
ar
X

iv
:1

81
0.

00
48

9v
2 

 [
m

at
h.

PR
] 

 3
1 

Ja
n 

20
19

EIGENVECTOR DELOCALIZATION FOR NON-HERMITIAN RANDOM

MATRICES AND APPLICATIONS

KYLE LUH AND SEAN O’ROURKE

Abstract. Improving upon results of Rudelson and Vershynin, we establish delocaliza-
tion bounds for eigenvectors of independent-entry random matrices. In particular, we
show that with high probability every eigenvector is delocalized, meaning any subset of
its coordinates carries an appropriate proportion of its mass. Our results hold for random
matrices with genuinely complex as well as real entries. As an application of our meth-
ods, we also establish delocalization bounds for normal vectors to random hyperplanes.
The proofs of our main results rely on a least singular value bound for genuinely complex
rectangular random matrices, which generalizes a previous bound due to the first author,
and may be of independent interest.

1. Introduction

Let G be an n × n random matrix with independent and identically distributed (iid)
entries whose real and imaginary parts are independent standard normal random variables.
It is not difficult to see that the distribution of G is invariant under multiplication (either on
the right or left) by unitary matrices. Among others, this implies that the unit eigenvectors
of G are uniformly distributed on the complex unit sphere Sn−1

C
.

For an n × n independent-entry matrix A with non-Gaussian entries no such invariance
property exists, and the distribution of the eigenvectors is not easily described. In fact, if
the entries of A are discrete random variables, then the eigenvectors cannot have continuous
distribution. However, the universality phenomenon in random matrix theory asserts that,
under some appropriate regularity conditions on the entries, the eigenvectors of A should be
approximately uniform on the unit sphere for large enough dimension n. As such, we expect
each eigenvector of A to be have asymptotically the same properties as a vector uniformly
distributed on the unit sphere.

The goal of this note is to quantify some of these properties for the eigenvectors of A. Let
us begin by recalling some delocalization properties for random vectors uniformly distributed
on the unit sphere. To fix some notation, for a vector v = (vi)

n
i=1 ∈ Cn, we let ‖v‖∞ denote

the ℓ∞-norm of v and ‖v‖2 denote the ℓ2-norm of v. In addition, for I ⊂ [n] := {1, . . . , n},
we let vI denote the |I|-vector vI = (vi)i∈I . Here, |I| denotes the cardinality of the finite
set I.

Proposition 1.1 (Largest coordinate of a uniformly distributed vector on the unit sphere).
Let v be uniformly distributed on the unit sphere in Cn or Rn. Then there exists an absolute
constant C > 0 such that

(1.1) ‖v‖∞ ≤ C

√

logn

n
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with probability 1− o(1)1.

The bound on the ℓ∞-norm in (1.1) rules out peaks in the distribution of mass of v. This
bound is optimal, up to the choice of constant C. A similar bound was recently extended
to eigenvectors of matrices with independent subgaussian entries [42].

Definition 1.2 (Subgaussian random variable). A real random variable X is called sub-
gaussian if there exists B > 0 called the subgaussian moment of X such that

P(|X | > t) ≤ 2e−t2/B2

for every t > 0.

Theorem 1.3 (Theorem 1.1, [42]). Let A be an n×n matrix whose entries aij are indepen-
dent real-valued random variables with mean zero, unit variance, and subgaussian moment
bounded by B. Let t ≥ 2. Then with probability at least 1 − n1−t, every eigenvector v of A
satisfies

‖v‖∞ ≤ Ct3/2 log9/2 n√
n

‖v‖2.

Here C > 0 depends only on B.

Remark. More generally, Theorem 1.3 holds in the case when the entries aij ofA are complex-
valued; see [42, Remark 1.2] for details.

In this note, we are interested in the smallest coordinates of the eigenvectors. For compar-
ison, a random vector v uniformly distributed on the unit sphere has the following bounds
for its smallest coordinates.

Proposition 1.4 (Smallest coordinates of a vector uniformly distributed on the unit sphere).
Let v be uniformly distributed on the unit sphere in either Rn or Cn.

• (Real case) There exists constants C, c > 0 such that if v is uniformly distributed on
the unit sphere in Rn, then for any integer 1 ≤ m ≤ cn

(1.2) ‖vI‖2 ≥ C

logc n

(m

n

)3/2

for all I ⊂ [n], |I| ≥ m

with probability 1− o(1).
• (Complex case) There exists constants C, c > 0 such that if v is uniformly distributed
on the unit sphere in Cn, then for any integer 1 ≤ m ≤ cn

(1.3) ‖vI‖2 ≥ C

logc n

m

n
for all I ⊂ [n], |I| ≥ m

with probability 1− o(1).

The bounds in (1.2) and (1.3) show that no set of m coordinates of v can have too little
mass. This rules out “gaps” in how the mass of v is spread amongst the coordinates (or
as described in [39], this shows that v lacks “almost empty zones”). This phenomenon was
named no-gaps delocalization by Rudelson and Vershynin [43]. The bounds in (1.2) and
(1.3) are conjectured to be optimal, modulo logarithmic corrections, for all values of m, and
have been proven sharp for a number of regimes [18, 38].

Importantly, we emphasis the very different behavior displayed in Proposition 1.4 between
a vector v uniformly distributed on the unit sphere in R

n compared to the unit sphere in

1Here o(1) denotes a term which tends to zero as n → ∞. See Section 2.5 for a complete description of
our asymptotic notation.
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Cn. This can be explained in a number of ways. In either case, the vector v has the same
distribution as g/‖g‖2, where g is the standard real or complex Gaussian vector in Rn or
Cn. It follows that, ‖g‖2 = Θ(

√
n) with probability at least 1−Ce−cn; see for example, [31,

Lemma 1]. Here C, c > 0 are constants which may change from one occurrence to the next.
In addition, for all ε > 0, the coordinates of g satisfy

P (|gi| ≤ ε) ≤ Cε

in the real case and

P (|gi| ≤ ε) ≤ Cε2

in the complex case. These bounds imply the following bounds for the coordinates of a
vector v uniformly distributed on the unit sphere:

(1.4) P

(

|vi| ≤
ε√
n

)

≤ Cε+ Ce−cn

in the real case and

(1.5) P

(

|vi| ≤
ε√
n

)

≤ Cε2 + Ce−cn

for the complex case. Importantly, the difference between ε appearing on the right-hand
side of (1.4) and ε2 on the right-hand side of (1.5) leads to the differing behaviors seen in
Proposition 1.4. Indeed, by the union bound, (1.4) and (1.5) can easily be used to deduce
bounds for the smallest coordinate of v:

P

(

min
1≤i≤n

|vi| ≤
ε

n3/2

)

≤ Cε+ Cne−cn

in the real case and

P

(

min
1≤i≤n

|vi| ≤
ε

n

)

≤ Cε2 + Cne−cn

for the complex case. These last two bounds agree with Proposition 1.4 for the case m = 1.
For eigenvectors of independent-entry matrices, Rudelson and Vershynin [43] proved the

following analogue of (1.2).

Theorem 1.5 (Theorem 1.5, [43]). Let A be an n× n random matrix whose entries are iid
copies of the real-valued random variable ξ, which satisfies

sup
u∈R

P(|ξ − u| ≤ 1) ≤ 1− p, P(|ξ| > K) ≤ p/2

for some K, p > 0. Choose M ≥ 1 such that the event {‖A‖ ≤ M
√
n} holds with probability

at least 1/2. Let ε ≥ 1/n and s ≥ c1ε
−7/6n−1/6 + e−c2/

√
ε. Then, conditionally on the event

{‖A‖ ≤ M
√
n}, the following holds with probability at least 1 − (c2s)

εn. Every eigenvector
v of A satisfies

‖vI‖2 ≥ (εs)6‖v‖2 for all I ⊂ [n], |I| ≥ εn.

Here c1, c2, c3 depend on p, k, and M .

Remark. We have stated Theorem 1.5 for real iid random matrices, but the results in [43]
also extend to the case where the (i, j)-entry depends on the (j, i)-entry as well as the case
when the entries are complex-valued. We refer the reader to [43, Section 1] for details.

In view of numerical simulations and heuristic arguments coming from (1.4) and (1.5),
the bounds in Theorem 1.5 appear to be suboptimal. In this article, we improve the bounds
in Theorem 1.5 for random matrices with genuinely complex entries.
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Definition 1.6. Following [33], we say an N × n random matrix A is genuinely complex if
the entries of A are independent and2 aij = ξij +

√
−1ξ′ij where ξij and ξ′ij are independent

real random variables with mean zero, unit variance, and subgaussian moment bounded by
B.

Eigenvectors of random matrices have been widely studied in the mathematics and physics
literature. We refer the reader to [2, 15, 19, 22, 28, 29, 36, 47, 1, 3, 7, 5, 8, 6, 11, 14, 13,
20, 26, 30, 32, 44, 45, 46, 52, 55, 56, 49, 50, 10, 24, 23, 25, 27, 4, 9, 12, 16, 35, 38, 42,
43, 51, 57] and references therein for many results concerning various models of random
matrices. The majority of these results apply to eigenvectors of Hermitian or real symmetric
random matrices. Significantly less appears to be known for independent-entry matrices.
In the case of the complex Ginibre ensemble, where the entries are iid standard complex
Gaussians, a number of results have described the asymptotic correlations and overlaps
between eigenvectors. Important contributions in this line of research were made by Chalker
and Mehlig [15, 35] with significant improvements and generalizations being made recently
by Fyodorov [28] as well as by Bourgade and Dubach [12]. Other recent results include
[4, 9, 16] and references therein, and there still appears to be significant work to be done in
this area.

Shortly after this paper appeared on the arXiv, an improved version of Theorem 1.5 was
proved by Lytova and Tikhomirov [34]. For larger values of m, the results in [34] achieve
the optimal bounds depicted in Proposition 1.4. In particular, the results from [34] improve

upon our bounds when m ≥ logC n for some constant C > 0. The techniques used by
Lytova and Tikhomirov are significantly different than those employed in this paper. In
[34], a geometric approach is taken, which utilizes test projections and involves studying
random ellipsoids generated by projections of independent vectors. Compared to [34], the
main results in the present paper hold with higher probability and include bounds for the
cases when 1 ≤ m ≤ logC n.

2. Main results

Our main results hold for random matrices with genuinely complex entries as well as
random matrices with real entries. In this section, we also discuss an application of our
methods to normal vectors of random hyperplanes. We continue to use the notation in-
troduced above: for a vector v = (vi)

n
i=1 ∈ C

n, we let ‖v‖2 denote the ℓ2-norm of v. In
addition, for I ⊂ [n] := {1, . . . , n}, we let vI denote the |I|-vector vI = (vi)i∈I , where, |I|
denotes the cardinality of the finite set I. Recall that

√
−1 denotes the imaginary unit.

2.1. Results for eigenvectors of genuinely complex matrices. Our first main result
improves upon Theorem 1.5 for large enough values of m.

Theorem 2.1. Assume A is an n× n genuinely complex random matrix. Then there exist

constants C, c, c′ > 0 such that for every t ≥ e− log2 n and log2 n ≤ m ≤ c′n, with probability
at least 1− (Ct)m − Ce−c′n, every eigenvector v of A satisfies

‖vI‖2 ≥ c
√
t
(m

n

)3/2

‖v‖2 for all I ⊂ [n] with |I| ≥ m.

Here C, c, c′ depend only on the subgaussian moment bound B.

For smaller values of m, we have the following bound.

