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A comprehensive comparison between generalized incidence calculus and the
Dempster-Shafer theory of evidence

Weiru Liu Alan Bundy
Dept. of Artificial Intelligence

Univ. of Edinburgh
Edinburgh EH1 1HN, U.K.

Abstract

Dealing with uncertainty problems in intelligent systems has attracted a lot of attention in
the AI community. Quite a few techniques have been proposed. Among them, the Dempster-
Shafer theory of evidence (DS theory) has been widely appreciated. In DS theory, Dempster’s
combination rule plays a major role. However, it has been pointed out that the application
domains of the rule are rather limited and the application of the theory sometimes gives
unexpected results. We have previously explored the problem with Dempster’s combination
rule and proposed an alternative combination mechanism in generalized incidence calculus.
In this paper we give a comprehensive comparison between generalized incidence calculus and
the Dempster-Shafer theory of evidence. We first prove that these two theories have the same
ability in representing evidence and combining DS-independent evidence. We then show that
the new approach can deal with some dependent situation while Dempster’s combination rule
cannot. Various examples in the paper show the ways of using generalized incidence calculus
in expert systems.

1 Introduction

The management of uncertainty within knowledge and evidence involves three main tasks: rep-
resenting, propagating and combining evidence. The combination of different pieces of evidence
is the most difficult task in many cases. Up to date, several approaches have been proposed
to represent uncertain information, and the corresponding combination mechanisms have been
established. Among these approaches, the Dempster-Shafer theory of evidence is quite popular.
But the problems in applying this theory, particularly applying Dempster’s combination rule
have been critically discussed by several researchers (Halpern and Fagin (1992), Hunter (1987),
Lemmer (1986), Pearl (1988, 1990), Voorbraak (1991), Zadeh (1984, 1986)). They showed that
in some situations Dempster’s rule gives counterintuitive results. The other people (Shafer
(1982, 1990), Smets (1988), Ruspini et al (1990)) disagreed and argued that the counterintuitive
results are caused by the misapplication of the rule. In Liu (1994), we considered this problem
from a very different perspective. We argued that the counterintuitive results are caused by
failing to show explicitly the condition of combination defined by Dempster in his original paper
(Dempster (1967)).

In this paper, we present a theory for reasoning under uncertainty, generalized incidence
calculus, which can be taken as an alternative of the DS theory. Incidence calculus is a proba-
bilistic logic introduced by Bundy (1985). This theory is proved to be equivalent to DS theory
in representing evidence in some cases (Correa de Silva and Bundy (1990)). In Liu (1994),
the original incidence calculus has been generalized to model a wider range of evidence and an
alternative combination rule is proposed to combine multiple pieces of evidence. In this paper,
we discuss the relations between generalized incidence calculus and DS theory. This comparison
shows that these two theories are equivalent in representing evidence and combining distinct
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pieces of evidence (or DS-independent pieces of evidence in Voorbraak (1991)) but not equiva-
lent in combining dependent evidence. Therefore, generalized incidence calculus is possible to
be applied to deal with those cases which DS theory fails to cope with.

The paper is organized as follows. In section 2, we first introduce the basics of incidence
calculus, generalized incidence calculus and the main features of the theory. We then introduce
the new combination rule in generalized incidence calculus. Section 3 describes the Dempster-
Shafer theory of evidence. Section 4 is about the comparison between DS theory and generalized
incidence calculus. We show that they have the same ability to represent evidence (information).
We also prove that Dempster’s combination rule is subsumed by the new combination rule.
Several examples are given to demonstrate the features of these two theories. Finally, in section
5, we conclude the paper.

2 Incidence Calculus and Generalized Incidence Calculus

Incidence calculus (Bundy (1985), (1992)) is a probabilistic logic for reasoning under uncertainty.
In contrast to other numerical approaches, in incidence calculus probabilities are associated with
a set of possible worlds rather than formulae directly. The probability of a formula is calculated
through the incidence set assigned to the formula.

2.1 Propositional Language

The language we use in this paper is a finite propositional language.

Definition 1 Propositional Language: L(P ) is the propositional language formed from P ,
where P is a finite set of propositions. L(P ) is the smallest set containing the truth values and
the members of P and closed under the operations of negation (¬), disjunction (∨), conjunction
(∧) and implication (→).

Suppose that a proposition set P contains q1, q2, ..., qn. At is the set of basic elements, each
of which is in the form q′1 ∧ ... ∧ q′n, where q′j is either qj or ¬qj and qj ∈ P . Any formula ϕ in
the language set L(P ) can be represented as

ϕ = δ1 ∨ ... ∨ δk where δj ∈ At. (1)

δj = q′1 ∧ ... ∧ q′n is called a basic element and At is called the basic element set.

2.2 Incidence Calculus

Definition 2 Possible Worlds: Each possible world is a primitive object of incidence calculus
and can be thought of as a partial interpretation of some logical formulae.

The probability is represented by a function µ from the set of possible worlds W to real
numbers between 0 and 1. For each possible world w ∈ W, µ(w) is known and the probability
weight of the whole set W is 1, that is µ(W) = 1.

If I is a subset of W, the probability of I is defined to be:

µ(I) = Σw∈Iµ(w) (2)
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Definition 3 Incidence Calculus Theories: An incidence calculus theory is a quintuple
< W, µ, P,A, i >, where:

W is a finite set of possible worlds.
For all w ∈ W, µ(w) is the probability of w and µ(W) = 1.
At is the basic element set of P . L(P ) is the language set of P .
A is a distinguished set of formulae in L(P ) called the axioms of the theory.
i is a function from the axioms A to 2W , the set of subsets of W. i(φ) is called the

incidence of φ. i(φ) is to be thought of as the set of possible worlds in W in which φ is true, i.e.
i(φ) = {w ∈ W| w |= φ}. It must satisfy the following conditions:

i(φ1 ∨ φ2) = i(φ1) ∪ i(φ2)

i(φ1 ∧ φ2) = i(φ1) ∩ i(φ2) (3)

i(¬φ) = W \ i(φ)

i(false) = {} i(true) = W

These conditions guarantee that incidence calculus is truth functional. That is, the incidence
set of a formula can be obtained from the incidence sets of its subformulae.

The property i(¬φ) = W \ i(φ) requires that the elements in W must be distributed into
either i(φ) or i(¬φ). If both i(φ) and i(¬φ) are specified respectively, then i(φ) ∪ i(¬φ) should
be the whole set W.

The property i(φ1 ∨φ2) = i(φ1)∪ i(φ2) says that if i(φ1), i(φ2) and i(φ1 ∨φ2) are all known,
the possible worlds in i(φ1 ∨φ2) can be split into two groups (not necessarily disjoint) i(φ1) and
i(φ2). i(φ1 ∨ φ2) carries no more information than the union of i(φ1) and i(φ2).

