Fast Algorithms for k-Shredders and k-Node Connectivity

Augmentation *

Joseph Cheriyan 1 Ramakrishna Thurimella ¥

16 December 1996

Abstract: A k-separator (k-shredder) of an undirected graph is a set of k nodes whose removal
results in two or more (three or more) connected components. Let the given (undirected) graph
be k-node connected, and let n denote the number of nodes. Solving an open question, we show
that the problem of counting the number of k-separators is #P-complete. However, we present
an O(k*n? + k°n!'5)-time (deterministic) algorithm for finding all the k-shredders. This solves an
open question: efficiently find a k-separator whose removal maximizes the number of connected
components. For k > 4, our running time is within a factor of k of the fastest algorithm known
for testing k-node connectivity. One application of shredders is in increasing the node connectivity
from k to (k4 1) by efficiently adding an (approximately) minimum number of new edges. Jordan
[JCT(B) 1995] gave an O(n®)-time augmentation algorithm such that the number of new edges
is within an additive term of (k — 2) from a lower bound. We improve the running time to
O(min(k, /n)k*n* + (log n)kn?), while achieving the same performance guarantee. For k > 4, the
running time compares favorably with the running time for testing k-node connectivity.

1 Introduction

Let G = (V, F) be an undirected, simple graph. A node separator S of G is an (inclusionwise)
minimal subset S C V such that G\S is disconnected. Similarly, an edge separator is an (inclu-
sionwise) minimal subset C' C E such that G\C is disconnected. One of the differences between
edge connectivity and node connectivity is that the deletion of an edge separator always results in
two connected components, but the deletion of a node separator results in two or more connected
components. Our main contribution is the study of (minimum-cardinality) node separators whose
removal results in three or more connected components. We call a separator .5 of G a shredder if
G\ S has at least three connected components. For example, if GG is a tree, each node of degree > 3
forms a singleton shredder. For another example, if GG is the complete bipartite graph K3 3, each
part of the bipartition forms a shredder. A separator (shredder) of a graph is called a k-separator
(k-shredder) if it has exactly k nodes. A graph G' = (V, E) is said to be k-node connected if |V'| > k
and the minimum cardinality of a separator is > k. We focus on the node connectivity, so except
for the introduction, “connectivity” means node connectivity. The number of nodes, |V, is denoted
by n.

*A preliminary version of this paper has appeared in the Proc. of the 28th ACM S.T.0.C. (1996), pp. 37-46.

"Department of Combinatorics and Optimization, University of Waterloo, Waterloo, Ontario, Canada
N2L 3G1. Supported in part by NSERC grant no. OGP0138432 (NSERC code OGPIN 007). email:
jcheriyan@dragon.uwaterloo.ca

{Department of Mathematics and Computer Science, University of Denver, 2360 S. Gaylord St., Denver CO 80208.
Supported in part by NSF Research Initiation Award grant CCR-9210604. email: ramki@cs.du.edu URL:
http://www.cs.du.edu/ "ramki

We present an O(k*n? + kn!%)-time (deterministic) algorithm for finding all the k-shredders
of a k-node connected graph. This solves an open question raised by Jordan [J 95]: efficiently
find a k-separator of a k-node connected graph whose removal maximizes the number of connected
components. For k > 4, our running time is within a factor of k£ of the running time of the fastest
(deterministic) algorithm known for the basic problem of determining whether a graph is k-node
connected. It may not be possible to find all the k-shredders within a time bound that is less than
the time bound for testing k-node connectivity, though we have no proof of such a lower bound. For
k < 3, linear-time algorithms are known for testing k-node connectivity, while for & > 4, the fastest
algorithm runs in time O(min[kn? + k*n, k?n?]) [HRG 96]. We also describe a dynamic algorithm
for maintaining the set of all the k-shredders of a k-node connected graph over a sequence of edge
insertions/deletions. The time per edge update is O(|E| + (min(k, /n) + logn)kn).

Counting the number of k-separators of a k-node connected graph is a fundamental problem.
For example, the recent approximation scheme of Karger [K 95] for estimating network reliability
with respect to edge failures is based on counting (and generating) all the minimum-cardinality edge
separators in polynomial time. Karger’s work raised the question whether this method extends to
approximating network reliability w.r.t. node failures. We show that computing the number of
minimum-cardinality node separators is #P-complete, thus resolving an open question in the area.
However, we show that the number of k-shredders of a k-node connected graph is O(k*n +n?). We
present a key lemma on so-called meshing shredders in Section 4.

One application of shredders is to an important (and, as yet, partially solved) problem in
network design. A basic goal in network design is: given a (nonnegative) cost for each edge of the
complete graph, construct a subgraph of minimum cost satisfying certain edge/node connectivity
requirements. The edge costs may be either zero/one or not. Problems with zero/one costs on
the edges are usually regarded as augmentation problems: Given an initial graph (whose edges
have zero cost) increase the edge/node connectivity by adding a minimum number of new edges
(each new edge costs one). For instance, given a tree, one may want to add the minimum number
of new edges to achieve 3-node connectivity. Readers interested in network design with arbitrary
edge costs are referred to [GW 95] and [RW 95], and readers interested in edge/node connectivity
augmentation problems for both graphs and directed graphs are referred to [F 94].

Let us focus on node connectivity augmentation problems: given a graph, increase the node
connectivity to &’ by adding the minimum number of new edges. The case k' = 2 was solved by
Eswaran & Tarjan [ET 76], and later Hsu & Ramachandran [HR 93] gave a linear-time algorithm.
The case k' = 3 was solved by Watanabe & Nakamura [WN 90], and a linear-time algorithm was
given by Hsu & Ramachandran [HR 91]. The case k' = 4 was solved by Hsu [H 95] using an
O(|F| 4+ nlogn)-time algorithm, and earlier Hsu [H 92] gave an almost linear-time algorithm to
increase the node connectivity from three to four. Whether there is an efficient algorithm for the
node connectivity augmentation problem for arbitrary &’ is an outstanding open question.

Jordan [J 95] recently presented an O(n®)-time approzimation algorithm for the problem of
adding the minimum number of new edges to a k-node connected graph to make it (k 4+ 1)-node
connected. The difference between the number of new edges added by Jordan’s algorithm and a
lower bound on the number of new edges is at most & — 2. We present an improved version of
Jorddn’s algorithm [J 95] that runs in time O(min(k,/n)k*n? + (log n)kn?) and achieves the same
performance guarantee. For k > 4, the running time of our algorithm compares favorably with
that of the fastest algorithm known for testing k-node connectivity. For 4 < k = O(y/logn), our
running time is within a logarithmic factor of the running time for testing k-node connectivity, and
for larger k, our running time is within a factor of min(k, [n/k],/n) of the running time for testing
k-node connectivity. The proof of correctness of our algorithm is based on Jorddn’s proof [J 95],
but is simpler. Jordan also has a simpler proof in [J]. Moreover, for n > (2k + 1), Jordan [J 96]

improves the performance guarantee of his algorithm in [J 95] to show a slack of roughly k/2.

The rest of the paper is organized as follows. Section 2 has definitions, notation and basic
results. Section 3 describes our algorithm for finding all the k-shredders of a k-node connected
graph, and also describes a dynamic algorithm for maintaining the set of all the k-shredders over
a sequence of edge updates. Section 4 has our results on counting the number of k-separators and
k-shredders in a k-node connected graph. Section 5 describes our augmentation algorithm and its
proof of correctness.

2 Definitions, notation and preliminaries

For a subset 57 of a set 5, 5\9”" denotes the set {a € S : 2 ¢ §'}. Let G = (V, E) be a (finite, undi-
rected) graph without loops or multiedges. (Since this paper studies node connectivity, multiedges
play no role. For example, if we add to G a copy of an existing edge, then G stays the same.) V(&)
and E(G) stand for the node set and the edge set of G. An edge incident to nodes v and w is de-
noted by vw. An z<y path refers to a path whose end nodes are z and y. We call two paths openly
disjoint if every node common to both paths is an end node of both paths. Hence, two (distinct)
openly disjoint paths have no edges in common, and possibly, have no nodes in common. A set of
two or more paths is called openly disjoint if the paths are pairwise openly disjoint. For a subset
V! C V, the induced subgraph of V', G[V'], has node set V' and edge set {vw € F:v,w € V'}.
For a subset S C V, G\ denotes G[V'\S5]. We abuse the notation for singleton sets, e.g., we use
v for {v}. By a component (or connected component) of a graph, we mean a maximal connected
subgraph, as well as the node set of such a subgraph. Hopefully, this will not cause confusion. The
number of components of G is denoted by #c(G). For a subset @ C V, Ng(Q) or N(Q) denotes
the set of neighbors of @) in V\Q, {w € V\Q : wv € F, v € Q}. The function |N(Q)| on subsets Q)
of V is submodular, i.e., for all (1,82 CV,

(N(Q1)] + [N(@2)] 2 [N(Q1 N Q2)| + [N(Q1U Q2.

Recall that a separator S of G is an (inclusionwise) minimal subset S C V such that G'\\S has
at least two components. 5 is said to separate nodes v and w if the two nodes are in different
components of G\S. Clearly, for each component D of G\, N(D) = 5, and each v € S has a
neighbor in each component of G'\5. We call a separator 5 of G a shredderif G\S has at least three
components. A pair of separators 9,7 is called nonmeshing if T has a nonempty intersection with
at most one component of G\, otherwise, S and T are said to mesh. In other words, separators 5
and 7" mesh if 7" has nonempty intersections with at least two components of G\\S. A family (i.e.,
set) of separators is called nonmeshing if it is pairwise nonmeshing.

Variants of the next lemma have appeared before. Lemma 2.2 of [J 95] implies a special case
of the lemma.

Lemma 2.1 IfS and T are (not necessarily minimum) separators of a (not necessarily k-connected)
graph G such that S and T mesh, then every component of G\T (or G\S) has a node of S (orT).
Hence, the meshing relation on pairs of separators is symmetric.

Proof: The key point is this:
every component of G\T contains a node of 5.

