every element
of S contains two vertices in A2 and two vertices in C2. Note that for any vertex
v ∈ A2, by (4.1) and (4.8),

deg(v, C2) ≤ α

(|C|
2

)

≤ α

( 1
1−6α2 |C2|

2

)

< 2α

(|C2|
2

)

.

Suppose that we have found i < s copies of C of the desired type. We next select

two vertices a1, a2 in A2 and note that they have at least (1 − 4α)
(

|C2|
2

)

common
neighbors in C2. By (4.7) and(4.8),

(1− 4α)

(|C2|
2

)

− 2s|C2| ≥ (1 − 4α)

(|C2|
2

)

− 3

2
ǫn|C2| ≥ (1− 5α)

(|C2|
2

)

> 0.

So we can pick a common neighbor c1c2 of a1 and a2 from unused vertices of C2

such that {a1, a2, c1, c2} spans a copy of C.
Let A3 be the set of vertices of A not covered by Q,R,S and define C3 similarly.

Then |A3| = |A2| − 2s = 1
2 (|C2| − |A2|) and |C3| = |C2| − 2s = 3

2 (|C2| − |A2|), so
|C3| = 3|A3|. Furthermore, by (4.7) and (4.8), we have

|C3| = |C2| − 2s ≥ (1− 6α2)|C| − 3

2
ǫn > (1 − 6α2)|C| − 3ǫ|C| > (1 − 7α2)|C|.

Hence, for every vertex v ∈ A3,

deg(v, C3) ≤ α

(|C|
2

)

≤ α

( 1
1−7α2 |C3|

2

)

< 2α

(|C3|
2

)

.

Since |C3| ≥ (1 − 7α2)|C| ≥ (1 − 7α2)(1 − ǫ)34n, by (4.3), we know that for any
vertex v ∈ C3,

deg(v,A3C3) < ǫn · (|C| − 1) < 2ǫ|C3|2 = 6ǫ|A3||C3|.

The C-tiling T . Finally we use the following lemma to find a C-tiling T covering
A3 and C3 such that every element of T contains one vertex in A3 and three vertices
in C3. Note that in [4], this was done by applying a general theorem of Pikhurko [20,
Theorem 3] (but impossible here because we do not have the co-degree condition).

Lemma 4.4. Suppose that 0 < ρ ≤ 2 ·10−6 and n4.4 is sufficiently large. Let H be
a 3-graph on n ≥ n4.4 vertices with V (H) = X∪̇Z such that |Z| = 3|X |. Further,

assume that for every vertex v ∈ X, deg(v, Z) ≤ ρ
(

|Z|
2

)

and for every vertex v ∈ Z,

deg(v,XZ) ≤ ρ|X ||Z|. Then H contains a perfect C-tiling.
Applying Lemma 4.4 with X = A3, Z = C3, ρ = 2α finishes the proof of

Theorem 1.4. �

Proof of Lemma 4.4. Let us outline the proof first. Let X = {x1, . . . , x|X|}. Our
goal is to partition the vertices of Z into |X | triples {Q1, . . . , Q|X|} such that for
every i = 1, . . . , |X |, {xi} ∪ Qi spans a copy of C – in this case we say Qi and
xi are suitable for each other. From our assumptions, every x ∈ X is suitable
for most triples of C, and most triples of C are suitable for most vertices of X .
However, once we partition C into a particular set of triples {Q1, . . . , Q|X|}, we
can not guarantee that every vertex in X is suitable for most Qi’s. To handle this
difficulty, we use the absorbing method – first find a small number of triples that
can absorb any small(er) amount of vertices of X and then extend it to a partition
{Q1, . . . , Q|X|} covering Z, and finally apply the greedy algorithm and the Marriage
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Theorem to find a perfect matching between X and {Q1, . . . , Q|X|}. Note that a
similar approach was outlined in [10] to prove the extremal case.

We now start our proof. Let G be the graph of all pairs uv in Z such that
deg(uv,X) ≥ (1−√

ρ)|X |. We claim that

δ(G) ≥ |Z| − √
ρ|Z| − 1. (4.9)

Otherwise, some vertex v ∈ Z satisfies degG(v) < |Z| − √
ρ|Z| − 1, equivalently,

degG(v) >
√
ρ|Z|. As each u /∈ NG(v) satisfies deg(uv,X) >

√
ρ|X |, we have

deg(v,XZ) >
√
ρ|Z| · √ρ|X | = ρ|Z||X |,

contradicting our assumption. We call a triple z1z2z3 in Z good if G[z1z2z3] contains
at least two edges, otherwise bad. Since a bad triple contains at least two non-edges
of G, by (4.9), the number of bad triples in Z is at most

∑

x∈Z

(

degG(x)

2

)

≤ |Z|
(√

ρ|Z|
2

)

≤ 3ρ

(|Z|
3

)

.

