
HAL Id: hal-00659349
https://hal.science/hal-00659349v1

Submitted on 12 Jan 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A railroad maintenance problem solved with a cut and
column generation matheuristic

Sébastien Lannez, Christian Artigues, Jean Damay, Michel Gendreau

To cite this version:
Sébastien Lannez, Christian Artigues, Jean Damay, Michel Gendreau. A railroad maintenance problem
solved with a cut and column generation matheuristic. Networks, 2015, 66 (1), pp.40-56. �hal-
00659349�

https://hal.science/hal-00659349v1
https://hal.archives-ouvertes.fr

A railroad maintenance problem solved with a

cut and column generation matheuristic

Sébastien Lannez1,2,3, Christian Artigues2,3,

Jean Damay4, Michel Gendreau4

1SNCF I&R/SRO ; 45 rue de Londres, 75008 Paris, France,
2CNRS; LAAS ; 7 avenue du colonel Roche, F-31077 Toulouse, France
3Université de Toulouse ; UPS, INSA, INP, ISAE ; UT1, UTM, LAAS ;

F-31077 Toulouse, France
4CIRRELT, Université de Montréal, C.P. 6128, Montréal (Québec), H3C 3J7 Canada

Abstract

In this paper we address a real life optimization problem, the Rail
Track Inspection Scheduling Problem (RTISP). This problem consists of
scheduling railway network inspection tasks. The objective is to minimize
the total deadhead distance while performing all inspection tasks. Different
0-1 integer formulations for the problem are presented. A heuristic based
on both Benders and Dantzig-Wolfe decompositions is proposed to solve
this rich arc routing problem. Its performance is analyzed on a real life
dataset provided by the French national railway company (SNCF). The
proposed algorithm is compared to a dynamic programming-based heuristic.
Its ability to schedule the inspection tasks of one year on a sparse graph
with thousand nodes and arcs is assessed.

Keywords: arc routing, column generation, cutting planes, matheuristic, rail-
track maintenance

1 Introduction

One of the major problems that railway companies have faced since the very
beginning are failures in tracks. Defects in rails, the basic parts of a track, may
result in serious accidents. Réseau Ferré de France (RFF), the company that
owns and manages the French railway infrastructure, has delegated a part of
the railway maintenance responsibility to the Société Nationale des Chemins
de Fers (SNCF), a French railway company. SNCF is committed to ensure the
safety of the railway network. One of the maintenance activities is to prevent
track failures. In order to quickly inspect the French network, SNCF is using
ultrasonic defectoscopy to detect and survey imperfections in rails.

Inspection frequencies range from six months to twenty years depending on
the train speed and the cumulated weight of the considered track type. Two
third of the total inspections (35 000 km) are performed on tracks which should
be visited once or twice a year. These tracks are called primary tracks. All the
remaining inspections (secondary tracks) have much lower inspection frequencies.
The subject of the present study is the primary track inspection scheduling

1

problem. This problem is currently solved in a centralized way by the SNCF
national logistics department while inspection of secondary tracks, which is less
critical, is decomposed geographically into several sub-problems, each being
solved by a local logistics department.

Ultrasonic inspections are performed with specialized rolling stock units,
which will be called vehicles in the remaining of the text. Vehicles differ from
one another in maximum speed and working capacity. The detection of defects
inside the track is performed by a reverberation analysis of the ultrasonic waves
passing through the rails. The inspection of primary tracks is subject to several
limitations due to vehicle usage. First, a vehicle’s speed depends on whether it is
inspecting or not. A deadhead trip is a trip during which the vehicle is moving
without inspecting the track. During inspection, speed can be more than three
times slower than during a deadhead trip. The second limitation is due to the
team working inside the vehicle (driver and technicians). There is a maximum
shift duration and a vehicle can move during at most six hours per day. As a
third limitation, there is a maximum daily inspection distance. Water is needed
to keep sensors and rails coupled during the measurements. The inspection
distance is limited by the water tank capacity. These tanks can only be refilled
at special stations. Over the 200 stations on the primary tracks, only 90 are
equipped with water supply. Furthermore, water tank refill is time consuming
and may need available operators at the station. Hence, it is not desired to do
more than one refill per shift. That is why the problem is structured in such
a way that each vehicle starts and ends each shift at a refill node. A fourth
limitation is that, for organizational purposes, vehicle maintenances should be
performed periodically at specific stations. Last, as the same vehicles are used for
secondary track inspection, each vehicle must be made available to local logistics
departments and, to that purpose, has to be sent to other specific station during
predefined periods. The inspection activity is also limited by the existence of
track outages, that can alter the vehicle speed or even prevent it from circulating
during specific periods.

The problem SNCF is dealing with is to visit the set of primary tracks
taking into account the above-presented operational constraints and satisfying
inspection frequencies.

The main cost indicator is a common logistic performance ratio for each
vehicle which is equal to the amount (in distance) of tracks that have been
inspected, divided by the total traveled distance (on a yearly basis).

This problem can be modeled as an arc routing problem related to the ones
describing road deicing, waste collection or network weeding as described in the
surveys from [18–21]. It involves complicating constraints, among which limited
shift duration, water supply, track outages and heterogeneous fleet, as described
above. Another difficulty is the network size which makes it a real challenge to
solve.

The remaining of this article is structured as follows. In Section 2, we briefly
present the relevant literature about arc routing problems. In Section 3, we
present the notation and describe mathematical formulations and decompositions
of the problem. Section 4 is devoted to the presentation of a heuristic, which,
being based on the considered mathematical decompositions, can be called a
matheuristic [17]. In Section 5, an alternative dynamic programming-based
heuristic is presented. In Section 6, we introduce the different considered real
datasets and we provide computational results that demonstrate the ability of

2

the proposed matheuristic to schedule the inspection tasks of one year on a
sparse graph with some thousand nodes and arcs. In terms of performance, the
matheuristic compares favorably with the heuristic based on dynamic program-
ming, at the expense of additional CPU time. To further analyze the heuristic’s
behavior, a comparison between the obtained performance ratio and a linear
programming relaxation-based upper bound is carried out. The impact of the
heuristic components on the performance is also evaluated. Section 7 concludes
the paper with considerations on the practical implementation of the method
and perspectives for further research.

2 Literature review

2.1 Industrial arc routing problems

In [12], the authors state that industrial vehicle routing problems can be rich in
the sense that “they include aspects of the VRP that are essential to the routing
of vehicles in real-life”.

Road related problems have supplied researchers with a lot of (rich) arc routing
problems. A review of problems arising during winter road maintenances has
been published in the articles [18–22]. They also present industrial applications.
Waste collection or postal deliveries are also an active field of arc routing problems.
In [15], a description of a waste collection problem is presented. A nation wide
postal delivery problem has been modeled as an industrial arc routing problem
in [13].

2.2 Arc routing problems

In this section, some arc routing problems and their applications are listed. For
a more detailed description of them, books [2] and [5] and survey articles [6, 7]
are a good introduction.

The RTISP is related with the capacitated arc routing problem (CARP),
described in [11]. It consists in visiting a set of arcs with a single vehicle. Each
visited arc reduces the remaining working capacity of the vehicle by a given
amount. In the RTISP, tasks and deadhead circulations can be modeled with
arcs. The working capacity of vehicles is constrained by the vehicle’s water tank
capacity and the duration of a shift. The capacitated arc routing problem with
time windows (CARP-TW) extends the CARP by constraining the possible
visits of arcs to a set of periods. Paper [14] contains a description of a column
generation procedure. In [23], this is solved problem with a greedy randomised
adaptive search procedure (GRASP) associated with path relinking. Another
extension is the capacitated arc routing problem with intermediate facilities
(CARP-IF) presented in [10] also called the the capacitated arc routing problem
with refill points (CARP-RP) presented in [1]. It extends the CARP by adding
refill facilities to specific nodes.

We have not been aware of published work about methods for solving a
problem having all these features. However, as the capacity of each vehicle is
two-dimensional, the RTISP can be defined as a multi-capacitated arc routing
problem with time windows, refill points and a heterogeneous fleet.

3

(a) Map of primary tracks (b) Graph model of railtracks around
Bordeaux

Figure 1: French railway network model

3 Problem definition, mathematical formulations
and decompositions

In this section we start with providing preliminary definition and notations. Then,
we propose three 0-1 formulations for the problem. The first one is an arc-flow
model. The second one is obtained through a Dantzig-Wolfe decomposition of
the first model and can be defined as a shift-flow model. The last one is obtained
by applying a combinatorial Benders decomposition to the shift-flow model. The
latter formulation yields an exact solving scheme consisting in solving iteratively
the Benders master problem and the Benders sub-problems that also act as
repairing methods for the master solution.

3.1 Definitions and notations

Modeling hypothesis Vehicle moves are modeled by arcs. They represent
either inspection tasks, deadhead traversals of track portions, or complex moves
like unit switch back or station traversal. Furthermore, arcs can represent
deadhead trips from a node in the network to another node (for example to model
a trip to a maintenance station which is not part of the inspected network). Arcs
are suitable for the description of unidirectional railway tracks. As only primary
tracks are directly modeled, bidirectional railway tracks are not considered in
the study. Nodes describe stations, communication between railway tracks, or
locations in the network where the vehicles can change their circulation mode.
A map representing these tracks is presented in Figure 1a. A schematic zoom
around Bordeaux is shown in Figure 1b. The presented graph represents the
inspected railroad network. The arcs in dotted style represent inspection tasks
to perform, and the other ones represent deadhead moves. The black node
represents a refill station and the other nodes are normal stations without water
facility.

