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HYPERGRAPH LIMITS: A REGULARITY APPROACH

YUFEI ZHAO

Abstract. A sequence of k-uniform hypergraphs H1,H2, . . . is convergent if the sequence of homo-
morphism densities t(F,H1), t(F,H2), . . . converges for every k-uniform hypergraph F . For graphs,
Lovász and Szegedy showed that every convergent sequence has a limit in the form of a symmetric

measurable function W : [0, 1]2 → [0, 1]. For hypergraphs, analogous limits W : [0, 1]2
k−2 → [0, 1]

were constructed by Elek and Szegedy using ultraproducts. These limits had also been studied
earlier by Hoover, Aldous, and Kallenberg in the setting of exchangeable random arrays.

In this paper, we give a new proof and construction of hypergraph limits. Our approach is
inspired by the original approach of Lovász and Szegedy, with the key ingredient being a weak
Frieze-Kannan type regularity lemma.

1. Introduction

One of the starting points in the theory of dense graph limits is the seminal paper by Lovász and
Szegedy [13] where they constructed limit objects for convergent sequences of dense graphs. The
subject has grown enormously since then with many exciting developments (see Lovász’s recent
monograph [12]).

For any two graphs F and G, let hom(F,G) denote the number of homomorphism from F to G,
i.e., maps V (F ) → V (G) that carry every edge of F to an edge of G. The homomorphism density
t(F,G) is defined to be the probability that a random map V (F ) → V (G) is a homomorphism, i.e.,

t(F,G) :=
hom(F,G)

|V (G)||V (F )|
.

A sequence of graphs G1, G2, . . . is called convergent if the sequence t(F,G1), t(F,G2), . . . converges
for every graph F . Convergent graph sequences were defined and studied in [4, 5]. The main result
of Lovász and Szegedy [13] is that for every convergent graph sequence there is a limit object in the
form of a graphon, which is a symmetric measurable function W : [0, 1]2 → [0, 1] (here symmetric
means that W (x, y) = W (y, x)) such that t(F,Gn) → t(F,W ) as n → ∞ for all graphs F . Here
t(F,W ) is defined by

t(F,W ) :=

∫

[0,1]V (F )

∏

ij∈E(F )

W (xi, xj) dx1dx2 · · · dx|V (F )|

The natural extension of these limits to hypergraphs was considered by Elek and Szegedy [7].
They constructed using ultraproducts an “ultralimit hypergraph” for any sequence of hypergraphs,
and established a correspondence principle which enabled them to convert statements about finite
hypergraphs, such as hypergraph regularity and removal lemmas [9, 15, 16], to measure-theoretic
claims about ultralimit spaces. One of the consequences of their work is the existence of a limit

object in the form of a measurable functions W : [0, 1]2
k−2 → [0, 1] for any convergent sequence of

k-uniform hypergraphs.
These limit objects had actually appeared earlier in a different form, in the study of exchangeable

random arrays, initiated by Hoover [10], Aldous [1], and Kallenberg [11] during the 1980s, building
on the classic de Finnetti’s theorem on exchangeable random variables. This connection is explained
in the survey [3] by Austin, where he credits Tao [17] for initiating the link between exchangeable
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2 YUFEI ZHAO

random variables and hypergraphs. These connections for graphs are also explained in the survey
by Diaconis and Janson [6] as well as Aldous’ ICM talk [2].

The purpose of this paper is to provide a new proof of the existence of hypergraph limits. Our
approach is based on weak Frieze-Kannan [8] type regularity partitions, in line with mainstream
perspectives on dense graph limits. The proof does not use any exchangeable random variables or
ultraproducts, and the construction of the limit is subjectively more concrete than earlier proofs.
Our proof is inspired by the original approach of Lovász and Szegedy [13], and the paper is self-
contained other than an application of the Martingale Convergence Theorem.

1.1. Convergence and limit object. For any k-uniform hypergraphs F and H, let hom(F,H)
denote the number of homomorphisms from F to H, i.e., maps V (F ) → V (H) that carry every

edge of F to an edge of H. Define t(F,H) := hom(F,H)/ |V (H)||V (F )|. This is the probability that
a random map V (F ) → V (H) is a homomorphism.

Definition 1.1 (Convergence). A sequence of k-uniform hypergraphs H1,H2, . . . is called conver-
gent if the sequence t(F,H1), t(F,H2), . . . converges for every k-uniform hypergraph F .

For any positive integer n, define [n] := {1, 2, . . . , n}. For any set A, define r(A) to be the
collection of all nonempty subsets of A, and r<(A) to be collection of all nonempty proper subsets
of A. More generally, let r(A,m) denote the collection of all nonempty subsets of A of size at most
m. So for instance, r<([k]) = r([k], k − 1). We will also use the shorthand r[k] and r<[k] to mean
r([k]) and r<([k]) respectively.

Any permutation σ of a set A induces a permutation on r(A,m). We say that a function

W : [0, 1]r([k],m) → [0, 1] is symmetric if it remains invariant under any permutation of the coor-

dinates induced by any permutation of [k]. For example, W : [0, 1]r<[3] → [0, 1] being symmetric
means that

W (x1, x2, x3, x12, x13, x23) = W (xσ1 , xσ2 , xσ3 , xσ1σ2 , xσ1σ3 , xσ2σ3) (1)

for any permutation σ of {1, 2, 3}. Here we write xi for x{i} and xij for x{i,j}.

Definition 1.2. A k-uniform hypergraphon is a symmetric measurable function W : [0, 1]r<([k]) →
[0, 1].

Example 1.3. A 3-uniform hypergraphon is a measurable function W : [0, 1]6 → [0, 1] satisfying
the symmetry condition (1).

For any k-uniform hypergraph F and hypergraphon W , define the homomorphism density by

t(F,W ) :=

∫

[0,1]r(V (F ),k−1)

∏

A∈E(F )

W (xr<(A)) dx

Our convention throughout the paper is that if x = (xA : A ∈ A) ∈ [0, 1]A is a vector whose
coordinates are indexed by some set system A, and B ⊆ A is a subcollection, then we write
xB = (xB : B ∈ B) ∈ [0, 1]B to mean the restriction of the vector to the coordinates indexed by B.

Example 1.4. If K
(3)
4 = {123, 124, 134, 234} is the complete 3-uniform hypergraph on 4 vertices

and W is a 3-uniform hypergraphon, then

t(K
(3)
4 ,W ) =

∫

[0,1]10
W (x1, x2, x3, x12, x13, x23)W (x1, x2, x4, x12, x14, x24)W (x1, x3, x4, x13, x14, x34)·

·W (x2, x3, x4, x23, x24, x34) dx1dx2dx3dx4dx12dx13dx14dx23dx24dx34.
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Every k-uniform hypergraph H can be represented as a k-uniform hypergraphon WH as follows:
divide [0, 1] into |V (H)| equal-length intervals

{
I1, I2, . . . , I|V (H)|

}
. For each x ∈ [0, 1]r< [k] define

WH(x) :=

{
1 if x{i} ∈ Iai for i = 1, . . . , k and {a1, a2, . . . , ak} is an edge of H,

0 otherwise.

In particular, WH(x) depends only on the k coordinates of x corresponding to subsets of [k] of size
1. It can be alternatively described as transforming the adjacency array of H into a {0, 1}-valued
step function and then adding 2k − 2− k extra free coordinates. Observe that t(F,H) = t(F,WH)
for every k-uniform hypergraph F .

The main purpose of this paper is to give a new proof of the following result [7, Thm. 7] on the
existence of hypergraph limits.

Theorem 1.5. If H1,H2, . . . is a convergent sequence of k-uniform hypergraphs, then there exists a
k-uniform hypergraphon W so that t(F,Hn) → t(F,W ) as n → ∞ for every k-uniform hypergraph
F .

