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Abstract

This paper offers a scalable and robust distributed algorifor decision tree induction in large
Peer-to-Peer (P2P) environments. Computing a decisianitresuch large distributed systems using
standard centralized algorithms can be very communicaiqgrensive and impractical because of the
synchronization requirements. The problem becomes ever wiwllenging in the distributed stream
monitoring scenario where the decision tree needs to betegda response to changes in the data
distribution. This paper presents an alternate soluti@t Works in a completely asynchronous manner
in distributed environments and offers low communicatimerbead, a necessity for scalability. It also
seamlessly handles changes in data and peer failures. Plee pasents extensive experimental results

to corroborate the theoretical claims.
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peer-to-peer, data mining, decision trees

I. INTRODUCTION

Decision tree induction [1][2] is a powerful statisticaldamachine learning technique widely
used for data classification, predictive modeling and m@wen a set of learning examples
(attribute values and corresponding class labels) at desiogation, there exist several well-
known methods to build a decision tree such as ID3 [1] and C3J.5However, there can be
several situations in which the data is distributed overrgdadynamic network containing no
special server or client nodes. A typical example is a Pedtder (P2P) network. Performing
data mining tasks such as building decision trees is verjlasiging in a P2P network because
of the large number of data sources, the asynchronous naftiine P2P networks, and dynamic
nature of the data. A scheme which centralizes the netwot& $anot scalable because any
change must be reported to the central peer, since it migitwell alter the result.

In this paper we propose a P2P decision tree induction akhgorin which every peer learns
and maintains the correct decision tree compared to a deetlascenario. Our algorithm is
completely decentralized, asynchronous, and adapts #igot changes in the data and the
network. The algorithm is efficient in the sense that as longh& decision tree represents the
data, the communication overhead is low compared to a bestdi@msed algorithm. As a result,

the algorithm is highly scalable. When the data distributbanges, the decision tree is updated
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automatically. Our work is the first of its kind in the sensatth induces decision trees in large
P2P systems in a communication-efficient manner withoutnsed for global synchronization
and the tree is the same that would have been induced giveneatlata to all the peers.

The rest of the paper is organized as follows. In Section B, present several scenarios
in which decision tree induction in large P2P networks is am@nt for decision making. In
Section Ill, we discuss related work. In Section IV, we presessumptions about the distributed
computing environments we make in this paper and some bagkdrmaterial necessary to
understand the P2P decision tree algorithm presented itio8e¢. In Section VI, we describe
extensive experiments illustrating the low communicatowst incurred by our algorithm. In

Section VII, we conclude the paper.

[1. MOTIVATION

P2P networks are quickly emerging as large-scale systemsaffirmation sharing. Through
networks such as Kazaa, e-Mule, BitTorrents, consumersreadily share vast amounts of
information. While initial consumer interest in P2P networkas focused on the value of the
data, more recent research such as P2P web community formatjues that the consumers
will greatly benefit from the knowledge locked in the data [4].

For instance, music recommendations and sharing systesres thariving industry today [6][7]

-- a sure sign of the value consumers have put on this apiplicatiowever, all existing systems
require that users submit their listening habits, eithepliekly or implicitly, to centralized
processing. Such centralized processing can be problerbatause it can result in severe
performance bottleneck. Wolfét al. [8] have shown that centralized processing may not be
a necessity by describing distributed algorithms which pote association rules (and hence,
recommendations) in-network in a robust and scalable nrahager, Gilburdet al. [9] showed
that it is relatively easy, given an in-network knowledgsativery algorithm, to produce a similar
algorithm which preserves the privacy of users in a well defisense. Moreover Mierswet

al. [10] have demonstrated the collaborative use of featuresrganizing music collections in
a P2P setting. Users would prefer not to have the organizaticdheir data change with every
slight change in the data of the rest of the users. At the sames tisers would also not like the
quality of that organization to degrade a lot. As suggestethis paper, monitoring the change

and updating the model seems to hit a good balance betweeg bpito-date and robust.
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Another application which offers high value to the consusnsifailure determination [11][12].
In failure determination, computer-log data which may hasation to the failure of software
and this data is later analyzed in an effort to determine ¢lasan for the failure. Data collection
systems are today integral to both the Windows and Linux atpey systems. Analysis is
performed off-line on a central site and often uses knowdedgcovery methods. Still, home
users often choose not to cooperate with current data ¢ollesystems because they fear for
privacy and currently there is no immediate benefit to the @separticipating in the system.
Collaborative data mining for failure determination can le¥yvuseful in such scenarios, and
resolve concerns of both privacy and efficiency. Howevahifa determination models can be
quite complex and developing such models require a lot okdgxmowledge. The method we
describe allows computing a model centrally, by whateveamsedeemed suitable, and then
testing it against user’s data without overloading the siserequiring them to submit their data
to an untrusted party.

In the next section we present some work related to this afreasearch.

[1l. RELATED WORK

Distributed data mining (DDM) deals with the problem of datealysis in environments with
distributed data, computing nodes, and users. This areagmsconsiderable amount of research
during the last decade. For an introduction to the arearasted readers are referred to [13] and
[14]. P2P data mining has recently emerged as an area of D3®Aareh, specifically focusing
on algorithms which are asynchronous, communicationiefficand scalable. Dattet al. [15]
presents an overview of this topic.

The work described in this paper relates to two main bodieseséarch: classification algo-

rithms and computation in large distributed systems al$ermed to as P2P systems.

A. Distributed Classification Algorithms

Classification is one of the classic problems of the data mgiaind machine learning fields.
Researchers have proposed several solutions to this pnoble Bayesian models [16], ID3
and C4.5 decision trees [1][3], and SVMs [17] being just a ts@yection. In this section we
present several algorithms which have been developed $ortaited classification. The solutions

proposed by these algorithms differ in three major aspect$l}-how the search domain is
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represented using an objective function, (2) which algamiis chosen to optimize the objective
function, and (3) how the work is distributed for efficientagehing through the entire space.
The latter item has two typical modes — in some algorithmsl&a@ning examples are only
used during the search for a function (e.g., in decisionstaa®d SVMs) while in other they are
also used during the classification of new samples (notablBayesian classifiers).

Meta classifiers are another interesting group of classificaalgorithms. In a meta classifi-
cation algorithm such as bagging [18] or boosting [19], malagsifiers (of any of the previous
mentioned kinds) are first built on either samples or parisi of the training data. Then, those
“weak” classifiers are combined using a second level allgriivhich can be as simple as taking
the majority of their outcomes for any new sample.

Some classification algorithms are better suited for aitisted set up. For instance, Stolfo et
el. [20] learn a weak classifier on every partition of the datad then centralize the classifiers
and a sample of the data. This can be a lot cheaper than tnangféhe entire raw data. Then
the meta-classifier is deduced centrally from these datathan suggestion, by Bar-Gat al.
[21] was to execute ID3 in a hierarchical network by centialy, for every node of the tree
and at each level, only statistics regarding the most priogniattributes. These statistics can, as
the authors show, provide a proof that the selected at&ilsuindeed the one having the highest
gain — or otherwise trigger the algorithm to request furtbttistics.

Carageeet al. [22] presented a decision tree induction algorithm for bbdrizontally and
vertically distributed data. Noting that the crux of any id&n tree algorithm is the use of an
effective splitting criteria, the authors propose a metbgdvhich this criteria can be evaluated
in a distributed fashion. More specifically, the paper shives by only centralizing the summary
statistics from each site to one location, there can be hagegs in terms of communication
when compared to brute force centralization. Moreover,distributed decision tree induced is
the same compared to a centralized scenario. Their systawaitable as part of the INDUS
system.