In order to make the schedule being easily adapted during operations, multiple
shifts per day are not allowed. As already mentioned, each shift consists of a
trip between two refill stations with a total distance to inspect smaller than the
maximal distance induced capacity of the water tank and a total trip duration

4

smaller than the duration of a work shift. Given all the feasible shift paths, the
RTISP becomes the problem of selecting and scheduling them in order to satisfy
all inspections at the lowest cost.

Graph and vehicle representation A multigraph G = (V,A) containing
arcs (A) and nodes (V) models the railway network. Arcs can represent tasks
(A∗), deadhead traversals (Ad) or waiting times (AW). Note that a task arc
represent either a track inspection task or a vehicle maintenance task or a vehicle
requirement for secondary track inspection. An arc from node i to node j is
denoted (i, j)∗ if it represents an inspection task and (i, j)d if it represents a
deadhead trip. A waiting arc is a loop (i, i). Nodes can represent rest and refill
stations (Vr), or communications between railroad tracks (Vc). For each vehicle,
we assume that there exists a depot refill node Dk ∈ Vr from which the vehicle
must start its trip and to which it must return.

The parameter dak contains the time needed for vehicle k to traverse arc a.
In practice, the average vehicle speed depends of multiple factors, such as the
importance of the traffic in the considered track. In this study, the speed used for
each vehicle is taken to be lower than the mean value computed during year 2009.
This choice has been made in order to be able to use the schedule in practice.
A waiting arc a ∈ AW has a unit time duration dak = 1. The parameter lak is
the distance involved by the traversal of arc a by vehicle k. This parameter is
actually vehicle-dependent for inspection arcs as the “distance” represents the
water consumption, which may vary from one vehicle to the other. However, for
deadhead arcs, this parameter can be considered as vehicle-independent as it
represents the actual traveled distance. For each vehicle k, Lk represents the
maximum cumulated distance which can be inspected per shift and Tk denotes
the maximum working time during a shift. This time is different from the shift
duration as waiting times are authorized and not included in the working time.

Calendar The calendar H is assumed to contain only working days. It is
composed of integer values representing the number of “shift seconds” elapsed
since the first period of the planning horizon. The need for small time slots comes
from the wide range of task durations and the relatively high speed of vehicles
(ranging from 20 km/h to 120 km/h). t is a time slot in H, s is the duration of
a shift. We assume that |H| is a multiple of s and define S = {0, . . . , |H|/s− 1}
as the shift index set.

For example, consider a shift duration s =4 and an horizonH = {1, 2, 3, 4, 5, 6,
7, 8, 9, 10, 11, 12}. The shift index set is S = {0, 1, 2} corresponding to periods
{1, 2, 3, 4}, {5, 6, 7, 8} and {9, 10, 11, 12}, respectively.

Track inspection is also time-constrained. Due to the small frequencies
mentioned in Section 1, the planning period (less than one year) contains at most
two inspections of the same track. Hence, periodicity is handled by assigning
time windows to inspection tasks which sets a minimum time lag between two
consecutive inspections (and also allows to consider the current state of the
network). As mentioned in Section 1, maintenance tasks and local vehicle
requirement tasks have also time windows. The subset Ha,k ⊆ H contains the
set of periods during which vehicle k can not traverse arc a. A period t ∈ Ha,k

reflects one of the following cases.

5

• The sub-network containing a is not accessible to vehicle k at period t due
to a technical constraint or to a space-time vehicle preassignment.

• There is an outage on the track portion corresponding to arc a at period t.

• Arc a corresponds to a task and period t is outside its time window.

Costs The objective being to minimize the total deadhead, the cost of an arc
is the length of the arc if this arc is a deadhead one while no cost is considered
when traversing a task arc.

cak =

{

lak, if a ∈ A
d,

0, else.
(1)

3.2 Arc flow model

Using time discretization through calendar H, the problem can be represented
as a multi-commodity flow problem on a space-time network with additional
constraints. As mentioned above, the path of a each vehicle can be decomposed
in shifts. A shift starts at a refill node v ∈ Vr at the beginning of period 1 of the
shift and ends at a refill node v′ ∈ Vr at the end of period s of the shift (with
possibly v = v′).

For each shift index σ and each vehicle k ∈ K, we define a super-source okσ
with a set of additional arcs δ+(okσ) = {(o

k
σ, v)|v ∈ V

r} and a super-sink dkσ with
arcs δ−(dkσ) = {(v, d

k
σ)|v ∈ V

r}. All these arcs have by convenience a duration
equal to 1.

For each node v ∈ V, let δσ,k−τ (v) denote the subset of arcs in A ∪ {(okσ, v)}
ending at v that can be traversed by vehicle k during period σs+τ . Symmetrically,
let δσ,k+τ (v) denote the subset of arcs in A ∪ (v, dkσ) starting at v that can be
traversed by vehicle k during period σs+ τ . These subsets reflect the constraints
that arcs cannot be traversed during an unavailability period. For example, if,
for a period τ and a vehicle k, there is an arc a and an unavailability period
t ∈ Ha,k in the interval [σs+ τ −dak +1, σs+ τ], arc a is excluded from δσ,k−τ (v).
The same principle is applied to model the fact that the super-source and the
super-sink can only be connected to refill nodes at the beginning and at the end
of each shift, respectively.

Let xkσ
aτ denote the binary flow variable which equals 1 if vehicle k ∈ K starts

traversing arc a ∈ A at the beginning of period t = σs+ τ and ends traversing it
at the end of period t+dak−1, where σ ∈ S is the shift index and τ ∈ {1, . . . , s}
is the shift period index. To represent the start and the end of each shift, we
also introduce variables xkσ

a0 for a ∈ δ+(okσ) and variables xkσ
a,s+1 or a ∈ δ−(dkσ).

A shift is defined as a feasible time-stamped okσ → dkσ path for a given vehicle
k and a given shift index σ, visiting a certain number of required arcs. The set
of feasible shifts for vehicle k and shift index σ is defined by the following integer
points.

Qkσ =
{

xkσ ∈ {0, 1}|A|×s
∣

∣

∣
xkσsatisfies (2)− (8)

}

, k ∈ K, σ ∈ S

6

where constraints (2)-(8) are detailed hereafter.

∑

a∈δ+(okσ)

xkσ
a0 = 1 (2)

∑

a∈δ−(dk
σ)

xkσ
a,s+1 = 1 (3)

∑

a∈δ
σ,k−
τ−1 (v)

xkσ
a,τ−dak

−
∑

a∈δ
σ,k+
τ (v)

xkσ
a,τ = 0 v ∈ V, τ ∈ {1, . . . , s+ 1} (4)

s
∑

τ=1

xkσ
aτ ≤ 1 a ∈ A∗ (5)

∑

a∈A∗

s
∑

τ=1

lakx
kσ
aτ ≤ Lk (6)

∑

a∈A

s
∑

τ=1

dakx
kσ
aτ ≤ Tk (7)

xkσ
a,τ ∈{0, 1} a ∈ A, τ ∈ {1, . . . , s} (8)

Constraints (2) and (3) enforce each shift to start and end at a refill node
(as only refill nodes are connected to the super-source and to the super-sink).
Constraints (4) ensure flow conservation at each node. Constraints (5) ensure
that each task is at most performed once during a shift. Constraints (6) state
that the maximum cumulated distance during a shift due to water capacity in
inspection mode is not exceeded. Constraints (7) limit the maximum working
time during each shift. Note that to simplify the presentation, we assume that
variables xkσ

a,τ are equal to 0 for τ ≤ 0. From this model, it follows that a shift
can be defined as a resource-constrained path in a time-space network where
constraints (5-7) are the resource-constraints.

With Qkσ as defined before, the arc flow model (Marc) is given by the
following 0-1 formulation .

(Marc) min
∑

a∈A

∑

σ∈S

s
∑

τ=1

∑

k∈K

cakx
k,σ
a,τ (9)

subject to

∑

k∈K

∑

σ∈S

s
∑

τ=1

xkσ
aτ = 1 a ∈ A∗ (10)

xk0
(ok0 ,D

k),0 = 1 k ∈ K (11)

x
k,|S|−1

(Dk,dk
|S|−1

),s+1
= 1 k ∈ K (12)

xk,σ

(v,dk
σ),s+1

− xk,σ+1

(ok
σ+1,v),0

= 0 σ, σ + 1 ∈ S, v ∈ Vr, k ∈ K (13)

xkσ ∈ Qkσ σ ∈ S, k ∈ K (14)

Objective (9) minimizes the total cost. Constraints (10) state that each task
must be performed exactly once. Constraints (11) ensure that each vehicle will
leave its depot at the beginning of the first shift while constraints (12) make it

7

return to the depot at the end of the last shift. Constraints (13) ensure flow
conservation for each vehicle at each refill node between two consecutive shifts
by enforcing that the first visited refill node of shift σ+1 is the last visited refill
node of shift σ. Constraints (14) enforce the feasibility of each shift for each
vehicle.