1.2. Why are there so many coordinates? It may initially seem somewhat strange that we need
6 coordinates to describe the limit of 3-uniform hypergraphs, whereas every 3-uniform hypergraph
can be described in terms of a 3-dimensional adjacency array. These extra dimensions do not arise
for limits of graphs, but they are essential for hypergraphs. Here is a standard example illustrating
why functions of the form [0, 1]3 → [0, 1] cannot capture the richness of 3-uniform hypergraph
limits. Take Gn ∼ G(n, 1/2) to be a sequence of graphs on n vertices, where each edge is generated
with probability 1/2, and let Hn be the 3-uniform hypergraph whose edges are the triangles of Gn.
Then with probability one, t(F,Hn) → 2−|∂F | for every 3-uniform hypergraph F , where ∂F is the
collection of unordered pairs of vertices of F that are contained in some edge of F . The limit of Hn

is different from, say, the constant hypergraphon 1/2, which is the limit of a sequence of 3-uniform
hypergraphs where every triple of vertices is taken to be an edge independently with probability
1/2. To describe the limit of Hn, we need to incorporate the limit of Gn into the data, and this
is achieved by the three extra coordinates. We know that the graph sequence Gn converges to the
constant graphon with value 1/2. To build the limit of Hn, we partition each of the last three
coordinates, x12, x13, x23 into two intervals [0, 1/2] ∪ (1/2, 1], corresponding to the limit of Gn and
the limit of its complement. The limiting hypergraphon has constant value 1 on [0, 1]3 × [0, 1/2]3

(as the edges of Hn are supported on Gn) and 0 elsewhere. Intuitively, the first three coordinates
encode the vertex types, the last three coordinates encode the vertex-pair types. This hypergraphon
is {0, 1}-valued since it is deterministic once the vertex and vertex-pairs types are set. If we modify
the sequence Hn so that each triangle of Gn is included as an edge of Hn with some probability
p independently, then the limiting hypergraphon would be constant p on [0, 1]3 × [0, 1/2]3 and 0
elsewhere.

For k-uniform hypergraphs, we can similarly impose some structure at each level, corresponding
to j-element subsets of vertices, for every 1 ≤ j ≤ k. This is why we need a coordinate for every
proper subset of [k] to describe hypergraph limits.

1.3. Random hypergraph model. To further illustrate the involvement of the 2k−2 coordinates
in a hypergraphon, let us review the associated random hypergraph model.

Recall that if W : [0, 1]2 → [0, 1] is a graphon, then we have the following natural random graph
model G(n,W ) on n vertices: choose i.i.d. uniform x1, x2, . . . , xn ∈ [0, 1], and let there be an edge
between vertices i and j with probability W (xi, xj) independently. It was shown [13, Cor. 2.6]
using Azuma’s inequality that G(n,W ) converges to the limit W almost surely.

Similarly, a k-uniform hypergraphon W gives a natural model G(n,W ) of a random k-uniform

hypergraph on n vertices: choose a uniformly random x ∈ [0, 1]r([n],k−1) and add the edge B =
{i1, . . . , ik} ⊆ [n] with probability W (xr<(B)) independently. Essentially the same proof for graphs
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extend over to show [7, Thm. 11] that G(n,W ) converges to W in the sense of Theorem 1.5, as
n → ∞ with probability one. Observe that the random hypergraphs Hn of triangles in G(n, 1/2)
discussed earlier is a special case of this model.

1.4. Analytic version and compactness. It will be convenient to prove an analytic version of
Theorem 1.5. We say that a sequence of k-uniform hypergraphons W1,W2, . . . is convergent if the
sequence t(F,W1), t(F,W2), . . . converges for every k-uniform hypergraph F .

Theorem 1.6. If W1,W2, . . . is a convergent sequence of k-uniform hypergraphons, then there

exists a k-uniform hypergraphon W̃ so that t(F,Wn) → t(F, W̃ ) as n → ∞ for every k-uniform
hypergraph F .

In this case we say that Wn converges to W̃ . Here is an equivalent formulation of the theorem.

Theorem 1.7. Every sequence W1,W2, . . . of k-uniform hypergraphons contains a subsequence that

converges to some k-uniform hypergraphon W̃ .

Theorem 1.7 implies Theorem 1.6 trivially since we can just take the limit W̃ produced by
Theorem 1.7. The converse is true because [0, 1]N is sequentially compact, so we can restrict (Wn)
to some subsequence (Wni

) so that t(F,Wni
) converges as i → ∞ for every F .

We shall prove Theorem 1.7 with respect to another notion of convergence based on regular parti-
tions, which implies the convergence of homomorphism densities. The partition-based convergence
gives some structural insight into the convergence of hypergraphs.

There is a neat interpretation of Theorem 1.7 in terms of compactness, discovered by Lovász

and Szegedy [14] in the case of graphons. Let W
(k)
0 denote the set of k-uniform hypergraphons.

Give W
(k)
0 the weakest topology for which the functions t(F, ·) are continuous for every k-uniform

hypergraph F . Identify W with W ′ if t(F,W ) = t(F,W ′) for every k-uniform hypergraph F . Call

this topology the left-convergence topology of W
(k)
0 .

Corollary 1.8. The space W
(k)
0 with the left-convergence topology is compact.

Proof. The space is metrizable with the metric δ(W,W ′) =
∑

i≥1 2
−i |t(Fi,W )− t(Fi,W

′)| where

(Fi) is some enumeration of all isomorphism classes of k-uniform hypergraphs. We know that
compactness is equivalent to sequential compactness in metric spaces, and Theorem 1.7 shows that
the space is sequentially compact. �

When k = 2, Lovász and Szegedy [14] showed that W
(2)
0 is compact under the cut metric

topology, and Borgs, Chayes, Lovász, Sós, and Vesztergombi [4] showed that the cut metric topology
is equivalent to the left-convergence topology. Lovász and Szegedy interpreted the compactness
with respect to the cut metric as an analytic form of the regularity lemma, and they showed
that the compactness of the space of graphons implies strong versions of the regularity lemma.
Unfortunately, for k ≥ 3, we do not know of a useful extension of the cut metric to hypergraphs
(and there may be some reasons to believe that such a natural metric might be too much to ask
for). This is one of the main obstacles in working with convergence of hypergraphs. It would be
nice to have a simple and useful description of distance between hypergraphs which agrees with the
topology induced by homomorphism densities.

1.5. Organization. In §2 we review the Lovász-Szegedy construction of graph limits. In §3 we
give an informal sketch of the proof of the existence of 3-uniform hypergraph limits. Most of the
ideas, minus the technical hairiness, are contained in §3. The proof of the main result is contained
in §4–6. §4 collects some of the notation used in the proof. §5 contains the regularity and counting
lemmas central to the proof. In §6 we introduce branching partitions and formulate the notion of
partitionable convergence, which implies, via counting lemmas, the convergence of homomorphism
densities. We then prove the existence of limits with respect to partitionable convergence.
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2. Limits of graphons

For any symmetric measurable function W : [0, 1]2 → R, the cut norm is defined by

‖W‖
�
:= sup

S,T⊆[0,1]

∣∣∣∣
∫

S×T
W (x, y) dxdy

∣∣∣∣ , (2)

where S and T range over all measurable subsets of [0, 1]. We have the identity

‖W‖
�
= sup

u,v : [0,1]→[0,1]

∣∣∣∣
∫

W (x, y)u(x)v(y) dxdy

∣∣∣∣ (3)

where u and v range over all measurable functions [0, 1] → [0, 1]. Indeed, since the integral in (3)
is linear in both u and v, one can restrict to {0, 1}-valued u and v, thereby reducing to (2).