To see this, consider a node v € V\(S U T) and suppose that it belongs to a component, say, Dy
of G\S. (If V\(SUT) is empty, then the proof is done.) Focus on a node ¢ € T" that belongs to

another component, say, Dy of G\S. Such a node exists since S and 7" mesh. Now focus on the
component, say, D’ of G\T that contains v. Since T is (inclusionwise) minimal, ¢ has a neighbor,
say, t' in D', and D’ contains a v«t’ path. Since S separates v from ¢, it is clear that this v’
path contains a node of 5 (possibly, ¢ €). Hence, D’ contains a node of S. Our claim follows.
Since G\T has at least two components, and each contains a node of S, 7" and S mesh. The lemma
follows. a

A separator (shredder) of a graph is called a k-separator (k-shredder) if it has exactly k& nodes.
A graph G is said to be k-node connected (k-connected) if |V (G)| > k 4 1, and G has no separators
of cardinality < (k—1) (i.e., the deletion of any set of < k nodes results in a connected graph). An
edge vw of a k-connected graph (' is called critical (w.r.t. k-connectivity) if G'\vw is not k-connected
(i.e., G\vw has a (k — 1)-separator).

A tight set of a k-node connected graph G' = (V, F) is a node set @ such that |[N(Q)| = k
and [V\@Q| > (k4 1). In other words, a tight set is either a component obtained by deleting a
k-separator S from G, or the union of two or more (but not all) components of G\\S. See Section 5.1
for examples and an application. The next lemma on tight sets is used often in Section 5. The
proof follows from the submodularity of |[N(Q)| over @ C V. Also, see [J 95, Lemma 1.2].

Lemma 2.2 Given a k-connected graph G = (V, E), and tight sets X, Y with X NY # § and
[VN(X UY)| > k, the set X NY is tight, and there is no edge with one end in X\Y (or Y\X) and
the other end in Y\(X UN(X NY)) (or X\(Y UN(X NY))). Moreover, if |[V\(XUY)| >k +1,
then the set X UY 1is tight.

3 A fast algorithm for finding all k-shredders

This section presents an efficient algorithm for finding all the k-shredders of a k-connected graph.
For ease of description, we assume that the input graph is k-connected, but it is straightforward
to modify the algorithm to include a test for k-connectivity. The algorithm is based on the next
result. See Figure 1 for an illustration of the algorithm.

Proposition 3.1 Let G be a k-connected graph and let v,r be a pair of nodes. The number of
k-shredders separating v and r is at most n, and the family of k-shredders separating v and r is
nonmeshing.

Proof: Let Py,..., P, be an arbitrary set of k& openly disjoint v<r paths. Every k-separator 5
separating v and r has exactly one (distinct) node from each of the paths P,..., Py. Let @ denote
V(P)U...UV(Pg). If Sis a k-shredder, then GG\'S has at least three components Dy, D3, Ds,
Suppose that v € V(Dq) and r € V(D3). The key point is:

D3 stays connected, even after removing all nodes of Py, ..., Py (i.e., D3 is a component

of G\Q), because D3 has no node of Q.

The bound on the number of k-shredders separating » and r follows, since there is a distinct
component in G\@Q for each distinct k-shredder separating v and r. Suppose that two of the
k-shredders separating » and r, say, S and T, mesh. Then, by Lemma 2.1, every component
D1, D3, D3, ... of G\S contains a node of T'. Hence, () has at most (k — 1) nodes of 7. We have
the desired contradiction, since at least one of the v<r paths Py,..., Py “survives” in G\T. O

The above result gives an O(n?) bound on the number of k-shredders. This bound can be
improved somewhat, see Algorithm 1 in the box on page 6.

Figure 1: |lllustrating algorithm Shredders(r,v), using k = 2. P; and P, are two openly disjoint r—v
paths. The components of G\(V(P)UV (FPy)) are Dy = {e}, Dy = {d}, D3 = {c}, Ds = {b1, b2, b3},
and D5 = {a}. The candidate shredders are N(D1) = {p1,¢3}, N(D2) = {ps,q3}, N(D3) = {ps, ¢},
and N(Dy4) = {p2,¢s}. Step 5 finds that N(D;) and N(D4) are incomparable, and discards both. The
remaining candidate shredders are lexicographically ordered as 51 = N(D;) and S; = N(Ds). There
are 5 bridges of P; U P, given by Dy,..., D5 and their open intervals are: (1,1), (1,2), (2,2), (1,3),
and (2,3). The union of the open intervals is (1,3). Step 6 discards S, = N(Ds3), since the index of
Sy isin (1,3). There is only one 2-shredder separating r and v: 51 = N(D1) = {p1, ¢3}.

Corollary 3.2 The number of k-shredders in a k-connected graph is O(k*n + n?)

Algorithm All-k-shredders (see Algorithm 1 in the box on page 6) outputs all the k-shredders of
a k-connected graph. The main subroutine Shredders(r,v) finds all the k-shredders separating two

specified nodes » and r. Let #q,...,% be k arbitrary nodes. A k-shredder either separates some
y; from some y;, 1 < ¢ # j < k, or separates {y;,...,yx} from some node v € V\{y1,...,yx}. To
handle the second possibility, our algorithm adds a new root node =z and the edges zy1,. .., zyx (cf.

[G 80]), and then finds all the k-shredders separating z and v, for each node v € V\{z,y1,...,yx}.

Focus on subroutine Shredders(r,v) (see Algorithm 2 in the box on page 6). We construct &
openly disjoint v«<r paths P;,..., P,. For 1 <1 < k, by an r—v path P, we mean the path P;
oriented from r to v. Let () denote the set of nodes of the paths P,..., Py, and let Dy,..., D,
denote the components of G\@Q. By a candidate shredder we mean the neighbor set N(D,) of a
component D, of G\@ (1 < ¢g < ¢) such that |[N(D,)| = k, N(D,) has exactly one node from each
path Py,..., Py, and neither r nor v is in N(D,). We take each candidate shredder S = N(D,)
to be a k-tuple by ordering the nodes in .5 according to their occurrence in Py, ..., Pr. A k-tuple
(uy,uz,...,u) is said to precede another k-tuple (wy, wy, ..., wg) if foreach i, 1 <7 <k, u; precedes
w; on the r—v path P;. If two k-tuples are incomparable (i.e., neither k-tuple precedes the other),
then neither of the two corresponding candidate shredders is a k-shredder separating r and v. In
more detail, if the k-tuple (uq,us,...,ux) for S = N(D,) and the k-tuple (wq,ws,...,wg) for
T = N(Dy) are incomparable, then there exist ¢ and j, 1 < 4,5 < k, such that u; strictly precedes
w; on the r—v path P; but u; strictly follows w; on the r—v path P;. Hence, in G\T, there is an
r<uv path via node u;, D; and node u;. Similarly, in G\ there is an r«<v path via w;, D; and
w;. Consequently, whenever Shredders(r,v) finds a pair of candidate shredders whose k-tuples are
incomparable, it discards both candidate shredders. After this round of elimination, we are left

Algorithm 1 All-k-shredders

Input: A k-connected graph G' = (V, F).
Output: The family of k-shredders of GG, stored in L.

(1) £=0.
(2) Choose (arbitrarily) k nodes yq, ..., yx.
(3) For each pair y;,y;, 1 <i< j<kdo

L' =Shredders(y;, y;);
L=CUL.

(4) Add a new node z, and add the edges zy1, ..., zys.
(5) For each v € V\{z,y1,...,yx} do
L' = Shredders(z, v);

L=Lyc.
(6) If {va,...,yx} € L, then remove {y1,...,yx} from £ if G\{z,v1,...,yx} has two compo-
nents.

End

Algorithm 2 Shredders(r, v)

Input: A k-connected graph GG and a node pair r,v € V(G).
Output: The family of k-shredders of G that separate r and wv.

(1) Find k openly disjoint r—wv paths P,..., Py in GG. Let) denote the set of nodes of the
paths Py, ..., Pp.

(2) For each path P;, 1 < j <k, number the nodes 0,1,2,...,(|P;| — 1), 00, where num(r) =10
and num(v) = occ.

(3) Find the components Dy, Ds, ..., D, of G\Q.
(4) Examine the components of G\@Q to obtain a list of candidate shredders. Represent each

candidate shredder N(D,) = {uq,ug, ..., u;} by a k-tuple (num(uq), num(us), ..., num(ug)),
where we assume that u; € P, 1 <1<k,

(5) Repeatedly discard incomparable pairs of k-tuples, until no incomparable pair remains.

(k-tuples (num(uy), num(ug), ..., num(ug)) and (num(wy), num(ws), ..., num(wy)) are
incomparable if there exist ¢ and j, 1 < 4,j < k, such that num(u;) < num(w;) and
num(u;) > num(w;).)

Lexicographically order the remaining k-tuples. Let the list in ascending order be

1,82 ..., 5.

(6) Examine all the bridges of P, U P, U...U Py, and discard every candidate shredder 5,
1 < g < f,such that 9, is “straddled” by some bridge.

(A candidate shredder S, with k-tuple (num(uy), num(us), ..., num(uy)) is straddled
by a bridge B if there exist ¢ and j, 1 <¢,j < k, such that B has attachments w € F;
and @ € P; such that num(w) < num(u;) and num(z) > num(u;).)

The remaining candidate shredders are all the k-shredders separating r and ».

End

with a totally ordered list of candidate shredders Sy, .59,...,5 (95 occurs before S; iff the k-tuple
for Sy precedes the k-tuple for 9y).

Suppose that one of the remaining candidate shredders 5,1 < ¢ < f, with k-tuple (uq, ug, ..., ug),
is not a k-shredder separating r and v. (Recall that a bridge of a subgraph H means either an
edge of G that is not in H but has both end nodes in H, or a component of G\V(H) together
with all edges incident to the component. An attachment of a bridge B is a node of H that is
incident to an edge in B.) Then there exists a bridge B of Py U P, U...U Py that “straddles” 5,
i.e., there exist 7 and j, 1 < ¢,7 < k, such that B has an attachment in the r—wv path P; that
strictly precedes u;, and B has an attachment in the r—v path P; that strictly follows u;. The last
step of Shredders(r,v) searches for all candidate shredders that are “straddled” by some bridge of
Py UP,U...U Py, and discards all such candidate shredders. The remaining candidate shredders
form the set of all k-shredders separating r and ».

Observe that algorithm All-k-shredders finds a k-shredder S that maximizes the number of
components of G\, since it finds all the k-shredders of G.

Theorem 3.3 The algorithm correctly finds all k-shredders of G. Shredders(r,v) runs in O(min(k, /n)m)
time, and algorithm All-k-shredders runs in O((k* 4+ n) - min(k,/n)m) = O(knm + k*/nm) time.

Proof: First consider the correctness of subroutine Shredders(r,v). Clearly, the set of candidate
shredders contains the set of k-shredders separating r and ». If a candidate shredder 5 is a k-
shredder separating r and v, then no bridge of P, U P, U...U P, “straddles” 5. Therefore, 5 will
not be discarded by the last two steps of Shredders(r,v). On the other hand, if candidate shredder
S is not a k-shredder separating r and v, then there must be a bridge B of Py U P, U...U Py that
“straddles” 5. This will be detected by either the last step or the second last step of Shredders(r,v),
and so 5 will be discarded.