Consider the example network of Figure 2. Bold arcs represent inspection
tasks while thin arcs represent deadhead trips. Loops are omitted. Nodes 1, 2
and 3 are assumed to be refill stations. There are two shifts of 4 time periods
each. We assume there is an outage at time period t = 4 on both task arc (1, 2)∗

and deadhead arc (1, 2)d. Later, there is an outage at time periods t ∈ {7, 8} on
task arc (3, 2)∗ and deadhead arc (3, 2)d. Arcs are labeled with the travel time,
which is assumed to be equal to the cost for each deadhead arc. Suppose there
is a single vehicle.

1 1

1 1

3 2
1 2 3

Figure 2: A simple network

The space-time networks corresponding to shifts σ = 0 and σ = 1 are
represented in Figure 3. Each node is labeled with the node index v and the

τ = 1 τ = 2 τ = 3 τ = 4

t = 1 t = 2 t = 3 t = 4

τ = 1 τ = 2 τ = 3 τ = 4

3,1 3,2 3,3 3,53,4

2,2 2,52,4

1,1 1,2 1,3 1,51,4

ok0 2, 1 2, 3 dk0

σ = 0

3,1 3,3 3,53,4

2,1 2,2 2,3 2,52,4

1,1 1,2 1,3 1,51,4

3,2

ok1 dk1

t = 5 t = 6 t = 7 t = 8
σ = 1

Figure 3: Space-time networks representing feasible shifts

shift time period index τ . Each arc from v, τ to v′, τ ′ corresponds to a variable
xkσ
aτ with a = (v, v′)∗ (bold arcs) or a = (v, v′)d (thin arcs) with a travel time

dak = τ ′ − τ . Each horizontal arc from v, τ to v, τ+1 is a waiting arc. The set

8

of all okσ → dkσ paths satisfying the resource constraints (5)-(7) in each space-
time network maps the feasible shift set Qkσ. The differences between the two
networks are caused by the unavailability periods, as no vehicle can traverse arcs
(1, 2)d and (1, 2)∗ at time period 4 (impacting shift σ = 0) nor arcs (3, 2)d and
(3, 2)∗ at time periods 7 and 8 (impacting shift σ = 1). The concatenation of
the shift paths is a feasible solution to (Marc) if all inspection tasks are covered
(Constraints 10) and if the consecutive shifts end and start at the same node
(Constraints 13). An example of feasible shifts (if the depot is refill node 3) is
given by path 1, 1→ 2, 4→ 3, 5 for shift σ = 0 and 3, 1→ 2, 3→ 2, 4→ 1, 5 for
shift σ = 1. Its total cost is equal to 2 (deadhead trips from 2 to 3 and from 2
to 1).

3.3 Dantzig-Wolfe decomposition and shift flow model

The arc flow model naturally decomposes into several problems (one per shift/
vehicle pair) which are linked through Constraints (10) and (13). Following the
Dantzig-Wolfe decomposition principle, let us assume that the elements of Qkσ

are indexed from 1 to |Qkσ| for each vehicle k ∈ K and for each shift index σ ∈ S.
We introduce binary variables zkσq equal to 1 if shift q is selected in Qkσ, and to
0 otherwise.

Given all the sets of feasible trips between two refill stations (sets Qkσ),
vehicle circulation can still be modeled as a flow on a multicommodity network,
in which each arc represents now a feasible shift. This yields a shift-flow model,
with set partitioning constraints to model task covering.

Let Lkσ
q denote the sequence of visited arcs for shift q ∈ Qkσ. The cost of a

shift is defined as follows:

ckσq =
∑

a∈Lkσ
q

cak, k ∈ K, σ ∈ S, q ∈ Qkσ. (15)

Let Qkσ
a denote the subset of Qkσ containing shifts that visit arc a. Let Qkσ

v+

(Qkσ
v−) denote the subset of Qkσ containing shifts that start (end) at refill node

v ∈ Vr, respectively. The shift flow model (Mshift) is as follows:

(Mshift) min
∑

k∈K

∑

σ∈S

∑

q∈Qkσ

ckσq zkσq (16)

9

subject to

∑

k∈K

∑

σ∈S

∑

q∈Qkσ
a

zkσq = 1 a ∈ A∗ (17)

∑

q∈Qk0

Dk+

zk0q = 1 k ∈ K (18)

∑

q∈Q
k,|S|−1

Dk−

zk,|S|−1
q = 1 k ∈ K (19)

∑

q∈Q
k,σ+1
v+

zk,σ+1q −
∑

q∈Qkσ
v−

zkσq = 0 σ ∈ S \ {|S|−1}, v ∈ Vr, k ∈ K (20)

∑

q∈Qkσ

zkσq = 1 k ∈ K, σ ∈ S (21)

zkσq ∈ {0, 1} k ∈ K, σ ∈ S, q ∈ Qkσ (22)

The objective function (16) ensures that from all feasible solutions the one
with minimum total deadhead cost will be selected. Constraints (17) ensure
that the set of selected shifts allows to perform all inspection tasks. Constraints
(18) and (19) ensure that each vehicle starts and ends at its depot. Constraints
(20) ensure for each vehicle that two consecutive shifts end and start at the
same node. Constraints (21) enforce for each vehicle the assignment of exactly
one shift per calendar day. Constraints (22) ensure that solutions are integer.
Remark that the mathematical program presented above contains an exponential
number of columns. Its relaxation could be solved by column generation and
integer solutions could be searched by branch-and-price techniques. In this paper
we take advantage of the structure of the problem to further decompose the
problem, as explained in the next section.

3.4 Combinatorial Benders decomposition

Motivation and principle We explain the proposed decomposition scheme
by describing how the planning is actually performed manually by operators.
When they are scheduling the inspection tasks, the operators do not take into
account the precise due date of each task. Instead, they prefer using the spatial
information related to each task. Time windows are enforced at the end of the
planning process. A simple graphical representation of where and when the
tasks should be performed actually highlights the correlation between space and
time. This information has been used to design a Benders decomposition scheme
applied to the shift flow model. The master problem of this decomposition
consists in finding a subset of shift patterns which covers every task and which
can hopefully be transformed in a feasible inspection tour. The sub-problem
checks if this subset violates constraints of the complete mathematical problem.
If this is the case, a combinatorial cut is generated and added to the master
problem and the process restarts. Otherwise the problem an optimal solution
for the problem was found.

10

Benders master problem If each set of unavailability periods Ha,k is empty,
each time-stamped path q ∈ Qkσ is valid for any other shift index σ′ ∈ S by a
simple translation of the shift start time from σs+1 to σs′+1. In presence of
unavailability periods, this statement is not true in general but we can associate
to each element q ∈ Qkσ a set of shift indices Hq ⊆ S for which q is valid. With
such a flexibility, all shifts q that can be obtained from one another by a shift
period translation defines a unique shift pattern. Consider the example of Figure
3. Path 1, 1 → 2, 4 → 1, 5 is a valid shift pattern for shift indices σ = 0 and
σ = 1. However, path 1, 1 → 2, 2 → 3, 3 → 2, 5 is valid for shift index σ = 0
while, even if we relax the constraint to finish the trip at the depot, this path is
not valid for shift index σ = 1 due to the unavailability of track (3, 2) at periods
7 and 8.

Dropping index σ, we define Qk as the set of all shift patterns which are valid
for vehicle k for at least one shift index σ ∈ S. According to expression (15),
the cost of a shift is independent of σ. Let ckq denote the cost of shift pattern

q ∈ Qk. We define Qk
a as the subset of Qk containing shift patterns that visit

arc a and Qk
v+ (Qk

v−) as the subset of Qk containing shifts that start (end) at
refill node v ∈ Vr, respectively.

The principle of the Benders decomposition is to focus, in the master problem,
on the selection of a set of shift patterns to cover all inspection tasks, without
assigning the shift patterns to shift periods. The sub-problem aims, in a second
phase, at finding a feasible schedule for the selected shift patterns. Let ykq denote
a binary variable which takes value 1 if the shift pattern q is included in the
path of vehicle k.

The Benders master problem (MBenders), which is a set partitioning problem
with additional constraints, can be written as follows:

(MBenders) min
∑

k∈K

∑

q∈Qk

ckqy
k
q (23)

subject to
∑

k∈K

∑

q∈Qk
a

ykq = 1 ∀a ∈ A∗ (24)

∑

q∈Qk|ȳk
q=1

(1− ykq) +
∑

q∈Qk|ȳk
q=0

ykq ≥ 1 k ∈ K, ȳk ∈ Ik (25)

ykq ∈ {0, 1} k ∈ K, q ∈ Qk (26)

Objective (23) and Constraints (24) are the time-independent expressions of
objective (16) and Constraints (17), respectively. Constraints (24) state that all
inspection tasks must be covered by the selected shift patterns. Constraints (25)
are the combinatorial Benders cuts (or no-good cuts) as proposed in [4]. Set Ik

contains the set of shift pattern selections for vehicle k violating the constraints
of the original mathematical problem which are not represented in the master
problem. These sets are not known a priori, they are build at each iteration
by solving the subproblem presented below. Each constraint (25) removes one
solution of Ik at a time.