A different approach was taken by Gianned#iaal. [23] and Olsen [24] for inducing decision
tree in vertically partitioned data. They used Gini infotioa gain as the impurity measure and
showed that Gini between two attributes can be formulateal dst product between two binary
vectors. To reduce the communication cost, the authorsiated the dot product after projecting

the vectors in a random smaller subspace. Instead of serwdlingr the raw data or the large
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binary vectors, the distributed sites communicate onlgéhprojected low-dimensional vectors.
The paper shows that using only 20% of the communication rwesessary to centralize the
data, they can build trees which are at least 80% accuratpa@u to the trees produced by
centralization.

Distributed probabilistic classification on heterogendasa sites have also been discussed by
Merugu and Ghosh [25]. Similarly, Pagkt al. have proposed a fourier spectrum-based approach
for decision tree induction in vertically partitioned dseds [26].

A closely related topic is Multivariate Regression (MR) wéhéhe output is real-valued instead
of categorical. Hershbergat al. [27] considered the problem of computing a global MR in a
vertically partitioned data distribution scenario. Theheurs proposed a wavelet transform of the
data such that, after the transformation, the effect of theterms can be dealt with easily. The
local MR models are then transported to the central site amibined to form the global MR
model. Several other techniques have been proposed fog disstributed MR using distributed
kernel regression such as by Gueseinal. [28] and Predcet al. [29].

When the scale of the system grows to millions of network peeras in most modern P2P
systems — the quality of such algorithms degrades. Thiscaulsee for such large scale systems,
no centralization of data, statistics, or models, is pcattany longer. By the time such statistics
can be gathered, it is reasonable that both the data and sitensyhave changed to the point
that the model needs to be calculated again. Thus, clasgficen P2P networks requires a
different breed of algorithms — ones that are fully decditteal, asynchronous and can handle

dynamically changing data and network.

B. Data Mining in Large Scale Distributed Systems

Previous work on data mining in P2P networks span three myoast of algorithms: best
effort heuristics, gossip and flooding based computatiansl, so called local algorithms. In a
typical best effort heuristic [30][5], peers sample dataifg some variations of graph random
walk as proposed in [31]) from their own partition and that s#veral neighbors and then
build a model assuming that this data is representativeaifdhthe entire set of peers. All these
algorithms can be grouped as probabilistic approximateratgns. On the contrary, deterministic
approximate algorithms for large scale networks return shene result every time they are

run. Mukherjeeet al. [32] have developed a communication efficient algorithmifderencing
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in sensor networks using a variational approximation tespnn [33][34]. The paper considers
vertically distributed data where each peer learns a priiadistribution of the hidden variables
given the visible variables. It aims to solve problems sugtaaget tracking, target classification
etc. in wireless sensor networks. Another deterministigraximate algorithm is the distributed
k-means algorithm developed by Data al [35]. It works on horizontally partitioned data
whereby each node communicates with its immediate neighboly.

Flooding algorithms, as their name hints, flood data (or cieffit statistics) through the entire
network such that eventually every peer has all the data gortbined statistics) of the entire
network. Since flooding is too costly in the common case,a@lgorithms usually use gossip —
randomized flooding. In gossip, every peer sends its stdigi a random peer. As demonstrated
by Kempeet al. [36] and Jelasityet al. [37] a variety of aggregated statistics can be computed
in this way. Gossip algorithms provide probabilistic gudese for the accuracy of their outcome.
However, they can still be quite costly — requiring hundredsmessages per peer for the
computation of just one statistic.

Researchers have proposed several robust and efficienitialgs for P2P systems commonly
termed as local algorithms in the literature such as assogiaule mining [8], facility location
[38], outlier detection [39], and meta-classification [4@escribed more thoroughly below).
They are data dependent distributed algorithms. Howenex,distributed setup data dependency
means that at certain conditions peer can cease to comnteinidth one another and the
algorithm terminates with aexactresult (equal to that which would be computed given the
entire data). These conditions can occur after a peer ¢sllde statistics of just few other
peers. In such cases, the overhead of every peer becom@enudnt of the size of the network
(and generally very low). Furthermore, these data depdndarditions can be rechecked every
time the data or the system changes. If the change is stati@ra, the result of the computation
remains the same) then, very often, no communication isssarg This feature makes local
algorithms exceptionally suitable for P2P networks (asl sl for wireless sensor networks).
Lately, researchers have looked into the description dadllatgorithm complexity using veracity
radius [41] and the description of generic local algorithmtsch can be implemented for a large
family of functions [42].

The work most related to the one described in this paper i®tbeibuted Plurality Algorithm
(DPV) by Pinget al. [40]. In that work, a meta classification algorithm is delsed in which
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every peer computes a weak classifier on its own data. Thek wlassifiers are merged into a
meta classifier by computing — per new sample — the majorityhef outcomes of the weak
classifiers. The computation of weak classifiers requiresaramunication overhead at all, and
the majority is computed using an efficient local algorithm.

Our work is different from DPV in several ways: firstly, we cpate an ID3-like decision tree
from the entire data (rather than many weak classifiers)aBse the entire data is used, smaller
sub-populations of the data stand a chance to gather sfaltisignificance and contribute to the
model — therefore, we argue that our algorithm can be, in ggnenore accurate. Secondly,
as proposed in DPV, every peer needs to be aware of each neplesamorder to classify
it. This mode of operation, which is somewhat reminiscenBafesian classification, requires
broadcasting the new samples to all peers or limits the dlgorto specific cases in which
all peers cooperate in classification of new samples (gieenll) based on their private past
experience. In contrast, in our work, all peers jointly stude same decision tree. Then, when
a peer is given a new sample, it can be classified with no cornuation overhead at all. When
learning samples are few and new samples are in abundancelgmrithm can be far more
efficient. This can happen, for example, when the data Higion does not change, but the test

tuples arrive at a fast rate.

IV. BACKGROUND
A. Distributed Computation Assumptions

Let S denote a collection of data tuples with class labels thathargontally distributed over
a large (undirected) network of machines (peers) whereagh geeer communicates only with
its immediate neighbors (one hop neighbors) in the netwdhHe communication network can
be thought of as a graph with vertices (peérs)For any given peek € V, let N, denote the
immediate neighbors of. Peerk will only communicate directly with peers iV,.

Our goal is to develop a distributed algorithm under whickhepeer computes the decision
tree overS (the same tree at each peeBlowever, the network is dynamic in the sense that the
network topology can change i.e. peers may enter or leavayati@e or the data held by each
peer can change. Hencg the union of all peers’ data, can be time-varying. Our dsted

Throughout this paper, peers refer to the machines in the P2P netwdrkatles refer to the entries of the tree (in which
the attribute is split).
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algorithm is designed to seamlessly adapt to network and daanges in a communication-
efficient manner.

We assume that communication among neighboring peersigbleland ordered. Moreover,
we assume that when a peer is disconnected or reconnedtetlitalneighborsk, are informed,
i.e. N is known tok and is updated automatically. These assumptions can dasignforced
using standard numbering and retransmission in which ngessare numbered, ordered and
retransmitted if an acknowledgement does not arrive in tiordering, and heart-beat mecha-
nisms. Moreover, these assumptions are not uncommon areldean made elsewhere in the
distributed algorithms literature [43]. Khilar and Mah#&gal44] discuss the use of heartbeat
mechanisms for failure diagnosis in mobile ad-hoc networks

Furthermore, it is assumed that data sent filBnto P; is never sent back t®;. Since we are
dealing with statistics of data (e.g. counts), one way oligng this is to make sure that a tree
overlay structure is imposed on the original network suct there are no cycles. This allows us
to use a relatively simple distributed algorithm as our ddmiilding block: distributed majority
voting (more details later). We could get around this asdionpn one of two ways. (1) Lisst
al. [45], have developed an extended version of the distribotapbrity voting algorithm which
does not require the assumption that the network topologysa tree. We could replace our use
of simple majority voting as a basic building block with theended version developed by Liss
et al. (2) The underlying tree communication topology could be ntaned independently of
our algorithm using standard techniques such as [43] (foedvhetworks) or [46] (for wireless

networks).