2We use
√
−1 to denote the imaginary unit and reserve i as an index. See Section 2.5 for a complete

description of our notation.
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Theorem 2.2. Assume A is an n× n genuinely complex random matrix. Then there exist
constants C, c, c′ > 0 such that for every t ≥ e−c′n and 1 ≤ m ≤ log2 n, with probability at
least 1− (Ct)m − Ce−c′n, every eigenvector v of A satisfies

‖vI‖2 ≥ c

√
t

log2 n

(m

n

)3/2+1/m

‖v‖2 for all I ⊂ [n] with |I| ≥ m.

Here C, c, c′ depend only on the subgaussian moment bound B.

As a corollary, we immediately obtain the following in the case that m = 1.

Corollary 2.3. Assume A is an n× n genuinely complex random matrix. Then there exist
constants C, c, c′ > 0 such that for every t ≥ e−c′n, with probability at least 1 − Ct, every
eigenvector v of A satisfies

|vi| ≥ c
√
t

1

n5/2 log2 n
‖v‖2 for all 1 ≤ i ≤ n.

Here C, c, c′ depend only on the subgaussian moment bound B.

Corollary 2.3 implies that with probability at least 1−Ce−c′n, every coordinate of every
eigenvector is nonzero. In particular, this implies that, with the same probability, each
eigenspace of A has dimension one. Indeed, if A has an eigenspace of dimension greater
than one, then this eigenspace must have a non-trivial intersection with the orthogonal
complement of the space spanned by ei, where e1, . . . , en are the standard basis elements in
Cn.

2.2. Results for eigenvectors of matrices with real entries. In this subsection, we
consider eigenvectors of real matrices. Our first result is the analogue of Theorem 2.1 for
the eigenvectors of A corresponding to real eigenvalues. When the entries of A are iid real
standard normal random variables, the number of real eigenvalues was studied in [21]. The
existence of real eigenvalues for random matrices with non-normal entries was established
more recently in [53], under the assumption the entries match the first four moments of the
standard Gaussian distribution.

Theorem 2.4. Assume A is an n × n real random matrix whose entries are independent
copies of a mean zero subgaussian random variable with unit variance. Then there exist
constants C, c, c′ > 0 such that for every t ≥ e−c′n and log2 n ≤ m ≤ c′n, with probability at
least 1− (Ct)m −Ce−c′n, every eigenvector v ∈ Rn of A corresponding to a real eigenvalue
satisfies

‖vI‖2 ≥ ct
(m

n

)2

‖v‖2 for all I ⊂ [n] with |I| ≥ m.

Here C, c, c′ depend only on the subgaussian moment of the entries.

For smaller values of m, we have the following bound.

Theorem 2.5. Assume A is an n × n real random matrix whose entries are independent
copies of a mean zero subgaussian random variable with unit variance. Then there exist
constants C, c, c′ > 0 such that for every t ≥ e−c′n and 1 ≤ m ≤ log2 n, with probability at
least 1− (Ct)m −Ce−c′n, every eigenvector v ∈ R

n of A corresponding to a real eigenvalue
satisfies

‖vI‖2 ≥ ct
(m

n

)2+1/m

‖v‖2 for all I ⊂ [n] with |I| ≥ m.

Here C, c, c′ depend only on the subgaussian moment of the entries.
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2.3. Normal vectors to random hyperplanes. As an application of our methods, we
now consider delocalization bounds for normal vectors to random hyperplanes. Let A be
an (n − 1) × n independent-entry random matrix. As this matrix is ill-conditioned, there
exists at least one unit vector v so that Av = 0. Stated another way, this means that there
is at least one unit vector that is orthogonal to the rows of A. In fact, under very general
conditions on the entries, A has rank n − 1. In this case, v is uniquely determined up to a
phase. Nguyen and Vu studied the normal vector v when the entries of A are centered iid
subgaussian random variables [37].

In this section, we extend the results in [37] to include some additional delocalization
properties for the normal vector v. Intuitively, one expects v to behave like a random vector
uniformly distributed on the unit sphere. In fact, in the case when A has standardized
Gaussian entries this is precisely the distribution of v.

We begin by considering the case when m is proportional to n. Let us introduce the
following notation. Let F be the cumulative distribution function of the χ2-distribution
with two degrees of freedom. Following the notation in [17], let Q denote the quantile
function of F . That is,

(2.1) Q(s) := inf{x ∈ R : F (x) ≥ s}, 0 < s ≤ 1, Q(0) := lim
sց0

Q(s).

Define

(2.2) H(s) := −Q(1− s), 0 ≤ s < 1.

Theorem 2.6. Suppose ξ and ξ′ are iid real subgaussian random variables with mean zero
and unit variance. Let A be an (n−1)×n iid matrix whose entries are iid copies of ξ+

√
−1ξ′,

and let v be any unit vector which satisfies Av = 0. Then, for any fixed 1 > δ > 0,

max
I⊂[n]:|I|=⌊δn⌋

‖vI‖22 −→ −
∫ δ

0

H(u) du

and

min
I⊂[n]:|I|=⌊δn⌋

‖vI‖22 −→ −
∫ 1

1−δ

H(u) du

in probability as n → ∞, where H is defined in (2.2).

Remark. Following [38], one can show that, as δ tends to zero,

−
∫ δ

0

H(u) du = Θ
(

δ log(δ−1)
)

and

−
∫ 1

1−δ

H(u) du = Θ(δ2).

In other words, Theorem 2.6 implies that the smallest δn coordinates of an eigenvector
contribute only Θ(δ2) fraction of the mass, which matches the bounds from Proposition 1.4.

Our next results are the analogues of Theorems 2.1 and 2.2 for the normal vector.

Theorem 2.7. Assume A is an (n − 1) × n genuinely complex matrix. Then there exist

constants C, c, c′ > 0 such that for every t ≥ e− log2 n and log2 n ≤ m ≤ c′n, with probability
at least 1− (Ct)m − Ce−c′n, every nonzero vector v orthogonal to the rows of A satisfies

‖vI‖2 ≥ c
√
t
(m

n

)3/2

‖v‖2 for all I ⊂ [n] with |I| ≥ m.

Here C, c, c′ depend only on the subgaussian moment bound B.
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Theorem 2.8. Assume A is an (n − 1) × n genuinely complex matrix. Then there exist

constants C, c, c′ > 0 such that for every t > 0 and 1 ≤ m ≤ log2 n, with probability at least
1− (Ct)m − Ce−c′n, every nonzero vector v orthogonal to the rows of A satisfies

‖vI‖2 ≥ c

√
t

logn

(m

n

)3/2

‖v‖2 for all I ⊂ [n] with |I| ≥ m.

Here C, c, c′ depend only on the subgaussian moment bound B.

Remark. More generally, Theorems 2.7 and 2.8 can be extended to cases where A is an
(n − k) × n matrix and m ≥ k using the same methods, but the lower bound for ‖vI‖2 in
these cases is substantially more cumbersome to notate.

2.4. Outline of the paper. The paper is organized as follows. In Section 3, we give an
overview of our argument by showing how delocalization properties for the eigenvectors
of the square matrix A can be reduced to questions concerning the least singular value
of rectangular sub-matrices of A. Similar reductions have been utilized before, and our
arguments in this section follow closely those in [43]. We establish a bound for the least
singular value of genuinely complex rectangular random matrices in Section 4. This bound
is based on a similar bound for genuinely complex square random matrices established by
the first author [33]. The main results in Section 2 are proven in Section 5. The proofs of
Propositions 1.1 and 1.4 are presented in Appendix A.

2.5. Notation. We use asymptotic notation (such as O, o) under the assumption that n →
∞. We use X = O(Y ), Y = Ω(X), X ≪ Y , or Y ≫ X to denote the estimate |X | ≤ CY for
some constant C > 0 independent of n and all n ≥ C. If C depends on another parameter,
e.g., C = Ck, we will indicate this by subscripts, e.g., X = Ok(Y ) or X ≪k Y . We write
X = Θ(Y ) if X ≪ Y ≪ X . We write X = o(Y ) if |X | ≤ cnY for some cn that tends to zero
as n → ∞.

|S| denotes the cardinality of the finite set S. We use
√
−1 to denote the imaginary unit

and reserve i as an index. [n] denotes the discrete interval {1, . . . , n}.
We use Sn−1

R
and Sn−1

C
to denote the unit spheres in Rn and Cn, respectively. For

a vector x = (xi)
n
i=1 ∈ Cn, we let ‖x‖2 denote the ℓ2-norm of x. In addition, for I ⊂

[n] := {1, . . . , n}, we let xI denote the |I|-vector xI = (xi)i∈I . Similarly, for an N × n
matrix A = (aij)i∈[N ],j∈[n] and a subset J ⊂ [n], we let AJ denote the N × |J | matrix

AJ = (aij)i∈[N ],j∈J . We let MF

N×n denote the set of N × n matrices over the field F (here,
F is either R or C).

Recall that the singular values of a matrix A are the square roots of the eigenvalues of
A∗A. For an N×n matrix A, we let s1(A) ≥ · · · ≥ sn(A) denote the ordered singular values
of A. Of particular importance are the largest and smallest singular values:

s1(A) = max
‖x‖2=1

‖Ax‖2, sn(A) = min
‖x‖2=1

‖Ax‖2.

We will let ‖A‖ denote the spectral norm of A, i.e., ‖A‖ = s1(A). For convenience, we will
often let smin(A) denote the smallest singular value of A.

3. Outline of the argument

3.1. Reduction of delocalization to invertibility. For an n × n matrix A, introduce
the localization event

Loc(A,m, δ) = {∃ eigenvector v ∈ Sn−1
C

of A, ∃I ⊂ [n], |I| = m, ‖vI‖2 < δ}.
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Intuitively, Loc(A,m, δ) captures the event that A has an eigenvector which has a subset of
m coordinates which carry a disproportionately small proportion of the mass.

We will also extend this notion to rectangular matrices, but first we fix some notation.
If A is a square matrix and λ ∈ C, then A − λ denotes the matrix A − λI, where I is the
identity matrix. Similarly, if A is a rectangular matrix, we define A − λ to be the N × n
matrix with entries Aij − λδij , where δij is the Kronecker delta.

For an N × n matrix A and λ0 ∈ C, we define the localization event

Locλ0
(A,M,m, δ) = {∃v ∈ Sn−1

C
, ‖(A− λ0)v‖2 ≤ δM

√
n, ∃I ⊂ [n], |I| = m, ‖vI‖2 < δ}.

In the case when A is square, Locλ0
(A,M,m, δ) is the event that an approximate eigenvector

v (with approximate eigenvalue λ0) is localized. For Theorems 2.7 and 2.8 it is important
that we allow this event to also apply to rectangular matrices.

The following three propositions are based on [43, Proposition 4.1] and show that the
study of the localization events defined above can be reduced to a question involving the
least singular value of the random matrix A.

Proposition 3.1 (Reduction of delocalization to invertibility for approximate eigenvectors).
Let A be an N × n random matrix with arbitrary distribution. Let M ≥ 1, δ ∈ (0, 1/2),
p0 ∈ (0, 1), m ∈ [n], and λ0 ∈ C with |λ0| ≤ M

√
n. Assume that for any set I ⊂ [n] with

|I| = m, we have

(3.1) P(smin((A− λ0)Ic) ≤ 6δM
√
n and ‖A‖ ≤ M

√
n) ≤ p0.

Then

P(Locλ0
(A,M,m, δ) and ‖A‖ ≤ M

√
n) ≤

(ne

m

)m

p0.