Next, consider the correctness of Algorithm All-k-shredders. Focus on an arbitrary k-shredder
S of the input graph G'. Either S separates some pair of nodes y;,y;, 1 <@ < j <k, or not. In
the former case, S will be found by Step (3) of Algorithm All-k-shredders. Otherwise, either there
is one component of G\ S that contains all nodes of {yy,...,yx}\9, i.e., S separates {y1, ..., yr}\9
from some node v € V\(S U{y1,...,9x}), or, S = {v1,...,yx}. In this case S will be found by
Step (5) of Algorithm All-k-shredders.

Algorithm All-k-shreddersinvokes Shredders(r,v) O(k*+n) times. We will show that Shredders(r,v)
runs in O(min(k,/n)m) time. The running time claimed in the theorem for Algorithm All-k-
shredders will follow immediately. The rest of the proof shows how to implement Shredders(r,v)
to run in O(min(k,/n)m) time. Step 1 can be implemented in time O(min(k,/n)m) [G 80], and
Steps 2, 3, and 4 take linear time. Step 5 can be implemented by applying a radix sort to order
the k-tuples (of the candidate shredders) according to the total order described above. Whenever
the radix sort encounters a pair of incomparable k-tuples, it discards both. Since the number of
candidate shredders is < n, the running time for the radix sort is O(kn).

Finally, consider Step 6 of Shredders(r,v). Since the candidate shredders remaining at the start
of Step 6 are totally ordered, we may view the collection of candidate shredders as a grid with f
rows (recall that f is the number of remaining candidate shredders) and & columns.

In this setting, Step 6 checks whether for every row S and for every bridge B of PLUP,U. ..U Py,
all the attachments of B are either “above” or “below” 5.

Here is a more formal description of Step 6. Consider a bridge B of P, U P, U ... U P,. We
say that a candidate shredder S with k-tuple (uy,us, ..., ux) is above (respectively, below) B if for
every attachment w of B, say, w € P;, 1 <1 <k, u; follows w on the r—uv path P; (respectively,
u; precedes w on the r—wv path P;). For each bridge B of Py U P, U...U Py, we compute an open

interval ({g, hg), 0 < g < hp < f+ 1, by examining the attachments of B: Take (g (respectively,
hp) to be the highest (respectively, lowest) index of a candidate shredder (from among 55,...,5%)
that is below (respectively, above) B, and if there is no candidate shredder below (respectively,
above) B, then take {g = 0 (respectively, hg = f + 1). The open intervals ({p, hp) for all the
bridges B of Py U P, U...U Py can be found in linear time. The computation of the {g values is as
follows (the computation of the hp values is similar). Sequentially, for each ¢ = 1,...,k, we scan
the nodes of the r—uv path P;, keeping track of the highest index of a candidate shredder seen so
far, and whenever an attachment of a bridge B is encountered, then we update (g (initially, (g = f
for every bridge B). Once we have the open intervals ({p, hg) for all the bridges B, we can delete
all candidate shredders 5,, 1 < g < f, such that there is a bridge B with {gp < g < hg. As the
intervals may overlap, this process can be made more efficient by first computing the union of all
the open intervals, and then deleting candidate shredders whose indices lie in the union. The union
of a set of open intervals {({p,hg)} can be computed in linear time, by first sorting the tuples
({B,hp) in lexicographic order, because there are at most (n — 1) tuples ({g,hp) and the {p,hp
values are integers in the interval [0, n]. Thus, Step 6 can be implemented in linear time. a

The time bound in the above theorem can be improved by precomputing a sparse certificate
for (k + 1)-connectivity, G' = (V, E’), E' C F, see [NI 92, CKT 93, FIN 93]. G’ has |[E'| <
(k+1)(n—1)=0(kn), and if G is (k 4+ 1)-connected, then G’ is (k + 1)-connected. Moreover, G
can be computed in linear time, [NI 92]. In detail, we construct a legal ordering vy < vy < ... < v,
of V, and retain an edge vv;, i < j, in E'iff [{vy:vpv; € E, { <i}| < k+ 1. Also, we need an
extension of [CKT 93, Corollary 2.17] and [FIN 93, Corollary 2.3].

Proposition 3.4 (1) S CV with |S| < k is a shredder (or separator) of G iff S is a shredder (or
separator) of G'.
(2) If G is k-connected, then Q C 'V is a tight set of G iff Q is a tight set of G'.

Proof: We prove part (1) for shredders. Suppose that S is a shredder of G/ but not of . Then
there is an edge vw in F\E’ such that v and w are in different components of G'\S. In the legal
ordering for finding G, let v = v; and w = v;, ¢ < j, and note that |{vy : vev; € E, (<4} > k+ 1.
But then the main lemma in [FIN 93] gives the desired contradiction, |SO0{v1,...,v;—1}| > |[{vew; €
E:l=1,....i—-1} > k+ 1 O

This gives an improvement on the previous theorem: By precomputing a sparse certificate
G' = (V, E') for (k4 1)-connectivity, and running the algorithm for finding k-shredders on G, all
the k-shredders of G can be found in time O((k? 4+ n) - (k*n)).

Theorem 3.5 All the k-shredders of a k-connected graph can be found in O(k*n? + k>n'?) time.
The same time bound suffices to find a k-separator S that mazimizes #c(G\S5).

3.1 A dynamic algorithm for maintaining the set of all £-shredders over edge
insertions/deletions

Given a k-connected graph G, b(G) denotes the maximum number of components obtained by
deleting a k-separator from (/, where we take b(G) = 2 if G has no k-separators, i.e., b(G) =
max{2, {#c(G\S):5 C V,|9| = k}}. In this subsection, we sketch an algorithm for maintaining
b(G') over a sequence of edge insertions/deletions, assuming that G stays k-connected throughout.
At the start, we run our algorithm for finding all k-shredders of G (if there are no k-shredders, then
b(G') = 2). Next, using the lexicographically sorted list £ of all k-shredders, we insert each S € £
into a (max) heap, see [CLR 90], using the value #c(G\S5) as the key. (Our heap is organized by

maximum key values, and each insertion or deletion takes O(log|L]) = O(logn) time.) Whenever
an edge zy is added to (or deleted from) G, we update the list £ and the heap as follows. First, we
run our algorithm Shredders(z,y) on the graph G\zy (here, GG is the graph after the edge update),
to find all the k-shredders separating « and y. This takes time O(|E|+min(k, /n)kn), and returns
a set of at most n k-shredders L,,. For each shredder S in £, we search for ' in our list £, and if
successful, we also obtain a pointer to S in the heap. If S € £, then we decrement (or increment)
the key of S by one, since inserting (or deleting) edge 2y decreases (or increases) the number of
components of G\S by one. If #c(G\S5) becomes two (after an edge insertion), then we delete
S from L as well as from the heap. If we do not find S in £ (after an edge deletion), then we
insert S in £ as well as in the heap. Thus the overall time per edge insertion or edge deletion is

O(|E| 4 (min(k,/n) + logn)kn), and the time per query of b(G)is O(1).

Theorem 3.6 Given a k-connected graph G, b(G) and the set of all the k-shredders can be
maintained over a sequence of edge insertions/deletions such that the time per edge update is O(|E|+
(min(k, v/n) + log n)kn), the time per query of b(G') is O(1), and the preprocessing time is O((k +
log n)kn? + E3nt-5).

4 Counting the number of k-separators and k-shredders

Our first result in this section settles the open question of counting the number of k-separators in
a k-connected graph: this problem is #P-complete. Our remaining results focus on k-shredders in
a k-connected graph. The algorithm in Section 3 and Proposition 3.1 straightaway give a bound
of O((k* + n)n) on the number of k-shredders in a k-connected graph. We derive tighter bounds
for some special cases. Lemma 4.3 provides the key tool for handling meshing k-shredders and
k-separators. Recall that a separator T is said to mesh with a separator S if T has nodes from at
least two components of G\ 9.

Theorem 4.1 The problem of counting the number of k-separators in a k-connected graph is
P-complete.

Proof: Clearly, the problem is in #P since minimum-cardinality separators can be recognized in
polynomial time. We give a reduction to our problem from the problem of counting the number
of minimum node covers in a bipartite graph H such that H has a perfect matching. The latter
problem is well known to be #P-complete, see [PB 83, Problem 4, page 783] (note that the bipartite
graph there has a perfect matching). Let the bipartition of V(H) be given by P,Q) (so V(H) =
PUQ@),and let k= |P| = |Q|. Since H has a perfect matching (of cardinality k), it is clear that
the minimum cardinality of a node cover is k. We construct a k-connected graph G' by adding all
possible edges between nodes of P, and similarly adding all possible edges between nodes of @, i.e.,
we set up a k-clique on each of P and ¢). The proof is completed using two claims.

Claim 1: G is k-connected.

Let S C V(G) have cardinality < k. Consider G'\\S. The nodes in P\ 5 induce a connected subgraph
(by the k-clique on P), and similarly the nodes in @\S induce a connected subgraph. G must have
at least one edge between P\S and Q\S5, otherwise every edge of H is covered by 5, and this is
not possible since every node cover of H has cardinality > k. Then G\ is connected. Since G has
no separator of cardinality < k, it is k-connected.

Claim 2: S C PUQ with 5 # P, S # () is a k-separator of GG iff 5 is a minimum node cover of H.
This follows directly from the proof of Claim 1. a

Remarks: (1) The above reduction is not parsimonious because P and) are minimum node covers
of H but are not minimum separators of G. A parsimonious reduction is obtained by modifying the
construction of G: we add two new nodes, one adjacent to all nodes in P and the other adjacent

to all nodes in Q.
Ln/k]
2

(2) The number of k-separators in a k-connected graph may be as high as 2k

b

Before presenting Lemma 4.3, we give a few examples to convince the reader that simpler
versions of the lemma are not valid. The next result focuses on 2-connected/3-connected graphs.

Proposition 4.2 (1) The 2-shredders of a 2-connected graph form a nonmeshing family. In fact,
no 2-separator meshes with a 2-shredder.

(2) Except for the complete bipartite graph Kss, in every 3-connected graph, the 3-shredders form
a nonmeshing family. In a 3-connected graph G = (V, E), G # K33, there may be 3-separators
meshing with a 3-shredder, but the removal of each such 3-separator results in a single node and
another component.

