
Composite large margin classifiers with latent subclasses for 
heterogeneous biomedical data

Guanhua Chen,
Assistant Professor, Department of Biostatistics, Vanderbilt University, Nashville, TN 37203

Yufeng Liu,
Professor, Department of Statistics and Operations Research, Department of Genetics, and 
Department of Biostatistics, University of North Carolina, Chapel Hill, NC 27599

Dinggang Shen, and
Professor, Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel 
Hill, NC 27599; he is also with Department of Brain and Cognitive Engineering, Korea University, 
Seoul 02841, Republic of Korea

Michael R. Kosorok
W. R. Kenan, Jr. Distinguished Professor and Chair, Department of Biostatistics, and Professor, 
Department of Statistics and Operations Research, University of North Carolina, Chapel Hill, NC 
27599

Guanhua Chen: g.chen@vanderbilt.edu; Yufeng Liu: yfliu@email.unc.edu; Dinggang Shen: dgshen@med.unc.edu; 
Michael R. Kosorok: kosorok@unc.edu

Abstract

High dimensional classification problems are prevalent in a wide range of modern scientific 

applications. Despite a large number of candidate classification techniques available to use, 

practitioners often face a dilemma of choosing between linear and general nonlinear classifiers. 

Specifically, simple linear classifiers have good interpretability, but may have limitations in 

handling data with complex structures. In contrast, general nonlinear classifiers are more flexible, 

but may lose interpretability and have higher tendency for overfitting. In this paper, we consider 

data with potential latent subgroups in the classes of interest. We propose a new method, namely 

the Composite Large Margin Classifier (CLM), to address the issue of classification with latent 

subclasses. The CLM aims to find three linear functions simultaneously: one linear function to 

split the data into two parts, with each part being classified by a different linear classifier. Our 

method has comparable prediction accuracy to a general nonlinear classifier, and it maintains the 

interpretability of traditional linear classifiers. We demonstrate the competitive performance of the 

CLM through comparisons with several existing linear and nonlinear classifiers by Monte Carlo 

experiments. Analysis of the Alzheimer’s disease classification problem using CLM not only 

provides a lower classification error in discriminating cases and controls, but also identifies 

subclasses in controls that are more likely to develop the disease in the future.
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1. Introduction

In biomedical research, it is important to distinguish the patients with a high risk of 

developing a certain disease from the patients with a low risk of that disease using 

biomarkers, as the follow-up treatment plan likely depends on such diagnosis. For example, 

Alzheimer’s disease (AD) is one of the most common mental diseases that causes memory, 

thinking, and behavior problems. Between normal aging and Alzheimer’s disease, there 

exists a transitional stage, known as amnestic mid cognitive impairment (MCI). Although 

AD is not currently curable, proper early therapy can slow the progress and alleviate 

symptoms. Thus, it is vital to accurately diagnose AD, especially for MCI. To discriminate 

AD from normal aging, we can build classifiers with biomarkers coming from various 

resources such as microarray or imaging data (fMRI).

In the literature, there are a large number of classifiers available, for example, linear 

discriminant analysis [4], Support Vector Machines (SVMs) [29], Random Forests [1], 

Distance Weighted Discrimination (DWD) [21], and Large Margin Unified Machines 

(LUMs) [19]. Hastie et al. [8] provides a comprehensive review of many machine learning 

techniques. Among various classification tools, linear classifiers are popular especially for 

high dimensional problems, due to their simplicity and good interpretability. While widely 

used, linear classifiers can be suboptimal for many practical problems [10]. One main 

practical problem we are interested in this paper is classification in the presence of latent 

subgroups. For the AD problem, there are two subgroups for MCI patients: the group that 

developed into AD in the follow-up and the other group that did not develop AD [24]. 

However, such subgroup information is latent (unknown) when only the baseline 

information is available. Another important biological application is the cancer subtype 

classification. The existing cancer subtypes reported in the literature may be further refined 

by the profile of high-throughput data, e.g. further subtypes identified by genomic data [25]. 

For both examples mentioned above, the latent subclasses have biological or clinical 

interpretation. In practice, such refined class labels are typically unavailable and they 

correspond to the latent subclasses. The main contribution of this paper is to develop new 

classification techniques which can handle classification of heterogeneous data with 

potential latent subclasses. As a remark, we want to point out the difference of latent 

subgroups considered in this paper from the batch effect in biology [16], which occurs as a 

result of different laboratory conditions and is independent of the biological or scientific 

variables in the study [14]. For such batch effects, the batch labels are often available and 

one can remove such effect directly before performing further analysis such as classification.

To further illustrate the problem of interest, we show a simple two dimensional toy example 

in Figure 1. This is a binary classification problem with X1 and X2 as predictors. One class 

is labeled in gray, the other is labeled in black. As seen from the plots, each class has two 

latent subclasses. A linear SVM model is fitted to the data, and its decision boundary is 

shown as the solid line in Figure 1(a). The linear SVM model completely fails to classify the 

two classes. Note that although traditional linear classifiers, such as the linear SVM, are not 

able to effectively capture the difference between classes in this example, the classification 

task becomes much easier if we divide the data by the line X2 = 0 and classify each part 

separately. This motivates us to introduce the idea of a splitting function to divide the data 

Chen et al. Page 2

Stat Anal Data Min. Author manuscript; available in PMC 2017 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



into two parts so that we can handle the classification task with two separate linear 

classifiers.