Benders sub-problem Let ȳ be the solution of the master problem at some
iteration. The Benders sub-problems, whose solutions determine if the partial

11

solution from the master can be used to create a feasible inspection journey, can
be split for each vehicle. A set of shift patterns Qk(ȳ) covering the required
tasks has been selected by the master problem. The role of the sub-problem
is to assign each shift pattern selected in ȳ to a precise shift, so that (i) track
unavailability periods are respected and (ii) the shift sequence defines a feasible
path for the vehicle. To increase the possibility of finding a feasible solution,
more flexibility is added by relaxing the constraint that the last refill node of a
shift q must be equal to the first refill node of the immediately following shift
q′. Indeed, if these nodes differ, a deadhead trip from the last node of q to the
first node of q′ can be added at the end of shift q or at the beginning of shift
q′ to make the link. If the feasibility of the impacted shift is preserved by the
modification, assigning q to σ and q′ to σ+1 is feasible but incurs an additional
deadhead cost, denoted ckσqq′ . The same principle can be applied to the shifts

that start or end at the depot. We define ck0
Dkq

(c
k,|S|−1

qDk) as the cost incurred

if shift q starts (ends) the schedule, respectively. To model the shift/period
assignment possibly incurring an additional cost, we reverse the shift-flow model
presented in section 3.3 in which each shift was represented by an arc between
refill stations in a time-space network. Each shift is now represented as a node
while an arc connects two shifts that can be scheduled contiguously and each
arc is weighted by the shift transition cost.

We introduce a dummy starting shift Dk+ made of a single waiting arc at the
depot Dk that must be assigned to a dummy shift period σ = −1 and a dummy
ending shift Dk+, including the same arc for period σ = |S|. We define P k(ȳ) as
the set of “shift arcs” (q, q′) with q ∈ Qk(ȳ) ∪ {Dk+} and q′ ∈ Qk(ȳ) ∪ {Dk−}
such that q and q′ can be scheduled contiguously w.r.t. the above-described
adjustments. Note that, given the set of shifts selected by the master problem,
the cost matrices and the shift arc sets are computed efficiently if the only
allowed changes consist in adding dead-head trips at the start or the end of the
two considered shifts and removing waiting times accordingly.

Consider again the example of Figure 3, ignoring depot constraints. Suppose
the master problem has selected shift patterns q (1, 1 → 2, 4 → 2, 5) and q′

(3, 1→ 2, 3→ 2, 4→ 2, 5) both with cost 0. Combining these shift patterns is
not possible as such because their start and end nodes do not coincide. However,
assigning q to shift 0 and q′ to shift 1 becomes feasible by inserting deadhead
trips (more precisely by replacing waiting period 2, 4→ 2, 5 by trip 2, 4→ 3, 5
in q and waiting period 2, 4 → 2, 5 by trip 2, 4 → 1, 5 in shift q′). Figure 4
displays the modification of q (left side) to make it compatible with q′ (right
side) incurring costs ck0qq′ = 1 and ck1

q′Dk = 1, i.e. a total cost of 2.

Let zkσqq′ be a binary variable equal to 1 if shift pattern q′ of vehicle k is assigned
to shift period σ and preceded by shift pattern q. The Benders sub-problems
can be written, for each vehicle k, as follows:

(SPk
Benders) min

∑

(q,q′)∈Pk(ȳ)

|S|
∑

σ=0

ckσqq′z
kσ
qq′ (27)

12

1, 1

2, 4 2, 5

3, 1

2, 3 2, 4 2, 5

3, 1

2, 3 2, 4

1, 1

2, 4

1, 5

Figure 4: Benders subproblem: assigning shift patterns to time periods and
repairing the master solution

∑

q|(Dk+q)∈Pk(ȳ)

zk0Dk+q = 1 (28)

∑

q|(qDk−)∈Pk(ȳ)

z
k|S|

qDk− = 1 (29)

∑

q′|(q′,q)∈Pk(ȳ)

zk,σ−1
q′q −

∑

q′|(q,q′)∈Pk(ȳ)

zkσqq′ = 0 σ∈{1, . . . , |S|}, q∈Qk(ȳ)∪{Dk−} (30)

∑

σ∈S\{0}

∑

q′|(q,q′)∈Pk(ȳ)

zk,σqq′ = 1 q ∈ Qk(ȳ) (31)

∑

σ∈S

∑

q′|(q′,q)∈Pk(ȳ)

zk,σq′q = 1 q ∈ Qk(ȳ) (32)

zkσqq′ = 0 (q, q′)∈P k(ȳ),(σ− 1, σ) 6∈Hq×Hq′ (33)

zkσqq′ ∈ {0,1} σ ∈ S ∪ {|S|}, (q, q′)∈ P k(ȳ) (34)

Objective (27) is to find a solution that minimizes the total cost of the shift
modifications. Constraints (28) indicate that a shift pattern starting at the
depot must be scheduled at the first period while Constraints (29) express that
the last shift must end at the depot. Constraints (30) express flow conservation
constraints for each shift at each shift period. All together, Constraints (28)-(30)
ensure that exactly one shift will be assigned to each time period and that
consecutive shifts have to be compatible (a single path is selected in the shift
time-space network). Constraints (31) and (32) state in addition that each shift
must be assigned to exactly one shift period. Constraints (33) prevent a shift
pattern from being assigned to an incompatible shift. To sum-up, the so-modeled
shift scheduling problem is a special case of the traveling salesman problem with
time windows.

13

A tightened Benders master problem To improve the Benders master
problem, we consider adding in (MBenders) the following “equilibrium” constraints,
yielding (M∗

Benders).

∑

q∈Qk
v+

ykq −
∑

q∈Qk
v−

ykq = 0 v ∈ Vr, k ∈ K (35)

Constraints (35) are the shift flow conservation constraints in space. They
state that, for each vehicle, the number of shifts that end with a given refill
node (including the depot) is equal to the number of shifts that start with the
same refill node, independently of the time periods. They are not necessary
for the proposed decomposition, as they are also tackled in the sub-problem.
However, without these constraints, the master problem lacks information about
how the tasks can be sequenced, either in space or time. This would lead to
the generation of combinatorial Benders cuts (25) solely used to satisfy the flow
constraints. This is illustrated by the two shifts selected by the master problem
without Constraints (35) displayed on top of Figure 4. If we add Constraints
(35) to the master problem, the selection of these two shifts becomes infeasible.

An exact Benders method From these decompositions, an exact Benders
method that consist in iteratively solving the Benders master problem and the
benders sub-problems can be derived.

Even if the set of shift patterns is smaller that the set of time-stamped shifts,
the Benders master problem still has an exponential number of variables. Hence
to solve (M∗

Benders) exactly, a branch-and-price procedure has to be used, where
at each node of a branch-and-bound tree, a column generation procedure solves
the linear programming (LP) relaxation of (M∗

Benders).
Once the optimal solution of (M∗

Benders) is obtained, sub-problems (SPk
Benders)

have to be solved, one for each vehicle k ∈ K. The three following cases have to
be considered after solving the sub-problems.

• If all sub-problems have an objective value equal to 0, the global optimal
solution has been found.

• If one of the sub-problems is infeasible, ȳk can be discarded by generating
the corresponding no-good feasibility cut (25) and adding it to the master
problem, which will be solved again during a new iteration.

• If the sub-problems are all feasible but at least one has a non-zero cost,
a feasible solution for the RTISP is found and an upper bound on the
total dead-head cost is obtained. Yet, solution ȳk can be discarded from
the search space of the master problem by generating the corresponding
no-good optimality cut (25), which will be added to the master problem
and the process is reiterated. Note also that, since the master is solved
through column generation, the feasible shifts that are found can be added
as possibly new columns.

14

4 Column and cut generation matheuristic

4.1 Motivation and general principles

The exact Benders method described in Section 3.4 cannot be applied to solve the
RTISP instances provided by SNCF for at least two reasons. First, the instances
are too large to be solved by an exact method. Second, as explained in Section
4.2, the combinatorial Benders cuts make the column generation sub-problem
difficult to solve. To use the decomposition scheme in practice, we have chosen
to develop alternatively a cut and column generation matheuristic, which is also
able to yield lower bounds. The method is a four step heuristic, described as
follows:

1. (ColGen) An LP relaxation of the Benders master problem (M∗
Benders) is

solved through column generation. At this step, a lower bound can be obtained.
Compared to (M∗

Benders), the considered model has two main differences. First, in
a standard way, highly penalized slack variables are introduced in set partitioning
constraints (24) to ensure feasibility. More importantly, the generated cuts may
have a different form expression (25) , and/or the cut generation algorithm
can be parametrized in a way that it become heuristic (in the sense that the
generated cuts may exclude potentially optimal solutions). In the latter case, the
obtained lower bound is not valid and the ColGen procedure is mainly used to
obtain a diversified and relevant set of shift patterns. The procedure is described
in mode details in Section 4.2 and the alternative Benders cut generation process
is made at step 3 (RelCutGen).

2. (HeurCover) From the solution of this relaxation, a rounding heuristic
for the covering problem proposed in [3] is adapted to find a good integer
solution to the Benders master problem (M∗

Benders). At this point, a set of shift
patterns satisfying the equilibrium constraints (35) is obtained. The procedure
is described in Section 4.3.

3. (RelCutGen) The selected shift patterns have to be scheduled in compatible
shift periods. For each vehicle k, a relaxation of the Benders sub-problem
(SPk

Benders) is solved. If one of the relaxations is infeasible, a Benders infeasibility
cut is added to the master problem to exclude the solution found at step 2
and we return to step 1. As mentioned in step 1, the Benders infeasibility cuts
produced at this step have a different form than combinatorial cuts (25). This is
either due to the structure of the relaxation (aa assignment problem) or to a
heuristic cut generation scheme. The procedure is described in Section 4.4.