If a real situation fails to meet either of the above two properties, incidence calculus theories
cannot be used to describe it.

2.3 Generalized incidence calculus

In order for incidence calculus to have the ability to model a situation which an original inci-
dence calculus theory is not suitable to represent, as described above, we generalize the original
incidence calculus by dropping some of the conditions on it.

A mapping function i′ : A → 2W maps each formula φ in A to a subset of W. W is
interpreted as a set consisting of possible answers to a question. We still call W a set of possible
worlds in this paper. w ∈ i′(φ) means that if w is the answer to the question carried by W,
then formula φ is true. We also require that i′(false) = {} and i′(true) = W. For a possible
world w ∈ W, if w 6∈ i′(φ), it doesn’t necessarily mean that w ∈ i′(¬φ). So if both i′(φ) and
i′(¬φ) are known, i′(φ)∪ i′(¬φ) may be just a subset of W. This is explained as that the current
information is uncommitted as to whether w supports φ or ¬φ. This phenomenon is usually
called ignorance. A mechanism which can model this phenomenon is said to have the ability to
represent ignorance.

Moreover, if i′(φ), i′(ψ) and i′(φ∨ψ) are all specified, it is likely that i′(φ)∪ i′(ψ) ⊂ i′(φ∨ψ)
is valid. For instance, suppose that there are ten delegates elected to attend a meeting. The
meeting will be held some day next week on which all the delegates are asked to give their
preferences. The meeting will be held on the day which is preferred by most of the delegates.
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Suppose that delegates 1 to 4, denoted as a1, ..., a4, prefer mon, delegate 5, a5, prefers mon or
tues, the rest prefer tues. Then a mapping function i′ could be defined as

i′(q1) = {a1, a2, a3, a4}

i′(q2) = {a6, a7, a8, a9, a10}
and

i′(q1 ∨ q2) = {a1, ..., a5, ..., a10}
where q1 stands for ‘The meeting is held on Monday’, q2 for ‘The meeting is on Tuesday’.
Obviously, we have i′(q1) ∪ i′(q2) ⊂ i′(q1 ∨ q2) because a5 cannot be put into either i′(q1) or
i′(q2).

A mapping function i′ which has the ability to represent the above two phenomena is called
a generalized incidence function.

For any two formulae φ, ψ in A, if i′(φ), i′(ψ) and i′(φ ∧ ψ) are all known, then it can be
proved that i′(φ ∧ ψ) = i′(φ) ∩ i′(ψ).

If we use ∧(A) to denote the language set which contains A and all the possible conjunctions
of its elements, then a generalized incidence function can be extended to any formula in this set
by defining i′(∧φj) = ∩ji

′(φj), if ∧jφj is not given initially. Therefore, the domain of i′, the set
of axioms A, can always be extended to a set which is closed under the operator ∧.

Thus, whenever we have a set of axioms A on which a generalized incidence function i′ is
defined, this set of axioms can always be extended to another set which is closed under the
operator ∧. In the following, we assume that the set of axioms A is already extended and is
closed under ∧.

In particular, if i′(∧jφj) = {}, it doesn’t matter whether this formula is in ∧(A) as this
formula has no effect on further inferences. However if ∧jφj =⊥, then i′(∧jφj) = ∩ji

′(φj) must
be empty; otherwise the information for constructing the function i′ is contradictory.

In the following, we use i to stand for a generalized incidence function, and from now on we
will refer to it simply as an incidence function. Where any confusion could arise we will make
clear the distinction between the original and generalized incidence functions.

Definition 4 Generalized Incidence Calculus Theories: < W, µ, P,A, i > is called a
generalized incidence calculus theory if the incidence function i satisfies the conditions

i(false) = {} i(true) = W

i(φ1 ∧ φ2) = i(φ1) ∩ i(φ2) for φi ∈ A
where W, µ and P are as defined in Definition 3 and A is closed under ∧.

It is not usually possible to infer the incidences of all the formulae in L(P ) given an incidence
calculus theory. What we can do is to define both the upper and lower bounds of the incidence
using the functions i∗ and i∗ respectively. For all φ ∈ L(P ) these are defined as follows:

i∗(φ) =
⋃

ψ∈A,ψ→φ

i(ψ) i∗(φ) = W \ i∗(¬φ) (4)

Where ψ → φ means that for ψ ∈ A formula ψ → ψ is valid. This notation is used in the
rest of the paper.
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The lower bound represents the set of possible worlds which make φ true and the upper bound
represents the set of possible worlds which fail to make ¬φ true. Function p∗(φ) = µ(i∗(φ)) gives
the degree of our belief in φ and function p∗(φ) = µ(i∗(φ)) represents the degree we fail to believe
in ¬φ. For a formula φ in A, if p∗(φ) = p∗(φ), then p(φ) is defined as p∗(φ) and is called the
probability of this formula. In this case, for any φ in A, let p(φ | ψ) be the conditional probability
of φ given ψ, we define

p(φ | ψ) =
p(φ ∧ ψ)

p(ψ)
(5)

2.4 Basic Incidence Assignment

For a formula φ, suppose that φ is in its disjunctive normal form δ1 ∨ ...∨ δl. We define a subset
A of At as A = {δ1, ..., δl} and denote formula φ as φA. φA means that the disjunction of the
elements in A is the disjunctive normal form of formula φ. i(φA) contains those possible worlds
which make φA true and those possible worlds which make a φB true for B ⊂ A. So some of
these possible worlds may only make φA true without making any of φB (for B ⊂ A) true.

For instance, suppose that we have two propositions q1 and q2 in P , then there are four basic
elements in At as δ1 = q1 ∧ q2, δ2 = q1 ∧ ¬q2, δ3 = ¬q1 ∧ q2 and δ4 = ¬q1 ∧ ¬q2.

If we are given that i(φ{δ1}) = {w1}, i(φ{δ1,δ2}) = {w1, w2} and i(φ{δ1,δ3}) = {w1, w3}, then
w2 makes only φ{δ1,δ2} = q1 true without making q1∧q2 true. Similarly w3 makes q2 true without
making q1 ∧ q2 true.