Proof: Part (1) follows by Lemma 2.1, since every 2-separator meshing with a 2-shredder has
cardinality > 3. To see part (2), let S be a 3-shredder and let 7" be a 3-separator meshing with 5.
By Lemma 2.1, G\ S has exactly three components Dy, Dy, D3, and T has exactly one node in each
of these components. For |V(G)| < 6, it is clear that K35 is the unique graph having a 3-shredder
and a 3-separator meshing with the 3-shredder. If |V(G)| > 6, then V\(SUT) # 0. For each node
v e V\(SUT), say, v is in Dy, the induced subgraph G[V(D1)U S] has three openly disjoint paths
from v to S (these paths have only node » in common), so at least two of these paths survive in
G\T'. Hence, all nodes of V\(SUT) are in one component of G\T, and also this component has
at least two nodes of §. Part (2) follows. o

For higher k and n < 2k, there may be O(k) k-shredders such that every pair is meshing.
Let k = 3k’, where k' is a positive integer. Take (G to be the graph obtained from the clique
Kiy3 by removing the 3(k' + 1) edges of (k' + 1) node-disjoint triangles (K3’s) T1,...,Tp4q. It
is easily checked that G is k-connected, each of the k-sets V\T;, 1 < i < k' + 1, is a k-shredder,
and for 1 < i < j < k' 41, V\T; and V\T; mesh. Finally, consider some meshing k-shredders
on graphs obtained from the complete bipartite graph Ky, & > 5, as follows. Let the node
sets of the bipartition be S = {sy,...,s;} and T' = {t1,...,tx}. Take two new nodes v and w,
and join v to Ky by the edges vsy,vsg, vls, ..., vt;, and similarly join w to Ky by the edges
WSz, WSq, Wiz, ..., wlp. The resulting graph G is easily seen to be k-connected. Now, § is a k-
shredder since G\ S has components {1}, {t2}, {ts, ..., tx, v, w}, and T is a k-shredder meshing with
S, where the components of G\T are {sy,s2,v},{s3, 84, w},{s5},...,{sr}. In the above example,
|V(G)| = 2k + 2, but this construction easily extends to any number of nodes > 2k + 2.

Lemma 4.3 Let G be a k-connected graph, k > 1, and let S be a k-shredder of G. If there is a
k-separator T that meshes with S, then there is a component Q) of either G\T or of G\S such that
Q) contains every node of V\(SUT).

Proof: First, note that the lemma holds trivially if V\(SUT) = . Now assume that V\(SUT') # 0.
Let Dy, Dy, ..., Dy denote the components of G\S, where h > 3. W.lLo.g. suppose that Dj is a
component of G\S having the maximum number of nodes from V\T, and let z be any node in

V(Dp)\T. W.lo.g. suppose that the components Dy and Dy of G\S each have one or more nodes
of T.

10

Claim: Every node v € V\(S UT) in one of the components D1,..., Dy_1 of G\S has a path to
zin G\T.

To prove the claim, consider v € V(D;)\T, 1 <i < h — 1. There are k openly disjoint v<z paths
in GG, since GG is k-connected. It can be seen that each of these paths is contained in the subgraph
of G induced by V(D;) U S UV(Dy), i.e., no path uses a node of (V(D1)U...UV(Dp_1)\V(D)).
Since T has at least one node in each of V(Dq) and V(D3), it has < k nodes in V(D;)USUV(Dp).
Hence, at least one of the &k openly disjoint vz paths survives in G\T. This proves the claim.

If G\T has a component that contains V(Dp)\T, then the lemma follows since every node
in V\(S UT) has a path to V(Dy)\T in G\T (by the claim). Otherwise (i.e., if V(Dp)\T is
disconnected in G\T'), then T contains all nodes of the other components Dy,..., D1 of G\S.
To see this, suppose that there is a node v € (V(D1)U...UV(Dp_1))\T. By the claim, every node
z € V(Dp)\T has a path to v in G\T, hence V(Dj)\T is contained in a component of G\T. The
lemma follows by taking @) = Dy, since ' D V(D1)U...U V(Dp_q). a

We can obtain another proof of Proposition 3.1, namely, the family of k-shredders separating
a given pair of nodes v,z in a k-connected graph is nonmeshing; hence, the family has cardinality

O(n).

Proposition 4.4 Let G be a k-connected graph, and let v,z be nodes of G. Let S and T be two
k-shredders that separate v and z. Then § and T are nonmeshing.

Proof: Clearly, both v and z are in V\(S UT). By way of contradiction, suppose that S and T’
mesh. Then by Lemma 4.3, there is a component either of G\S or of G\T that contains both »
and z. Contradiction. a

5 Augmenting node connectivity by one

Our algorithm for augmenting the node connectivity of a graph by one is a variant of Jordan’s
algorithm [J 95] but is significantly faster. First, we describe a lower bound on the number of
new edges required to increase the node connectivity from k to (k4 1). Several recent algorithms
for edge/node connectivity augmentation problems are based on splitting-off theorems, see the
survey paper [F 94]. In particular, Jordan’s algorithm is based on a key theorem for splitting off
edges while preserving node connectivity. We state and prove a simpler version of this theorem in
Section 5.2 (Theorem 5.1). In Section 5.3, we present the augmentation algorithm, prove it correct,
and analyze its running time.

Readers interested in algorithmic aspects may prefer to skip Section 5.2 after reading the
overview of the augmentation algorithm given there, and to refer back when required to Theo-
rem 5.1 and Lemmas 5.6-5.8.

See Figure 2 for an illustration of the algorithm.

5.1 A lower bound on the number of augmented edges

Let GG be a k-connected graph. Recall from Section 2 that a tight set is a node set ¢} such that
IN(Q)| = k and |V\Q| > (k+ 1). The maximum number of pairwise disjoint tight sets in G is
denoted by #(G), i.e., () is the maximum integer ¢ > 0 such that Dy,..., D, are tight sets and
D;NnD; =0,1 <i<j<U{ Recall from Section 3.1 that b(G) denotes the maximum number of
components obtained by deleting a k-separator (assuming there is one) from G.

11

a4 0;

DQIQQ DSIQS

(1) (2)

Figure 2: lllustrating algorithm augment node connectivity.

(1) G is 2-connected, b(G) = 2, and t(G) = 4. The leafs are D; = {a;},1 < 7 < 4, and the
superleafs are Q; = {a;,b;,¢;}, 1 < i < 4. Suppose the algorithm (Lemma 5.6) chooses @; = Q4
(so N(Q;) = {d,e} is not a shredder) and takes (); = ()2, @, = Q4. Adding edge 2y = aja; fails
(G'+ ajay has a new leaf Q;UQ; U{e}), similarly, adding edge 22 = a;a4 fails. Adding edge yz = azaq
is guaranteed to succeed.

(2) G is a tree, b(G') = 3 and t(G) = 5. Suppose the algorithm (Lemma 5.7) chooses (); = Q)1 (so
N(Q;) is a shredder) and takes @); = ()2. Adding the edge between the degree-one nodes in); and
(); succeeds.

ExaMPLES: Suppose that G is a tree. Then ¢(G) is the number of degree-one nodes, and b(G) is
the maximum degree of a node. If (¢ is the complete bipartite graph Ky x, then {(G) = |V(G)| = 2k
and b(G') = k. Lastly, for the graph G in Figure 2(1), ¢{(G)) = 4 and b(G) = 2.

Consider our problem of adding some edges to augment the connectivity of G from k to k + 1.
Let G' be the augmented graph. An obvious lower bound on the minimum number of edges
required is max(b(G') — 1, [t(G)/2]). To see this, first consider a k-separator S such that G'\S has
b(() components, and note that we must add > b(G) — 1 edges to ensure that G'\\9 is connected.
Secondly, for every tight set D, G/ must have an edge with one end in D and the other in V\(D U
N(D)). Since G has ¢(G) pairwise disjoint tight sets, we must add > [¢(G')/2] edges. Unfortunately,
the lower bound is not tight and there may be a slack of (k —2), as shown by the following example
due to Jorddn [J 95]: consider the complete bipartite graph Ky, and note that the minimum
number of new edges required is 2k —2, but our lower bound is k, since b(K1, ;) = k and t(Ky) = 2k.
Hence, an algorithm based on the above lower bound, such as the algorithm in this section, will
not find the optimal augmentation on all graphs.

5.2 A splitting-off theorem for node connectivity

Let s be a distinguished node of a graph. Splitting off a pair of edges vs and sw incident to s
means removing edges vs and sw, and adding the edge vw (if vw is already present, then no edge
is added). The algorithm for augmenting node connectivity is based on a subroutine for finding

12

and splitting off a pair of edges incident to s such that the node connectivity of the resulting graph
does not decrease. Here is an overview of the augmentation algorithm that skips some important
points:

Let G be a k-connected graph that is not (k+1)-connected. We first construct a (k+1)-
connected graph G by adding a new node s and new edges between s and each node
v € V(G). (G is (k4 1)-connected because every separator of G contains the node
s as well as a separator of GG.) Then for each node v € V((&), in an arbitrary order,
we remove the edge sv from G if doing so preserves the (k + 1)-connectivity of the
resulting graph (also denoted é) For each tight set D of (7, note that G has an edge
between some node of D and s (otherwise, No(D) is a k-separator of G). We attempt
to pair up the edges incident to s and split off all these edge pairs, while preserving
(k + 1)-connectivity. If we succeed, then the resulting graph G’ (without node s) will
be a (k + 1)-connected augmentation of G.

The earliest splitting-off theorem is due to Lovéasz [Lo 74] and concerns the edge connectivity
of multigraphs: If s is a node of even degree in a multigraph G, and there are at least k > 2
edge-disjoint paths between any two nodes of V(é)\s, then all edges incident to s can be paired
up and split off such that the resulting multigraph (without node s) has at least &k edge-disjoint
paths between any two nodes. Mader [Ma 78] gave a deep generalization. Mader [Ma 82] also
gave a splitting-off theorem for the edge connectivity of directed multigraphs. Other expositions
of these three results may be found in [F 92a], [FF 92b] and [F 93, FJ 95a], respectively. To the
best of our knowledge, the earliest splitting-off theorem for node connectivity is due to Bienstock,
Brickell and Monma [BBM 90, Theorem 3]. A different proof of a variant of this theorem is given
by Jordan [J 95, Theorem 3.1]. Jordan gave a splitting-off theorem for the node connectivity of
directed graphs [J 93, Theorem 2]. Another proof appears in [FJ 95b].