4. (HeurSched) If the relaxations of the Benders sub-problem are all feasible, a
heuristic is used to solve (SPk

Benders), i.e. to schedule the selected shift patterns,
for each vehicle k. If one of the problems is infeasible, a combinatorial Benders
cut (25) or a heuristic cut can be generated and we return to Step 1. Otherwise
the solution is returned. The scheduling heuristic is described in Section 4.5.

4.2 ColGen: solving the relaxed Benders master problem
(M∗

Benders
) with column generation

Initial column set The Benders master problem (M∗
Benders) is considered with

a restricted set of columns, corresponding to a restricted set of shift patterns Q̃k.

15

The initial column set is initialized by considering for each required arc a ∈ A∗

a shift pattern covering this arc. This allows to satisfy partitioning constraints
(24). Furthermore, for each pair of refill nodes, a column corresponding to a
dead-head trip joining these two nodes is added to Q̃k to satisfy the equilibrium
constraints (35).

Restricted master problem solving The LP relaxation of the so-obtained
restricted master problem is denoted as (M̃∗

Benders). It is solved with the simplex
algorithm. At the first iteration, there is no Benders cut (25). At the subse-
quent iterations, no-good cuts are incorporated to take the infeasibility of the
corresponding Benders sub-problems (SPk

Benders) into account. As explained in
Section 4.1, the cuts do not necessarily correspond to expression (25). This is
due to several reasons that will be explained in Section 4.4.

Column generation subproblems As only a restricted number of columns
is considered, the solution is not necessarily the optimal LP solution, as there
may exist non considered columns with negative reduced cost. To explain how
such columns are searched, let us first give the expression of a variable’s reduced
cost, by considering problem (M∗

Benders) without any no-good cut. The reduced
cost of a variable ykq of the master problem is a function of the dual solution

vector. Let αk
a, for all task arcs a ∈ A∗, denote the dual variables related to

partitioning constraints (24). Let βk
v , for all refill nodes v ∈ Vr and vehicles

k ∈ K, denote the dual variables related to equilibrium constraints (35). If we
ignore no-good cuts, the reduced cost of a variable ykq for a vehicle k ∈ K and a

shift pattern q ∈ Qk starting at refill node v and ending at refill node v′ is

c̃kq = ckq −
∑

a∈A∗|q∈Qk
a

αa + βk
v − βk

v′

The column generation sub-problem aims at finding for each vehicle k ∈ K
a feasible shift pattern q ∈ Qk of negative c̃kq , or at proving that no such shift
pattern exists. To be feasible, a shift pattern has to correspond to a valid shift
for at least one shift period σ, i.e. a shift in some Qkσ. Hence, we obtain a
column generation sub-problem (SPkσ

ColGen) per vehicle k ∈ K and shift index
σ ∈ S, which can be written as an arc flow model, as follows.

(SPkσ
ColGen) min

∑

a∈A

s
∑

τ=1

c̃akτx
k,σ
a,τ (36)

subject to
xkσ ∈ Qkσ

where
c̃(i,j)kτ = c(i,j)k − α̃(i,j) + β̃k

iτ − γ̃k
j,τ+d(i,j)k−1,

α̃a =

{

αa if a ∈ A∗

0 otherwise,
β̃k
iτ =

{

βk
i if i ∈ Vr and τ = 1

0 otherwise,

γ̃k
iτ =

{

βk
i if i ∈ Vr and τ = s

0 otherwise.

16

Given the expression of Qkσ, each column generation sub-problem (SPkσ
ColGen) is

a resource-constrained shortest path problem. The resulting path gives a new
shift pattern corresponding to a variable ykq with a negative reduced cost (or it
is proved that no such path exists).

If we want to integrate the no-good constraints in the column generation
sub-problem along the method iterations, we have to take care of the following
issues. While set partitioning constraints (24) and equilibrium constraints (35)
are defined on arcs and nodes of the space-time network, the Benders infeasibility
cuts (25) are defined on a shift pattern. This characteristics can slow down
the dynamic programming algorithm used for solving the RCESP. This was for
example recently experienced in [24] with clique inequalities defined on the set
partitioning master problem of the vehicle routing problem with time windows,
which required adding multiple resources in the RCESP. In this work, we ignore
the dual information carried by no-good constraints when solving the column
generation subproblems. As the reduced cost is simplified, the column generation
algorithm could generate already existing columns. Hence, a duplicate detection
mechanism is implemented and the algorithm stops in case of cycling.

It should be noticed that it could be time consuming to compute |K| · |S|
constrained shortest paths at each column generation iteration. Our implementa-
tion enables finding valid shortest paths for several consecutive shifts. It can be
parametrized to generate from |K| to |K| · |S| subproblems. At the first extreme,
the feasible solution space of each of the |K| subproblems is large. Solving one
of them may take time. In the other extreme, the feasible solution space of each
of the |K| · |S| subproblems is narrow and solving one of them is fast.

Column generation algorithm For solving the sub-problems, we imple-
mented a variant of the dynamic programming algorithm of [8] for the resource-
constrained elementary shortest path problem. This algorithm has been selected
because it is very flexible and adapting it to different types of vehicles cis easy.
This is important in our case because the solving scheme should be general
enough to allow its use for different problems.

The dynamic programming is a labelling algorithm. At each iteration, a node
and an associated label are picked from a queue. The label is then extended
through the traversal of the outgoing arcs, consuming resources according to
the arc type. Dominance rules allow to prune labels which are known not to
lead to an optimal solution as explained in [8]. The main difference is that the
path does not need to be strictly elementary, unlike in paper [8]. In our setting,
communication arcs and nodes can be traversed as needed. We just have to be
sure that each task arc is visited at most once, as stated by Constraints 5.

4.3 HeurCover: greedy rounding heuristic for solving the
Benders master problem (M∗

Benders
)

Starting with the continuous solution ỹ of the Benders master problem (M∗
Benders)

obtained by procedure ColGen (see Section 4.2), a greedy rounding heuristic
inspired by the one proposed in [3] is used to get an integer solution (satisfying
only the Benders master problem constraints). The principle of the heuristic
is the following. For each vehicle k ∈ K, let Q̄k denote the set of shift patterns
which can be selected, initially containing all shift patternS q such that ỹkq 6= 0.

17

Let A∗
qk be the set of tasks covered by a shift pattern q ∈ Q̄k. Let C denote the

tasks still not covered, initially equal to A∗. Let Ck
q denote the set of uncovered

inspection tasks that can be covered by q ∈ Q̄k, initially set to A∗
qk. Let f(q, k)

denote a priority function associated to shift pattern q ∈ Q̄k.
At each iteration, the greedy heuristic selects the shift pattern q∗ for the

vehicle k∗ with the minimum priority function value. q∗ is removed from Q̄k.
Each inspection task a ∈ A∗

q∗k is removed from C and from all Ck
q with k 6= k∗

or q 6= q∗. Each shift pattern q ∈ Q̄k such that Ck
q becomes empty is removed

from Q̄k. The process is repeated until C is empty or no shift pattern can be
selected anymore.

We propose several priority functions f . In [3], function f0(q, k) = ckq/|C
k
q |

gives the ratio of the variable objective coefficient to the number of uncovered
tasks it would cover if q was selected. We also propose alternative priority
functions. f1(q, k) = ckq (1− |C

k
q |/(|A

∗ \ C|+ 1)) is a dynamic priority function
that multiplies the variable cost by the ratio of the number of tasks that would
remain uncovered if q was selected to the number of tasks already covered .
Finally, f2(q, k) = ckq (1 − |C

k
q |/(|(A

∗ \ C) ∩ A∗
qk| + 1)) multiplies the variable

cost by 1 minus the ratio of the number of uncovered tasks that q would cover if
it was selected to the number of already covered tasks also covered by q. Both
dynamic priority functions give priority to the shift patterns covering a lot of
tasks at the first iterations and, when the number of covered tasks becomes large,
to the shift patterns with a low cost.

In addition, weighted variants of these priority functions can be obtained by
taking into account the value of the variable in the solution of the LP relaxation.
Let nint(i) denote the nearest integer to i. We define the following weighted
functions:

f ′
x(q, k) = f(q, k)(1 + nint(ỹkq)− ỹkq).

Last, the procedure is significantly improved by iteratively fixing the selected
variables and resolving the linear relaxation of (M∗

Benders). At each iteration
of HeurCover, the linear relaxation of (M∗

Benders) (with the last generated
restricted set of columns) is solved with the additional constraint that ykq = 1. ȳ
is updated before selecting the next variable in the next HeurCover iteration,
and the rpocess is iterated until all tasks are covered or no column are added.
This incremental variant of HeurCover allows handling every constraint of the
Master problem (not only the ones which ensure that every required arc belongs
to a feasible trip).

4.4 RelCutGen: cut generation based on relaxations of
the Benders sub-problems (SPk

Benders
)

At this point, an integer solution ȳ to the Benders master problem (M∗
Benders)

has been computed by the greedy procedure HeurCover (see Section 4.3).
The Benders sub-problems (SPk

Benders), for k ∈ K can be solved to generate
no-good cuts in case of infeasibility or sub-optimality. However, no-good cuts
(25) invalidate a single solution ȳ. Their impact to the LP relaxation (M̃∗

Benders)
is weak and we do not use any branch-and-price procedure where they could have
a pruning power. Furthermore, each Benders sub-problem is a special instance
of the TSPTW, and, consequently, is hard to solve. We propose two ways to
deal with this issue.