B. Distributed Majority Voting

Our algorithm utilizes, as a building block, a variation bétdistributed algorithm fomajority
voting developed by Wolff and Schuster [8]. Each péee V' contains a real numbe¥ and
the objective is to determine wheth&r= %", . 6¥ > 0.

The following algorithm meets this objective. For pegré € V, let 5*¢ denote the most recent
message (a real number) péesent tol. Similarly, °* denotes the latest message received by
k from (. Peerk computesA* = ¢* + 3, 6%, which can be thought of a&'s estimate
of A based on all the information available. Pderlso computes\** = §* + §*, for each

neighbor?/ € N, which is all the exchanged information betwekerand /. When an event at
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peerk occurs,k will decide, for each neighbaf, whether a message need be sent tAn event
at k£ consists of one of the following three situations: i)s initialized (enters the network or
otherwise begins computation of the algorithm); {iexperiences a data chandfeor a change
of its neighborhoodVy; (iii) k& receives a message from a neighibor

The crux of the algorithm is in determining whénmust send a message to a neighbor
in response tac detecting an event. More precisely, the question is whenaanessage be
avoided, despite the fact that the local knowledge has @thndpon detecting an event, peer
k would send a message to neighldavhen either of the following two situations occurs: ki)
is initialized; (ii) (AF > 0 A AM > AF) v (AM < 0 A A* < AF) evaluates true.

When k detects an event and the conditions above indicate that aagesnust be sent to
neighbort, k setsé*’ to aAF — §* (thereby makingA** = aA¥) wherea is a fixed parameter
between 0 and 1k then sends/** to /. If o were set close to one, then small subsequent
variations inA* will trigger more messages from increasing the communication overhead. On
the other hand, ity were set close to zero, the convergence rate of the algogthuid be made
unacceptably slow. In all our experiments, we aeto 0.5. This mechanism replicates the one
used by Wolffet al. in [42]. Observe that the majority voting algorithm is aslranous, highly
decentralized, and adapts smoothly to data and networkgehan

To avoid a message explosion, we implemelgaky bucketmechanism such that the interval
between messages sent by a peer does not become arbitraally $his mechanism was also
used by Wolffet al. in [42]. Each peer logs the time when the last message was \8ém&n a
peer decides that a message need to be sent (to any of itdoesghit does the following. If
L time units have passed since the time the last message wastsands the new message
right away. Otherwise, it buffers the message and sets a timé units after the registered
time the last message was sent. Once the timer expires alluffiered messages are sent. For
the remainder of the paper, we leave the leaky bucket mestmamnplicit in our distributed

algorithm descriptions.

V. P2P DECISION TREE INDUCTION ALGORITHM (PEDIT)

This section presents a distributed and asynchronousitigoiPeDiT which induces a decision
tree over a P2P network in which every peer has a set of learexamplesPeDiT, which is

inspired by ID3 and C4.5, aims to select at every node — staftiom the root — the attribute
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which will maximize a gain function. TherReDIT aims to split the node, and the learning
examples associated with it, into two new leaf nodes andpiosess continues recursively. A
stopping rule direct$?eDiT to stop this recursion. In this section a simple depth litrotais
used. Other, more complex predicates are described in thendpx.

The main computational task ®eDiT is choosing the attribute having the highest gain among
all attributes. Similar to other distributed data mining@ithms, PeDiT needs to coordinate
this decision among the multiple peers. The main exceptadiReDiT are that it underscores
the efficiency of decision making and the lack of synchroimira These features make it
exceptionally scalable and therefore suitable for netwapanning millions of peers.

PeDIT deviates from the typical decision tree induction algamgh(e.g. J48 implemented in
Weka) in the use of a simpler gain function — the misclasdificeerror — rather than the more
popular (and, arguably, better) information-gain and -gngiex functions. Misclassification error
offers less distinction between attributes: a split carettie same misclassification error in these
two seemingly different cases — (1) the erroneous exampéediaided equally between the two
leaves it creates or (2) if one of these leaves is 100% aceuCatmparatively, both information-
gain and gini-index would prefer the latter case to the fornsill, the misclassification error
can yield accurate decision trees (as discussed laterksanglative simplicity makes it far easier
to compute in a distributed set-up.

For the sake of clarity, we divide the discussion of the atgor into two subsections:
Section V-A below describes an algorithm for the selectiérthe attribute offering the lowest
misclassification error from amongst a large set of pogsésl Next, Section V-B describes

how a collection of such decisions can be efficiently usechttuce a decision tree.

A. Splitting attribute choosing using the misclassificatgain function

1) Notations: Let S be a set of learning examples — each a vectof(inl}* x {0,1} —
where the firstd entries of each example denote the attributés,. .., A4, and the additional
one denotes the clag3lass. The cross table of attributed? and the class is¢i = %

Thy xYy
where z, is the number of examples in the s&tfor which A° = 0 and Class = 1. We

also define the indicator variable$ = sign (z{, — z};) and s' = sign (2%, — z',), where
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1 x>0
sign (x) = :
-1 <0
We have used the impurity measure based on misclassificatian (instead of Gini or

Entropy) as described in [47] page 158. The impurity of thie= 0 tuples is defined to be
1 — max{z},, =i, } /i (wWherez is the number of tuples wittd’ = 0). Similarly, impurity of
the A* = 1 tuples is defined to bé — max{z},, 2}, } /=% . Choosing the attribute with maximum

gain (as described in [47] page 158) is equivalent to minimgizhe weighted sum of impurities

argmin{l <i<d: % [1 — M} + ﬂ [1 _ max{xio,xil}] },

¥ A
Ty, Ty,

which can be shown to equal

argmnas (1< < 0 oy — iy + .

Thus, if A’ is the attribute resulting from the above expression, therafy A; # Ay,

X

Cbest,j — 338([5)815 - best| +} best

best J J J J
11 | - ’xoo _$01| - ‘xm _9511| > 0.

In a distributed setup$ is partitioned inton setsS; throughS,. Xi = ~"*% "% would

Thio T
therefore denote the cross table of attribdteand the class in the example $kt Note thatz, =

k:zl;.nffc,oo andC™/ = k:;n %00 = Thor] |+ :Z.n (@10 = Thot] | — L:len (%300 = %1.01] ‘ -
'k:;n [0 — #7,11] |- Also, notice thatC"7 is not, in general, equal tg}l;.n |24 00 — Th 01| +
P ‘x}c 10— Tho| — 3 \xk 00— Thot| — R > |l — #],44]- Still, using the indicators;
and s st defined above We can write’s — Sok Z (2500 — Tho1] + Silk:;.n (2410 — Th11] —

sh S oo — Tho) =51 X [k — @) WhICh can be rewritten as
k=1..n k=1..n

ij T R i[.4 I A N Y | [ A N Y |
= E (30 [%,00 wk,m} + 5 [%,10 %,11} 50 [l‘k,oo xk,01] 51 [%,10 xk,uD :
k=1..n

This last expression, in turn, is simply a sum — across allrpee of a numberé,i’j =

s [Zho0 = Thot) + 81 [Th10 — Thn] — st [d,oo - wi,m} — 51 [xi,lo - xi,n] which can be com-
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puted independently by each peer, assuming it knows thesatithe indicators. Finally, denote
5;”|abed the value ofs;’ assumings = a, s} = b, s} = ¢, ands] = d. Notice that, unlikes;”,
6};‘7 labed can be computed independently by every peer, regardlesgeafdtual values of!, st,
Sé, ands{.

It is therefore possible to comput&*** by concurrently running the following set of majority
votes: two per attributed’, with inputsz}, — z{, andz!, — z},, to compute the values of,
and si; and one for every per of attributes and every possible coailtin of s}, s/, sg, and
s]. Given the results fos}, ands’, one could select the right combination and ignore the other
Then, given all of the selected votes, one could find thebaittiei whose gain is larger than that
of any other attribute. Below, we describe an algorithm wWwhperforms the same computation
far more efficiently.