In general, the subset of i(φA) which contains the possible worlds making only φA true
without making any of φB (B ⊂ A) true is denoted as ii(φA) and the notation ii is called the
basic incidence assignment. In order to show the relation between i and ii, we look at an
example first. Suppose there are two propositions, P = {rainy, windy}, and seven possible
worlds, W = {sun,mon, tues, wed, thus, fri, sat}. Assume that each possible world is equally
probable, i.e. occurs 1/7 of the time. Through a piece of evidence, we learn that four possible
worlds fri, sat, sun, mon make rainy true, and three possible worlds mon, wed, fri make windy
true. Therefore the incidence sets of these two propositions are:

i(rainy) = {fri, sat, sun, mon}
i(windy) = {mon,wed, fri}

As i(rainy∧windy) = i(rainy)∩ i(windy), we also have i(rainy∧windy) = {fri, mon}. So the
set of axioms A is A = {rainy, windy, rainy ∧ windy}. The corresponding incidence calculus
theory is

< W, µ, P,A, i >

and the At of P is At = {rainy ∧ windy, rainy ∧ ¬windy,¬rainy ∧ windy,¬rainy ∧ ¬windy}.
A function ii could be naturally defined as:

ii(rainy ∧ windy) = {fri, mon}
ii(rainy) = {sat, sun}
ii(windy) = {wed}
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For any other formula φ except true, ii(φ) is empty. It is easy to see that from ii, the
incidence function can be recovered as:

i(rainy ∧ windy) = ii(rainy ∧ windy)

i(rainy) = ii(rainy) ∪ ii(rainy ∧ windy)

i(windy) = ii(windy) ∪ ii(rainy ∧ windy)

Definition 5 Basic Incidence Assignment: Given a set of axioms A, a mapping function
ii: A →W is called a basic incidence assignment if ii satisfies the following conditions:

ii(φ) 6= {} φ ∈ A
ii(φ) ∩ ii(ψ) = {} φ 6= ψ
ii(false) = {}
ii(true) = W \⋃

j ii(φj)

where W is a set of possible worlds.

Here (and in the rest of the paper) φ 6= ψ means that either φ → ψ is not valid or ψ → φ is
not valid.

Proposition 1 Given a set of axioms A with a basic incidence assignment ii, then the function
i defined by equation (6) is an incidence function on A.

i(φ) =
⋃

φj∈A,φj→φ

ii(φj) (6)

Proposition 2 Given a generalized incidence calculus theory < W, µ, P,A, i >, there exists a
basic incidence assignment ii on A from which the incidence function i in the theory can be
derived.

The proofs of these propositions are given in Liu, Bundy and Robertson (1993). These two
propositions tell us that a basic incidence assignment and its generalized incidence function can
be recovered from each other.

From the above analysis, we find that whenever we need to get the probabilities on formulae,
we always get the incidences for the formulae first. This is called the indirect encoding of numer-
ical uncertainty values. Just because of this, it is therefore possible to propose an alternative
combination rule in incidence calculus which combines evidence on the basis of possible worlds.

2.5 The Combination Rule in Incidence Calculus

Definition 6 Combination Rule: Suppose there are two generalized incidence calculus the-
ories < W, µ, P,A1, i1 >, < W, µ, P,A2, i2 >, then the joint impact of information carried by
the two theories is represented by a quintuple: < W \W0, µ

′, P,A, i > where

W0 =
⋃{i1(φ) ∩ i2(ψ) | (φ ∧ ψ →⊥), φ ∈ A1, ψ ∈ A2}

A = {ϕ | ϕ = φ ∧ ψ | φ ∈ A1, ψ ∈ A2, ϕ 6=⊥}
i(ϕ) =

⋃{i1(φ) ∩ i2(ψ) | (φ ∧ ψ → ϕ), ϕ ∈ A, φ ∈ A1, ψ ∈ A2, φ ∧ ψ 6=⊥}

6



for any w ∈ W \W0

µ′(w) = µ(w)
1−Σw′∈W0

µ(w′)
and let

i(false) = {} i(true) = W \W0

Here ⊥ means false.
The explanation of this combination rule is that if observation X says that W1i makes

statement φ true, and observation Y says that W2j makes statement ψ true, then W1i ∩ W2j

should make statement (φ ∧ ψ) true when we know that both X and Y hold.
W0 is a subset of W reflecting the conflict of two pieces of information and the conflict weight

is Σw′∈W0µ(w′). If the conflict weight is 1 then these two pieces of information are completely
contradictory with each other and they cannot be combined using the rule.

When A = {}, these two observations are irrelevant to each other and their combined result
tells us nothing.

When A 6= {}, ∀φ ∈ A, i(φ) = {}, these two observations repel each other. In other words,
only one of them can be held at each time.

It is proved in Liu (1994) that the combined result is a generalized incidence calculus theory.
The crucial issue in applying the rule to two generalized incidence calculus theories is that

these two theories are based on the same set of possible worlds, but based on different sets of
axioms and incidence functions. The combination procedure unifies two sets of axioms into one
set and two incidence functions into one incidence function. In this way, generalized incidence
calculus is expected to be used to combine dependent evidence.

In general, the relations between two generalized incidence calculus theories (provided by
two pieces of evidence) can be divided into the following three categories.

1). Two sets of possible worlds in the two generalized incidence calculus theories are the
same. In this case, the Combination Rule above is applied to combine the two generalized
incidence calculus theories.

2). Two sets of possible worlds in the two generalized incidence calculus theories are different
and they are DS-independent1. In this case, it is possible to transform the two generalized
incidence calculus theories into new forms so that two new generalized incidence calculus theories
are based on the same set. Then the Combination Rule is applied on them. This is described
in Theorem 1 below.

3). Two sets of possible worlds in the two generalized incidence calculus theories are different
but not DS-independent. At the moment, we don’t have a framework to deal with this situation
in general. It has to be done individually. For a case in this category, if it is possible to find a
common set of possible worlds in some way to replace the two existing sets of possible worlds,
the Combination Rule is applicable. However, when it is not possible to find a common set of
possible worlds to replace the two existing sets of possible worlds, generalized incidence calculus
cannot cope with the case. Example 2.1 below demonstrates this situation.

It needs to be pointed out that if two sets of possible worlds in a case are different but they
are both derived from a well-defined set, this case is put into the first category as shown in
Example 4.4.

1The mathematical description of DS-independent can be found in Voorbraak (1991), Liu (1994), or alterna-
tively in Shafer (1981), Shafer and Tversky (1985). This definition can be simply explained as, given (X1, µ1)
and (X2, µ2), two spaces with their probability distributions, if either µ1 ⊗ µ2 cannot be taken as the probability
distribution on X1 ⊗X2, for instance, the two probability distributions are not probabilistically independent, or
these two spaces are constructed from a pre-defined space (X, µ), then these two spaces are not DS-independent.
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As cases in category 2 can be transformed into cases in category 1, category 2 is regarded as
an extension of category 1.