Recall that a graphon is a symmetric measurable function W : [0, 1]2 → [0, 1]. For any measure
preserving bijection φ : [0, 1] → [0, 1] and any graphon W , define W φ by W φ(x, y) = W (φ(x), φ(y)).
We define the cut distance between graphons by

δ�(U,W ) = inf
φ
‖Uφ −W‖�,

where the infimum is taken over all measure preserving bijections φ : [0, 1] → [0, 1]. The cut distance
can be defined for pairs of graphs by considering their associated graphons. Graphs that are close
in cut distance are also close in homomorphism densities, by the following counting lemma.

Lemma 2.1 (Counting lemma). For any graphons U and W and any graph F , we have

|t(F,U)− t(F,W )| ≤ e(F ) ‖U −W‖
�

where e(F ) is the number of edges of F .

We illustrate the proof through the example F = K3.

t(K3, U)− t(K3,W )

=

∫

[0,1]3
(U(x, y)U(x, z)U(y, z) −W (x, y)W (x, z)W (y, z)) dxdydz

=

∫

[0,1]3
(U(x, y) −W (x, y))W (x, z)W (y, z) dxdydz

+

∫

[0,1]3
U(x, y)(U(x, z) −W (x, z))W (y, z) dxdydz

+

∫

[0,1]3
U(x, y)U(x, z)(U(y, z) −W (y, z)) dxdydz

Each of the three terms in the final sum is bounded in absolute value by ‖U −W‖
�
. For example,

for the first term, for every fixed value of z, the integral has the form (3), and so it is bounded
in absolute value by ‖U −W‖

�
, and the same bound holds after integrating z by the triangle

inequality. It follows that |t(K3, U)− t(K3,W )| ≤ 3 ‖U −W‖
�
.

For any graphon W and any partition Q of [0, 1] into a finite collection of measurable subsets,
let WQ be a graphon which is the step function obtained from W by replacing its value at (x, y) ∈
Qi×Qj by the average value of W on Qi×Qj, for any Qi, Qj ∈ Q, (if either Qi or Qj has measure
zero, then assign value 0 on Qi ×Qj). For graphs, think of Q as a partition of the vertex set, and
WQ as recording the edge densities between pairs of vertex subsets.

A key tool in the construction of graph limits is the following weak regularity lemma due to Frieze
and Kannan [8] (see also [14, Lem 3.1]). It can be proved by an L2-energy increment argument.
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Lemma 2.2 (Weak regularity lemma). For every ε > 0 and every symmetric measurable func-

tion W : [0, 1]2 → [0, 1], there is some partition Q of [0, 1] into at most 22/ε
2
parts such that

‖W −WQ‖� ≤ ε.

Lovász and Szegedy [14] showed that with respect to the cut metric, after identifying graphons
with cut distance zero, the space of all graphons is compact. Equivalently:

Theorem 2.3 (Lovász and Szegedy [14]). Every sequence W1,W2, . . . of graphons contains a

subsequence converging to some graphon W̃ in cut distance.

Let us recall the idea of the proof of Theorem 2.3. Let ε > 0. We apply the weak regularity

lemma to approximate every Wn by some (Wn)Qn . By replacing each Wn by some W φn
n for some

measure preserving bijection φn, we may assume that the partition Qn divides [0, 1] into intervals.
Take a subsequence so that the lengths of the intervals converge, and the values of (Wn)Qn inside
the boxes induced by the partition also converge, i.e., the value inside the (i, j)-th box of (Wn)Qn

converges to some value as n → ∞ (may be different limits for different (i, j)). Then in this

subsequence, (Wn)Qn converges pointwise almost everywhere to some limit Ũ1, which is also a step
function.

Now repeat the same procedure with a smaller ε′ < ε. We obtain new partitions Q′
n which

are refinements of previous partitions. Call the resulting limit Ũ2. Note that steps of (Wn)Q′
n
are

refinements of the steps of (Wn)Qn , and the values of the latter can be obtained from the former

by averaging over each step. Thus a similar relation holds for Ũ2 and Ũ1.
Now we repeat this procedure for a sequence of εk tending to zero. We obtain a sequence

Ũ1, Ũ2, . . . of step functions so that each Ũs can be obtained from Ũs+1 by average over each step. It

follows that if (X,Y ) is a uniform random point in [0, 1]2, then the sequence (Ũ1(X,Y ), Ũ2(X,Y ), . . . )

is a martingale. Since every Ũs is bounded, the Martingale Convergence Theorem1 implies that the

martingale converges with probability 1, and hence there is some W̃ : [0, 1]2 → [0, 1] which is the

pointwise almost everywhere limit of Ũs’s. One then checks that W̃ is the desired limit.
In summary, the above proof consists of two main steps:

(1) For each error tolerance ε, apply a weak regularity lemma to get a finite-dimensional step
function approximation of each graphon. Take a subsequence so that the step functions
converge.

(2) Take a decreasing sequence of ε tending to zero, we obtain refining chains of regularity

partitions, and the corresponding subsequential limits Ũs form a martingale. The existence
of the final limit graphon follows by the Martingale Convergence Theorem.

3. Limits of 3-uniform hypergraphs

In this section we sketch the idea for 3-uniform hypergraph limits. To keep things simple, consider
a sequence H1,H2, . . . of 3-uniform hypergraphs (as opposed to hypergraphons).

We begin with an initial attempt that does not quite work. For a 3-variable functionW : [0, 1]3 →
R, we might extend the cut norm (5) as follows (assume everything is measurable from now on):

(bad cut norm) ‖W‖
�
= sup

R,S,T⊆[0,1]

∣∣∣∣
∫

R×S×T
W (x, y, z) dxdydz

∣∣∣∣ . (4)

For each hypergraph H, one can easily extend the weak regularity lemma, Lemma 2.2, to obtain

a partition Q of the vertex set of H into at most 23/ε
2
parts so that

∥∥WH −WH
Q

∥∥
�
≤ ε (regard

WH as a 3-variable function for now, and WH
Q is derived from W by averaging over each cells

1The Martingale Convergence Theorem (see [18, Thm. 11.5]) says that every L1-bounded martingale converges
almost surely. Our martingales are actually bounded uniformly within [0, 1].
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induced by Q). Theorem 2.3 also extends with virtually no change in the proof. That is, allowing
permutations of vertices, some subsequence of Hn converges with respect to the vertex-cut norm

(4) to a 3-variable symmetric function W̃ : [0, 1]3 → [0, 1].
Unfortunately, the vertex-cut norm (4) is not strong enough to guarantee a counting lemma.

We want to say that if H1 and H2 are close with respect to some cut norm, then t(F,H1) and
t(F,H2) are close. If we carry through the proof of Lemma 2.1, we find that |t(F,H1)− t(F,H2)| ≤
e(F )‖WH1−WH2‖� holds when F is a linear hypergraph, i.e., where every two edges of F intersect in

at most one vertex. However, when F is not linear, say F = K
(3)
4 , then this claim is completely false,

as t(F,H1) and t(F,H2) can be separated even when ‖WH1 −WH2‖� is small. A counterexample
for 3-uniform hypergraphs can be built by taking triangles of the random graph G(n, p), and then
keeping each triangle as a 3-uniform edge with some probability q. With parameters (p, q) = (1/2, 1)
and (1, 1/8), we obtain 3-uniform hypergraphs that are close with respect to the vertex-cut norm,

and yet they have very different K
(3)
4 densities.