2) P2P Misclassification MinimizationThe P2P Misclassification Minimizatio®?MM al-
gorithm, Algorithm 1, aims to solve two problems concurhgnit will decide which of the
attributesA! through A4 is A% and at the same time compute the true valuecdndsi. The
general framework of thé>?MM algorithm is that of pivoting: a certairl’ is selected as the
potential A*s*. Then the algorithm tries to validate this selectionAff turns out to be indeed
the best attribute, then this is reported. On the other hidnedrevocation of the validation proves
that there must exist another attribute (or attributéé)which is (are) better tham®!. At this
point, the algorithm again renames one of these bettebatts A’ to be A, and tries to
validate this by comparing it to the other attributes thahéa out to be better than the previous
selection i.e. previously suspected best. To provide tipaitino those comparisons, each peer
computess;” |abed relying on the current ad-hoc value sf, si, s}, ands]. The ad-hoc values
peer k computes fors{ and s¢ will be denoted bys};’O and s};,l, respectively. To make sure
those ad hoc results converge to the correct value, twoiaddltmajority votes are carried per
attribute concurrent to those of the pivoting; in these, itiyguts of peerk are =, — =}, and
zi, — ', respectively.

The P2MM algorithm works in streaming mode: Every péetakes two inputs — the set of
its neighborsV, and a setS;, of learning examples. Those inputs may (and often do) change
time and the algorithm responds to every such change by tatjués output and by possibly
sending messages. Similarly, messages stream in to theapdecan influence both the output

and the outgoing messages. The output of pdsrthe attribute with the highest misclassification
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gain. This output, by nature, is ad-hoc and may change iroresspto any of the events described
above.

P2MM is based on a large number of instances of the distributedrityajoting algorithm
described earlier in Section IV-B. On initializatio®?MM invokes two instances of majority
voting per attribute to determine the valuesspfandsi — let M and M| denote these majority
votes. For each peék, its inputs to these votes (instances) aw.o, = zj 4, — 7}, and
M{.0, = xj, o — .1, Additionally, for every pairi < j € [1...d] P>MM initializes sixteen
instances of majority voting — one for each possible comtimaof values forsi, si, s}, and
s]. Those instances are denoted b/, with abcd referring to the combination of values for
sh, si, s, ands]. For each peet, its inputs to these instances avg .6, = a [} o — 2}, 0] +
b[ah 10 — Th11] — ¢ [h00 — 2h01] — d [27,10 — 2.1,]. A related algorithm, distributed plurality
voting (DPV) [40], could be used to describe our algorithnm $electing one of the sixteen
comparisons\/; |abed whenabed are static. But since in our case the valuesipfsi, s}, and
s] are always changing, it seems difficult to follow the samecdpson as given in [40].

Following initialization, the algorithm is event based.cBapeerk is idle unless there is a
change inV, or Si, or an incoming message changes thieof one of the instances of majority
voting. On such event, the simple solution would be to chbekcbnditions for sending messages
in any of the majority votes. However, as shown by [48][40G]jgting can be used to reduce the
number of conditions checked frof (d?) to an expected(d). In DPV, the following heuristic
is suggested for pivot selection: the pivot would be the wekech has the largest agreement
value with any of the neighbors. It is proved that this metiwdeadlock-free and it is shown
to be effective in reducing the number of conditions check#d implement the same heuristic,
choosing the pivot as the attribut& which has the largest/’*.A;, for j < i or the smallest
M“"™ Ay, for m > ¢ and for any neighbot. If the test for anyM* fails, M*/.A; , needs to
be modified by sending a message/ta®?MM does this by sending a message which will set
M5 Ay, to aM® Ay («is set to] by default), which is in line with the findings of [42].

Notice M’/ .6, = —M" _, .6, and thus half of the comparisons actually replicate the
other half and can be avoided. This optimization is avoidedhie pseudocode in order to
maintain conciseness. Also notice that while the peer dscemgssages in the context of any
of the majority votesMé;fcd, it will only respond with a message for the majority vot&’ —

the instance withu, b, ¢, andd equal tos;,, sj, ;, sf;’o, and Si,p respectively. The rest of the
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instances are, in effect, ‘suspended’ and cause no comationcoverhead.

Algorithm 1 P2P Misclassification Minimization :MM)

Input variables of peer k: the set of neighbors —;, the set of examples S
Output variables of peer k: the attributeAP™!

Initialization:

. ForeveryA’in A'... A initialize two instances of LSD-Majority with inputs;, o, — =} o,
andzj, ,, — zj.,,. Denote these instances By and M} respectively and lef/;.A; and
Mj.A,, denote the knowledge of those two instances. Further, feryeve Ny, let M. Ay,
and M;A,, be their agreement.

. Foreverya,b,c,d € {—1,1} and everyA’, A7 € [A'... A% initialize an instance of LSD-
Majority with input 8,7 |abcd. Denote these instances by ,. Let My Ay and M Ay,
(V¢ € N;) be the knowledge and agreement of the’ instance, respectively. Specifically
denoteM*/. A, and M*7 A, the instance withu, b, ¢, andd equal tos;, , sj. , 5}, and
s,.1, respectively.

On any event:

« For AP e {A'... A%} and everyl € N,

— If not M{A, < M§.Agy < 0 and notM;.Ay > MEAg, > 0 call Send (M¢, ()
— If not M{.A, < Mj.Ag, <0 and notM;.Ay > M{.Ay, > 0 call Send (M, 0)
. Do

— Let pivot = arg max { max {Mj’i.Akyg, —M””.AW}}

i€[l..d] | LENg,j<i,m>i
— For A" € {A!... Arvet=1} and everyl € N,
« If not MoPivot Ay < MUt Ay, < 0 and notMbPet Ay > MEPet Ay, > 0 call
Send (M"Pivot ()
— For A" € {Apivettl A4} and everyl € Ny,
* If not Mprt’i.Ak < Mpivet,i.Akj < 0 and nOtMpiUOt’i.Ak > Mpivot,i.Akj > 0 call
Send (MP™eL ()
« While pivot changes
On message(id, §) from ¢:

« Let M be a majority voting instance with/.id = id
o SetM.oyy, 100

Procedure Send), ¢):
o M.bpe=aM.A,+ M.y
« Send tol (M.id, M.y ,)

a) Proof Sketch:To see whyP?MM convergence is guaranteed, first notice that eventual
correctness of each of the majority voté§ and M/ is guaranteed because the condition for
sending messages is checked for every one of them each tersath changes or a message is

received. Next, consider two neighbor peers who chooserdiit pivots, peek which selects
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i and peer/ which selectsj. Since bothk and ¢ will check the condition ofA/%/, and since
M4 Ay, = M".A,y at least one of them will have to change its pivot. Thus, peelis
continue to change their pivots until they all agree on thmesgivot. To see that peers will
converge to the decision that the pivot is the attribute wiit maximal gain (denote it™),
assume they converge on another pivot. Since the condifiorotes comparing thed?*! to
any other attribute is checked whenever the data changessgutarantee that ifn < pivot then
Mmrivot Ay, will eventually be larger than zero for all and ¢ € N, and if pivot < m then
Mmrivot A, , > 0 for all &k and? € Nj. Thus, the algorithm will replace the pivot with either
m or another attribute, but would not be able to converge onctiveent pivot. This completes
the proof of the correct convergence of tRéMM algorithm. |

b) Complexity: The P2MM algorithm compares the attributes in an asynchronousdashi
and outputs the best attribute. Consider the case of congparnty two attributes. The worst
case communication complexity of the*?MM algorithm is Ogize of the netwodk This can
happen when the misclassification gains of the two attrébate very close. Since our algorithm
is eventually correct, the data will need to be propagatedutih the entire network i.e. all
the peers will need to communicate to find the correct ansWais the overall communication
complexity of the P?MM algorithm, in the worst case, is €i¢e of the netwojk Now if the
misclassification gains of the two attributes are not vepsel(which is often the case for most
datasets), the algorithm is not global; rather &M algorithm can prune many messages as
shown by our extensive experimental results. Finally fdating the complexity of such data
dependent algorithms in terms of the complexity of the dai@ big open research issue even for
simple primitives such as majority voting protocol [8], kébne the complex’?MM algorithm
presented in this paper.