Splitting-off theorems for node connectivity hold only under appropriate conditions. Here are
three examples (violating the appropriate conditions) such that splitting off any (or all) edge pair(s)
incident to s decreases the connectivity. These examples are due to Bienstock et al [BBM 90, p. 324],
and to Hsu [H 92].

ExaMpPLE (1): Start with the complete bipartite graph ¢ = K33, and obtain the 4-connected
graph G by adding a new node s and all the edges {sv:v € V(G)}. Splitting off any edge pair
incident to s results in a 3-connected graph. This example generalizes to all Ky, k > 3.
ExAMPLE (2): For another example, start with the complete bipartite graph G' = Ky ,, p > 4, and
obtain the 2-connected graph G by adding a new node s and p new edges sv where v € V(G) is
in the larger part of the bipartition of Ky ,. Splitting off any edge pair incident to s results in a
1-connected graph. This example generalizes to all Ky ,, k> 1,p > k + 3. Moreover, we can replace
one or more nodes v in the larger part of the bipartition of K, by (k 4 1)-connected graphs H,
(or (k + 1)-cliques H,) and replace the k edges incident to v by k edges incident to distinct nodes
of H,.

EXAMPLE (3): For the last example, take three copies of the complete graph K4 on the node
sets {a;,b;,¢;,d;},1 < i < 3. Identify the nodes by and ay, i.e., replace by and a3 by a new node
that is incident to all edges incident to by or a,. Similarly, identify the nodes by and as, and the
nodes b3 and a;. Also, add a new node f and the edges fe¢;, 1 < 7 < 3. The resulting graph G is
3-connected. Obtain the 4-connected graph G from G by adding a new node s and the edges sf
and sd;, 1 <1 < 3. For every pairing of the edges incident to s, splitting off all the edge pairs (and
ignoring the node s) results in a 3-connected graph. This example generalizes to all odd k£ > 3: take
three copies of the complete graph K41, “join” them as above, then add a copy of Kj_q, and for

13

each copy of Kiyq add the edge set of a matching between the degree-k nodes and the copy of
Kj_1. Take s to be one of the nodes of the copy of K;_q.

Our version of the splitting-off theorem is weaker than the splitting-off theorem in [J 95, The-
orem 3.1]: we add the condition degé(s) > 2k. This allows us to simplify the proof. For the main
problem of augmenting the connectivity from & to (k + 1), even our weaker theorem implies the
same slack of (k — 2) between the number of new edges and the lower bound. Also, our theorem
omits the condition |V(é)| > 2(k + 1), consequently it has to allow the possibility that é\s =Gis
the complete bipartite graph K . (The only use of this condition in [J 95, Theorem 3.1] is to show
that é\s # Ky .) The difference between our version of the splitting-off theorem and Bienstock
et al’s splitting-off theorem [BBM 90, Theorem 3] is that a new condition (see (3) in Theorem 5.1)
has been added. This guarantees that the connectivity can be preserved by a single splitting-off
operation, whereas in [BBM 90, Theorem 3] one or two splitting-off operations are required to
preserve the connectivity. Our proof hinges on the notions of superleafs and the maximal tight sets
W;; (defined below), and follows immediately from Lemmas 5.6-5.8. Recall that an edge vw of a
graph H is called critical if the node connectivity of H\vw is less than that of H.

Theorem 5.1 Let G be a (k 4+ 1)-node connected graph (k> 1), and let s be a node of G. Suppose
that s is incident to t > max(2k,k + 3) edges each of which is critical. Then either

(1) there is a pair of edges incident to s such that splitting off this pair results in a (k4 1)-node
connected graph, or

(2) G\s = Ky, or
(3) there is a (k + 1)-separator X of G such that s € X and G\X has deg~(s) components.

The necessity of three of the conditions in the theorem, namely, ¢ > &k + 3, (2) and (3) can be
seen from Examples (3), (1) and (2), respectively.

Suppose that splitting off an edge pair v;s, sv; in a (k4 1)-connected graph G results in a graph
Gii; that is not (k + 1)-connected. Then G;; has a k-separator X.

Fact 5.2 Let X be a k-separator of Gij. Then (1) s & X, (2) either v; & X orv; ¢ X, and (3) in
Gi;\ X the component containing s contains neither v; nor v;.

Proof: First, note that Gi;\s = (G\s) (v;v;), since the edges v;s and sv; “vanish” when s is
removed. Hence, a k-separator X of G” with s € X is also a k-separator of G. Since G has no
k-separator, part (1) follows. Similarly, for part (2), ”\{v“v]} = G\{v“v]} 50 a k-separator X
of éij with v; € X,v; € X is also a k-separator of G. See Figure 3 for an illustration.

To see that s and {v;, v;}\ X are contained in different components of éij\X, first suppose that
neither »; nor v; is in X. Then v; and v; are in the same component of ég\X, since there is
a new edge v;v;. If s is also in this component, then X is a k-separator of ¢, contradicting the
(k + 1)-connectivity of . Similarly, if v; € X (v; € X), then s and v; (v;) must be in different
components of G;;\X. 0

G'i; has a tight set (w.r.t. k-connectivity) that contains v; or v; (or both) but not s, by the
previous fact. Let W;; denote such a tight set that is (inclusionwise) maximal, i.e., no proper
superset of W;; is tight. (Thg maximality of W;; will be exploited in Fact 5.5.) Clearly, W;;
contains no neighbor of s in & other than v; and v; (i.e., Wy; is disjoint from Nz(s)\{vi,v;}),
otherwise the k-separator N@J(Wij) of G;; contains s, contradicting the previous fact. There are

three cases:

14

split off v;s, sv;

k-separator X

Figure 3: |lllustrating the definition of W;;. (1) Case (i). (2) Case (ii).

(i) Wi; contains both v; and v;;
(ii) W;; contains v; but not v;, and so v; € N@J(Wij);
(iii) W;; contains v; but not v;, and so v; € N@J(Wij).

(Possibly, there are two different maximal tight sets, one satisfying (ii) and the other satisfying (iii),
but then we take W;; to be either of these two sets.) Case (i) is crucial for our proof of the splitting-
off theorem; we will avoid cases (ii) and (iii) altogether. (These three cases correspond to cases
(a), (B) and () in [J 95, p. 13].)

Let G be a k-connected graph. We call an (inclusionwise) minimal tight set of G a leaf, and
denote the leafs by D;, 7 = 1,2,.... For example: (1) if G is a tree, then every degree-one node
is a leaf, (2) if G = Ky, then every node is a leaf (in both graphs, there are no other leafs), and
(3) the graph in Figure 2(1) has four leafs, {a;}, 1 <1 < 4. In general, leafs need not be disjoint.
(Example: Take a complete graph K5 having nodes a,b,¢,d, e, and add two more nodes f and g,
where f has edges to a,b, g and ¢ has edges to ¢, d, f. The resulting graph is 3-connected. Consider
the 3-separators that isolate f and ¢, {a,b,g} and {c,d, f}, and note that the leafs {a,b,e} and
{e,d, e} intersect.) The next result is from [J 95]. Recall from Section 5.1 that #(G') denotes the
maximum number of pairwise disjoint tight sets in G.

Fact 5.3 (Lemma 2.1 [J 95]) If a k-connected graph H has t(H) > k + 1, then all the leafs are
pairwise disjoint, and the number of leafs is t(H).

Fact 5.4 Let G be a (k + 1)-connected graph, and let s be a node of G. Every tight set (w.r.t.
k-connectivity) of G = G\s contains a neighbor of s in G. If G has { > (k + 2) critical edges
incident to s, then G has > (leafs, all the leafs are pairwise disjoint, and t(G) > (.

An (inclusionwise) maximal tight set that contains exactly one leaf is called a superleaf, and
is denoted by Q;, 7 = 1,2,.... (This definition allows a superleaf to have a nonempty intersection

15

with several leafs. A superleaf may be a leaf.) For example, if i is a tree, a superleaf is a maximal
path starting at a degree-one node such that all other nodes are degree-two nodes. For another
example, the graph G in Figure 2(1) has four superleafs {a;,b;,¢;}, 1 < ¢ < 4. The notion of
superleafs is used in the proofs of all the splitting-off theorems for node connectivity cited above.
The next result is essentially from [J 95] (see Claim Iin Theorem 3.1) and summarizes some useful
properties of superleafs.

Fact 5.5 Let G be a k-connected graph with t = t(G) > k+ 3. Let Dy,...,D; be the (pairwise
disjoint) leafs of G'. Then:

(0) For every leaf, as well as every superleaf, the induced subgraph is connected.
(1) For every leaf D;, 1 < i <t, there is a unique superleaf Q; containing it.

(2) All the superleafs are pairwise disjoint. Hence, except for the leaf contained in it, a superleaf
s disjoint from all other leafs.

Let the (k + 1)-connected graph G be obtained from G by adding a new node s, and a new edge
between s and one node v; in D;, for each i = 1,...,t. Suppose that (in G) splitting off the edge
pair v;s, sv;, 1 <@ < j <t, decreases the connectivity. Let W;; be the node set defined above. Then:

(3) Wi; is disjoint from all superleafs Q¢, 1 <L <t, i #L# j.

(4) Either W;; contains both the superleafs Q; and Q); (case (i)), or W;; = Q; and D;NN(Q;) # 0
(case (ii)), or W;; = Q; and D; N N(Q;) # 0 (case (iii)).

(5) If Q; is disjoint from N(Q;) (this implies that Q; is disjoint from N(Q;)), then W;; contains
both the superleafs Q; and Q; (case (i) for W;).

Let GG be a k-connected graph with ¢t = ¢(G)) > k4 3, and let Dy,..., D, be the leafs of G'. A
node pair {v;,v;} of GG is called a saturating pair if adding the edge v;v; decreases the number of
leafs by two, i.e., if {(G 4 v;v;) = t(G) — 2. Alternatively, {v;,v;} is a saturating pair if there are
leafs, say, D; and Dj, 1 <i# 5 <t with v; € D; and vj € D; such that splitting off the edge pair
v;s, sv; in the (k4 1)-connected graph G preserves the connectlwty, where (is obtained from & by
choosing an arbitrary node v, € Dy, for each {, 1 < i # (# j <t, adding a new node s, and adding
the new edges svs, 1 < € < t. If {v;,v;} is not saturating, then G has a tight set W;; containing v;
or v; (or both) and satisfying case (i), (ii) or (iii) above.

The proof of Lemma 5.6 follows the proof of Step 3.4, Theorem 3 of [BBM 90] and the proof
of Claim II(a)—(b), Theorem 3.1 of [J 95]. For the sake of completeness, a proof is included in the
appendix.

