Splitting an expander graph
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Abstract

Let G = (V, E) be an r-regular expander graph. Certain algorithms
for finding edge disjoint paths require the edges of (G to be partitioned
into = Ey U E;U---U Ey so that the graphs Gy = (V, E;) are each
expanders. In this paper we give a non-constructive proof of a very
good split plus an algorithm which improves on that given in Broder,
Frieze and Upfal, Existence and construction of edge disjoint paths on
expander graphs, STAM Journal on Computing 23 (1994) 976-989.

1 Introduction

Let G = (V, E) be an r-regular graph with |V| = n. For the asymptotics we
shall assume that r is fixed as n — oco. For S C V let out(S) = {e = (v, w) €
Vv e S, wéd S} be the set of edges of G with exactly one endpoint in
S. Let &g = |out(S5))/]S| and let the (edge)-expansion & = ®(G) of G be
defined by

® = min ®s.

scv
[S]<n/2

Loosely speaking, G is an expander if ® is “large”.

There have been several papers recently ([4], [5], [7], [8], [9]) which deal
with the problem of joining selected pairs of vertices by edge-disjoint paths.
In all of these papers we are given an expander graph and there is a need
to partition the edges I = F1 U Fy U ---U Fyg so that the graphs G; =
(V,E;),1 < ¢ < k are expanders. A method was described in [4], but it
is relatively inefficient. This computational problem seems intersting in its
own right. In this paper we prove two results. One is non-constructive and
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shows what might be achieved. The second is constructive. The split is not
as good, but it does improve significantly on what is achieved in [4].

We use a subscript ¢ to denote graph-theoretic constructs related to Gj.
Thus d;(v) is the degree of v in G;. Left unsubscripted, such things refer to
G. Thus d(v) = r.

In Section 2 we prove

Theorem 1 Let k > 2 be a positive integer and let € > 0 be a small positive
real number. Suppose that

r

The™?

v

log r
d > 4 klogr.

Then there exists a partition E = Ey U FEyU---UFEy such that for 1 <<k

()
¢, > (1—¢)

(b)

(1- e)% < 5(GH) < AG) < (1+ e)%

We have not been able to make the proof of this theorem constructive as in
[3], [1] and [10]. Instead we will suffice ourselves with the following theorem,
proved in Section 3. Assume that

G > (1—a)r|S] (1)

for |S| < yn. For random r-regular graphs and Ramanujan graphs we can
take v to be a small constant and o = O(y + %)

Theorem 2 Assume that (1) holds. There is a randomised polynomial time
algorithm (O(n°M ) log §=1) ) which with probability at least 1 —§ constructs
B, FEs, ..., Ey such that

¢
@iZ(l—e)E—<%—|—e)r,

fore=1,2,... k.



This theorem is only useful if ® > ¢r for some ¢ satisfying ¢ > «. Neverthe-
less, its requirements are weaker than those needed in [4] and the conclusion
is stronger. Notice that our two examples, r-regular graphs and Ramanujan
graphs satisfy the required condition. In the context of finding edge disjoint
paths, it is enough that ®; > 1 for:=1,2,... k.

Note that there is not time to verify that the algorithm succeeds. Instead,
in the applications, we assume it has and repeat the split if the algorithm
that uses fails to find the required paths.

2 Existence Result

In this section, we prove Theorem 1. We will use the general version of the
Lovasz Local Lemma. For each e € F' we randomly choose an integer ¢ € [k]
and then place e in F;. We must show that there is a positive probability
of choosing a partition which satisfies the conditions of the theorem.

We define the following sets of bad events: If S CV then G[V] = (S5, Eg) is
the subgraph of G induced by 7. Thus Es={e€T: e C S}.

(a) For v eV and i € [k],
Api = Ay = {di(v) € [(1—€)r/k, (1+ €)r/k]}.
(b) For S CV,2 < |S| < n/2, G[S] connected and i € [k],
Asi = {louti(S)] < (1 = €)|out(S)[/k}.

In showing that ®; is sufficiently large we can restrict our attention to out(9)

for which G[S] is connected. Indeed, for S C V let C',C5,...,C} be the
components of G[S]. Then

¢t Jout (Cy)|
> _,
B TN

We now consider the dependency graph of the bad events.

Claim 1 For v € V there are at most (er)*~! sets S such that (i) v € S,
(71) |S| = s and (iii) G[S] is connected.