Figure 1 shows the pivot selection process for three ateibu;, A, and A; for peer P
having two neighborg’, and P,,. Snapshot 1 shows the knowledgk,}] and agreements a?,
(A, and Ay ,,,) for the three attributes. Since pivot is the highest ages®y,, is selected as
the pivot. Now there is a disagreement betweenand Ay, for A;,. This results in a message
and subsequent reevaluation&f , (to be set equal td\;). In the next snapshot}; is selected
as the pivot and sinc&;, < A, N0 message needs to be sent.

Comment: The P2MM algorithm above utilizes the assumption that the data apedirs

in boolean (attributes and class labels). The boolearbatés assumption can be relaxed to
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Pivot Plvot

A |4 A Ay | A Ay |44 A Ay
Aj A Aj
Ag Ake Ag Ag

— Pivot / Pivot
After message sent A "
to PL;
A Ay Ag e Ak ¢

Message condition violated Message condition not violated
betweenP), and P, since betweenP), and Py
Ake >0NAK g > A

Snapshot 1 Snapshot 2

Fig. 1. The pivot selection process and how the best attribute is self¢tecpivot is shown at each step.

arbitrary categorial data at the expense of increased majpoting instances per attribute pair
(the number of instances increases exponentially with tmaber of distinct attribute values).
Another approach to relaxing the boolean attributes assompould be to treat each attribute
distinct value as its own boolean attribute. As a resultheztegorical attribute withy distinct
values is treated asboolean attributes. Here, the number of majority votindanses per pair of
attributes increases only linearly with the number of distiattribute values. However, the issue
of deciding which attribute has the highest misclassifazatjain on the basis of the associated

boolean attributes is not entirely clear and is the subjédutuire work.

B. Speculative decision tree induction

P?MM can be used to decide which attribute would best divide angiset of learning
examples. It is well known that decision trees can be indigeckcursively and greedily dividing
a set of learning examples — starting from the root and prdiogeonwards with every node of
the tree (e.g., ID3 and C4.5 algorithms [1][3]). In a P2P gethe progression of the algorithm
needs to be coordinated among all peers, or they might endeuelaping different trees. In
smaller scale distributed systems, occasional synchatioiz usually addresses coordination.

However, since a P2P system is too large to synchronize, efempspeculation [49].
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The starting point of tree development — the root — is knowltgeers. Thus, they can all
initialize P2MM to find out which attribute best splits the example set of that.rHowever, the
peers are only guaranteed to converge to the same attriblgetisn eventually and may well
choose different attributes intermediately. Several tjaes thus arise: How and when should
the algorithm commit resources to a specific split of a nodeatvshould be done if such split
appears to be wrong after resources were committed and Wwhatdsbe done about incoherence
between neighboring peers?

The P2P Decision Tree Inductio®¢ D:T, see Alg. 2) algorithm has two main functionalities.
Firstly, it manages the ad hoc solution which is a decisiea tomposed aictivenodes. The root
is always active and so is any node whose parent is activedav¥hat the node corresponds with
one of the values of the attribute which best splits its pés@xamples — i.e., the ad hoc solution
of P2MM as computed by the parent. The rest of the nodesraeive A node (or a whole
subtree) can become inactive because its parent (or fom)dhave changed its preference for
splitting attribute. Inactive nodes are not discarded; er peay well accept messages intended
for inactive nodes — either because a neighbor considers #eive or because the message
was delayed by the network. Such a message would still ugtatenajority voting to which
it is intended. However, peers never send messages rgsfilim an inactive node. Instead,
they check, whenever a node becomes active, whether theygeading messages (i.e., majority
votes whose test require sending messages) and if so thdytlsese messages.

Another activity which occurs in active nodes is further elepment of the tree. Each time a
leaf it is generated it is inserted into a queue. Once evetiyne units, the peer takes the first
active leaf in the queue and develops it according to the adrésult of P?MM for that leaf.
Inactive leaves which precede this leaf in the queue aregeried at the end of the queue.

Last, it may happen that a peer receives a message in thextomte node it had note yet
developed. Such messages are stored imtitef-contexgueue. Whenever a new leaf is created,
the out-of-context queue is searched and messages pegtamihe new leaf are processed.

A high level overview of the speculative decision tree inglut process is shown in Figure
2. Filled rectangles represent newly created nodes. Thesfiegpshot shows the creation of the
root with A; as the best attribute. The root is split in the next snapdietigwed by further
development of the left path. The fourth snapshot shows Hevroot is changed to a new

attribute A, and the entire tree rooted at; is made inactive (yellow part). Finally as time
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Algorithm 2 P2P Decision Tree InductioReDiT
Input: S — a set of learning examples,— mitigation delay
Initialization:
Create a root leaf and levot.S < S. Setnodes < {root}. Pushroot to queue
Send BRANCH message to self with delay
On BRANCH message:
Send BRANCH message to self with delay
For (i < 0, ¢ <« null; i < queue.length and not active/); i++)
Pop head of queue intb
If not active(/)
enqueue’
If active(?)
Let A’ be the ad-hoc solution aP>MM for ¢
call Branch(?, j)
On data messagen, data):
If n & nodes
store (n, data) in out — of — context
Else
Transfer thedata to the P2MM instance ofn
If active(n) then
Proces$n)
Procedure Active(n):
If n = null or n = root
return true
Let A7 be the ad-hoc solution faP?MM for n.parent
If n & n.parent.sons [j]
return false
Return Activén.parent)
Procedure Procesgn):
Perform tests required by?MM for n and send any resulting messages
Let A’ be the ad-hoc solution foP?MM for n
If n.sons[j] is not empty
for eachm € n.sons[j]
call Procesgn)
Else
pushn to the tail of the queue
Procedure Branch(/, , j):
Create two new leave and/;
Setly.parent «— £, (1.parent «— (
Setly.S —{se€l.S:s[j]=0}and(,.5 — {s€l.S:s[j] =1}
Remove fromout — of — context messages intended fég and/; and deliver the data to the
respective instance dP?MM
Setl.sons [j| = {lo, (1}, add /g, ¢, to nodes and push, and/; to the tail of the queue
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progresses, the tree rooted 4f is further developed. If it so happens thaf now becomes
better thanA,, the old inactive tree will now become active and the treetadoat A, will

become inactive.

a0 | T 0[,41& ]
: [A3 /]E ] T [A3 1 ] :i;htcr;ig
LeftChild  RightChild [\A

(2] [ )

LeftChild  RightChild

[ Ay As } ' [ Ay As ]
o | 1A ] | - [Ag ---MA4 ] Ay e As e [Ag ] [A4 ]
LeftChild  RightChild
% x o/ |1 ol \L % K g
Ag o Ag Ag e Ag
LeftChild  RightChild LeftChild  RightChild
Inactive / Inactive

o] [(na) (i) [}

Fig. 2. Figure showing how the speculative decision tree is build by a pi#led rectangles represent the newly created nodes.
In the first snapshot the root is just created with as the current best attribute. The root is split into two children in the second
snhapshot. The third snapshot shows further development of treplityng the left child. In the fourth snapshot, the peer gets
convinced thatd, is the best attribute corresponding to the root. Earlier tree is made inacti’a aew tree is developed with
split at A,. Fifth snapshot shows the leaf label assignments.

