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SUMMARY

This paper presents achievements of an on-going activity where the applicability of MIMO to satellite
communications with Digital Video Broadcasting — Satellite services to Handhelds as the key application is
studied. The potential satellite and hybrid satellite-terrestrial MIMO scenarios are described, and the applicable
MIMO schemes for each scenario are selected. The performance of the MIMO schemes was studied by performing
comprehensive computer simulations, and the main results are presented in this paper. Copyright © 2013 John
Wiley & Sons, Ltd.
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1. INTRODUCTION

Since the early 1990s multi-antenna systems have been a hot research topic in wireless communica-
tions. In addition to adaptive antenna arrays, Multiple-Input and Multiple-Output (MIMO), which
theoretically provided drastic improvement in the spectral efficiency and data rates of radio access
networks, became one of the most important technologies supporting future's broadband wireless
access. Due to the various optional techniques that different MIMO schemes offer (diversity, beam
forming, pre-coding, and spatial multiplexing), MIMO techniques were widely adopted in evolving
terrestrial wireless communication standards, from cellular mobile systems such as ETSI 3GPP
Universal Mobile Telecommunications System and Long Term Evolution to broadband access such
as WiFi (IEEE 802.11n) and WiMAX (IEEE 802.16e).

In addition to two-way communications, multiple transmit antennas have been considered in broad-
casting systems such as Digital Video Broadcasting — Terrestrial Second Generation. Higher spectral
efficiency and higher data rates allow more services to be provided in the same transport stream. In
addition, increased reliability translates into higher robustness against the menacing channel fading.

Compared with the terrestrial domain, adoption of MIMO technology in the satellite community has
been slow. Fixed satellite system links are based on highly directive high-gain dish antennas, and the
gain obtained with multi-antenna techniques is marginal compared with system complexity and
practical implementation issues. Spot beam technique deployed by mobile satellite system
Geosynchronous Earth Orbit satellites employing large antennas is a practical option. A comprehensive
review on the progress of MIMO technology in satellite communications can be found in [1]. As
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discussed in [1], satellite communications are characterized by a specific operation environment
in which radio channel properties differ significantly from those in terrestrial wireless radio ac-
cess systems. For example, line-of-sight connection is usually needed to guarantee adequate link
budget for reliable data transmission. Moreover, the satellite radio channel does not have rich
multi-path propagation characteristics due to the absence of reflectors near the satellite. This is
a specific challenge from the viewpoint of MIMO transmission in the spatial multiplexing
(SM) mode.

Whereas the terrestrial systems are suitable for utilizing mainly the spatial domain to induce multi-
ple streams, utilization of polarization dimension is an attractive alternative for satellite systems due to
the abovementioned Line-of-sight (LOS) connections. The feasibility of deploying dual-polarized
antennas for communicating with a mobile terminal has been shown to be amenable for MIMO [1].
Extending the use of MIMO techniques for hybrid terrestrial/ satellite systems have been also
considered [2, 3, 5].

2. DESCRIPTION OF DVB-SH SYSTEM

Digital Video Broadcasting — Satellite services to Handhelds (DVB-SH) standard [10, 11] is one of the
first comprehensive standardization efforts in the area of hybrid satellite—terrestrial communications.
The DVB-SH is aiming at providing ubiquitous Internet Protocol based multimedia services to a
variety of mobile and fixed terminals having compact antennas with very limited directivity at
frequencies below 3 GHz. The DVB-SH system is based on a hybrid architecture combining the
satellite component (SC) and the complementary ground component (CGC). The terrestrial repeaters
provide local retransmission, on the overlapping frequency in case of single-frequency network
configuration (SFN) or on a non-overlapping frequency in case of multi-frequency network
configuration (MFN). The waveform of the SC transmission can be either orthogonal frequency
division multiplexing (OFDM) in the SH-A mode or time division multiplexing (TDM) in the SH-B
mode, whereas the CGC uses always the OFDM waveform. The SFN configuration is possible only
in the SH-A mode, whereas the MFN configuration is possible for both the SH-A and SH-B modes.
The physical layer provides protection against long fading states of satellite channel by employing a
time interleaver, which has influence length that can expand up to 10s. The physical layer forward
error correcting (FEC) channel coding scheme is the 3GPP2 Turbo coding with different puncturing
patterns for code rate adjustment. The supported FEC code rates range from 1/5 to 2/3. The FEC
and time interleaving blocks are similar for both transmission modes. Other common processing blocks
are mode adaptation and stream adaptation. The mode adaptation consists of cyclic redundancy check
encoding, to provide error detection on every MPEG packet, and of inserting an Encapsulation
Signaling. While the current version of the air interface fully supports only MPEG-TS input stream
only, mode adaptation is able to provide support for flexible stream format. Stream adaptation provides
padding to complete a constant length Encapsulation Frame EFRAME and performs scrambling.
EFRAME length is designed to match the turbo code block size. A block diagram of DVB-SH
transmitter architecture is shown in Figure 1.