Proof of Claim 1 The number of such sets is bounded by the number of
distinct s-vertex trees which are rooted at v. This in turn is bounded by
the number of distinct r-ary rooted trees with s vertices. This is equal to

("2)/((r — 1)s 4 1), see Knuth [6].



End of proof of Claim 1
The Chernoff bounds for the tails of the binomial distribution B(n,p) that
we use are

Pr(B(n,p) > (1+)np) < e /3 (2)
Pr(B(n,p) < (1+¢)np) < e=c /2 (3)
where 0 < e < 1.
Using them we obtain,
Pr(A,;) < 26~ 7/ (3k)
< 26—(710g7’)/3
1
< 3
e?lout(9)]
Pr(As;) < —— 7
r(Ag;) < exp{ ok
< €—2|S|logr
B 1
= 2R

Now, for S C V, 1 < |S| < n/2 and G[S] connected, let
9\ 5]
TS: = (r—z) .

Pr(ds) <wzs; [[ (1-zry), (4)
(S:)~(T.5)

We show that

where (S,1) ~ (T, j) denotes adjacency of Ag; and Az ; in the dependency
graph of bad events i.e. out(S)Nout(7") # 0. The theorem then follows from
the general version of the local lemma, see for example Alon and Spencer
[2].

It follows from Claim 1 that if |S| = s then there are at most ks(er)! events
Ar; with |T| = ¢ such that (S,¢) ~ (T, 7). Thus, using 1 —x > e~2% for



0 <z <1/2 we have

2\ 9 o\ ks(er)?
oo T t-en = (3)T(-(5))
(Svi)N(ij) t>1
2\ 8 €
> (r_2 exp —kaz (—)
t>1
A
o\ g2 L ey
1
>
provided
> 2e+ dke
In2’
In which case (4) holds, proving the theorem. a

3 Splitting Algorithm

In this section, we prove Theorem 2.

Idea: We will define a sequence of sets V= By 2 By D --- D By such that
if S C B; \ Bj4+1 then out;(.5) is large enough and further that every vertex
in B; \ Bj4; has few neighbours in Bjy;. Then we will see that this latter
condition accounts for the — (§ + ¢) r term in the theorem.

Agsume we have B C V. Initially, B = V. We randomly colour the edges
of G which are incident with B, with k colours. Note that

Pr (EIS C B,i € [k] s.t. |S| > 2logy n, G[S] is connected and ®; g < (1 —_ 6) (I>)

k
< kn Z (er)t—le—e2©t/(2k)
t>2logy n
< an(er)ZlogQ ne—e2q>210g2 n/(2k)
2k

<=
n

So, in a sense the large sets, take care of themselves. Now consider the
smaller sets. Let

Xo=A{v: 35 C B,|9]| < 2logy n,G[S] is connected, v €

1 _
and ¢ € [k] s.t. @; 5 < ( ? 6) (I>}.
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Xp can be constructed in O(n(er)?1827) = O(n°n1) time.

2logy n
1 2
|B| Z (ef‘)t le bt/ (2k)
t=1
2|B|e—e2<1>/(2k)

E(]Xo)

IN

IN

provided

In which case
Assume now that

Then

We repeat the above colouring until we find that | Xo| < 2'%3. Now define
X; = XoU {v1,v2,...,v;} where v; has at least (% + ¢) r neighbours in

X;_1. Now |S| < yn implies that S contains at most

3(rlSI = lout(S)]) < Far[S]

1
2

2|B|

er

edges. Furthermore, X; has at least (% +¢€) rj edges and at most j +

vertices. Thus this process stops before j reaches alBl,
cer

So if X denotes X; when v;4; cannot be found, then
| X| < v1B].

We will repeat the construction with B replaced by X. Let V = By D By, D
--- D By be the sequence of sets constructed. B; will be the first set of size
at most In n. We can “brute force” colour the edges incident with B; so that

every subset S of By satisfies ®; ¢ > (%) ®. We use Theorem 1 to justify
the success of this. The sequence of sets By, Bs, ..., B; satisfies

o |B;| < 'yjn.

o SC B;\ Bjyr implies ®; 5 > (1) @.

e v € B;\ Bjy implies v has at most (§ + €) rj neighbours in Bj;;.



Soif S CV and S; =50 (B;\ Bjy1) then

t—1
outi($)] = 3" (Jouti(5,)] — le(S; : Sy41)]) + louti(S5)]
7=1
> §<1_6¢—<3+) )|Sz|+<—1_€)<1>|5|
=R 2 ")) J !
>

(1;@— (%—I—e) r) 5.
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