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Abstract: Kriging-based exploration strategies often rely on a single Ordinary Kriging model
which parametric covariance kernel is selected a priori or on the basis of an initial data set. Since
choosing an unadapted kernel can radically harm the results, we wish to reduce the risk of model
misspecification. Here we consider the simultaneous use of multiple kernels within Kriging. We
give the equations of discrete mixtures of Ordinary Krigings, and derive a multikernel version
of the expected improvement optimization criterion. We finally provide an illustration of the Ef-
ficient Global Optimization algorithm with mixed exponential and Gaussian kernels, where the
parameters are estimated by Maximum Likelihood and the mixing weights are likelihood ratios.
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The global optimization of numerical simulators is a challenging problem since the number of runs
is severely limited by computation time. Furthermore, the derivatives are generally not available.
For the past decade, Kriging-based derivative-free algorithms like EGO ([5]) have been developed
to address this issue. Kriging metamodels are indeed convenient for building exploration strate-
gies since they provide for every potential input vector both a mean predicted response value
(Kriging mean) and an associated measure of accuracy (Kriging variance). Along this paper, the
simulator is seen as a determinist numerical black-box function y with d-dimensional input:

y : x ∈ D ⊂ Rd → y(x) ∈ R (1)

y is known at first on the initial Design of Experiments X = {x1, ...,xn0}, where n0 ∈ N is the
number of initial runs. We denote by Y = {y(x1), ..., y(xn0)} the set of observations made by
evaluating y at the points of X. In almost all Kriging models, the starting point is to make the
assumption that y is one realization of a random process of the form

Y (x) = µ(x) + ε(x) (2)

where µ(x) is a deterministic trend function, ε(x) is a centered stationary random field with
covariance function k, here assumed to belong to a set of positive definite stationary kernels:

K = {k(r,σ2,ψ) : h ∈ D −D −→ σ2r(h;ψ), r ∈ R, σ2 ∈ R+, ψ ∈ Ψr} (3)

K is indexed by a finite set R of correlation kernel parametric families, by their respective
continous hyperparameters ψ ∈ Ψr(e.g. correlation lengths), and by a positive parameter σ2

(the process variance). In the following, χ = (r, σ2, ψ) denotes the tree-structured covariance
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parameters. In many industrial applications, r is arbitrarily chosen to belong to a parametric
family (exponential, Gaussian, Matèrn, etc...), (σ2, ψ) are then fitted to the data using automatic
estimation procedures, and χ is finally plugged in as if it were known. Our particular concern
here is to review and extend the EGO Algorithm ([5]) in taking the risk of model into account.
After recalling some basics about Gaussian processes and metamodel-based optimization, we
propose an adaptation of Ordinary Kriging with mixed kernels. We then derive an optimization
criterion based on a discrete mixture of Kriging, and finally illustrate its efficiency by applying
EGO with two simultaneous kernels to a classical test case function.

1 Gaussian Processes and Metamodel-based Optimization

Ordinary Kriging (OK) is a spatial interpolator developed by G. Matheron and named after
the mining engineer D.G. Krige. It provides at each point x ∈ D a prediction of Y as a linear
combination of the observed values Y. The weights depend on the distance between the predic-
tion point x and the design of experiments X through the chosen covariance kernel. Here we give
the equations of Kriging for a fixed kernel kχ(.) = σ2r(.;ψ). The Kriging mean mχ and mean
squared error (or variance) s2χ at x are the following functions (see [9] for pointwise derivation):{

mχ(x) = µ̂χ + kχ(x)TK−1
χ (Y − µ̂χ1n)

s2χ(x) = σ2 − kχ(x)TK−1
χ kχ(x) +

(
1
T
nK−1

χ 1n

)−1 (
1− 1

T
nK−1

χ kχ(x)
)2 (4)

where we recall that χ = (k, σ2, ψ). Kχ and kχ(x) are the matrices 1 :