Lemma 5.6 Let G = (V, E) be a k-connected graph (k > 1) with t(G) > k+3. Let Q;, Q;
and @, be three distinct superleafs such that N(Q);) is disjoint from each of Q; and Q,. Let D,
D; and D, be the leafs contained in @);, Q); and @), respectively. Then for every three nodes
€D, yeD;and z € D,, either one of the node pairs {z,y}, {z,z} or {y,z} is saturating, or
N(Q:) = N(Q;) = N(Qp), i.e., N(Q;) is a k-shredder.

Lemma 5.7 Let G = (V, E) be a k-connected graph (k > 1) with t(G) > max(2k,k + 3). Let
Q: CV be an arbitrary superleaf such that G\N(Q;) has at least three components (so N(Q;) is a
k-shredder).

(1) If one of the components of G\N(Q;) contains two or more leafs, then that component contains

16

a superleaf Q;, + # j.

(2) If a component of G\N(Q;) contains a superleaf); as well as another (disjoint) leaf D,, then
for every node x € D;, and for every node y € D;, the node pair {z,y} is saturating, where D; is
the leaf contained in); and D; is the leaf contained in Q);.

Proof: Since t{(G') > k43, G has {(G) (pairwise disjoint) leafs and #(() (pairwise disjoint)
superleafs (Facts 5.3-5.5). Let the component C' of G\N(();) contain leafs Dy and D, h # g.
Consider the superleaf Qp, Qn 2 Dp, and let X = N(Qp). If @, 0 N(Q;) = 0, then the proof of
part (1) is done since @, C C. Otherwise, if @, N N(Q;) is nonempty (i.e., there is an edge with
one end in ¢); and the other end in @), then X meshes with N(Q;) since X has nodes in two
components of G\ N(Q;), namely, @; and C. (To see that X has a node in C', note that C' contains
a path from Dj to D, and X separates @), from D,.) By Lemma 4.3, there are two possibilities:
(I) except for one component of G\ N(Q);), every component of G\ N (();) is contained in X . Clearly,
the exceptional component is C'. (I1I) There is a component C’ of G\ X that contains V' \(XUN(Q;)).
In Case (I), [V\(C UN(Q;))| <k —1because X N C # (). Hence, from among the > 2k superleafs
of G at least 2k — (k — 1) = k 4 1 superleafs are contained in C' U N(Q);), and one of these (say,
Q;) is disjoint from N(Q;). In Case (II), since C’ = @}, the remaining superleafs are contained in
X UN(Q;). Since X U N(Q;) contains > 2k — 1 superleafs and |[(X U N(Q;)\Qn| < 2k —1 (@
has at least one node of N(();)), we see that every superleaf other than @}, is a single node, so the
superleaf @), of D is a single node and is disjoint from N(();). This completes the proof of part (1),
and shows that if a component of G\ N(Q);) contains at least two leafs, then the component contains
a superleaf as well as another (disjoint) leaf.

Now consider part (2). Clearly, @; is disjoint from N(@);), since (); is contained in a component
of G\N(Q);). Suppose that {z,y} is not saturating. Then G has a maximal tight set W;; such
that W;; O Q; U @Q;. (Cases (ii) and (iii) for W;; cannot occur by Fact 5.5 since N(Q;) N Q; = 0.)
Focus on the k-separator N(W;;) = X. Since W;; contains);, X has no nodes from ;. Then by
Lemma 2.1, X cannot mesh with N(Q);), i.e., all nodes of X\ N(Q;) are contained in one component
of G\N(Q;). Take H to be a component of G\N();) that contains neither ¢); nor ¢);. We now
have the desired contradiction. Either X\N(Q);) is contained in H, or X\N(Q;) is contained in
the component of G\N(Q);) which contains D; and D,. In the first case, W;; must contain three
leafs D;, D; and D,. In the second case, W;; must contain / (and at least one leaf contained in
), because W;; contains all nodes in N(Q;)\X, and each such node has a neighbour in H. But,
by Fact 5.5, W;; contains no leafs besides D; and D;. a

By a J-graph we mean a k-connected graph G such that there is a k-shredder S such that every
node in S has degree k, no two nodes in 5 are adjacent, G\ S has exactly k components, and each of
these components contains exactly one leaf. Clearly, k is > 3. The next lemma and Proposition 5.9
show that a J-graph is either the complete bipartite graph K i, or is obtained from K, ; by fixing
one of the two parts of the bipartition, replacing one or more nodes » in this part by appropriate
subgraphs H, on > (k + 1) nodes, and replacing the k edges incident to v by k edges incident to
distinct nodes of H,,.

Lemma 5.8 Let G = (V, E) be a k-connected graph (k > 1) with t(G) > max(2k,k + 3). Let
Q: C V be an arbitrary superleaf such that G\N(Q);) has b > 3 components (so N(Q;) is a k-
shredder). Suppose that each of the b components of G\N(Q;) contains exactly one leaf. Then:

(1) Either b > k+1 and b =t(G), or b=k and G is a J-graph.
(2) Fora J-graph G, the minimum number of edges required to augment the connectivity to (k+1)
is (2k —2) if G = Ky, and k + [k/2] — 1 otherwise.

17

Proof: Let S denote the shredder N(Q;). Let C1,C5,...,Cy be the components of G\N(Q;).
Since ¢(G) > k + 3, t(G) equals the number of leafs, and the leafs are pairwise disjoint (Fact 5.3).
We will call a leaf bad if it contains one or more nodes of 5. Similarly, we call a superleaf bad if it
contains one or more nodes of §. The proof of part (1) follows from three (easy) claims.
Claim 1: If b > k + 1, then there are no bad leafs, and no bad superleafs.
This claim follows from Lemma 2.1, since no k-separator of G meshes with S when b > k£ + 1, so
for every tight set @, either) is contained in a component of G\S or () contains two or more
components of G\ 5.

From Claim 1, it is clear that if b > k 4 1, then b = t(G).
Claim 2: If b < k, then there are k bad leafs, b = k > 3, and #(G) = 2k.
There are at most k bad leafs (since each contains a distinct node of 5), and exactly b < k nonbad
leafs (since each component of G'\S contains exactly one leaf). So the number of leafs, ¢(G), is
< b+ k < 2k. Since t(G) > 2k, the claim follows.
Claim 3: If b < k, then every bad leaf consists of exactly one node.
Clearly, every bad leaf has exactly one node of 5, since there are k bad leafs. Let D be a tight set
such that (I) exactly one node of S is in D, (II) some component, say, Cj of G\ 'S, has a node in D,
and (III) for j = 1,...,k, at least one node z; of C; is notin D. Clearly, [V\(CrUD)| > 2k —2 >
k4 1, because |S\(Cr U D)| = [S\D| = k — 1, and there are (k — 1) other nodes 1,...,2(_1) not
in Cx U D (the last inequality holds since £ > 3). Applying Lemma 2.2 to the tight sets C and D,
we see that Uy, N D is a tight set. Hence, D is not a leaf. This proves the claim.

Suppose that b < k. Claim 3 implies that every node in 5 has degree k. No two nodes in 5
are adjacent, since each node z € S must have a neighbor in each of the k components of G\S.
Part (1) of the lemma is done: If b < k, then b = k and G is a J-graph.

Part 2: Now consider a minimum-cardinality set of new edges whose addition to the J-graph ¢
augments the connectivity to k + 1. If ¢ = Ky g, then it is clear that (2k — 2) edges are necessary
and sufficient.

Claim 4: If G is a J-graph and G # Ky g, then k4 [k/2] — 1 edges are necessary and sufficient to
augment the connectivity to (k + 1).

To see the lower bound, note that G\\S' has k components, so we need to add > (k — 1) new edges
incident to nodes of G\S. Moreover, S contains k pairwise disjoint tight sets, so we need to add
> [k/2] new edges incident to nodes of S. The lower bound follows since the two augmenting
edge sets are disjoint. To construct the optimal augmentation, first choose one node in each leaf of
each component of G\9, and add the edge set of an arbitrary tree that spans these nodes. Then
add [k/2] new edges incident to S such that every node of S is incident to a new edge (i.e., add
a maximum matching on S, and if || is odd, then add one more new edge). Let G’ denote the
augmented graph. The proof of this claim and part (2) of the lemma follows from the next claim.
Claim 5: (i is (k 4 1)-connected.

The proof is by contradiction. If G’ is not (k 4+ 1)-connected, then G’ has a k-separator X. We
examine three mutually exclusive cases.

Case (I): X = S. By the augmented tree on the leafs in G'\5, G'\ X is connected.

Case (II): X # S and X is nonmeshing w.r.t. 5. Again, by the augmented tree on the leafs in G'\9,
G'\X is connected.

Case (III): X meshes with S. By Lemma 2.1, X has a node in each of the k components of
G\S. Clearly, X and S are disjoint, and every component of G\S has exactly one node of X.
Let C; be an arbitrary component of G\S with |C;| > 1 (C; exists since ¢ # Ky). For each
v e C;\X, G[C;U 8] has k openly disjoint paths from v to 5, so at least (k — 1) > 2 of these
paths survive in G'\ X. Hence, all nodes of (C; U)\ X, except possibly one node, say, z € 9, are
in the same component of G'\X. Because of the [k/2] augmented edges incident to 5, there must

18

be an augmented edge from z to some node of S\z, and so all nodes of S are connected in G'\ X.
Then G'\X is connected. The lemma is proved. O

Proof: (Theorem 5.1) The splitting-off theorem follows straightaway from Lemmas 5.6-5.8. Let
G be the graph in the theorem, and let G = é\s Since t > (k4 3), G has t (pairwise disjoint)
leafs, and t (pairwise disjoint) superleafs, by Facts 5.3-5.5. Take an arbitrary superleaf @; and
focus on the k-separator S = N(Q;). At most k superleafs can intersect N(();), so there must be
two superleafs (besides ();) that are disjoint from N(@);). Take these superleafs to be @; and @,. If
S is not a shredder, then Lemma 5.6 guarantees a saturating node pair {v, w},i.e., in the graph é,
the connectivity is preserved on splitting off the edge pair vs, sw. If S is a shredder, then depending
on whether there is a component of G\ that contains two leafs, either Lemma 5.7 guarantees a
saturating node pair {v;,v;}, or Lemma 5.8 guarantees that G\\9 has {(() = degz(s) components,
or Lemma 5.8 guarantees that GG is a J-graph. In the first and second cases, we are done (by the
first and third items in the consequent of the theorem). If G is a J-graph, then either G = Ky or
not. In the first case, we are done, since the theorem allows ¢ = K} ;. In the second case, let §
be a k-shredder of GG as in the definition of J-graph. For each node z € 5, 2z is a leaf of GG, and so
G has the edge zs. By Lemma 5.8, part (2), splitting off an arbitrary edge pair of G of the form
28,825, 1 # J, % € 5, z; € S results in a graph éij that is (k + 1)-connected. O

Remark: Note that in the last case of the above proof, the graph ?ij resulting from the splitting-off
operation will not satisfy the conditions of the theorem, since t(G;) = 2k — 2.