18

Solving relaxations of the Benders sub-problems Dropping flow conser-
vation constraints (30) in each (SPk

Benders) for k ∈ K yields an easy-to-solve
assignment problem.

To explain how cuts can be obtained by this relaxation, let us focus only on the
feasibility of the Benders sub-problem for shift/period assignment. We add slack
variable hDk− to Constraint (29) and slack variables hq, ∀q ∈ Qk(ȳ) to constraints
(32). Consider solving the assignment problem min

∑

q∈{Dk−}∪Qk(ȳ) hq subject to

(29), (32), (33), non negativity of variables hq and relaxing integrity constraints
for variables zσkqq′ . The objective function gives a lower bound on the number

of shifts of Qk(ȳ) selected by the master problem that cannot be assigned to a
feasible period, given the availability periods in Hq. This yields the following
Benders cut

∑

q∈Qk(ȳ)

ykq ≤
∑

q∈Qk(ȳ)

∑

σ∈S

∑

q′|(q′,q)∈Pk(ȳ)

z̃kσq′q

where z̃kσq′q is the (integer) solution of the relaxed Benders sub-problem. By
introducing different assignment constraints in the linear program, different cuts
can be obtained by applying the same principle.

Pseudo-cuts Pseudo-cuts, i.e. cuts that may exclude valid integer solutions
of the master problem, can be defined to invalidate continuous solutions of the
master problem, so that the integer solution has little chance to be generated by
the HeurCover heuristic. More concretely, let ỹ be a continuous solution of
the master problem, and let ȳ denote its integer solution found by HeurCover.

Combinatorial or assignment-problem-based Benders cuts are generally of
the following form.

∑

q∈Qk(ȳ)

ykq ≤ n

where n is the number of variables that cannot be selected. As these cuts are
violated by the integer solution we have

∑

q∈Qk(ȳ)

ȳkq > n

Then, if we assume, in addition, that ȳkq ≤ ⌈ỹ
k
q ⌉, the following constraint

invalidate continuous solution ỹ

∑

q∈Qk(ȳ)

ykq
ỹkq
≤ n

Note that the closer the value ỹkq is to an integer solution the more the cuts
resemble to the original Benders cuts.

4.5 HeurSched: heuristic for the solving the Benders sub-
problems (SPk

Benders
)

If the relaxations presented in Section 4.4 are feasible for the current solution to
the master problem, the original combinatorial Benders subproblems (SPk

Benders),
for k ∈ K, should be solved to determine the actual feasibility of this solution
and possibly repairing it.

19

The corresponding traveling salesman problem with time windows is solved
using a guided multi-start heuristic. Consider a chronological search tree with
a maximum depth equal to |S| in which each node corresponds to a partial
assignment of the selected shifts up to shift index σ. An iteration of the heuristic
consists in a depth-first search on the search tree, yielding a complete shift/period
assignment. At a given node of depth σ, let qσ−1 be the previously selected shift,
where q−1 = Dk+ for the root node σ = 0. The depth first search algorithm
selects the decision (a shift q such that σ ∈ Hq and (qσ−1, q) ∈ P k(ȳ)) that
minimizes a dynamic transition function t(qσ−1, q). The transition function is
initially set to the dead-head cost t(q, q′) = ckqq′ for each pair (q, q′) ∈ P k(ȳ).
However, for each possible decision at a node, two depth-first explorations are
performed by using the current transition cost: one which selects the first shift
according to the transition function, yielding a complete solution with a cost
c+q and one which cannot select this shift yielding a complete solution with a
cost c−q . A price πq is associated with the decision to schedule shift q right after
shift qσ−1 where πq = c+q − c−q . The transition cost matrix is updated with
t(qσ−1, q)← t(qσ−1, q) + πq. The algorithm iterates until the matrix transition
cost modification becomes negligible. For the considered dataset, this method
proved to be the most efficient in terms of quality and solution time. This
principle can be mixed with backtracking, when a decision does not yield a
feasible solution.

5 A dynamic programming heuristic

In order to evaluate the proposed decomposition scheme with another heuristic
which is closer to what would be performed by a human operator, we additionally
designed a greedy algorithm to solve the complete RTISP based on the dynamic
programming method used to generate the shift patterns for the column gen-
eration procedure. This algorithm uses the resource constrained shortest path
solver to compute at each iteration the set of best shift patterns which can be
performed starting from the last visited node. Hence, the algorithm is greedy
in terms of shift scheduling, while the dynamic programming method used to
generate the shift still performs an implicit enumeration. The shift of lowest cost
is appended to the current partial solution. We select a vehicle and, starting
from its depot, we apply this procedure until the end of the schedule horizon is
reached. Then, we start with the next vehicle.

If no task is reachable from the current node, a deadhead move is performed
to find the nearest node which enables performing a task. Deadhead speed is
fast enough to allow every vehicle to travel from one node to every other node in
less than a shift. This simple choice allows the potential generation of solutions
which cover every task.

The cost function drives the algorithm towards a good solution and should
be carefully chosen based on the characteristics of the dataset, and on whether
the problem is more constrained in time or space. For task selection during the
shortest path computation, different weight update rules have been tested. The
best performing one uses information about task time windows and durations.

Let wk
a denotes the cost of performing task a on vehicle k. This cost is defined

as follows:

20

wk
a = −M + ca(2.0−

esa
lsa

),

with esa and lsa, denoting respectively the earliest and latest start of task a.
M should have a value such that the algorithm will always prefer performing a
task over performing a deadhead trip.

6 Computational tests

6.1 Real data from 2009

The computational test was conducted on real data provided by SNCF. Full
results are available in the PhD thesis [16]. These data has been used to calculate
the time windows for each of the 2009’s inspection tasks. The data model contains
three vehicles and a realistic average working speed. Based on this data, multiple
scenarios have been established by varying the track outages duration, the size
of the considered network, the time horizon and other practical characteristics.

Complete network characteristics The complete graph has 2100 arcs and
760 nodes of which 90 are refill stations and about 700 tasks to perform. Task
time windows have a fixed size of 28 days and their duration range from a few
minutes to six hours. The duration of a shift is fixed to 7 hours.

Data sets The first two data sets (RTISP1.1 and RTISP1.2) involve a single
vehicle with no track outage (the vehicle may circulate at any time in any part
of the network). The first scenario captures data from the first half of 2009
and the second scenario extends it by adding the rest of the year. The second
series of data sets (RTISP2.1 and RTISP2.1) still involves no track outage but
consider special tasks limiting vehicle availability. Data set RTISP2.1 includes
the special tasks corresponding to regional demands. Recall that, as only primary
tracks inspection is precisely scheduled, regional departments can ask for one
vehicle during a fixed period to inspect the secondary tracks . This is modeled
by a fictitious inspection task located at the node where the vehicle must be
provided and will be returned. As this period can be large, such scenarios are
more constrained. Three vehicles are considered. Data set RTISP2.2 includes
the regional demand tasks and maintenance tasks which are also special tasks
representing a time period during which the vehicle must be sent to maintenance
at a specific node. This set also includes three vehicles. The third data set
series (RTISP3.1, RTISP3.2, RTISP3.3, RTISP3.4) contains 100 tasks and a
one month time horizon but includes an increasing number of track outages.
RTISP3.1 includes no outages, RTISP3.2, RTISP3.3 and RTISP3.4 include all
tracks outages of more than 6 hours, 3 hours and 1 hour, respectively. The fifth
series is made of the single data set RTISP4.1, which is identical to set RTISP3.1,
except that one of the two vehicles is significantly slower than the other one.
The last series of data sets (RTISP5.1, RTISP5.2, RTISP5.3, RTISP5.4) involves
both a time restriction (may 2009) and a network restriction (Brittany region).
It was generated mainly to have “small” non trivial instances (56 tasks). It
involves 2 vehicles and possibly track outages. The data set characteristics are
synthesized in Table 1.

21

Instance #tasks #vehicle Comment
RTISP1.1 328 1 first semester 2009, no outages
RTISP1.2 694 1 2009, no outages
RTISP2.1 525 3 2009, regional demands
RTISP2.2 573 3 2009, regional demands & maintenance
RTISP3.1 100 2 February 2009, no outages
RTISP3.2 100 2 February 2009, outages of more than 6 hours
RTISP3.3 100 2 February 2009 ,outages of more than 3 hours
RTISP3.4 100 2 February 2009, outages of more than 1 hours
RTISP4.1 100 2 February 2009, no outages, 1 slow vehicle
RTISP5.1 56 2 May 2009, 12 outages
RTISP5.2 56 1 May 2009, 12 outages
RTISP5.3 56 1 May 2009, no outage
RTISP5.4 56 2 May 2009, no outage

Table 1: Instance characteristics

6.2 Key indicators

For each algorithm and each of these scenarios, the completion rate r defines the
number of task which are covered by the solution. The performance ratio p gives
information about the total distance traveled without inspecting (deadhead).
The higher the ratio, the better the solution from the point of view of the end
user. The performance ratio p is calculated to reflect the rate between the total
inspected distance (di) and the cumulated deadhead length (dd):

p =
di

di + dd

The task completion rate r is used to get information about the hardness of
the instance. When comparing the decomposition heuristic with the dynamic
programmming heuristic, this indicator gives valuable information about how
hard it is to schedule the instance.