Now let us scrap the vertex-cut norm (4). The proof of the counting lemma, Lemma 2.1, extends
with respect to the following modified cut norm (again we use a 3-variable W for now):

(better cut norm) ‖W‖
�2 = sup

u,v,w : [0,1]2→[0,1]
symmetric

∣∣∣∣∣

∫

[0,1]3
W (x, y, z)u(x, y)v(x, z)w(y, z) dxdydz

∣∣∣∣∣ . (5)

For this cut norm, the counting lemma |t(F,H1)−t(F,H2)| ≤ e(F )‖WH1−WH2‖�2 holds. However,
like trying to fit a large rug in a small room, we quickly run into another issue: this norm is too
strong and we do not have the compactness result corresponding to Theorem 2.3. Indeed, taking
the sequence Hn of triangles of G(n, 1/2) from §1.2, the two hypergraphs Hn and Hm are typically
not close with respect to ‖·‖

�2 , although they are close in homomorphism densities.
Even though we do not have compactness with respect to ‖·‖

�2 , we can still hope for a slightly
weaker topology that gives convergence of homomorphism densities. We can extend the weak
regularity lemma, Lemma 2.2, to ‖·‖

�2 , where now instead of partitioning the vertex set V = V (H),

we partition the edges of the underlying complete graph KV =
(V
2

)
, i.e., the collection of unordered

pairs of V . So now Q is a partition KV = G1 ∪ · · · ∪ Gm of the edges of KV into m graphs. The
partition Q of KV induces a partition Q∗ on triples of vertices:

(x, y, z) ∼Q∗ (x′, y′, z′) ⇔ (x, y) ∼Q (x′, y′), (x, z) ∼Q (x′, z′), and (y, z) ∼Q (y′, z′).

Being somewhat sloppy with notation for the time being, we can form WH
Q by averaging WH inside

each cell of Q∗. Then the weak regularity lemma guarantees us a partition Q of KV into at most

23/ε
2
parts so that ‖WH−WH

Q ‖�2 ≤ ε, and |t(F,WH)−t(F,WH
Q )| ≤ e(F )ε by the counting lemma.

For each hypergraph in the sequence H1,H2, . . . , apply the weak regularity lemma (for a uniform
ε) to obtain a partition Qn of the complete graph on V (Hn) into m graphs: KV (Hn) = Gn,1 ∪ · · · ∪
Gn,m, where m depends on ε but not on n.

By applying Theorem 2.3 on the graph sequence (Gn,1)n≥1, we can find a graphon Ỹ1 : [0, 1]
2 →

[0, 1] so that Gn,1 converges to Ỹ1 as n → ∞ along some subsequence . By further restricting to

subsequences, we can find a Ỹj for each 1 ≤ j ≤ m so that Gn,j converges to Ỹj as n → ∞ along a
subsequence.

For each n, {Gn,1, . . . , Gn,m} is a partition of KV (Hn), so the same holds for the resulting limit2,

in the sense that Ỹ1 + · · ·+ Ỹm = 1 almost everywhere as functions [0, 1]2 → [0, 1]. Next we build a

partition Q̃ of the cube [0, 1]3 = [0, 1]r[2] (coordinates indexed by x1, x2, x12) by stacking together

2Provided that the limits of the various graph sequences are taken in a compatible way. This is a source of
technical/notational annoyance later on, and it is the reason for introducing branching partitions in §6.
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subsets whose heights are given by Ỹj . More precisely, Q̃ = {Q̃1, . . . , Q̃m} where

Q̃j = {(x1, x2, x12) ∈ [0, 1]3 : (Ỹ1 + · · · + Ỹj−1)(x1, x2) ≤ x12 < (Ỹ1 + · · ·+ Ỹj)(x1, x2)}.

This is the first place where the “extra” coordinates such as x12 arise even though we started with

hypergraphs not requiring these extra coordinates. They arise because the limit graphon Ỹ1 of a
sequence of graphs Gn,1 is not always a {0, 1}-valued function.

The partition Q̃ of [0, 1]r[2] induces a partition Q̃∗ of [0, 1]6 = [0, 1]r<[2]:

(x1, x2, x3, x12, x13, x23) ∼Q̃∗ (x′1, x
′
2, x

′
3, x

′
12, x

′
13, x

′
23) ⇔ (xi, xj , xij) ∼Q̃ (x′i, x

′
j , x

′
ij) ∀1 ≤ i < j ≤ 3.

The partition Q̃∗ should not be viewed as a regularization partition for any Hn (indeed, the extra
coordinates do not even appear in Hn). Instead, the partitions Qn themselves become increas-

ing close to Q̃. There is a correspondence of cells of Qn with those of Q̃, and this induces a

correspondence between cells of Q∗
n with those of Q̃∗.

Now we construct the first limiting hypergraphon Ũ1 as a step function [0, 1]6 → [0, 1] that is

constant on each part of Q̃∗. On each part of Q̃∗, we assign to Ũ1 the limiting value of the average
of Wn on the corresponding cell of Q∗

n, limit taken as n → ∞ along a further restricted subsequence.

We have constructed Ũ1, which plays a similar role as Ũ1 near the end of §2.

However, unlike §2, Ũ1 is not close in ‖·‖
�2 to Hn for large n. It is a limit in the following sense:

we first ε-regularized Hn, and then took the graph limit of the partitions, created a new partition
of [0, 1]6 using these lower order limits, and then constructed a step-function U1 using this limiting
partition and the limiting values on the steps. We knew from the earlier counting lemma (referred
to later on as Counting Lemma I ) that

∣∣t(F,H)− t(F,WH
Qn

)
∣∣ ≤ e(F )ε. (6)

By what we will call Counting Lemma II, we have (here n → ∞ along a subsequence)

lim
n→∞

t(F,WH
Qn

) = t(F, Ũ1). (7)

Here is some intuition why (7) holds. Both WH
Qn

and Ũ1 are step functions. We can split them up
into weighted sums of indicator functions, on which the claim reduces to checking homomorphism

densities for the graphons corresponding to parts of the partitions Qn and Q̃. We know that the

graphs which are the parts of Qn converge to the graphons from which Q̃ is built. So the graph
homomorphism densities converge.

This shows that Ũ1 is a O(e(F )ε)-approximation to a subsequence of Hn in terms of F -densities.

Now, take a smaller ε′ < ε, and build another Ũ2, where the new partitions Qn are refinements of

the previous ones. Continuing this process, we obtain a sequence Ũ1, Ũ2, . . . which is a martingale

as before. The Martingale Convergence Theorem gives a pointwise almost everywhere limit W̃ of

Ũs, s → ∞, and W̃ is the desired limit.

In proving 3-uniform hypergraph limits, we used the existence of graph limits. In general, we
prove the existence of k-uniform hypergraph limits by induction on k. There are a few further
technical difficulties. For example, we need to make sure that the limit of a sequence of partitions
remains a partition, so the limit needs to be taken in a compatible way. Since we are working with
multiple partitions, we will need to deal with homomorphisms from F to a vector of hypergraphons,
where the edges of F individually land in different hypergraphons. The details are addressed in
the rest of this paper.
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4. Notation

One (not so trivial) source of difficulty in working with hypergraphs is the complexity of notation.
This section collects some of the notation and conventions used in the rest of this paper. Some
notations were already introduced in §1.

We shall omit the word “measurable” as everything we consider is assumed to be measurable.

4.1. Hypergraphs. A k-uniform hypergraph F is some finite collection of k-element subsets of
some ground set, which we denote by V (F ). So when we talk about an element of F , we mean an
edge of F , and |F | means the number of edges of F .

4.2. Subsets, partitions, and hypergraphons.

Definition 4.1 (Symmetric sets and partitions). A symmetric (measurable) subset of [0, 1]r[k] is one
which is invariant under the action of all permutations of [k]. A symmetric (measurable) partition

of [0, 1]r[k] is a partition of [0, 1]r[k] into a finite collection of symmetric subsets.