Kχ =


kχ(0) kχ(x1 − x2) ... kχ(x1 − xn)

kχ(x2 − x1) kχ(0) ... kχ(x2 − xn)
... ... .... ....

kχ(xn − x1) ... .... kχ(0)

 and kχ(x) =


kχ(x− x1)
kχ(x− x2)

...
kχ(x− xn)


and µ̂χ is given by: µ̂χ = (1TK−1

χ 1)−1
1
TK−1

χ Y. The classical geostatistical interpretation of
eq. (4) is to see mχ(x) as the Best Linear Unbiased Predictor (BLUP) of Y (x), under the
hypothesis that eq. (2) holds with µ(x) being an unknown constant µ estimated by maximum
likelihood. Here we find more convenient to consider an interpretation of OK in terms of Gaussian
processes, in the flavour of ([1]). Assuming that ε(x) is a centered stationary Gaussian process
with known covariance function kχ(.) and that µ is an unknown constant with improper uniform
prior distribution µ ∼ U(R), we obtain the following conditional distribution for Y (x)

Y OKχ (x) := [Y (x)/Y (X) = Y] ∼ N
(
mχ(x), s2χ(x)

)
(5)

This approach allows the analytical calculation of various quantities involving Y (x) knowing
the observations, as well as conditional simulations2 of Y , which ensures for instance that the
expectation of any fonction involving Y (x)/Y (X) = Y can be estimated by Monte-Carlo. In the
practice, one chooses a parametric correlation kernel r, then estimates the parameters (σ2, ψ) ,
and finally plugs in the estimated values in the formulas. It seems however that such a sketch
forgets the uncertainty associated with the choice of r and the estimation of (σ2, ψ) and hence
underestimates the modeling uncertainty. Assessing uncertainty with a variance s2χ obtained by
plugging in χ in the Kriging equations entails a hidden risk of trusting too much a ”bad” model.

1In the deterministic case, these equations are often written in an equivalent way using correlation matrices.
2A conditional simulation on a fine grid covering D can only be performed when D is low-dimensional (typically

up to d = 3). However, conditional simulations at a small set of points are affordable whatever the dimension d.
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Likelihood maximization (ML) is one of the standard ways, along with cross-validation, to
estimate µ and (σ2, ψ) on the basis of observations (see [1] for instance). It relies on the hypothesis
that Y is a gaussian vector with mean µ and covariance matrix Kχ (this can be seen as a direct
consequence of the Gaussian process interpretation of Kriging). Considering that r is known,
one searches for the parameters (µ̂, ψ̂, σ̂2) that give the largest density value to Y. Noting 3

Rχ = 1
σ2Kχ, MLE then relies on the maximization of the Gaussian likelihood function:

L(σ2, ψ, µ;Y) = f(Y/σ2, ψ, µ) =
1

(2π)
d
2 (σ2)

d
2 det(Rχ)

1
2
e
−

»
(Y−µ1)′R−1

χ (Y−µ1)

2σ2

–
(6)

or equivalently on the minimization of −2× log(L(σ2, ψ, µ;Y)). It can be shown that for every
fixed ψ, the optimal µ and σ2 are given by µ = µ̂χ

4 and:

σ̂2(ψ) =
(Y − µ̂ψ1)TR−1

χ (Y − µ̂ψ1)
d

(7)

After some direct calculations, ML can be restricted to the pr-dimensional minimization problem:

min
ψ∈Ψr

{log(|K
(r,σ̂2(ψ),ψ)

|)} (8)

This optimization problem is generally solved numerically, which adds both computational com-
plexity and randomness in the result. The last point has been studied in detail in the theory of
likelihood, and more recently discussed in this particular framework in ([3]).

Once a kriging interpolator and its associated uncertainty are computed, one dispose of a meta-
model that may be used to explore the simulator with a design dedicated to optimize y. One
way to derive such a design is by iteratively maximizing a figure of merit based on the Kriging
metamodel. ([4]) and ([7]) provide a review of most used Kriging-based optimization criteria.