As mentioned earlier, despite having good properties, such as simplicity and interpretability 

of linear classifiers, they are insufficient for problems with nonlinear decision boundaries. 

Using the kernel trick with a nonlinear kernel function (see [8] for details), one can extend a 

linear large margin classifier to a non-linear classifier with more flexible classification 

boundaries. However, the corresponding functional space is much larger, and there is high 

risk of overfitting. Although regularization is commonly used to control overfitting, finding 

the optimal tuning parameters is difficult for nonlinear kernel classifiers, especially for high 

dimensional data. Furthermore, compared to simple linear classifiers, results from non-linear 

classifiers are generally more difficult to interpret. As shown in Figure 1, two non-linear 

classifiers, quadratic (panel b) and Gaussian (panel c) kernel SVMs work reasonably well. 

But their decision boundaries are quite complicated. Moreover, we will show in Section 4 

that the performance of kernel SVMs can deteriorate rapidly when the dimension increases.

To solve the classification problem with complex structures, we propose a new group of 

methods, namely the Composite Large Margin Classifier (CLM). The CLM aims to find 

three linear functions simultaneously: one linear function to split the data into two parts, 

with each part being classified by a different linear classifier. We denote these three linear 

functions as f1(x), f2(x), f3(x), respectively. Because of the split function, the CLM method 

provides a natural solution to the classification problem with latent subgroups. In Figure 

1(d), we present the three lines:  and  estimated from CLM. The 

function  helps to capture the hidden structure and divide the data into two parts, one 

part with  and the other part with . With this division, we can use two 

separate linear classifiers on each part. Thus, our CLM method makes use of three linear 

functions simultaneously to classify the data and capture the latent subclasses.

The CLM method has some advantages over both traditional linear and nonlinear methods. 

Compared to linear methods, the CLM is more flexible for classifying data with complex 

structure. On the other hand, unlike general nonlinear methods, the CLM only depends on 

the linear combination of the features and thus retains most of the simplicity and 

interpretability of linear methods. Furthermore, the functional space of interest for the CLM 

is much smaller than the space for general kernel methods. As a consequence of its relative 

simplicity, the CLM performs better than the kernel based method in high dimensions as 

shown in Section 4. In addition, the splitting function for the CLM has a natural latent 

variable interpretation, and it is also a change-plane problem – an extension of the well 

studied change-point problem [3] and the recent change-line problem [12]. The latent 

variable identified by our methods in the AD example appears to be scientifically 

meaningful and is useful for disease prognosis predication and treatment selection.

Although our CLM method is motivated by large margin classifiers, the fundamental 

concept is more general and is applicable to many other linear classifiers as well. 

Furthermore, besides classification, we can also generalize the CLM method to regression. 
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In this article, we focus on the implementation of the LUM loss and the logistic loss for 

classification and use them as examples to illustrate how the CLM method works.

The rest of paper is organized as follows. In Section 2.1, we briefly review binary 

classification methods. The CLM framework is introduced in Section 2.2, and the properties 

of the CLM and its connection to existing methods are also discussed. In Section 3, we 

present a principal component analysis (PCA) based computational strategy for non-sparse 

solutions and a refitting procedure for sparse solutions. We demonstrate the effectiveness of 

our method with simulated data and then apply the method to the analysis of Alzheimer’s 

disease and cancer data in Sections 4 and 5, respectively. Concluding comments are given in 

Section 6.

2 Methodology

We first review binary classification and large margin classifiers in Section 2.1. Due to the 

limitation of existing large margin classifiers for classification with latent subclasses, we 

propose the Composite Large Margin (CLM) classifier in Section 2.2. We will also discuss 

the properties of the CLM with two particular loss functions, the LUM and logistic losses.

2.1 Review of Binary Classification

Suppose we have a training data set {(xi, yi); i = 1, 2, . . . n} available. The class label y ∈ 

{±1}, and the predictor x is a p-dimensional vector. Our goal is to build a classifier based on 

the training data for prediction of data points with x only. For a given binary classification 

problem, there are many techniques available in the literature and our focus in this paper is 

on large margin classifiers [8]. Given the training data set, a large margin classifier is trained 

to obtain f(x) : ℜk → ℜ, such that the predicted class label is assigned using the sign of f(x). 

Note that we correctly predict the class label of x when yf(x) is positive. The term yf(x) is 

known as the functional margin. In general, the objective function of a large margin 

classifier can be written in the regularization framework of a loss plus a penalty. The loss is a 

measure of the goodness of fit between the model and data, and the penalty controls the 

complexity of the model to avoid overfitting. Specifically, we express the optimization 

problem of a large margin classifier as follows:

where ℱ is the function class that all candidate solution functions belong to, J(f) is a 

regularization term penalizing the complexity of f, L(·) is the loss function, and λ is a tuning 

parameter balancing the two terms. When the function f(x) is linear with the form wT x, a 

common choice of J(f) is the ℓ2 penalty, i.e. . A natural loss function is the so called 0–1 

loss with value 1 if yf(x) ≤ 0, and 0 otherwise, i.e. L0–1(yf (x)) = I{yf (x) ≤ 0}. However, the 

0–1 loss is difficult for optimization due to its nonconvexity. Consequently, various convex 

surrogate loss functions have been proposed in the literature to alleviate the computational 

problem [35]. For example, SVM uses the hinge loss, penalized logistic regression uses the 

logistic loss, and AdaBoost uses the exponential loss [6].
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Recently, Liu et al. [19] proposed a unified large margin machine (LUM) with a family of 

convex loss functions which contains DWD and SVM as special cases. The LUM loss 

function is differentiable everywhere, hence it has some computational advantage. As an 

important component of our proposed method, we will describe the LUM loss function in 

detail. The LUM loss is indexed by two parameters a and c with the following explicit form:

(2.1)

The left piece of V(u) with  is the same as the hinge loss used in the SVM. The right 

piece is a convex curve whose shape is controlled by c with rate of decay controlled by a. 