A symmetric subset P ⊆ [0, 1]r[k] is associated to a k-hypergraphon WP : [0, 1]r< [k] → [0, 1] by
integrating out the top coordinate:

WP (xr<[k]) :=

∫ 1

0
1P (xr[k]) dx[k]. (8)

For example, for k = 3, we have P ⊆ [0, 1]3, with coordinates indexed by r[2] = {1, 2, 12}, and

WP (x1, x2) =

∫ 1

0
1P (x1, x2, x12) dx12.

This operation collapses the final coordinate in P . It will be helpful to think of P and WP as
representing the same object. For example, when k = 2 this means we do not care how P is
placed along the x12 coordinate, as we only care about how much P intersects line segments of
the form {x1} × {x2} × [0, 1]. And conversely, for given a W : [0, 1]2 → [0, 1], there are many
P ⊆ [0, 1]2 satisfying WP = W , e.g., any set of the form P = {(x, y, z) : a(x, y) ≤ z ≤ b(x, y)}
where b(x, y)− a(x, y) = W (x, y).

4.3. Homomorphism densities. For any tuple of k-uniform hypergraphons W = (W1, . . . ,Wm),
any k-uniform hypergraph F , and any map α : F → [m], define the homomorphism density

tα(F,W) :=

∫

[0,1]r(V (F ),k−1)

∏

e∈F

Wα(e)(xr<(e)) dx.

Example 4.2. If k = 2, F = K3 = {12, 13, 23}, α = (12 7→ 1, 13 7→ 2, 23 7→ 3), then

tα(F,W) =

∫

[0,1]3
W1(x1, x2)W2(x1, x3)W3(x2, x3) dx1dx2dx3

For any symmetric partition P = (P1, . . . , Pm) of [0, 1]r[k], define

WP := (WP1 , . . . ,WPm) and tα(F,P) := tα(F,W
P ). (9)

4.4. Quotient and stepping operators. Let W : [0, 1]r< [k] → [0, 1] be a k-uniform hypergraphon

and Q a symmetric partition of [0, 1]r[k−1] into q parts Q1, Q2, . . . , Qq ⊆ [0, 1]r[k−1]. The quotient

W/Q is a 2qk-tuple of numbers in [0, 1] defined by assigning to each k-tuple f = (f1, . . . , fk) ∈ [q]k

a pair (vf , wf ), referred to as (volume, average), as follows:

• Volume: vf equals the integral

vf :=

∫

x∈[0,1]r<[k]
1Qf1

(xr([k]\{1}))1Qf2
(xr([k]\{2})) · · · 1Qfk

(xr([k]\{k})) dx. (10)
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• Average: If vf = 0, then we set wf = 0. Otherwise, wf is defined to be

wf :=
1

vf

∫

x∈[0,1]r<[k]
W (xr<[k])1Qf1

(xr([k]\{1}))1Qf2
(xr([k]\{2})) · · · 1Qfk

(xr([k]\{k})) dx. (11)

Intuitively, the partition Q induces a partition Q∗ of [0, 1]r[k] into parts enumerated by f ∈ [q]k.
Each cell of Q∗ has a volume vf and an average value wf of W on the cell.

If we have another k-uniform hypergraphon W ′, and a symmetric partition Q′ of [0, 1]r[k−1] into
q parts (Q and Q′ have the same number of parts) with volumes and weights (v′f , w

′
f ), we define

d1(W/Q,W ′/Q′) :=
∑

f∈[q]k

(|vf − v′f |+ |vfwf − v′fw
′
f |). (12)

For any symmetric subset P ⊆ [0, 1]r[k], we write

P/Q := WP/Q.

A Q-step function U : [0, 1]r< [k] → R is a function of the form

U(x) =
∑

f=(f1,...,fk)∈[q]k

uf1Qf1
(xr([k]\{1}))1Qf2

(xr([k]\{2})) · · · 1Qfk
(xr([k]\{k})) (13)

for some real values uf . Since Q is a partition, the indicator functions in (13) all have disjoint

support, which together partition the domain [0, 1]r< [k]. Usually U is a symmetric function, which
is equivalent to having an additional symmetry constraint on uf , namely that uf = uf ′ whenever
f ′ is obtained from f ′ by a permutation of the coordinates.

The Q-stepping operator, denoted by a subscript Q, turns a k-uniform hypergraphon W into a
symmetric Q-step function WQ by averaging over each induced cell of Q∗. More precisely, we define
WQ : [0, 1]r< [k] → [0, 1] to be (using vf and wf from W/Q defined earlier)

WQ(x) :=
∑

f=(f1,...,fk)∈[q]k

wf1Qf1
(xr([k]\{1}))1Qf2

(xr([k]\{2})) · · · 1Qfk
(xr([k]\{k}))

We can also apply the stepping operator to a tuple of hypergraphons. If W = (W1, . . . ,Wm),
then

WQ := ((W1)Q, . . . , (Wm)Q).

In particular, if P = {P1, . . . , Pm} is a partition of [0, 1]r[k], then we write

WP
Q := ((WP1)Q, . . . , (W

Pm)Q) = (WP1
Q , . . . ,WPm

Q )

4.5. Cut norm.

Definition 4.3. For any symmetric function W : [0, 1]r< [k] → R, define

‖W‖
�k−1 := sup

u1,...,uk : [0,1]
r[k−1]→[0,1]

symmetric

∣∣∣∣∣

∫

[0,1]r<[k]
W (xr<[k])

k∏

i=1

ui(xr([k]\{i})) dx

∣∣∣∣∣ . (14)

Note that by linearity of the expression inside the absolute value in (14), it suffices to consider

functions ui’s which are indicator functions 1Bi
of symmetric subsets Bi ⊆ [0, 1]r[k−1]. The usual

cut norm corresponds to the case k = 2. The following example shows k = 3.

Example 4.4. For any symmetric function W : [0, 1]r<[3] → R, ‖W‖
�2 equals to

sup
u1,u2,u3

∣∣∣∣∣

∫

[0,1]6
W (x1, x2, x3, x12, x13, x23)u1(x2, x3, x23)u2(x1, x3, x13)u3(x1, x2, x12) dx1dx2dx3dx12dx13dx23

∣∣∣∣∣

where u1, u2, u3 vary over all symmetric functions [0, 1]r[2] → [0, 1].
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5. Regularity and counting lemmas

Definition 5.1. Let W be a k-uniform hypergraphon and Q a symmetric partition of [0, 1]r[k−1].
We say that (W,Q) is weakly ε-regular if ‖W −WQ‖�k−1 ≤ ε.

For a symmetric subset P ⊆ [0, 1]r[k], we say that (P,Q) is weakly ε-regular if (WP ,Q) is.

Lemma 5.2 (Weak regularity lemma). Let k ≥ 2 and ε > 0. Let W = (W1, . . . ,Wm) be a tuple

of k-uniform hypergraphons. Let Q be a symmetric partition of [0, 1]r[k−1]. Then there exists a

partition Q′ refining Q so that every part of Q is refined into exactly ⌈2km/ε2⌉ parts (allowing
empty parts) so that (Wi,Q

′) is weakly ε-regular for every 1 ≤ i ≤ m.

Proof. We build the partition incrementally, starting withQ. At a given stage, suppose the partition
is R. If (Wi,R) is weakly ε-regular for every i then we stop. Otherwise there is some i with

‖Wi − (Wi)R‖�k−1 > ε, so there exists symmetric subsets B1, . . . , Bk ⊆ [0, 1]r([k−1]) such that
∣∣∣∣∣

∫

[0,1]r<[k]
(Wi − (Wi)R)(xr<([k]))

k∏

i=1

1Bi
(xr([k]\{i})) dx

∣∣∣∣∣ > ε. (15)

Let B : [0, 1]r< [k] → [0, 1] be the function (not necessarily symmetric)

B(x) :=

k∏

i=1

1Bi
(xr([k]\{i})) dx.