Proof. Assume ‖A‖ ≤ M
√
n and the localization event Locλ0

(A,M,m, δ) holds. Then there
exists a unit vector v and an index set I ⊂ [n] with |I| = m such that

(3.2) ‖(A− λ0)v‖2 ≤ δM
√
n and ‖vI‖2 < δ.

We decompose the vector v as v = vI + vIc to obtain

(A− λ0)v = (A− λ0)IvI + (A− λ0)IcvIc .

Using (3.2), we find

‖(A− λ0)IcvIc‖2 ≤ 3δM
√
n

and so

smin((A− λ0)Ic)‖vIc‖2 ≤ 3δM
√
n.

Since ‖vI‖2 < δ ≤ 1/2, we obtain ‖vIc‖2 ≥ 1/2, and hence

(3.3) smin((A− λ0)Ic) ≤ 6δM
√
n.

In other words, we have shown that the events ‖A‖ ≤ M
√
n and Locλ0

(A,M,m, δ) imply
the existence of a subset I ⊂ [n] with |I| = m such that (3.3) holds. Applying the union
bound and (3.1), we conclude that

P(Locλ0
(A,m, δ) and ‖A‖ ≤ M

√
n) ≤

(

n

m

)

p0 ≤
(ne

m

)m

p0,

as desired. �
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Proposition 3.2 (Reduction of delocalization to invertibility for eigenvectors). Let A be an
n× n random matrix with arbitrary distribution. Let M ≥ 1, δ ∈ (0, 1/2), p0 ∈ (0, 1), and
m ∈ [n]. Assume that for any set I ⊂ [n] with |I| = m and any λ0 ∈ C with |λ0| ≤ M

√
n,

we have

(3.4) P(smin((A− λ0)Ic) ≤ 6δM
√
n and ‖A‖ ≤ M

√
n) ≤ p0.

Then

P(Loc(A,m, δ) and ‖A‖ ≤ M
√
n) ≤ 9

δ2

(ne

m

)m

p0.

Proof. Suppose ‖A‖ ≤ M
√
n and the localization event Loc(A,m, δ) holds. Then there

exists an eigenvector v ∈ Sn−1
C

of A and an index set I ⊂ [n] with |I| = m such that ‖vI‖2 <
δ. Let λ be the eigenvalue of A corresponding to the eigenvector v. Then |λ| ≤ ‖A‖ ≤ M

√
n.

Let N be a (δM
√
n)-net of the disc {z ∈ C : |z| ≤ M

√
n}. A simple volume argument shows

that one can construct the net N to have cardinality

(3.5) |N | ≤ 9

δ2
.

Choose λ0 ∈ N such that |λ − λ0| ≤ δM
√
n. Then the eigenvalue-eigenvector equation

Av = λv implies

(A− λ0)v = (λ− λ0)v,

and hence

‖(A− λ0)v‖2 ≤ |λ− λ0| ≤ δM
√
n.

To summarize, we have shown that the events ‖A‖ ≤ M
√
n and Loc(A,m, δ) imply the

existence of λ0 ∈ N such that Locλ0
(A,M,m, δ) holds. We conclude from Proposition 3.1

and the union bound that

P(Loc(A,m, δ) and ‖A‖ ≤ M
√
n) ≤ |N |

(ne

m

)m

p0.

Combining this bound with (3.5) completes the proof. �

To work with the eigenvectors of real matrices, we also require the following event:

LocR(A,m, δ) := {∃ eigenvector v ∈ Sn−1
R

of A, ∃I ⊂ [n], |I| = m, ‖vI‖2 < δ}.
In this case, we have the following analogue of Proposition 3.2.

Proposition 3.3 (Reduction of delocalization to invertibility for real eigenvectors). Let
A be an n × n real random matrix with arbitrary distribution. Let M ≥ 1, δ ∈ (0, 1/2),
p0 ∈ (0, 1), and m ∈ [n]. Assume that for any set I ⊂ [n] with |I| = m and any λ0 ∈ R with
|λ0| ≤ M

√
n, we have

(3.6) P(smin((A− λ0)Ic) ≤ 6δM
√
n and ‖A‖ ≤ M

√
n) ≤ p0.

Then

P(LocR(A,m, δ) and ‖A‖ ≤ M
√
n) ≤ 3

δ

(ne

m

)m

p0.

Proof. The proof follows a similar argument as the proof of Proposition 3.2. Suppose ‖A‖ ≤
M

√
n and the localization event LocR(A,m, δ) holds. Then there exists an eigenvector

v ∈ Sn−1
R

of A and an index set I ⊂ [n] with |I| = m such that ‖vI‖2 < δ. Let λ be the
eigenvalue of A corresponding to the eigenvector v. Since the matrix A has real entries, the
eigenvalue λ must be real. In addition, |λ| ≤ ‖A‖ ≤ M

√
n. Let N be a (δM

√
n)-net of the
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real interval [−M
√
n,M

√
n]. A simple volume argument shows that one can construct the

net N to have cardinality

(3.7) |N | ≤ 3

δ
.

Choose λ0 ∈ N such that |λ − λ0| ≤ δM
√
n. Then the eigenvalue-eigenvector equation

Av = λv implies

(A− λ0)v = (λ− λ0)v,

and hence

‖(A− λ0)v‖2 ≤ |λ− λ0| ≤ δM
√
n.

To summarize, we have shown that the events ‖A‖ ≤ M
√
n and LocR(A,m, δ) imply the

existence of λ0 ∈ N such that Locλ0
(A,M,m, δ) holds. We conclude from Proposition 3.1

and the union bound that

P(Loc(A,m, δ) and ‖A‖ ≤ M
√
n) ≤ |N |

(ne

m

)m

p0.

Combining this bound with (3.7) completes the proof. �

3.2. Least singular value of rectangular matrices. In order to apply Propositions 3.1,
3.2, and 3.3, we will need bounds on the least singular value of genuinely complex random
matrices. These bounds are the key technical achievement of this paper. Indeed, the results
below provide an analogue of the main result in [41] for genuinely complex random matrices.

Theorem 3.4. Let A be an N × n random genuinely complex matrix, N ≥ n, and λ ∈ C

with |λ| ≤ M
√
N for M ≥ 1. Then, for every ε > 0, we have

(3.8) P

(

sn(A− λ) ≤ ε
(
√
N −

√
n− 1

)

)

≤ (Cε)2(N−n+1)−1 + e−cN

where C, c > 0 depend (polynomially) only on the subgaussian moment B and M .

Remark. Note that in [41], the upperbound in (3.8) for real random matrices and λ = 0 is
of the form (Cε)N−n+1 + e−cN . Essentially, we have replaced this ε in the real case with ε2

in the genuinely complex case. The right hand side is near optimal up to a factor of ε.

By slightly altering the proof of Theorem 3.4, we are able to prove a bound that is more
effective in the regime where N − n is small.

Theorem 3.5. Let A be an N × n random genuinely complex matrix, N ≥ n ≥ N − T , for
some integer T . Consider λ ∈ C with |λ| ≤ M

√
N for M ≥ 1. Then, for every ε > 0, we

have

(3.9) P

(

sn(A− λ) ≤ ε
(
√
N −

√
n− 1

)

)

≤ (C
√
Tε)2(N−n+1) + e−cN

where C, c > 0 depend (polynomially) only on the subgaussian moment B and M .

Remark. Note that when T = O(1), we recover the optimal bound.

4. Proof of Theorem 3.4

Our proof follows [41] closely and also combines several ideas from [33]. We mirror the
notation from [41, 33] for ease of comparison.

4.1. Preliminaries.
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4.1.1. Nets. Consider a subset D of Cn, and let ε > 0. Recall that an ε-net of D is a subset
N ⊆ D such that for every x ∈ D one has dist(x,N ) ≤ ε.

The following lemma is the complex analogue of Proposition 2.1 in [41]. The proof is
identical to the real case if one identifies Cn with R2n.

Proposition 4.1 (Nets). Let S be a subset of Sn−1
C

, and let ε > 0. Then there exists an
ε-net of S of cardinality at most

4n
(

1 +
2

ε

)2n−1

.

Using the standard net argument, one can show the following bound on the operator
norm of rectangular matrices.

Proposition 4.2. Let A be an N × n genuinely complex random matrix, with N ≥ n and
λ ∈ C with |λ| ≤ M

√
N for M ≥ 1. Then

P
(

‖A− λ‖ > t
√
N
)

≤ e−c0t
2N for t ≥ C0,

where C0, c0 > 0 depend only on the subgaussian moment B and M .

4.1.2. Converting between R and C. Following [33], for a vector v ∈ Cn, we denote by v its
associated real vector defined to be

v :=

(

Re(v)
Im(v)

)

and [v] denote its associated 2n× 2 real matrix defined to be

[v] :=

(

Re(v) −Im(v)
Im(v) Re(v)

)

We generalize this notion from [33] to include matrices. For a M ∈ MC
n×m matrix with

M = A+ iB,

where A,B ∈ MR
n×m, we define [M ] ∈ MR

2n×2m to be

[M ] :=

(

A −B
B A

)

.

We record some useful consequences of these definitions below.

Lemma 4.3. For a ∈ C, x, y ∈ Cn and M ∈ MC
m×n,

‖x− y‖2 = ‖x− y‖2,

ax = [x]a,

Mx = [M ]x.

4.1.3. Decomposition of the unit sphere. In our proof of Theorem 3.4, we utilize a partition
of the unit sphere due to Rudelson and Vershynin [40].

Definition 4.4. Let δ, ρ ∈ (0, 1). A vector x ∈ Cn is sparse if |supp(x)| ≤ δn. A vector
x ∈ Cn is compressible if there exists a sparse vector y such that ‖x − y‖2 ≤ ρ. A vector
x ∈ Cn is incompressible if it is not compressible. We denote the sets of compressible and
incompressible vectors by Comp(δ, ρ) and Incomp(δ, ρ) respectively.

We now recall two simple results.
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Lemma 4.5 (Lemma 5.3, [33]). Let x ∈ Incomp(δ, ρ). Then there exists a set σ ⊆ [n] of
cardinality |σ| ≥ ν1n and such that

ν2√
n
≤ |xk| ≤

ν3√
n

for all k ∈ σ

where 0 < ν1, ν2, ν3 are constants depending only on δ and ρ.

The next lemma controls the norm of the images of compressible vectors. We omit the
proof which is a straightforward adaptation of Section 2.2 in [40].

Lemma 4.6. Let A be a N ×n genuinely complex random matrix, N ≥ n/2 and λ ∈ C with

|λ| ≤ M
√
N for M ≥ 1. There exist δ, ρ, c3 depending only on the subgaussian moment B

and M such that

P
(

inf
x∈Comp(δ,ρ)

‖(A− λ)x‖2 ≤ c3
√
N
)

≤ e−c3N .

4.2. Small ball probability and arithmetic structure in R. At several points in the
proof of Theorem 3.4, we will need quantitative control on the spread of a random variable.

Definition 4.7. The Lévy concentration function of a random vector S ∈ Rm (or Cm) is
defined for ε > 0 as

L(S, ε) = sup
v∈Rm(or Cm)

P(‖S − v‖2 ≤ ε).

Below we recount several results for real random variables.

Lemma 4.8 (Lemma 2.6, [41]). Let ξ be a real random variable with mean zero, unit
variance, and finite fourth moment. Then for every ε ∈ (0, 1), there exists p ∈ (0, 1) which
depends only on ε and on the fourth moment, and such that

L(ξ, ε) ≤ p.