The next result helps to characterize J-graphs.

Proposition 5.9 If G is a J-graph, G # Ky, and S is a k-shredder of G' as in the definition of
a J-graph, then the number of nodes in a component of G\S is either one or > k + 1.

Proof: Let C be an arbitrary component of G\ 5, and let ¢ denote the number of nodes in C'. We
get lower and upper bounds on the sum of the degrees of the nodes in C since (I) every node in C'
has degree > k and at most one node in C' has degree k, (II) there are < (5) edges with both ends
in €, and (III) there are exactly k edges with one end but not the other in C"

E+(k4+Dc—1)< Zdeg(v) <ecle—1)4 k.
vel

Then (¢ — 1)(¢— (k+ 1)) > 0, implying that ¢ = 1 or ¢ > k + 1. This proves the claim. 0

5.3 The augmentation algorithm

We first sketch the augmentation algorithm, and then give the running time analysis. Given a
k-connected graph G = (V, F), an augmenting set means a set I’ of node pairs (i.e., edges of
the complete graph on V') such that the augmented graph (V,E U F) is (k 4+ 1)-connected and
ENF ={. The slack of an augmenting set F is the difference between the cardinality, |F|, and the
lower bound on the number of new edges required for augmenting the connectivity of G by one,
namely, max(b(G) — 1, [#(G)/2]). Throughout this subsection, we use N’(.) for Ngi(.), and N(.)
for Nx(.).

Theorem 5.10 Given a k-node connected graph with n > (k + 2), the augmentation algorithm
correctly increases the connectivity to k + 1, and the number of new edges added is at most k — 2
plus the lower bound of max(b(G) — 1, [t(G)/2]).

The running time is O(min(k,/n)k*n* + (log n)kn?).

19

Algorithm 3 Augment node connectivity by one

Input: Graph G = (V, F), integer k > 1. G is k-connected and |V| > k 4 2.

Output: (k+ 1)-connected graph G’ and augmenting set E(G’)\ E with slack < (k — 2).
Let £/ = F, and G' = (V, £') (initially, G’ = G).
If G" is (k 4 1)-connected, then stop else use Algorithm 1 (Section 3, page 6) to compute
b=b(G") = Scﬁfglzk#c(G’\S).

Obtain a (k + 1)-connected graph G = (V + s, E) from G’ by adding a new node s and an
(inclusionwise) minimal subset of the edge set {sv:v € V}.
Throughout the algorithm G’ denotes G'\s. Let t = degx(s) = |N(s)).
While t > 2k do (main loop)
If b > [t/2] then
use Jordan’s Theorem 2.4 [J 95] to augment the connectivity of G’ to (k4 1) by
adding a minimum-cardinality edge set, and stop.
End (If).
Let @); be an arbitrary superleaf of G’.
If either N'(Q;) is not a shredder of G’ (Lemma 5.6) or N'(Q);) is a shredder of ¢/ and

one component of G'\N'(();) contains two leafs (Lemma 5.7) then
find and split off an edge pair incident to s such that G stays (k + 1)-connected;
else
G’ is a J-graph, so use Lemma 5.8 to (suboptimally) augment the connectivity of
G' to (k+ 1), and stop.
End (If).
Decrease ¢ by 2 (since we want ¢ = degz(s)), and use the dynamic algorithm (Section 3.1,
page 8) to update b = b(G").
End (While).
Augment G’ (suboptimally) using Phase 5 of Jordan’s algorithm [J 95] and stop.
End

20

The proof is given in two parts. The first part proves the correctness and the performance

guarantee, and the second part analyzes the running time. The first part follows from similar
results for Jordan’s algorithm [J 95], but for the sake of completeness, we include the proof in the
appendix.
Proof: (Running time analysis) Our improvement of Jorddn’s O(n°) running time mainly
comes from (1) replacing the input graph G by a sparse certificate, and (2) using our fast dynamic
algorithm for maintaining b(G’). At the start of the algorithm, we replace the k-connected input
graph G = (V, F) by (V, E), where EE C F is a sparse certificate for the (k 4 1)-connectivity of G,
see [NI 92, CKT 93, FIN 93]. The cardinality of Eis < (k+1)n =0(kn), and E can be computed
in linear time by finding a so-called legal ordering of the nodes. The key point is that for every
node set Q@ C V,) is a tight set (or a k-separator, or a k-shredder) of (V,) iff () is a tight set
(or a k-separator, or a k-shredder, respectively) of (V, E), see Proposition 3.4. For the rest of the
analysis, assume that the input graph G has |E(G)| = O(kn). Let G and G’ = G\s be as in the
algorithm.

There are four basic steps in the algorithm: (I) determine whether an edge vs of G is critical,
(IT) given v € N(s), find the leaf and (IIT) the superleaf of G’ = G'\s containing v, and (IV) deter-
mine whether splitting off the edge pair vs, sw in G preserves the (k + 1)-connectivity. The basic
steps can be implemented to run in time O(min(k, v/n)|E(G)|) = O(min(k, v/n)kn) using standard
network flow techniques, see [E 79].

Focus on the overall algorithm. The initial computation of b(G’) takes time O(k?n® + k>n'?),
by Theorem 3.5. While constructing é, for each node v; adjacent to s in é, we also find a leaf D;
containing v;. This takes time O(min(k,/n)kn?), since we need O(n) maximum flow computations.
Consider an iteration of the while loop. If b(G’) > [t/2] > k, then we use the construction in
Theorem 2.4 of [J 95]. This takes linear time. Otherwise, we take an arbitrary neighbor v; of s in é,
and compute the superleaf @; containing v;. If N'(Q);) is not a shredder, then we apply Lemma 5.6.
We step through the other neighbors of s in G and compute the corresponding superleafs till we find
two superleafs Q; and @, that are each disjoint from N'(Q;). Let v; (v,) be the node of N(s)in Q;
(@p). We update G by splitting off either one of the two edge pairs v;s, sv; or v;s, sv, (if one of these
two preserves the connectivity), or the edge pair v;s,sv, (otherwise). Applying Lemma 5.6 takes
time O(min(k,/n)k*n), since there are O(k) maximum flow computations. If N(Q;) is a shredder,
then we first determine whether G’\ N’(Q);) has a component containing two leafs of G’. This takes
time O(n), since all the leafs of the current G’ are available (we computed all the leafs of the initial
G’, and the surviving leafs stay the same throughout the execution). If there is a component, say, C'
of G'\N'((Q);) that contains two leafs, then for each leaf contained in C' we construct the superleaf,
till we find a superleaf @; disjoint from N'(Q;). Then we split off the edge pair v;s, sv; in G (here, v;
is the node in Q;NN(s)). As before, there are O(k) maximum flow computations, and it takes time
O(min(k,/n)k*n) to apply Lemma 5.7. If no component of G'\N'(Q;) contains two leafs of G’,
then Lemma 5.8 applies, and gives the optimal augmenting set for the current graph G’. Updating
b(G") takes time O((min(k, /n) +logn)kn), by Theorem 3.6. Summarizing, the O(n) iterations of
the while loop take time O(min(k,/n)k*n? 4 (log n)kn?) altogether. Phase 5 of Jordén’s algorithm
[J 95] takes time O(min(k,/n)k®n), since it essentially consists of (}) = O(k?) maximum flow
computations. Totaling up, the running time of the algorithm is O(min(k,/n)k?*n* + (logn)kn?).
O

21

6 Conclusions

Very recently, Jordan showed that in a k-connected graph G = (V, F) with |V| > 3k — 1, there
are at most |V| k-shredders, [J 96b]. Except for the case |V| < 3k — 1, this solves one of the open
questions in a preliminary version of this paper.

Let T'(n, k) denote the running time for testing an n-node graph for k-connectivity. Is it possible
to find all the k-shredders of a k-connected graph in o(T'(n,k)) running time?

The algorithm All-k-shredders in Section 3 has been implemented by T. Yip at the University
of Waterloo (as part of an undergraduate research project). As expected, the most time consuming
part of the program is to find the &k openly disjoint v<r paths in Step (1) of Shredders(r,v).

7 Appendix

The proofs of some of the known results are given here, for the sake of completeness.

Figure 4: An illustration of the proof of Lemma 5.6.

See Figures 2(1) and 4 for illustrations of the next lemma.

Lemma 5.6 Let G = (V,E) be a k-connected graph (k > 1) with t(G) > k+3. Let Q;, Q;
and @, be three distinct superleafs such that N(Q);) is disjoint from each of Q; and Q,. Let D,
D; and D, be the leafs contained in @);, Q); and @), respectively. Then for every three nodes
€D, yeD;and z € D,, either one of the node pairs {z,y}, {z,z} or {y,z} is saturating, or
N(Q:) = N(Q;) = N(Qp), i.e., N(Q;) is a k-shredder.