For two functions U,U ′ : [0, 1]r< [k] → [0, 1], define the inner product

〈
U,U ′

〉
=

∫

[0,1]r<[k]
U(x)U ′(x) dx.

We will use the following easy fact: if U ′ is a Q-step function, then 〈U,U ′〉 = 〈UQ, U
′〉.

Now let R′ be the the minimal partition refining R and B1, . . . , Bk. Since ((Wi)R′)R = (Wi)R,
applying the fact above, we obtain

〈(Wi)R′ , (Wi)R〉 = 〈(Wi)R, (Wi)R〉 (16)

Since B is an R′-step function, we have 〈(Wi)R′ , B〉 = 〈Wi, B〉. So by (15)

|〈(Wi)R′ − (Wi)R, B〉| = |〈Wi − (Wi)R, B〉| > ε. (17)

Since ‖U‖22 = 〈U,U〉 for any U , we obtain by (16), the Cauchy-Schwarz inequality, and (17)

‖(Wi)R′‖22 − ‖(Wi)R‖
2
2 = ‖(Wi)R′ − (Wi)R‖

2
2 ≥ |〈(Wi)R′ − (Wi)R, B〉|2 > ε2. (18)

Furthermore, for every 1 ≤ j ≤ m, ‖(Wj)R′‖22 ≥ ‖(Wj)R‖
2
2 by convexity since ((Wj)R′)R = (Wj)R.

The quantity ‖(W1)R‖
2
2 + · · ·+ ‖(Wm)R‖

2
2 is at most m, and each iteration above increases the

sum by at least ε2. So there can be at most m/ε2 iterations. At the end we obtain a partition Q′

so that (Wi,Q
′) is weakly ε-regular for every 1 ≤ i ≤ m. Each time we introduced at most k new

sets to refine the partition, so R′ refines each part of R into at most 2k subparts. After at most

m/ε2 iterations, each part of the original partition Q is refined into at most 2km/ε2 parts. We can

throw in some empty parts so that each part of Q is refined into exactly ⌈2km/ε2⌉ parts. �

Lemma 5.3 (Counting lemma I). Let U = (U1, . . . , Um) and W = (W1, . . . ,Wm) be two m-tuple of

k-uniform hypergraphons and Q a symmetric partition of [0, 1]r([k−1]). Suppose that ‖Wi − Ui‖�k−1 ≤
ε for each i. Then for any k-uniform hypergraph F and any map α : F → [m], we have

|tα(F,U)− tα(F,W)| ≤ |F | ε.
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Proof. Let V = V (F ) and F = {e1, . . . , e|F |}. Write as a telescoping sum

tα(F,U)− tα(F,W)

=

∫

[0,1]r(V,k−1)




|F |∏

i=1

Uα(ei)(xr<(ei))−

|F |∏

i=1

Wα(ei)(xr<(ei))


 dxr(V,k−1)

=

|F |∑

j=1

∫

[0,1]r(V,k−1)

(
j−1∏

i=1

Uα(ei)(xr<(ei))

)
(Uα(ej ) −Wα(ej))(xr<(ej))




|F |∏

i=j+1

Wα(ei)(xr<(ei))


 dx.

The j-th term in the final sum is bounded by ‖Uα(ej) − Wα(ej)‖�k−1 ≤ ε. Indeed, if we fix all

variables other than xr<(ej), then all the factors except for (Uα(ej)−Wα(ej))(xr<(ej)) have the form

u(xr(f)) for some f ( ej , where f is the intersection of ej with another edge ej′ . So the the integral
can be bounded by the (k − 1)-cut norm, as claimed. �

Lemma 5.4 (Counting lemma II). Let U = (U1, . . . , Um) and W = (W1, . . . ,Wm) be two m-tuples
of k-uniform hypergraphons. Let Q = {Q1, . . . , Qq} and R = {R1, . . . , Rq} be symmetric partitions

of [0, 1]r[k−1]. Suppose that d1(Ui/Q,Wi/R) ≤ δ for each i. Then for any k-uniform hypergraph F
and any map α : F → [m],

|tα(F,UQ)− tα(F,WR)| ≤ |F | δ +
∑

β : ∂F→[q]

|tβ(∂F,Q) − tβ(∂F,R)| ,

where the sum is taken over all maps β : ∂F → [q], and ∂F is the (k − 1)-uniform hypergraph on
V (F ) consisting of (k − 1)-element subsets of V (F ) that are contained in some edge of F .

Proof. We can replace each Ui by (Ui)Q as this does not change Ui/Q or tα(F,UQ). So we may
assume that every Ui is a symmetric Q-step function, i.e., UR = U. Similarly, assume that every
Wi is a symmetric R-step function.

For each f ∈ [q]k, let (vi,f , wi,f ) denote the volume and average corresponding to f in Ui/Q, and
let (v′i,f , w

′
i,f ) denote the same for Wi/R.

For each 1 ≤ i ≤ m, construct a symmetric Q-step function U ′
i from Ui by changing its value on

the step corresponding to f from wi,f to w′
i,f . So U ′

i/Q has (vi,f , w
′
i,f ) as its volumes and averages.

In other words,

Ui(xr<[k]) =
∑

f=(f1,...,fq)∈[q]k

wi,f1Qf1
(xr([k]\{1})) · · · 1Qfk

(xr([k]\{k})); (19)

U ′
i(xr<[k]) =

∑

f=(f1,...,fq)∈[q]k

w′
i,f1Qf1

(xr([k]\{1})) · · · 1Qfk
(xr([k]\{k})); (20)

Wi(xr<[k]) =
∑

f=(f1,...,fq)∈[q]k

w′
i,f1Rf1

(xr([k]\{1})) · · · 1Rfk
(xr([k]\{k})). (21)

Write U′ = (U ′
1, . . . , U

′
m). We have

∥∥Ui − U ′
i

∥∥
1
=
∑

f∈[q]k

vi,f |wi,f −w′
i,f | ≤

∑

f∈[q]k

(|vi,fwi,f − v′i,fw
′
i,f |+ w′

i,f |v
′
i,f − vi,f |)

≤
∑

f∈[q]k

(|vi,fwi,f − v′i,fw
′
i,f |+ |v′i,f − vi,f |) = d1(Ui/Q,Wi/R) ≤ δ.

So ‖Ui − U ′
i‖1 ≤ δ for each i. It follows that

∣∣tα(F,U) − tα(F,U
′)
∣∣ ≤ |F | δ. (22)
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(This follows from Counting Lemma I, but it’s in fact even easier.) From (20) we have

tα(F,U
′) =

∫

[0,1]r(V (F ),k−1)

∏

e={j1,...,jk}∈F


 ∑

f=(f1,...,fq)∈[q]k

w′
α(e),f1Qf1

(xr(e\{j1})) · · · 1Qfk
(xr(e\{jk}))


 dx

=
∑

β : ∂F→[q]

(
∏

e∈F

w′
α(e),β(∂e)

)
t(∂F,Q). (23)

Here β(∂e) = (β(e \ {j1}), . . . , β(e \ {jk})) ∈ [q]k when e = {j1, . . . , jk}. The last equality above
needs some pondering. Essentially we expand the product of sums in the previous line and note
that since Q is a partition, the nonzero terms in the expansion correspond to assigning an f to
every e in a compatible way: if two edges e = {j1, . . . , jk} and e′ = e∪{j′l}\{jl} intersect in exactly
k − 1 vertices, and f is assigned to e, and f ′ is assigned to e′, then fl = f ′

l . These assignments are
in bijection with β : ∂F → [q], where β corresponds to the assignment assigning e to β(∂e).