This rather crude bound can be significantly improved when more is known about the

random variable. In particular, a well-developed theory exists when S =
∑N

k=1 akξk where
ak are fixed vectors and ξk are independent random variables. This question is the basis of
Littlewood-Offord theory and the situation when ak are scalars has a long history in random
matrix theory [54, 40]. The fundamental observation in Littlewood-Offord theory is that
the Lévy concentration function is dependent on the additive structure of the coefficients,
ak. For the scalar case, Rudelson and Vershynin [40] defined the essential least common
denominator for the vector of coefficients, a = (a1, . . . , aN ), to be

LCDα,γ(a) := inf
{

θ > 0 : dist(θa,ZN ) < min(γ‖θa‖2, α)
}

which roughly captures the length of the shortest arithmetic progression in which a can be
embedded.

In [41], Rudelson and Vershynin generalized this notion to higher dimensions. If we now
allow a = (a1, . . . , aN ) to be a sequence of vectors ak ∈ Rm, then we define the product of
such a multi-vector a and a vector θ ∈ R

m as

θ · a = (〈θ, a1〉, . . . , 〈θ, aN 〉) ∈ R
N .

Then we define, for α > 0 and γ ∈ (0, 1),

LCDα,γ(a) := inf
{

‖θ‖2 : θ ∈ R
m, dist(θ · a,ZN ) < min(γ‖θ · a‖2, α)

}

The following theorem provides a bound on the small ball probability in terms of this
generalized essential least common denominator.
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Theorem 4.9 (Theorem 3.3, [41]). Let a ∈ (a1, . . . , aN ) be a sequence of vectors ak ∈ Rm

which satisfy
N
∑

k=1

〈ak, x〉2 ≥ ‖x‖22 for every x ∈ R
m.

Let ξ1, . . . , ξN be independent real random variables, such that L(ξk, 1) ≤ 1 − b for some

b > 0. Consider the random sum S =
∑N

k=1 akξk. Then, for every α > 0 and γ ∈ (0, 1),
and for

ε ≥
√
m

LCDα,γ(a)
,

we have

L(S, ε√m) ≤
(

Cε

γ
√
b

)m

+ Cme−2bα2

.

Remark. In [41], the statement of the theorem requires identically distributed, mean zero
random variables, but the proof (which begins with symmetrization anyways) can be easily
altered to handle random variables with arbitrary and possibly different means. The identical
distribution requirement can also be relaxed as long as the random variables have unit
variance and a uniform bound on the subgaussian moment.

4.3. Arithmetic structure in C. In [33], the first author generalized the notion of essential
least common denominator to the complex setting.

Definition 4.10. If we let a = (a1, . . . , aN ) be a vector of complex numbers, we define the
essential least common denominator of a to be

LCDα,γ(a) := inf
{

‖θ‖2 : θ ∈ R
2, dist([a]θ,Z2N ) < min(γ‖aθ‖, α)

}

By Lemma 4.3, an equivalent definition is

LCDα,γ(a) := inf
{

|θ| : θ ∈ C, dist(θa,Z2N ) < min(γ|aθ|, α)
}

We extend this definition to higher dimensions below.

Definition 4.11. Let a = (a1, . . . , aN ) be a sequence of vectors ak ∈ Cm. Then we define,
for α > 0 and γ ∈ (0, 1),

LCDα,γ(a) := inf
{

‖θ‖2 : θ ∈ R
2m, dist([A]T θ,Z2N ) < min(γ‖θ · a‖2, α)

}

where A is the matrix with columns ak. An equivalent, more geometric, definition is the
following:

LCDα,γ(a) := inf
{

‖θ‖2 : θ ∈ C
m, dist(θ · a,Z2N ) < min(γ‖θ · a‖2, α)

}

where we define the product of such a multi-vector a and a vector θ ∈ Cm as

θ · a = (〈θ, a1〉, . . . , 〈θ, aN 〉) ∈ C
N .

Remark. Note that the first definition makes it clear that the LCD of N complex vectors
can be related to the LCD of 2N real vectors (the 2N columns of [A]). This allows us to
use Theorem 4.9 in the complex setting.

4.4. Least common denominator of incompressible vectors. We recall a lemma from
[33] which provides a lower bound on the LCD of incompressible vectors.

Lemma 4.12 (Lemma 5.12, [33]). There exist constants γ, λ > 0 only depending on δ and
ρ such that for any incompressible vector x ∈ Incomp(δ, ρ) one has for every α > 0,

LCDα,γ(x) ≥ λ
√
n.
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4.5. Distance to subspaces and arithmetic structure. In this section, we utilize the
arithmetic structure of subspaces to control the distances of random vectors to random
subspaces. It is in this section that we exploit having a genuinely complex random matrix
and we gain the extra factor of ε to ε2 as compared to the real case. In particular, we show
the following optimal bound on the distance of a random vector to a random subspace.

Theorem 4.13 (Distance to random subspace). Let X be a vector in CN whose coordinates
are genuinely complex (but not necessarily centered) and independent. Let H be a random
subspace in CN spanned by N −m genuinely complex random vectors (not necessarily cen-
tered) independent of X, with 0 < m < c̃N . Then, for every v ∈ CN and every ε > 0, we
have

P(dist(X,H + v) < ε
√
m) ≤ (Cε)2m + e−cN ,

where C, c, c̃ > 0 depend only on the subgaussian moment B.

We deduce Theorem 4.13 via a covering argument that first requires a bound that holds
for a fixed subspace and depends on the arithmetic structure of that subspace. For α > 0
and γ ∈ (0, 1), we define the essential least common denominator of a subspace E in CN to
be

LCDα,γ := inf {LCDα,γ(a) : a ∈ S(E)}
where S(E) denotes the intersection of the unit sphere with E. One can see that this is
equivalent to

LCDα,γ = inf
{

‖θ‖2 : θ ∈ E, dist(θ,Z2N ) < min(γ‖θ‖2, α)
}

.

We now combine this notion with Theorem 4.9 to yield the following bound on the distance.

Theorem 4.14 (Distance to a general subspace). Let X be a genuinely complex random
vector (not necessarily centered) in CN . Let H be a subspace in CN of dimension N−m > 0.
Then for every v ∈ CN , α > 0, γ ∈ (0, 1), and for

ε ≥
√
m

LCDα,γ H⊥ ,

we have

P
(

dist(X,H + v) < ε
√
m
)

≤
(

Cε

γ

)2m

+ Cme−cα2

where C, c > 0 depend only on the subgaussian moment B.

Proof. We write X in coordinates, X = (ξ1, . . . , ξN , ξN+1, . . . , ξ2N ). By Lemma 4.8, each
coordinate of X satisfies L(ξk, 1/2) ≤ 1 − b for some b > 0 that only depends on the sub-
gaussian moment B. Thus, the random variables ξk/2 satisfy the assumptions of Theorem
4.9.

Now, we convert the distance problem into a small ball probability calculation for a sum
of independent vectors. Let PH signify the orthogonal projection onto a subspace H .

(4.1) dist(X,H + v) = ‖PH⊥(X − v)‖2 =

∥

∥

∥

∥

∥

2N
∑

k=1

akξk − w

∥

∥

∥

∥

∥

2

,

where

ak =

(

Re(PH⊥ek)
Im(PH⊥ek)

)

, aN+k =

(

−Im(PH⊥ek)
Re(PH⊥ek)

)

, w = PH⊥v



EIGENVECTOR DELOCALIZATION FOR NON-HERMITIAN RANDOM MATRICES 15

for 1 ≤ k ≤ N . For this sequence of vectors a = (a1, . . . , a2N ), we have

2N
∑

k=1

〈ak, x〉2 =

N
∑

k=1

|〈PH⊥ek, x〉|2 =

N
∑

k=1

|〈ek, x〉|2 = ‖x‖22 for any x ∈ H⊥

so we can apply Theorem 4.9 in the space H⊥ (which can be identified with C
m under a

suitable isometry).
For any θ ∈ H⊥ we have 〈θ, PH⊥ek〉 = 〈PH⊥θ, ek〉 = 〈θ, ek〉 so by Lemma 4.3,

(

aTk
aTN+k

)

θ̄ = [(PH⊥ek)
T ]θ̄ = (PH⊥ek)

T θ̄ = 〈PH⊥ek, θ〉 = 〈θ, ek〉.

As conjugation will not alter the norm, we have

LCDα,γ(H
⊥) = LCDα,γ(a).

The result now follows from a direct application of Theorem 4.9. �

To prove the distance bound we carry out a covering argument to exclude those possible
H⊥ with small LCD of a random subspace H⊥. In fact, we show that the LCD of such a
subspace is typically exponentially large.

Theorem 4.15 (Structure of a random subspace). Let H be a random subspace in C
N

spanned by N −m genuinely complex random vectors, 1 ≤ m ≤ c̃N . Then, for α = c
√
N ,

we have

P
(

LCDα,c(H
⊥) < c

√
NecN/m

)

≤ e−cN ,

where c ∈ (0, 1) and c̃ ∈ (0, 1/2) depend only on the subgaussian moment B.

For now, if we assume this result, we can complete the proof of Theorem 4.13.

Proof of Theorem 4.13. Consider the event

E := {LCDα,c(H
⊥) ≥ c

√
NecN/m}.

By Theorem 4.15, P(Ec) ≤ e−cN . We now condition on a realization of H in E . By the

independence of H and X , Theorem 4.14 applied with α = c
√
N and γ = c yields

P
(

dist(X,H) < ε
√
m|E

)

≤ (C1ε)
2m + Cme−c1N

for any

ε > C2

√

m

N
e−cN/m.

Since m ≤ c̃N , for an appropriate choice of c̃ we have

C2

√

m

N
ecN/m ≤ 1

C1
e−c3N/m and Cme−c1N ≤ e−c3N .

Thus, for every ε > 0,

P
(

dist(X,H) < ε
√
m|E

)

≤ (C1ε)
2m + 2e−c3N ≤ (C1ε)

2m + e−c4N

�
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4.5.1. Proof of Structure Theorem 4.15. Throughout the proof we assume that N > N0 for
some suitably large number N0 which only depends on the subgaussian moment B. Indeed,
the assumption on m implies that N > 1/c̃. Thus, choosing c̃ small enough, we can make
N0 suitably large.

Let X1, . . . , XN−m denote the independent random vectors that span the subspace H .
Consider the (N −m)×N random matrix B with rows X̄k. Then

H⊥ ⊆ ker(B).

Therefore, for every set S in CN we have:

(4.2) inf
x∈S

‖Bx‖2 > 0 implies H⊥ ∩ S = ∅.

This observation reduces the intersection problem to bounding the infimum of the image of
S under B.

We now show that a typical subspace is entirely contained in Incomp(δ, ρ).

Lemma 4.16. There exist δ, ρ ∈ (0, 1) such that

P
(

H⊥ ∩ Sn−1 ⊆ Incomp(δ, ρ)
)

≥ 1− e−cN .

Proof. Since N −m > (1 − c̃)N and c̃ < 1/2, we can apply Lemma 4.6 for the matrix B.
Therefore, there exist δ, ρ ∈ (0, 1) such that

P( inf
x∈Comp(δ,ρ)

‖Bx‖2 ≥ c3
√
N) ≥ 1− e−c3N .

Thus, by (4.2), H⊥ ∩ Comp(δ, ρ) = ∅ with probability at least 1− e−c3N . �

Fix the values of δ and ρ for the rest of this section. We decompose the incompressible
vectors into level sets, SD by the value of the essential least common denominator. For each
level set except those where D is exponentially large, we show that infx∈SD

‖Bx‖2 > 0.