The expected improvement (EI) is a broadly used optimization criterion that makes a trade-
off between promizing (with low predictions, for minimization) and uncertain zones. Let ymin =
min{y(x1), ..., y(xn)} be the minimum of the currently known observation values. Let x ∈ D
be a candidate point for a next evaluation of y. In the end, evaluating y at x would bring an
improvement of ymin − y(x) if y(x) is below ymin and no improvement if y(x) is above ymin. Of
course, this improvement (ymin − y(x))+ cannot be known without evaluating y (else, we could
directly find the minimum). But eq. (5) makes it possible to know the statistical distribution of
the random variable improvement (ymin − Y (x))+ conditionally on the observations Y (X) = Y.
In particular, the expected improvement is defined as the following function of x:

CEIχ (x) = E
[(
ymin − Y OKχ (x)

)+
]

= E
[
(ymin − Y (x))+ /Y (X) = Y

]
(9)

Note that the expression CEIχ (x) can be calculated analytically:

CEIχ (x) = (ymin −mχ(x))Φ
(
ymin −mχ(x)

sχ(x)

)
+ sχ(x)φ

(
ymin −mχ(x)

sχ(x)

)
(10)

where φ and Φ are the probability density and the cumulative distribution function of the stan-
dard Gaussian law. This expression sheds light on the trade-off between promising and uncertain

3There is implicitely no ”nugget” effect since we work here with deterministic experiments
4Directly maximizing the likelihood with respect to µ and (σ2, ψ) delivers the same value of µ as in the frame

of OK, µ̂ = µ̂χ. Note however that OK includes the variability due to µ’s estimation in its variance term.
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zones: the first term of the sum enhances local search via the mean prediction mχ(x), whereas
the second term puts more emphasis on global search via the prediction variance. ([4]), and ([7])
intensively commented the criterion of expected improvement.

Figure 1: Left: OK (in red, with green 95% confidence intervals) of y (in black), a realization of a
Gaussian process with known covariance function (cubic correlation, variance 4, scale 0.6). Right:
4 iterations of EGO applied to y. The blue points represent the visited sites, the red points (and
their associated vertical lines) are the current maximizers of the expected improvement. The
horizontal blue line represents the current ymin values. This example illustrates how an EGO
sequences explores the objective function without getting trapped in the zones of local optimum.

Efficient Global Optimization (EGO) is an algorithm proposed by ([5]). It relies on a sequen-
tial exploration based on OK and on the maximization of the expected improvement criterion.

Algorithm 1 The E.G.O. Algorithm
1: function EGO(X, Y, q)
2: for i← 1, q do
3: (σ2∗, ψ∗) = argmax(σ2,ψ)∈R+×Ψr

L(σ2, ψ;Y (X) = Y) . Estimating (σ2, ψ) by ML
4: x∗ = argmaxx∈D{CEI(r,σ2∗,ψ∗)(x)} . Maximizing the Expected Improvement
5: X = X

⋃
{x∗} and Y = Y

⋃
{Y (x∗)} . Updating the Design of Experiments

6: end for
7: end function

In the exact version ([5]), the algorithms loops until (maxx∈D{CEIψ∗ (x)} > δ) for a δ fixed by
the user (in the original E.G.O., δ is 0.01 times the value of maxx∈D{CEIψ∗ (x)} at the previous
iteration). Here we consider the case in which the number of runs q ∈ N is fixed in advance.
EGO has been found to be a competitive global optimization algorithm, in particular in the fields
of automotive and aerospace engineering, with objective functions having one to six inputs (see
([4]), ([7])). In other respects, ([8]) proposes a adaptation of EGO for physical experiments.
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2 Mixtures of Kriging for prediction and optimization