In addition to the physical layer channel coding and time interleaving, the DVB-SH standard employs a
link layer SH-specific FEC, named iFEC, which can span over tens of seconds. After the common process-
ing blocks, the transmitter chains of the OFDM and TDM modes are differentiated. The OFDM blocks are
briefly described in the following. The bit demultiplexing combines the hierarchical transmission streams
into one stream if hierarchical modulation is applied. The symbol interleaving is performed symbol wise in
frequency domain before mapping the bits into modulation symbols. After modulation, the data stream is
organized into time-frequency grid (framing) to form frequency domain data for each OFDM symbol. The
pilots and transmission parameter signaling (TPS) symbols are added into the time-frequency
slots reserved for that use. Finally, the frames are passed to inverse fast Fourier transform
(IFFT) block, which converts the frequency domain data into time domain signal and adds cyclic
prefix. Supported modulation schemes for OFDM are Quadrature Phase Shift Keying (QPSK)
and 16 quadrature amplitude modulation (16QAM). The transmit processing of TDM is simpler
with the interleaved bits along with header information (frame size and interleaver parameters)
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Figure 1. Digital Video Broadcasting — Satellite services to Handhelds transmitter block diagram. OFDM,
orthogonal frequency division multiplexing; FEC, forward error correcting; IFFT, inverse fast Fourier transform;
TPS, transmission parameter signaling; TDM, time division multiplexing.

and padding bits modulated using QPSK, 8PSK or 16APSK. The resulting symbols are packed
to a frame whose data-carrying capacity should match that of the OFDM frame in hybrid mode
operation. The resulting stream is scrambled using a complex pseudo-random sequence before
being input to pulse shaping and radio frequency conversion. Two receiver classes are defined.
Class 1 has short physical layer time interleaver (200 ms), whereas class 2 receiver supports full
length physical layer interleaving. Class 1 transmission is often combined with link layer iFEC.

3. MIMO EXTENSION TO DVB-SH

In the first phase of this study, potential MIMO configurations and MIMO coding schemes were
evaluated in order to select the feasible simulation scenarios and MIMO methods. The target was
not only to find out the feasible methods for an elaborate simulation campaign but also to keep the
complexity of user devices at a reasonable level. The fundamental criteria for the selection of MIMO
methods for DVB-SH hybrid satellite system are the following: (1) The reception must be possible also
in cases that only one of the links (satellite or terrestrial link) is available. Therefore, it is not possible to
multiplex spatial streams over the distributed links. (2) The land mobile satellite (LMS) radio channel
is usually not a rich multipath propagation environment. (3) The user terminal (UT) antenna separation
cannot be large enough — particularly for handheld terminals — to obtain low spatial correlation
between the antennas in LMS channel. (4) DVB-SH being a broadcast service, the transmitter cannot
exploit channel state information for adapting the MIMO coding to channel conditions. Based on 2 and
3, it is obvious that the MIMO-antenna system with co-located antennas on orthogonal polarizations is
the most plausible antenna configuration for the DVB-SH MIMO extension. Four MIMO scenarios
were identified and taken up for further evaluation.