Let α = µ
√
N , where µ > 0 is a small number to be chosen later, which depends only on

the subgaussian moment B. By Lemma 4.12,

LCDα,c ≥ c0
√
N for every x ∈ Incomp(δ, ρ).

Definition 4.17 (Level Sets). Let D ≥ c0
√
N . Define SD ⊆ Sn−1

C
as

SD := {x ∈ Incomp : D ≤ LCDα,c(x) < 2D}.
We first derive a lower bound for ‖Bx‖2 for a fixed vector x.

Lemma 4.18. Let x ∈ SD. Then for every t > 0 we have

(4.3) P(‖Bx‖2 < t
√
N) ≤

(

Ct2 +
C

D
+ Ce−cα2

)N−m

Proof. We examine the coordinates of Bx.

(Bx)j = [x]TBT
j =

2N
∑

k=1

ξk[x]j .

Since x ∈ SN−1
C

, we have
∑2N

k=1〈[x]j , y〉2 = ‖y‖22 for every y ∈ R2. We can apply Theorem
4.9 with m = 2.

P
(

|(Bx)j | < t
)

≤ Ct2 +
C

D
+ Ce−cα2

.
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Since the rows of B are independent, we can use the Tensorization Lemma 2.2 of [40] to
conclude that

P
(

N−m
∑

j=1

|(Bx)j |2 ≤ t2(N −m)
)

≤
(

C′′t2 +
C′′

D
+ C′′e−cα2

)N−m

.

This completes the proof since
∑N−m

j=1 |(Bx)j |2 = ‖Bx‖22. �

We recall the following bound from [33] on the size of an ε-net of a level set.

Lemma 4.19 (Lemma 5.14, [33]). There exists a (2α/D)-net of SD of cardinality at most

D2(C0D/
√
N)2N .

Using this bound on the net size and our anti-concentration for a single vector, we can
generate a lower bound for an entire level set.

Lemma 4.20 (Lower bound for a level set). There exist c1, c2, µ ∈ (0, 1) such that the

following holds. Let α = µ
√
N ≥ 1 and D ≤ c1

√
Nec1N/m. Then

P
(

inf
x∈SD

‖Bx‖2 < c2N/D
)

≤ 2e−N .

Proof. By Proposition 4.2, there exists K ≥ 1 such that

P(‖B‖ > K
√
N) ≤ e−N .

To complete the proof, it suffices to find ν > 0 which depends only on B such that the event

E :=

{

inf
x∈SD

‖Bx‖2 <
νN

2D
and ‖B‖ ≤ K

√
N

}

has probability at most e−N .
We verify that this holds with the following choice of parameters:

ν =
1

(3CC0)3e
, µ =

ν

9K
, c1 = cµ2 ≤ ν.

Choosing c̃ in the statement of Theorem 4.15 to be sufficiently small, we can assume that
N > ν−2. We apply Lemma 4.18 with t = ν

√
N/D. By our choice of parameters, the Ct

term dominates in the right hand side of (4.3). Therefore, for x0 ∈ SD,

P

(

‖Bx0‖2 <
νN

D

)

≤
(

3Cν
√
N

D

)2(N−m)

.

By Lemma 4.19, there exists a (2α/D)-net, N , of size at most D2(C0D/
√
N)2N

p := P

(

inf
x0∈N

‖Bx0‖2 <
νN

D

)

≤ D2(C0D/
√
N)2N

(

3Cν
√
N

D

)2(N−m)

.

Denote C1 := 3CC0.

p ≤ C2N
1 D2

(

D√
N

)2m

ν2(N−m) ≤ C2N
1 D2(νeνN/m)2mνN−m ≤ C3N

1 νN = e−N .

We assume that E occurs. Fix a x ∈ SD for which ‖Bx‖2 < νN
2D . There exists an element

x0 ∈ N such that ‖x− x0‖2 ≤ 2µ
√
N

D . Therefore, by the trianlge inequality,

‖Bx0‖2 ≤ ‖Bx‖2 + ‖B‖‖x− x0‖2 ≤ νN

2D
+K

√
N

2µ
√
N

D
<

νN

D
.
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�

Proof of Theorem 4.15. Consider x ∈ SN−1
C

such that

LCDα,c(x) < c1
√
Nec1N/m,

where c1 is the contant from Lemma 4.20. Either x is compressible or x ∈ SD for some
D ∈ D, where

D := {D : c0
√
N ≤ D < c1

√
Nec1N/m, D = 2k, k ∈ N}.

We can now decompose the desired probability as

p := P
(

LCDα,c(H
⊥) < c1

√
Nec1N/m

)

≤ P(H⊥ ∩ Comp 6= ∅) +
∑

D∈D
P(H⊥ ∩ SD 6= ∅).

By Lemma 4.16, the first term on the right is bounded by e−cN . By Lemma 4.20 each
term in the summation on the right can be bounded by 2e−N . Since |D| ≤ C′N , we have

p ≤ e−cN + C′Ne−N ≤ e−c′N .

�

4.6. Invertibility via uniform distance bounds. The remainder of the proof is identical
to [41] and is included with the obvious modifications for the reader’s convenience. We
first make several reductions. Without loss of generality, we may assume that our random
variables have an absolutely continuous distribution. Indeed, we can add to each entry an
independent complex gaussian random variable with small variance σ and later let σ tend
to zero.

Let N = n− 1 + d for some d ≥ 1. We can assume that

(4.4) 1 ≤ d ≤ c0n,

as when d is above a constant proportion of n, our matrix is sufficiently rectangular for a
simple epsilon argument (cf. Introduction of [41]). Note that

√
N −

√
n− 1 ≤ d√

n
.

Therefore,

(4.5) P

(

sn(A− λ) ≤ ε
(
√
N −

√
n− 1

)

)

≤ P
(

sn(A− λ) ≤ ε
d√
n

)

≤ P
(

inf
x∈Comp(δ,ρ)

‖(A− λ)x‖2 ≤ ε
d√
n

)

+ P
(

inf
x∈Incomp(δ,ρ)

‖(A− λ)x‖2 ≤ ε
d√
n

)

.

We can conclude from Lemma 4.6 that

(4.6) P

(

inf
x∈Comp(δ,ρ)

‖(A− λ)x‖2 ≤ ε
d√
n

)

≤ e−c3N .

Therefore, in this section, we focus on a lower bound for incompressible vectors.
Let X1, . . . , Xn ∈ CN be the columns of the matrix A. Given a subset J ⊆ [n] of

cardinality d, we consider the subspace

HJ := span(Xk)k∈J ⊆ C
N .
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For levels K1,K2 > 0 that only depend on δ, ρ, we define the set of totally spread vectors

(4.7) SpreadJ :=
{

y ∈ S(CJ) :
K1√
d
≤ |yk| ≤

K2√
d

for all k ∈ J
}

.

In the following lemma, we let J be a random subset uniformly distributed over all subsets
of [n] of cardinality d. To avoid confusion, we often denote the probability and expectation
over the random set J by PJ and EJ , and with respect to the random matrix A by PA and
EA.

Lemma 4.21 (Total spread). For every δ, ρ ∈ (0, 1), there exist K1,K2, c0 > 0 which depend
only on δ, ρ, and such that the following holds. For every x ∈ Incomp(δ, ρ), the event

E(x) :=
{ PJx

‖PJx‖2
∈ SpreadJ and

ρ
√
d√

2n
≤ ‖PJx‖2 ≤

√
d√
δn

}

satisfies PJ (E(x)) > cd0.

Proof. Let σ ⊂ [n] be the subset from Lemma 4.5. By choosing c0 sufficiently small in (4.4),
we may assume that d ≤ |σ|/2. By Stirling’s approximation,

PJ(J ⊂ σ) =

(|σ|
d

)

/

(

n

d

)

>
(ν1
e

)d

= cd0.

Lemma 4.5 also provides the two-sided bound on ‖PJx‖2. Thus, we can set K1 = ν2/ν3 and
K2 = 1/K1. �

We recall the following lemma from [41]. Although the lemma in [41] is stated for real
vector spaces, the same proof carries over for complex vector spaces.

Lemma 4.22 (Lemma 6.2, [41]). There exist C1, c1 > 0 which depend only on δ, ρ, and
such that the following holds. Let J be any d-element subset of [n]. Then for every ε > 0

(4.8) P

(

inf
x∈Incomp(δ,ρ)

‖(A− λ)x‖2 < c1ε

√

d

n

)

≤ Cd
1 · P

(

inf
z∈SpreadJ

dist((A− λ)z,HJc) < ε
)

.

4.7. Uniform distance bound. In this section we bound the probability in the right hand
side of (4.8) following [41].

Theorem 4.23 (Uniform distance bound). For every t > 0,

P

(

inf
z∈SpreadJ

dist((A− λ)z,HJc) < t
√
d
)

≤ (Ct)2d−1 + e−cN .

Since HJc is the span of n − d independent random vectors and the distribution of the
vectors is uniformly continuous, we can assume that

dim(HJc) = n− d.

Without loss of generality, in the proof of Theorem 4.23, we can assume that

(4.9) t ≥ t0 = e−c̄N/d.

Let us now represent the distance problem in matrix notation. Let P be the orthogonal
projection in C

N onto (HJc)⊥, and let

(4.10) W := PA|CJ .

Then for every v ∈ C
N , the following identity holds:

(4.11) dist((A− λ)z,HJc + v) = ‖Wz − w‖2, where w = P (v + λz).

We omit the standard proof to the following proposition.
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Proposition 4.24 (Proposition 7.3, [40]).

P(‖W‖ > t
√
d) ≤ e−c0t

2d for t ≥ C0.

Having controlled the operator norm of W , we can run through the standard approxima-
tion argument to uniformly control the distance.

Proposition 4.25. For every t that satisfies (4.9) we have

(4.12) P

(

inf
z∈SpreadJ

‖Wz − w‖2 < t
√
d and ‖W‖ ≤ K0

√
d
)

≤ (C2t)
2d−1.

Proof. Let ε = t/K0. By Proposition 4.1, there exists an ε-net N of SpreadJ ⊆ S(CJ) of
cardinality

|N | ≤ 4d

(

a+
2

ε

)2d−1

≤ 4d

(

3K0

t

)2d−1

.

Consider the event

E :=

{

inf
z∈N

‖Wz − w‖2 < 2t
√
d

}

.

Taking a union bound, we obtain

P(E) ≤ |N |max
z∈N

P(‖Wz − w‖2 ≤ 2t
√
d) ≤ 4d

(

3K0

t

)2d−1

(2C1t)
4d−2 ≤ (C2t)

2d−1.

Now, suppose the event in (4.12) holds, i.e. there exists z′ ∈ SpreadJ such that

‖Wz′ − w‖2 < t
√
d and ‖W‖ ≤ K0

√
d.

Choose z ∈ N such that ‖z − z′‖2 ≤ ε. Then by the triangle inequality

‖Wz − w‖2 ≤ ‖Wz′ − w‖2 + ‖W‖‖z − z′‖2 < t
√
d+K0

√
dε ≤ 2t

√
d.

�

We now invoke a proposition from [41] which allows us to decouple the behavior of ‖W‖
and ‖Wz‖2. The proof is a simple translation of the real version.

Proposition 4.26 (Decoupling, Proposition 7.5, [41]). Let W be an N × d matrix whose
columns are independent random vectors. Let β > 0 and let z ∈ Sd−1 be a vector satisfying
|zk| ≥ β√

d
for all k ∈ {1, . . . , d}. Then for every 0 < a < b, we have

P
(

‖Wz‖2 < a, ‖W‖ > b
)

≤ 2 sup
x∈Sd−1

C
,w∈CN

P

(

‖Wx− w‖2 <

√
2

β
a
)

P

(

‖W‖ >
b√
2

)

.