Similar to (23) we have

tα(F,W) =
∑

β : ∂F→[q]

(
∏

e∈F

w′
α(e),β(∂e)

)
t(∂F,R). (24)

Combing (23) and (24) using the triangle inequality and noting that 0 ≤ w′
i,f ≤ 1, we have

∣∣tα(F,U′)− tα(F,W)
∣∣ ≤

∑

β : ∂F→[q]

|tβ(∂F,Q) − tβ(∂F,R)| . (25)

The lemma follows from combining (22) and (25) using the triangle inequality. �

6. Branching partitions

Now we are almost ready to build the limiting object. We will proceed by induction on k (for k-
uniform hypergraphons). The situation is very simple when k = 1, since in this case a hypergraphon
is simply a number between 0 and 1. To build the limiting hypergraphon in general, we will need to
repeatedly apply the weak regularity lemma to obtain a refining chain of partitions. Since we need
to apply induction on k, we need to have a stronger induction hypothesis that involves a sequence
of not just single hypergraphons, but refining chains of partitions. This motivates the following
definition of a branching partition, which is a special case a filtration, in the language of probability.
See Figure 1.

Definition 6.1. A degree p = (p1, p2, . . . ) ∈ NN (symmetric) branching partition P of [0, 1]r[k]

is a collection of symmetric subsets Pi of [0, 1]r[k], collected into levels, where each level Pl is a

symmetric partition of [0, 1]r[k]:

• Level 0: P0 = {[0, 1]r[k]}

• Level 1: P1 = {P1, P2, . . . , Pp1} is a symmetric partition of [0, 1]r[k].
• Level l (l ≥ 2): Pl is a refinement of Pl−1, where each part of Pl−1 gets further refined into
exactly pl parts.

An index at level l is a tuple i = (i1, i2, . . . , il) ∈ [p1]× [p2]×· · ·× [pl], which points to the symmetric
subset Pi = Pi1,...,il ∈ Pl at level l, where Pi is the il-th part in the refinement of the part Pi1,...,il−1

at level l − 1, whenever l ≥ 2 (all partitions are ordered).

Font convention. P is a branching partition, P is a partition, and P is a subset of [0, 1]r[k].

Example 6.2. A symmetric subset P ⊆ [0, 1]r[k] or a k-uniform hypergraphon W (related by
(8)) can be thought of as a degree (2, 1, 1, 1, . . . ) branching partition: level 1 is P and P c (the

complement of P in [0, 1]r[k]) and all subsequent levels are trivial refinements.
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P

Level 0: P0

Level 1: P1

Level 2: P2
...

[0, 1]r[k]

p1

P1
p2

P2
p2

· · · Pp1
p2

P1,1
p3

· · · P1,p2

Figure 1. A branching partition

We can generalize the notion of regularity from Definition 5.1 to branching partitions as follows.

Definition 6.3. Let P be a branching partition of [0, 1]r[k] and Q a branching partition of

[0, 1]r[k−1]. We say that (P,Q) is weakly (ε1, ε2, . . . )-regular if for every s ≥ 1, whenever P ⊆

[0, 1]r[k] is a member of P of level at most s, and Qs is the level s partition of [0, 1]r[k−1] in Q, the
pair (P,Qs) is weakly εs-regular.

Lemma 6.4 (Weak regularity lemma for branching partitions). For every k ≥ 2, p = (p1, p2, . . . ) ∈
NN and ε = (ε1, ε2, . . . ) ∈ RN

>0, we can find a q = (q1, q2, . . . ) ∈ NN so that the following holds: for

every degree p branching partition P of [0, 1]r[k], there exists a degree q branching partition Q of

[0, 1]r[k−1] so that (P,Q) is weakly ε-regular.

Proof. Take qs = ⌈2k(p1+p1p2+···+p1p2···ps)/ε2s⌉. We build Q successively by level. To obtain the level s
partition in Q, applying Lemma 5.2 with ε = εs, W the collection of hypergraphons corresponding
to all members of P of level at most s, and Q the level s− 1 partition in Q. �

Now we introduce two notions of convergence for branching partitions. The first notion, called
left-convergence, is based on convergence of homomorphism densities. The second notion, called
partitionable convergence, is based on convergence of regularity partitions. We will show, using our
counting lemmas, that partitionable convergence implies left-convergence.

Notation. Given degree p = (p1, p2, . . . ) branching partitions P1,P2, . . . and P̃ of [0, 1]r[k] and

degree q = (q1, q2, . . . ) branching partitions Q1,Q2, . . . and Q̃ of [0, 1]r[k−1], we use the following
notation to refer to the partitions and parts in these branching partitions.

• For each l ≥ 1, Pn,l is the level l partition in Pn, and P̃l is the level l partition in P̃ .

• For each s ≥ 1, Qn,s is the level s partition in Qn, and Q̃s is the level s partition in Q̃.

• For each index i = (i1, i2, . . . , il) ∈ [p1]× · · · × [pl], Pn,i is the index i element of Pn and P̃i

is the index i element of P̃.

Definition 6.5 (Left-convergence: Pn → P̃). We say that a sequence P1,P2, . . . of degree p

branching partitions of [0, 1]r[k] left-converges to another degree p branching partition P̃ of [0, 1]r[k],

written Pn → P̃, if

lim
n→∞

tα(F,Pn,l) = tα(F, P̃l) for all F, l, α (26)

where F ranges over all k-uniform hypergraphs, l ranges over all positive integers, and α ranges
over all maps F → [p1 · · · pl]. Recall from (9) that tα(F,P) := tα(F,W

P ) for a partition P.

Definition 6.6 (Partitionable convergence: Pn 99K P̃). We say that a sequence P1,P2, . . . of
degree p = (p1, p2, . . . ) branching partitions of [0, 1]r[k] partitionably converges to another degree p

branching partition P̃ of [0, 1]r[k], written Pn 99K P̃, if the following is satisfied (the definition is
inductive on k).
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When k = 1, for every index i = (i1, . . . , il) ∈ [p1]× · · · × [pl], we have limn→∞ λ(Pn,i) = λ(P̃i),
where λ is the Lebesgue measure on [0, 1].

When k ≥ 2, there exists some q ∈ NN and degree q branching partitions Q1,Q2, . . . and Q̃ of
[0, 1]r[k−1] satisfying:

(a) (Pn,Qn) is weakly (1, 1/2, 1/3, . . . )-regular for every n;

(b) Qn 99K Q̃ as n → ∞ (defined inductively);

(c) For every s ≥ 1 and every index i ∈ [p1]×· · ·×[pl], one has limn→∞ d1(Pn,i/Qn,s, P̃i/Q̃s) = 0;

(d) For every member P̃ ⊆ [0, 1]r[k] of P̃ , one has (W P̃ )Q̃s
→ W P̃ pointwise almost everywhere

as s → ∞.

Lemma 6.7 (Partitionable convergence implies left-convergence). If Pn 99K P̃ then Pn → P̃.

Proof. We use induction on k. When k = 1, the claim is trivial. Now assume k ≥ 2.

We need to show that (26) holds. Fix F, l, α. Let m = p1 · · · ps. Let Qn and Q̃ be as in

Definition 6.6, and let q = (q1, q2, . . . ) be the degree of Q̃.

Let ε > 0. By Definition 6.6(d), WP̃l

Q̃s
converges pointwise almost everywhere in each coordinate

to WP̃l as s → ∞, so lims→∞ tα(F,W
P̃l

Q̃s
) = tα(F,W

P̃l). We can find an s ≥ max{l, |F | /ε} so that

|tα(F,W
P̃l

Q̃s
)− tα(F,Pl)| ≤ ε. Fix this value of s.