Scenario 1: satellite only 2 x 2 MIMO

This scenario consists of a single GEO satellite with two orthogonally polarized (right-hand circular
polarization (RHCP)/left-hand circular polarization (LHCP)) Tx-antennas set up as a dual polarization
per beam payload and a UT with two co-located orthogonally polarized (RHCP/LHCP) receiver
(Rx)-antennas. The selection of the MIMO schemes for this scenario was carried out on the basis
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of knowledge from various sources. A number of MIMO techniques have been developed for terres-
trial 2 x 2 MIMO systems. This definitely provides for a first choice to look for albeit fundamental
differences between spatial multipath MIMO channels and the dual polarization LMS channel exist.
Due to the increased interest in a possible application of dual polarization MIMO to mobile satellite
broadcasting systems, a number of publications have been recently produced concerning different
aspects of a purely dual polarization MIMO LMS [1]. These are extremely valuable to the present
activity and will serve as a guide for the final choice of MIMO techniques. Past MIMO related Eu-
ropean Space Agency (ESA) activities provide also important information for the MIMO technique
selection. Results on MIMO performance from applicable wireless standards, particularly Digital
Video Broadcasting — Next Generation Handheld (DVB-NGH), were also taken into account.
DVB-NGH is the extension of the DVB-H standard concerning the broadcasting of TV to high-
speed terminals published in 2012 including a satellite and a hybrid profile [6]. Based on these
sources and theoretical analysis, four coding schemes were assessed via simulations. These are
2xSISO, Alamouti transmit diversity, SM and the Golden code. 2xSISO provides multiplexing gain
through a simple extension of current DVB-SH SISO standard. The transmission is multiplexed on
two antennas, and the two streams are independently decoded at the receiver. This scheme relies on
assumption that the cross-polarization ratio (XPR) of the LMS channel is very high, and therefore,
the interference between the streams remains at an acceptable level. The Alamouti space—time block
coding (STBC) provides full diversity gain but no multiplexing gain. This method was selected be-
cause of its low complexity through linear single symbol decodability and because of the possibly
valuable diversity gain in the sensitive satellite channels. The SM was selected as a full rate space—
time code to exploit joint-decoding of two symbols within one symbol time in order to achieve
multiplexing gain. The theoretical advantages of full-rate full-diversity (FR-FD) codes provide a
strong suggestion to include FR-FD codes among the set of simulation codes. However, according
to previous studies, it was expected that the performance of FR-FD codes may not be superior com-
pared with other schemes in presence of FEC and long interleaving combined with LMS channel.
However, despite of its high complexity, Golden code was selected as a reference to represent the
optimal FR-FD code.

Scenario 2: hybrid satellite/terrestrial 2 x 1/2 x 2 MIMO

This is a basic hybrid transmission scheme with one satellite (SC) and one terrestrial base station or
repeater (CGC) jointly transmitting data to users. The SC and CGC are transmitted on orthogonal
polarizations. One stream is transmitted per link and SFN configuration is considered. From an archi-
tectural point of view, the benchmark for Scenario 2 is the hybrid SISO equivalent to today's DVB-SH.
The UT is equipped with either a single-polarization antenna or a dual-polarized antenna, which may
be either circular or linear. A single-polarization antenna at UT leads to a 2 x 1 multiple-input single-
output system. Use of dual-polarized antennas at UT leads to a 2 x 2 MIMO system. It must be noted
that only for a small percentage of the coverage both the SC and the CGC will be available. The MIMO
scheme selection for this scenario was performed based on literature study and insights from
standardization perspective. A setting similar to Scenario 2 has been standardized in DVB-NGH forum
[6] and a recent ITU-R report proposes certain techniques for use in hybrid/integrated systems
operating in the 1-3 GHz band [7]. Furthermore, by taking into account the requirement of the ability
to decode the transmission in case of a failure of either of the links, it is not possible to increase the
spatial rate by multiplexing streams over the links. Therefore, the Alamouti STBC over the links is
the only practical choice for this scenario.

Scenario 3: hybrid satellite/terrestrial 4 x 2 MIMO (SFN)

The transceiver configuration of this scenario is similar to Scenario 2 except for the use of two antennas
on each transmitter. The satellite uses LHCP and RHCP for the transmission, whereas CGC uses two
linear polarizations. Since both SC and CGC use dual polarization, the UT also employs a dual
polarized antenna, leading to a 4 x 2 MIMO configuration. It is again noted that only for a small per-
centage of the coverage will both the SC and the CGC be available. The literature for 4 x 2 codes is
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rich, but most of the 4 x 2 codes are not suitable for distributed transmitters with requirement of single
link functionality. Some distributed 4 x?2 codes that are suitable for distributed hybrid satellite
transmission are reported in [4, 8, 9]. The most straightforward transmission procedure is to send the
same spatially multiplexed streams from satellite and terrestrial base station, and consider these signals
as multipath components. Thus, both links have 2 x?2 spatial multiplexing, and the situation for the
reception is equal to the case of single link 2 x 2 spatial multiplexing. This single layer coding scheme
is referred here as distributed 4x2 MIMO SM. Another, a bit more complex, dual layer coding scheme
for the 4 x2 SFN configuration was introduced by adding Alamouti STBC across the two links while
keeping the transmission of spatially multiplexed 2 x 2 streams on both links. This scheme is referred
here as distributed 4 x 2 MIMO SM + block Alamouti.