We apply this proposition to prove the following lemma.

Lemma 4.27. Let W be a random matrix as in (4.10), where P is the orthogonal projection
of CN onto the random subspace (HJc)⊥, defined as in Theorem 4.23. Then for every s ≥ 1
and every t that satisfies (4.9), we have

P

(

inf
z∈SpreadJ

‖Wz‖2 < t
√
d and sK0

√
d < ‖W‖ ≤ 2sK0

√
d
)

(4.13)

≤ (C3te
−c3s

2

)2d−1 + e−cN .
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Proof. Let ε = t/2sK0. By Proposition 4.1, there exists an ε-net N of SpreadJ ⊂ S(RJ) of
cardinality

|N | ≤ 2d
(

1 +
2

ε

)2d−1

≤ 2d

(

6sK0

t

)2d−1

.

Consider the event

E :=
{

inf
z∈N

‖Wz‖2 < 2t
√
d and ‖W‖ > sK0

√
d
}

.

We condition on a realization of the subspace HJc which allows us to consider the columns
of W as independent. By the definition of SpreadJ , we can apply the decoupling proposition
4.26 with β = K1. Applying a union bound, we have that

P(E | HJc) ≤ |N | ·max
z∈N

P
(

‖Wz‖2 ≤ 2t
√
d and ‖W‖ > sK0

√
d | HJc

)

≤ |N | · 2 max
z∈S(RJ), w∈RN

P

(

‖Wz − w‖2 <

√
2

K1
· 2t

√
d | HJc

)

· P
(

‖W‖ >
sK0

√
d√

2
| HJc

)

.

Assuming that LCDα,c(H
⊥
Jc) ≥ c

√
NecN/m, where α and c are as in Theorem 4.15, then by

Proposition 4.24 and representation (4.11), we can conclude as in the proof of Theorem 4.13
that

P(E | HJc) ≤ 8d
(6sK0

t

)2d−1

· (C′t)4d−2 · e−c′s2d

for any t satisfying (4.9). Since s ≥ 1 and d ≥ 1, we can use the following uperbound

P(E | HJc) ≤ (C3te
−c3s

2/2)2d−1.

Additionally, by Theorem 4.15,

P(E) ≤ P(E | LCDα,c(H
⊥
Jc) ≥ c

√
NecN/m) + P(LCDα,c(H

⊥
Jc) < c

√
NecN/m)

≤ (C3te
−c3s

2

)2d−1 + e−cN .

Now, suppose the event in (4.13) holds. There exists z′ ∈ SpreadJ such that

‖Wz′‖2 < t
√
d and sK0

√
d < ‖W‖ ≤ 2sK0

√
d.

Choose z ∈ N such that ‖z − z′‖2 ≤ ε. Then by the triangle inequality

‖Wz‖2 ≤ ‖Wz′‖2 + ‖W‖ · ‖z − z′‖2 < t
√
d+ 2sK0

√
d · ε ≤ 2t

√
d.

Thus, E holds. The conclusion follows from the bound on the probability of E . �

Proof of Theorem 4.23. Recall that we can safely assume (4.9) holds. Let k1 be the smallest
natural number such that

(4.14) 2k1 ·K0

√
d > C0

√
N,

where C0 and K0 are constants from Proposition 4.2 and Lemma 4.27 respectively. Summing
the probability bounds from Proposition 4.25 and Lemma 4.27 for s = 2k, k = 1, . . . , k1, we
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find that

P

(

inf
z∈Spread

J

‖Wz‖2 < t
√
d
)

≤ (C2t)
2d−1 +

∑

s=2k, k=1,...,k1

(

(C3te
−c3s

2

)2d−1 + e−cN
)

+ P(‖W‖ > C0

√
N)

≤ (C4t)
2d−1 + k1e

−c′N + P(‖W‖ > C0

√
N).

By (4.14) and Proposition 4.2, the last expression is upperbounded by (Ct)2d−1 + e−c′′N .
�

4.8. Proofs of Theorems 3.4 and 3.5.

Proof. By Lemma 4.22 and Theorem 4.23, we can conclude that

P
(

inf
x∈Incomp(δ,ρ)

‖(A− λ)x‖2 ≤ ε
d√
n

)

≤ (Cε)2d−1 + e−cN .

By (4.5) this concludes the proof. �

A more direct approach suffices for the proof of Theorem 3.5. The proof is essentially
identical to the square case (c.f. [40, 33]).

In this setting, we can use a more straightforward reduction to the distance problem.

Lemma 4.28 (Lemma 3.4, [40]). For λ ∈ Cn and |λ| ≤ M
√
N ,

P( inf
x∈Incomp(δ,ρ)

‖(A− λ)x‖2 < ερn−1/2) ≤ 1

δn

n
∑

k=1

P(dist(Xk, Hk) < ε)

where Xk denotes the k-th column of A− λ and Hk is the span of all the columns excluding
the k-th.

Remark. The proof in [40] applies equally well in the rectangular setting.

Proof of Theorem 3.5. By (4.5) and Lemma 4.28, our task reduces to bounding

P(dist(Xk, Hk) < ε).

By Theorem 4.13,

P(dist(Xk, Hk) < ε) ≤ (C
√
Tε)2(N−n+1) + e−cN .

�

5. Proof of main results

This section is dedicated to the proof of our main results in Section 2. We record the
following standard bound for the spectral norm of a random matrix with independent sub-
gaussian entries.

Lemma 5.1. Let A be an N × n genuinely complex random matrix. There exists constants
M ≥ 1 and C, c > 0 such that

P(‖A‖ ≥ M
√

max{N,n}) ≤ C exp(−cmax{N,n}).
Here M,C, c depend only on the uniform subgaussian moment bound B.
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Proof. The result essentially follows immediately from [48, Exercise 2.33], which applies only
to square matrices. One can easily obtain the bound for rectangular matrices by padding
the matrix with zeros to create a square matrix. Alternatively, one can apply the same net
argument as in Proposition 4.2. �

We begin with the proofs of Theorems 2.1 and 2.2.

Proof of Theorem 2.1. Without loss of generality, assume 1 ≥ t ≥ e− log2 n (as the bound is
trivial when t ≥ 1). Let M ≥ 1 be the constant from Lemma 5.1. Let ε, δ be positive values
to be chosen later, and take

q := P(Loc(A,m, δ) and ‖A‖ ≤ M
√
n).

Proposition 3.2 implies that

q ≤ 9

δ2

(ne

m

)m

po,

where p0 satisfies (3.4). Choose δ in terms of ε via the following identity:

(5.1) 6δM
√
n = ε(

√
n−

√
n−m− 1).

In other words, once we specify ε, δ will also be determined. Using Theorem 3.4, we find

p0 ≤ (Cε)2m+1 + e−cn,

and hence

q ≪ ε

δ2

(ne

m
C2ε2

)m

+
1

δ2

(ne

m

)m

e−cn.

Returning to (5.1), we see

δ ≥ εm

12Mn
.

This implies that

q ≪
(

( n

m

)1+2/m

eC2ε2−1/m

)m

+
1

ε2

( n

m

)2 (ne

m

)m

e−cn.

We now choose ε. Indeed, take

(5.2) ε := tm/(2m−1)
(m

n

)(m+2)/(2m−1)

,

and recall that this choice of ε also determines δ by (5.1). In addition, this choice implies
that

( n

m

)1+2/m

ε2−1/m = t,

which means

(5.3) q ≪ (C2et)m +
1

ε2

( n

m

)2 (ne

m

)m

e−cn.

We now simplify the expression for ε given in (5.2) using the fact that m ≥ log2 n. Indeed,
in this case it follows that

(m

n

)(m+2)/(2m−1)

= Θ

(

(m

n

)1/2
)

and, using the fact that 1 ≥ t ≥ e− log2 n,

tm/(2m−1) = Θ(
√
t).
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We conclude that

(5.4) ε = Θ

(√
t
(m

n

)1/2
)

,

and hence

(5.5) δ ≫
√
t
(m

n

)3/2

.

Returning to (5.3), we use (5.4) and t ≥ e− log2 n to see that

q ≪ (C2et)m + e−c′n

for m ≤ c′n, where c′ > 0 is a sufficiently small constant. In conclusion, we have now shown
that

P(Loc(A,m, δ) and ‖A‖ ≤ M
√
n) ≪ (C2et)m + e−c′n

for some δ > 0 which satisfies (5.5). In view of Lemma 5.1, the proof is complete. �

Proof of Theorem 2.2. The proof is similar to the proof of Theorem 2.1. Without loss of
generality assume 1 ≥ t ≥ e−c′n (as the bound is trivial when t ≥ 1) for a sufficiently small
constant c′ > 0 to be chosen later. Let M ≥ 1 be the constant from Lemma 5.1. Let ε, δ be
positive values to be chosen later, and take

q := P(Loc(A,m, δ) and ‖A‖ ≤ M
√
n).

Proposition 3.2 implies that

q ≤ 9

δ2

(ne

m

)m

po,

where p0 satisfies (3.4). Set δ in terms of ε again via (5.1), so that δ is determined completely
once we select ε. Using Theorem 3.5 and the bound m ≤ log2 n, we find that

p0 ≤ (Cε log n)2(m+1) + e−cn.

Thus, we have

q ≪ (logn)2
ε2

δ2

(

neC2 log2 n

m
ε2
)m

+
1

δ2

(ne

m

)m

e−cn.

From (5.1), we see that

(5.6) δ ≥ ε

12M

m

n
,

and so

q ≪
(

( n

m

)1+2/m

eC2(log n)2+2/mε2
)m

+
1

δ2

(ne

m

)m

e−cn.

Define ε by the following identity:
( n

m

)1+2/m

(log n)2+2/mε2 = t.

This implies that

ε =

√
t

(log n)1+1/m

(m

n

)(m+2)/2m

≥
√
t

log2 n

(m

n

)(m+2)/2m

.

In view of (5.6) we see that

(5.7) δ ≫
(m

n

)3/2+1/m
√
t

log2 n
.
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In addition, we obtain

q ≪ (C2et)m +
n5

t
(logn)4 (ne)log

2 n e−cn.

Using the assumption that t ≥ e−c′n and taking c′ sufficiently small, we deduce that

q ≪ (C2et)m + e−c′′n

for some constant c′′ > 0.
In conclusion, we have now shown that

P(Loc(A,m, δ) and ‖A‖ ≤ M
√
n) ≪ (C2et)m + e−c′′n

for some δ > 0 which satisfies (5.7). In view of Lemma 5.1, the proof is complete. �

We now turn to the proofs of Theorem 2.4 and 2.5. We will need the following least
singular value bound for real iid matrices, adopted from [41].

Theorem 5.2. Let A be an N × n real random matrix, N ≥ n, whose elements are inde-
pendent copies of a mean zero subgaussian random variable with unit variance. Then for
every ε > 0 and λ ∈ R with |λ| ≤ M

√
N for some M ≥ 1, we have

P

(

sn(A− λ) ≤ ε(
√
N −

√
n− 1)

)

≤ (Cε)N−n+1 + e−cN

where C, c > 0 depend (polynomially) only on the subgaussian moment of the entries and
M .

The λ = 0 case of this theorem appears as [41, Theorem 1.1]. However, a close inspection
of their proof confirms that their argument can be adapted to the shifted case, in the same
way that we have explicitly done in the proof of Theorem 3.4.