With a > 0 and c → ∞, LUM is equivalent to the standard SVM. With a → ∞ and fixed c, 

the LUM loss is a hybrid of SVM and AdaBoost.

The techniques discussed above work well in many traditional classification problems. For 

large margin classifiers, it is common to use linear learning. One advantage of linear 

learning is its simple interpretation. Once the function f(x) = xT w is obtained, one can 

examine the importance of each dimension in x through its corresponding coefficients w. 

When a linear function is insufficient, one can map the original linear space to a higher 

dimensional nonlinear space using kernel methods [8]. Despite its flexibility, it is typically 

more difficult to interpret. Our goal is to propose a class of classifiers that maintain 

sufficient flexibility to incorporate latent subclasses without losing the interpretability of 

linear classifiers.

2.2 The Composite Large Margin (CLM) framework

In this section, we describe the CLM framework for binary classification with latent 

subclasses in detail. We assume that due to the existence of heterogenous subclasses, a 

global single linear classifier that can effectively separate the positive and the negative 

classes does not exist. However, if we divide the data into two parts using a simple function 

(e.g. a linear function), then the classification task for each part becomes relatively easy.

Next, we describe our proposed CLM method. To that end, we first define the generalized 0 

– 1 latent classification loss as W0–1(y, x) = I(f1(x) ≤ 0)I(yf2(x) ≤ 0) + I(f1(x) > 0)I(yf3(x) ≤ 

0), where f1(x) is the splitting function, f2(x) is the classifier for data points with f1(x) ≤ 0, 

and f3(x) is the classifier for data points with f1(x) > 0.

The generalized 0 – 1 latent classification loss is the composition of two 0 – 1 standard 

binary classification loss functions with weights I(f1(x) ≤ 0) and I(f1(x) > 0). Similar to the 

standard 0 – 1 loss, it is hard to optimize the generalized 0 – 1 loss directly due to its 

discontinuity. In practice, a surrogate loss function is often used instead. For illustration, we 

use logistic and LUM losses as surrogate loss functions for the indicators I(yf2(x) ≤ 0) and 

I(yf3(x) ≤ 0). For weight functions I(f1(x) ≤ 0) and I(f1(x) > 0), we use G(−f1(x)) and 

G(f1(x)) as their corresponding smooth approximations, where G(u) is defined as:
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(2.2)

ε is a parameter, which we can set to be small. Note that G(u) + G(−u) = 1, also as ε → 0, 

G(u) converges to I(u > 0) pointwisely. Note that this choice is not unique, and there are 

many other possible approximations, such as sigmoid functions.

The loss functions Wlog and Wlum for the latent classification problem are defined as 

follows:

(2.3)

(2.4)

where αi = G(−f1(xi)). Note that the Wlog and Wlum losses are the compositions of two 

logistic and LUM loss functions, respectively. The αi and 1 –αi are the weights. 

Furthermore, we assume that f1, f2, f3 are all linear, i.e. ;j = 1, 2, 3, to 

maintain the interpretability of linear classifiers.

With the loss function L(y, x) defined, we can express the optimization problem for CLM as 

, where λ is the tuning parameter, 

and (w, b) = (w1, w2, w3, b1, b2, b3). We will discuss the algorithm for obtaining the CLM 

solution in Section 3.

As a remark, we would like to point that in the literature, there are two main categories of 

methods to handle data heterogeneity and identify potential subtypes: tree-based methods 

[2], and likelihood based mixture models [5].

For tree-based methods, several techniques [13, 20] were proposed to overcome the potential 

problems of splitting variables without global effects. For example, GUIDE allows the 

search for linear splits using two variables at one time when the marginal effects of both 

covariates are weak, and the pairwise interaction effect is strong [20]. As illustrated in 

Section 4, both GUIDE and CLM can work well for certain problems, while traditional tree-

based methods cannot. Unlike the tree-based GUIDE, CLM is a composite large margin 

classifier motivated by latent variables. Furthermore, with the use of three linear functions, 

the interpretation of CLM is relatively simple. Lastly, our numerical examples indicate that 

CLM is more competitive for high dimensional data.
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Likelihood based mixture models assume that the data come from several mixture 

components (with the number of components known), and the model usually has a 

hierarchical structure. An example of the hierarchical mixture of experts (HME) introduced 

by [11] is described below. We assume there are two layers with four components, and the 

parametric likelihood of Y given X is

where g(i) = exp(qi(x,θ))/(exp(q1(x,θ)) + exp(q2(x,θ))),

The g(i) and g(j|i) are the proportions for the four components, and μij is the model for a 

given component. The task is to calculate the MLE for θ, and techniques, such as the EM 

algorithm, are usable. If we consider a specific form of CLM without the penalty term, for 

example, using logistic loss function for f2(x) and f3(x), and approximating I(f1(x) > 0) with 

exp(f1(x))/(exp(f1(x))+exp(f1(−x))), then the one layer HME model has the same objective 

function as that of CLM. Despite the interesting connection, the motivations of CLM and 