Scenario 4: hybrid satellite/terrestrial 4 x 2 MIMO (MFN)

Scenario 4 is quite similar to Scenario 3. The only difference being the MFN operation. This translates
into a dual-polarization satellite transmitting in S-band and a dual-polarization CGC transmitting at
UHF band. In fact, as the satellite and terrestrial links occupy different frequency bands, this scenario
is equivalent to two independent 2 x 2 MIMO hybrid transmission schemes. The complementary code
combining, where the turbo code bits of the two components are combined prior to turbo decoding,
was utilized in combining the SC and CGC signals. The MIMO scheme selection for this scenario
was performed according to scenario 1.

4. DESCRIPTION OF SIMULATION SYSTEM

A MATLAB simulator with full physical layer functionality of DVB-SH was implemented. The SISO
simulator was first programmed according to DVB-SH standard [11], and the MIMO-related
functionalities were added as separate blocks as shown in Figures 2 and 3. The differences compared
with SISO DVB-SH standard at the transmitter (Tx) side are the support for multiple parallel streams
on common processing blocks, the MIMO encoding blocks and the modification of channel estimation
pilots to support MIMO channel estimation for the OFDM option. For the TDM option, no modification
to the existing DVB-SH standard is required. The required changes on the Rx side are respectively the
MIMO detector block, the MIMO channel estimation block and the support for multiple parallel streams
on the common processing blocks.
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Figure 2. Simulator transmitter (TX)-chain block diagram. CP, cyclic prefix
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The simulator blocks are similar for the satellite and terrestrial links and the only difference in the sim-
ulation is the radio channel. The most critical DVB-SH specific simulator blocks that affect the performance
are those for the FEC and the time interleaving. The turbo code as standardized by the 3GPP2 organization
is used as FEC coding, and it was implemented using the max-log-maximum-a-posteriori algorithm.

The MIMO extension for the Tx chain was implemented based on the standardized SISO simulator
by adding the MIMO encoder block and modifying the scattered pilots of antenna 2 channel in order to
enable MIMO channel estimation at the receiver. The functionality of common processing blocks is
similar as for SISO but the multiple parallel stream support was implemented by introducing the
parallel FEC and time interleaving blocks. The SH-A pilot allocation scheme of the SISO standard
was retained for antenna 1, and in the case of multiple Tx-antennas, the pilots of the other antennas
were sent on the overlapping slots. The orthogonality of the pilot subcarriers is obtained by assigning
cyclical phase shifts for the overlapping pilot sequences. By using this method, the pilot overhead is
kept in a minimum as well as an adequate number of pilots in frequency domain is guaranteed also
for the frequency selective terrestrial channel estimation. The implementation of the SH-A channel
estimation is based on a method described in [12]. The SH-B channel estimation was implemented
by employing existing semi-orthogonal scrambling sequences for the additional antennas and using the max-
imum likelihood feed-forward channel estimator algorithm described in the ETSI documentation [10]. The
soft bit log-likelihood ratio (LLR) decoding requires the MIMO scheme specific implementation at the
receiver. The SISO reception was implemented as a single symbol maximum-likelihood decoder. The
Alamouti schemes employ the same SISO decoder after the Alamouti code demapping by channel orthog-
onalization. The more demanding MIMO schemes, that is, SM, golden code and the 4 x 2 schemes employ a
list sphere decoder (LSD) receiver for the LLR extraction [17].