Proof of Theorem 2.4. The proof is similar to the proof of Theorem 2.1. Without loss of
generality, assume 1 ≥ t ≥ e−c′n for some constant c′ > 0 to be chosen later (as the bound
is trivial when t ≥ 1). By [41, Proposition 2.3], there exists M ≥ 1 such that

(5.8) P(‖A‖ ≤ M
√
n) ≥ 1− C0e

−c0n,

where M,C0, c0 > 0 depend only on the subgaussian moment of the entries. Let ε, δ be
positive values to be chosen later, and take

q := P(LocR(A,m, δ) and ‖A‖ ≤ M
√
n).

Proposition 3.3 implies that

q ≤ 3

δ

(ne

m

)m

po,

where p0 satisfies (3.6). Choose δ in terms of ε via (5.1), and again note that once we specify
ε, δ will also be determined. Using Theorem 5.2, we find

p0 ≤ (Cε)m+1 + e−cn,

and hence

q ≪ ε

δ

(ne

m
Cε
)m

+
1

δ

(ne

m

)m

e−cn.

Returning to (5.1), we see

δ ≥ εm

12Mn
.

This implies that

q ≪
(

( n

m

)1+1/m

eCε

)m

+
1

ε

(ne

m

)m+1

e−cn.
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We now choose ε. Indeed, take

(5.9) ε := t
(m

n

)(m+1)/m

,

and recall that this choice of ε also determines δ by (5.1). In addition, this choice implies
that

(5.10) q ≪ (Cet)m +
1

ε

(ne

m

)m+1

e−cn.

We now simplify the expression for ε given in (5.9) using the fact that m ≥ log2 n. Indeed,
in this case it follows that

(m

n

)(m+1)/(m)

= Θ
(m

n

)

.

We conclude that

(5.11) ε = Θ
(

t
m

n

)

,

and hence

(5.12) δ ≫ t
(m

n

)2

.

Returning to (5.10), we use (5.11) and t ≥ e−c′n to see that

q ≪ (Cet)m + e−c′n

for m ≤ c′n, where c′ > 0 is a sufficiently small constant. In conclusion, we have now shown
that

P(LocR(A,m, δ) and ‖A‖ ≤ M
√
n) ≪ (Cet)m + e−c′n

for some δ > 0 which satisfies (5.12). In view of (5.8), the proof is complete. �

Theorem 2.5 follows from similar arguments as those presented in the proofs of Theorems
2.2 and 2.4; we omit the details.

We now turn to the proofs of results from Section 2.3.
For the proof of Theorem 2.6, we first recall a result from [37].

Theorem 5.3 (Theorem 1.4, [37]). For a n − 1 × n genuinely complex random matrix A,
let x be a vector normal to all the rows. There exists a positive constants c and c′ such that
for any d-tuple (i1, . . . , id) with d = nc and Ω ∈ Cd,

|P((√nxi1 , . . . ,
√
nxid) ∈ Ω)− P(gC,1, . . . ,gC,d) ∈ Ω)| ≤ d−c′ .

We model our proof of Theorem 2.6 after the proof of Theorem 5.1 in [38].

Proof of Theorem 2.6. Let Z and Z ′ be standard normal distributions with cumulative
distribution function Φ(x). Recall that F (x) is the cumulative distribution function of
Z2/2 + Z ′2/2.

F (x) =
1

2π

∫ ∫

z2+z′2≤2x

e−z2/2e−z′2/2dzdz′

=

∫

√
2x

0

e−r2/2rdr

= 1− e−x
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For convenience, we introduce the function

G(x) := F (x2) = 1− e−x2

.

By direct calculation,

−
∫ 1

1−δ

H(u)du =

∫ δ

0

F−1(u)du

=

∫

√
F−1(δ)

0

2x3F ′(x)dx

=

∫ G−1(δ)

0

x2G′(x)dx

= −
∫ δ

0

log(1− u)du

and

−
∫ δ

0

H(u)du =

∫ 1

1−δ

F−1(u) = −
∫ 1

1−δ

log(1− u)du.

Thus, it suffices to show

(5.13)
∣

∣

∣ max
S⊂[n]:|S|=⌊δn⌋

‖xS‖22 +
∫ δ

0

log(1− u)du
∣

∣

∣ ≤ ε

and

(5.14)
∣

∣

∣ min
S⊂[n]:|S|=⌊δn⌋

‖xS‖22 +
∫ 1

1−δ

log(1− u)du
∣

∣

∣ ≤ ε

In fact, we can simply focus on (5.14) as (5.13) follows from the identity

max
S⊂[n]:|S|=⌊δn⌋

‖xS‖22 + min
S⊂[n]:|S|=⌊δn⌋

‖xc
S‖22 = 1

and
∫ 1

0 log(1− u)du = 1.
Define

N(c, k) :=

n
∑

j=1

1{c(k−1)≤√
n|v(j)|<ck}

Let Z be a complex gaussian and define

f(c, k) := nP(c(k − 1) ≤ |Z| < ck).

Note that
f(c, k) = n

(

G(ck)−G(c(k − 1))
)

.

By Theorem 5.3, we have that

P(c(k − 1) ≤ √
n|x(j)| < ck) = P(c(k − 1) ≤ |Z| < ck)(1 + o(1))

uniformly for all 1 ≤ j ≤ n. Thus,

EN(c, k) = (1 + o(1))f(c, k).

Similarly, we can verify that
Var(N(c, k)) = o(n2).

By Chebyshev’s inequality, we can conclude that

(5.15) N(c, k) = (1 + o(1))f(c, k)

with probability 1− o(1).
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We choose c > 0 and k0 ∈ N so that

(5.16) c
[

G−1(δ)
]2

<
ε

2

and ck0 = G−1(δ). This definition ensures that

(5.17)

k0
∑

k=1

G(ck)−G(c(k − 1)) = G(ck0)−G(0) = δ.

Additionally, we have
∣

∣

∣

∣

∣

k0
∑

k=1

c2(k − 1)2(G(ck)−G(c(k − 1)))−
∫ G−1(δ)

0

x2G′(x)dx

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

k0
∑

k=1

c2(k − 1)2(G(ck)−G(c(k − 1)))−
∫ ck

c(k−1)

x2G′(x)dx

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

k0
∑

k=1

[

(c2(k − 1)2 − c2k2)G(ck) + 2

∫ ck

c(k−1)

xG(x)dx

]∣

∣

∣

∣

∣

(5.18)

= 2

∣

∣

∣

∣

∣

k0
∑

k=1

∫ ck

c(k−1)

x(G(x) −G(ck))dx

∣

∣

∣

∣

∣

≤ c
[

G−1(δ)
]2

<
ε

2

by integration by parts and (5.16). The first inequality follows from the mean value theorem,

the identity G′(x) = 2xe−x2

and the bound |G′(x)| ≤
√
2e−2 ≤ 1. By an identical argument,

we can show that

(5.19)

∣

∣

∣

∣

∣

k0
∑

k=1

c2k2(G(ck)−G(c(k − 1)))−
∫ G−1(δ)

0

x2G′(x)dx

∣

∣

∣

∣

∣

<
ε

2
.

By (5.15), for any 1 ≤ k ≤ k0 + 1,

(5.20) N(c, k) = (1 + o(1))f(c, k) = (1 + o(1))2n(G(ck)−G(c(k − 1)))

with probability 1− o(1). (5.17) implies that

k0
∑

k=1

f(c, k) = δn.

Therefore, by a union bound, with probability 1− o(1),

k0
∑

k=1

N(c, k) = (1 + o(1))δn = ⌈δn⌉+ o(n).

We have the two-sided bound

k0
∑

k=1

c2(k − 1)2N(c, k) ≤ n min
S⊂[n]:|S|=∑k0

k=1
N(c,k)

‖xS‖22 ≤
k0
∑

k=1

c2k2N(c, k).
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With probability 1− o(1), there exists a sequence τn with τn → 0 such that

k0
∑

k=1

c2(k − 1)2N(c, k)− τnc
2k20N(c, k0)

≤ min
S⊂[n]:|S|=⌈δn⌉

‖xS‖22 ≤
k0
∑

k=1

c2k2N(c, k) + τnc
2(k0 + 1)2N(c, k0 + 1).

By (5.20), we also have that

k0
∑

k=1

c2(k − 1)2(G(ck) −G(c(k − 1)))(1 + o(1))

≤ min
S⊂[n]:|S|=⌈δn⌉

‖xS‖22 ≤
∑

k=1

k0c
2k2(G(ck)−G(c(k − 1)))(1 + o(1))

with probability 1− o(1). Finally, combining (5.18) and (5.19), we can conclude that
∣

∣

∣

∣

∣

min
S⊂[n]:|S|=⌈δn⌉

‖xS‖22 −
∫ G−1(δ)

0

x2G′(x)dx

∣

∣

∣

∣

∣

≤ ε

with probability 1− o(1). �

Proof of Theorem 2.7. The proof closely mirrors the proof of Theorem 2.1. Without loss of

generality, assume 1 ≥ t ≥ e− log2 n (as the bound is trivial when t ≥ 1). Let M ≥ 1 be the
constant from Lemma 5.1. Let ε, δ be positive values to be chosen later, and take

q := P(Loc0(A,M,m, δ) and ‖A‖ ≤ M
√
n).

(Here, we have set λ0 = 0 in the definition of Locλ0
(A,M,m, δ).) Proposition 3.1 implies

that

q ≤
(ne

m

)m

po,

where p0 satisfies (3.1). Choose δ in terms of ε via the following identity:

(5.21) 6δM
√
n = ε(

√
n− 1−

√
n−m− 1).

In other words, once we specify ε, δ will also be determined. Using Theorem 3.4, we find

p0 ≤ (Cε)2m−1 + Ce−cn,

and so

q ≪
(

neC2

m
ε(2m−1)/m

)m

+
(ne

m

)m

e−cn.

Choose ε > 0 such that
n

m
ε(2m−1)/m = t.

This choice implies that

q ≪
(

eC2t
)m

+
(ne

m

)m

e−cn

and

ε =
(

t
m

n

)m/(2m−1)

.

We now use the assumption that m ≥ log2 n to simplify this expression for ε. Indeed, in
this case it follows that

(m

n

)m/(2m−1)

= Θ

(

(m

n

)1/2
)

.
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Similarly, since 1 ≥ t ≥ e− log2 n, we have

tm/(2m−1) = Θ(
√
t).

Thus, we conclude that

ε = Θ

(√
t
(m

n

)1/2
)

.

Combining this with (5.21), we see that

(5.22) δ ≫ m

n
ε ≫

√
t
(m

n

)3/2

.

In addition, there exists a sufficiently small constant c′ > 0 such that

q ≪
(

eC2t
)m

+
(ne

m

)m

e−cn ≪
(

eC2t
)m

+ e−c′n

for m ≤ c′n. To conclude, we have shown that

P(Loc0(A,M,m, δ) and ‖A‖ ≤ M
√
n) ≪

(

eC2t
)m

+ e−c′n

for some δ which satisfies (5.22). In view of Lemma 5.1, the proof is complete. �

Proof of Theorem 2.8. The proof follows closely the proofs of Theorems 2.2 and 2.7. With-
out loss of generality, assume 1 ≥ t > 0 (as the bound is trivial when t ≥ 1). Let M ≥ 1 be
the constant from Lemma 5.1. Let ε, δ be positive values to be chosen later, and take

q := P(Loc0(A,M,m, δ) and ‖A‖ ≤ M
√
n).

