Splitting an expander graph

Alan M. Frieze^{*} Michael Molloy[†]

Abstract

Let ^G VE- be an rregular expander graph Certain algorithms for finding edge disjoint paths require the edges of G to be partitioned into $E = \frac{1}{\sqrt{2}}$, $\frac{1}{\sqrt{2}}$, $\frac{$ expanders. In this paper we give a non-constructive proof of a very good split plus an algorithm which improves on that given in Broder Frieze and Upfal, Existence and construction of edge disjoint paths on expander graphs, SIAM Journal on Computing 23 (1994) 976-989.

Introduction

Let $G = (V, E)$ be an r-regular graph with $|V| = n$. For the asymptotics we Let $G = (V, E)$ be an r-regular graph with $|V| = n$. For the asymptotics we shall assume that r is fixed as $n \to \infty$. For $S \subseteq V$ let $\text{out}(S) = \{e = (v, w) \in V\}$ V : $v \in S$, $w \notin S$ be the set of edges of G with exactly one endpoint in S. Let $\Phi_S = |out(S)|/|S|$ and let the (edge)-expansion $\Phi = \Phi(G)$ of G be defined by

$$
\Phi = \min_{\substack{S \subseteq V \\ |S| \le n/2}} \Phi_S.
$$

Loosely speaking G is an expander if is large

- the second contract papers recently the papers of the papers of the contract of the contract of the contract with the problem of joining selected pairs of vertices by edge-disjoint paths. In all of these papers we are given an expander graph and there is a need with the problem of joining selected pairs of vertices by edge-disjoint paths.
In all of these papers we are given an expander graph and there is a need
to partition the edges $E = E_1 \cup E_2 \cup \cdots \cup E_k$ so that the graphs $G_i =$ $(V, E_i), 1 \leq i \leq k$ are expanders. A method was described in [4], but it is relatively inefficient. This computational problem seems intersting in its own right. In this paper we prove two results. One is non-constructive and

^{*}Department of Mathematical Sciences, Carnegie-Mellon UniversityPittsburgh P -part by NSF grant P -part by NSF grant CCR grant E-mail: alan@random.math.cmu.edu

[†]Department of Computer Science,University of Toronto,Toronto, Canada. Supported in part by NSERC grant ????. E-mail: molloy@cs.toronto.edu

shows what might be achieved. The second is constructive. The split is not as good, but it does improve significantly on what is achieved in [4]. We use a subscript i to denote graph-theoretic constructs related to G_i . \mathbf{u} is the degree of v in Gi Left unsubscripted values referred to \mathbf{u} $G: I \to I$ and $H: I \to I$

In Section 2 we prove

Theorem 1 Let $k \geq 2$ be a positive integer and let $\epsilon > 0$ be a small positive real number. Suppose that

$$
\frac{r}{\log r} \geq 7k\epsilon^{-2}
$$

$$
\Phi \geq 4\epsilon^{-2}k \log r.
$$

Then there exists a partition $E = E_1 \cup E_2 \cup \cdots \cup E_k$ such that for $1 \leq i \leq k$

 (a)

$$
\Phi_i \ge (1 - \epsilon) \frac{\Phi}{k}.
$$

 (b)

$$
(1 - \epsilon)\frac{r}{k} \le \delta(G_i) \le \Delta(G_i) \le (1 + \epsilon)\frac{r}{k}.
$$

We have not been able to make the proof of this theorem constructive as in $[3]$, $[1]$ and $[10]$. Instead we will suffice ourselves with the following theorem, proved in Section 3. Assume that

$$
\Phi_S \ge (1 - \alpha)r|S| \tag{1}
$$

for $|S| \leq \gamma n$. For random r-regular graphs and Ramanujan graphs we can take γ to be a small constant and $\alpha = O(\gamma + \frac{1}{\sqrt{r}})$.

 \blacksquare \blacks algorithm $\left(O(n^{O(\ln r)} \log \delta^{-1}) \right)$ which with probability at least $1-\delta$ constructs E E--- Ek such that

$$
\Phi_i \ge (1 - \epsilon) \frac{\Phi}{k} - \left(\frac{\alpha}{2} + \epsilon\right) r,
$$

 \cdots in \cdots

This theorem is only useful if $\Phi \geq cr$ for some c satisfying $c \gg \alpha$. Nevertheless, its requirements are weaker than those needed in $[4]$ and the conclusion is stronger. Notice that our two examples, r -regular graphs and Ramanujan graphs satisfy the required condition In the context of nding edge disjoint ل المعلوم المعارض المعلوم المعارض المعار

Note that there is not time to verify that the algorithm succeeds. Instead, in the applications, we assume it has and repeat the split if the algorithm that uses fails to find the required paths.