Theorem 1 Suppose we have two generalized incidence calculus theories, < W1, µ1, P,A1, i1 >
and < W2, µ2, P,A2, i2 >, where (W1, µ1) and (W2, µ2) are DS-independent.Applying the Com-
bination Rule to them we get < W3, µ3, P,A3, i3 > which is a generalized incidence calculus
theory, where

W0 =
⋃{i1(φ)⊗ i2(ψ) | (φ ∧ ψ →⊥), φ ∈ A1, ψ ∈ A2}

W3 = W1 ⊗W2 \W0

A3 = {ϕ | ϕ = φ ∧ ψ, φ ∈ A1, ψ ∈ A2, ϕ 6=⊥}
i3(ϕ) =

⋃{i1(φ)⊗ i2(ψ) | (φ ∧ ψ → ϕ), φ ∧ ψ 6=⊥}
the new probability distribution on W3 is

µ3(< w1l, w2j >) = µ1(w1l)µ2(w2j)
1−Σ<w1t,w2m>∈W0

µ1(w1t)µ2(w2m)

Here w1l, w1t ∈ W1 and w2j , w2m ∈ W2

⊗ means set production. W0 is the subset of W1⊗W2 which supports inconsistent conjunc-
tions. The proof of this theorem is given in Liu (1994).

For any formula ϕ in L(P ), our belief in ϕ is

p∗(ϕ) = Σ<w1l,w2j>∈i3(ϕ)µ3(< w1l, w2j >)

In the following, we say that two generalized incidence calculus theories are DS-independent
if their sets of possible worlds (together with their probability distributions) are DS-independent.

For the joint product of spaces W1 and W2, an element < w1l, w2j > in W1 ⊗W2 \W0 tells
us that possible worlds w1l and w2j support a formula simultaneously. Since < w1l, w2j > in
W1⊗W2 and < w2j , w1l > in W2⊗W1 have the same meaning, we treat W1⊗W2 and W2⊗W1

as the same set. So the Combination Rule is both commutative and associative and the result of
combining several generalized incidence calculus theories is unique irrespective of the sequence
in which they are combined.

Example 1

We now use an example adopted from Pearl (1988, pp.58) to show the situation in which two
generalized incidence calculus theories are based on different sets of possible worlds but these
two sets are not DS-independent. The example is as follows.

There are three prisoners, A, B and C, have been tried for murder, and their verdicts
will be read tomorrow. They know only that one of them will be declared guilty and
the other two will be set free. The identity of the condemned prisoner is revealed to
the very reliable prison guard, but not to the prisoners themselves. In the middle of
the night, Prisoner A calls the guard over and makes the following request: ‘Please
give this letter to one of my friends -to one who is to be released. You and I know
that at least one of them will be freed’. Later Prisoner A calls the guard again and
asks who received the letter. The guard answers, ‘I gave the letter to Prisoner B, he
will be released tomorrow’. After this Prisoner A feels that his chance to be guilty
has been increased from 1/3 to 1/2. What did he do wrong?
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Assume that IB stands for the proposition ‘Prisoner B will be declared innocent’ and GA

stands for the proposition ‘Prisoner A will be declared guilty’. The task is to compute the
probability of GA given all the information obtained from the Guard.

Solving this problems in formal probability theory, Pearl gets

Pr(GA | IB) =
Pr(IB | GA)Pr(GA)

Pr(IB)
=

Pr(GA)
Pr(IB)

=
1/3
2/3

= 1/2 (7)

where Pr(IB | GA) = 1 since GA ⊃ IB and Pr(GA) = Pr(GB) = Pr(GC) = 1/3 from the
prior probability distribution.

Pearl argues that this is a wrong result and the wrong result arises from omitting the full
context in which the answer was obtained by Prisoner A. He further explains that ‘By context
we mean the entire range of answers one could possibly obtain, not just the answer actually
obtained’. Therefore, Pearl introduces another proposition I ′B, stands for ‘The guard said that
B will be declared innocent’, and he gives that

Pr(GA | I ′B) =
Pr(I ′B | GA)Pr(GA)

Pr(I ′B)
=

1/2.1/3
1/2

= 1/3 (8)

which he believes is the correct result.
Using incidence calculus to solve this problem, we let P = {GA, GB, GC} and GA stand

for the proposition ‘Prisoner A is guilty’. Then it is possible to form a set of possible worlds
W1 = {w1, w2, w3} with µ1(wj) = 1/3 from the prior probability distribution. w1 implies A is
guilty.

From this information, a generalized incidence calculus theory is formed as
< W1, µ1, P, P, i1 > where i1(GA) = {w1}, i1(GB) = {w2} and i1(GC) = {w3}.

After the guard passed the letter to a prisoner, it is possible to form another set of possible
worldsW2 = {LB, LC} where LB means Prisoner B received the letter. µ2(LB) = µ2(LC) = 1/2.

So the second generalized incidence calculus theory is constructed as < W2, µ2, P,A2, i2 >
where i2(GA ∨GC) = {LB}, i2(GA ∨GB) = {LC} and A2 = {GA ∨GC , GA ∨GB}.

These two theories are based on different sets of possible worlds and they are not DS-
independent. If we attempt to solve this example using Theorem 1, we can only get the result
as shown in equation (7).

However whether it is possible to construct different generalized incidence calculus theories
in order to reflect the full context of answers (the meaning of I ′B not IB) remains open.

3 Dempster-Shafer theory of evidence

3.1 Basics of DS theory

The Dempster-Shafer theory of evidence, or as is sometimes called belief function theory (Shafer
(1976), (1990), Smets (1988)), associates degrees of belief (bel) with every subset of a set. Such
a set, S, is required to consist of mutually exclusive and exhaustive explanations for a problem.
More precisely, at any time, one and only one element in S is the right answer to a question.
The conjunction of any two elements is contradictory. A set S satisfying this requirement is
called a frame of discernment (or frame).

In propositional logic, given a set of propositions P , P may not be a frame. However At,
the basic element set formed from P defined in Definition 1, contains mutually exclusive and
exhaustive answers to a question, so At is a frame. In Fagin and Halpern (1989a), an arbitrarily
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defined frame S is taken to be a subset of some At (in fact, given a frame S, it is always possible
to define At = S for a proper P ). In the following, we follow the same idea and use At to denote
any frame of discernment.

A belief function bel on a frame At is required to obey the following three features:

1.bel(∅) = 0
2.bel(At) = 1
3.bel(A1 ∪ ... ∪An) ≥ Σibel(Ai)− Σi,jbel(Ai ∩Aj) +Σi,j,kbel(Ai ∩Aj ∩Ak)...
where A1, .., An are subsets of At.

A belief function bel on a frame of discernment At is represented as (At, bel), which is called
a DS structure.

A belief function is usually described in the form of a function m called mass function,
or a basic probability assignment. A mass function m is required to satisfy the following two
conditions.

m(∅) = 0 ΣA⊆Atm(A) = 1

∅ represents the empty set.
Given a mass function on a frame of discernment, a corresponding belief function can be

calculated as:

bel(A) = ΣB⊆Am(B)

Given a belief function bel, its mass function m can be recovered by the equation:

m(A) = ΣB⊆A(−1)|B|bel(B)

The difference between a mass function and its belief function is that the degree of belief on
a subset A of At represents our total belief on the set and all its subsets while the mass value
of A is the degree of belief exactly assigned to the set and not any of its subsets.