6.3 Global results

The experiments were carried out on an Intel Xeon (64bits) 3.0GHz, having
4 cores. We use IBM CPLEX 12.2 for linear programming and IBM CP 1.6
and SCHEDULER for the guided multi-start scheduling heuristic. All programs
were written in C++. We parallelize the column generation procedure since the
subproblems are independent.

In Table 2, the results of the proposed heuristic on the above presented data
set is presented. The alloted CPU time has been adapted to the instance size
with 4 hours for the largest instances, 30 min for the 100-task instances and 5
min for the small instances. In terms of completion rate, the global performance
of the heuristic is good, except for instance set RTISP4.1 for which less than 30%
of the tasks are performed. This set is identical to set RTISP3.1, except that a
vehicle is significantly slower than the other, which makes the instance infeasible.
There are also two sets (RTISP2.1 and RTISP2.2) for which less than 90% of

22

Instance #tasks Completion rate Performance ratio Solving time (s)
RTISP1.1 328 100% 88.4% 4 hours
RTISP1.2 694 97.4% 89.7% 4 hours
RTISP2.1 525 89.1% 49.3% 4 hours
RTISP2.2 573 86.9% 49.3% 4 hours
RTISP3.1 100 100% 41% 30 min
RTISP3.2 100 100% 40% 30 min
RTISP3.3 100 100% 38% 30 min
RTISP3.4 100 100% 43% 30 min
RTISP4.1 100 28% 13% 30 min
RTISP5.1 56 100% 30.5% 5 min
RTISP5.2 56 100% 35.5% 5 min
RTISP5.3 56 100% 34.4% 5 min
RTISP5.4 56 100% 29.4% 5 min

Table 2: Results of the proposed heuristic on the real data sets

the tasks are performed. These sets correspond to the cases where vehicles
can be required for maintenances and/or regional demands. This shows that
maintenance and regional demands should be carefully planned, given the limited
number of inspection vehicles. In terms of performance ratio, the presence of
maintenance and regional demand activities penalizes the results (as shown
by the difference between series 1 and 2). It must be noticed, however, that
the performance ratio naturally decreases as the number of inspection tasks
decreases, which explains the difference between instances RTISP1.1/RTISP1.2
on the one hand and instance RTISP3.1 on the other hand (which all have no
outage). Indeed, when a reduced number of inspection tasks is considered in the
full network, the total dead-head distance increases comparing to the inspection
distance.

6.4 Comparison with the dynamic programming heuristic

To assess the performance of the proposed heuristic we first compare it to
the dynamic programming heuristic proposed in Section 5. We compare the
two heuristics (AlgoBenders and AlgoGreedy) on the instance series 3 since the
number of rail track outages appears to be discriminant. The results are displayed
in Table 3. The dynamic-programming-based heuristic solves all datasets in less
than 5 minutes. However both its completion rate and its performance ratio
decrease as the number of outage increases. This seems to show that the heuristic
takes local decisions which badly impact the global quality of the solution. In
comparison, the decomposition algorithm performs well: every task is executed
and the performance ratio is much better (more than twice better for the larger
number of outages). Furthermore, the matheuristic is less sensitive to outage
variations.

23

RTISP3.1 RTISP3.2 RTISP3.3 RTISP3.4

Completion (AlgoGreedy) 100% 88% 86% 86%
rate (AlgoBenders) 100% 100% 100% 100%

Performance (AlgoGreedy) 32% 23% 23% 18%
ratio (AlgoBenders) 41% 40% 38% 43%

Solving (AlgoGreedy) 246 283 254 178
time (s) (AlgoBenders) 1500 1500 1500 1500

Table 3: Comparison between the decomposition algorithm and the dynamic
programming-based heuristic

RTISP5.1 RTISP5.2 RTISP5.3 RTISP5.4

Gap (IP-LP)/LP 0% 1% 8,57% 6,22%
Performance UB 43,96% 46,95% 45,74% 48,84%
Performance LB 30,53% 35,49% 34,40% 29,41%

Table 4: Comparison with the LP relaxation

6.5 Comparison with linear programming relaxation

To further evaluate the quality of the proposed heuristic, we compare it with
the linear programing relaxation of the Benders master problem, using the
column generation procedure ColGen (see Section 4.2). For large instances,
the column generation procedure is stopped by the predefined time limit before
a valid lower bound on the total dead-head distance is obtained. A valid lower
bound can be obtained only on the fifth instance series, which contains 56 tasks.
The results are displayed in Table 4. Row “Gap (IP-LP)/LP” gives the gap
between the dead-head distance of the LP relaxation obtained by ColGen and
the total dead-head distance obtained by the rounding heuristic HeurCover

presented in Section 4.3. Row “Performance UB” gives the upper bound on
the performance ratio given by the LP relaxation while row “Performance LB”
recalls the performance ratio of the solutions computed by the matheuristic.

First, it has to be noticed that the rounding heuristic gives results very close
to the LP relaxation. The performance gap between the proposed heuristic and
the LP relaxation is much larger, although. This means that the dead-head
distance is added by the repairing Benders sub-problem solving procedure when
sequencing the selected shifts. However, the upper bound on the performance
ratio provided by the LP relaxation is under 45% in average which tempers
the apparently low performance of the the proposed heuristic (around 30%
in average). Indeed, this provides the valuable information that reaching a
performance of 50% is an unachievable goal in this subnetwork. However, to
explain the 15% difference, we suspect that the upper bound quality is not so
good. By analyzing the continuous solutions, we observe that they include a lot
of subtours related to the visited refill nodes, and they do not take into account
deadhead moves between these subtours. Furthermore, these data sets consider
only the Brittany trgion and only a few weeks, whereas the initial algorithm was
developed to solve a one year planning on the whole network. Hence, in these

24

RTISP1.1 RTISP1.2
30 60 120 30 60 120

f0 35 25 25 90 90
f1 45 45 45 120 120 120
f2 45 45 45 110 82 62

Table 5: Comparison of priority function for HeurCover

scenarios, tasks are neither contiguous in space nor in time. Consequently, the
results do no necessarily generalize to the complete network. By contrast, for
data sets RTISP1.1, RTISP1.2, RTISP1.3 and RTISP1.4 (extracted on a larger
period and for the complete network), the shift sequencing heuristic did not add
any additional dead-head trips (the solution provided by the Benders master
problem was feasible).

6.6 Impact of algorithm components

The complexity of the algorithm and the necessity of industrial standard lead the
design of the algorithm implementation towards a very modular solution. Indeed,
the building blocks are inspired by the design patterns proposed in [9]. Each
algorithm is a building block (set cover heuristic, column generation, assignment
problem, ...) and can have multiple implementations.

In this section, we study the impact of variants of algorithm component on
the global performance. The most important impact on the solving time was
obtained by tuning the algorithm used to solve the Benders master problem
(M∗

Benders). Multiple priority functions in the HeurCover heuristic for finding
integer solutions to (M∗

Benders) have been tested. The conducted tests also
demonstrate the great importance of adding the redundant equilibrium constraint
in (M∗

Benders). The interest of the proposed cuts is also assessed.

Multiple priority functions in HeurCover The different priority rules f0,
f1 and f2 are detailed in Sections 4.3 for the rounding heuristic HeurCover.

Table 5 presents the value of the best integer solution (total dead-head
distance in TKm) for different computation times (in minutes) for data sets
RTISP1.1 and RTISP1.2. It demonstrates the effectiveness of the rule f0 proposed
in [3] for solving the instance RTISP1.1. It also shows the new rule we propose f3
is much more efficient on the instance RTISP1.2. The analysis of the 2009 data
shows that vehicle workload is higher in the second part of the year than in the
first. It should be noticed that rule f0 only takes into account the ratio between
the variable cost in the objective function and the number of tasks it would
cover if it is selected. This rule may lead to the selection of columns which cover
multiple times the same task, hence reducing the working capacity of the vehicle.
The rule f2 reduces this issue by taking the overlap of multiple columns into
account in the priority weight. These remarks explain the differences between
the two results.

Equilibrium cuts in the Benders master problem The redundant equi-
librium cut (35) in the Benders master problem has proven to be very efficient to

25

RTISP1.1 RTISP1.2
30 60 120 30 60 120

flowCst−1 35 35 35 110 100 100
flowCst0 35 35 35 120 110 100
flowCst10e3 35 35 35 100 92 92
flowCst10e4 35 35 35 120 120

Table 6: Impact of the flow conservation cut in the column generation procedure

accelerate the convergence of the algorithm. These constraints reduce the set of
partial solutions which lead to infeasible subproblems hence limiting the number
of generated cuts. Furthermore, they seem to improve the conditioning of the
elementary shortest paths by reducing the number of non-dominated partial
paths. Indeed, the dual information obtained from these equilibrium constraints
can be interpreted as a deficit or surplus cost for the given node at the beginning
of a shift. These weights highly impact the way the dynamic program selects
the very first arcs of the solution by improving the efficiency of the dominance
rule, hence speeding up the dynamic programming algorithm.

In order to highlight this behavior, a slack variable has been added to each
flow conservation constraint. The penalty cost of each variable defines how much
the constraint is enforced. Table 6 evaluates four variants, presented below:

1. flowCst−1 No slack variable has been added.