In the next section we present a comparative study of theracgwf a decision tree algorithm
using misclassification gain as the impurity measure witedixlepth stopping and a standard

entropy-based pruned decision tree J48 implemented in \\&Ka
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C. Accuracy on Centralized Dataset

100 100 100

° @48 (weka) L @48 (weka) L ©J48 (weka)
B Misclassification gain 90 = W Misclassification gain 90 = W Misclassification gain
90 -
> > [ ] >
g 80 g g 8o n g 80 %
3 . 3 3
g 2 70 L] 2 70 L4
< 7 - < < .
o 60 - 60 °
[
ﬂ 50 50
0 5 10 20 0 5 0 20 0 5 10 20
Percentage noise Percentage noise Percentage noise
(a) Depth of tree = 3. (b) Depth of tree = 5. (c) Depth of tree = 7.

Fig. 3. Comparison of accuracy (using 10-fold cross validation) 8fwéka tree and a tree induced using misclassification gain
with fixed depth stopping rule on a centralized dataset. The three graphsmond to depths of 3, 5 and 7 of the misclassification
gain decision tree.

The proposed distributed decision tree algoritPeDIT deviates from the standard decision
tree induction algorithm in two ways: (1) instead of usindrepy or gini-index as the splitting
criteria, we have used misclassification gain, and (2) asoppstg rule, we have limited the
depth of our trees (which effects the communication comiplesf our distributed algorithm as
we show later).

In this section we report the results of the comparison of aisiten tree induced using
misclassification gain as the impurity measure and fixedtdsfpping rule to that of an off-
the-shelf entropy-based pruned decision tree J48 impleedeim Weka [50] on a centralized
dataset. There are 500 tuples and 10 attributes in the tieattadataset generated using the
scheme discussed in Section VI-B. We have varied the noistadndata ranging from 0%
to 20%. For both the trees, the accuracy is measured usirfgld@ross validation. Figure 3
presents the comparative study. The circles correspontei@tcuracy of J48 and the squares
correspond to the accuracy of the misclassification gainsgectree. These set of results point
out some important facts:

1) In most cases the misclassification gain decision tradtseis a loss of accuracy over J48.
This is not unexpected due to the restrictive nature of thwsden tree induction algorithm
employed. But the accuracy loss is modest. Moreover, dudéddheavy communication
and synchronization cost of centralizing and applying 3#4& modest loss of accuracy

seems quite reasonable.
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2) The decrease in accuracy of the misclassification gairsidectree when going to depth 7
at high noise levels is likely due to over-fitting; since fodepth of 3 the average number
of tuples per leaf is 56 compared to only 3 tuples per leaf feptd of 7.

3) The PeDiT algorithm is guaranteed to converge to the misclassifinagiain decision
tree with fixed stopping depth. Therefore, once convergasceached,PeDiT might
loose some accuracy with respect to J48 and this is quantifyethe accuracy of the
misclassification gain decision tree with fixed stoppingtbegs shown here.

Since limiting the depth affects the communication compyeaf our PeDiT algorithm, we

will use depths of 3, as it produces quite accurate treeslfarosse levels.

VI. EXPERIMENTS

To validate the performance of our decision tree algorithwe, conducted experiments on
a simulated network of peers. In this section we discuss xiperanental setup, measurement

metric and the performance of the algorithm.

A. Experimental Setup

Our implementation makes use of the Distributed Data Mirfioglkit (DDMT) [51] which
is a JADE-LEAP based event simulator developed by the DIADéSearch lab at UMBC.
The topology is generated using BRITE [52] — an open softwiaregenerating network
topologies. We have used tBarabasi Albert (BAmodel in BRITE since it is often considered a
reasonable model for the Internet. We use the edge delaysedeafi BA as the basis for our time
measuremeft On top of each network generated by BRITE, we overlayed antonication

tree.

B. Data Generation

The input data of a peer is generated using the scheme pys®omingos and Hulten
[53]. Each input data point is a vector {9, 1} x {0,1}. The data generator is a random tree
built as follows. At each level of the tree, an attribute ifested randomly and made an internal

node of the tree with the only restriction that attributes aot repeated along the same path.

2Wall time is meaningless when simulating thousands of computers on a sigle P
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After the tree is built up to a depth of 3, a node is randomly enadleaf with a probability
of p along with a randomly generated label. We limit the depthhef tree to maximum 6, and
make all the non-leaf nodes a leaf (with random labels) afftexceeds that depth. Whenever a
peer needs an additional point, it generates a random viectbe d-dimensional space and then
passes it through the tree. The label it gets assigned tcsfthieclass label for that input vector.
This forms noise-free input vectors. In order to add noike, lits of the vectors (including the
class label) are flipped with a certain probability. Theref@% noise means that each bit of the
input vector is flipped withm% chance and the new value of that bit is chosen uniformly from
all the possibilities (including the original value). Thatd generator is changed every 10°
simulator ticks, thereby creating an epoch. We assume tt lengthy periods of time the
data changes are only with respect to a stationary disioibuilherefore for a long time we
generate new data points following same distribution. Winenabbove number of simulator ticks
elapse, the data distribution is changed. Hence our dat@dg\pise stationary. Other models of
data change exist such as picking random points in time aadgthg the data or use a more
complicated arrival model as done in queueing theory. Wee mnt done it in this paper and is
left as part of the future work.

A typical experiment consists of 10 equal length epochs thtexh, throughout the experiment
we change 10% data of each peer after every 1000 clock tidlexefore, in all our experiments
there are two levels of data change — (1) stationary changenwte sample from the same
data distribution every 1000 simulator ticks, and (2) dymaahange when the data distribution
changes after every x 10° simulator ticks. Our analysis shows that changing the dateem
than once in the leaky bucket period does not affect the t®shblit puts much stress on the

simulator.

C. Measurement Metric

The two measurements of our algorithm are thelity of the result and theostincurred.

Given a test dataset to each peer, generated from the satributisn as the local dataset,
quality is measured in terms of the percentage of corredtigsified tuples of this test set. We
report two quantities — (1¥tationary accuracywhich refers to the accuracy measured during
the last 80% of the epochs and hence correspond to stati@haryges in the data when the

distribution becomes stable and @)erall accuracywhich is measured for the entire length of
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the experiment and hence corresponds to both the stati@ratynon-stationary changes. The
stationary accuracyeflects the accuracy achieved by our algorithm when theilligion does
not change, but new samples are drawn from the same digbrbuthile the overall accuracy
reflects the accuracy when both the distribution and the daages. Moreover, for each quality
graph in Figures 4, 5, 6, 7, 8 and 9 we report two quantities & average quality over all
peers, all epochs and 10 independent trials (the centerargrknd (2) the standard deviation
over 10 independent trials (error bars).

For measuring the cost of the algorithm we report two quistit— normalized messages
sent andnormalized bytesransferred. Our measurement metric for the normalizedsagss is
the number of messages sent by each peer per unit of leaketlckor an algorithm whose
communication model is broadcast, its normalized messiag&sconsidering 2 neighbors on an
average per peer. We report both the overall messages anddhigoring messages; the latter
refers to the “wasted effort” of the algorithm. For a givemd instance, if a peer needs to sénd
separate messages corresponding to different majorigsvaot one particular peer, it is counted
as one message to that neighbor.

Similarly, to understand the actual communication ovedhe&our algorithm in terms of the
number of bytes sent, we report both tbeerall and monitoring bytes transferred, per unit of
L. In every raw message the distributed algorithm sends 5 ewsnb- the data of the vote,
the id of the vote, the id of the attributes which this voteresponds to, the path of the tree
and the maximum pivot. Considering the above example, thebeumf bytes sent i « k& per
neighbor. As before, for a broadcast based algorithm, Igagim attribute cross-table with four
entries (2 values and 2 classes), its bytes sent wouldobef attributesx4 x 2. The factor of
two is assuming 2 neighbors per peer. For example, with Xlbaties, the number of bytes sent
per L is 80. Similar to what we did for quality, we have plotted bdtie average cost and the
standard deviation of the result over 10 independent trials

There are three parameters of tBeDiT algorithm that we have explored — (1) the number
of local tuples or the size of the local datasg, (2) the depth of the induced tree, and (3) the
size of the leaky buckek. The measurement points for the local data points per pee2s0,
500, 1000, 2000 and 4000. For the depth of tree, we used vafus3, 4, 5 and 7 while we
varied L among 500, 1000, 2000, 3000 and 4000. The valuek afe in simulator ticks where

the average edge delay is about 1100 time units.
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The data generator had two parameters — (1) noise in the datdvbetween 0%, 5%, 10%
and 20%, and (2) number of attributes (10, 15, and 20).