Similarly, another function called the plausibility function is defined as

pls(A) = ΣB∩A6=∅m(B) = 1− bel(¬A)

A subset A of At is called a focal element of the belief function bel if m(A) > 0. We use
ADS to denote the set containing all the focal elements of a belief function.

3.2 Dempster’s combination rule

In DS theory when two belief functions (given in the form of mass functions m1 and m2)
are derived from two distinct (or DS-independent) pieces of evidence on the same frame of
discernment At, their joint impact, carried by another belief function bel (or its mass function
m) on At, can be obtained by using Dempster’s combination rule. Dempster’s rule is defined
as:

m(C) =
ΣA∩B=Cm1(A)m2(B)

1− ΣA′∩B′=∅m1(A′)m2(B′)
where m1 and m2 are two mass functions representing the two belief functions on the frame and
A,B, A′, B′ are arbitrary subsets of At. Usually, m = m1 ⊕ m2 says that m is the combined
mass function from m1 and m2 and ⊕ means that Dempster’s combination rule is used.
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4 Comparison with DS Theory

In this section we discuss the relationship between DS theory and generalized incidence calcu-
lus. We are going to discuss their abilities to represent evidence and compare their abilities in
combining evidence. We will prove that 1) they have the same ability in representing evidence,
2) any two pieces of evidence which can be combined using Dempster’s combination rule, can
also be combined in incidence calculus by applying Theorem 1. So Dempster’s combination rule
and Theorem 1 are totally equivalent. 3) those dependent cases which can be combined by the
new Combination Rule (but not Theorem 1) cannot be combined by Dempster’s combination
rule.

Therefore we conclude that the new combination rule is superior to Dempster’s combination
rule.

4.1 Comparison I: Representing Evidence

Given a DS structure (At, bel) and a generalized incidence calculus theory < W, µ, P,A, i >
where the frame At is the basic element set of P , we say that this DS structure is equivalent to
the generalized incidence calculus theory if for any A ⊆ At, bel(A) = p∗(φA). Here φA is defined
as

φA = ∨δj where δj ∈ A

That is if we use DS theory to describe the degree of belief on At, then we consider At to be
a frame, but if we use incidence calculus to describe the degree of belief on At, then we consider
At to be a collection of basic elements. Therefore, a subset A of At in 2At is treated to be
equivalent to the formula ∨δj (where δj ∈ A) in L(At).

Theorem 2 For any DS structure (At, bel), there is an equivalent generalized incidence calculus
theory. For any subset A of At and its corresponding formula φA in L(At), bel(A) in the DS
theory is equal to p∗(φA) in the generalized incidence calculus theory. That is

bel(A) = p∗(φA)

PROOF

Given a DS structure (At, bel), suppose ADS = {A1, ...An} is the focal element set of belief
function bel and m is its mass function, then Σm(Aj) = 1.

1) create a set of possible worlds W = {w1, ...wn} and let µ(wj) = m(Aj).
2) let a subset A of At be {φAj | Aj ∈ ADS};
3) define basic incidence assignment ii as ii(φAj ) = {wj};
4) define incidence function i from ii as i(φA) = {ii(φAj ) | φAj ∈ A and φAj → φA is valid}
Then < W, µ,At,A, i > is a generalized incidence calculus theory (it is easy to prove that i

has the features of Definition 4 in Section 2).

For any formula φA in L(At) and its related subset A of At, we have

p∗(φA) = µ(i∗(φA))
= µ(

⋃
φAj

∈A,φAj
→φA

i(φAj ))

= µ(
⋃

φAj
∈A,φAj

→φA
(
⋃

φAl
∈A,φAl

→φAj
ii(φAl

)))
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= µ(
⋃

φAl
∈A,φAl

→φA
ii(φAl

))
= ΣφAl

∈A,φAl
→φA

µ(ii(φAl
))

= ΣφAl
∈A,φAl

→φA
µ({wl})

= ΣAl∈ADS ,Al⊆Am(Al)
= bel(A)

Then the belief function bel(A) is exactly the same as p∗(φA).
2

So pls(A) = 1− bel(¬A) = 1− p∗(¬φA) = µ(W \ i∗(¬φA)) = p∗(A).
This theorem tells us that the belief function on frame At given by a DS structure is the same

as the lower bound of the probabilities on the formulae if we think of At as a basic element set.
Therefore, any belief function can be obtained as a lower bound from a generalized incidence
calculus theory.

Example 2

The example used here is originally from Fagin and Halpern (1989b) and simplified by Correa
da Silva and Bundy (1990) as follows.

A person has four coats: two are blue and single-breasted, one is grey and double-
breasted and one is grey and single-breasted. To choose which colour of coat this
person is going to wear, one tosses a (fair) coin. Once the colour is chosen, to choose
which specific coat to wear the person uses a mysterious nondeterministic procedure
which we don’t know anything about. What is the probability of the person wearing
a single-breasted coat?

We solve this problem by using DS theory first and then deal with it in generalized incidence
calculus.

DS structure: Let P = {g, d} where g stands for “the coat is grey” and d stands for “the
coat is double-breasted”, then we have

At = {g ∧ d,¬g ∧ d, g ∧ ¬d,¬g ∧ ¬d}

which is a frame. The element ¬g ∧ d in this frame is false because there is no coat which is not
grey but double-breasted. So the real frame of discernment is reduced to be

At = {g ∧ d, g ∧ ¬d,¬g ∧ ¬d}

According to the story that one tosses a (fair) coin to decide which colour to choose, we can
define a mass function on the frame At as

m({¬g ∧ ¬d}) = 0.5 m({g ∧ ¬d, g ∧ d}) = 0.5

with the focal element set ADS as

ADS = {{¬g ∧ ¬d}, {g ∧ ¬d, g ∧ d}}

12



Therefore, we have a DS structure (At, bel). The degree of belief on ¬d is bel(¬d) = m(¬g ∧
¬d) = 0.5 and the degree of plausibility is 1.

The degrees of belief and plausibility say that the probability of the person wearing a single-
breasted coat lies somewhere between 0.5 to 1 which cannot be measured in a single number.

Generalized incidence calculus theory: Based on the story we could have two possible
worlds: w1 for blue and single-breasted coats and w2 for grey coats. The probability of each of
the possible worlds is 0.5.

Given a set of propositions P and its basic element set At as defined in DS structure, we
know that w1 supports formula ¬g ∧ ¬d and w2 makes the formula (g ∧ ¬d) ∨ (g ∧ d) true. So
we define i(¬g ∧¬d) = {w1} and i(g) = {w2}. Then < W, µ, P,A, i > is a generalized incidence
calculus theory.