Existence Result

In this section, we prove Theorem 1. We will use the general version of the Lovász Local Lemma. For each $e \in E$ we randomly choose an integer $i \in [k]$ and then place e in E_i . We must show that there is a positive probability of choosing a partition which satisfies the conditions of the theorem. We define the following sets of *bad* events: If $S \subseteq V$ then $G[V] = (S, E_S)$ is

the subgraph of G induced by T. Thus $E_S = \{e \in T : e \subseteq S\}$.

(a) For $v \in V$ and $i \in [k]$,

$$
A_{v,i} = A_{\{v\},i} = \{d_i(v) \notin [(1-\epsilon)r/k, (1+\epsilon)r/k]\}.
$$

 $A_{v,i} = A_{\{v\},i} = \{d_i(v) \notin [(1-\epsilon)r/k, (1+\epsilon)r/\}$

(b) For $S \subseteq V$, $2 \leq |S| \leq n/2$, $G[S]$ connected and $i \in [k]$,

$$
A_{S,i} = \{|\text{out}_i(S)| < (1 - \epsilon)|\text{out}(S)|/k\}.
$$

In showing that Φ_i is sufficiently large we can restrict our attention to out(S) for which $G[S]$ is connected. Indeed, for $S \subset V$ let C_1, C_2, \ldots, C_t be the components of $G[S]$. Then

$$
\Phi_S \geq \min_{s=1}^t \frac{|\text{out}_i(C_s)|}{|C_s|}.
$$

We now consider the dependency graph of the bad events.

Claim 1 For $v \in V$ there are at most $(er)^{s-1}$ sets S such that (i) $v \in S$. (ii) $|S| = s$ and (iii) $G[S]$ is connected.

Proof of Claim 1 The number of such sets is bounded by the number of distinct s-vertex trees which are rooted at v . This in turn is bounded by the number of distinct r -ary rooted trees with s vertices. This is equal to $\binom{rs}{s}/((r-1)s+1)$, see Knuth [6].

End of proof of Claim

The Cherno bounds for the tails of the binomial distribution Bn p- that we use are

$$
\mathbf{Pr}(B(n,p) \ge (1+\epsilon)np) \le e^{-\epsilon^2 np/3} \tag{2}
$$

$$
\mathbf{Pr}(B(n,p) \le (1+\epsilon)np) \le e^{-\epsilon^2 np/2} \tag{3}
$$

where $0 \leq \epsilon \leq 1$. Using them we obtain

$$
\begin{array}{rcl}\n\mathbf{Pr}(A_{v,i}) & \leq & 2e^{-\epsilon^2 r/(3k)} \\
& \leq & 2e^{-(7\log r)/3} \\
& < & \frac{1}{r^2}.\n\end{array}
$$
\n
$$
\begin{array}{rcl}\n\mathbf{Pr}(A_{S,i}) & \leq & \exp\left\{-\frac{\epsilon^2 |\text{out}(S)|}{2k}\right\} \\
& \leq & e^{-2|S|\log r} \\
& = & \frac{1}{r^{2|S|}}.\n\end{array}
$$
\nNow, for $S \subset V$, $1 < |S| < n/2$ and $G[S]$ connected, let

$$
x_{S,i} = \left(\frac{2}{r^2}\right)^{|S|}.
$$

We show that

$$
\mathbf{Pr}(A_{S,i}) < x_{S,i} \prod_{(S,i)\sim(T,j)} (1 - x_{T,j}),\tag{4}
$$

where $(S, i) \sim (T, j)$ denotes adjacency of $A_{S,i}$ and $A_{T,j}$ in the dependency graph of bad events i.e. $out(S) \cap out(T) \neq \emptyset$. The theorem then follows from the general version of the local lemma, see for example Alon and Spencer $[2].$