Finally, as a system parameter we varied the number of peans 50 to 1500.

Unless otherwise stated, we have used the following defalltes:|S;| = 500, depth of the
tree = 3, noise =10%, number of attributes = 10, number of peers = 1000, @&neg 1000
(where the average edge delay is about 1100 time units). thése values, for a broadcast
algorithm, the number of normalized messages is 2 while tmaber of normalized bytes is
10 x 4 x 2 = &0.

In all our experiments we have observed the following phesmom. As soon as the epoch
changes, the accuracy of the algorithm goes down and the comation increases since the
algorithm adapts to the new distribution. As soon as theildigion becomes stable, the message
overhead reduces and the accuracy improves. To take ndiespive have plotted both the overall
and stationary behavior of the algorithm with respect todifeerent parameters.

In the next section we first present the accuracy ofRBBIT compared to a standard decision
tree algorithm. Following, we present the performance efReDIT algorithm on the different

parameters.

D. Performance Evaluation

1) Scalability: Our first set of results demonstrate the scalability of BeDiT algorithm
as the number of peers is varied from 50 to 1500. The numbereefsphas little effect on
the performance as we see in Figure 4. In Figure 4(a), botlovkeall and stationary accuracy
converges to a constant as the number of peers is increasadahlzed messages and normalized
bytes transferred, as shown in Figures 4(b) and 4(c), clsangey slowly and almost remains a
constant as the number of peers is increased. Since ouithlgaelies on some data dependent
rules to prune messages, the total number of peers hasdffdet on the quality or the cost.
Hence the algorithm is highly scalable. Note that for an algm which broadcasts sufficient
statistics to maintain the trees the normalized messagesi@malized bytes transferred would
be 2 and 80 respectively. Our results show a significant irgarent.

2) Data Tuples per Peerin this section we have experimented with the first algorithm
parameter — the number of tuples in the local datasgt Figure 5 summarizes the results.

Stationary accuracy increases from 72% to 85%, stationagsages decrease from 1.21 to 0.32
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Fig. 4. Dependence of the quality and cost of the decision tree algoriththeonumber of peers.

and stationary bytes reduce from 20.9 to 4.24 as the sizeeofottal dataset is increased from
250 tuples per peer to 4000 tuples per peer. This is true siiteincreasing|S;|, the global
tree is induced on a larger dataset, leading to better acgukdoreover, with increasings,|,
the algorithm can capture more variability in the distribat (since the majority votes are run
on a larger dataset) leading to lower communication. Everiife smallest dataset size of 250,
the normalized messages is 1.21 and the stationary byte®.9s Roth are far less than 2 and

80 respectively considering the broadcast algorithm.
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Fig. 5. Dependence of the quality and cost of the decision tree algorithp§;an

3) Depth of Tree:As pointed out in Section V-C, depth of the decision tree imduby the
PeDiT algorithm affects the cost of the algorithm. In this sectiare validate this result. The
experimental results are shown in Figure 6. As shown, thecetf the depth is more pronounced

on the communication than on the quality of the result. Aacyrincreases from 72% to 81%
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as the depth is increased from 2 to 5. However for a depth oh&,accuracy of théeDiT
decreases by 2% compared to a depth of 5. The reason for tbierfitting of the domain. As
the depth is increased, there is potentially more ties feryemajority vote leading to a message
explosion. As the depth is increased from 2 to 7, the statjormeessages increase from 0.71 to
1.56. The stationary bytes goes up to 58.71, for a depth of 7.

Although the induced tree of depth 5 is around 3% more aceutsn the tree of depth 3,
we have used trees of depth 3 in all as a baseline. This is becauree of depth 3 has far
lower communication overhead than a tree of depth 5 (0.88nabized messages for depth of

3 compared to 1.19 normalized messages for depth of 5).
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(a) Quality vs. depth of the tree. (b) Normalized messages vs. depth of ffeg¢ Normalized bytes transferred vs. depth
tree. of the tree.

Fig. 6. Dependence of the quality and cost of the decision tree algoriththeodepth of the induced tree.

4) Size of Leaky Buckeffhe last algorithm parameter that we have experimented iwithe
leaky bucket mechanism. In this section we present the teffethe size of the leaky bucket
|L| on the accuracy and the cost of tReDiT algorithm. Figure 7 summarizes the effect. As
shown in Figure 7(a), the stationary accuracy remains eohstven as the size of the leaky
bucket is made twice or thrice of the edge delay (which is htyid100 time units). The overall
quality degrades. This is exactly what we expect.|Asis increased, for every epoch change,
the algorithm takes more time to converge, thereby carrymagcurate results for a longer time.
For this reason the overall accuracy degrades. Howeveg tre algorithm adapts to the new
distribution, a small number of messages is sufficient tonta&n correctness. This is why the
leaky bucket has no effect on the stationary accuracy. Cgntoathe quality, the cost reduces
drastically, from 0.98 stationary messages per peefffigr500 to 0.71 for| L|=4000. Similar is

the trend for the bytes transferred.
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Fig. 7. Dependence of the quality and cost of the decision tree algoriththeosize of the leaky bucket.

5) Noise in Data:In this section we vary one of the data parameters — noiseh@sise in
the data is increased from 0% to 20%, quality degrades artdraogases. This is demonstrated
in Figures 8. In Figure 8(a), the stationary accuracy deggdrom 83% to approximately 75%.
The stationary messages increase from 0.52 to 1.24 andrsdati bytes increase from 9.43 to
17.89 as demonstrated in Figures 8(b) and 8(c) respectiliiy happens because with increasing
noise, every comparison consumes more resources to déadeetter one and this decision can
often get flipped every time the data changes. As a resultgtiaity degrades and the cost
increases. The important observation here is that everhohighest noise, the number of bytes

transferred is 17.89, far less than the maximal allowable od 80.
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Fig. 8. Dependence of the quality and cost of the decision tree algorithmoige in the data.

6) Number of AttributesThe last parameter we varied is the number of attributes. #e h

measured the effect in three different ways — (1) increashmy number of attributes while
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keeping the #tuples constant (Figures 9(a), 9(b) and 9@&))jncreasing the number of attributes
while increasing the #tuples linearly with the #attribu{€sgures 9(d), 9(e) and 9(f)), and (3)
increasing the number of attributes while increasing thepléts linearly with the size of the
domain (Figures 9(g), 9(h) and 9(i)).

As the number of the attributes is increased keeping the surabtuples constant (at 500
tuples per peer), the stationary accuracy decreases frén t6363% (Figure 9(a)). Similarly
Figures 9(b) and 9(c) demonstrate that the normalized rgessacrease from 0.9 to 1.25 and the
normalized bytes increase from approximately 17 to 92. Nadéfor the number of attributes=10,
15 and 20, the maximal bytes transferred for a broadcastebafgorithm is 80, 120 and 160
respectively.

The second set of Figures 9(d), 9(e) and 9(f) show the effedhe number of attributes as
the number of tuples is increased linearly with the numbeatbfbutes (such that, #tuplesEx
#attributes. For 10 attributes we have used 500 data tuglepger. We have increased it to 750
tuples for 15 attributes and further increased it to 100Qesifor 20 attributes. The accuracy
degrades from 73% to 63%. The more interesting is the effacth@ communication. The
stationary messages increase very slowly (from 0.89 to)p@2monstrating the fact that the
algorithm is scalable.