From this generalized incidence calculus theory, we have that

i∗(¬d) = i(¬g ∧ ¬d)

i∗(¬d) = W \ i∗(d) = W
so

p∗(¬d) = 0.5 p∗(¬d) = 1

which is identical to the result from DS theory.

Theorem 3 For any generalized incidence calculus theory < W, µ, P,A, i >, there is an equiv-
alent DS structure (At, bel).

PROOF

Suppose < W, µ, P,A, i > is a generalized incidence calculus theory and ii is the correspond-
ing basic incidence assignment,

1) define a subset ADS of At as ADS = {A | φA ∈ A}.
2) if

⋃
φA

ii(φA) 6= W, then ADS := ADS ∪ {At} where ii(At) := W \⋃
φA

ii(φA).

3) define m(Aj) = µ(ii(φAj )) where Aj ∈ ADS . Then ΣAjm(Aj) = 1.

So bel: bel(A) = ΣB⊆Am(B) gives a belief function on At and we obtain a DS structure
(At, bel).

For any formula φA in L(At) and its related subset A of At, we have

p∗(φA) = µ(i∗(φA))
= µ(

⋃
φB∈A,φB→φA

ii(φB))
= ΣφB∈A,φB→φA

µ(ii(φB))
= ΣB⊆A,B∈ADS

m(B)
= bel(A)

Therefore, < W, µ, P,A, i > and (At, bel) are equivalent.
2

Example 3
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This example demonstrates the procedure of producing a DS structure based on a given gen-
eralized incidence calculus theory as indicated in Theorem 2. This weather forecasting example
continues the story in Section 2.

Assume we know that on fri, sat, sun, mon it will rain and on mon, wed, fri it will
be windy. The question we are interested in is on which days it will not rain.

Generalized incidence calculus theory: Let a set of possible worlds W be
{sun,mon, tues, wed, thus, fri, sat} and they have equal probability i.e. µ(wi) = 1/7 and let
P = {rainy, windy}. The incidence function defined out of the above story is

i(rainy) = {fri, sat, sun, mon}
i(windy) = {mon,wed, fri}

the basic incidence assignment ii is

ii(rainy ∧ windy) = {fri,mon}
ii(rainy) = {sat, sun}
ii(windy) = {wed}
ii(At) = {tues, thur}

and the basic element set At is

At = {rainy ∧ windy, rainy ∧ ¬windy,¬rainy ∧ windy,¬rainy ∧ ¬windy}
Therefore the generalized incidence calculus theory is

< W, µ, P,A, i >

where A = {rainy, windy, rainy ∧ windy}.
From this theory, we have

i∗(¬rainy) = {}
i∗(¬rainy) = {tues, wed, thus}

so
p∗(¬rainy) = 0 p∗(¬rainy) = 3/7

That is we cannot be sure on which day it will not rain but possibly on Tuesday, Wednesday
and Thursday.

DS structure: For frame At as defined above, we can derive a mass function m on it based
on Theorem 2 as

m(rainy ∧ windy) = 2/7
m(rainy) = 2/7
m(windy) = 1/7
m(At) = 2/7

So we have bel(¬rainy) = 0 and pls(rainy) = 3/7. The DS structure (At, bel) gives the
same result as incidence calculus.

A similar result has also been achieved in Correa de Silva and Bundy (1990). In their paper,
it is proved that any original incidence calculus theory is equivalent to a Total Dempster-Shafer
probability structure2, and any Total Dempster-Shafer probability structure is equivalent to an
original incidence calculus theory. In this paper, we have generalized incidence calculus theories
and shown generalized incidence calculus theories are totally equivalent to DS structures.

2A Total Dempster-Shafer probability structure is used (Correa de Silva and Bundy (1990)) to represent a
belief function on a frame in order to maintain the probability space from which the belief function is derived.
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4.2 Comparison II: Combining DS-Independent evidence

For any two DS structures (At, bel1) and (At, bel2), if we assume that the two belief functions
are derived from two DS-independent pieces of evidence, then these two belief functions can be
combined using Dempster’s combination rule. From these two DS structures, two generalized
incidence calculus theories can also be produced, and their combination leads to the third gen-
eralized incidence calculus theory using Theorem 1. What we need to prove in such a situation
is that the combined result of the two DS structures turns out to be equivalent to the combined
generalized incidence calculus theory.

Theorem 4 Suppose (At, bel1) and (At, bel2) are two DS structures and bel1 and bel2 are ob-
tained from the two DS-independent pieces of evidence and assume that the combined DS struc-
ture is (At, bel). Further let < W1, µ1,At,A1, i1 > and < W2, µ2,At,A2, i2 > be the two general-
ized incidence calculus theories produced from these DS structures, and < W, µ,At,A, i > be the
combined generalized incidence calculus theory, then (At, bel) is equivalent to < W, µ,At,A, i >.
That is, for any subset A of At,

bel(A) = p∗(φA)

Our proof is divided into two parts. In part one we need to prove that the conflict weight k
in the combined DS structure is equal to µ(W0) in the combined generalized incidence calculus
theory. In part two we need to prove that bel(A) = p∗(φA) for any A ⊆ At.

Because bel1 and bel2 are derived from two DS-independent pieces of evidence, (W1, µ1) and
(W2, µ2) are DS-independent. So Theorem 1 is used to combine these two derived generalized
incidence calculus theories.

PROOF

Suppose the two focal element sets in these two DS structures (At, bel1) and (At, bel2) are

ADS = {A1, A2, ..., An} Σm1(Al) = 1

BDS = {B1, B2, ..., Bm} Σm2(Bj) = 1

The combined DS structure is (At, bel) with bel defined as bel1 ⊕ bel2.
Furthermore the two sets of axioms in the corresponding two generalized incidence calculus

theories < W1, µ1, P,A1, i1 > < W2, µ2, P,A2, i2 > are:

A1 = {φA1 , φA2 , ..., φAn}, ii1(φAl
) = {w1l}, µ1(w1l) = m1(Al)

A2 = {ψB1 , ψB2 , ..., ψBm}, ii2(φBj ) = {w2j}, µ2(w2j) = m2(Bj)

Part One

Part one proves k = µ(W0) where k is the weight of the conflict between these two DS
structures, and W0 , which is defined in Section 2, is the conflict set in the combined generalized
incidence calculus theory.

Suppose m = m1 ⊕m2, for any Al ∩Bj = {} (Al ∈ ADS , Bj ∈ BDS), m1(Al)m2(Bj) will be
a part of k. That is k = k′ + m1(Al)m2(Bj).