Let us focus on the situation in which several kernels are in competition to model a sample of
observed data. This is typically the case when different methods are available for the estimation
of (σ2, ψ) (e.g. ML with different initial values, ML and cross-validation, etc...), or when there
is a choice to make between a set of functional forms for the correlation kernel r. Let us assume
that the function y has already been evaluated at a finite set of points Xobs, and denote by Yobs

the associated responses. We now consider that M ∈ N experts {Ei, i ∈ [1,M ]} are at disposal
to estimate χ on the basis of the observations. The Ei’s are functional estimators, providing at
the same time a correlation structure and its associated parameters. They are defined as follows:

∀i ∈ [1,M ], Ei : (Xobs,Yobs) ∈
+∞⋃
k=n0

(
Dk × Rk

)
−→ χi = Ei(Xobs,Yobs) ∈ K (11)

For the sake of convenience, we identify here K with the set of possible χ’s (there is an obvious
one-to-one mapping between both sets). Given the set of kernels {χ1, ..., χM} delivered by the
experts {Ei, i ∈ [1,M ]}, and W = {w1, ..., wM} a set of weights meant to quantify the respective
relevance levels of the M experts, we study the idea of replacing the classical approach of kernel
selection by a mixture of kernels: instead of keeping the best kernel and dropping off the others,
we propose to keep them all and integrate them within Ordinary Kriging in probabilizing χ.

Discrete mixture of Gaussian processes: the unknown function y is now seen as one path
of a random field associated with an OK model, which underlying kernel is independently chosen
at random following a discrete law supported by the set of kernels delivered by the M experts:{

[Y OKmix /χ] = Y OKχ

P (χ = χi) = wi
(12)

Note that the proposed approach is not strictly bayesian: the prior distribution on χ (in the sense
of a bayesian framework) would be here depending on the data (we focus only on M experts, who
are defined on the basis of observations). Here we first select a set of kernels and then mix them.
Following eq. (12), the conditional distribution of Y (x) (x ∈ D) is a mixture of Gaussians:

Y OKmix (x) := [Y (x)/Y (X) = Y] with density function
M∑
j=1

wjpN
“
mχj

(x),s2χj
(x)

”(.) (13)

Ordinary Kriging with a mixed kernel: Following eq. (13), Y OKmix is a field of Gaussian
mixtures. This entails the equations of the mixed mean 5 and variance 6:

mmix(x) = E[E[Y OKmix (x)/χ]] =
M∑
i=1

wimχi(x) (14)

Hence, the mean of the resulting metamodel is the weighted average of the means associated
with the different krigings (which coincides with the concept of weighted average surrogate model
developped in [10]). Furthermore, the corresponding variance is given by

s2mix(x) = V ar[Y OKmix (x)] = E[V ar[Y OKmix (x)/χ]] + V ar[E[Y OKmix (x)/χ]]

=
M∑
i=1

wis
2
χi

(x) +
M∑
i=1

wi[(mχi(x)−mmix(x))2]
(15)

5Using the law of total expectation: E[X1] = E[E[X1/X2]].
6Using the law of total variance: V ar[X1] = E[V ar[X1/X2]] + V ar[E[X1/X2]]
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The first term is a linear combination of the model variances weigthed by the w′is, whereas the
second term reflects the dispersion between the different kriging means. The latter plays a cap-
ital role since it introduces heteroscedasticity in the Kriging variance: contrarily to the case of
regular OK, the variance now depends on the observations Y through the second term.

Optimization under a mixture of kernels: when several values of χ are possible, finding
the next most promizing point with a kriging-based optimization criterion (say CEIχ ) becomes a
multicriteria decisional problem. Our approach here is to combine all CEIχi

’s to provide a unified
criterion that takes into account both sources of randomness. Using again the so-called law of
total expectation, we derive the mixed expected improvement :

CEImix(x) : = E
[(
ymin − Y OKmix (x)

)+
]

(16)

= E
[
E

[(
ymin − Y OKmix (x)

)+
/χ

]]
(17)

= E
[
E

[(
ymin − Y OKχ (x)

)+
]]

=
M∑
i=1

wiC
EI
χi

(x) (18)

and hence, the expected improvement function under a mixture of kernels is simply the convex
combination of the M expected improvement functions weighted by the {wi,∈ [1,M ]}. Note
that any integral criterion under a mixture of Krigings can be calculated in the same way.