HME are different. In particular, the CLM method is motivated from the perspective of 

latent subclasses and is a generalization of change-point models to the change-plane, while 

the HME is a likelihood based mixture model. When making a decision, CLM is similar to a 

“hard” classifier in the sense that it directly estimates the decision boundary of the latent 

classification problem represented by I(f1(x) > 0). In contrast, HME is similar to a “soft” 

classifier which first estimates the conditional class probability, then converts the probability 

into the decision. More details about “hard” and “soft” classifiers are described in [30]. In 

addition, the CLM is broader than likelihood-based methods and allows for more general 

loss functions. As shown in Section 4, a general loss function for CLM may provide better 

classification performance for complex problems. We show that CLM with LUM delivers 

smaller classification errors than CLM with the logistic loss in both of our application 

settings studied in Section 5.

Our proposed CLM also has interesting connections with the piecewise linear regression 

method for problems with continuous outcomes. The piecewise linear regression method 

splits the covariate space into subspaces by identifying the change point, and within each 

subspace, a linear model is assumed. Our method with the logistic loss splits the covariate 

space into subspaces by a linear function, and within each subspace, a generalized linear 

model is used.

3 Computational Algorithms for CLM

In this section, we discuss implementation of CLM. In particular, we describe a gradient 

based algorithm in Section 3.1. To tackle the difficulty of high dimensional problems, a PCA 
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based algorithm is given in Section 3.2. Based on this algorithm, we further describe a 

refitting procedure to achieve variable selection in Section 3.3.

3.1 Gradient based algorithm for the CLM

To describe the algorithm, we use CLM with the logistic loss as an example. The 

corresponding objective function is

(3.1)

where λ, αi and fj(x) are as defined in (2.4). Since the objective function is continuously 

differentiable, many general optimization algorithms, such as the conjugate gradient method 

or the quasi-Newton method [26], are applicable.

To apply these algorithms, we first need to derive the corresponding gradient functions. 

Once the gradient is given, we can iteratively update the solution. For example, for the 

gradient descent algorithm, the (t + 1)-th step solution (wt+1, bt+1) based on the t-th step 

solution (wt+1, bt+1) is given by ; i = . . . 3, 

where γ is a small positive number known as the learning rate. Similar calculations can be 

done for other loss functions such as the Wlum loss in (2.3).

3.2 PCA algorithm for the CLM

The direct optimization strategy in Section 3.1 works well for low or moderate-size 

dimensional problems. However, direct optimization encounters significant challenges for 

high dimensional data since the computational burden of most general optimization methods 

increases dramatically with the dimension. To overcome the challenge of this problem, we 

incorporate the principal component idea. In particular, we predict the class label using the 

CLM method by a reduced rank design matrix instead of the original design matrix. The 

reduced rank matrix comprises the first k principal component scores of the original design 

matrix with k < d. The steps of this PCA-based algorithm for CLM are given in Algorithm 1 

below.

Denote the design matrix as X = [x1, . . . , xn]T = [X1, . . . , Xd], which is an n × d matrix. 

The eigen-decomposition of X is XT X = PΛPT , where the P is a matrix with orthonormal 

columns ([P1, ...., Pd]) and Λ is the diagonal matrix with the eigenvalues as the diagonal 

elements. Furthermore, we define Pk = [P1,..., Pk], and . Our idea 

is to work with the k-dimensional space spanned by the first k principal component 

dimensions. In particular, instead of working with the d-dimensional x, we work with the k-

dimensional xk. If we replace the corresponding elements in  in (3.1) with the new linear 

functions , then we can obtain a new objective function :
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(3.2)

We minimize  instead of  and get the minimizer (w̃*, b̃*). Consequently, we can 

calculate the solution for the original problem (w*,b*) by setting w* = w̃*[Pk]T , b* = b̃*. 

This strategy reduces the dimension of the problem from 3d to 3k. If k ≪ d, then we can 

handle high dimensional data relatively efficiently.

We would like to point out that although reducing the dimension greatly helps the 

computational efficiency, we may lose important classification information. Thus the choice 

of k is very important. We assume that the important classification information is mostly 

contained in the space spanned by the first k PC dimensions. Under this assumption, finding 

the right k helps to eliminate noise dimensions and improve computational efficiency as well 

as accuracy of the resulting classifier. Therefore, we need to measure the information of Y 
contained in Xk for various k. The traditional Pearson correlation is not appropriate for this 

purpose, since it restricts the two random vectors to be one dimensional and only measures 

the linear dependence. To address this problem, we use a recently proposed “distance 

correlation” (dcor) [28] for choosing the number of leading principal components k. The 

dcor measures arbitrary types of dependence between two random vectors. In particular, the 

distance covariance (dcov) between two random vectors u and v with finite first moments is 

written as , where ϕ(.) 

represents the characteristic function, du and dv are the dimensions of u and v, and w(t, s) is 

a properly defined weight function. The distance correlation between u and v is defined as 

. Unlike the Pearson correlation, dcor is 0 

if and only if the two random vectors are independent and it does not restrict the dimensions 

of those random vectors [28]. From its properties, the dcor is feasible and robust for 

screening information for classification problems [15]. We measure the information of Y 
contained in the leading k-PCs of X as dcor(Y, Xk). Consequently, the optimal 

. In practice, we find that using Xkopt as the predictor may not 

always yield the lowest classification error, so in the implementation, we treat k as a tuning 

parameter from the set {kopt, kopt + 1, kopt + 2}. This strategy appears to work well in 

practice.