For φAl
from Al and ψBj from Bj (φAl

∈ A1, ψBj ∈ A2), we have φAl
∧ψBj →⊥ is valid. So
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µ(W0) = µ(
⋃

φAl
∧ψBj

→⊥ i1(φAl
)⊗ i2(ψBj ))

= µ(
⋃

φAl
∧ψBj

→⊥(
⋃

φA′
l
→φAl

ii1(φA′
l
))⊗ (

⋃
ψB′

j
→ψBj

ii2(ψB′j
)))

= µ(
⋃

φAl
∧ψBj

→⊥(
⋃

φA′
l
∧ψB′

j
→φAl

∧ψBj
ii1(φA′

l
)⊗ ii2(ψB′j

)))

= µ(
⋃

φA′
l
∧ψB′

j
→⊥ ii1(φA′

l
)⊗ ii2(ψB′j

))

= Σ(µ1(ii1(φA′l
))µ2(ii2(ψB′j

)) | φA′l
∧ ψB′j

→⊥ is valid)
= Σ(µ1(w1l′)µ2(w2j′) | φA′l

∧ ψB′j
→⊥ is valid)

= Σ(m1(A′l)m2(B′
j) | A′l ∩B′

j = {})
= k

Part Two

For any subset C of At, and its corresponding formula ϕC , we need to prove that bel(C) =
p∗(ϕC).

For Al ∈ ADS and Bj ∈ BDS , if Al ∩Bj ⊆ C, then m1(Ai)m2(Bj) is a part of bel(C).
For φAl

from Al and ψBj from Bj , we have φAl
∧ ψBj → ϕC is valid. So

p∗(ϕC) = µ(i∗(ϕC))
= µ(

⋃
φAl

∧ψBj
→ϕC

i1(φAl
)⊗ i2(ψBj ))

= ΣφAl
∧ψBj

→ϕC
(µ1(i1(φAl

))µ2(i2(ψBj )))/(1− k)
= ΣφAl

∧ψBj
→ϕC

(µ1(
⋃

φA′
l
→φAl

ii1(φA′l
))µ2(

⋃
ψB′

j
→ψBj

ii2(ψB′j
)))/(1− k)

= ΣφAl
∧ψBj

→ϕC
(µ1(

⋃
φA′

l
→φAl

{w1l′})µ2(
⋃

ψB′
j
→ψBj

{w2j′}))/(1− k)

= ΣφA′
l
∧ψB′

j
=ϕC′ ,ϕC′→ϕC

(µ1({w1l′})µ2({w2j′}))/(1− k)

= ΣC′⊆C,A′
l
∩B′j=C′(m1(A′l)m2(B′

j))/(1− k)
= ΣC′⊆Cm(C ′)
= bel(C)

2

Example 4 Combining two DS-independent pieces of evidence using both Dempster’s
combination rule and Theorem 1 in generalized incidence calculus.

Using Dempster’s combination rule

Assume that we have two DS structures (At, bel1) and (At, bel2) with the following additional
information.

At = {a, b, c, d}
ADS = {{a, b, c},At}
BDS = {{c, d},At}

m1({a, b, c}) = 0.7,m1(At) = 0.3

m2({c, d}) = 0.6,m2(At) = 0.4
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Table 1: Combination of two DS-independent pieces of evidence

A {a, b, c} At
m 0.7 0.3

{c, d} {c} {c, d}
0.6 0.42 0.18
At {a, b, c} At
0.4 0.28 0.12

Combining these two belief functions derived from m1 and m2, we get a joint belief function
as shown in Table 1.

From this table, it is possible to calculate degrees of belief on any subsets of At. For instance,
for subset {a, b, c}, we have bel({a, b, c}) = 0.42 + 0.28 = 0.7 and pls({a, b, c}) = 1.

Using the incidence calculus combination rule

From the two DS structures given above, we are able to form two generalized incidence
calculus theories from them as

< W1, µ1, P,A1, i1 >

< W2, µ2, P,A2, i2 >

with the following additional information

W1 = {w11, w12}, µ1(w11) = 0.7, µ1(w12) = 0.3

P := At

A1 = {a ∨ b ∨ c,At}
i1(a ∨ b ∨ c) = {w11}, i1(At) = W1

W2 = {w21, w22}, µ2(w21) = 0.6, µ2(w22) = 0.4

P := At

A2 = {c ∨ d,At}
i2(c ∨ d) = {w21}, i2(At) = W2

As (W1, µ1) and (W2, µ2) are DS-independent, Theorem 1 in section 2 is used to combine
these two incidence calculus theories as given in Table 2.

The combined generalized incidence calculus theory is < W1 ⊗ W2, µ, P,A, i > where
µ(< w1l, w2j >) = µ1(w1l)µ2(w2j). From this theory, we are also able to obtain the degree of
our belief in any formula. For example, p∗(a∨ b∨ c) = µ(i∗(a∨ b∨ c)) = 0.7 and p∗(a∨ b∨ c) = 1
which are the same as we got in DS theory.

Comparing Table 1 with Table 2 we will find that these two structures give the same result
(numerically) on any subset (or formula). We will also find that whenever a numerical value
(mass value) appears in Table 1, a corresponding incidence set replaces its position in Table 2.
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Table 2: Combination of two DS-independent generalized incidence calculus theories

φA a ∨ b ∨ c true
i(φA) {w11} W1

c ∨ d c c ∨ d
{w21} {w11} ⊗ {w21} W1 ⊗ {w21}
true a ∨ b ∨ c true
W2 {w11} ⊗W2 W1 ⊗W2

The combination procedure in generalized incidence calculus combines possible worlds instead
of numbers. The degree of belief in a formula is calculated based on the incidence set.

Now it has been proved that what we can combine using Dempster’s combination rule can
also be combined in incidence calculus and they obtain the same result. Moreover in the next
section we are going to show that we can handle a wider range of information in incidence
calculus by applying the new combination rule.

4.3 Comparison III: Combining Dependent Evidence

In this section, we first show an example which can be dealt with using the combination rule in
incidence calculus but cannot be dealt with using Dempster’s combination rule. We then simply
explore the theoretical difference between the two theories and argue why DS theory fails to
deal with dependent evidence while incidence calculus succeeds.

Example 5

This example is from Voorbraak (1991). There are 100 labelled balls in an urn as given in
Table 3.

Table 3: 100 balls and their labels

Label Number of Balls Subset Name in W
axy 4 W1

ax 4 W2

ay 16 W3

a 16 W4

bxy 10 W5

bx 10 W6

by 20 W7

b 20 W8

Suppose X and Y are separate observations on drawing a ball from the urn. The information
carried by them is:

X: the drawn ball has label x;

Y : the drawn ball has label y.
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Based on these two pieces of evidence, we are interested in knowing the degree of our belief
that the drawn ball also has label b.