5. CHANNEL MODELS

An important aspect in any MIMO system simulation or emulation is that the underlying radio channel
model is as realistic as possible. The system performance is strictly related to radio channel properties,
especially the signal fading characteristics and the degree of correlation between the antennas at the
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transmitter and the receiver. Furthermore, the model shall include polarization effects because
analytical and experimental work carried out on LMS channels at L- and S- frequency bands focuses
in most cases on exploiting polarization diversity at both the transmitter and receiver when forming a
2x2 MIMO matrix. The dual-polarized antenna is extremely suitable for satellite use because the
space limitation of a single satellite cannot provide the adequate antenna spacing required for the
low degree of antenna correlation that is needed by MIMO theory. Recently, a statistical model for
dual-polarized 2x2 MIMO LMS channels has been proposed, which is based on SISO LMS and
MIMO wireless radio channel experimental results and their extrapolation to LMS channels [13].
The model is partly based on the SISO LMS channel model [14], which has been applied and validated
in the standardization activity of DVB-SH. It models all the relevant channel characteristics including
the user environment, the elevation angle of the satellite, the shadowing of the LOS signal component,
the impact of temporal and polarization correlations, the antenna's cross-polar discrimination (XPD),
and the environment's XPR. In addition, the model introduces a step-by-step approach for efficient
time-series generation of dual-polarized 2x2 MIMO LMS channel coefficients. Therefore,
representing state-of-the-art channel modeling for DVB-SH satellite systems, it is especially suitable
for the current study.

In the following, we summarize the 2 x2 MIMO LMS radio channel parameters applied in this
study. The parameters were chosen to be the same as those employed by the Satellite Task Force
of DVB-NGH [6]. The intermediate tree shadowing propagation environment was applied in all
the simulations presented in this paper. The applied dual-polarized channel characteristics are shown
in Table L.

For the SISO and MIMO terrestrial channel model, we have applied the 6-tap typical urban 6 (TU6)
channel model of COST207 and the WINNER II channel model, respectively [16]. The WINNER II
channel model follows a geometry-based stochastic channel modeling approach, which allows creating
of an arbitrary double directional radio channel model with desired spatiotemporal and polarization
properties. The channel model is antenna independent, which enables the insertion of different antenna
configurations with different antenna patterns into the model. The channel parameters are determined
stochastically, based on statistical distributions extracted from channel measurements. The applied
TUG6 radio channel parameters are summarized in Table II.

6. SIMULATION RESULTS

The simulation results for each scenario are presented in this section. The results are represented here
for the SH-A (OFDM) scheme with the LMS-intermediate tree shadowing channel model. The
physical layer system settings of Table III were applied in the simulations. The link-layer functionali-
ties, such as iFEC were not taken into account. The performance metrics for the result comparison are
the bit error rate and the erroneous second ratio (ESR)5(20) performance. The ESR5(20) is the ratio of
windows for which ESRS is fulfilled, over the total number of windows. The ESRS5 criterion is fulfilled
when in a time interval of 20 s there is at most one 1 s in error [10]. Evaluation of the ESR5(20) metrics
is important for the satellite link video quality due to the long fading states of the LMS channel. The
ESRS5(20) fulfillment criteria for DVB-SH physical layer is 90%. The MIMO schemes and modulation
and coding schemes for the simulations were chosen to represent same spectral efficiency (data rate)
for each case. The simulation schemes are shown in Table IV. All schemes provide double-spectral
efficiency compared with SISO QPSK 1/3. Therefore SISO 16QAM 1/3, providing the same spectral
efficiency with the MIMO schemes, was selected as a benchmark in order to observe the MIMO gain
over SISO as a measure of signal-to-noise ratio (SNR). The SNR metric, Es/N,, is defined as energy
per symbol to noise ratio, and the total transmission power is kept equal for each case, thus the transmit
power per transmit antenna in 2x2 MIMO case is half of the transmit power of the single-antenna
transmit power in SISO case. The SNR is defined for the LOS-state of the LMS co-polarization chan-
nel. The total reception power over the four elements of 2 x2 MIMO channel is slightly higher com-
pared with SISO. The LMS channel XPR is quite high, and therefore, the total MIMO reception
power by two orthogonally polarized antennas is only 0.67 dB higher than the SISO reception power
in the simulation. A single-input multiple-output (SIMO) configuration with two antenna reception
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Table I. 2 x2 multiple-input single-output land-mobile satellite radio channel channel parameters.

Parameter Value used

Channel realization time 1 h of simulation is the minimum to
guarantee stable ESR5(20) statistics.