PCA algorithm for the CLM method

(0) Initialization: Denote the training data set as {Y1, X} and the tuning data set {Y2, 

U}. Let .

(1)
Model Training: For fixed k and λ, solve .

(2) Solution Reconstruction: Calculate wk,λ = w̃k,λ[Pk]T , bk,λ = b̃k,λ.
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(3) Prediction: The tuning error ξ(k,λ) is the classification error on predicting Y2 using 

U by the model from Step 2.

(4) Iteration: Repeat Steps 1 – 3 for all k ∈{kopt, kopt + 1, kopt + 2} and λ ∈ {λ1, . . . , 
λn}.

(5) Output: The final solution (w*, b*) is (wk,λ, bk,λ) from the model with the lowest ξ 

(k,λ). For the choice of λ, we use a warm-start strategy, such that for the sequence 

of model fittings from λ1 to λn ( λ1 > λ2 > . . . > λn), the solution based on λi is 

provided as the starting point for λi+1. This approach helps improve the 

convergence of the algorithm.

3.3 Refitting algorithm for sparse CLM

Variable selection is important for the analysis of high dimensional data. The PCA algorithm 

we proposed above does not have variable selection capability due to the choice of the ℓ2 

penalty and the solution reconstruction step. As Pk is full rank, w = w̃[Pk]T is not sparse in 

general, even if w̃ is. Consequently, we cannot achieve sparsity on w by simply replacing the 

ℓ2 penalty with the lasso penalty in  in (3.2).

To achieve variable selection, we propose a refitting procedure. We first identify the 

informative variables from the output of the PCA algorithm with all variables as predictors. 

Then, we refit the PCA algorithm using the informative variables only. The key step is to 

identify the informative variables. For this purpose, we fit three penalized logistic regression 

(PLR) models with the elastic net penalty [7, 27, 36] separately for f1, f2 and f3. The details 

are given in Algorithm 2:

Refitting algorithm for the CLM method

(0) Initialization: Denote the training data set as {Y, X} and the solution from 

Algorithm 1 as . Let PLR(Y, X) be the solution of the PLR fitting, and let 

the initial value of the active variable index set be A = {1, 2, …, p}.

(1) Approximate f1: Let . Then obtain , where 

“s” represents the sparse solution.

(2) Approximate f2 and f3: The samples in {Y, XA} are divided into Set 1 and Set 2 by 

the sign of . Using Set 1 data, we have , and 

similarly .

(3) Select active variables: Let A = I1 ∪ I2 ∪ I3, where 

.

(4) Refit: Refit Algorithm 1 using XA as predictors.

(5) Iteration: Repeat Steps 1 – 4 until the active variable index set A stabilizes.

(6) Output: The final solution is obtained from the most recent Step 4. Based on our 

experience, the algorithm converges within several steps of refitting. In our 

simulation studies and application settings, we observe that the refitting procedure 
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performs well overall. Depending on the computational budget, one may also 

couple our algorithm with the stability selection procedure proposed by [22] to 

select the active variables.

4 Simulation Studies

We now investigate the performance of the proposed methods on two synthetic examples. 

We simulate both low- and high-dimensional situations. The training and testing data are 

generated from the same distributions with sample sizes 200 and 20000, respectively. For 

each example, there are several scenarios with different Bayes errors (the error rate of the 

optimal Bayes rule) and different numbers of noise variables. In both examples, the data 

contain four clusters of equal sizes. To reflect the latent subclass structure, two clusters 

belong to the “+” class and the others are for the “−” class. We compare the proposed 

methods with the linear SVM, the quadratic and Gaussian kernel SVMs, Random Forests, 

HME and l1–penalized logistic regression. In addition, we also include an enhanced tree-

based method GUIDE [20] for comparison. We select tuning parameters for all methods via 

five-fold cross validation.

Example 1 (Twisted Case)—The four clusters are sampled from four bi-variate normal 

distributions with corresponding means (μ, μ) and (−μ, −μ) for the “+” class, (μ, −μ) and (−μ, 

μ) for the “−” class, and the identity covariance matrix. In addition to the two informative 

variables, we generate random noise variables from N(0, 0.52). We present the scenarios 

with μ = 2.24 or 1.2, where larger μ makes the classification task easier with smaller Bayes 

error. We also compare the performance of different methods on the scenarios with the same 

μ but different numbers of noise variables. Note that although the Bayes error only depends 

on μ in our example, the classification problem becomes more challenging when more noise 

variables are added. The scatter plot for the no noise variables scenario (μ = 2.24) with the 

CLM solution boundary is shown in Figure 2(a).