Proof: Since #{(G) > k + 3, G has t(() leafs, these are pairwise disjoint, and also, the superleafs
are pairwise disjoint (Facts 5.3-5.5). Suppose that {z,y} and {z, 2z} are not saturating. Then G
has maximal tight sets W;; and W;, such that W;; O @Q;UQ; and W;, O Q; U Q,. (Cases (ii)
and (iii) for W;; and W;, cannot occur by Fact 5.5 since @); and (), are disjoint from N(Q);).)
since Wi; D Q;, Wi, O @y, both W;; and W;, are tight sets, and there are at least & nodes not in
Wi; U Wiy, (from the other ¢(G) — 3 > k leafs), Lemma 2.2 shows that W;; N W;, is a tight set and

22

N(W;;\W,y,) is disjoint from Wy, \(W;; UN(W;; 0 Wip)). Since W;; N W, satisfies all the conditions
for the superleaf containing D;, the maximality of ¢); implies that ¢); = W;; N W;,. Then @, is
disjoint from N(W;; N W;p) = N(Q;), and hence @, is disjoint from N(Q;), since Q; C W;;\W;,
and @, C W;,\(W;; UN(Q;)). If {y, 2} is saturating, then the proof is done. Otherwise, GG has
another maximal tight set W;, such that W;, D Q); U @), (Cases (ii) and (iii) for W}, cannot occur
by Fact 5.5 since @, is disjoint from N(();)). As above, we can show that W;; N W;, = (); and
Wi, "W, = @,. Finally, we examine the two sets (W;, UW,,) and W;;. Since |[N(W;, UW;,)| =k
(this holds since either W;, UW,, is a tight set or there are exactly k nodes not in this set), W;; is a
tight set, and |N(W;, UW,, UW;;)| > k, the submodularity of | N(Q)| implies that the intersection
(Wip U W]‘p) N WZ']‘ = (Wip N Wij) U (W]‘p N Wij) = @; U Q]‘ must have |N(Q2 U Q])| = k. The
proof is domne since |N(Q; U @;)| = k implies that N(Q;) = N(Q;). Similarly, it follows that
N(Q:) = N(Qp). Clearly, N(Q;) is a k-shredder. a

Theorem 5.10 (Part 1) The augmentation algorithm correctly increases the connectivity of a graph
G from k to k 4+ 1, and the number of edges added is at most k — 2 plus the lower bound of
max(b(G)— 1, [t(G)/2]).

Proof: (Correctness and performance guarantee) Let G denote G'\s throughout the proof.
The initial graph G has at least (k + 1) edges incident to s since G is (k 4 1)-connected. If
G has t > (k + 2) edges incident to s each of which is critical, then #(G’) = t, and G’ has t
(pairwise disjoint) leafs and ¢ (pairwise disjoint) superleafs, by Facts 5.3-5.5. (The case k = 1 and
t = degé(s) =k + 1 = 2 is an exception, because for k¥ = 1 the leafs of G/ are always pairwise

disjoint, so G’ satisfies the previous assertion in this case too.) For k& > 1, if the initial graph G has
exactly (k+ 1) edges incident to s, then the leafs of G’ may not be pairwise disjoint, and possibly
{(G') is less than degz(s). Nevertheless, every leaf of G’ must contain at least one of the neighbors
of s in G, since G is (k + 1)-connected.

First, consider a nonterminal iteration of the while loop. Then we have t = degé(s) > 2k, and
b(G') < [t/2]. If t > (k+3), then by Theorem 5.1 and Lemmas 5.6-5.7, we add a new edge v;v; to
G’ such that ¢(G') decreases by two. In terms of é, we split off an edge pair v;s, sv; that preserves
the (k 4 1)-connectivity. (For k = 1,2, t > 2k does not imply ¢ > (k 4+ 3). But then we have one
of the special cases k = 1,t =2, k=1,t=3,0r k =2,t{ =4, and it can be proved that for each
of these cases there exists a new edge whose addition to G decreases t(G”’) by two.) Thus every
nonterminal iteration of the while loop satisfies a key property:

the cardinality of the augmenting set increases by one, and the lower bound decreases
by one.

At the terminating steps of the algorithm, if we can prove that the slack for the current graph G’
is at most (k — 2), then this key property guarantees that the slack for the original graph G' is at
most (k — 2).

To complete the proof, we examine each of the cases in which the algorithm terminates, and
show that the slack for the current graph G’ is at most (k — 2). If the current graph G’ in an
execution of the while loop has b(G’) > [t(G’)/2] > k, then a minimum-cardinality augmenting set
for G’ is easily found by Theorem 2.4 of [J 95]:

Suppose that a k-connected graph G has b(G) > k+ 1 and b(G) > [t(G)/2]. Then

there is an augmenting set of cardinality b(G) — 1.

In this case, the overall augmenting set for the original graph G is optimal. If the current graph G’
in an execution of the while loop is a J-graph, then a minimum-cardinality augmenting set F’ for

23

G’ is easily found by Lemma 5.8. In this case, the overall augmenting set F' for the original graph
G may not be optimal, because |F’| exceeds the lower bound for the current graph G’. However,
the slack of F' for the original graph is at most k& — 2, because the slack of F’ for the current graph
is at most k — 2.

Ift= degé(s) < 2k, either initially or after several iterations of the while loop, then the algo-
rithm executes the last step (Phase 5 of Jordan’s algorithm). This step increases the connectivity
of the current graph G’ to (k + 1) by adding an (inclusionwise) minimal subset F’ of the edges
{viv; : 1 <i < j <t}, where vy,..., v are the neighbors of s in G. As shown in [J 95], a well-known
result of Mader implies that F” contains no cycles.

Mader’s result is: In a (k+ 1)-connected graph, a cycle consisting of critical edges must
be incident to at least one node of degree k + 1.

Hence, |F'| < (t—1). If t > (k4 2), then since t = t(G"), the lower bound is > [¢(G")/2] = [t/2],
and so the slack is < (¢t — 1) — [t/2] < (k — 2), since t < (2k — 1). Otherwise, if ¢ < (k + 1), then
possibly ¢(G') < t, but we may assume ¢(G’) > 3, so the slack is < (k) — [3/2] < (k — 2). (The
algorithm can easily recognize the special case {(G') = 2, and find a one-edge augmenting set by
[J 95, Lemma 3.2].) 0

References

[BBM 90] D. Bienstock, E. F. Brickell and C. L. Monma, “On the structure of minimum-weight k-connected
spanning networks,” SIAM J. Discrete Math. 3 (1990), 320-329.

[CKT 93] J.Cheriyan, M. Y. Kao and R. Thurimella, “Scan-first search and sparse certificates: An improved
parallel algorithm for k-vertex connectivity,” STAM J. Computing 22 (1993), 157-174.

[CLR 90] T. H. Cormen, C. E. Leiserson and R. L. Rivest, Iniroduction to Algorithms, The MIT Press,
Cambridge, MA, 1990.

[E 79] S. Even, Graph Algorithms, Computer Science Press, Potomac, MD, 1979.

[ET 76] K. P. Eswaran and R. E. Tarjan, “Augmentation problems,” SIAM J. Computing 5 (1976),
653-665.

[FIN 93] A. Frank, T. Ibaraki and H. Nagamochi, “On sparse subgraphs preserving connectivity proper-
ties,” J. Graph Theory 17 (1993), 275-281.

[F 92a] A. Frank, “Augmenting graphs to meet edge-connectivity requirements,” SIAM J. Disc. Math. 5
(1992), 25-53.

[F 92b] A. Frank, “On a theorem of Mader,” Annals of Discrete Math. 101 (1992), 49-57.
[F 93] A. Frank, “Submodular functions in graph theory,” Discrete Math. 111 (1993), 231-243.

[F 94] A. Frank, “Connectivity augmentation problems in network design,” in Mathematical Program-
ming: State of the Art 1994, (Eds. J. R. Birge and K. G. Murty), The University of Michigan,
Ann Arbor, MI, 1994, 34-63.

[FJ 95a] A. Frank and T. Jordan, “Minimal edge-coverings of pairs of sets,” J. Combinatorial Theory
Series B 65 (1995), 73-110.

[FJ 95b] A. Frank and T. Jorddn, “How to make a strongly connected digraph two-connected,” Proc.
4th I.P.C.0., Egon Balas and Jens Clausen (Eds.), LNCS 920, Springer-Verlag, Berlin, (1995),
414-425,

24

[G 80]

[GW 95]

[HRG 96]

[HR 91]

[H 92]

[HR 93]

[H 95]

[7 93]

[7 95]

[7 96]
[7 96b]
[K 95]

[Lo 74]

[Ma 78]

[Ma 82]

[NT 92]

[PB 83

[RW 95]

[WN 90]

Z. Galil, “Finding the vertex connectivity of graphs,” SIAM J. Computing 9 (1980), 197-199.

M. X. Goemans and D. P. Williamson, “The primal-dual method for approximation algorithms
and its application to network design problems,” In Approzimation Algorithms for NP-hard Prob-
lems, (Ed. D. S. Hochbaum), PWS Publishing Co., Boston, MA, 1995.

M. R. Henzinger, S. Rao and H. N. Gabow, “Computing vertex connectivity: new bounds from

old techniques,” Proc. 37th IEEE F.0.C.S. (1996), 462-471.

T. Hsu and V. Ramachandran, “A linear time algorithm for triconnectivity augmentation,” Proc.

32nd IEEE F.O.C.S. (1991), 548-559.
T. Hsu, “On four-connecting a triconnected graph,” Proc. 33rd IEEE F.0.C.S. (1992), 70-79.

T. Hsu and V. Ramachandran, “Finding a smallest augmentation to biconnect a graph,” STAM
J. Computing 22 (1993), 889-912.

T. Hsu, “Undirected vertex-connectivity structure and smallest four-vertex-connectivity augmen-

tation,” Proc. 6th ISAAC (1995).

T. Jordan, “Increasing the vertex-connectivity in directed graphs,” Proc. Algorithms — ESA’93,
1st Annual European Symposium, LNCS 726, Springer, New York (1993), 236-247.

T. Jordan, “On the optimal vertex-connectivity augmentation,” J. Combinatorial Theory, Series

B 63 (1995), 8-20. Preliminary version in Proc. 3rd I.P.C.0O. (1993), 75-88.
T. Jordan, Ph. D. thesis.

T. Jordan, Personal communication, February 1996.

T. Jordan, “On the number of shredders,” manuscript, November 1996.

D. Karger, “A randomized fully polynomial time approximation scheme for the all terminal

network reliability problem,” Proc. 27th ACM S.T.0.C. (1995), 11-17.
L. Lovasz, Lecture at Conference in Graph Theory, Prague, 1974.

W. Mader, “A reduction method for edge-connectivity in graphs,” Annals of Discrete Math. 3
(1978), 145-164.

W. Mader, “Konstruktion aller n-fach kantenzusammenhangenden Digraphen,” FEuropean J.

Combinatorics 3 (1982), 63-67.

H. Nagamochi and T. Ibaraki, “A linear-time algorithm for finding a sparse k-connected spanning

subgraph of a k-connected graph,” Algorithmica 7 (1992), 583-596.

J. S. Provan and M. O. Ball, “The complexity of counting cuts and of computing the probability
that a graph is connected,” STAM J. Computing 12 (1983), 777-788.

R. Ravi and D. P. Williamson, “An approximation algorithm for minimum-cost vertex-
connectivity problems,” Preliminary version in Proc. 6th ACM-SIAM S.0.D.A. (1995), 332-341.
To appear in Algorithmica.

T. Watanabe and A. Nakamura, “A smallest augmentation to 3-connect a graph,” Discrete Appl.
Math. 28 (1990), 183-186.

25