Selecting a benchmark of experts: replacing the step of model selection by a step dedicated
at choosing a set of models may seem at first to create more problems than it solves indeed. For
instance, if we consider several families of correlation kernels (e.g. a gaussian, an exponential,
and even nonstationary correlation kernels -as in [2]-) and estimate each set of kernel parameters
by ML, it naturally increases the computational amount. The price for mixing is in that case to
multiply the time needed for model inference by the number of experts. In this flavour, possible
approaches would be to consider simultaneously experts relying on the same correlation kernel
but with hyperparameters inferred using different methods (e.g. mixing the ML and the LOO
”best” models), or even getting several candidate hyperparameter sets by parametric bootstrap.
Ideally, we would like to have all relevant classes of experts represented in a small set. One of
the future issues to be addressed seem to be the selection of sets with dissimilar good experts.

Setting a probability measure over the set of experts: Once a set of experts is chosen,
probability weights have to be defined. The most näıve way of probabilizing the models is to put
a uniform distribution on them. This approach may be relevant when mixing models obtained
by maximizing different criteria (e.g.: a 50%− 50% mix of the ”best ML model” and the ”best
LOO model”). In an opposite fashion, it is also possible to consider the density of the mixture
of models as a function of both the covariance parameters and parametric weights and then
to perform likelihood maximization over all parameters including the w′is. Such problems are
typically numerically solved using an Expectation-Maximization (EM) algorithm. We propose
a way inbetween, more informative than a raw uniform distribution and yet computationally
cheaper than EM. Since we have a criterion of fit (the Gaussian likelihood), why not use it to
weight models? At first, we propose a Kriging mixture with weights based upon the likelihood
criterion. In what follows, we consider Akaike weights (see [6]):

∀i ∈ [1,M ], wi =
L(ψi, σ̂ψi , µ̂ψi/Y, ki)∑N
i=1 L(ψi, σ̂ψi , µ̂ψi/Y, ki)

(19)

Note that the wi’s are simply likelihood profile values divided by a normalization coefficient.
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3 EGO with mixed kernels, applied to Branin’s function

The Branin-Hoo function has been intensively studied in the litterature of global optimization
of black-box functions ([5]). It is a smooth two-variable function defined by:

y(x1, x2) =
(
x2 −

5.1
4π2

x2
1 +

5
π
x1 − 6

)2

+ 10
(

1− 1
8π

)
cos(x1) + 10, (x1, x2) ∈ [−5, 10]× [0, 15]

y has three global minimizers (−3.14, 12.27), (3.14, 2.27), (9.42, 2.47), and the global minimum
is approximately equal to 0.4. We normalized the variables between 0 and 1. Now we wish to
illustrate, and compare EGO with different kernels and kernel mixtures.

Figure 2: 25 iterations of the EGO algorithm applied to the Branin-Hoo function, with both
experts E1 and E2 (see eq.(20)) and initial design X (in dark blue dots). Left: the path of EGO
with expert E1 is represented by black thin stars. Right: the path of EGO with expert E2 is
represented by light green squares. One of the three zones of minimum (upper left) is not visited.

The experimental set-up is the following: the initial design of experiments is a three-level
full factorial design X ∈ ([0, 1]× [0, 1])n0 (n0 = 9). Two correlation kernels are selected:

Gaussian correlation Exponential correlation

r1(h) = e
−

P2
i=1

˛̨̨
hi
pi

˛̨̨2
r2(h) = e

−
P2

i=1

˛̨̨
hi
pi

˛̨̨
The experts considered here are the two parametric correlation kernels r1 and r2 with their
respective parameters estimated by ML:

{
E1 : (Xobs,Yobs)→ χ1 = (r1, σ∗1 , ψ

∗
1), where (σ∗1 , ψ

∗
1) = argmaxσ,ψ[L(σ, ψ;Yobs, r1)]

E2 : (Xobs,Yobs)→ χ2 = (r2, σ∗2 , ψ
∗
2), where (σ∗2 , ψ

∗
2) = argmaxσ,ψ[L(σ, ψ;Yobs, r2)]

(20)

All the algorithms and computations have been implemented in the frame of the MatLab free
toolbox ”Gaussian Processes for Machine Learning” (illustrating the book [1]). In both cases,
the kernel hyperparameters intitial values are fixed to (1, 10, 0.5, 1).

The results are summarized on fig. (3). The left figure illustrates 25 iterations of EGO with
mixed experts. The pattern of the visited points is close to the trajectory of EGO with Gaussian
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Algorithm 2 The E.G.O. Algorithm with 2 mixed kernels weighted by their likelihood ratios
1: function EGO(X, Y, q)
2: for i← 1, q do
3: for j ← 1, 2 do
4: (σ2∗

j , ψ
∗
j ) = argmax(σ2

j ,ψj)∈R+×Ψrj
L(σ2

j , ψj ;Y (X) = Y, rj) . MLE
5: end for
6: for j ← 1, 2 do

7: wj = L(σ2∗
j ,ψ∗j ;Y (X)=Y,rj)P2

j=1 L(σ2∗
j ,ψ∗j ;Y (X)=Y,rj)

. Computing the mixing weights

8: end for
9: x∗ = argmaxx∈D

∑2
j=1 wjC

EI
(rj ,σ2∗

j ,ψ∗j )
(x) . Maximizing the mixed EI

10: X = X
⋃
{x∗} and Y = Y

⋃
{y(x∗)} . Updating the Design of Experiments

11: end for
12: end function

expert. In particular, the three zones of local optima are visited during the 25 first iterations.
This similarities can be understood by looking at the sequences of weights plotted on the right
figure. The two curves on the graphic below represent the log-likelihood associated with both
experts as functions of the number of EGO iterations. Note that the likelihood of expert 2 is
greater than the likelihood of expert 1 until the number of iterations reaches 6, and then becomes
significantly lower than the other one. The likelihood ratios plotted on the graphic above show
more precisely how the exponential kernel prevails at the beginning of the EGO algorithm, and
is later dropped in favour of the Gaussian kernel. This kind of automatic selection seems due
to an asymptotical steep decrease of the likelihood ratio. Using Akaike weights to mix kernels
within a sequential exploration seems here to be a useful means to automatically select an expert
without making a decision based on the initial design of experiments only. Hence, the proposed
approach appears to be a sound option to increase EGO’s robustness to modeling uncertainty.

Figure 3: 25 iterations of EGO applied to the Branin-Hoo function, with a mixture of experts
E1 and E2 weighted by Akaike weights. Left: the path of EGO with the mixture of experts
is represented by black filled stars. Right: evolution of both sequences of log-weights (lower
graphic), and the associated series of likelihood ratios (upper graphic).
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4 Conclusions

We have derived and discussed an optimization criterion, the mixed expected improvement, re-
lying on discrete mixtures of Ordinary Kriging metamodels with different covariance kernels.
The presented framework of multiple experts allows one to handle several parametric correlation
structures and/or different parameter estimation techniques within the same Kriging-based pro-
cedure. The application of the latter to the optimization of the Branin-Hoo function provided
a first example, where mixing appears to be a succesful alternative to model selection based on
initial data. It is illustrated that, possibly after an oscillating behaviour for a few iterations,
mixing two experts within the EGO algorithm (Ordinary Krigings with Gaussian and Exponen-
tial correlation structures, with Akaike weights) may ultimately lead to an automatic selection of
a unique metamodel. The issues of selecting parsimonious benchmarks of experts, and of using
weighting methods dedicated to different purposes are to be addressed in forthcoming works.
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