It follows from Claim 1 that if $|S| = s$ then there are at most $ks(er)^t$ events $A_{T,i}$ with $|T|=t$ such that $(S,i) \sim (T,j)$. Thus, using $1-x \geq e^{-2x}$ for $0 \leq x \leq 1/2$ we have

$$
x_{S,i} \prod_{(S,i)\sim(T,j)} (1 - x_{T,j}) \ge \left(\frac{2}{r^2}\right)^s \prod_{t \ge 1} \left(1 - \left(\frac{2}{r^2}\right)^t\right)^{ks(er)^t}
$$

$$
\ge \left(\frac{2}{r^2}\right)^s \exp\left\{-2ks \sum_{t \ge 1} \left(\frac{2e}{r}\right)^t\right\}
$$

$$
= \left(\frac{2}{r^2}\right)^s \exp\left\{-\frac{4kes}{r - 2e}\right\}
$$

$$
> \frac{1}{r^{2s}},
$$

provided

$$
r > 2e + \frac{4ke}{\ln 2}.
$$

in which case is the theorem of the theorem cases and the theorem of the theorem of the theorem of the theorem o

3 Splitting Algorithm

In this section, we prove Theorem 2.

In this section, we prove Theorem 2.
Idea: We will define a sequence of sets $V = B_1 \supseteq B_2 \supseteq \cdots \supseteq B_t$ such that if $S \subseteq B_i \setminus B_{i+1}$ then out $_i(S)$ is large enough and further that every vertex in $B_j \setminus B_{j+1}$ has few neighbours in B_{j+1} . Then we will see that this latter condition accounts for the $-\left(\frac{\alpha}{2}+\epsilon\right)r$ term in the theorem.

Assume we have $B \subseteq V$. Initially, $B = V$. We randomly colour the edges of G which are incident with B , with k colours. Note that

$$
\begin{aligned} \mathbf{Pr} \left(\exists S \subseteq B, i \in [k] \text{ s.t. } |S| > 2 \log_2 n, G[S] \text{ is connected and } \Phi_{i,S} \le \left(\frac{1 - \epsilon}{k} \right) \Phi \right) \\ &\le kn \sum_{t \ge 2 \log_2 n} (er)^{t - 1} e^{-\epsilon^2 \Phi t / (2k)} \\ &\le 2kn (er)^{2 \log_2 n} e^{-\epsilon^2 \Phi 2 \log_2 n / (2k)} \\ &\le \frac{2k}{n}. \end{aligned}
$$

So, in a sense the large sets, take care of themselves. Now consider the smaller sets. Let range sees, take
 $B, |S| \leq 2\log_2 n,$

$$
X_0 = \{v : \exists S \subseteq B, |S| \le 2 \log_2 n, G[S] \text{ is connected, } v \in S
$$

and $i \in [k] \text{ s.t. } \Phi_{i,S} \le \left(\frac{1-\epsilon}{k}\right) \Phi\}.$

 X_0 can be constructed in $O(n(er)^{2 \log_2 n}) = O(n^{O(\ln r)})$ time.

$$
\mathbf{E}(|X_0|) \leq |B| \sum_{t=1}^{2\log_2 n} (er)^{t-1} e^{-\epsilon^2 \Phi t/(2k)}
$$

$$
\leq 2|B|e^{-\epsilon^2 \Phi/(2k)}
$$

provided

$$
\Phi \quad \geq \quad \frac{2k}{\epsilon^2} \ln \left(2er \right)
$$

In which case

$$
\mathbf{E}(|X_0|) \le \frac{|B|}{er}.
$$

Assume now that

$$
r \ge \frac{1}{e\gamma} \left(\frac{\alpha}{\epsilon} + 1 \right).
$$

Then

$$
\Pr\left(|X_0| \ge \frac{2|B|}{er}\right) \le \frac{1}{2}.
$$

 $\Pr (|X_0| \ge \frac{1}{er}) \le \frac{1}{2}.$
We repeat the above colouring until we find that $|X_0| \le \frac{2|B|}{er}.$ Now define We repeat the above
 $X_i = X_0 \cup \{v_1, v_2, \ldots\}$ \ldots, v_j } where v_j has at least $(\frac{\alpha}{2} + \epsilon)r$ neighbours in We repeat the above colouring until we find that $|X_0|$
 $X_j = X_0 \cup \{v_1, v_2, \dots, v_j\}$ where v_j has at least $(\frac{\alpha}{2} + X_{j-1})$. Now $|S| \leq \gamma n$ implies that S contains at most X_{j-1} . Now $|S| \leq \gamma n$ implies that S contains at most