One last variation is the relationship of number of attrdsutvhen the number of tuples is
increased in proportion to the size of the domain (#tuplésx2#atiritutes) For 10, 15 and
20 attributes, the number of tuples per peer we used are IaB8 10000 respectively. The
accuracy improves and the normalized messages decredseragmber of attributes is increased.
The number of bytes transferred increases, though for numbattributes=20, it is still well

below what would have been used for a broadcast-based thigori

E. Discussion
In the previous section we have presented the quality anddkeof thePeDiT algorithm on
the different algorithm parameters. Our findings can be sanmed as follows.
« In most case®eDiT results in a loss of accuracy over J48. This is because ofitheler
gain function that we have chosen. However, due to the heamnunication and synchro-
nization cost of centralizing and applying J48, the obsg¢nvedest loss of accuracy seems

quite reasonable.

March 25, 2008 DRAFT



30

80 : ©1.4 £ 120 :
b >Stationary ®13 g >Stationary qj’
275 ko overall 3 $ @ 90/ Overall
570 511 b N 60 ¢
8 3 b S 1 %» . T ¢
< 65 = >Stationary £ 30
$ 0.9 ‘]’ o Overall S 24
60 5 z 0
10 15 > 10 15 20 10 15 20
# Attributes # Attributes # Attributes
(a) Quality for #tuples=const. (b) Normalized msg. for #tuples=const(c) Normalized bytes for #tuples=const.
(]
80 = 120
b > Stationary| & 1.37" Stationary %,100 - Stationary ¢
275 tlooverall 3 1.2 o overall 0 o Overall b
s ¥ =11 g &
570 b o %’ N 60
3 } g 14 i 3
Q N © S
<65 509 | { b £ 40
¢ £ S 20
60 50.8 z £
10 15 20 § 10 15 20 10 15 20
# Attributes # Attributes # Attributes

(d) Quality when #tuples increases li(e) Normalized msg. when #tuples i) Normalized bytes when #tuples in-
early with #attr. creases linearly with #attr. creases linearly with #attr.

85 : 217 : ? 120 :

80 >Stationary m16 ¢ >Stationary £.100/| " Stationary qj’
Py o Overall o 14 F $|° Overall o o Overall
370 & : g1.2 S 50 it
<gs ¢ = 1 $ £ 25 ,

60 Eos b 2 o

10 15 20 27710 15 20 10 15 20
# Attributes # Attributes # Attributes

(g) Quality when #tuples increases liflh) Normalized msg. #tuples increas@ys Normalized bytes #tuples increases
linearly with |domain.

early with |[domairj.

Fig. 9.

linearly with |[domain.

Dependence of the quality and cost of the decision tree algoriththeonumber of attributes.

« The PeDIiT algorithm is highly scalable with respect to the number aérpe As shown by

our scalability experiments, increasing the number of pdes little effect on the quality

or cost.

« Increasing the number of tuples increases the accuracyeofréi® and decreases the cost.

Even for tuples per peer = a quarter of the size of the doma (Bples per peer for 10

attributes), the monitoring cost is 1.25 — less than the makiallowable cost of 2.0.

« Note that every increment in the number of attributes doaubite search space. The quality

and cost of our algorithm remains moderate even of the nurobattributes is doubled.
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« Noise in the data degrades the quality and cost — it can be eonsaped either by increasing
the number of tuples or increasing the depth of the tree. IDeptthree seems to a be
moderate choice since the accuracy is good and the morgtoost is low as well. Increasing

the depth improves the accuracy with a heavy penalty on tee co

VIlI. CONCLUSION

In this paper we presented an asynchronous scalable &lgofdr inducing a decision tree
in a large P2P network. With sufficient time, the algorithrmeerges to the same tree given
all the data of all the peers. To the best of the authors’ kadge this is one of the first
attempts on developing such an algorithm. The algorithmuitable for scenarios in which the
data is distributed across a large P2P network as it sedwyleasdles data changes and peer
failures. We have conducted extensive experiments witkthgyic dataset to analyze the different
parameters of the algorithms. The results point out thatatigerithm is accurate and suffers
moderate communication overhead compared to a broadaastibalgorithm. The algorithm is
also highly scalable both with respect to the number of paacsnumber of attributes.

This paper relies on the majority voting algorithm as a baddblock. The majority voting
protocol is a highly efficient and scalable protocol, maidlye to the existence of local pruning
rules. In the literature such algorithms are commonly ref@rto as local algorithms. Previous
work on exact local algorithms mainly focused on developgfficient building blocks such as
majority voting [8], L2-thresholding [42] and more. In thimper, similar to [38], we leverage
these powerful building blocks to show how more complex daiaing algorithms can be
developed for large-scale distributed systems. In thege®ave have also shown how complex
functions such as entropy need to be simplified to misclassifin gain in order to aid in the
algorithm development process.

Most of these algorithms use the term ‘local’ in an intuitsense; they rely on experimental
results to claim the efficiency and scalability of the algums. Very recently, researchers have
proposed more formal definitions of local algorithms as W&]l We do not prove the locality
of our algorithm since it is not the central focus of our pap®e plan to explore it in the future
along with developing other techniques of inductive leagnsuch as Naive Bayeg;nearest

neighbor, SVM’s and more.
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APPENDIX

A decision tree induction algorithm cannot be consideradmete without a pruning technique
stating which branches over-fit the data. Pruning techrsgaa be divided betwegrostpruning
— removing nodes of whole subtrees after the tree is induceahnépre-pruning — instructing
the algorithm which nodes not to develop in the first placac8ithePeDiT algorithm works on
streaming data the idea of first inducing the tree and aftelsvaruning it seems less suitable
(because there is no specific point in time in which pruninguth begin). We therefore focus on
pre-pruning heuristics. Several common pre-pruning tephes can easily be adopted BgDiT,
because they use simple statistics. We will describe thmeb techniques.

The simplest pre-pruning technique is to terminate newded®velopment which the tree
reaches a pre-specified depth. The biggest benefit of thisitpee is that it limits the resources

used by the algorithm. This technique is trivial to implemas part ofPeDiT and performs
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quite favorably in experiments. It's greatest disadvaategthat the depth limit has to be found
in trial and error, and is the same for all leaves.

A second popular pre-pruning technique is to require a mahiegree of gain from every split
in the tree, or abort the split if the gain is below the reqdireimber. The gain from splitting
any given node according to an attributé is the reduction in the number of misclassified
examples|zy, + zt, — zb, — x| — |28 — ziy| — |78 — 2%,]. If indicators are calculated for
each of the subexpressions: = sign (zf, + =%, — z}, — z%,), sy = sign (x}, — x},), and
st = sign (2}, — 2¢,) then the previous formula can be rewritteh(z, + 2%, — 2}, — 2¢,) —
sb (zhy — xh,) — st (i, — x%;). Now, to prove the number of errors decreases in more than a
constante we can hold a majority vote for this expression with the thodd set to—e rather
than to O (as shown elsewhere in [48]). Just as in Section2/-this would require holding
eight different majority votes per attribute, one for evenyssible value of’, s{, and s, and
then selecting one of them according to the ad hoc result pdrs¢e votes on the values &f
si, andst. Notice that votes fos{ ands! are held anyhow. Also, the input for the vote fdr
is independent of so just one extra vote is needed for dll. Furthermore, for all nodes but
the root, a vote on the value of is actually held in the context of the parent of the node.

A third pruning technique is to require non-negative gainirevery split when this gain is
measured on a test set rather than on the learning set. Thidhatroduces little complexity
beyond the described above: the difference is that each, rstaleing with the root, should be
associated with an additional set of examples and that {nat ito the votes regarding pruning
be taken from that set. Notice that the input to votes of ¢heype should still be taken from

the learning set.
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