Example 2 (Parallel Case)—The four clusters are sampled from four bi-variate normal 

distributions whose means are (μ, 0), (−μ, 0) for the “+” class, and (0, 0), (2μ, 0) for the “−” 

class. The covariance matrix is Σ = 0.6I2×2 + 0.4J2×2, where I is the identity matrix, and J is 

a matrix with all elements equal to 1. We set μ = 3.90 or 2, and the additional random noise 

variables follow i.i.d N(0, 0.52). As in Example 1, a similar scatter plot (μ = 3.90, no noise 

variables) is shown in Figure 2(b), where the four clusters are parallel to each other. The 

testing errors of the CLM and other methods in both examples are reported in Table 1.

The results of Examples 1 and 2 show that our methods outperform the competitors in most 

scenarios. Both examples have latent subclasses, and our method is well suited for these 

problems. The results show that our method is very effective in detecting the true latent 

structure.

In the twisted case, linear SVM and PLR methods fail to detect the pattern. Although the 

quadratic kernel method works, it still has larger testing errors than the CLM methods. In 

Example 1, we can divide the samples into four clusters by lines X1 = 0 and X2 = 0. Since 

these lines can be approximated by a quadratic function, the quadratic kernel can work well 
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in the twisted case. For the parallel case, we need three parallel lines to separate the four 

clusters, so methods such as the quadratic kernel SVM, the linear SVM, and PLR do not 

perform well. For both examples, the Gaussian kernel SVM and Random Forests work well 

under the low dimensional setting. When the dimension is high, Random Forests fail to 

choose the right covariate to split among all covariates. In addition, the Random Forests will 

only split variables with strong marginal effects, hence the performance of Random Forests 

is better in the parallel case than in the twisted case. The model structure of the Gaussian 

kernel SVM is flexible enough to separate the two classes for low dimensions. However, its 

performance decays rapidly in the high dimensional setting, possibly due to overfitting. In 

contrast, the results of the CLM method under the high dimensional setting are still 

comparable to those under the low dimensional setting. The CLM method uses linear 

classifiers, and therefore may alleviate the overfitting problem compared to kernel based 

methods.

When there are no latent subclasses or only one class has subclasses, our method is still 

comparable to that of the competitors (see Appendix A for details). Note that for the parallel 

example, X2 carries almost all the information about Y. As a result, GUIDE performs well 

for the parallel case in general due to its ability to generate unbiased splits regardless of 

whether it searches for pairwise interactions or not. In the twisted example, the marginal 

effect of X1 and X2 is weak, while the interaction effect is strong. However, when the 

dimension is high, due to the high computational demand, the implementation of GUIDE 

does not perform interaction tests for determining which covariates to split. Hence, GUIDE 

does not perform very well in the twisted case with p = 1000. In both examples, HME 

performs worse than CLM when the dimension is high or the classification task is 

challenging, as the CLM can better identify the latent variable (see Appendix B for details). 

Overall, the performance of CLM is the best among all methods.

Note that little information is lost when applying the PCA strategy. In particular, the 

structure of the four clusters is preserved after its application: the projected data pattern in 

the space spanned by X1 and X2 in Figures 2(a) is similar to the projected data pattern in the 

space spanned by the first two principal components in Figures 2(c). Similar phenomenon 

exist in 2(b) and 2(d).

5 Applications

In this section, we apply our methods to the analysis of Alzheimer’s disease and ovarian 

carcinoma data. The first data set involves imaging data, while the second involves gene 

expression data. We are interested in the ability of our method to detect meaningful latent 

heterogenous groups while simultaneously delivering competitive classification accuracy. 

The performance of different methods is evaluated by cross validation (CV) errors of 100 

random divisions of the data. We use 75% of data for training and 25% for testing. We also 

keep the original class proportions within both the training and testing sets. In the training 

steps, tuning parameters are selected by 5-fold CV. We compare the same methods evaluated 

in Section 4, and report the average testing errors in Table 2.
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5.1 Alzheimer’s disease

We first apply our methods to the Alzheimer’s Disease Neuroimaging Initiative (ADNI) 

[24], a longitudinal study designed for the Alzheimer’s disease detection and tracking. There 

are 226 normal controls and 393 MCI patients in total. The primary goal of our analysis is to 

discriminate between MCI samples and normal control samples using imaging data collected 

at their first visit. As mentioned previously, such a discrimination tool could help physicians 

know when to begin intervention. Each sample is characterized by features extracted from 

structural MR imaging (MRI) which measures brain atrophy (a known AD related factor). 

The image pre-processing and feature extraction follow the procedure described in [31] and 

[34]. Basically, each processed image is divided into 93 regions-of-interest (ROI) and then 

the volume of grey matter tissue in each ROI region is computed as a feature [34]. The 

results of classifying MCI versus normal controls using the 93 MRI features are shown in 

the left panel of Table 2. We can see that the sparse CLM with the LUM loss provides the 

smallest average testing error for discriminating AD and normal control among all methods.