Carrier frequency S-band (2.2 GHz)

Vehicle speed in kilometer per hour 60

Polarization RHCP/LHCP

Propagation environment ITS

Elevation angle 40

Small-scale correlation

Correlation coefficient between polarizations 0.5

at the Tx/Rx

Large-scale correlation

Correlation betweenLOS components 0.85-0.93

XPD parameters

Antenna polarization discriminator in decibel: XPD,, 15

Environment cross-polarization effects in decibel: XPD,,, 5.5

2-state first-order Markov model

Good — Good 0.6

Bad — Bad 0.8065

Good — Bad 0.4

Bad — Good 0.1935

Markov state update interval 0.18 s (3 m movement)

Loo distribution triplet As in Tables III and IV of [15]

Doppler spectrum Low pass filter

ESR, erroneous second ratio; RHCP/LHCP, right-hand circular polarization/left-hand circular polarization; ITS, intermediate tree
shadowing; Tx/Rx, transmitter/receiver; LOS, light of sight; XPD, cross-polar discrimination.

Table II. Terrestrial typical urban 6 model for suburban environment.

Tap number Dealy (us) Average relative power (dB) Doppler spectrum
1 0.0 0.0 Classic
2 0.1 —-1.5 Classic
3 0.3 —4.5 Classic
4 0.5 =75 Classic
5 15.0 -8.0 Classic
6 17.2 —-17.7 Classic

Table III. Simulation system settings.

Parameter Value used
Waveform DVB-SH A (OFDM)
Channel bandwidth 5MHz

FFT size 2K (2048)

Guard interval (GI) 1/4

Receiver class Class 2

Interleaver type Uniform Long
Interleaver length ~10s
Synchronization Ideal

on same polarization would provide a higher total reception power than the 2 x2 MIMO with orthog-
onal polarizations, but the usage of SIMO instead of SISO as a reference is not reasonable because of
the co-location requirement of the reception antennas. Anyhow, SIMO may be considered as an
additional level of diversity on top of the polarization domain whenever antenna diversity can be
accommodated in the UT (e.g., in vehicular terminals).
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Table IV. Transmission schemes of scenario 1.

MIMO and modulation and coding schemes for scenario 1
Benchmark: SISO 16QAM 1/3
2xSISO QPSK 1/3
MIMO Alamouti 16QAM 1/3
MIMO SM QPSK 1/3
MIMO Golden QPSK 1/3

The simulation results of scenario 1 are presented in Figure 4. These simulations were performed
with ideal channel estimation and synchronization at the receiver. The advantage of MIMO compared
with SISO is clearly seen from the results, and the gains are summarized in Table V. According to the
ESR5(20) fulfillment criteria, the SM is clearly the best performing MIMO scheme. The SM gives
almost 3 dB gain compared with SISO.

The Alamouti scheme was simulated both as STBC and space-frequency block code (SFBC) imple-
mentation. If STBC is employed in OFDM system, the Alamouti code block extends over instantaneous
OFDM symbols in time domain. In case of SFBC, the Alamouti coding is performed over instantaneous
subcarriers of each OFDM symbol in frequency domain, and the code block does not extend over time
domain symbols. It was noted that due to long OFDM symbol duration of DVB-SH signal, the channel
response does not remain constant over the duration of two symbol times of the Alamouti STBC code
block if the receiver speed is high. The reception of Alamouti scheme is based on assumption of
stationary channel response during code block. Each symbol is decoded separately after channel
orthogonalization. One of the major advantages of the Alamouti scheme is its low complexity
single-symbol decodability. Orthogonalization causes interference between symbols if channel
response changes during the two instantaneous symbols of Alamouti code block. In order to avoid this
problem, the joint decoding of two symbols for each symbol time can be applied at the receiver. How-
ever, this requires far more complex receiver, which is not a reasonable requirement for Alamouti. On
the other hand, the LMS channel is expected to have a narrow delay dispersion, and therefore, its var-
iation over frequency domain remains low. The channel response over neighboring OFDM frequency
bins may be assumed to be close to constant. Therefore, the Alamouti coding was simulated for also
SFBC, and the performance at 60 km/h receiver speed is clearly better than the STBC performance.