Proposition 3.1 implies that

q ≤
(ne

m

)m

po,

where p0 satisfies (3.1). Again take δ in terms of ε by (5.21), so that δ is completely

determined once we specify ε. Applying Theorem 3.5 and using the fact that 1 ≤ m ≤ log2 n,
we find

p0 ≤ (Cε logn)2m + Ce−cn.

This gives

q ≪
( n

m
eC2(logn)2ε2

)m

+
(ne

m

)m

e−cn.

Define

ε :=

√
t

log n

√

m

n
,

so that
ε2

n

m
log2 n = t.

From (5.21), we see that this choice of ε gives

(5.23) δ ≫ m

n
ε ≥

√
t

logn

(m

n

)3/2

.

In addition, it follows that

q ≪
(

eC2t
)m

+
(ne

m

)m

e−cn.

Since 1 ≤ m ≤ log2 n,
(ne

m

)m

e−cn ≪ e−c′n

for some sufficiently small constant c′ > 0. We conclude that

P(Loc0(A,M,m, δ) and ‖A‖ ≤ M
√
n) ≪

(

eC2t
)m

+ e−c′n
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for some δ which satisfies (5.23). In view of Lemma 5.1, the proof is complete. �

Appendix A. Proof of Propositions 1.1 and 1.4

Proof of Proposition 1.1. We prove the result for Rn, but an analogous argument applies in
Cn. We model the uniform distribution on the unit sphere by sampling a gaussian vector

g ∼ N(0, In) and normalizing by ‖g‖−1
2 . Let E denote the event that ‖g‖2 ≥

√
n

10 . By
standard concentration bounds, we have that

P(EC) ≤ exp(−cn).

Similarly, for 1 ≤ i ≤ n,
P(|gi| ≥ t) ≤ 2 exp(−t2/8).

Therefore,

P

(

|vi| ≥ C

√

logn

n

)

= P

(

|gi|
‖g‖2

≥ C

√

logn

n

)

≤ P(|gi| ≥ C
√

logn) + P(EC)

≤ 1/n2

for large enough C. Therefore, applying the union bound,

‖v‖∞ ≤ C

√

logn

n

with probability 1− o(1). �

Proof of Proposition 1.4. We address the complex case first. As we are not trying to op-
timize the constant in the exponent of the logarithm, we can conveniently assume that
C logn ≤ m ≤ n/ logn for any constant C. We follow the convention that C, c denote abso-
lute constants that may change from line to line. Again, we model the uniform distribution
on the unit sphere in Cn by considering a random variable g ∼ NC(0, 1) that is normalized
by ‖g‖−1

2 . Let E denote the event that ‖g‖2 ≤ 10
√
n. We have that

P(Ec) ≤ exp(−cn).

We let Y1 < · · · < Yn denote the order statistics of the magnitudes of |g1|, . . . , |gn|. Therefore,

P

(

‖vI‖2 ≤ C

logc n

m

n
for all I ⊂ [n], |I| = m

)

≤ P

(

‖vI‖2 ≤ C

logc n

m

n
for all I and E

)

+ P(Ec)

(A.1)

≤ P

(

m
∑

i=1

Y 2
i ≤ C

logc n

m2

n

)

+ exp(−cn).

We use a simple counting and grouping argument to control the latter probability. We define
the following random variables that count the number of coordinates with magnitude in a
fixed range.

ηk :=

n
∑

i=1

1{ δ

n
2k−1≤|gi|2≤ δ

n
2k}

for 1 ≤ k ≤ L where δ := 1/ logn and L = ⌊log2(m/2δ)⌋. Additionally, we denote the
probability of a coordinate falling in this range by

pk := P

(

δ

n
2k−1 ≤ |gi|2 ≤ δ

n
2k
)

.
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As ηk is the sum of independent random variables, we have that

Eηk = npk

and

Var(ηk) = npk(1− pk) ≤ npk.

By Chebyshev’s inequality, for t > 0,

(A.2) P(|ηk − Eηk| > t) ≤ npk
t2

.

As |g1|2 is a chi-squared distribution with two degrees of freedom and δ
n2

k ≤ 1 for all k, by
the bounded density of the chi-squared distribution, we deduce that

(A.3) pk = Θ

(

δ

n
2k−1

)

.

Let E ′ denote the event that

(A.4) ηk ≥ cδ2k−1 − 2(2/3)k

for all 1 ≤ k ≤ L. Combining (A.2) and (A.3), we can conclude that P (E ′) ≥ 1 − O(δ).
In particular, observe that for k ≥ log logn, say, (A.4) implies that ηk ≥ δ2k−2 for large
enough n.

Recall that the cumulative distribution function of a chi-squared distribution with two
degrees of freedom is F (x) = 1 − e−x/2 for x ≥ 0. Therefore, from our choice of L =
⌊log2(m/2δ)⌋ we find that

δ2L

n
≤ m

2n
≤ −2 log(1−m/2n)

Using the cumulative distribution function, we find that

P

(

|g1|2 ≤ δ2L

n

)

≤ P(|g1|2 ≤ −2 log(1−m/2n) = m/2n.

Thus, by Chernoff’s bound,

P (Ym ≥ δ2L) ≤ 2e−cm = O(δ),

where the last equality follows from the assumptions that m ≥ C log n and δ > 1/n. Finally,
we have that with probability at least 1−O(δ),

m
∑

i=1

Y 2
i ≥

L
∑

k=log logn

δ2k−1 δ

n
2k−1 = Ω

(

δ222L

n

)

= Ω

(

m2

n log2 n

)

.

We have shown that

P

(

m
∑

i=1

Y 2
i ≤ C

logc n

m2

n

)

= O(δ).

From A.1, we can infer that

P

(

‖vI‖2 ≤ C

logc n

m

n
for all I ⊂ [n], |I| = m

)

= O(δ) = o(1),

which concludes the proof of the complex case.

The real case follows the same outline. The choice of parameters is slightly different as
the density of the chi squared distribution with one degree of freedom no longer has bounded
density but grows as x−1/2 near zero. We use the same notation as in the complex case.



EIGENVECTOR DELOCALIZATION FOR NON-HERMITIAN RANDOM MATRICES 33

Again, we can assume that C logn ≤ m ≤ n/ logn for any large constant C. We model
the uniform distribution on the sphere in Rn by considering a random variable g ∼ NR(0, 1)
that is normalized by ‖g‖−1

2 . Let E denote the event that ‖g‖2 ≤ 10
√
n. We have that

P(Ec) ≤ exp(−cn).

We let Y1 < · · · < Yn denote the order statistics of the magnitudes of |g1|, . . . , |gn|. Therefore,

P

(

‖vI‖2 ≤ C

logc n

(m

n

)3/2

for all I ⊂ [n], |I| = m
)

(A.5)

≤ P

(

‖vI‖2 ≤ C

logc n

(m

n

)3/2

for all I and E
)

+ P(Ec)

≤ P

(

m
∑

i=1

Y 2
i ≤ C

logc n

m3

n2

)

+ exp(−cn).

To control the latter probability, we define the following random variables that count the
number of coordinates with magnitude in a fixed range.

ηk :=

n
∑

i=1

1

{

δ2

n2
2k−1≤|gi|2≤ δ2

n2
2k

}

for 1 ≤ k ≤ L where δ := 1/ logn and L = ⌊2 log2(m/C∗δ)⌋ where C∗ is a constant to be
fixed later. We denote the probability of a coordinate falling in this range by

pk := P

(

δ2

n2
2k−1 ≤ |gi|2 ≤ δ2

n2
2k
)

.

As ηk is the sum of independent random variables, we have that

Eηk = npk

and

Var(ηk) = npk(1− pk) ≤ npk.

As a chi-squared distrbuted random variable with one degree of freedom has probability

density function Θ(x−1/2) near zero and δ2

n2 2
k ≤ 1 for all k, we deduce that

(A.6) pk = Θ

(

δ

n
2k/2

)

.

Let E ′ denote the event that

(A.7) cδ2k/2 − 2k/3 ≤ ηk ≤ Cδ2k/2 + 2k/3

for all 1 ≤ k ≤ L and C, c are the implied constants in (A.6). By Chebyshev’s inequality and
(A.6), we can conclude that the probability of (A.7) is larger than 1 − O(δ). In particular,
observe that for k ≥ log logn, say, (A.4) implies that ηk ≥ cδ2k/2 for large enough n.

By our choice of L, the probability that
∑L

i=0 ηk ≥ m is at most O(δ) for large enough
C∗. By a simple calculation, we also have that P (Y1 < δ2/n2) = O(δ). Therefore, we can
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have shown that

P





m
∑

i=1

Y 2
i ≥

L
∑

k=log logn

δ2k/2
δ22k

n2



 ≥ P

(

m
∑

i=1

Y 2
i ≥ Cδ323L/2

n2

)

≥ P

(

m
∑

i=1

Y 2
i ≥ Cm3

n2 logc n

)

= 1−O(δ).

From A.5, we can conclude that

P

(

‖vI‖2 ≤ C

logc n

(m

n

)3/2

for all I ⊂ [n], |I| = m
)

= O(δ) = o(1),

which finishes the proof of the real case.
�
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[10] A. Bloemendal, L. Erdős, A. Knowles, H.-T. Yau, and J. Yin. Isotropic local laws for sample covariance
and generalized Wigner matrices. Electron. J. Probab., 19:no. 33, 53, 2014.

[11] C. Bordenave and A. Guionnet. Localization and delocalization of eigenvectors for heavy-tailed random
matrices. Probab. Theory Related Fields, 157(3-4):885–953, 2013.

[12] P. Bourgade and G. Dubach. The distribution of overlaps between eigenvectors of ginibre matrices.
Available at arXiv:1801.01219, 2018.

[13] P. Bourgade, J. Huang, and H.-T. Yau. Eigenvector statistics of sparse random matrices. Electron. J.
Probab., 22:Paper No. 64, 38, 2017.

[14] P. Bourgade and H.-T. Yau. The eigenvector moment flow and local quantum unique ergodicity. Comm.
Math. Phys., 350(1):231–278, 2017.

[15] J. T. Chalker and B. Mehlig. Eigenvector statistics in non-hermitian random matrix ensembles. Phys.
Rev. Lett., 81:3367–3370, Oct 1998.

[16] N. Crawford and R. Rosenthal. Eigenvector correlations in the complex ginibre ensemble. Available at
arXiv:1805.08993, 2018.

[17] S. Csorgo, E. Haeusler, and D. M. Mason. The asymptotic distribution of extreme sums. Ann. Probab.,
19(2):783–811, 04 1991.

[18] H. A. David and H. N. Nagaraja. Order statistics. Wiley Series in Probability and Statistics. Wiley-
Interscience [John Wiley & Sons], Hoboken, NJ, third edition, 2003.

[19] Y. Dekel, J. R. Lee, and N. Linial. Eigenvectors of random graphs: nodal domains. Random Structures
Algorithms, 39(1):39–58, 2011.



EIGENVECTOR DELOCALIZATION FOR NON-HERMITIAN RANDOM MATRICES 35

[20] I. Dumitriu and S. Pal. Sparse regular random graphs: spectral density and eigenvectors. Ann. Probab.,
40(5):2197–2235, 2012.

[21] A. Edelman, E. Kostlan, and M. Shub. How many eigenvalues of a random matrix are real? J. Amer.
Math. Soc., 7(1):247–267, 1994.
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[23] L. Erdős and A. Knowles. Quantum diffusion and delocalization for band matrices with general distri-
bution. Ann. Henri Poincaré, 12(7):1227–1319, 2011.
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