Using Dempster’s combination rule:
Let a set of propositions P be {a, b}. a stands for a proposition ‘The drawn ball has label a’

and b stands for the proposition ‘The drawn ball has label b’. Then the basic element set At is
the same as P which is a frame. Two mass functions are defined on At based on the information
carried by the two observations X and Y as:

mX(a) = 2/7, mX(b) = 5/7

mY (a) = 2/5, mY (b) = 3/5

where mX(a) is the mass value on a given by observation X which represents the possibility of
a ball having label a when the ball is observed having label x and mY (a) is the mass value on
a given by observation Y which represents the possibility of a ball having label a when the ball
is observed having label y.

The result of applying Dempster’s combination rule to the above two mass functions is
m(b) = mX ⊕mY (b) = 15/19. So bel(b) = 15/19.

While in probability theory, the probability that a ball has both label x and y is

p(x ∧ y) = 0.14 = 0.28× 0.5 = p(x)p(y)

Therefore, we have p(b | x ∧ y) = 5/7. Obviously the results obtained in DS theory and in
probability theory are not the same and the result given in DS theory is wrong. See the detailed
analysis of the example in Voorbraak (1991).

Using the incidence calculus combination rule:
Let us examine this example in incidence calculus theory. First of all, we suppose that the

set of possible worlds W contains 100 labelled balls.

W = W1 ∪W2 ∪W3 ∪W4 ∪W5 ∪W6 ∪W7 ∪W8

where W1 contains 4 possible worlds each of which specifies a ball with labels xya, ..., W8 contains
20 possible worlds each of which specifies a ball with label b. The probability distribution on
W is µ(w) = 1/100 for any w ∈ W. We further suppose the set of propositions P contains
{a, b, x, y} where a means that the chosen ball has label a etc.

From observations X and Y , it is possible to construct two generalized incidence calculus
theories

< W, µ, P,A1, i1 >

< W, µ, P,A2, i2 >

where
i1(x) = W1 ∪W2 ∪W5 ∪W6

i1(a ∧ x) = W1 ∪W2, i1(b ∧ x) = W5 ∪W6

and
i2(y) = W1 ∪W3 ∪W5 ∪W7

i2(a ∧ y) = W1 ∪W3, i2(b ∧ y) = W5 ∪W7

where A1 = {x, a ∧ x, b ∧ x} and A2 = {y, a ∧ y, b ∧ y}.
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Applying the Combination Rule proposed in incidence calculus to these two theories, we can
get the third incidence calculus theory < W, µ, P,A, i > with A = {x∧ y, a∧ x∧ y, b∧ x∧ y, a∧
b ∧ x ∧ y}

i(b ∧ x ∧ y) = W5 i(x ∧ y) = W1 ∪W5

i(a ∧ x ∧ y) = W1 i(a ∧ b ∧ x ∧ y) = {}
It is easy to prove that for any φ ∈ A, i∗(φ) = i∗(φ) = i(φ), so a function p, defined as

p(φ) = p∗(φ) = µ(i(φ)), is a probability function on A. Further because p(b ∧ x ∧ y) = 10/100
and p(x ∧ y) = 14/100, according to Equation (5) in Section 2, we have

p(b | x ∧ y) =
p(b ∧ x ∧ y)

p(x ∧ y)
=

µ(i(b ∧ x ∧ y))
µ(i(x ∧ y))

= 5/7

This result is consistent with what we could get in probability theory.
Now we try to explain theoretically why Dempster’s combination rule cannot be used in

this case. In fact, the two mass functions are derived from two probability spaces (S1, µ1) and
(S2, µ2) where S1 = W1 ∪ W2 ∪ W5 ∪ W6, µ1(s) = 1/28 and S2 = W1 ∪ W3 ∪ W5 ∪ W7 and
µ2(s) = 1/50. These two probability spaces are defined from the unique space (W, µ) and they
share the information carried by the subset W1 ∪W5. Therefore Dempster’s combination rule
cannot be used to combine the two mass functions derived from the two probability spaces.

In incidence calculus, instead of combining numbers on set At, we combine two pieces of
evidence symbolically at the original information level, i.e., at the probability space level. For
the above example, since the two probability spaces are somehow related to the unique space
(W, µ), we establish two generalized incidence functions from W to P rather than from S1 and
S2 to P respectively. Therefore it is possible to cancel the overlapped information carried by the
two observations. Because DS theory is a purely numerical uncertainty reasoning mechanism,
it is not possible to combine evidence symbolically. So it is not possible to represent and cancel
the joint (or overlapped) part of the information provided by two pieces of evidence.

Therefore, we conclude that even though the two theories have the same ability in represent-
ing evidence and combining DS-independent information, their theoretical structures are rather
different. The essence of incidence calculus, indirect encoding of probabilities of formulae, makes
it possible to cancel the effect of overlapped information and provide an alternative combination
mechanism which combines dependent information in some situations. Although trying to com-
bine dependent information at the probability space level has been considered in Shafer (1982)
and in Lingras and Wong (1990), no unique rule was provided in DS theory for general cases
because of the theoretical limitation of the theory.

5 Conclusions

In this paper, we described generalized incidence calculus and made a comprehensive compar-
ison between DS theory and generalized incidence calculus on their abilities in the following
three aspects: 1) representing evidence; 2) combining DS-independent evidence; 3) dealing with
dependent evidence. We conclude that these two theories have the same ability in representing
incomplete information and combining DS-independent evidence. However, incidence calculus
is superior to DS theory in coping with overlapped information. This difference results from
their different theoretical structures. DS theory is a pure numerical approach while incidence
calculus possesses both symbolic and numerical features. That is incidence calculus can make
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an inference either at the symbolic level by producing incidence sets or at the numerical level
by calculating lower or upper bounds on probabilities of formulae.

In general, independent relations among multiple sources of evidence can be considered as
special cases of dependent situations. As Pearl indicated (Pearl (1992)), “If we have several items
of evidence, each depending on the state of nature, these items of evidence should also depend
on each other. This kind of dependency is not a nuisance but a necessary bliss; no evidential
reasoning would otherwise be possible.” In our combination rule, we have indeed adopted the
same idea and made some efforts towards combining dependent evidence. This result would be
useful for further research work on either this topic or the relevant topics. It tells us that it
is a promising way to cancel the overlapped and duplicated information from several pieces of
evidence at the symbolic level rather than at the numerical level.

Apart from its similarities with DS theory, generalized incidence calculus has also shared
some similarities with the propositional probability structure in Bacchus (1990). Both of the gen-
eralized incidence calculus theory and propositional probability structure use possible worlds to
define and explain the probability of a formula, but possible worlds in incidence calculus remain
separated from formulae while possible worlds are a part of formulae in propositional proba-
bility structures in Bacchus (1990). Separating possible worlds from formulae makes incidence
calculus possible to carry out inferences both at the symbolic level and the numerical level but
the embedding of possible worlds into formulae makes propositional probability structures easy
to be extended to sentences in first order logic.
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