2. flowCst0 Penalty cost of slack variables is 0.

3. flowCst10e3 Penalty cost of slack variables is 10000.

4. flowCst10e4 Penalty cost of slack variables is 100000.

Table 6 provides the objective function values (in TKm) and the CPU times
(in minutes) of the column generation procedure for the different variants on
data sets RTISP1.1 and RTISP1.2.

The comparison of columns “30”, “60” and “120” for instance RTISP1.2 shows
that adding the equilibrium constraint helps the column generation procedure a
lot , leading to a solution with a smaller cost. It can also be noticed that the
best continuous solution is found more quickly (in less than 30 minutes with
the equilibrium constraint, in more than 100 minutes without the equilibrium
constraint). Interestingly, a well chosen penalty price for the violation of the
constraint (as the one used in the third case) can drastically improve the
convergence and the quality of the solution.

Impact of Benders cuts In most of the above-presented results, the cuts
proposed in Section 4.4 do not have a visible impact. More precisely, cuts are
generated on columns with low quality that are unlikely to be selected. We have
to recall that the cuts presented in Section 4.4 are feasibility cuts obtained by
relaxations of the Benders sub-problem, as the combinatorial cuts could not
easily be incorporated in the heuristic. Also, for data sets that are feasible or
nearly feasible, this low impact could be explained. This is not true anymore
for instance RTISP4.1 for which the heuristic performs less than 30% of the

26

With cuts Without cuts
Completion rate 28% 10%
Performance 13% 11%
CPU time (s) 1500 1500

Table 7: Impact of the Benders cuts of instance RTISP4.1

tasks. The comparison of the heuristic with and without the cuts proposed in
Section 4.4 is displayed in Table 7. The results show the highly positive impact
of the generated cuts which allow to increase the number of performed tasks by
a factor three. After analyzing the results closely, we ntived that 15 shifts are
assigned to vehicle 1 and 12 shifts are assigned to vehicle 2 when the cuts are
applied while 20 shifts are assigned to vehicle 1 and only 6 shifts are assigned
to vehicle 2 when no cuts are applied. Hence the Benders feasibility cuts avoid
overloading the fastest vehicle.

7 Conclusion

An exact decomposition procedure for the RTISP has been proposed. This
procedure is general enough to be used for others arc routing problemsand it
has been used to design a matheuristic which is able to schedule real datasets.

The proposed solution is flexible enough to be adapted by the operator.
Starting from the schedule given by the solver, the expert can adapt it to take
into account the real speed of the vehicles, the precise date of the outages and most
importantly the pathways. The industrialization of the proposed tool is currently
in an evaluation phase at SNCF. In terms of lessons learned from a practical
point of view, the method has shown, especially through the upper bound on
the performance ratio, that maintenance and regional demands are limiting
factors due to the limited availability of vehicles and should consequently be
planned carefully. Indirectly, the generated data sets also show that performance
ratio of the solutions proposed by the matheuristic is much higher for the larger
problems considering the whole network and planning horizon, in comparison
with restricted sets. This may seem counterintuitive at first sight, but planning
on the whole network allows the algorithm to smooth the vehicle load over
the entire horizon and significantly increase the proportion of inspections w.r.t.
dead-heads. This fully justifies the need for an integrated planning of the primary
track inspection that originated the project.

The use of the relaxed Benders subproblem may be of interest in other
problems where the resolution of the Benders subproblem is the part which
is consuming the most computation power. Furthermore, this approach can
provide stronger cuts.

From the industrial point of view, the RTISP can be generalized to other
railroad maintenance problems. The proposed approach is also usable to solve
other type of maintenance problems.

However, the proposed method has limitations in the sense that the solutions
proposed by the Benders master problem include subtours that needs introduction
of extra deadhead costs in the repairing phase. Generating cuts to eliminate the
subtours is a promising way of improving the performance gap.

27

References

[1] A. Amaya, A. Langevin, and M. Trépanier. The capacitated arc routing
problem with refill points. Operations Research Letters, 35(1):45–53, 2007.

[2] S. Raghavan B.L. Golden and E.A. Wasil, editors. The vehicle routing
problem: latest advances and new challenges. Springer US, 2008.

[3] V. Chvàtal. A greedy heuristic for the set-covering problem. Mathematics
of Operations Research, 4(3):233–235, 1979.

[4] G. Codato and M. Fischetti. Combinatorial Benders’ cuts. In D. Bienstock
and G. Nemhauser, editors, Integer Programming and Combinatorial Opti-
mization (IPCO X), volume 3064 of Lecture Notes in Computer Science,
pages 178–195. Springer, 2004.

[5] M. Dror, editor. Arc routing: theory, solutions and applications. Springer,
2000.

[6] H. A. Eiselt, M. Gendreau, and G. Laporte. Arc routing problems, part I:
the chinese postman problem. Operations Research, 43(2):231–242, 1995.

[7] H. A. Eiselt, M. Gendreau, and G. Laporte. Arc routing problems, part II:
the rural postman problem. Operations Research, 43(3):399–414, 1995.

[8] D. Feillet, P. Dejax, M. Gendreau, and C. Gueguen. An exact algorithm for
the elementary shortest path problem with resource constraints: application
to some vehicle routing problems. Networks, 44(3):216–229, 2004.

[9] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design patterns: elements
of reusable object-oriented software. Addisson Wiley, 1994.

[10] G. Ghiani, G. Improta, and G. Laporte. The capacitated arc routing
problem with intermediate facilities. Networks, 37(3):134–143, 2001.

[11] B.L. Golden and R.T. Wong. Capacitated arc routing problems. Networks,
11(3):305–315, 1981.

[12] G. Hasle and O. Kloster. Industrial vehicle routing. In G. Hasle, K.-A.
Lie, and E. Quak, editors, Geometric modelling, numerical simulation, and
optimization, pages 397–435. Springer, 2007.

[13] S. Irnich. Solution of real-world postman problems. European Journal of
Operational Research, 190(1):52 – 67, 2008.

[14] E.L. Johnson and S. Wøhlk. Solving the capacitated arc routing problem
with time windows using column generation. CORAL Working Papers
L-2008-09, University of Aarhus, Aarhus School of Business, Department of
Business Studies, January 2009.

[15] B. Kim, S. Kim, and S. Sahoo. Waste collection vehicle routing problem
with time windows. Computers & Operations Research, 33:3624–3642, 2006.

[16] S. Lannez. Optimisation des tournées d’inspection des voies ferroviaires.
PhD thesis, INSA Toulouse, 2010. LAAS report 10893.

28

[17] V. Maniezzo, T. Stutzle, and S. Voss, editors. Matheuristics: hybridizing
metaheuristics and mathematical programming. Springer-Verlag, 2009.

[18] N. Perrier, A. Langevin, and J.F. Campbell. A survey of models and
algorithms for winter road maintenance. Part I: system design for spreading
and plowing. Computers & Operations Research, 33:209–238, 2006.

[19] N. Perrier, A. Langevin, and J.F. Campbell. A survey of models and
algorithms for winter road maintenance. Part II: system design for snow
disposal. Computers & Operations Research, 33:239–262, 2006.

[20] N. Perrier, A. Langevin, and J.F. Campbell. A survey of models and
algorithms for winter road maintenance. Part III: vehicle routing and depot
location for spreading. Computers & Operations Research, 34:211–257, 2007.

[21] N. Perrier, A. Langevin, and J.F. Campbell. A survey of models and
algorithms for winter road maintenance. Part IV: vehicle routing and fleet
sizing for plowing and snow disposal. Computers & Operations Research,
33:239–262, 2007.

[22] N. Perrier, A. Langevin, and C.A. Amaya. Vehicle routing for urban snow
plowing operations. Transportation Science, 42:44–56, 2008.

[23] M. Reghioui, C. Prins, and N. Labadi. GRASP with path relink-
ing for the capacitated arc routing problem with time windows. In
Proceedings of the 2007 EvoWorkshops 2007 on EvoCoMnet, EvoFIN,
EvoIASP,EvoINTERACTION, EvoMUSART, EvoSTOC and EvoTransLog,
pages 722–731, Berlin, Heidelberg, 2007. Springer-Verlag.

[24] S. Spoorendonk and G. Desaulnier. Clique inequalities applied to the vehicle
routing problem with time windows. INFOR: Information Systems and
Operational Research, 48(1):53–67, 2010.

29

	Introduction
	Literature review
	Industrial arc routing problems
	Arc routing problems

	Problem definition, mathematical formulations and decompositions
	Definitions and notations
	Arc flow model
	Dantzig-Wolfe decomposition and shift flow model
	Combinatorial Benders decomposition

	Column and cut generation matheuristic
	Motivation and general principles
	ColGen: solving the relaxed Benders master problem (M*Benders) with column generation
	HeurCover: greedy rounding heuristic for solving the Benders master problem (M*Benders)
	RelCutGen: cut generation based on relaxations of the Benders sub-problems (SPBendersk)
	HeurSched: heuristic for the solving the Benders sub-problems (SPBendersk)

	A dynamic programming heuristic
	Computational tests
	Real data from 2009
	Key indicators
	Global results
	Comparison with the dynamic programming heuristic
	Comparison with linear programming relaxation
	Impact of algorithm components

	Conclusion