$$
\frac{1}{2}(r|S| - |\text{out}(S)|) \le \frac{1}{2}\alpha r|S|
$$

edges. Furthermore, X_j has at least $\left(\frac{\alpha}{2}+\epsilon\right) r j$ edges and at most $j+\frac{2|B|}{er}$ vertices. Thus this process stops before j reaches $\frac{\alpha |B|}{\epsilon er}.$ S if \mathcal{S} if \mathcal{S} denotes \mathcal{S} and \mathcal{S} are found then if \mathcal{S} then if \mathcal{S} if \mathcal{S} are found to the found then if \mathcal{S} are found to the foundation of \mathcal{S} are foundation of \mathcal{S} annot be four
 $|X| < \gamma|B|$.

$$
|X| \le \gamma |B|
$$

We will repeat the construction with B replaced by X. Let $V = B_1 \supseteq B_2 \supseteq$ \mathcal{L} be the sequence of sets constructed Bt will be the rst set of size \mathcal{L} at most little force colour the edges incident with and with Berlington with Bt so that so every subset S of B_t satisfies $\Phi_{i,S} \geq \left(\frac{1-\epsilon}{k}\right)\Phi.$ We use Theorem 1 to justify the success of this The sequence of sets B B--- Bt satises success of this.

• $|B_i| \leq \gamma^j n$.

-
- $S \subseteq B_j \setminus B_{j+1}$ implies $\Phi_{i,S} \geq \left(\frac{1-\epsilon}{k}\right) \Phi$.
- $v \in B_j \setminus B_{j+1}$ implies v has at most $(\frac{\alpha}{2} + \epsilon) r j$ neighbours in B_{j+1} .

So if $S \subseteq V$ and $S_i = S \cap (B_i \setminus B_{i+1})$ then

$$
|\text{out}_{i}(S)| \geq \sum_{j=1}^{t-1} (|\text{out}_{i}(S_{j})| - |e(S_{j}:S_{j+1})|) + |\text{out}_{i}(S_{t})|
$$

\n
$$
\geq \sum_{j=1}^{t-1} \left(\frac{1-\epsilon}{k} \Phi - \left(\frac{\alpha}{2} + \epsilon \right) r \right) |S_{j}| + \left(\frac{1-\epsilon}{k} \Phi \Phi |S_{t}| \right)
$$

\n
$$
\geq \left(\frac{1-\epsilon}{k} \Phi - \left(\frac{\alpha}{2} + \epsilon \right) r \right) |S|.
$$

 \Box

References

- [1] N.Alon, A parallel algorithmic version of the Local Lemma, Random Structures and Algorithms -
- [2] N. Alon and J.H. Spencer, The Probabilistic Method, Wiley, 1992.
- [3] J.Beck, An algorithmic approach to the Lovász local lemma, Random structures and algorithms **-** letter is the a
- [4] A.Z.Broder, A.M.Frieze and E.Upfal, Existence and construction of edge-disjoint paths on expander graphs, SIAM Journal of Computing the contract of the contract o
- [5] A.Z.Broder, A.M.Frieze and E.Upfal, Existence and construction of edge low congestion paths on expander graphs, Proceedings of the $29th$ Annual ACM Symposium on Theory of Computing -
- [6] D.E.Knuth, The art of computer programming, Volume 1, Fundamental Algorithms, Addison-Wesley, 1968.
- [7] T. Leighton and S. Rao, Circuit switching: a multicommodity flow based approach, Proceedings of a Workshop on Randomized Parallel Computing 1996.
- [8] T.Leighton, S.Rao and A.Srinivasan, Multi-commodity flow and circuit switching, Proceedings of the Hawaii International Conference on System Sciences
- [9] T.Leighton, S.Rao and A.Srinivasan, New algorithmic aspects of the local lemma with applications to partitioning and routing, to appear in Proceedings of SODA '99.

[10] M.Molloy and B.Reed, Further algorithmic aspects of the local lemma, Proceedings of the 30th Annual ACM Symposium on Theory of Computing -