If z1z2z3 is good, then by the definition of G, it is suitable for at least (1− 2
√
ρ)|X |

vertices of X . On the other hand, for any x ∈ X , consider the link graph Hx of

x on Z, which contains at least (1 − ρ)
(

|Z|
2

)

edges. By convexity, the number of
triples z1z2z3 suitable for x is at least

1

3

∑

z∈Z

(

degHx

(z)

2

)

≥ 1

3
|Z|

(

(1− ρ)(|Z| − 1)

2

)

> (1 − 2ρ)

(|Z|
3

)

,

where the last inequality holds because |Z| is large enough. Thus, the number of

good triples z1z2z3 suitable for x is at least (1− 2ρ− 3ρ)
(

|Z|
3

)

= (1 − 5ρ)
(

|Z|
3

)

.
Let F0 be the set of good triples in Z. We want to form a family of disjoint

good triples in Z such that for any x ∈ X , many triples from this family are
suitable for x. To achieve this, we choose a subfamily F from F0 by selecting
each member randomly and independently with probability p = 2ρ1/4|Z|−2. Then
|F| follows the binomial distribution B(|F0|, p) with expectation E(|F|) = p|F0| ≤
p
(

|Z|
3

)

. Furthermore, for every x ∈ X , let f(x) denote the number of members of F
that are suitable for x. Then f(x) follows the binomial distribution B(N, p) with

N ≥ (1−5ρ)
(

|Z|
3

)

by previous calculation. Hence E(f(x)) ≥ p(1−5ρ)
(

|Z|
3

)

. Finally,

since there are at most
(

|Z|
3

)

· 3 ·
(

|Z|−1
2

)

< 1
4 |Z|5 pairs of intersecting triples, the

expected number of the intersecting triples in F is at most p2 · 1
4 |Z|5 = ρ1/2|Z|.

By applying Chernoff’s bound on the first two properties below and Markov’s
bound on the last one, we can find a family F ⊆ F0 that satisfies

• |F| ≤ 2p
(

|Z|
3

)

< 2
3ρ

1/4|Z|,
• for any vertex x ∈ X , at least 1

2p · (1 − 5ρ)
(

|Z|
3

)

> 1
6ρ

1/4(1 − 6ρ)|Z| triples
in F are suitable for x,

• the number of intersecting pairs of triples in F is at most 2ρ1/2|Z|.
After deleting one triple from each of the intersecting pairs from F , we obtain a
subfamily F ′ consisting of at most 2

3ρ
1/4|Z| disjoint good triples in Z and for each

x ∈ X , at least

ρ1/4

6
(1 − 6ρ)|Z| − 2ρ1/2|Z| > ρ1/4

12
|Z| (4.10)

members of F ′ are suitable for x, where the inequality holds because ρ ≤ 2 · 10−6.
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Denote F ′ by {Q1, . . . , Qq} for some q ≤ 2
3ρ

1/4|Z|. Let Z1 be the set of vertices
of Z not in any element of F ′. Define G′ = G[Z1]. Note that |Z1| = |Z| − 3q. For
every v ∈ Z1, degG′(v) ≤ degG(v) ≤

√
ρ|Z| by (4.9). Thus

δ(G′) ≥ |Z1| −
√
ρ|Z| = |Z| − 3q −√

ρ|Z| > |Z1|
2

,

because ρ ≤ 2 · 10−6. By Dirac’s Theorem, G′ is Hamiltonian. We thus find
a Hamiltonian cycle of G′, denoted by b1b2 · · · b3mb1, where m = |X | − q. Let
Qq+i = b3i−2b3i−1b3i for 1 ≤ i ≤ m. Then Qq+1, . . . , Q|X| are good triples.

Now consider the bipartite graph Γ between X and Q := {Q1, Q2, . . . , Q|X|},
such that x ∈ X and Qi ∈ Q are adjacent if and only if Qi is suitable for x. For
every Qi, since it is good, degΓ(Qi) ≥ (1 − 2

√
ρ)|X |. Let Q2 = {Qq+1, . . . , Q|X|}.

Let X0 be the set of x ∈ X such that degΓ(x,Q2) ≤ |Q2|/2. Then

|X0|
|Q2|
2

≤ eΓ(X,Q2) ≤ 2
√
ρ|X | · |Q2|,

which implies that |X0| ≤ 4
√
ρ|X | = 4

3

√
ρ|Z|.

We now find a perfect matching between X and Q as follows.

Step 1. Each vertex x ∈ X0 is matched to a different member of F ′ that is suitable
for x – this is possible because of (4.10) and |X0| ≤ 4

3

√
ρ|Z| ≤ 1

12ρ
1/4|Z|

since ρ ≤ 2 · 10−6.
Step 2. Each of the unused triples in Q1Q2 · · ·Qq is matched to a suitable vertex

in X \X0 – this is possible because degΓ(Qi) ≥ (1− 2
√
ρ)|X | ≥ q.

Step 3. Let X1 be the set of the remaining vertices in X . Then |X1| = |X | − q =
|Q2|. Now consider Γ′ = Γ[X1,Q2]. It is easy to check that δ(Γ′) ≥ |X1|/2
– thus Γ′ contains a perfect matching by the Marriage Theorem.

The perfect matching between X and Q gives rise to the desired perfect C-tiling of
H as outlined in the beginning of the proof. �
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