By Definition 6.6(b) we have Qn 99K Q̃, so Qn → Q by the induction hypothesis. Thus

lim
n→∞

tβ(∂F,Qn,s) = tβ(∂F, Q̃s) (27)

for all β : ∂F → [q1q2 · · · qs]. See Lemma 5.4 for the definition of ∂F . We have

|tα(F,Pn,l)− tα(F, P̃l)|

≤ |tα(F,Pn,l)− tα(F,W
Pn,l

Qn,s
)|+ |tα(F,W

Pn,l

Qn,s
)− tα(F,W

P̃l

Q̃s
)|+ |tα(F,W

P̃l

Q̃s
)− tα(F, P̃l)| (28)

As n → ∞, the first term on the right hand side of (28) has a limsup of at most |F | /s ≤ ε
by Counting Lemma I (Lemma 5.3) since (P,Qn,s) is 1/s-regular for every P ∈ Pn,l by Defini-
tion 6.6(a). The second term on the RHS of (28) goes to zero by Counting Lemma II (Lemma 5.4),
Definition 6.6(c), and (27). The third term on the RHS of (28) is at most ε using our choice of s.

It follows that lim supn→∞ |tα(F,Pn,l) − tα(F, P̃l)| ≤ 2ε. Since ε can be made arbitarily small, we

obtain limn→∞ tα(F,Pn,l) = tα(F, P̃l) as desired. �

Proposition 6.8. Let p ∈ NN. Let P1,P2 · · · be a sequence of degree p branching partitions of

[0, 1]r[k]. Then there exists another degree p branching partition P̃ of [0, 1]r[k] so that Pn 99K P̃

as n → ∞ along some infinite subsequence.

Proof. We use induction on k. The claim is easy when k = 1, since we can pick a subsequence so
that for each index i, the measure λ(Pn,i) converges to some value ai as n → ∞, and we can take

the limit P̃ to be a branching partition where P̃i is an interval with length ai.
Now assume k ≥ 2. By Lemma 6.4, there exists a q ∈ NN so that for every n we can find a degree

q branching partition Qn of [0, 1]r[k−1] so that (Pn,Qn) is weakly (1, 1/2, 1/3, . . . )-regular, thereby
satisfying (a) in Definition 6.6. Applying the induction hypothesis, we can restrict to a subsequence

so that Qn 99K Q̃ for some branching partition Q̃ of [0, 1]r[k−1] (here and onwards in this proof
we abuse notation by only considering convergence as n → ∞ along some subsequence. We will
be repeatedly taking subsequences, and the conclusion will follow by a standard diagonalization
argument). So (b) is satisfied.

By further restricting to a subsequence, we may assume that for each s ≥ 1 and each index i, the
quotient Pn,i/Qn,s converges coordinate-wise as n → ∞. Let Wn,i := WPn,i be the hypergraphon
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associated to Pn,i. Let W̃i,s : [0, 1]
r< [k] → [0, 1] be a symmetric Q̃s-step function, with values

assigned so that d1(Wn,i/Qn,s, W̃i,s/Q̃s) → 0 as n → ∞. This is possible since we previously
assumed that Pn,i/Qn,s converges coordinatewise as n → ∞, so that are now simply putting in the

limiting values of the “average” coordinates into a template for a symmetric Q̃s-step function in

order to construct W̃i,s. To see that the “volume” coordinates (10) of Qn,s converge to those of

Q̃s, note that this amount to the claim that limn→∞ tβ(K
(k−1)
k ,Qn,s) = tβ(K

(k−1)
k , Q̃s) for every

β : K
(k−1)
k → [q], where K

(k−1)
k is the (k − 1)-uniform simplex, i.e., the collection of all (k − 1)-

element subsets of [k]. The convergence of these homomorphism densities follows from Qn → Q̃

which in turn follows from Qn 99K Q̃ and Lemma 6.7.

Claim 1. (W̃i,s+1)Q̃s
= W̃i,s.

Proof of Claim 1. We have

lim
n→∞

d1(Wn,i/Qn,s, W̃i,s/Q̃s) = 0 (29)

and

lim
n→∞

d1(Wn,i/Qn,s+1, W̃i,s+1/Q̃s+1) = 0 (30)

Since Q̃s+1 is a refinement of Q̃s, by merging together parts in Wn,i/Qs+1 and W̃i,s+1/Q̃s+1, we
deduce from (30)

lim
n→∞

d1(Wn,i/Qn,s, W̃i,s+1/Q̃s) = 0 (31)

From (29) and (31) we obtain W̃i,s+1/Q̃s = W̃i,s/Q̃s, which implies (W̃i,s+1)Q̃s
= W̃i,s since both

sides are Q̃s-step functions �

It follows that W̃i,1, W̃i,2, W̃i,3, . . . is a martingale with respect to the filtration3 induced by

Q̃1, Q̃2, . . . . By the Martingale Convergence Theorem, there exists some W̃i, so that W̃i,s → W̃i

pointwise almost everywhere as s → ∞. Furthermore (W̃i)Q̃s
= W̃i,s.

Claim 2. Let l ≥ 1, and let i = (i1, . . . , il−1) ∈ [p1] × · · · × [pl−1] an index at level l − 1, which
points to a part in P1 that splits into indices {j1, . . . , jpl} = i× [pl] at level l. Then

W̃j1 + · · · + W̃jpl
= W̃i almost everywhere.

Proof of Claim 2. Since Pn,j1 , . . . , Pn,jps is a partition of Pn,i, we have

Wn,j1 + · · ·+Wn,jps = Wn,i

Taking the Qn,s quotient of both sides and then take the limit as n → ∞, we find the following

equality for these Q̃s-step functions.

W̃j1,s + · · ·+ W̃js,s = W̃i,s

Taking s → ∞ and using the pointwise almost everywhere convergence of W̃j,s → W̃j as s → ∞
for every index j, we obtain Claim 2. �

Claim 2 tells us that we can find a branching partition P̃ of [0, 1]r[k] so that the part P̃i satisfies

W P̃i = W̃i. Visually we can build the level s of P̃ by stacking together subsets of [0, 1]r[k] that

correspond to W̃j, ranged over all indices j at level s. Then Pn,i/Qn,s = Wn,i/Qn,s →d1 W̃i,s/Q̃s =

3To be more precise, let [0, 1]r[k] be the probability space equipped with the uniform Lebesgue measure. For each

s ≥ 1 let Bs be the minimal σ-algebra on [0, 1]r[k] generated by functions of the form 1Q(xr([k]\{j})) ranged over

Q ∈ Qs and j ∈ [k]. Then W̃i,s is a Bs-measurable random variable, and Claim 1 implies that W̃i,1, W̃i,2, · · · is a
martingale adapted to the filtration B1 ⊆ B2 ⊆ · · ·
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W̃i/Q̃s = P̃i/Q̃s, so (c) is satisfied. Also (d) is satisfied since W P̃i

Q̃s
= W̃i,s → W̃i = W P̃i pointwise

almost everywhere as s → ∞ (from our application of the Martingale Convergence Theorem). �

Proof of Theorem 1.6. Let Pn be the degree (2, 1, 1, 1, . . . ) branching partition built from Wn as in

Example 6.2. Proposition 6.8 implies that there exists a branching partition P̃ so that Pn 99K P̃

along a subsequence, and hence Pn → P̃ along a subsequence by Lemma 6.7. Let P̃ be the index

(1) element of P̃ . The associated hypergraphon W̃ = W P̃ is the desired limit of Wn. By applying

(26) with l = 1 and α ≡ 1, we see that t(F,Wn) → t(F, W̃n) along the subsequence. �

We conclude the paper with a conjecture that partitionable convergence is equivalent to left-
convergence, thereby proposing a converse to Lemma 6.7.

Conjecture 6.9. Pn → P̃ if and only if Pn 99K P̃.
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