In addition to accurate diagnosis of AD/MCI, another important task in the AD research is to 

predict whether or not MCI patients will convert to AD. Clinically, AD and MCI are defined 

according to certain severity measures of dementia symptoms at the baseline based on the 

Clinical Dementia Rating (CDR) scale [23]. In particular, CDR = 0 is considered normal, 

CDR = 0.5 is considered MCI, and CDR = 1, 2, 3 are considered AD with different levels of 

severity. If an MCI patient’s condition worsens during the follow-up (i.e., they receive a 

CDR higher than 1), then he/she is considered a converter (to AD). Otherwise, they are 

considered nonconverters. For the data set we analyze, there are 167 converters and 226 

nonconverters. We found that if we predict MCI patients with  as converters, and the 

other MCI patients as nonconverters, then the average prediction accuracy among 100 

replications is 0.799 (sd=0.14). This prediction result is greater than the accuracy of directly 

predicting MCI subclasses using the same baseline MRI data. In particular, the linear 

classifier constructed from l1-penalized logistic regression has a ten fold cross validation 

error value of 0.69. This result indicates that MRI data can characterize the heterogeneity 

among MCI patients, which provides new insights for prognosis of MCI. Therefore, besides 

successfully classifying MCI versus normal control patients, the proposed CLM also 

provides a good prognostic tool for MCI patients in terms of separating converters from 

nonconverters. Our method discovers meaningful latent subclasses of MCI without using 

follow-up clinical information.

5.2 Ovarian Carcinoma

The second application is to an ovarian carcinoma data set containing 11, 864 genes from 

the TCGA data portal [25]. There are four cancer subtypes: immunoreactive (sample size is 

107), differentiated (135), proliferative (138) and mesenchymal (109). We focus on 

classifying the proliferative samples (“+” class) versus the non-proliferative samples (“−” 

class). We select 3520 genes with the largest median absolute deviance (MAD) value for 

further classification analysis. From the testing errors shown in the right part of Table 2, we 

can see that the CLM with the LUM loss performs the best, followed by the CLM with the 

logistic loss. Both methods perform better than the other competitors.
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To better understand the results, we can visualize the results of the CLM method by 

projecting the samples onto the space spanned by  if , and onto the space 

spanned by  otherwise. Figure 3 suggests that some subgroups may exist within the 

proliferative samples (Pro(A) and Pro(B)). Additionally, the “−” class samples are grouped 

into two parts: one consists of some immunoreactive samples (Imm(B)) and all differentiated 

samples, the other consists of the remaining immunoreactive samples (Imm(A)) and almost 

all mesenchymal samples.

To confirm statistical stability of the subgroups found in proliferative and immunoreactive 

samples, the Sigclust method proposed by [17] is applied for testing whether or not the 

difference between the two subgroups is significant. The subgroups are determined by the 

average of the sign of  in the 100 simulations given by the CLM method with the LUM 

loss. The p-value for the subclasses within the immunoreactive subtype is very significant, 

i.e., < 0.001, while the p-value for the subclasses within the proliferative samples is not.

The detected subgroups can also be visualized from the heatmap of gene expression of a 

subset of genes (size = 153) in Figure 4. These genes were selected more than 15 times as 

“active variables” by the sparse CLM with the LUM loss among the 100 random splits. The 

genes are displayed in rows, and samples are shown in columns where the red line separates 

samples by the sign of  (positive on the left). The plot shows that there exists a clear 

distinction between Imm(A) and Imm(B), as well as between Pro(A) and Pro(B) in the gene 

expression level, which suggests our latent subclass findings are not random. Additionally, 

the plot indicates that the sign of  is driven by 20 genes. We apply a gene functional 

enrichment analysis using DAVID [9] on these 20 genes, and we find that most of them (17 

with adjusted p-value ≤ 3 × 10−4) are related to glycoprotein and secreted protein. These 

findings suggest that further biological investigation may be worth pursuing. Note that the 

selected active genes consist of 5 percent of the genes in the training data set, so our 

methods not only decrease the classification error and detect new subclass structure, they 

also facilitate variable selection.

6 Discussion

In this article, we propose Composite Large Margin classifiers to address the classification 

problem with latent subclasses by splitting the data and classifying the subsets using 

separate linear classifiers. Our approach inherits the nice interpretability of the standard 

linear approach while remaining flexible enough to handle complex data structures. In 

addition, our classifier is simpler than more complex methods such as kernel techniques and 

tree based methods. Consequently, it has less tendency for overfitting. The CLM method not 

only detects latent subclasses, but also enables visualization of high dimensional data using 

low dimensional plots.

To achieve feature selection, we also propose a refitting algorithm for CLM. One future 

direction is to explore variable selection consistency. Another direction is to make use of 

other penalties such as the group-lasso penalty [32] in CLM besides the l2 penalty for 

selecting groups of variables.

Chen et al. Page 14

Stat Anal Data Min. Author manuscript; available in PMC 2017 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Although our focus is on the CLM with the LUM and logistic losses, the basic idea can be 

implemented with other linear classifiers as well. Currently, our method is designed for 

binary classification with up to two latent subclasses in each class, so only one splitting 

function is needed. We can extend the CLM method to permit multiple splits to handle data 

with potentially multiple latent subclasses. In particular, we can extend the method by 

finding multiple splitting functions to divide the covariate space and fit a separate linear 

classifier for each region. We can also extend the CLM method for multicategory 

classification with heterogeneous data by modifying the loss function for the two 

(sub)classifiers. For example, we can use MLUM loss [33] or multiclass ψ-learning loss [18] 

for multicategory classification.
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Appendix A

We investigate the performance of the proposed methods on two additional simulation 

examples to access the impact of the existence of latent subclasses on the proposed methods.