The performance of Golden code as a FR-FD code was expected to be close to equal or better
compared with SM. As the goal for this experimentation is the development of hardware demonstra-
tor, the receiver complexity was kept reasonable also in the simulations. Therefore, a LSD with list
size of 32 was employed for the reception of the Golden code. The optimal list size for the 2x2
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Figure 4. Scenario 1 simulation results.
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Table V. Scenario 1. Multiple-input single-output (MIMO) gain over single-input single-output (SISO).

SH-A MIMO scheme gain over SISO 16QAM 1/3 at 90% ESR5(20) fulfillment level

SM Golden Alamouti SFBC Alamouti STBC 2xSISO
QPSK 1/3 QPSK 1/3 16QAM 1/3 16QAM 1/3 QPSK 1/3
2.9dB 2.6dB 2.4dB 1.7dB Approxim.—0.5 dB

Golden code for QPSK is 256, and therefore, the poor performance of Golden code is partly
explained by the non-ideal receiver. However, even for an optimal receiver, this code exhibits little
improvement compared with what is reported here. The LSD was applied also for the reception of
SM. But in this case, the applied list size was equal to the optimum list size for 2 x2 QPSK, that
is, 16. However, the performance gap between the SM and Golden code cannot be fully explained
by the non-ideal reception. According to test simulations, increasing list size beyond 32 does not
provide much performance gain. The reasons for the performance cap are the applied strong channel
coding and interleaving, which decreases the effect of the diversity gain offered by Golden code.
Also the LMS-channel model is known to be challenging for the FR-FD codes because of its high
XPR and strong presence of LOS condition. The off-diagonal channel coefficients of the 2x2
dual-polarization channel matrix become weak because of the high XPR, and therefore, the power
imbalance between the codeword components may deteriorate the performance of a FR-FD code.

The current DVB-SH standard does not contain any support for MIMO channel estimation in the case
of the OFDM waveform. Therefore, a channel estimation scheme with minimum changes to existing
DVB-SH pilot allocation scheme was implemented for the simulator. The effect of channel estimation
and finite word-length MIMO detector was also studied by performing simulations with non-ideal channel
estimation and fixed-point MIMO detector, and comparing the results to ideal simulation results. The
simulation results of Figure 5 show that the performance loss due to non-ideal channel estimation and
fixed-point detector is less than 0.5 dB for QPSK and less than 1 dB for the 16 QAM.

The scenario 2 simulations for 2 x 1 MISO hybrid were performed by using the LMS channel model
for the satellite link and the TU6 suburban channel model for terrestrial link. The simulation results of
Figure 6 show that adding the SC in addition to the CGC produces a gain of 1.25 dB at 90% ESR5(20)
fulfillment compared with terrestrial-only transmission. If the distributed 2 x 1 MIMO Alamouti STBC
is used, an additional 0.25 dB gain was observed. It must be noted that the small gain compared with

SH-A SFN, LMS-ITS, Uniform Long

—@— SISO LMS-ITS QPSK 1/3,50kmph,CE
—#—2x2 SM LMS-ITS QPSK 1/3,50kmph,CE
—A— SISO LMS-ITS 16QAM 1/3,50kmph,CE
P+ SISO LMS-ITS QPSK 1/3,60kmph,Ideal CE
< 2x2 SM LMS-ITS QPSK 1/3,60kmph,Ideal CE
4 SISO LMS-ITS 16QAM 1/3,60kmph, ldeal CE

BER

ESR5(20)

—@— SISO LMS-ITS QPSK 1/3,50kmph,CE
—#— 2x2 SM LMS-ITS QPSK 1/3,50kmph,CE
—A— SISO LMS-ITS 16QAM 1/3,50kmph,CE
P+ SISO LMS-ITS QPSK 1/3,60kmph,Ideal CE
<4 2x2 SM LMS-ITS QPSK 1/3,60kmph,Ideal CE
4 SISO LMS-ITS 16QAM 1/3,60kmph,Ideal CE

14 15 16

Es/NO [dB]

Figure 5. Comparison of ideal simulation results and simulations with non-ideal channel estimation and fixed-
point MIMO detector. CE, Channel Estimation;
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Figure 6. Scenario 2 simulation result for 2 x 1 multiple-input single-output (MISO).

terrestrial only is caused by the power imbalance between SC and CGC. In the case of Figure 6, the SC
power is 3 dB lower than the CGC power.