Example 3

The two equal size clusters are sampled from two bi-variate normal distributions with 

corresponding means (1, 1) for the “+” class, (−1, 1) for the “−” class, and the identity 

covariance matrix. In addition to the two informative variables, we generate random noise 

variables from N(0, 0.52). We report the results with p = 1000. The training and testing 

sample sizes are 200 and 20000, respectively. In principle, one linear function is sufficient 

for classifying the data. In this case, there does not exist latent subclasses, and we show that 

the CLM methods still gives competitive performance in Table 3.

Example 4

Three equal sized clusters are sampled from three bivariate normal distributions with means 

(1, 1) and (−1, −1) for the “+” class, and (1, −1) for the “−” class. The training and testing 

sample sizes are 150 and 20000 respectively. Other settings for this example are the same as 

that of Example 3. The numerical results of different methods are presented in the right side 

of Table 3. In this example, only the “+” class has latent subclasses. Similar to the results in 

Section 4, we can see that the sparse CLM with the LUM loss and the logistic loss deliver 

the lowest classification errors.

Appendix B

In this section, we compare the performance of CLM and HME in terms of identifying the 

latent structure. As both methods identify a linear function of X as surrogate for the latent 

class variable that can be used to separate the data into two parts, we can calculate the angle 

between the oracle linear function and the linear functions estimated from CLM and HME. 

Consider the twisted case with p = 1000 and μ = 1.2 as an example (results given in Table 4). 

In this setting, the oracle linear function is either X1 = 0 or X2 = 0. In each simulation, if the 

angle between X1 = 0 and the estimated line is small, then we use X1 = 0 as the truth, 

otherwise we use X2 = 0. We also calculate the classification error for the latent class 

variable. We can see that the separating line  from the CLM methods have a smaller 

angle to the oracle line than that from HME. In addition, the CLM methods have a smaller 

classification error in classifying the latent class. Both results imply that CLM can better 

identify the latent structure.
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Figure 1. 
Illustration of a two dimensional toy example. Gray (+ and ×) represents the positive class 

and black (▽ and △) represents the negative class. In panels (a), (b) and (c), the decision 

boundaries are drawn with wide gray lines. In panel (d) for the CLM method, the wide grey 

line splits the data into two parts and in each part the dashed line is the separating 

hyperplane for the corresponding classifier.
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Figure 2. 
Plots for CLM methods in twisted and parallel cases. Black color (+ and ×) represents the 

positive class and grey color (▽ and △) represents the negative class. Different symbols in 

the same class indicates the latent subclasses. In both panels (a) and (b), the boundary of 

is shown as a solid line and the boundaries of  and  are given as dashed lines. In panels 

(c) and (d), we show projections onto the space spanned by the first 2 principal components 

for the twisted and parallel cases. We apply PCA on the data which contains the informative 

variables X1 and X2 as well as an additional 998 noise variables. The four-clusters structure 

in the original space (as observed in panels (a) and (b)) is preserved in the PC space.
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Figure 3. 

Visualization of latent subclasses in the ovarian cancer dataset. The x-axis is the  value, 

the y-axis displays the  value of the points for which  is less than 0, otherwise it displays 

the  value. The plot indicates that subclasses exist within both the proliferative and 

immunoreactive types of ovarian cancer.
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Figure 4. 
Heatmap of ovarian cancer data using 153 active genes selected by the sparse CLM with the 

LUM loss. Samples are displayed in columns by subtypes. Genes are ordered by hierarchical 

clustering. Nearly all samples on the left of the red line have an average f1 greater than 0, 

and the remaining samples have an average f1 less than 0. We can see a clear distinction 

between Imm(A) and Imm(B), and a mild difference between Pro(A) and Pro(B), which 

suggests that subclasses exist in the immunoreactive and differentiated subtypes.
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Table 2

Testing errors on classifying Alzheimer’s disease and ovarian cancer data with standard deviations in 

parentheses

Alzheimer Disease Ovarian Cancer

LSVM .322 (.028) .075 (.018)

KSVM (quadratic) .384 (.032) .148 (.021)

KSVM (Gaussian) .333 (.033) .065 (.017)

Random Forests .323 (.027) .080 (.022)

PLR .323 (.030) .078 (.019)

GUIDE .323 (.029) .083 (.021)

HME .331 (.031) .066 (.022)

CLMlog .330 (.030) .054 (.020)

CLMlum .314 (.030) .042 (.014)

CLMlog Sparse .315 (.025) .071 (.021)

CLMlum Sparse .297 (.024) .058 (.017)
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Table 3

Average testing error rates for data in Example 3 and 4

Methods Example 1: p = 1000 Example 2: p = 1000

LSVM .245 (.011) .302 (.011)

KSVM(quadratic) .341 (.008) .333 (.002)

KSVM(Gaussian) .220 (.008) .293 (.009)

Random Forests .299 (.114) .333 (.001)

PLR .161 (.003) .230 (.008)

GUIDE .166 (.005) .284 (.005)

HME .197 (.008) .264 (.025)

CLMlog .191 (.007) .250 (.018)

CLMlum .191 (.008) .246 (.017)

CLMlog Sparse .166 (.008) .206 (.015)

CLMlum Sparse .166 (.006) .207 (.015)
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Table 4

Performance of detecting latent structure

Method Sin(angle) Classification Error

HME .201 (.08) .197 (.05)

CLMlog .134 (.04) .121 (.02)

CLMlum .122 (.04) .112 (.02)

CLMlog Sparse .098 (.03) .093 (.01)

CLMlum Sparse .093 (.03) .082 (.01)
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