The 2 x2 MIMO hybrid simulations were performed for slightly different channel model configura-
tion. The 1x 2 terrestrial channel was applied by using WINNER 1II channel model for the simulation.
The simulation result for 2 x 2 distributed Alamouti is shown in Figure 7. In this case, the addition of
MIMO shows 2.3 dB gain over the normal 2 x 1 hybrid configuration.

The simulation results of scenario 3 are shown in Figure 8. The gain of distributed 4 x 2 MIMO SM
hybrid configuration compared with normal 2 x 1 hybrid is 4 dB. It was observed that addition of
Alamouti STBC over the links as a second layer coding does not bring notable performance gain
compared with the simple single layer SM on both links. The complexity of the dual layer distributed
4x2 SM with block Alamouti is much higher as the maximum number of joint decoding symbol
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Figure 7. Scenario 2 simulation result for 2 x 2 distributed MIMO
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Figure 8. Scenario 3 simulation results.

candidates is 256. The maximum number of decoding symbol candidates for the single layer distributed
4x2 MIMO SM is 16. The list size of the LSD receiver used for the dual layer code was 32. Thus,
slightly higher gain for block Alamouti is possible if more complex receiver configurations are allowed.
The 4 x 2 hybrid configuration was also compared against 2 x 2 terrestrial MIMO link with SM in
order to evaluate the advantage of hybrid configuration. The gain over 2x2 terrestrial SM was
observed to be 4.5 dB if the satellite link reception power is equal to terrestrial link reception power
and 1.5 dB if satellite link reception power is 4 dB weaker than terrestrial link reception power.
Scenario 4 was simulated using the same parameterization as Scenario 3. An important difference
lies in the use of the UHF band for the terrestrial component. This translates into a different terrestrial
channel parameterization with respect to earlier simulations. The available parameterization of the
WINNER II model for the UHF band was employed for the terrestrial channel. Apart from the channel
issue, the MEN configuration gives rise to the issue of how the receiver combines the received signals
over the two distinct frequency bands. In the simulations presented herein, complementary code

SH-A MFN and SFN Hybrid, WIM2-SU + LMS-ITS, 60 kmph
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Figure 9. Scenario 4 simulation result. Comparison of multi-frequency network (MFN) and single-frequency
network (SEN).
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combining has been employed as the combining technique. The distributed 4 x2 MIMO SM hybrid
MEN configuration is compared with the SFN configuration in Figure 9. The MFN configuration
provides only 0.2 dB gain compared with SFN configuration. However, these results cannot be directly
compared because of the different parametrization of the WINNER II channel model. The terrestrial
link reception power of MFN configuration was 1.3 dB lower than in SFN case. However, it is obvious
that doubling the bandwidth by employing two distinct bands for the hybrid transmission does not
seem to give much advantage compared with SFN case.

7. CONCLUSIONS

Four potential satellite and hybrid MIMO scenarios for DVB-SH were described and analyzed in this
paper. The evaluation of the potential MIMO scenarios, as well as the development of the DVB-SH
MIMO simulator and analysis of the simulation results, forms a solid background for the development
of the hardware demonstrator. Each of the MIMO scenarios were first analyzed based on the theory and
available literature, and the most potential MIMO schemes were selected for each scenario. The
performance of the selected MIMO schemes was simulated and analyzed in order to observe the
advantages of MIMO in satellite communications and also to select the most promising schemes for
hardware implementation and finally, for hardware emulations. The simulation results for the
satellite-only transmission (scenario 1) showed reasonable gains for the MIMO schemes. The most
promising techniques are SM and Alamouti SFBC, which were observed to provide 2.9dB and
2.4 dB gain over the SISO reference scheme. SM was observed to provide good performance also in
4 %2 hybrid scenario, where the multiplexing was applied for both 2 x 2 links. Addition of distributed
Alamouti over the hybrid transmission links was found to be inefficient compared with the additional
complexity that it requires in the decoding in case of the 4 x2 hybrid scenario. On the other hand, if
only one transmit antenna per link is available, and two receive antennas can be used in order to form
2x2 distributed MIMO hybrid, Alamouti was observed to provide 2.3dB gain over normal 2 x 1
hybrid transmission. An approximate comparison between SFN and MFN was also presented for
4 x?2 hybrid MIMO. It was observed that doubling the bandwidth by using MFN configuration does
not bring much advantage compared with SFN configuration.
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